WO2022011441A1 - Composition and method for attenuating abiotic and biotic stresses in plants - Google Patents

Composition and method for attenuating abiotic and biotic stresses in plants Download PDF

Info

Publication number
WO2022011441A1
WO2022011441A1 PCT/BR2021/050241 BR2021050241W WO2022011441A1 WO 2022011441 A1 WO2022011441 A1 WO 2022011441A1 BR 2021050241 W BR2021050241 W BR 2021050241W WO 2022011441 A1 WO2022011441 A1 WO 2022011441A1
Authority
WO
WIPO (PCT)
Prior art keywords
plants
composition
plant
ultraviolet radiation
radiation
Prior art date
Application number
PCT/BR2021/050241
Other languages
French (fr)
Portuguese (pt)
Inventor
Carlos ARTURO VARON RODRIGUEZ
André LUIZ ABREU
Original Assignee
Abrevia Comércio E Serviços Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abrevia Comércio E Serviços Ltda. filed Critical Abrevia Comércio E Serviços Ltda.
Publication of WO2022011441A1 publication Critical patent/WO2022011441A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • A01N25/28Microcapsules or nanocapsules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof

Definitions

  • the present invention falls within the field of chemistry applicable to plants to attenuate damage and abiotic stresses caused by ultraviolet radiation and mitigate biotic damage caused by opportunistic pest organisms as a result. More specifically, the invention relates to a composition and methods involving inorganic sunscreen for use on cultivated plants, aiming to reduce the physical and physiological damages of burning by solar radiation, as well as creating a better physical and physiological condition of plants to better resist infections. fungi and still hindering the proliferation of insect pests chewing on such plants.
  • R-UV ultraviolet radiation
  • emitted by the sun that reaches the earth's surface causes risks not only to human health, but also impacts the intrinsic health of plants.
  • some crops, such as fruits and vegetables the visual appearance of leaves and fruits has been protected against the damage caused by burning by solar radiation (infrared heat, excessive light and even ultraviolet) from sprinkling. on these of products such as Kaolin or Calcium Carbonate to create a protective film.
  • UV radiation in addition to compromising appearance, also limits the productivity of plants cultivated on a large scale for food production (grains, oils, energy, fibers) and may even favor the greater aggressiveness of pests and diseases incident on them, a fact that has become worrying in view of the increases in levels of ultraviolet radiation observed and reported under the ongoing climate changes, more specifically the bands, in the spectrum R-UV, UV-A and UV-B, as UV-C does not reach the earth's surface. While the concern for human protection against exposure to UV radiation is public and well-known, little is said about what happens with plants grown in the same situation.
  • UV radiation also penetrates the interior of the leaves and causes an increase in the level of R.O.S. (reactive oxidative species, or oxidative free radicals) which, although it is a common stress compound resulting from plant respiration and self-removed, when in excess it creates damage to the vital functions of plants.
  • R.O.S. reactive oxidative species, or oxidative free radicals
  • oxidative free radicals attack fundamental cell apparatus (such as photosystem II), proteins (ex: RUBISCO) and the cells' own DNA.
  • ROS oxidative free radicals
  • plants remove oxidative radicals by the action of the enzyme Super Oxidase Dismutase (SOD) which, among its possible forms, the most common are those that contain Copper and Zinc (Cu/Zn-SOD) and especially those that contain Manganese. (Mn-SOD), this vital for dealing with mitochondrial ROS (where respiration and energy generation takes place in the cell).
  • SOD Super Oxidase Dismutase
  • Cu/Zn-SOD Copper and Zinc
  • Mn-SOD Manganese
  • UV radiation also causes indirect negative effects, by increasing the severity of fungal infections on plants under this stress, as can be seen in studies published by William J. Manning in 1995 ( climate change: potential effects of increased Atmospheric carbon dioxide (CO & ozone (03), and Ultraviolet-b (uv-b) radiation on plant diseases. Environmental Pollution 88 (1995) 219-245) and, in 2008, by Raquel Ghini and colleagues ( climate Change and Plant Diseases. Sei Agric (Piracicaba, Braz.), v.65, special issue, p.98-107, December 2008).
  • a way to bring attenuation of ultraviolet radiation to cultivated plants is by the external application, on them, of products that provide some blockage such as sunscreen.
  • An example is the commercial product PURSHADE® soluble in water and applied in the form of spray on the leaves and fruits of the plants, available to farmers in the United States, which, according to its manufacturer, reduces the damage caused by ultraviolet radiation and thus promotes greater photosynthetic efficiency and productivity increases.
  • the product leaflet its composition is Calcium Carbonate (CaC03 - 62.5%) and doses of around 20 liters per hectare are recommended.
  • a similar product, also based on Calcium Carbonate, available in the Brazilian market is PROTEX ® , which, according to its manufacturer, protects plants from excessive exposure to sunlight.
  • the precondition for Silicon to reach the interior of the plant is to be administered in soluble form, as it is absorbed by the roots or leaves of the plant. Once absorbed, the silicon is translocated following the path of water in the plant until its evapotranspiration in the leaves and the silicon is retained, accumulating under the epidermis of the leaves, where it then reacts chemically and passes into the form of biogenic silica (silicon dioxide). (S1O2) amorphous and soluble) which has a certain optical property that reflects on ultraviolet radiation.
  • the only molecular way for silicon to be taken up by the plant (via the soil or leaf) is as silicic acid (Si(OH)4), which occurs when using soluble fertilizers that can generate it.
  • silicates calcium for soil use, or potassium for foliar use
  • water available in the soil or in foliar application
  • silicic acid which can be absorbed.
  • Takahashi classified the plants in three categories regarding the absorption of the soluble silicon supplied: the Active (eg corn, rice, sugar cane which are very receptive and efficient), the Passive or intermediate (eg soybean, cucurbits) and the Excluding ones (eg tomatoes, which are inefficient).
  • Active eg corn, rice, sugar cane which are very receptive and efficient
  • Passive or intermediate eg soybean, cucurbits
  • Excluding ones eg tomatoes, which are inefficient.
  • Other researchers deepened this study and came to the conclusion that even within a non-Exclusable species, there is still genetic variability for greater or lesser capacity to accumulate the soluble silicon provided.
  • not all crop species and not all cultivars within a species can benefit, or benefit equally, from this possible alternative of applying soluble silicon in the soil or on the leaves for the purpose of attenuating ultraviolet radiation.
  • ⁇ O2 Titanium Dioxide
  • ZnO Zinc Oxide
  • US 8986741 proposes the use of a composition for protecting plants against sunburn or UV radiation, based on a high concentration of ⁇ O2 combined with ZnO, this combination optionally added to S1O2; minerals having a plurality of particle sizes. While the specific description is intended for use on lawns, this document generally may cover other plants. A limitation for this alternative is that although Zinc is frequently used in plant nutrition, the same does not occur with Titanium, since there is controversy about its impact on plant productivity.
  • the document US 6069112 proposes to protect plants against sunburn by applying on the same finely divided particles involving Kaolin, Silica or T1O2, which are obtained from heat treatment between 300°C and 1200°C (which generates a pyrogenic material, amorphous in nature) which, although claimed for dimensions smaller than 3 microns, by the described and claimed thermal process results in dimensions on the order of nanoparticles.
  • the document WO 2007/014826 A3 proposes a composition for application in plants aiming to absorb UV radiation with nanoparticles of metallic oxides with specific surface larger than 20 square meters covered by applied gram (nanoparticle approximately smaller than 200nm), in which the metallic oxides are Ti, Zn, Al and/or Si.
  • US 9833003 proposes a compound based on T1O2 nanoparticles of even smaller size (2nm to 20nm) coated with ZnO and other agents.
  • the present invention comprises a mineral composition, for use on annual or perennial cultivated plants, which acts as a reducer of the incidence and abiotic stresses caused by ultraviolet radiation and attenuates damage from biotic stresses caused by the consequent greater severity of pathogenic fungi and voracity of insect herbivorous pests that attack such plants, said composition comprising microparticles of Silicon Dioxide (S1O2) in crystalline, insoluble and inert form, optionally combined with microparticles of insoluble Zinc Oxide (ZnO), both optionally combined with Manganese ( Mn) from a soluble molecule containing 0 same.
  • S1O2 Silicon Dioxide
  • ZnO insoluble Zinc Oxide
  • Said composition is applied to the aerial part of the plants via spraying and then provides attenuation of the physical and physiological stresses caused by ultraviolet radiation on the external and internal part of the plant tissues with consequent reduction of the resulting severity of damages caused by certain fungi and by insects- opportunistic herbivorous pests.
  • a particular and basic embodiment of the invention comprises a concentration of Silicon Dioxide (S1O2) in its crystalline form, insoluble, inert and in the dimension of microparticles, applied directly on the surface of plants, whose form and modality of use so far it has no precedent of use in application on the aerial part of cultivated plants.
  • S1O2 Silicon Dioxide
  • the invention further comprises methods of using said composition to favor the intrinsic health of the plant, observable in the more vigorous development of leaves, roots, greater number of flowers and fruits and, ultimately, preserving or promoting agricultural productivity and the quality of its fruits, including the application of such composition on the surface of the aerial part of the plants.
  • the present invention comprises a composition to attenuate abiotic and biotic stresses in plants, comprising microparticles of Silicon Dioxide (SIO2) in crystalline, insoluble and inert form, said Silicon Dioxide microparticles having a size between 1 and 70 microns.
  • SIO2 Silicon Dioxide
  • the composition of the invention further comprises insoluble Zinc Oxide, wherein the weight/weight ratio of S1O2 and ZnO is comprised between 80:20 and 60:40; Manganese, provided by a molecule or compound in a soluble form and absorbable by the leaves of plants, and the content of the Manganese element is between 1:4 to 1:20 (w/w) in relation to the weight of S1O2.
  • composition of the invention may also contain other additives, up to a maximum limit of 70% by weight of additives in relation to the weight of S1O2, selected from: mineral nutrients of foliar applicability, vegetable or mineral antioxidants, organic or inorganic sunscreens , mineral oils, vegetable oils, biocides, pesticides, vegetable hormones, and others.
