WO2022027614A1 - Methods and apparatus for optimizing qos parameters - Google Patents

Methods and apparatus for optimizing qos parameters Download PDF

Info

Publication number
WO2022027614A1
WO2022027614A1 PCT/CN2020/107878 CN2020107878W WO2022027614A1 WO 2022027614 A1 WO2022027614 A1 WO 2022027614A1 CN 2020107878 W CN2020107878 W CN 2020107878W WO 2022027614 A1 WO2022027614 A1 WO 2022027614A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
downlink
qos
updated
qos profile
Prior art date
Application number
PCT/CN2020/107878
Other languages
French (fr)
Inventor
Nan Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/107878 priority Critical patent/WO2022027614A1/en
Publication of WO2022027614A1 publication Critical patent/WO2022027614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates generally to communication systems, and more particularly, to quality of service (QOS) parameters in wireless communication systems.
  • QOS quality of service
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • 5G New Radio is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements.
  • 3GPP Third Generation Partnership Project
  • 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) .
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard.
  • LTE Long Term Evolution
  • a method, a computer-readable medium, and an apparatus are provided.
  • the apparatus may be a base station.
  • the apparatus may determine a quality of service (QOS) value range for at least one QOS profile.
  • the apparatus may also communicate at least one of downlink data or uplink data based on the determined QOS value range.
  • the apparatus may receive a request for an updated quality of service (QOS) profile.
  • the apparatus may also determine whether the request for the updated QOS profile is accepted based on a QOS value range.
  • the apparatus may also accept or reject the request for the updated QOS profile based on the QOS value range. Further, the apparatus may configure the updated QOS profile when the request for the updated QOS profile is accepted.
  • the apparatus may also modify a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted.
  • the apparatus may also calculate at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window.
  • GFBR uplink guaranteed flow bit rate
  • the apparatus may transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  • the apparatus may also transmit a rejection of the request for the updated QOS profile when the request for the updated QOS profile is not accepted.
  • the apparatus may also communicate at least one of downlink data or uplink data based on the updated QOS profile.
  • the apparatus may be a user equipment (UE) .
  • the apparatus may communicate at least one of downlink data or uplink data based on a quality of service (QOS) value range.
  • the apparatus may also determine a quality of service (QOS) level based on at least one of downlink communication or uplink communication.
  • the apparatus may transmit a request for an updated QOS profile based on the determined QOS level.
  • the apparatus may also receive an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  • the apparatus may also receive a rejection of the request for the updated QOS profile.
  • the apparatus may implement the updated QOS profile when the updated QOS profile is received.
  • the apparatus may also communicate at least one of downlink data or uplink data based on the updated QOS profile.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
  • FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
  • FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
  • FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
  • UE user equipment
  • FIG. 4 is a diagram illustrating example communication between a UE and a base station in accordance with one or more techniques of the present disclosure.
  • FIG. 5 is a flowchart of a method of wireless communication.
  • FIG. 6 is a flowchart of a method of wireless communication.
  • FIG. 7 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
  • processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.
  • processors in the processing system may execute software.
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • optical disk storage magnetic disk storage
  • magnetic disk storage other magnetic storage devices
  • combinations of the aforementioned types of computer-readable media or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) .
  • the base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macrocells include base stations.
  • the small cells include femtocells, picocells, and microcells.
  • the base stations 102 configured for 4G LTE may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) .
  • the base stations 102 configured for 5G NR may interface with core network 190 through second backhaul links 184.
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) .
  • the first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macrocells may be known as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBe
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 e.g., in a 5 GHz unlicensed frequency spectrum or the like.
  • the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the small cell 102' employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • the electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) .
  • the frequencies between FR1 and FR2 are often referred to as mid-band frequencies.
  • FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
  • a base station 102 may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104.
  • the gNB 180 may be referred to as a millimeter wave base station.
  • the millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range.
  • the base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
  • the base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'.
  • the UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”.
  • the UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions.
  • the base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions.
  • the base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104.
  • the transmit and receive directions for the base station 180 may or may not be the same.
  • the transmit and receive directions for the UE 104 may or may not be the same.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the core network 190 may include an Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190.
  • the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195.
  • the UPF 195 provides UE IP address allocation as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PS Packet Switch
  • PSS Packet
  • the base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • the base station 180 may include a transmission component 199 configured to determine a quality of service (QOS) value range for at least one QOS profile.
  • Transmission component 199 may also be configured to communicate at least one of downlink data or uplink data based on the determined QOS value range.
  • Transmission component 199 may also be configured to receive a request for an updated quality of service (QOS) profile.
  • QOS quality of service
  • Transmission component 199 may also be configured to determine whether the request for the updated QOS profile is accepted based on a QOS value range.
  • Transmission component 199 may also be configured to accept or reject the request for the updated QOS profile based on the QOS value range.
  • Transmission component 199 may also be configured to configure the updated QOS profile when the request for the updated QOS profile is accepted.
  • Transmission component 199 may also be configured to modify a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted. Transmission component 199 may also be configured to calculate at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window. Transmission component 199 may also be configured to transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  • GFBR uplink guaranteed flow bit rate
  • Transmission component 199 may also be configured to transmit a rejection of the request for the updated QOS profile when the request for the updated QOS profile is not accepted. Transmission component 199 may also be configured to communicate at least one of downlink data or uplink data based on the updated QOS profile.
  • the UE 104 may include a reception component 198 configured to communicate at least one of downlink data or uplink data based on a quality of service (QOS) value range.
  • Reception component 198 may also be configured to determine a quality of service (QOS) level based on at least one of downlink communication or uplink communication.
  • Reception component 198 may also be configured to transmit a request for an updated QOS profile based on the determined QOS level.
  • Reception component 198 may also be configured to receive an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  • Reception component 198 may also be configured to receive a rejection of the request for the updated QOS profile. Reception component 198 may also be configured to implement the updated QOS profile when the updated QOS profile is received. Reception component 198 may also be configured to communicate at least one of downlink data or uplink data based on the updated QOS profile.
  • FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure.
  • FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe.
  • FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure.
  • FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe.
  • the 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL.
  • FDD frequency division duplexed
  • TDD time division duplexed
  • the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While subframes 3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols.
  • UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) .
  • DCI DL control information
  • RRC radio resource control
  • SFI received slot format indicator
  • a frame (10 ms) may be divided into 10 equally sized subframes (1 ms) .
  • Each subframe may include one or more time slots.
  • Subframes may also include mini-slots, which may include 7, 4, or 2 symbols.
  • Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols.
  • the symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols.
  • the symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) .
  • the number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies ⁇ 0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology ⁇ , there are 14 symbols/slot and 2 ⁇ slots/subframe.
  • the subcarrier spacing and symbol length/duration are a function of the numerology.
  • the subcarrier spacing may be equal to 2 ⁇ *15 kHz, where ⁇ is the numerology 0 to 4.
  • the symbol length/duration is inversely related to the subcarrier spacing.
  • the slot duration is 0.25 ms
  • the subcarrier spacing is 60 kHz
  • the symbol duration is approximately 16.67 ⁇ s.
  • Each BWP may have a particular numerology.
  • a resource grid may be used to represent the frame structure.
  • Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers.
  • RB resource block
  • PRBs physical RBs
  • the resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
  • the RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state information reference signals (CSI-RS) for channel estimation at the UE.
  • DM-RS demodulation RS
  • CSI-RS channel state information reference signals
  • the RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
  • BRS beam measurement RS
  • BRRS beam refinement RS
  • PT-RS phase tracking RS
  • FIG. 2B illustrates an example of various DL channels within a subframe of a frame.
  • the physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB.
  • CCEs control channel elements
  • REGs RE groups
  • a PDCCH within one BWP may be referred to as a control resource set (CORESET) .
  • CORESET control resource set
  • a UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth.
  • a primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity.
  • a secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing.
  • the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS.
  • the physical broadcast channel (PBCH) which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) .
  • the MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) .
  • the physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
  • SIBs system information blocks
  • some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station.
  • the UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) .
  • the PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH.
  • the PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the particular PUCCH format used.
  • the UE may transmit sounding reference signals (SRS) .
  • the SRS may be transmitted in the last symbol of a subframe.
  • the SRS may have a comb structure, and a UE may transmit SRS on one of the combs.
  • the SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
  • FIG. 2D illustrates an example of various UL channels within a subframe of a frame.
  • the PUCCH may be located as indicated in one configuration.
  • the PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback.
  • UCI uplink control information
  • the PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
  • BSR buffer status report
  • PHR power headroom report
  • FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network.
  • IP packets from the EPC 160 may be provided to a controller/processor 375.
  • the controller/processor 375 implements layer 3 and layer 2 functionality.
  • Layer 3 includes a radio resource control (RRC) layer
  • layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDU
  • the transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions.
  • Layer 1 which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing.
  • the TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) .
  • BPSK binary phase-shift keying
  • QPSK quadrature phase-shift keying
  • M-PSK M-phase-shift keying
  • M-QAM M-quadrature amplitude modulation
  • the coded and modulated symbols may then be split into parallel streams.
  • Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream.
  • IFFT Inverse Fast Fourier Transform
  • the OFDM stream is spatially precoded to produce multiple spatial streams.
  • Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing.
  • the channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350.
  • Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX.
  • Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
  • each receiver 354 RX receives a signal through its respective antenna 352.
  • Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356.
  • the TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions.
  • the RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream.
  • the RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) .
  • FFT Fast Fourier Transform
  • the frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal.
  • the symbols on each subcarrier, and the reference signal are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 310. These soft decisions may be based on channel estimates computed by the channel estimator 358.
  • the soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel.
  • the data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
  • the controller/processor 359 can be associated with a memory 360 that stores program codes and data.
  • the memory 360 may be referred to as a computer-readable medium.
  • the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160.
  • the controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
  • RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting
  • PDCP layer functionality associated with
  • Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing.
  • the spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
  • the UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350.
  • Each receiver 318RX receives a signal through its respective antenna 320.
  • Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
  • the controller/processor 375 can be associated with a memory 376 that stores program codes and data.
  • the memory 376 may be referred to as a computer-readable medium.
  • the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160.
  • the controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
  • At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 199 of FIG. 1.
  • Some aspects of wireless communications include a quality of service (QOS) flow model which can include a number of QOS parameters.
  • QOS quality of service
  • These QOS parameters can be utilized to describe the QOS communication flow. For instance, a number of these QOS parameters can control the QOS flow or communication between a base station and a UE, e.g., the bit rate or latency of the QOS flow. By doing so, a number of these QOS parameters can improve the latency and/or reliability of QOS communication, e.g., a guaranteed flow bit rate (GFBR) parameter, a maximum flow bit rate (MFBR) parameter, and an averaging window parameter.
  • GFBR guaranteed flow bit rate
  • MFBR maximum flow bit rate
  • the averaging window parameter of the QOS parameters can control or compute an uplink bit rate and a downlink bit rate. So the averaging window parameter can provide meaningful guaranteed bit rates to the bandwidth or QOS communication flow.
  • the averaging window parameter can be used to calculate bit rates or a real-time network guaranteed bandwidth (BW) .
  • BW network guaranteed bandwidth
  • the averaging window parameter can specify the amount of time or a time interval for a bit rate computation, e.g., 1-100 ms.
  • the bit rate can be averaged over the time interval that is indicated by the averaging window parameter.
  • the network can guarantee that a certain amount of data will be transferred over this time period of the averaging window. If the averaging window is small, e.g., 1 ms, then this may reduce the amount of time that data can be transferred over the time period. As such, the averaging window can be an important QOS parameter for network latency calculations.
  • a network operator can calculate the data service for a time period of the averaging window parameter.
  • a smart phone operator may allow a user to download a certain amount of data, e.g., 1 GB of data, over a time period, e.g., one month. So the averaging window parameter for smart phone operators can be a data limit over a pre-determined period of time. In some instances, the averaging window parameter can provide an accurate guaranteed bandwidth that can meet the specifications of low latency and a high reliability application run time.
  • the uplink (UL) and downlink (DL) specifications regarding bandwidth, latency, and/or reliability may be different.
  • DL communications may utilize a high BW, but the DL latency may not need to be high.
  • UL communications may utilize a low BW, and the UL may utilize a low latency.
  • the DL communications may be used for rendering pixels, and the UL communications may be used for touch events that may utilize a more immediate feedback.
  • the averaging window may be a certain amount of time, e.g., 100 ms, and the averaging window in the UL may be another amount of time, e.g., 20 ms.
  • DL communications may utilize a high BW, but may not include any specifications for latency.
  • the averaging window may be a certain amount of time, e.g., 100 ms, while in UL the averaging window may be another amount of time, e.g., 200 ms.
  • the averaging window parameter of a QOS communication flow may be utilized for both UL and DL communications.
  • Some bit rate target parameters e.g., guaranteed flow bit rate (GFBR) and maximum flow bit rate (MFBR)
  • GFBR guaranteed flow bit rate
  • MFBR maximum flow bit rate
  • the averaging window parameter may not utilize separate values for UL and DL communications.
  • the averaging window parameter can be the same for both UL and DL communications. For instance, if the averaging window is too small for either UL or DL communication, then the guaranteed bit rate may not be sustainable. So the averaging window parameter in the QOS flow parameters may not be able to meet low latency and high reliability application needs for both UL and DL communication. Accordingly, there is a present need to separate the averaging window parameter into an UL averaging window parameter and a DL averaging window parameter.
  • GFBR guaranteed flow bit rate
  • MFBR maximum flow bit rate
  • aspects of the present disclosure can separate the averaging window parameter into an UL portion and a DL portion. So aspects of the present disclosure can include an UL averaging window parameter and a DL averaging window parameter. As such, the present disclosure can more easily control the averaging window time period for both UL communications and DL communications. By doing so, the averaging window parameter can meet low latency and high reliability application needs for both UL communications and DL communications.
  • the UL latency and/or bit rate may be different from the DL latency and/or bit rate. Accordingly, separating the UL averaging window and DL averaging window can make the guaranteed bit rates and/or latency needs more sustainable for both UL and DL communication. For instance, if the network or base station includes a certain averaging window on the UL, e.g., 1000 ms, and a certain guaranteed bit rate on the UL, which may be different from the corresponding DL values, then the present disclosure can help to maintain these values.
  • a certain averaging window on the UL e.g. 1000 ms
  • a certain guaranteed bit rate on the UL which may be different from the corresponding DL values
  • the present disclosure can include an UL averaging window parameter and a DL averaging window parameter for real-time UL and DL BW calculation in QOS communication. So the present disclosure can add new QOS flow parameters for the UL averaging window parameter and the DL averaging window parameter.
  • the network and the UE may use these newly added averaging window parameters together with the GFBR UL parameter, the GFBR DL parameter, the MFBR UL parameter, and/or the MFBR DL parameter.
  • the present disclosure can ensure that UL and DL communications receive separate QOS service for the QOS communication flow.
  • These separate UL and DL averaging window parameters can be used to compute and provide a guaranteed bit rate for the QOS communication flow.
  • UEs according to the present disclosure can submit a request for an updated QOS profile to the network or base station.
  • the request for an updated QOS profile can include a GFBR DL parameter, e.g., 10 Mbps, and a DL averaging window parameter, e.g., 200 ms.
  • the request for an updated QOS profile can include a GFBR UL parameter, e.g., 10 kbps, and a DL averaging window parameter, e.g., 20 ms.
  • the network or base station can then determine whether the request for an updated QOS profile is accepted. If the request is accepted, the network can provide the UE, e.g., UE-A, with a different UL or DL QOS flow service, e.g., for a real-time BW calculation.
  • aspects of the present disclosure can include a number of benefits or advantages.
  • the present disclosure can provide a QOS communication flow with an UL averaging window parameter and a DL averaging window parameter.
  • the present disclosure can include separate UL and DL run time BW calculations and/or scheduling ability.
  • the present disclosure can meet low latency and high reliability communication specifications.
  • aspects of the present disclosure can also provide applications with proper QOS service for low latency communication, e.g., ultra-reliable low latency communication (uRLLC) .
  • uRLLC ultra-reliable low latency communication
  • FIG. 4 is a diagram 400 illustrating example communication between a UE 402 and a base station 404.
  • base station 404 may determine a quality of service (QOS) value range for at least one QOS profile.
  • QOS quality of service
  • base station 404 may communicate at least one of downlink data or uplink data, e.g., data 424, based on the determined QOS value range.
  • UE 402 may communicate at least one of downlink data or uplink data, e.g., data 424, based on a quality of service (QOS) value range.
  • QOS quality of service
  • UE 402 may determine a QOS level based on at least one of downlink communication or uplink communication.
  • UE 402 may transmit a request for an updated QOS profile, e.g., request 444, based on the determined QOS level.
  • base station 404 may receive a request for an updated QOS profile, e.g., request 444.
  • the request for the updated QOS profile may include a request for one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  • base station 404 may determine whether the request for the updated QOS profile is accepted based on a QOS value range.
  • base station 404 may accept or reject the request for the updated QOS profile based on the QOS value range.
  • base station 404 may configure the updated QOS profile when the request for the updated QOS profile is accepted.
  • base station 404 may modify a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted.
  • base station 404 may calculate at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window.
  • GFBR uplink guaranteed flow bit rate
  • base station 404 may transmit an updated QOS profile, e.g., updated QOS profile 474, when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  • UE 402 may receive an updated QOS profile, e.g., updated QOS profile 474, based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  • the one or more QOS parameters further include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR.
  • GFBR downlink guaranteed flow bit rate
  • MFBR downlink maximum flow bit rate
  • the uplink averaging window may be associated with an uplink bit rate and the downlink averaging window may be associated with a downlink bit rate.
  • base station 404 may transmit a rejection of the request for the updated QOS profile, e.g., rejection 484, when the request for the updated QOS profile is not accepted.
  • UE 402 may receive a rejection of the request for the updated QOS profile, e.g., rejection 484.
  • UE 402 may implement the updated QOS profile when the updated QOS profile is received.
  • base station 404 may communicate at least one of downlink data or uplink data, e.g., data 494, based on the updated QOS profile.
  • UE 402 may communicate at least one of downlink data or uplink data, e.g., data 494, based on the updated QOS profile.
  • the downlink data may include one or more downlink data packets and the uplink data may include one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size. Further, at least one of the downlink data packet size or the uplink data packet size may be based on the updated QOS profile.
  • FIG. 5 is a flowchart 500 of a method of wireless communication.
  • the method may be performed by a base station or a component of a base station (e.g., the base station 102, 180, 310, 404; the apparatus 802; a processing system, which may include the memory 376 and which may be the entire base station or a component of the base station, such as the antenna (s) 320, receiver 318RX, the RX processor 370, the controller/processor 375, and/or the like) .