  • additives up to a maximum limit of 70% by weight of additives in relation to the weight of S1O2, selected from: mineral nutrients of foliar applicability, vegetable or mineral antioxidants, organic or inorganic sunscreens , mineral oils, vegetable oils, biocides, pesticides, vegetable hormones, and others.
  • composition is presented for use, preferably, containing a total weight/weight between 900 gr/kilo and 999 gr/kilo associated with solid components adjuvants and surfactant, or containing a total weight/volume between 1 gr/liter and 800 g/liter in a suspension associated with emollient components and suspenders of insoluble particles in the medium, stabilizers and preservatives and surfactants.
  • the present invention further comprises a method for attenuating abiotic and biotic stresses in plants, to preserve or increase the productivity and quality of annual or perennial cultivated plants, said method comprising spraying on the exposed parts of the plant a solution of the composition of the invention.
  • the method for mitigating the physical and physiological damage caused under abiotic stress by UV-B and UV-A ultraviolet radiation provides for spraying on plant parts exposed to direct and diffuse insolation, from the initial development of the plants.
  • the method for mitigating the severity of pathogenic fungi increased by the damage caused by UV-B and UV-A ultraviolet radiation to cultivated plants comprises carrying out preventive sprays before the risk of infection.
  • the method to attenuate the voracity of herbivorous pest insects to cultivated plants comprises spraying from the initial incidence of the target pest in its neonatal phase.
  • FIG. 1 illustrates a diagrammatic visual scale, containing images of soybean leaflets ordered according to the severity of damage caused by ultraviolet radiation in situations of UV-B and UV-B + UV-A radiation, which serves as the basis for the scale from 1 to 5 used to qualify the results of studies with the composition;
  • FIG. 2 presents selected images extracted from example 02, showing lettuce leaves of the Roman cultivar (Lactuca sativa variety longifolia), according to the levels of damage suffered by ultraviolet radiation and the response of alternative treatments to attenuate them;
  • FIG. 3 shows images of soybean leaflets, selected from example 03 to illustrate the impact on plant leaflets (leaf size and cuticle damage), according to the increasing dose of UV-B radiation in both experimental situations, with and without application of the composition to mitigate said impacts;
  • FIG. 4 presents a photograph showing two adult maize plants for visual comparison of abiotic stress damage of an unprotected plant (on the left) with a plant protected by the use of the composition;
  • FIG. 5 presents a diagrammatic scale for evaluating the severity of the pathogenic biotic agent in plants, called Asian soybean rust fungus (Phakopsora pachyrhizi H. Sydow & P. Sydow) in leaflets (a leaf of a trifoliate), adopted as reference for the evaluation of example 04;
  • Asian soybean rust fungus Phakopsora pachyrhizi H. Sydow & P. Sydow
  • leaflets a leaf of a trifoliate
  • FIG. 6 shows illustrative images of example 04, with leaflets of soybean plants infected with the pathogenic biotic agent fungus Asian soybean rust ( Phakopsora pachyrhizi H. Sydow & P. Sydow), showing the average severity resulting from the alternatives tested after the fungus has been inoculated and completed its cycle reproductive (sporulating again to increase the epidemic); and
  • - Figure 7 presents images related to example 6, of leaflets of soybean plants damaged by chewing by larvae of the insect pest Spodopetra frugiperda, under the treatment alternatives in typical condition of infestation by newly hatched larvae.
  • preserve productivity or "preserve quality”, in the context related to plants treated with the composition, means to minimize the losses that would be imposed by abiotic and biotic stresses or even allow a higher performance within the intrinsic genetic capacity of said plant.
  • agronomically acceptable in the context of the present invention, means the use of materials that are certified for safe use in agricultural areas and in cultivated plants, that is, applied with equipment and under routine application technologies in the activity of cultivation.
  • insects in the concept of biotic stresses attenuated by the treatment of plants with said composition, means insect species that in their larval stage cause damage to plants by consuming plant parts, such as leaves, flowers, flower buds, branches, fruits, sap, including, but not limited to, insects of the order Lepidoptera.
  • the present invention discloses a chemical composition
  • a chemical composition comprising a concentrated suspension of crystalline S1O2 (Silicon Dioxide), insoluble in water and in microparticle size, alternatively in combination with ZnO (Zinc Oxide) insoluble in water and, alternatively, still added with a water-soluble molecule based on Mn (Manganese), this composition can be diluted and maintained with particles suspended in a volume of water and then sprayed on the foliage, branches and fruits of cultivated plants and thus act on the parts of the plant. plant to mitigate the damage caused by harmful ultraviolet radiation to it.
  • the present composition according to the invention aims to preserve aspects of plant health negatively impacted by ultraviolet radiation and, consequently, maintain the productive capacity of plants or even increase their productivity and the quality of its products for commercialization.
  • the composition of the invention contains materials considered safe for use in agriculture and can be applied simply and with the desired and expected effect on any plant species, including varieties thereof.
  • a preferred embodiment of the invention comprises on w/w bases:
  • S1O2 Silicon Dioxide
  • Zinc Oxide from 5% to 30%, preferably between 15% and 25%, in the microparticle dimension, insoluble in water;
  • - Manganese from 1% to 10%, preferably from 3% to 8%, in the form of a water-soluble molecule containing this element Mn, whose proportion of such molecule in the composition has that Mn content in the final composition, and the weight/weight ratio between S1O2 and ZnO is between 80:20 and 20:80, preferably between 80:20 and 60:40; and the proportion of the element Manganese is comprised between 1:4 to 1:20 (w/w) in relation to the weight of S1O2; the particle size of the S1O2 being between 1 and 70 microns, preferably between 1 and 40 microns; the particle size of the ZnO being between 0.5 and 10 microns; and being the water-soluble Mn provider molecule.
  • the concentration of the total solids is between 1% and 80% in w/v, preferably between 40% and 70%; being that such concentrated suspension contains one or more adjuvants such as humectants, emollients, mineral or vegetable oils, surfactants, suspenders, stabilizers, conditioners and preservatives, which form a stable suspension in storage, providing an adequate dilution in spraying solution, a distribution of particles uniform in the spray drops and a good fixation of these on the parts of the sprayed plant.
  • adjuvants such as humectants, emollients, mineral or vegetable oils, surfactants, suspenders, stabilizers, conditioners and preservatives
  • composition When the composition is presented in the form of Wettable Powder, it may contain a content of 0.1 to 10% of other solid adjuvants for good suspension of spraying solution and coverage and fixation of sprayed drops, such as for example surfactants, conditioners and stabilizers.
  • other solid adjuvants for good suspension of spraying solution and coverage and fixation of sprayed drops, such as for example surfactants, conditioners and stabilizers.
  • Silicon Dioxide (or Silica), S1O2 in its crystalline and insoluble form, and in the size of microparticles, is obtained from the processing of the known raw material as “industrial sand”, as well as quartz sand or silica sand, which is not yet used for application on the structures of the aerial part of cultivated plants, as it is not a fertilizer or nutrient as a source of silicon.
  • Industrial sand as well as quartz sand or silica sand
  • quartz sand or silica sand which is not yet used for application on the structures of the aerial part of cultivated plants, as it is not a fertilizer or nutrient as a source of silicon.
  • the United States of America is the world's largest producer of industrial sand, and no use is indicated of the product for application in cultivated plants.
  • the source is always different, using only the amorphous and soluble form, obtained from silicates or diatoms (see International Plant Nutrition Institute at http://www.ipni. net/nutrifacts).
  • an achievement under the invention is the step of grinding or micronizing such particles of crystalline silica from industrial sand until obtaining a smaller, micrometric and more suitable diameter of that naturally disposed and in the basic sieving processes, a diameter small enough for the particles become susceptible to suspension in a liquid medium and consequently suitable for foliar spraying on plants in an agronomically acceptable way, whose particle size keeps the silica chemically inert and without nutritional effect.
  • the crystalline Silica (S1O2) particles are of a size between 1 and 71 microns, preferably of D90 between 1 and 40 microns and more preferably of D50 between 1 and 15 microns, a preferred embodiment of the composition being under the invention a particle size of D90 between 1 and 10 microns and D50 between 1 and 5 microns, which allows a suspension in liquid medium with stability under the gentle and constant agitation of an agricultural sprayer to be uniformly sprayed on the target plant.
  • this crystalline form of insoluble and non-absorbable S1O2 once applied and deposited on the cuticle of the plant parts (external part), has proved to be a surprisingly effective physical element to mitigate stresses and even superior on the amorphous and/or soluble absorbable form of silicas or silicates, these forms used for the nutrition of Si in plants via soil or foliar which result, in another way, in the deposit of biogenic (amorphous) S1O2 under the cuticle (internal part of the leaf).
  • the differential under the present invention is to directly and immediately dispose the S1O2 on the target to be protected, in a form that is not easily washable by rain or irrigation, in a particle size with feasibility of agronomic use in spraying and with a size and hardness that fulfill a protective function.
  • This aspect of resistance to removal by washing the leaves provides an adequate protection interval for the plants until new leaves appear and deserve to be treated equally and, in the same way, as the plant develops, the previously treated and protected leaves pass to be located in the inner and lower parts of the plants, which are preferential target areas for some pests and diseases and at the same time difficult to be reached by the spraying drops of pesticides.
  • An advantage of this technique of direct deposition on the leaf epidermis with S1O2 in crystalline and inert form as described in the present invention is to be usable and effective on any plant species or on any variety of a plant species, since there is total independence of any metabolism of the plant in question, different from the use of a soluble source of Silicon that depends on the differentiated capacity between and intra species to absorb (in the form of silicic acid), translocate and store the Silicon that finally generates S1O2 in the plant, but being biogenic, amorphous and under the leaf epidermis.
  • Crystalline silica in the particle size suitable for use under the present invention can be obtained from various mineral sources, but especially by milling industrial sand or pre-crushed quartz and, in either case, possibly subject to other additional processes. micronization process, including the collection of processing dust from those sources, leading to material with a particle size smaller than 71 microns.
  • Another embodiment of the composition comprises the presence of Zinc Oxide (ZnO), insoluble, in microparticle size, complementary to crystalline Silicon Dioxide (S1O2), for the desired functionality.
  • ZnO Zinc Oxide
  • S1O2 crystalline Silicon Dioxide
  • ZnO in the microparticle dimension is used in agriculture as a fertilizer of minor importance as a source of Zinc, since the nutritional element Zn is largely provided from a soluble source such as Zinc Sulfate (ZnS04) .
  • ZnS04 Zinc Sulfate
  • an embodiment of said composition is that ZnO is present in D90 particles between 1 and 10 microns, which allows a spray mixture suspension of up to 1.2% v/v with stability under gentle and constant agitation of an agricultural sprayer to be evenly sprinkled on the aerial part of the target plant.
  • An advantage of the invention is that while the particle size of the elements of said composition in micrometers provides a reasonable blocking effect of ultraviolet radiation, such particle size does not bring the current regulatory concerns about the large-scale use in the environment of nanoparticles. of metal oxides.
  • the elements S1O2 and ZnO of said composition act in an additive way to attenuate the abiotic stresses caused by ultraviolet radiation that harm the biomass and productivity of plants.
  • these elements of the composition act additively and even synergistically, as the data of some examples below show, an aspect of embodiment of the composition under the invention is that the weight/weight ratio of S1O2 and ZnO, under the particle sizes described are between 80:20 and 60:40.
  • another aspect of the invention is the optional addition, together with the SiC>2/ZnO mixture, of a portion of Manganese (Mn) from a soluble molecule accepted for agronomic use as a plant nutrient such as, for example, Manganese Sulfate. (MnS04.3H20), Manganese Chloride (MnCl2.4H20), Manganese Carbonate (MnCCh), Manganese Nitrate (Mn (N03)2.6H20) or Manganese Chelate (CioHi2N20eMnNa2).
  • MnS04.3H20 Manganese Sulfate.
  • MnCl2.4H20 Manganese Chloride
  • MnCCh Manganese Carbonate
  • Mn (N03)2.6H20) Manganese Chelate
  • One embodiment of the composition is the use, for example, but not limited to this example, of Manganese Sulfate, in the ratio for the SiO2/Zn0 mixture between 1:1 and 1:10, a preferred embodiment
  • compositions in combination with one or more agronomically acceptable plant nutritional components, recommended for foliar application, aiming to nutritionally strengthen the plant in other aspects, which can be added in a presentation of the composition of the present invention, but in a non-prevalent form, that is, in less than 50% weight/weight of the final formulation, such as Nitrogen (N), Phosphorus (P), Potassium (K), Sulfur (S), Calcium (Ca), Magnesium (Mn), Boron (B), Iron (Fe), Copper (Cu), Molybdenum (Mo), Chloride (CI-), Soluble Zinc (Zn), Cobalt (Co), and even Soluble Silicon (Si), Nickel (Ni) and Selenium (Se).
  • agronomically acceptable plant nutritional components recommended for foliar application, aiming to nutritionally strengthen the plant in other aspects, which can be added in a presentation of the composition of the present invention, but in a non-prevalent form, that is, in less than 50% weight/weight of the final
  • antioxidants can further increase the attenuation of this abiotic stress in plants.
  • another embodiment of the present invention provides for the composition in combination with one or more antioxidant products, in a non-prevalent manner, i.e. less than 50% w/w, such as, but not limited to, ascorbic acid, citric acid, malic acid, alpha-tocopherol.
  • composition under the invention is presented in a form suitable for dispersion in water in order to obtain a sprayable spray, either in the form of Wettable Powder (WP) or then as Concentrated Suspension (SC), a preferred embodiment being the presentation as Concentrated Suspension (SC).
  • WP Wettable Powder
  • SC Concentrated Suspension
  • the preparation of the spray mixture can add adjuvants to obtain adequate coverage by the drops on the outside of the plants.
  • an embodiment regarding the method of using the Wettable Powder (PM) formulated composition is the addition of suspenders, surfactants, anionic or non-ionic surfactants to the spray mixture, with non-ionic surfactants being a preferred embodiment, to obtain an aqueous suspension with a final concentration of use in the application between 0.1% and 5%, preferably between 0.5 and 2.5%, which, once sprayed on a crop, results in a dose of 0.1 to 2.0 kg per hectare of the formulated PM product, preferably a dose between 0.5 and 1.0 kg per hectare.
  • An embodiment of the composition under the invention when presented in the SC formulation, is to contain wetting and suspending agents for insoluble particles, which allow a distribution of the particles in the spray droplets, a slow settling and a rapid resuspension of the composition. in the spray solution.
  • a particle distributing agent are oils paraffinic or vegetable minerals, emulsifiable or aided by emulsifying agents, in adequate concentration to provide a uniform aqueous suspension with slow settling.
  • an embodiment of the composition in the SC formulation is that it can contain surfactants to generate an oil/water emulsion by wetting the insoluble particles and improving their suspensibility.
  • composition in the SC formulation may contain anionic or non-ionic surfactants, preferably a combination of both, to promote better coverage and fixation of the spray drops on the surface of the target plant for treatment.
  • composition in the SC formulation can contain stabilizing agents, preservatives and coloring agents to preserve the properties of the SC formulation upon storage.
  • composition under an SC Sespension Concentrate
  • SC Concentrated Suspension
  • this volume of concentrated suspension presented can be later diluted in a volume of 50 to 200 liters of water, preferably between 100 and 150 liters, and be applied via spray to treat 1 hectare of medium-sized cultivated plants.
  • the determination of the volume of water for diluting and spraying this volume of the exemplified SC composition is determined by the characteristics of the spraying equipment.
  • the dose per hectare, of this example of the described formula can be reduced by up to 50% when the target plants of treatment have little leaf area per square meter to be protected (plants in the initial vegetative stage) or increased by up to 100% when the plants be in fullness of development, with large leaf area per square meter.
  • An embodiment under the present invention involves methods of protecting plants and their parts from damage arising from exposure to solar ultraviolet radiation.
  • the damages in this case are defined as chlorosis, necrosis and/or tanning of leaves or fruits, deformation and/or less development of leaves, reduction in the accumulation of plant biomass, reduction of root development, reduction in the viability and fecundity of pollination, abortion of flowers and fruits, increased oxidative stress, water loss due to increased leaf transpiration, reduced oil and protein contents in plant parts, reduced fiber quality.
  • Solar ultraviolet radiation as defined in the present invention is electromagnetic waves between 290 and 400 nanometers.
  • example 05 further on the data show that the composition, while attenuating abiotic stresses, reduced the severity of phytopathogenic fungus.
  • the data indicate that the use of the composition associated with fungicides provided the best results in plant productivity in crop conditions.
  • another embodiment under the present invention involves methods by using the composition regularly applied to plants to protect such plants and parts thereof from fungal diseases and from pathogenicity increased by the debility of the plant exposed to solar ultraviolet radiation. Diseases in this case being defined as fungi, bacteria and viruses.
  • Another embodiment under the present invention involves methods of reducing damage and proliferation of herbivorous pest insects that infest said cultivated plants from the use of said composition.
  • the data presented in example 07 obtained from controlled tests, demonstrate that the crystalline and insoluble S1O2 component and in the microparticle size, present in the composition under the said invention, presents performance in reducing the voracity and development of lepidopteran species (caterpillars) important in the agriculture, which cause economic damage through the destruction of leaves and fruits.
  • the performance of the component under the present invention observed from the data, is clearly superior to that provided by soluble silicon, reported in the prior art as something functional for this purpose and, in fact, the observed performance approximates the level of a pyrethroid insecticide evaluated as a positive standard.
  • the aqueous suspension for spraying said composition can be applied on cultivated plants by means of typical spray equipment used in crops, with spray nozzles of liquids commonly determined to obtain fine droplets that adequately cover the surface of the leaves and fruits of the plants.
  • An embodiment of the invention is that the composition is applied from the first vegetative stages of the plants, repeating the treatment at intervals of 05 to 30 days, as the target plant species produces new leaves and/or grows in volume of total biomass. that again becomes subject to damage from ultraviolet radiation and/or there are indications that biotic targets will occur.
  • the cultivated plants defined under the present invention are those of agricultural, economic or ornamental importance, annual or perennial.
  • Examples of cultivated plants include, without limitation: soy, corn, beans, rice, cotton, sugar cane, wheat, coffee, cocoa, citrus, vine, eucalyptus, cocoa, potato, lettuce, among others.
  • the doses of ultraviolet radiation (R-UV) or for its UV-B and/or UV-A ranges, used in the exemplified studies, are given in kJoules/m 2 /day for the tests with controlled ultraviolet radiation in a greenhouse and, for tests in the field environment, in IUV (UV indices).
  • a fixed reference dose was established as a parameter, since in the environment the daily dose of ultraviolet radiation that reaches plants on the earth's surface is variable: by latitude, altitude, time of year, time of day and by variations in aerosols in the atmosphere.
  • values of 1040 kJ/m 2 /day were estimated, comprising 1012 kJ/m 2 /day of UV-A and 28 kJ/m 2 /day of UV-B.
  • the estimate is based on the calculation that considers the Horizontal Global Irradiation for the month of January and the Southeast and Midwest agricultural regions of Brazil, with an average of 5500 Wh/m 2 /day, or 18.9 MJ/m 2 /day, according to the data published by INPE (National Institute for Space Research in Brazil (Brazilian atlas of solar energy. 2nd ed.
  • UV index (UVI) graphs published daily by the same INPE, with measurements every 15 minutes of the maximum UVI and attenuated UVI, shows that, on average, for the month of January, in this region, there is an attenuation of 25% of the UVI, which finally results in 1040 kJ/m 2 /day of ultraviolet radiation.
  • eta on plants which is corroborated within the scope of data taken over five years for the month and region, published by Escobedo, JF and collaborators in 2008 (Monthly variations of UV, PAR and IV solar fractions of Global Radiation in Botucatu. II Brazilian Solar Energy Congress and III ISES Latin American Regional Conference - Florianópolis, November 18 to 21, 2008).
  • UV-B and UV-A fractions in this total R-UV dose found, this was divided according to the percentage rates that vary throughout the day, published by Marcelo Corrêa ( Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America. Anais de Dermatologia 2015;90(3):297-313), whose calculations showed in this situation of month and region that the UV-B fraction is around 2.67% of the dose of daily ultraviolet radiation, ie 28 kJ/m 2 /day and the remaining 1012 kJ/m 2 /day being UV-A.