  • Optional aspects are illustrated with a dashed line.
  • the methods described herein can provide a number of benefits, such as improving communication signaling, resource utilization, and/or power savings.
  • the apparatus may determine a quality of service (QOS) value range for at least one QOS profile, as described in connection with the examples in FIG. 4. For example, 502 may be performed by determination component 840.
  • QOS quality of service
  • the apparatus may communicate at least one of downlink data or uplink data based on the determined QOS value range, as described in connection with the examples in FIG. 4. For example, 504 may be performed by determination component 840.
  • the apparatus may receive a request for an updated QOS profile, as described in connection with the examples in FIG. 4.
  • 506 may be performed by determination component 840.
  • the request for the updated QOS profile may include a request for one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window, as described in connection with the examples in FIG. 4.
  • the apparatus may determine whether the request for the updated QOS profile is accepted based on a QOS value range, as described in connection with the examples in FIG. 4. For example, 508 may be performed by determination component 840.
  • the apparatus may accept or reject the request for the updated QOS profile based on the QOS value range, as described in connection with the examples in FIG. 4.
  • 510 may be performed by determination component 840.
  • the apparatus may configure the updated QOS profile when the request for the updated QOS profile is accepted, as described in connection with the examples in FIG. 4.
  • 512 may be performed by determination component 840.
  • the apparatus may modify a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted, as described in connection with the examples in FIG. 4. For example, 514 may be performed by determination component 840.
  • the apparatus may calculate at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window, as described in connection with the examples in FIG. 4. For example, 516 may be performed by determination component 840.
  • GFBR uplink guaranteed flow bit rate
  • the apparatus may transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window, as described in connection with the examples in FIG. 4.
  • the one or more QOS parameters may include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR, as described in connection with the examples in FIG. 4.
  • GFBR downlink guaranteed flow bit rate
  • MFBR downlink maximum flow bit rate
  • the uplink averaging window may be associated with an uplink bit rate
  • the downlink averaging window may be associated with a downlink bit rate, as described in connection with the examples in FIG. 4.
  • the apparatus may transmit a rejection of the request for the updated QOS profile when the request for the updated QOS profile is not accepted, as described in connection with the examples in FIG. 4.
  • 520 may be performed by determination component 840.
  • the apparatus may communicate at least one of downlink data or uplink data based on the updated QOS profile, as described in connection with the examples in FIG. 4.
  • 522 may be performed by determination component 840.
  • the downlink data may include one or more downlink data packets and the uplink data may include one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size, as described in connection with the examples in FIG. 4.
  • at least one of the downlink data packet size or the uplink data packet size may be based on the updated QOS profile, as described in connection with the examples in FIG. 4.
  • FIG. 6 is a flowchart 600 of a method of wireless communication.
  • the method may be performed by a UE or a component of a UE (e.g., the UE 104, 350, 402; the apparatus 702; a processing system, which may include the memory 360 and which may be the entire UE or a component of the UE, such as the TX processor 368, the controller/processor 359, transmitter 354TX, antenna (s) 352, and/or the like) .
  • a processing system which may include the memory 360 and which may be the entire UE or a component of the UE, such as the TX processor 368, the controller/processor 359, transmitter 354TX, antenna (s) 352, and/or the like.
  • Optional aspects are illustrated with a dashed line.
  • the methods described herein can provide a number of benefits, such as improving communication signaling, resource utilization, and/or power savings.
  • the apparatus may communicate at least one of downlink data or uplink data based on a quality of service (QOS) value range, as described in connection with the examples in FIG. 4.
  • QOS quality of service
  • the apparatus may determine a quality of service (QOS) level based on at least one of downlink communication or uplink communication, as described in connection with the examples in FIG. 4. For example, 604 may be performed by determination component 740.
  • QOS quality of service
  • the apparatus may transmit a request for an updated QOS profile based on the determined QOS level, as described in connection with the examples in FIG. 4. For example, 606 may be performed by determination component 740.
  • the apparatus may receive an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window, as described in connection with the examples in FIG. 4.
  • 608 may be performed by determination component 740.
  • the request for the updated QOS profile may include a request for the one or more QOS parameters including at least one of the uplink averaging window or the downlink averaging window, as described in connection with the examples in FIG. 4.
  • the one or more QOS parameters may further include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR, as described in connection with the examples in FIG. 4.
  • the uplink averaging window may be associated with an uplink bit rate and the downlink averaging window may be associated with a downlink bit rate, as described in connection with the examples in FIG. 4.
  • At least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR may be calculated based on at least one of the uplink averaging window or the downlink averaging window, as described in connection with the examples in FIG. 4.
  • GFBR uplink guaranteed flow bit rate
  • a previous QOS profile may be modified based on the one or more QOS parameters, as described in connection with the examples in FIG. 4.
  • the apparatus may receive a rejection of the request for the updated QOS profile, as described in connection with the examples in FIG. 4. For example, 610 may be performed by determination component 740.
  • the apparatus may implement the updated QOS profile when the updated QOS profile is received, as described in connection with the examples in FIG. 4. For example, 612 may be performed by determination component 740.
  • the apparatus may communicate at least one of downlink data or uplink data based on the updated QOS profile, as described in connection with the examples in FIG. 4.
  • 614 may be performed by determination component 740.
  • the downlink data may include one or more downlink data packets and the uplink data may include one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size, as described in connection with the examples in FIG. 4.
  • at least one of the downlink data packet size or the uplink data packet size may be based on the updated QOS profile, as described in connection with the examples in FIG. 4.
  • FIG. 7 is a diagram 700 illustrating an example of a hardware implementation for an apparatus 702.
  • the apparatus 702 is a UE and includes a cellular baseband processor 704 (also referred to as a modem) coupled to a cellular RF transceiver 722 and one or more subscriber identity modules (SIM) cards 720, an application processor 706 coupled to a secure digital (SD) card 708 and a screen 710, a Bluetooth module 712, a wireless local area network (WLAN) module 714, a Global Positioning System (GPS) module 716, and a power supply 718.
  • the cellular baseband processor 704 communicates through the cellular RF transceiver 722 with the UE 104 and/or BS 102/180.
  • the cellular baseband processor 704 may include a computer-readable medium /memory.
  • the computer-readable medium /memory may be non-transitory.
  • the cellular baseband processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the cellular baseband processor 704, causes the cellular baseband processor 704 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 704 when executing software.
  • the cellular baseband processor 704 further includes a reception component 730, a communication manager 732, and a transmission component 734.
  • the communication manager 732 includes the one or more illustrated components.
  • the components within the communication manager 732 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 704.
  • the cellular baseband processor 704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
  • the apparatus 702 may be a modem chip and include just the baseband processor 704, and in another configuration, the apparatus 702 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 702.
  • the communication manager 732 includes a determination component 740 that is configured to determine a quality of service (QOS) level based on at least one of downlink communication or uplink communication, e.g., as described in connection with step 604 above. Determination component 740 can also be configured to transmit a request for an updated QOS profile based on the determined QOS level, e.g., as described in connection with step 606 above. Determination component 740 can also be configured to receive an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window, e.g., as described in connection with step 608 above.
  • QOS quality of service
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 6. As such, each block in the aforementioned flowcharts of FIGs. 4 and 6 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 702 includes means for determining a quality of service (QOS) level based on at least one of downlink communication or uplink communication.
  • the apparatus 702 can also include means for transmitting a request for an updated QOS profile based on the determined QOS level.
  • the apparatus 702 can also include means for receiving an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 702 configured to perform the functions recited by the aforementioned means.
  • the apparatus 702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359.
  • the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
  • FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802.
  • the apparatus 802 is a base station and includes a baseband unit 804.
  • the baseband unit 804 may communicate through a cellular RF transceiver with the UE 104.
  • the baseband unit 804 may include a computer-readable medium /memory.
  • the baseband unit 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory.
  • the software when executed by the baseband unit 804, causes the baseband unit 804 to perform the various functions described supra.
  • the computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 804 when executing software.
  • the baseband unit 804 further includes a reception component 830, a communication manager 832, and a transmission component 834.
  • the communication manager 832 includes the one or more illustrated components.
  • the components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 804.
  • the baseband unit 804 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
  • the communication manager 832 includes a component 840 that is configured to receive a request for an updated quality of service (QOS) profile, e.g., as described in connection with step 506 above.
  • Determination component 840 can also be configured to determine whether the request for the updated QOS profile is accepted based on a QOS value range, e.g., as described in connection with step 508 above.
  • Determination component 840 can also be configured to transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window, e.g., as described in connection with step 518 above.
  • the apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 5. As such, each block in the aforementioned flowcharts of FIGs. 4 and 5 may be performed by a component and the apparatus may include one or more of those components.
  • the components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • the apparatus 802 includes means for receiving a request for an updated quality of service (QOS) profile.
  • the apparatus 802 can also include means for determining whether the request for the updated QOS profile is accepted based on a QOS value range.
  • the apparatus 802 can also include means for transmitting an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  • the aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means.
  • the apparatus 802 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375.
  • the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
  • Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C.
  • combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to methods and devices for wireless communication including an apparatus, e.g., a UE and/or base station. In one aspect, the apparatus can receive a request for an updated QOS profile. The apparatus can also determine whether the request for the updated QOS profile is accepted based on a QOS value range. Additionally, the apparatus can transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window. The apparatus can also calculate at least one of an uplink GFBR or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window.