  • the doses of ultraviolet radiation were generated with special lamps and the dose adjustment was made by the exposure time and distance between the lamp and the target plant, calibrated with the INSTRUTHERM ultraviolet radiation meter.
  • MRU-201 which performs radiation reading within the spectrum from 290 to 390nm on the pW/cm 2 scale, while for field studies, data published daily by IN PE were taken to estimate the incident doses in the experiment
  • soybean plants [Glycine max (L.) Merrill] of the cultivar NA5909RG of wide adaptation were used, cultivated in pots and nourished via daily ferti-irrigation with a complete supply of soluble macro and micro nutrients according to the need established in the “March of Nutrient Absorption by Soybean” published by EMBRAPA.
  • the plants were grown under a controlled environment in a greenhouse protected by 150 micron GINEGAR plastic with a UV filter, which allows the transmittance and diffusion of PAR light but prevents the transmittance of ultraviolet radiation (R-UV), confirmed by the measurement of ultraviolet radiation.
  • Controlled ultraviolet radiation was provided with special lamps according to the experiment: pure UV-B radiation was obtained with a Philips TL 40W/12S lamp; the pure UV-A radiation obtained with the Philips TL-K 40W/10-R lamp; irradiance for the entire solar spectrum (UV-A, UV-B, PAR and IR) from the Osram Vitalux 300W lamp and, in some study, the REPTO LUX PRO 10.0 lamp that provides UV-A and UV-B radiation .
  • the cultivation with and without ultraviolet radiation took place under the same greenhouse environment, using the same plastic separator curtain with UV filter to exclude UV-A and/or UV-B radiation on control treatments, and thus isolating other factors. environmental factors that could interfere with the results.
  • composition under the invention was formulated under alternative ingredients, concentration, coding and formulation.
  • alternatives with the composition under the invention are presented below as COMP01-04 and the products of the art as REF(n), detailed in their characteristics in Table 1 below.
  • COMP01, COMP02, COMP03 and COMP04 S1O2 is Crystalline and insoluble with >99.0% purity in microparticles whose dimensions according to analytical reports are between 2 to 71 pm; ZnO is insoluble with >99.5% purity in microparticles whose size according to analytical reports is between 0.9 to 18pm.
  • COMP02 is a Concentrated Suspension of the elements aided, in the formulation of 1000 ml, by 67 ml of paraffinic mineral oil, 2 ml of non-ionic surfactant and 877 ml of distilled water.
  • COMP03 is a Concentrated Suspension of the elements assisted, in the formulation of 1000 ml, by 20 ml of vegetable oil; 20 g of anionic surfactant; 8 ml of non-ionic surfactant and 700 ml of distilled water.
  • Soybean plants were grown without exposure to ultraviolet radiation (negative control) and under exposure to UV-A plus UV-B radiation without protective treatment (positive control) or with protective treatments (alternatives).
  • said composition was tested under the formula COMP01, as well as the isolated components thereof (insoluble crystalline SiO2, corresponding to COMP04, and insoluble ZnO).
  • doses of treatments containing Silicon were adjusted between products to 140 grams/hectare of this element.
  • the dose of ZnO relative to S1O2 was established in the proportion of 25%:75% respectively.
  • Potassium Silicate the form most commonly used in foliar nutrition, from fertilizer commercially available SC foliar fertilizer, SIFOL®
  • REF01 fertilizer commercially available SC foliar fertilizer
  • Silicic Acid the form that is readily absorbable by the plant, from commercially available commercial foliar fertilizer, SIFOL POWDER®
  • the plants were spray treated between the stages of 2 trifoliate (V2) to 5 trifoliate (V5) at 5-day intervals and were irradiated for 14 days with doses equivalent to 38 kJ/m 2 /day of UV-B radiation plus 1376 kJ/m 2 /day of UV-A radiation, from 24 hours after the first treatment to 24 hours after the last treatment and were evaluated at the beginning of the reproductive phase (R1), whose data are presented in table 2.
  • Table 2 Response of soybean plants [Glycine max (L.) Merrill] to the stress of ultraviolet radiation, UV-A plus UV-B, regarding leaf damage, its vegetative development and root, under the tested alternatives.
  • Table 3 Response of romaine lettuce plants (Lactuca sativa variety longifolia) to UV-A and UV-B radiation stress and their vegetative development under the tested alternatives.
  • composition showed clearly superior performance to the treatment used from previous references (treatment 3) such as those given in patent application WO 2007/014826 A3, which involves nanoparticles of amorphous silica, which in these extreme conditions of ultraviolet radiation did not provide a reasonable protection to avoid necrosis or to allow normal leaf development.
  • treatment 3 such as those given in patent application WO 2007/014826 A3, which involves nanoparticles of amorphous silica, which in these extreme conditions of ultraviolet radiation did not provide a reasonable protection to avoid necrosis or to allow normal leaf development.
  • the study in this example evaluated the composition performance under the invention under different levels of UV-B radiation.
  • the UV-B component of ultraviolet radiation was adopted in this experiment because it is considered by many scholars as the most harmful or erythematous.
  • the object cultivated plant species was Soybean [Glycine max (L.) Merrill].
  • a group of vessels was kept in isolation from UV-B radiation and another group had the vessels positioned on platforms with different proximity to the lamp generating the UV-B radiation (adjusted following the intensity measurements with the Instrutherm meter. MRU-201).
  • UV-B radiation levels of 0, 38 and 55 kJoules/m 2 /day were provided for 14 days, between stages V2 to V5 (from two to five trefoils).
  • each radiation level 2 pots were used, one WITHOUT foliar application of said composition and another WITH application.
  • 3 plants were grown, with each plant being evaluated as a repetition.
  • the aforementioned composition was tested under the formula COMP01, with a suspension containing 4.0 grams per liter of distilled water, plus a non-ionic surfactant in the recommended dose of the package insert (0.5 ml/liter) for adequate droplet scattering.
  • the pots with application received the spraying of the composition under the invention every 5 days, starting 24 hours before the start of the radiation.
  • the plants were evaluated for stress on the whole plant at 5, 8 and 14 days after the end of the period under radiation, following the scale given in figure 1 of the annex, producing an average data by repetition of three readings.
  • Table 4 Response of soybean plants [Glycine max (L.) Merrill] to exposure under different doses of UV-B radiation, with and without application of the composition (4.0 g/liter of COMP01) for its protection, regarding the leaf damage by stress (chlorosis, necrosis, malformation), to vegetative (leaves) and root (roots) development under the tested alternatives.
  • the UV-B radiation dose levels in this example are challenging, as they represent +50% to +100% that taken as a reference for mid-summer cultivation.
  • the damage caused by UV-B radiation in the challenge treatments were severe, in the order of 35 % to 48% of leaf damage, from -34% to -48% in leaf size and from -45% to roots.
  • the composition (COMP01), according to the invention was effective in mitigating to a large extent the growing damage to the shoot and completely avoided damage to the root system.
  • the test area was subjected to two applications with the composition under the invention, at 19 and 25 days after the emergence of germinated seedlings, that is, in V4 and V6, with COMP03 at a dose of 1.0 liter per hectare, suspended in a volume of water of 100 liters/ha.
  • the UV index data were recorded daily from the INPE consultation (at URL http://satelite.cptec.inpe.br/uv/) as well as the rainfall index with INMET (National Institute of Meteorology at URL http ://www.inmet.gov.br/portal/) and, with the analysis of both data, a weekly stress index on the area of the experiment was qualified. Table 5 below gathers these data for the period of the initial eight weeks of crop development, which involves the complete vegetative period.
  • Table 5 Vegetative development cycle of the corn crop under the experiment, resulting stress levels and moments and the protective treatment.
  • Soybean plants were grown side by side under three situations of exposure to ultraviolet radiation: (A) ambient UV (plants under the sun), (B) artificial UV (UV-B+UV-A) and (C) no UV. Plants in situation (B) and (C) were protected from solar radiation by anti-UV plastic film, as well as for additional isolation of plants in situation (C). The study was installed on 02/22/2019, and during the 60 days of plant cultivation, measurements of ambient ultraviolet radiation indicated average daily doses of 24 kJoules/m 2 of UV-B radiation and 889 k Joules/m 2 of UV-A radiation.
  • the artificial radiation was adjusted to produce a dose of 25 k Joules/m 2 of UV-B radiation and 907 k Joules/m 2 of UV-A radiation for 31 days.
  • said composition was tested under the above specified formulas COMP01 and COMP02.
  • the element Manganese which aims to complement within the leaf the attenuation of abiotic stress, from the cellular physiological machinery as an antioxidant promoter.
  • the plants were subjected to doses of ultraviolet radiation from the V2 to R3 stage for 11 days, followed by an interval of 5 days and again for another 20 days.
  • the treatments with the formulas under said composition were applied 06 times in this period, from 02 hours before exposure to ultraviolet radiation and then every 5 days apart.
  • the plants were subjected to two inoculations with uredospores of the fungus (obtained from the South and Southeast regions of Brazil), the first at 13 days after starting treatments and exposure to ultraviolet radiation and the second 12 days after the first.
  • the amount of inoculum was increased, starting from soybean leaves under intense severity (> 50%) and in sporulation, in an amount of approximately 20 leaves with inoculum for each inoculated plant.
  • the uredospores of the fungus were extracted from the leaves with a wet brush of distilled water with surfactant, added in steps of volumes every 30 minutes and sprayed repeatedly on all plants.
  • the leaflets (individual leaves of a trefoil) were extracted from the plants, in order from trefoil 1 to trefoil 6, photographed on the upper (adaxial) and lower (abaxial) faces and then evaluated in percentage of severity for each leaflet following the Scale proposed in 2006 by Godoy et al (Diagrammatic Scale for Assessment of Soybean Rust Severity. Fitopatol. Bras. 31(1), Jan. - Feb. 2006) according to figure 5 in the annex.