Description

METHODS AND APPARATUS FOR OPTIMIZING QOS PARAMETERS BACKGROUND Technical Field
The present disclosure relates generally to communication systems, and more particularly, to quality of service (QOS) parameters in wireless communication systems.
Introduction
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR) . 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT) ) , and other requirements. 5G NR includes services associated with enhanced mobile broadband (eMBB) , massive machine type communications (mMTC) , and ultra-reliable low latency communications (URLLC) . Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a base station. The apparatus may determine a quality of service (QOS) value range for at least one QOS profile. The apparatus may also communicate at least one of downlink data or uplink data based on the determined QOS value range. Additionally, the apparatus may receive a request for an updated quality of service (QOS) profile. The apparatus may also determine whether the request for the updated QOS profile is accepted based on a QOS value range. The apparatus may also accept or reject the request for the updated QOS profile based on the QOS value range. Further, the apparatus may configure the updated QOS profile when the request for the updated QOS profile is accepted. The apparatus may also modify a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted. The apparatus may also calculate at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window. Moreover, the apparatus may transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window. The apparatus may also transmit a rejection of the request for the updated QOS profile when the request for the updated QOS profile is not accepted. The apparatus may also communicate at least one of downlink data or uplink data based on the updated QOS profile.
In another aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a user equipment (UE) . The apparatus may communicate at least one of downlink data or uplink data based on a quality of service (QOS) value range. The apparatus may also determine a quality of service  (QOS) level based on at least one of downlink communication or uplink communication. Additionally, the apparatus may transmit a request for an updated QOS profile based on the determined QOS level. The apparatus may also receive an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window. The apparatus may also receive a rejection of the request for the updated QOS profile. Further, the apparatus may implement the updated QOS profile when the updated QOS profile is received. The apparatus may also communicate at least one of downlink data or uplink data based on the updated QOS profile.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.
FIG. 2A is a diagram illustrating an example of a first frame, in accordance with various aspects of the present disclosure.
FIG. 2B is a diagram illustrating an example of DL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 2C is a diagram illustrating an example of a second frame, in accordance with various aspects of the present disclosure.
FIG. 2D is a diagram illustrating an example of UL channels within a subframe, in accordance with various aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example of a base station and user equipment (UE) in an access network.
FIG. 4 is a diagram illustrating example communication between a UE and a base station in accordance with one or more techniques of the present disclosure.
FIG. 5 is a flowchart of a method of wireless communication.
FIG. 6 is a flowchart of a method of wireless communication.
FIG. 7 is a diagram illustrating an example of a hardware implementation for an example apparatus.
FIG. 8 is a diagram illustrating an example of a hardware implementation for an example apparatus.
DETAILED DESCRIPTION
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements” ) . These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs) , central processing units (CPUs) , application processors, digital signal processors (DSPs) , reduced instruction set computing (RISC) processors, systems on a chip (SoC) , baseband processors, field programmable gate arrays (FPGAs) , programmable logic devices (PLDs) , state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure.  One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM) , a read-only memory (ROM) , an electrically erasable programmable ROM (EEPROM) , optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) includes base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and another core network 190 (e.g., a 5G Core (5GC) ) . The base stations 102 may include macrocells (high power cellular base station) and/or small cells (low power cellular base station) . The macrocells include base stations. The small cells include femtocells, picocells, and microcells.
The base stations 102 configured for 4G LTE (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through first backhaul links 132 (e.g., S1 interface) . The base stations 102 configured for 5G NR (collectively referred to as Next Generation RAN (NG-RAN) ) may interface with core network 190 through second backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell  interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or core network 190) with each other over third backhaul links 134 (e.g., X2 interface) . The first backhaul links 132, the second backhaul links 184, and the third backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102' may have a coverage area 110' that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macrocells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group known as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102 /UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or fewer carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
Certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL  WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154, e.g., in a 5 GHz unlicensed frequency spectrum or the like. When communicating in an unlicensed frequency spectrum, the STAs 152 /AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102' may employ NR and use the same unlicensed frequency spectrum (e.g., 5 GHz, or the like) as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
The electromagnetic spectrum is often subdivided, based on frequency/wavelength, into various classes, bands, channels, etc. In 5G NR, two initial operating bands have been identified as frequency range designations FR1 (410 MHz –7.125 GHz) and FR2 (24.25 GHz –52.6 GHz) . The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
With the above aspects in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like if used herein may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be  understood that the term “millimeter wave” or the like if used herein may broadly represent frequencies that may include mid-band frequencies, may be within FR2, or may be within the EHF band.
base station 102, whether a small cell 102' or a large cell (e.g., macro base station) , may include and/or be referred to as an eNB, gNodeB (gNB) , or another type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave frequencies, and/or near millimeter wave frequencies in communication with the UE 104. When the gNB 180 operates in millimeter wave or near millimeter wave frequencies, the gNB 180 may be referred to as a millimeter wave base station. The millimeter wave base station 180 may utilize beamforming 182 with the UE 104 to compensate for the path loss and short range. The base station 180 and the UE 104 may each include a plurality of antennas, such as antenna elements, antenna panels, and/or antenna arrays to facilitate the beamforming.
The base station 180 may transmit a beamformed signal to the UE 104 in one or more transmit directions 182'. The UE 104 may receive the beamformed signal from the base station 180 in one or more receive directions 182”. The UE 104 may also transmit a beamformed signal to the base station 180 in one or more transmit directions. The base station 180 may receive the beamformed signal from the UE 104 in one or more receive directions. The base station 180 /UE 104 may perform beam training to determine the best receive and transmit directions for each of the base station 180 /UE 104. The transmit and receive directions for the base station 180 may or may not be the same. The transmit and receive directions for the UE 104 may or may not be the same.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP  Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The core network 190 may include an Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 is the control node that processes the signaling between the UEs 104 and the core network 190. Generally, the AMF 192 provides QoS flow and session management. All user Internet protocol (IP) packets are transferred through the UPF 195. The UPF 195 provides UE IP address allocation as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a Packet Switch (PS) Streaming (PSS) Service, and/or other IP services.
The base station may include and/or be referred to as a gNB, Node B, eNB, an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or core network 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote  device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to FIG. 1, in certain aspects, the base station 180 may include a transmission component 199 configured to determine a quality of service (QOS) value range for at least one QOS profile. Transmission component 199 may also be configured to communicate at least one of downlink data or uplink data based on the determined QOS value range. Transmission component 199 may also be configured to receive a request for an updated quality of service (QOS) profile. Transmission component 199 may also be configured to determine whether the request for the updated QOS profile is accepted based on a QOS value range. Transmission component 199 may also be configured to accept or reject the request for the updated QOS profile based on the QOS value range. Transmission component 199 may also be configured to configure the updated QOS profile when the request for the updated QOS profile is accepted. Transmission component 199 may also be configured to modify a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted. Transmission component 199 may also be configured to calculate at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window. Transmission component 199 may also be configured to transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window. Transmission component 199 may also be configured to transmit a rejection of the request for the updated QOS profile when the request for the updated QOS profile is not accepted. Transmission component 199 may also be configured to communicate at least one of downlink data or uplink data based on the updated QOS profile.
Referring again to FIG. 1, in certain aspects, the UE 104 may include a reception component 198 configured to communicate at least one of downlink data or uplink data based on a quality of service (QOS) value range. Reception component 198 may also be configured to determine a quality of service (QOS) level based on at least one of downlink communication or uplink communication. Reception component 198 may also be configured to transmit a request for an updated QOS profile based on the  determined QOS level. Reception component 198 may also be configured to receive an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window. Reception component 198 may also be configured to receive a rejection of the request for the updated QOS profile. Reception component 198 may also be configured to implement the updated QOS profile when the updated QOS profile is received. Reception component 198 may also be configured to communicate at least one of downlink data or uplink data based on the updated QOS profile.
Although the following description may be focused on 5G NR, the concepts described herein may be applicable to other similar areas, such as LTE, LTE-A, CDMA, GSM, and other wireless technologies.
FIG. 2A is a diagram 200 illustrating an example of a first subframe within a 5G NR frame structure. FIG. 2B is a diagram 230 illustrating an example of DL channels within a 5G NR subframe. FIG. 2C is a diagram 250 illustrating an example of a second subframe within a 5G NR frame structure. FIG. 2D is a diagram 280 illustrating an example of UL channels within a 5G NR subframe. The 5G NR frame structure may be frequency division duplexed (FDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for either DL or UL, or may be time division duplexed (TDD) in which for a particular set of subcarriers (carrier system bandwidth) , subframes within the set of subcarriers are dedicated for both DL and UL. In the examples provided by FIGs. 2A, 2C, the 5G NR frame structure is assumed to be TDD, with subframe 4 being configured with slot format 28 (with mostly DL) , where D is DL, U is UL, and F is flexible for use between DL/UL, and subframe 3 being configured with slot format 1 (with all UL) . While  subframes  3, 4 are shown with slot formats 1, 28, respectively, any particular subframe may be configured with any of the various available slot formats 0-61. Slot formats 0, 1 are all DL, UL, respectively. Other slot formats 2-61 include a mix of DL, UL, and flexible symbols. UEs are configured with the slot format (dynamically through DL control information (DCI) , or semi-statically/statically through radio resource control (RRC) signaling) through a received slot format indicator (SFI) . Note that the description infra applies also to a 5G NR frame structure that is TDD.
Other wireless communication technologies may have a different frame structure and/or different channels. A frame (10 ms) may be divided into 10 equally sized subframes (1 ms) . Each subframe may include one or more time slots. Subframes may also include mini-slots, which may include 7, 4, or 2 symbols. Each slot may include 7 or 14 symbols, depending on the slot configuration. For slot configuration 0, each slot may include 14 symbols, and for slot configuration 1, each slot may include 7 symbols. The symbols on DL may be cyclic prefix (CP) OFDM (CP-OFDM) symbols. The symbols on UL may be CP-OFDM symbols (for high throughput scenarios) or discrete Fourier transform (DFT) spread OFDM (DFT-s-OFDM) symbols (also referred to as single carrier frequency-division multiple access (SC-FDMA) symbols) (for power limited scenarios; limited to a single stream transmission) . The number of slots within a subframe is based on the slot configuration and the numerology. For slot configuration 0, different numerologies μ0 to 4 allow for 1, 2, 4, 8, and 16 slots, respectively, per subframe. For slot configuration 1, different numerologies 0 to 2 allow for 2, 4, and 8 slots, respectively, per subframe. Accordingly, for slot configuration 0 and numerology μ, there are 14 symbols/slot and 2 μ slots/subframe. The subcarrier spacing and symbol length/duration are a function of the numerology. The subcarrier spacing may be equal to 2 μ*15 kHz, where μ is the numerology 0 to 4. As such, the numerology μ=0 has a subcarrier spacing of 15 kHz and the numerology μ=4 has a subcarrier spacing of 240 kHz. The symbol length/duration is inversely related to the subcarrier spacing. FIGs. 2A-2D provide an example of slot configuration 0 with 14 symbols per slot and numerology μ=2 with 4 slots per subframe. The slot duration is 0.25 ms, the subcarrier spacing is 60 kHz, and the symbol duration is approximately 16.67 μs. Within a set of frames, there may be one or more different bandwidth parts (BWPs) (see FIG. 2B) that are frequency division multiplexed. Each BWP may have a particular numerology.
A resource grid may be used to represent the frame structure. Each time slot includes a resource block (RB) (also referred to as physical RBs (PRBs) ) that extends 12 consecutive subcarriers. The resource grid is divided into multiple resource elements (REs) . The number of bits carried by each RE depends on the modulation scheme.
As illustrated in FIG. 2A, some of the REs carry reference (pilot) signals (RS) for the UE.The RS may include demodulation RS (DM-RS) (indicated as R for one particular configuration, but other DM-RS configurations are possible) and channel state  information reference signals (CSI-RS) for channel estimation at the UE. The RS may also include beam measurement RS (BRS) , beam refinement RS (BRRS) , and phase tracking RS (PT-RS) .
FIG. 2B illustrates an example of various DL channels within a subframe of a frame. The physical downlink control channel (PDCCH) carries DCI within one or more control channel elements (CCEs) (e.g., 1, 2, 4, 8, or 16 CCEs) , each CCE including six RE groups (REGs) , each REG including 12 consecutive REs in an OFDM symbol of an RB. A PDCCH within one BWP may be referred to as a control resource set (CORESET) . A UE is configured to monitor PDCCH candidates in a PDCCH search space (e.g., common search space, UE-specific search space) during PDCCH monitoring occasions on the CORESET, where the PDCCH candidates have different DCI formats and different aggregation levels. Additional BWPs may be located at greater and/or lower frequencies across the channel bandwidth. A primary synchronization signal (PSS) may be within symbol 2 of particular subframes of a frame. The PSS is used by a UE 104 to determine subframe/symbol timing and a physical layer identity. A secondary synchronization signal (SSS) may be within symbol 4 of particular subframes of a frame. The SSS is used by a UE to determine a physical layer cell identity group number and radio frame timing. Based on the physical layer identity and the physical layer cell identity group number, the UE can determine a physical cell identifier (PCI) . Based on the PCI, the UE can determine the locations of the aforementioned DM-RS. The physical broadcast channel (PBCH) , which carries a master information block (MIB) , may be logically grouped with the PSS and SSS to form a synchronization signal (SS) /PBCH block (also referred to as SS block (SSB) ) . The MIB provides a number of RBs in the system bandwidth and a system frame number (SFN) . The physical downlink shared channel (PDSCH) carries user data, broadcast system information not transmitted through the PBCH such as system information blocks (SIBs) , and paging messages.
As illustrated in FIG. 2C, some of the REs carry DM-RS (indicated as R for one particular configuration, but other DM-RS configurations are possible) for channel estimation at the base station. The UE may transmit DM-RS for the physical uplink control channel (PUCCH) and DM-RS for the physical uplink shared channel (PUSCH) . The PUSCH DM-RS may be transmitted in the first one or two symbols of the PUSCH. The PUCCH DM-RS may be transmitted in different configurations depending on whether short or long PUCCHs are transmitted and depending on the  particular PUCCH format used. The UE may transmit sounding reference signals (SRS) . The SRS may be transmitted in the last symbol of a subframe. The SRS may have a comb structure, and a UE may transmit SRS on one of the combs. The SRS may be used by a base station for channel quality estimation to enable frequency-dependent scheduling on the UL.
FIG. 2D illustrates an example of various UL channels within a subframe of a frame. The PUCCH may be located as indicated in one configuration. The PUCCH carries uplink control information (UCI) , such as scheduling requests, a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , a rank indicator (RI) , and hybrid automatic repeat request (HARQ) ACK/NACK feedback. The PUSCH carries data, and may additionally be used to carry a buffer status report (BSR) , a power headroom report (PHR) , and/or UCI.
FIG. 3 is a block diagram of a base station 310 in communication with a UE 350 in an access network. In the DL, IP packets from the EPC 160 may be provided to a controller/processor 375. The controller/processor 375 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a service data adaptation protocol (SDAP) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 375 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs) , RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression /decompression, security (ciphering, deciphering, integrity protection, integrity verification) , and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs) , error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs) , re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK) , quadrature phase-shift keying (QPSK) , M-phase-shift keying (M-PSK) , M-quadrature amplitude modulation (M-QAM) ) . The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318 TX. Each transmitter 318 TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354 RX receives a signal through its respective antenna 352. Each receiver 354 RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT) . The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station  310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the base station 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression /decompression, and security (ciphering, deciphering, integrity protection, integrity verification) ; RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the base station 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the base station 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX  recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
At least one of the TX processor 368, the RX processor 356, and the controller/processor 359 may be configured to perform aspects in connection with 198 of FIG. 1.
At least one of the TX processor 316, the RX processor 370, and the controller/processor 375 may be configured to perform aspects in connection with 199 of FIG. 1.
Some aspects of wireless communications, e.g., 5G new radio (NR) , include a quality of service (QOS) flow model which can include a number of QOS parameters. These QOS parameters can be utilized to describe the QOS communication flow. For instance, a number of these QOS parameters can control the QOS flow or communication between a base station and a UE, e.g., the bit rate or latency of the QOS flow. By doing so, a number of these QOS parameters can improve the latency and/or reliability of QOS communication, e.g., a guaranteed flow bit rate (GFBR) parameter, a maximum flow bit rate (MFBR) parameter, and an averaging window parameter.
The averaging window parameter of the QOS parameters can control or compute an uplink bit rate and a downlink bit rate. So the averaging window parameter can provide meaningful guaranteed bit rates to the bandwidth or QOS communication flow. The averaging window parameter can be used to calculate bit rates or a real-time network guaranteed bandwidth (BW) . For example, the averaging window parameter can specify the amount of time or a time interval for a bit rate computation, e.g., 1-100 ms.
In some instances, the bit rate can be averaged over the time interval that is indicated by the averaging window parameter. Additionally, in some aspects, the network can  guarantee that a certain amount of data will be transferred over this time period of the averaging window. If the averaging window is small, e.g., 1 ms, then this may reduce the amount of time that data can be transferred over the time period. As such, the averaging window can be an important QOS parameter for network latency calculations.
In some aspects, a network operator can calculate the data service for a time period of the averaging window parameter. For example, a smart phone operator may allow a user to download a certain amount of data, e.g., 1 GB of data, over a time period, e.g., one month. So the averaging window parameter for smart phone operators can be a data limit over a pre-determined period of time. In some instances, the averaging window parameter can provide an accurate guaranteed bandwidth that can meet the specifications of low latency and a high reliability application run time.
In some 5G NR applications, e.g., cloud gaming, 8K live streaming, and smart phone applications, the uplink (UL) and downlink (DL) specifications regarding bandwidth, latency, and/or reliability may be different. For example, in cloud gaming, DL communications may utilize a high BW, but the DL latency may not need to be high. Also, UL communications may utilize a low BW, and the UL may utilize a low latency. For example, the DL communications may be used for rendering pixels, and the UL communications may be used for touch events that may utilize a more immediate feedback. Also, in the DL, the averaging window may be a certain amount of time, e.g., 100 ms, and the averaging window in the UL may be another amount of time, e.g., 20 ms.
In other applications, e.g., 8K live stream, DL communications may utilize a high BW, but may not include any specifications for latency. In these applications, in the DL, the averaging window may be a certain amount of time, e.g., 100 ms, while in UL the averaging window may be another amount of time, e.g., 200 ms.
In wireless communications, the averaging window parameter of a QOS communication flow may be utilized for both UL and DL communications. Some bit rate target parameters, e.g., guaranteed flow bit rate (GFBR) and maximum flow bit rate (MFBR) , may utilize separate values for UL and DL communications. However, the averaging window parameter may not utilize separate values for UL and DL communications. As such, the averaging window parameter can be the same for both UL and DL communications. For instance, if the averaging window is too small for either UL or DL communication, then the guaranteed bit rate may not be sustainable.  So the averaging window parameter in the QOS flow parameters may not be able to meet low latency and high reliability application needs for both UL and DL communication. Accordingly, there is a present need to separate the averaging window parameter into an UL averaging window parameter and a DL averaging window parameter.
Aspects of the present disclosure can separate the averaging window parameter into an UL portion and a DL portion. So aspects of the present disclosure can include an UL averaging window parameter and a DL averaging window parameter. As such, the present disclosure can more easily control the averaging window time period for both UL communications and DL communications. By doing so, the averaging window parameter can meet low latency and high reliability application needs for both UL communications and DL communications.
In some applications, the UL latency and/or bit rate may be different from the DL latency and/or bit rate. Accordingly, separating the UL averaging window and DL averaging window can make the guaranteed bit rates and/or latency needs more sustainable for both UL and DL communication. For instance, if the network or base station includes a certain averaging window on the UL, e.g., 1000 ms, and a certain guaranteed bit rate on the UL, which may be different from the corresponding DL values, then the present disclosure can help to maintain these values.
In some aspects, the present disclosure can include an UL averaging window parameter and a DL averaging window parameter for real-time UL and DL BW calculation in QOS communication. So the present disclosure can add new QOS flow parameters for the UL averaging window parameter and the DL averaging window parameter. The network and the UE may use these newly added averaging window parameters together with the GFBR UL parameter, the GFBR DL parameter, the MFBR UL parameter, and/or the MFBR DL parameter. By doing so, the present disclosure can ensure that UL and DL communications receive separate QOS service for the QOS communication flow. These separate UL and DL averaging window parameters can be used to compute and provide a guaranteed bit rate for the QOS communication flow.
In some instances, UEs according to the present disclosure, e.g., UE-A, can submit a request for an updated QOS profile to the network or base station. For example, the request for an updated QOS profile can include a GFBR DL parameter, e.g., 10 Mbps, and a DL averaging window parameter, e.g., 200 ms. Additionally, the request for an  updated QOS profile can include a GFBR UL parameter, e.g., 10 kbps, and a DL averaging window parameter, e.g., 20 ms. The network or base station can then determine whether the request for an updated QOS profile is accepted. If the request is accepted, the network can provide the UE, e.g., UE-A, with a different UL or DL QOS flow service, e.g., for a real-time BW calculation.
Aspects of the present disclosure can include a number of benefits or advantages. For example, the present disclosure can provide a QOS communication flow with an UL averaging window parameter and a DL averaging window parameter. By doing so, the present disclosure can include separate UL and DL run time BW calculations and/or scheduling ability. Also, the present disclosure can meet low latency and high reliability communication specifications. Aspects of the present disclosure can also provide applications with proper QOS service for low latency communication, e.g., ultra-reliable low latency communication (uRLLC) .
FIG. 4 is a diagram 400 illustrating example communication between a UE 402 and a base station 404. At 410, base station 404 may determine a quality of service (QOS) value range for at least one QOS profile.
At 420, base station 404 may communicate at least one of downlink data or uplink data, e.g., data 424, based on the determined QOS value range. At 422, UE 402 may communicate at least one of downlink data or uplink data, e.g., data 424, based on a quality of service (QOS) value range.
At 430, UE 402 may determine a QOS level based on at least one of downlink communication or uplink communication.
At 440, UE 402 may transmit a request for an updated QOS profile, e.g., request 444, based on the determined QOS level. At 442, base station 404 may receive a request for an updated QOS profile, e.g., request 444. In some aspects, the request for the updated QOS profile may include a request for one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
At 450, base station 404 may determine whether the request for the updated QOS profile is accepted based on a QOS value range.
At 452, base station 404 may accept or reject the request for the updated QOS profile based on the QOS value range.
At 454, base station 404 may configure the updated QOS profile when the request for the updated QOS profile is accepted.
At 456, base station 404 may modify a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted.
At 460, base station 404 may calculate at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window.
At 470, base station 404 may transmit an updated QOS profile, e.g., updated QOS profile 474, when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window. At 472, UE 402 may receive an updated QOS profile, e.g., updated QOS profile 474, based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window. In some aspects, the one or more QOS parameters further include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR. Also, the uplink averaging window may be associated with an uplink bit rate and the downlink averaging window may be associated with a downlink bit rate.