  • Table 6 Effect of formulas of the composition under the invention on abiotic (damage to vegetative and reproductive structure) and biotic (pathogenic fungus) stresses of soybean under UV-B and UV-A radiation)
  • treatment 1 The greater impacts on the plant by ambient solar radiation (treatment 1) compared to the artificial one (treatment 2) are expected, since the full dose of rays at each wavelength of the spectrum (from 290 to 390nm) is expected in the environment. , while the lamps emulate rays at peaks within the range, in the case of UV-B radiation at 305nm and UV-A radiation at 365nm.
  • the treatment method with the composition proved to be effective in attenuating the severity of the fungus, having been more effective the greater its effect in protecting the plant from abiotic damage (leaves, biomass, root).
  • the number of pods (fruits) was negatively impacted by ultraviolet radiation in the order of 35% (treatment 1 and 2 vs treatment 5), and under the method by using the composition , especially with the formula used in treatment 4, fruiting losses were remedied.
  • an embodiment under the invention is the method of attenuating the severity of infection by Asian Soybean Rust, by prior attenuation of damage from ultraviolet radiation, by means of external application of protectors against said radiation with or without association with specific fungicide treatments.
  • an achievement under the present invention is the method of associating specific fungicides to the composition, aiming to increase the efficiency index in the fight against pathogenic fungi by multiple means: direct fungistatic and indirect action via improvement in the intrinsic resistance of the plant.
  • plots 1 An area called “A, with Cultivar BMX Foco IPRO was divided into plots 1 (standard used by the farmer taken as a reference) and 2 (experimental area with the composition); in the same way, the other area called “B, with Cultivar BMX Bónus IPRO, was divided into plots 1 and 2. While plots 1 involve an extensive cultivated area, plots 2, in each situation, occupied a test surface of 4000m 2 . In the area dedicated to the use of the composition, the applications were made aiming to attenuate the abiotic stresses caused by ultraviolet radiation as well as to favor the effectiveness of fungicides against Asian Rust.
  • the composition was used three times in areas 2A and 2B (in Table 7 below with the name “Experimental Area”): once in the vegetative stage of the crop, in the V4 stage (40 DAP - Days After Planting), and twice in the reproductive phase in association with fungicides (at 53 DAP combined with Azoxystrobin + Cyproconazole and then at 68 DAP combined with Azoxystrobin + Benzovindiflupyr).
  • the dose of the composition was 500 grams/ha of the formula COMP01 plus a non-ionic surfactant in the package insert.
  • Table 7 Effect of the use of the COMP01 composition on soybean productivity, in a preventive management system for abiotic stresses from ultraviolet radiation and as an alternative to complement the control of biotic stress caused by Asian soybean rust.
  • Cultivated plants are subject to predatory attack caused by several orders of insect pests that impair the productivity of crops, so it is common to use insecticide molecules to reduce the infestation of such insects when they reach a level of economic damage.
  • Pests chewing plant parts are especially important because they destroy the leaf area or whole fruits, among them those of the order Lepidoptera (caterpillars).
  • Example 07 below brings data from a study carried out under controlled conditions, following typical protocols for evaluating the effectiveness of insecticides, in which it is observed that the component for three species of high relevance in agriculture.
  • Leaflets of the treated plants were collected and placed in a Petri dish on moistened filter paper, then infested with larvae of Lepidoptera species and incubated for 5 days until the evaluation. To simulate the most adverse conditions (deterioration of the applied product and larger larvae), the leaves were collected at two times: 06 hours and 4 days after application, and in the first time (Table 8A) the infested larvae were 3-4 mm ( first instar) and in the second season (Table 8B) were 4 to 8 mm (second instar). For each pest and time tested, a total of 04 leaves (four) were used, each one serving as a repetition.
  • Chrysodeixis includens, Spodoptera frugiperda and Helicoverpa armigera, all of great importance in agriculture (Soybean, Cotton, Corn, Beans, etc.), reared and characterized in the diet since oviposition. Leaf consumption (defoliation) and larval size were evaluated.
  • Table 8A Efficacy of soybean foliar treatment with crystalline S1O2 on lepidopteran voracity and development. Infestation 6 hours after treatment. Mean consumption of 4 infested leaflets and mean size of all larvae in the set of 4 replicates.
  • Table 8B Efficacy of soybean foliar treatment with crystalline S1O2 on lepidopteran voracity and development. Infestation 4 days after treatment. Average consumption of 4 infested leaflets and average size of all larvae in the set of 4 replicates.
  • the new S1O2 component in the compositions according to the present invention is effective in reducing the voracity of chewing pests, being superior to that provided by Silicon in the soluble form reported in the state of the art.
  • the use of insoluble crystalline S1O2 and microparticle size reduced pest voracity between 50 and 70% and reduced pest size development by 30 to 35%.
  • the insoluble crystalline S1O2 and microparticle size had an efficacy close to that of a recognized insecticide, and this species is considered polyphagous (attacks numerous plant species) and has a great capacity to develop resistance to insecticides and proteins.
  • an embodiment of the present invention is the method of associating specific insecticides to the composition, aiming to increase the effectiveness rate in combating herbivorous insects by multiple modes of action.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The invention describes a silica-based mineral composition, specifically in crystalline, insoluble, inert form, with a particle size of between 1 and 70 microns, and preferably added to insoluble zinc oxide and a source of manganese. Said composition, when applied to the exposed aerial parts of the plant, via spraying of an aqueous suspension originating from a wettable powder or a concentrated suspension, results in the deposition of an external layer protecting against UVA and UVB radiation. Tests in the field and in greenhouses amply demonstrate the direct relationship between the attenuation of the biotic and abiotic stresses via the composition of the invention, and an increase in the health and productivity of the plant.

Description

COMPOSIÇÃO E MÉTODO PARA ATENUAR ESTRESSES ABIÓTICOS E BIÓTICOS COMPOSITION AND METHOD TO RELIEVE ABIOTIC AND BIOTIC STRESS
EM PLANTAS IN PLANS
Campo da invenção field of invention
[001] A presente invenção se enquadra no campo da química aplicável sobre plantas para atenuar danos e estresses abióticos causados pela radiação ultravioleta e mitigar danos bióticos causados por organismos pragas oportunistas em decorrência. Mais especificamente, a invenção se refere a uma composição e métodos envolvendo filtro solar inorgânico para uso sobre plantas cultivadas, objetivando reduzir os danos físicos e fisiológicos da queima pela radiação solar, bem como criando melhor condição física e fisiológica das plantas para melhor resistir a infecções fúngicas e ainda dificultando a proliferação de insetos pragas mastigadores sobre tais plantas. [001] The present invention falls within the field of chemistry applicable to plants to attenuate damage and abiotic stresses caused by ultraviolet radiation and mitigate biotic damage caused by opportunistic pest organisms as a result. More specifically, the invention relates to a composition and methods involving inorganic sunscreen for use on cultivated plants, aiming to reduce the physical and physiological damages of burning by solar radiation, as well as creating a better physical and physiological condition of plants to better resist infections. fungi and still hindering the proliferation of insect pests chewing on such plants.
Descrição do estado da técnica Description of the state of the art
[002] A radiação ultravioleta (R-UV) emitida pelo sol que chega à superfície terrestre causa riscos não somente à saúde humana, mas também impacta a saúde intrínseca das plantas. Nos últimos 20 anos, em alguns cultivos como de frutas e hortaliças, vem sendo feita a proteção da aparência visual de folhas e frutos contra os danos de queima pela radiação solar (calor de Infravermelho, luminosidade excessiva e mesmo a ultravioleta) a partir da aspersão preventiva sobre estas de produtos como Caulim ou Carbonato de Cálcio para criar uma película protetora. Neste período, pesquisadores voltados para a agronomia têm concordado que a radicação ultravioleta, além de comprometer a aparência, limita também a produtividade de plantas cultivadas em larga escala para produção de alimentos (grãos, óleos, energia, fibras) e podem até mesmo favorecer a maior agressividade de pragas e doenças incidentes sobre estas, fato que tem se tornado preocupante face aos incrementos de níveis de radiação ultravioleta observados e reportados sob as mudanças climáticas em curso, mais especificamente as faixas, no espectro R-UV, de UV-A e UV-B, dado que a UV-C não atinge a superfície terrestre. Enquanto é pública e notória a preocupação de proteção humana contra a exposição à radiação UV, pouco se comenta sobre o que decorre com as plantas cultivadas em mesma situação. [002] The ultraviolet radiation (R-UV) emitted by the sun that reaches the earth's surface causes risks not only to human health, but also impacts the intrinsic health of plants. In the last 20 years, in some crops, such as fruits and vegetables, the visual appearance of leaves and fruits has been protected against the damage caused by burning by solar radiation (infrared heat, excessive light and even ultraviolet) from sprinkling. on these of products such as Kaolin or Calcium Carbonate to create a protective film. In this period, researchers focused on agronomy have agreed that ultraviolet radiation, in addition to compromising appearance, also limits the productivity of plants cultivated on a large scale for food production (grains, oils, energy, fibers) and may even favor the greater aggressiveness of pests and diseases incident on them, a fact that has become worrying in view of the increases in levels of ultraviolet radiation observed and reported under the ongoing climate changes, more specifically the bands, in the spectrum R-UV, UV-A and UV-B, as UV-C does not reach the earth's surface. While the concern for human protection against exposure to UV radiation is public and well-known, little is said about what happens with plants grown in the same situation.