At 480, base station 404 may transmit a rejection of the request for the updated QOS profile, e.g., rejection 484, when the request for the updated QOS profile is not accepted. At 482, UE 402 may receive a rejection of the request for the updated QOS profile, e.g., rejection 484. At 486, UE 402 may implement the updated QOS profile when the updated QOS profile is received.
At 490, base station 404 may communicate at least one of downlink data or uplink data, e.g., data 494, based on the updated QOS profile. At 492, UE 402 may communicate at least one of downlink data or uplink data, e.g., data 494, based on the updated QOS profile. In some aspects, the downlink data may include one or more downlink data packets and the uplink data may include one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size. Further, at least one of the downlink data packet size or the uplink data packet size may be based on the updated QOS profile.
FIG. 5 is a flowchart 500 of a method of wireless communication. The method may be performed by a base station or a component of a base station (e.g., the  base station   102, 180, 310, 404; the apparatus 802; a processing system, which may include the memory 376 and which may be the entire base station or a component of the base station, such as the antenna (s) 320, receiver 318RX, the RX processor 370, the controller/processor 375, and/or the like) . Optional aspects are illustrated with a dashed line. The methods described herein can provide a number of benefits, such as improving communication signaling, resource utilization, and/or power savings.
At 502, the apparatus may determine a quality of service (QOS) value range for at least one QOS profile, as described in connection with the examples in FIG. 4. For example, 502 may be performed by determination component 840.
At 504, the apparatus may communicate at least one of downlink data or uplink data based on the determined QOS value range, as described in connection with the examples in FIG. 4. For example, 504 may be performed by determination component 840.
At 506, the apparatus may receive a request for an updated QOS profile, as described in connection with the examples in FIG. 4. For example, 506 may be performed by determination component 840. In some aspects, the request for the updated QOS profile may include a request for one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window, as described in connection with the examples in FIG. 4.
At 508, the apparatus may determine whether the request for the updated QOS profile is accepted based on a QOS value range, as described in connection with the examples in FIG. 4. For example, 508 may be performed by determination component 840.
At 510, the apparatus may accept or reject the request for the updated QOS profile based on the QOS value range, as described in connection with the examples in FIG. 4. For example, 510 may be performed by determination component 840.
At 512, the apparatus may configure the updated QOS profile when the request for the updated QOS profile is accepted, as described in connection with the examples in FIG. 4. For example, 512 may be performed by determination component 840.
At 514, the apparatus may modify a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted, as described in connection with the examples in FIG. 4. For example, 514 may be performed by determination component 840.
At 516, the apparatus may calculate at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window  or the downlink averaging window, as described in connection with the examples in FIG. 4. For example, 516 may be performed by determination component 840.
At 518, the apparatus may transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window, as described in connection with the examples in FIG. 4. For example, 518 may be performed by determination component 840. In some aspects, the one or more QOS parameters may include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR, as described in connection with the examples in FIG. 4. Also, the uplink averaging window may be associated with an uplink bit rate and the downlink averaging window may be associated with a downlink bit rate, as described in connection with the examples in FIG. 4.
At 520, the apparatus may transmit a rejection of the request for the updated QOS profile when the request for the updated QOS profile is not accepted, as described in connection with the examples in FIG. 4. For example, 520 may be performed by determination component 840.
At 522, the apparatus may communicate at least one of downlink data or uplink data based on the updated QOS profile, as described in connection with the examples in FIG. 4. For example, 522 may be performed by determination component 840. In some aspects, the downlink data may include one or more downlink data packets and the uplink data may include one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size, as described in connection with the examples in FIG. 4. Further, at least one of the downlink data packet size or the uplink data packet size may be based on the updated QOS profile, as described in connection with the examples in FIG. 4.
FIG. 6 is a flowchart 600 of a method of wireless communication. The method may be performed by a UE or a component of a UE (e.g., the  UE  104, 350, 402; the apparatus 702; a processing system, which may include the memory 360 and which may be the entire UE or a component of the UE, such as the TX processor 368, the controller/processor 359, transmitter 354TX, antenna (s) 352, and/or the like) . Optional aspects are illustrated with a dashed line. The methods described herein can  provide a number of benefits, such as improving communication signaling, resource utilization, and/or power savings.
At 602, the apparatus may communicate at least one of downlink data or uplink data based on a quality of service (QOS) value range, as described in connection with the examples in FIG. 4. For example, 602 may be performed by determination component 740.
At 604, the apparatus may determine a quality of service (QOS) level based on at least one of downlink communication or uplink communication, as described in connection with the examples in FIG. 4. For example, 604 may be performed by determination component 740.
At 606, the apparatus may transmit a request for an updated QOS profile based on the determined QOS level, as described in connection with the examples in FIG. 4. For example, 606 may be performed by determination component 740.
At 608, the apparatus may receive an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window, as described in connection with the examples in FIG. 4. For example, 608 may be performed by determination component 740.
In some instances, the request for the updated QOS profile may include a request for the one or more QOS parameters including at least one of the uplink averaging window or the downlink averaging window, as described in connection with the examples in FIG. 4. Also, the one or more QOS parameters may further include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR, as described in connection with the examples in FIG. 4. The uplink averaging window may be associated with an uplink bit rate and the downlink averaging window may be associated with a downlink bit rate, as described in connection with the examples in FIG. 4.
In some aspects, at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR may be calculated based on at least one of the uplink averaging window or the downlink averaging window, as described in connection with the examples in FIG. 4. Also, a previous QOS profile may be modified based on the one or more QOS parameters, as described in connection with the examples in FIG. 4.
At 610, the apparatus may receive a rejection of the request for the updated QOS profile, as described in connection with the examples in FIG. 4. For example, 610 may be performed by determination component 740.
At 612, the apparatus may implement the updated QOS profile when the updated QOS profile is received, as described in connection with the examples in FIG. 4. For example, 612 may be performed by determination component 740.
At 614, the apparatus may communicate at least one of downlink data or uplink data based on the updated QOS profile, as described in connection with the examples in FIG. 4. For example, 614 may be performed by determination component 740. In some aspects, the downlink data may include one or more downlink data packets and the uplink data may include one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size, as described in connection with the examples in FIG. 4. Moreover, at least one of the downlink data packet size or the uplink data packet size may be based on the updated QOS profile, as described in connection with the examples in FIG. 4.
FIG. 7 is a diagram 700 illustrating an example of a hardware implementation for an apparatus 702. The apparatus 702 is a UE and includes a cellular baseband processor 704 (also referred to as a modem) coupled to a cellular RF transceiver 722 and one or more subscriber identity modules (SIM) cards 720, an application processor 706 coupled to a secure digital (SD) card 708 and a screen 710, a Bluetooth module 712, a wireless local area network (WLAN) module 714, a Global Positioning System (GPS) module 716, and a power supply 718. The cellular baseband processor 704 communicates through the cellular RF transceiver 722 with the UE 104 and/or BS 102/180. The cellular baseband processor 704 may include a computer-readable medium /memory. The computer-readable medium /memory may be non-transitory. The cellular baseband processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the cellular baseband processor 704, causes the cellular baseband processor 704 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the cellular baseband processor 704 when executing software. The cellular baseband processor 704 further includes a reception component 730, a communication manager 732, and a transmission component 734. The  communication manager 732 includes the one or more illustrated components. The components within the communication manager 732 may be stored in the computer-readable medium /memory and/or configured as hardware within the cellular baseband processor 704. The cellular baseband processor 704 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359. In one configuration, the apparatus 702 may be a modem chip and include just the baseband processor 704, and in another configuration, the apparatus 702 may be the entire UE (e.g., see 350 of FIG. 3) and include the aforediscussed additional modules of the apparatus 702.
The communication manager 732 includes a determination component 740 that is configured to determine a quality of service (QOS) level based on at least one of downlink communication or uplink communication, e.g., as described in connection with step 604 above. Determination component 740 can also be configured to transmit a request for an updated QOS profile based on the determined QOS level, e.g., as described in connection with step 606 above. Determination component 740 can also be configured to receive an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window, e.g., as described in connection with step 608 above.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 6. As such, each block in the aforementioned flowcharts of FIGs. 4 and 6 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 702, and in particular the cellular baseband processor 704, includes means for determining a quality of service (QOS) level based on at least one of downlink communication or uplink communication. The apparatus 702 can also include means for transmitting a request for an updated QOS profile based on the determined QOS level. The apparatus 702 can also include means for receiving an updated QOS profile based on the request for the updated QOS profile,  the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window. The aforementioned means may be one or more of the aforementioned components of the apparatus 702 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 702 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
FIG. 8 is a diagram 800 illustrating an example of a hardware implementation for an apparatus 802. The apparatus 802 is a base station and includes a baseband unit 804. The baseband unit 804 may communicate through a cellular RF transceiver with the UE 104. The baseband unit 804 may include a computer-readable medium /memory. The baseband unit 804 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory. The software, when executed by the baseband unit 804, causes the baseband unit 804 to perform the various functions described supra. The computer-readable medium /memory may also be used for storing data that is manipulated by the baseband unit 804 when executing software. The baseband unit 804 further includes a reception component 830, a communication manager 832, and a transmission component 834. The communication manager 832 includes the one or more illustrated components. The components within the communication manager 832 may be stored in the computer-readable medium /memory and/or configured as hardware within the baseband unit 804. The baseband unit 804 may be a component of the BS 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
The communication manager 832 includes a component 840 that is configured to receive a request for an updated quality of service (QOS) profile, e.g., as described in connection with step 506 above. Determination component 840 can also be configured to determine whether the request for the updated QOS profile is accepted based on a QOS value range, e.g., as described in connection with step 508 above. Determination component 840 can also be configured to transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters  including at least one of an uplink averaging window or a downlink averaging window, e.g., as described in connection with step 518 above.
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowcharts of FIGs. 4 and 5. As such, each block in the aforementioned flowcharts of FIGs. 4 and 5 may be performed by a component and the apparatus may include one or more of those components. The components may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
In one configuration, the apparatus 802, and in particular the baseband unit 804, includes means for receiving a request for an updated quality of service (QOS) profile. The apparatus 802 can also include means for determining whether the request for the updated QOS profile is accepted based on a QOS value range. The apparatus 802 can also include means for transmitting an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window. The aforementioned means may be one or more of the aforementioned components of the apparatus 802 configured to perform the functions recited by the aforementioned means. As described supra, the apparatus 802 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
Further disclosure is included in the Appendix.
It is understood that the specific order or hierarchy of blocks in the processes /flowcharts disclosed is an illustration of example approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes /flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be  readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C, ” “one or more of A, B, or C, ” “at least one of A, B, and C, ” “one or more of A, B, and C, ” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” and the like may not be a substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
Figure PCTCN2020107878-appb-000001
Figure PCTCN2020107878-appb-000002
Figure PCTCN2020107878-appb-000003
Figure PCTCN2020107878-appb-000004
Figure PCTCN2020107878-appb-000005