[003] O primeiro estudo buscando entender o que a UV-A/B representa para as plantas cultivadas foi publicado por Stapleton em 1992 ( Ultraviolet Radiation and Plants: Burning Questions. The Plant Cell, Vol. 4, 1353-1358, November 1992. American Society of Plant Physiologists). Stapleton evidenciou que o aumento da radiação ultravioleta implicava em redução da viabilidade do pólen (menor frutificação), deformação de folhas e notadamente a danificação do aparato fotossintético (Fotossistema II) que, conforme demostrou, reduz a produção de biomassa (folhas, grãos, frutos). Assim, a radicação ultravioleta passou a ser considerada um estresse abiótico às plantas (a exemplo de outros como salinidade, excesso de frio ou de calor, baixa disponibilidade de água, etc.). [004] Sob esta preocupação o Departamento de Agricultura dos Estados Unidos[003] The first study seeking to understand what UV-A/B represents for cultivated plants was published by Stapleton in 1992 (Ultraviolet Radiation and Plants: Burning Questions. The Plant Cell, Vol. 4, 1353-1358, November 1992. American Society of Plant Physiologists). Stapleton showed that the increase in ultraviolet radiation implied a reduction in pollen viability (less fructification), leaf deformation and notably damage to the photosynthetic apparatus (Photosystem II) which, as demonstrated, reduces the production of biomass (leaves, grains, fruits ). Thus, ultraviolet radiation came to be considered an abiotic stress to plants (like others such as salinity, excess of cold or heat, low availability of water, etc.). [004] Under this concern the United States Department of Agriculture
(USDA) implementou em 1992 o Programa UVMRP para monitorar e pesquisar os efeitos da radiação ultravioleta, agravados pelas mudanças climáticas, sobre a agricultura, o qual resultou em 128 publicações revisadas por pares (acessível em http://uvb.nrel.colostate.edu) os quais concluem que 2/3 (dois terços) de 680 plantas cultiváveis testadas sofrem danos pela radiação ultravioleta, mesmo que sejam em doses de radiação consideradas baixas. Em resposta às conclusões daquele Programa, o USDA implementou, em 2016, um plano estratégico denominado USDA Ultraviolet Radiation Monitoring and Research Program (2016-2020, acessível em https://uvb.nrel.colostate.edu/UVB/index.jsf) para lidar com a questão, com ênfase nas lavouras que são base da alimentação global, como o milho, a soja e o arroz. No mesmo sentido, em 2009 a Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) estabeleceu o Programa CLIMAPEST que tem estudado os impactos nas lavouras, com destaque para a soja (acessível em https://www.macroprograma1.cnptia.embrapa.br/climapest/impactos-do-uv-b). (USDA) in 1992 implemented the UVMRP Program to monitor and research the effects of ultraviolet radiation, exacerbated by climate change, on agriculture, which resulted in 128 peer-reviewed publications (accessible at http://uvb.nrel.colostate. edu) which conclude that 2/3 (two thirds) of 680 cultivated plants tested suffer damage from ultraviolet radiation, even at low radiation doses. In response to the conclusions of that Program, the USDA implemented, in 2016, a strategic plan called the USDA Ultraviolet Radiation Monitoring and Research Program (2016-2020, accessible at https://uvb.nrel.colostate.edu/UVB/index.jsf) to deal with the issue, with an emphasis on crops that are the basis of global food, such as corn, soy and rice. In the same vein, in 2009 the Brazilian Agricultural Research Corporation (EMBRAPA) established the CLIMAPEST Program, which has studied the impacts on crops, especially soybeans (accessible at https://www.macroprograma1.cnptia.embrapa.br/climapest /uv-impacts-b).
[005] Atualmente se suspeita que a radiação ultravioleta como um todo, não somente afeta negativamente e diretamente a parte aérea da planta exposta (folhas, polinização, fotossíntese) mas também afeta o volume de raízes na parte subterrânea, em decorrência das respostas bioquímicas desencadeadas e consequente dreno energético, o que impacta a capacidade da planta em extrair água e nutrientes do solo. Estas conclusões mais atuais foram trazidas por T. Matthew Robson e colaboradores na ampla revisão sob o título “A perspective on ecologically relevant plant-UV research and its practical application” , publicada em janeiro de 2019 em Photochemical & Photobiological Sciences. [005] It is currently suspected that ultraviolet radiation as a whole, not only negatively and directly affects the exposed plant aerial part (leaves, pollination, photosynthesis) but also affects the root volume in the underground part, as a result of the biochemical responses triggered. and consequent energy drain, which impacts the plant's ability to extract water and nutrients from the soil. These most current conclusions were brought by T. Matthew Robson and colleagues in the extensive review entitled “A perspective on ecologically relevant plant-UV research and its practical application”, published in January 2019 in Photochemical & Photobiological Sciences.
[006] Em um aspecto bioquímico preocupante, a radicação ultravioleta também penetra ao interior das folhas e provoca um aumento no nível de R.O.S. (espécies oxidativas reativas, ou radicais livres oxidativos) o qual, embora seja um composto de estresse comum resultante da respiração vegetal e auto removido, quando em excesso cria prejuízos às funções vitais das plantas. E. Hideg e colaboradores, no artigo “UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates?” , publicado em 2012 ( Trends in Plant Science, 18(2): 107-115), concluem que altas ou baixas doses de radiação UV-B alteram desfavoravelmente o metabolismo de auto remoção de ROS. Uma vez em nível alto, os radicais livres oxidativos (ROS) agridem aparatos fundamentais das células (como o fotossistema II), as proteínas (ex: RUBISCO) e o próprio DNA das células. Em condições normais as plantas removem os radicais oxidativos pela ação da enzima Super Oxidase Dismutase (SOD) a qual, dentre suas possíveis formas, as mais comuns são as que contem Cobre e Zinco (Cu/Zn-SOD) e especialmente a que contém Manganês (Mn-SOD), esta vital para lidar com ROS mitocondrial (onde ocorre a respiração e geração de energia na célula). [006] In a worrying biochemical aspect, ultraviolet radiation also penetrates the interior of the leaves and causes an increase in the level of R.O.S. (reactive oxidative species, or oxidative free radicals) which, although it is a common stress compound resulting from plant respiration and self-removed, when in excess it creates damage to the vital functions of plants. E. Hideg et al, in the article “UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates?” , published in 2012 ( Trends in Plant Science, 18(2): 107-115), conclude that high or low doses of UV-B radiation unfavorably alter ROS self-removal metabolism. Once at a high level, oxidative free radicals (ROS) attack fundamental cell apparatus (such as photosystem II), proteins (ex: RUBISCO) and the cells' own DNA. Under normal conditions, plants remove oxidative radicals by the action of the enzyme Super Oxidase Dismutase (SOD) which, among its possible forms, the most common are those that contain Copper and Zinc (Cu/Zn-SOD) and especially those that contain Manganese. (Mn-SOD), this vital for dealing with mitochondrial ROS (where respiration and energy generation takes place in the cell).
[007] A radiação UV também provoca efeitos negativos indiretos, pelo aumento da severidade de infecções fúngicas sobre as plantas sob este estresse, como se verifica nos estudos publicados por William J. Manning em 1995 ( Climate change: potential effects of increased Atmospheric carbon dioxide (CO & ozone (03), and Ultraviolet-b (uv-b) radiation on plant diseases. Environmental Pollution 88 (1995) 219-245) e, em 2008, por Raquel Ghini e colaboradores ( Climate Change and Plant Diseases. Sei. Agric. (Piracicaba, Braz.), v.65, special issue, p.98-107, December 2008). [007] UV radiation also causes indirect negative effects, by increasing the severity of fungal infections on plants under this stress, as can be seen in studies published by William J. Manning in 1995 ( Climate change: potential effects of increased Atmospheric carbon dioxide (CO & ozone (03), and Ultraviolet-b (uv-b) radiation on plant diseases. Environmental Pollution 88 (1995) 219-245) and, in 2008, by Raquel Ghini and colleagues ( Climate Change and Plant Diseases. Sei Agric (Piracicaba, Braz.), v.65, special issue, p.98-107, December 2008).
[008] Assim, pelo conhecimento científico recente, se manifesta a necessidade de assegurar a produtividade das plantas cultivadas, sendo impactadas pelo atual e crescente nível da radiação ultravioleta em seus efeitos diretos (danos morfológicos e fisiológicos) e indiretos (estresse oxidativo, infecções fúngicas). Mais além, se depreende que seja possível até mesmo aumentar a produtividade das lavouras, pela redução da exposição de suas plantas às doses desta radiação onde e até então seus níveis têm sido considerados “ambientalmente naturais”. [008] Thus, by recent scientific knowledge, there is a need to ensure the productivity of cultivated plants, being impacted by the current and increasing level of ultraviolet radiation in its direct effects (morphological and physiological damage) and indirect (oxidative stress, fungal infections ). Furthermore, it appears that it is even possible to increase the productivity of crops, by reducing the exposure of their plants to doses of this radiation where and until then their levels have been considered “environmentally natural”.
[009] Uma forma de trazer atenuação da radiação ultravioleta para as plantas cultivadas é pela aplicação externa, sobre as mesmas, de produtos que forneçam algum bloqueio como filtro solar. Um exemplo é o produto comercial PURSHADE® solúvel em água e aplicado na forma de pulverização sobre as folhas e frutos das plantas, disponível aos agricultores dos Estados Unidos, o qual segundo seu fabricante, reduz os danos causados pela radiação ultravioleta e com isto promove maior eficiência fotossintética e aumentos de produtividade. Segundo a bula do produto, sua composição é o Carbonato de Cálcio (CaC03 - 62,5%) e se recomenda doses ao redor de 20 litros por hectare. Um produto similar, também à base de Carbonato de Cálcio, disponível no mercado do Brasil é o PROTEX®, o qual, segundo seu fabricante, protege as plantas da exposição excessiva aos raios solares. Tais produtos seguem o quanto ensinado no documento WO 2009/064450 A1. Com a aplicação nesta dose se obtém uma película branca, de cálcio, sobre as folhas e frutos, a qual praticamente os sombreiam e proveria ação refletiva da radicação ultravioleta, atenuando-a. Uma limitação desta alternativa em plantas é a reflexão também de boa parte da radiação luminosa na faixa visível (VIS) onde se encontram as frequências PAR (Radiação Fotossinteticamente Ativa), importante para a máxima fotossíntese. Uma outra limitação para uso em lavouras extensivas é a alta dose requerida, quando se considera a logística de transporte e embalagens para pulverizar milhões de hectares. [009] A way to bring attenuation of ultraviolet radiation to cultivated plants is by the external application, on them, of products that provide some blockage such as sunscreen. An example is the commercial product PURSHADE® soluble in water and applied in the form of spray on the leaves and fruits of the plants, available to farmers in the United States, which, according to its manufacturer, reduces the damage caused by ultraviolet radiation and thus promotes greater photosynthetic efficiency and productivity increases. According to the product leaflet, its composition is Calcium Carbonate (CaC03 - 62.5%) and doses of around 20 liters per hectare are recommended. A similar product, also based on Calcium Carbonate, available in the Brazilian market is PROTEX ® , which, according to its manufacturer, protects plants from excessive exposure to sunlight. Such products follow what is taught in WO 2009/064450 A1. With the application at this dose, a white film of calcium is obtained on the leaves and fruits, which practically shades them and provides a reflective action of the ultraviolet radiation, attenuating it. A limitation of this alternative in plants is the reflection of a good part of the light radiation in the visible range (VIS) where the PAR (Photosynthetically Active Radiation) frequencies are found, important for maximum photosynthesis. Another limitation for use in extensive crops is the high dose required, when considering the logistics of transport and packaging to spray millions of hectares.