Claims (80)

  1. A method of wireless communication performed by a base station, comprising:
    receiving a request for an updated quality of service (QOS) profile;
    determining whether the request for the updated QOS profile is accepted based on a QOS value range; and
    transmitting an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  2. The method of claim 1, further comprising:
    calculating at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window.
  3. The method of claim 1, wherein the request for the updated QOS profile includes a request for the one or more QOS parameters including at least one of the uplink averaging window or the downlink averaging window.
  4. The method of claim 1, further comprising:
    accepting or rejecting the request for the updated QOS profile based on the QOS value range.
  5. The method of claim 4, further comprising:
    configuring the updated QOS profile when the request for the updated QOS profile is accepted.
  6. The method of claim 4, further comprising:
    modifying a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted.
  7. The method of claim 1, wherein the one or more QOS parameters further include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR.
  8. The method of claim 1, wherein the uplink averaging window is associated with an uplink bit rate and the downlink averaging window is associated with a downlink bit rate.
  9. The method of claim 1, further comprising:
    communicating at least one of downlink data or uplink data based on the updated QOS profile.
  10. The method of claim 9, wherein the downlink data includes one or more downlink data packets and the uplink data includes one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size.
  11. The method of claim 10, wherein at least one of the downlink data packet size or the uplink data packet size is based on the updated QOS profile.
  12. The method of claim 1, further comprising:
    determining the QOS value range for at least one QOS profile.
  13. The method of claim 12, further comprising:
    communicating at least one of downlink data or uplink data based on the determined QOS value range.
  14. The method of claim 1, further comprising:
    transmitting a rejection of the request for the updated QOS profile when the request for the updated QOS profile is not accepted.
  15. An apparatus for wireless communication performed by a base station, comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    receive a request for an updated quality of service (QOS) profile;
    determine whether the request for the updated QOS profile is accepted based on a QOS value range; and
    transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  16. The apparatus of claim 15, wherein the at least one processor is further configured to:
    calculate at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window.
  17. The apparatus of claim 15, wherein the request for the updated QOS profile includes a request for the one or more QOS parameters including at least one of the uplink averaging window or the downlink averaging window.
  18. The apparatus of claim 15, wherein the at least one processor is further configured to:
    accept or reject the request for the updated QOS profile based on the QOS value range.
  19. The apparatus of claim 18, wherein the at least one processor is further configured to:
    configure the updated QOS profile when the request for the updated QOS profile is accepted.
  20. The apparatus of claim 18, wherein the at least one processor is further configured to:
    modify a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted.
  21. The apparatus of claim 15, wherein the one or more QOS parameters further include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR.
  22. The apparatus of claim 15, wherein the uplink averaging window is associated with an uplink bit rate and the downlink averaging window is associated with a downlink bit rate.
  23. The apparatus of claim 15, wherein the at least one processor is further configured to:
    communicate at least one of downlink data or uplink data based on the updated QOS profile.
  24. The apparatus of claim 23, wherein the downlink data includes one or more downlink data packets and the uplink data includes one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size.
  25. The apparatus of claim 24, wherein at least one of the downlink data packet size or the uplink data packet size is based on the updated QOS profile.
  26. The apparatus of claim 15, wherein the at least one processor is further configured to:
    determine the QOS value range for at least one QOS profile.
  27. The apparatus of claim 26, wherein the at least one processor is further configured to:
    communicate at least one of downlink data or uplink data based on the determined QOS value range.
  28. The apparatus of claim 15, wherein the at least one processor is further configured to:
    transmit a rejection of the request for the updated QOS profile when the request for the updated QOS profile is not accepted.
  29. An apparatus for wireless communication performed by a base station, comprising:
    means for receiving a request for an updated quality of service (QOS) profile;
    means for determining whether the request for the updated QOS profile is accepted based on a QOS value range; and
    means for transmitting an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters,  the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  30. The apparatus of claim 29, further comprising:
    means for calculating at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR based on at least one of the uplink averaging window or the downlink averaging window.
  31. The apparatus of claim 29, wherein the request for the updated QOS profile includes a request for the one or more QOS parameters including at least one of the uplink averaging window or the downlink averaging window.
  32. The apparatus of claim 29, further comprising:
    means for accepting or rejecting the request for the updated QOS profile based on the QOS value range.
  33. The apparatus of claim 32, further comprising:
    means for configuring the updated QOS profile when the request for the updated QOS profile is accepted.
  34. The apparatus of claim 32, further comprising:
    means for modifying a previous QOS profile based on the one or more QOS parameters when the request for the updated QOS profile is accepted.
  35. The apparatus of claim 29, wherein the one or more QOS parameters further include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR.
  36. The apparatus of claim 29, wherein the uplink averaging window is associated with an uplink bit rate and the downlink averaging window is associated with a downlink bit rate.
  37. The apparatus of claim 29, further comprising:
    means for communicating at least one of downlink data or uplink data based on the updated QOS profile.
  38. The apparatus of claim 37, wherein the downlink data includes one or more downlink data packets and the uplink data includes one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size.
  39. The apparatus of claim 38, wherein at least one of the downlink data packet size or the uplink data packet size is based on the updated QOS profile.
  40. The apparatus of claim 29, further comprising:
    means for determining the QOS value range for at least one QOS profile.
  41. The apparatus of claim 40, further comprising:
    means for communicating at least one of downlink data or uplink data based on the determined QOS value range.
  42. The apparatus of claim 29, further comprising:
    means for transmitting a rejection of the request for the updated QOS profile when the request for the updated QOS profile is not accepted.
  43. A computer-readable medium storing computer executable code for wireless communication performed by a base station, the code when executed by a processor causes the processor to:
    receive a request for an updated quality of service (QOS) profile;
    determine whether the request for the updated QOS profile is accepted based on a QOS value range; and
    transmit an updated QOS profile when the request for the updated QOS profile is accepted, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  44. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining a quality of service (QOS) level based on at least one of downlink communication or uplink communication;
    transmitting a request for an updated QOS profile based on the determined QOS level; and
    receiving an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  45. The method of claim 44, wherein at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR is calculated based on at least one of the uplink averaging window or the downlink averaging window.
  46. The method of claim 44, wherein the request for the updated QOS profile includes a request for the one or more QOS parameters including at least one of the uplink averaging window or the downlink averaging window.
  47. The method of claim 44, further comprising:
    implementing the updated QOS profile when the updated QOS profile is received.
  48. The method of claim 44, wherein a previous QOS profile is modified based on the one or more QOS parameters.
  49. The method of claim 44, wherein the one or more QOS parameters further include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR.
  50. The method of claim 44, wherein the uplink averaging window is associated with an uplink bit rate and the downlink averaging window is associated with a downlink bit rate.
  51. The method of claim 44, further comprising:
    communicating at least one of downlink data or uplink data based on the updated QOS profile.
  52. The method of claim 51, wherein the downlink data includes one or more downlink data packets and the uplink data includes one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size.
  53. The method of claim 52, wherein at least one of the downlink data packet size or the uplink data packet size is based on the updated QOS profile.
  54. The method of claim 44, further comprising:
    communicating at least one of downlink data or uplink data based on a QOS value range.
  55. The method of claim 44, further comprising:
    receiving a rejection of the request for the updated QOS profile.
  56. An apparatus for wireless communication performed by a user equipment (UE) , comprising:
    a memory; and
    at least one processor coupled to the memory and configured to:
    determine a quality of service (QOS) level based on at least one of downlink communication or uplink communication;
    transmit a request for an updated QOS profile based on the determined QOS level; and
    receive an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  57. The apparatus of claim 56, wherein at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR is calculated based on at least one of the uplink averaging window or the downlink averaging window.
  58. The apparatus of claim 56, wherein the request for the updated QOS profile includes a request for the one or more QOS parameters including at least one of the uplink averaging window or the downlink averaging window.
  59. The apparatus of claim 56, wherein the at least one processor is further configured to:
    implement the updated QOS profile when the updated QOS profile is received.
  60. The apparatus of claim 56, wherein a previous QOS profile is modified based on the one or more QOS parameters.
  61. The apparatus of claim 56, wherein the one or more QOS parameters further include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR.
  62. The apparatus of claim 56, wherein the uplink averaging window is associated with an uplink bit rate and the downlink averaging window is associated with a downlink bit rate.
  63. The apparatus of claim 56, wherein the at least one processor is further configured to:
    communicate at least one of downlink data or uplink data based on the updated QOS profile.
  64. The apparatus of claim 63, wherein the downlink data includes one or more downlink data packets and the uplink data includes one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size.
  65. The apparatus of claim 64, wherein at least one of the downlink data packet size or the uplink data packet size is based on the updated QOS profile.
  66. The apparatus of claim 56, wherein the at least one processor is further configured to:
    communicate at least one of downlink data or uplink data based on a QOS value range.
  67. The apparatus of claim 56, wherein the at least one processor is further configured to:
    receive a rejection of the request for the updated QOS profile.
  68. An apparatus for wireless communication performed by a user equipment (UE) , comprising:
    means for determining a quality of service (QOS) level based on at least one of downlink communication or uplink communication;
    means for transmitting a request for an updated QOS profile based on the determined QOS level; and
    means for receiving an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS parameters including at least one of an uplink averaging window or a downlink averaging window.
  69. The apparatus of claim 68, wherein at least one of an uplink guaranteed flow bit rate (GFBR) or a downlink GFBR is calculated based on at least one of the uplink averaging window or the downlink averaging window.
  70. The apparatus of claim 68, wherein the request for the updated QOS profile includes a request for the one or more QOS parameters including at least one of the uplink averaging window or the downlink averaging window.
  71. The apparatus of claim 68, further comprising:
    means for implementing the updated QOS profile when the updated QOS profile is received.
  72. The apparatus of claim 68, wherein a previous QOS profile is modified based on the one or more QOS parameters.
  73. The apparatus of claim 68, wherein the one or more QOS parameters further include at least one of a downlink guaranteed flow bit rate (GFBR) , an uplink GFBR, a downlink maximum flow bit rate (MFBR) , or an uplink MFBR.
  74. The apparatus of claim 68, wherein the uplink averaging window is associated with an uplink bit rate and the downlink averaging window is associated with a downlink bit rate.
  75. The apparatus of claim 68, further comprising:
    means for communicating at least one of downlink data or uplink data based on the updated QOS profile.
  76. The apparatus of claim 75, wherein the downlink data includes one or more downlink data packets and the uplink data includes one or more uplink data packets, each of the one or more downlink data packets including a downlink data packet size and each of the one or more uplink data packets including an uplink data packet size.
  77. The apparatus of claim 76, wherein at least one of the downlink data packet size or the uplink data packet size is based on the updated QOS profile.
  78. The apparatus of claim 68, further comprising:
    means for communicating at least one of downlink data or uplink data based on a QOS value range.
  79. The apparatus of claim 68, further comprising:
    means for receiving a rejection of the request for the updated QOS profile.
  80. A computer-readable medium storing computer executable code for wireless communication performed by a user equipment (UE) , the code when executed by a processor causes the processor to:
    determine a quality of service (QOS) level based on at least one of downlink communication or uplink communication;
    transmit a request for an updated QOS profile based on the determined QOS level; and
    receive an updated QOS profile based on the request for the updated QOS profile, the updated QOS profile including one or more QOS parameters, the one or more QOS  parameters including at least one of an uplink averaging window or a downlink averaging window.
PCT/CN2020/107878 2020-08-07 2020-08-07 Methods and apparatus for optimizing qos parameters WO2022027614A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107878 WO2022027614A1 (en) 2020-08-07 2020-08-07 Methods and apparatus for optimizing qos parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107878 WO2022027614A1 (en) 2020-08-07 2020-08-07 Methods and apparatus for optimizing qos parameters