[0010] Outra solução disponível aos agricultores em Portugal, Espanha e Estados Unidos e Brasil é o produto SURROUND®, um pó molhável a base de Caulim (AI2O3.4S1O2-H2O), recomendado para pulverização sobre frutos vegetais expostos à insolação, segundo a bula do fabricante, na dose média de 57 quilos por hectare. Da mesma forma, o uso do produto em pulverização nestas doses proporciona uma película branca sobre a parte da planta pulverizada, com efeito sombreador e refletivo. Esta solução tem inconveniente de depender de dose elevada, o que é um aspecto logístico limitante para lavouras extensivas. Maiores referências em relação a este produto podem ser encontradas no documento US 6069112. [0010] Another solution available to farmers in Portugal, Spain and the United States and Brazil is the product SURROUND ® , a wettable powder based on Kaolin (AI2O3.4S1O2-H2O), recommended for spraying on vegetable fruits exposed to sunlight, according to the manufacturer's leaflet, at an average dose of 57 kilos per hectare. Likewise, the use of the sprayed product at these doses provides a white film on the sprayed part of the plant, with a shading and reflective effect. This solution has the disadvantage of depending on a high dose, which is a limiting logistical aspect for extensive crops. Further references regarding this product can be found in US 6069112.
[0011] Uma solução alternativa estudada por alguns pesquisadores tem sido o tratamento das plantas no seu âmbito interno, pelo enriquecimento nutricional da mesma com o mineral Silício (Si). Em 2010, Xuefeng Shen e colaboradores, no artigo “Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiatiorí' ( Journal of Plant Physiology 167 (2010) 1248-1252), demonstraram que o cultivo de soja, sob nutrição hidropônica com Silício solúvel, mostrou redução de danos às membranas das células da planta expostas a radiação UV-B na dose de 5,4 kJ/m2/dia durante dois dias. Nesta mesma linha, Durgesh Kumar Tripathi e colaboradores publicaram em 2017 o artigo “Silicon: A Potential Element to Combat Adverse Impact of UV-B in plants” (Livro UV-B Radiation: From Environmental Stressor to Regulator of Plant Growth, First Edition. Chapter 10; 175-195.) no qual reportam que a absorção de ácido silícico, pelas plantas, leva a um acúmulo de Silício na forma de Sílica biogênica (amorfa) sob a epiderme das folhas (notadamente ao redor dos estômatos) o qual opera como um redutor da transmissão de radicação ultravioleta do ambiente externo para o interior da folha. Nesta linha de pesquisa existe uma gama de estudos publicados com o uso do Silício solúvel na nutrição das plantas, seja via solo (adubação) ou por aplicação sobre as folhas (nutrição foliar), buscando atenuar estresses abióticos da radicação ultravioleta. [0011] An alternative solution studied by some researchers has been the treatment of plants in their internal scope, by the nutritional enrichment of the same with the mineral Silicon (Si). In 2010, Xuefeng Shen et al, in the article “Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation” (Journal of Plant Physiology 167 (2010) 1248-1252), demonstrated that soybean cultivation, under hydroponic nutrition with soluble silicon, showed a reduction in damage to the membranes of plant cells exposed to UV-B radiation at a dose of 5.4 kJ/m 2 /day for two days. In this same vein, Durgesh Kumar Tripathi and colleagues published in 2017 the article “Silicon: A Potential Element to Combat Adverse Impact of UV-B in plants” (Book UV-B Radiation: From Environmental Stressor to Regulator of Plant Growth, First Edition. Chapter 10; 175-195.) in which they report that the absorption of silicic acid by plants leads to an accumulation of silicon in the form of biogenic (amorphous) silica under the leaf epidermis (notably around the stomata) which it operates as a reducer of the transmission of ultraviolet radiation from the external environment to the interior of the leaf. In this line of research, there is a range of published studies on the use of soluble silicon in plant nutrition, either via soil (fertilization) or by application on leaves (foliar nutrition), seeking to attenuate abiotic stresses from ultraviolet radiation.
[0012] A pré-condição para que o Silício atinja o interior da planta é a de ser ministrado em forma solúvel, pois assim é absorvido pelas raízes ou folhas da planta. Uma vez absorvido, o Silício é translocado seguindo o caminho da água na planta até a evapotranspiração desta nas folhas e o Silício fica retido, acumulando-se sob a epiderme destas, onde então reage quimicamente e passa para forma de Sílica biogênica (dióxido de Silício (S1O2) amorfo e solúvel) a qual tem certa propriedade ótica refletiva sobre radiação ultravioleta. A única forma molecular para o Silício ser absorvido pela planta (via solo ou folha) é como ácido silícico (Si(OH)4), a qual ocorre quando se utilizam fertilizantes solúveis que possam gerá-lo, A fonte mais comum de fertilizante simples que contem Silício solúvel são os silicatos (de cálcio para uso via solo, ou de potássio para via foliar), os quais ao reagirem com a água (disponível no solo ou na aplicação foliar) resultam em ácido silícico, assim passível de ser absorvido. Sob este conhecimento existem produtos no mercado à base de silicato de potássio para nutrição foliar que são apresentados para atenuar os raios UV-B como, por exemplo, o produto FAKTOR PRO® comercializado no Brasil. [0012] The precondition for Silicon to reach the interior of the plant is to be administered in soluble form, as it is absorbed by the roots or leaves of the plant. Once absorbed, the silicon is translocated following the path of water in the plant until its evapotranspiration in the leaves and the silicon is retained, accumulating under the epidermis of the leaves, where it then reacts chemically and passes into the form of biogenic silica (silicon dioxide). (S1O2) amorphous and soluble) which has a certain optical property that reflects on ultraviolet radiation. The only molecular way for silicon to be taken up by the plant (via the soil or leaf) is as silicic acid (Si(OH)4), which occurs when using soluble fertilizers that can generate it. that contain soluble silicon are silicates (calcium for soil use, or potassium for foliar use), which when reacting with water (available in the soil or in foliar application) result in silicic acid, which can be absorbed. Based on this knowledge, there are products on the market based on potassium silicate for foliar nutrition that are presented to attenuate UV-B rays, such as, for example, the product FAKTOR PRO ® sold in Brazil.
[0013] Entretanto nem todas as espécies vegetais podem se beneficiar desta solução, devido à variabilidade que as espécies de plantas apresentam em conseguir translocar e acumular Silício. Um dos pioneiros no entendimento da forma como o Silício é acessado pelas plantas foi E. Takahashi da Universidade de Tóquio, que em 1990 publicou os fundamentos que classificam as plantas quanto à habilidade em acumular Silício, no artigo “The possibility of Silicon as an essential element for higher plants ” {Comments on Agrícultural and Food Chemistry 1990 Vol.2 No.2 pp.99-102). O autor descobriu que um aspecto limitante do uso de Silício solúvel reside no fato de que nem todas as espécies vegetais o conseguem absorver, transportar e acumular. Assim, Takahashi classificou as plantas em três categorias quanto à absorção do Silício solúvel fornecido: as Ativas (ex: milho, arroz, cana-de-açúcar que são muito receptivas e eficientes), as Passivas ou intermediárias (ex: soja, cucurbitáceas) e as Excludentes (ex: tomate, que são ineficientes). Outros pesquisadores aprofundaram este estudo e chegaram à conclusão de que mesmo dentro de uma espécie não Excludente, existe ainda variabilidade genética para maior ou menor capacidade de acumular o Silício solúvel fornecido. Em conclusão, nem todas as espécies de lavoura e nem todas as cultivares dentro de uma espécie podem se beneficiar, ou se beneficiar igualmente, desta possível alternativa de aplicar Silício solúvel no solo ou sobre as folhas para fins de atenuar a radiação ultravioleta. [0013] However, not all plant species can benefit from this solution, due to the variability that plant species present in being able to translocate and accumulate Silicon. One of the pioneers in understanding how silicon is accessed by plants was E. Takahashi from the University of Tokyo, who in 1990 published the fundamentals that classify plants in terms of their ability to accumulate silicon, in the article “The possibility of Silicon as an essential element for higher plants ” {Comments on Agricultural and Food Chemistry 1990 Vol.2 No.2 pp.99-102). The author found that a limiting aspect of the use of soluble silicon lies in the fact that not all plant species are able to absorb, transport and accumulate it. Thus, Takahashi classified the plants in three categories regarding the absorption of the soluble silicon supplied: the Active (eg corn, rice, sugar cane which are very receptive and efficient), the Passive or intermediate (eg soybean, cucurbits) and the Excluding ones (eg tomatoes, which are inefficient). Other researchers deepened this study and came to the conclusion that even within a non-Exclusable species, there is still genetic variability for greater or lesser capacity to accumulate the soluble silicon provided. In conclusion, not all crop species and not all cultivars within a species can benefit, or benefit equally, from this possible alternative of applying soluble silicon in the soil or on the leaves for the purpose of attenuating ultraviolet radiation.