Publications (1)

Publication Number Publication Date
WO2022027614A1 true WO2022027614A1 (en) 2022-02-10

Family

ID=80116823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107878 WO2022027614A1 (en) 2020-08-07 2020-08-07 Methods and apparatus for optimizing qos parameters

Country Status (1)

Country Link
WO (1) WO2022027614A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130044592A1 (en) * 2010-03-10 2013-02-21 Lg Electronics Inc. Apparatus and method for scheduling of adaptive grant and polling service in a broadband wireless access system
CN103582030A (en) * 2012-08-01 2014-02-12 中兴通讯股份有限公司 Updating method and device for quality of service
CN107920029A (en) * 2016-10-10 2018-04-17 电信科学技术研究院 Change the method and device of the QoS of IP streams
WO2020103824A1 (en) * 2018-11-19 2020-05-28 Mediatek Inc. Insufficient resources in the ue during pdu session establishment procedure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130044592A1 (en) * 2010-03-10 2013-02-21 Lg Electronics Inc. Apparatus and method for scheduling of adaptive grant and polling service in a broadband wireless access system
CN103582030A (en) * 2012-08-01 2014-02-12 中兴通讯股份有限公司 Updating method and device for quality of service
CN107920029A (en) * 2016-10-10 2018-04-17 电信科学技术研究院 Change the method and device of the QoS of IP streams
WO2020103824A1 (en) * 2018-11-19 2020-05-28 Mediatek Inc. Insufficient resources in the ue during pdu session establishment procedure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "3GPP TSG-RAN WG3 meeting#99;R3-181124.", TP FOR SA BL CR TO 38.473 ON QOS PARAMETER TRANSFER OVER F1., 2 March 2018 (2018-03-02), XP051401446 *

Similar Documents

Publication Publication Date Title
US11882469B2 (en) Inter-cell mobility across serving and non-serving cells
US10973044B1 (en) Default spatial relation for SRS/PUCCH
US20210045106A1 (en) Methods and apparatus to facilitate spatial relation indication for uplink control channel and sounding reference signals
US11800460B2 (en) Indication of potential NR UL transmission in NE-DC
US11452089B2 (en) Signaling to activate uplink trigger states
US20230299899A1 (en) Handling crs interference in dynamic spectrum sharing
US11678223B2 (en) Transmission power control command accumulation for NR-dual connectivity
US11611870B2 (en) UE capability reporting for configured and activated pathloss reference signals
US20230189035A1 (en) Group-based beam report with multiple reported groups
WO2022021303A1 (en) Methods and apparatus for beam activation based on pci
US20210112434A1 (en) Preconfigured gaps for measurements based on configured bwps
US20210344403A1 (en) Methods and apparatus to facilitate cross-carrier beam association
US20230239123A1 (en) Associating transmission reception point with control resource set
EP4268378A1 (en) Group beam reporting for beam squint
WO2022027614A1 (en) Methods and apparatus for optimizing qos parameters
US11626950B2 (en) Differential reporting of epre values for RS tones
US12022413B2 (en) Receiver timing adjustment
WO2022047609A1 (en) Methods and apparatus for embb capability utilizing modems
WO2022052028A1 (en) Methods and apparatus for mmtc network reliability enhancements
WO2022032625A1 (en) Convergence of unicast and broadcast for video streaming
US20240023090A1 (en) Configuring uplink transmission configuration indicator list
US20220116892A1 (en) Uplink spatial filter and power control for joint channel estimation across physical uplink control channels
WO2022151130A1 (en) Methods and apparatus for multi-part beam reporting for mpe
US20220070799A1 (en) Receiver timing adjustment

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948480

Country of ref document: EP

Kind code of ref document: A1