[0014] Em paralelo aos fatores abióticos e independente de aspectos relativos à radiação UV, o Silício solúvel tem sido estudado para atenuar estresses bióticos, por exemplo, por infecções fúngicas em que é reportado como um pouco redutor de severidade infecciosa (vide o documento WO 00/064263 A1). Neste campo, como exemplo, a pesquisa de Geneviève Arsenault-Labrecque, de 2012, estudou este produto, aplicado na nutrição via solo, sobre um dos mais importantes e prejudiciais fungos na agricultura tropical - a ferrugem asiática da soja - publicada no artigo “ Effect of Silicon Absorption on Soybean Resistance to Phakopsora pachyrhizi in Different Cultivars" (Plant Disease / January 2012). Neste estudo, que não envolve aspectos de estresse por radicação ultravioleta, se alcançou grande redução da severidade do fungo em uma cultivar que apresentou genética favorável à acumulação de S [0014] In parallel to abiotic factors and independent of aspects related to UV radiation, soluble silicon has been studied to attenuate biotic stresses, for example, by fungal infections in which it is reported as a little reducer of infectious severity (see the document WO 00/064263 A1). In this field, as an example, the research by Geneviève Arsenault-Labrecque, from 2012, studied this product, applied in soil nutrition, on one of the most important and harmful fungi in tropical agriculture - Asian soybean rust - published in the article “ Effect of Silicon Absorption on Soybean Resistance to Phakopsora pachyrhizi in Different Cultivars" (Plant Disease / January 2012). ultraviolet radiation, a great reduction in the severity of the fungus was achieved in a cultivar that presented genetics favorable to the accumulation of S
[0015] ilício, enquanto em outras sem esta característica tal redução não ocorreu a contento. Em outro estudo, desta vez aplicando o Silício solúvel na nutrição foliar, para o controle deste mesmo fungo patogênico, a pesquisadora Sandra C. Pereira e colaboradores, da Universidade Federal de Viçosa, utilizando o silicato de potássio, na alta dose 7gr de Si/litro, chegaram a um resultado de 50% de redução na severidade daquela doença, de 8% para 4% (publicado no artigo “Aplicação foliar de silício na resistência da soja à ferrugem e na atividade de enzimas de defesa”, in Tropical Plant Pathology, vol. 34, 3, 164-170 (2009)). [0015] illicit, while in others without this feature such a reduction did not occur satisfactorily. In another study, this time applying soluble silicon in foliar nutrition, for the control of this same pathogenic fungus, the researcher Sandra C. Pereira and collaborators, from the Federal University of Viçosa, using potassium silicate, at a high dose of 7gr of Si/ liter, reached a result of 50% reduction in the severity of that disease, from 8% to 4% (published in the article “Foliar application of silicon in soybean rust resistance and in the activity of defense enzymes”, in Tropical Plant Pathology , vol. 34, 3, 164-170 (2009)).
[0016] No tocante às mudanças climáticas, um aspecto importante é o reflexo na dinâmica de pragas sobre a produção de alimentos. Segundo a FAO, os insetos herbívoros são responsáveis por destruir anualmente 20% da produção de lavouras. Em situação de agricultura tropical, em que o Brasil tem papel relevante, C.M Oliveira e colaboradores apontam, em ampla revisão publicada em 2014, que as pragas são o principal fator causador da redução na produção das grandes culturas agrícolas no país (Crop losses and the economic impact of insect pests on Brazilian Agriculture. Crop Protection 56 (2014) 50e54). Além disto, insetos mastigadores da ordem Lepidoptera têm se destacado por evoluir para rápida resistência aos inseticidas e genes de defesa em plantas modificadas pela biotecnologia, um tema em constante estudo pela organização IRAC ( Insect Resistance Action Committeé). Esta situação tende a se tornar mais difícil, conforme a publicação de 2018, por Curtis A. Deutsch e colaboradores ( Increase in crop losses to insect pests in a warming climate. Deutsch et al., Science 361, 916-919 (2018)), o qual conclui que para cada grau Celsius de aumento da temperatura do planeta, as perdas atuais na produção de alimentos por pragas irão aumentar 10 a 25%, em virtude do aumento da rapidez com que a voracidade das pragas destrói uma planta, até o favorecimento a ciclos de desenvolvimento e reprodução mais curtos de tais pragas que leva à maior frequência de ataques. [0016] With regard to climate change, an important aspect is the reflection on the dynamics of pests on food production. According to FAO, herbivorous insects are responsible for destroying 20% of crop production annually. In a situation of tropical agriculture, in which Brazil plays a relevant role, CM Oliveira and colleagues point out, in a comprehensive review published in 2014, that pests are the main factor causing the reduction in the production of large agricultural crops in the country (Crop losses and the economic impact of insect pests on Brazilian Agriculture. Crop Protection 56 (2014) 50e54). In addition, chewing insects of the order Lepidoptera have been highlighted for evolving into rapid resistance to insecticides and defense genes in plants modified by biotechnology, a topic under constant study by the organization IRAC (Insect Resistance Action Committee). This situation tends to become more difficult, according to the 2018 publication by Curtis A. Deutsch and collaborators ( Increase in crop losses to insect pests in a warming climate. Deutsch et al., Science 361, 916-919 (2018)) , which concludes that for every degree Celsius of temperature increase on the planet, current losses in food production by pests will increase by 10 to 25%, due to the increase in the speed with which the voracity of pests destroys a plant, until the favoring shorter development and reproduction cycles of such pests which leads to a higher frequency of attacks.
[0017] Neste campo mais especifico de estresse biótico, o uso de Silício solúvel tem sido reportado como redutor da voracidade de insetos pragas herbívoros (mastigadores) da ordem Lepidoptera (lagartas), conforme ensinado no documento US 2003/213169 A1, bem como na ampla revisão de Fadi Alhousari e colaboradores em 2018, “Silicon and Mechanisms of Plant Resistance to Insect Pests" ( Plants 2018, 7, 33) sobre uso de Silício solúvel para esta finalidade. [0017] In this more specific field of biotic stress, the use of soluble silicon has been reported to reduce the voracity of herbivorous pest insects (chewers) of the order Lepidoptera (caterpillars), as taught in US 2003/213169 A1, as well as in the extensive review by Fadi Alhousari and colleagues in 2018, “Silicon and Mechanisms of Plant Resistance to Insect Pests" ( Plants 2018, 7, 33) on the use of soluble Silicon for this purpose.
[0018] Seja para qual for o objetivo entre os estresses estudados (abióticos e bióticos), um limitante ao uso de fontes solúveis de um produto aplicado sobre as plantas, considerando situações de uso em larga escala a campo, é o fator chuva ou irrigação, comuns no verão quando as principais lavouras são cultivadas e onde os estresses em questão se apresentam de forma mais acentuada, situação em que produtos minerais solúveis aplicados sobre as folhas são naturalmente lavados da superfície vegetal a qual se busca proteger. [0018] Whatever the objective between the studied stresses (abiotic and biotic), a limiting factor to the use of soluble sources of a product applied on plants, considering situations of large-scale use in the field, is the rain or irrigation factor , common in the summer when the main crops are cultivated and where the stresses in question are more pronounced, a situation in which soluble mineral products applied to the leaves are naturally washed from the plant surface which is sought to be protected.
[0019] No campo da saúde humana, um potente protetor solar utilizado largamente contra a radiação UV-B é o Dióxido de Titânio (ΊΊO2) que é eficiente quando na dimensão de nanopartículas. Outro elemento mineral utilizado na cosmética, como protetor solar, de espectro mais amplo da radiação ultravioleta (faixas UV-A e UV-B), e geralmente associado ao T1O2, é o Óxido de Zinco (ZnO), este com ação absorvente tanto na forma de nanopartículas como em partículas maiores (micropartículas - ordem de grandeza em micra). Alguns inventores propuserem composições com estes e outros minerais para igualmente proteger plantas da radiação solar em geral (sem especificar qual faixa de ondas, se radiação UV-A, UV-B), PAR ou Infravermelha (IR)) enquanto outros apresentam soluções focadas na radiação ultravioleta como um todo. [0019] In the field of human health, a potent sunscreen widely used against UV-B radiation is Titanium Dioxide (ΊΊO2) which is efficient when in the nanoparticle dimension. Another mineral element used in cosmetics, as a sunscreen, with a broader spectrum of ultraviolet radiation (UV-A and UV-B bands), and generally associated with T1O2, is Zinc Oxide (ZnO), which has an absorbing action both in the nanoparticle form as well as larger particles (microparticles - order of magnitude in microns). Some inventors propose compositions with these and other minerals to equally protect plants from solar radiation in general (without specifying which waveband, whether UV-A, UV-B), PAR or Infrared (IR) radiation) while others present solutions focused on UV radiation as a whole.
[0020] Como exemplo, o documento US 8986741, propõe o uso de uma composição para proteção de plantas contra queima do sol ou radiação UV, com base em uma alta concentração de ΊΊO2 combinado com ZnO, esta combinação opcionalmente adicionada de S1O2; sendo que os minerais possuem uma pluralidade de tamanho de partículas. Embora a descrição específica se volte para uso em gramados, genericamente este documento pode abranger outras plantas. Um limitante para esta alternativa é que embora o Zinco seja utilizado com frequência na nutrição vegetal, o mesmo não ocorre com Titânio, uma vez que há controvérsia sobre seu impacto sobre a produtividade das plantas. Como mostra a revisão sobre o assunto publicada em 2017 por Shiheng Lyu e colaboradores, no artigo “Titanium as a Beneficiai Element for Crop Production” ( Frontiers in Plant Science, April 2017 | Volume 8 | Article 597), em plantas cultivadas importantes como soja, milho e trigo existem estudos demonstrando que pequeninas doses deste elemento podem influir negativamente no desenvolvimento destas plantas e sua produção de alimentos. [0020] As an example, US 8986741, proposes the use of a composition for protecting plants against sunburn or UV radiation, based on a high concentration of ΊΊO2 combined with ZnO, this combination optionally added to S1O2; minerals having a plurality of particle sizes. While the specific description is intended for use on lawns, this document generally may cover other plants. A limitation for this alternative is that although Zinc is frequently used in plant nutrition, the same does not occur with Titanium, since there is controversy about its impact on plant productivity. As the review on the subject published in 2017 by Shiheng Lyu and collaborators, in the article “Titanium as a Beneficial Element for Crop Production” ( Frontiers in Plant Science, April 2017 | Volume 8 | Article 597), in important cultivated plants such as soybean, corn and wheat, there are studies demonstrating that small doses of this element can influence negatively on the development of these plants and their food production.
[0021] O documento US 6069112 propõe proteger as plantas contra queimaduras do sol aplicando sobre as mesmas partículas finamente divididas envolvendo Caulim, Sílica ou T1O2, as quais são obtidas a partir de tratamento térmico entre 300°C e 1200°C (que gera um material pirogênico, de natureza amorfa) o qual, embora reivindicado para dimensões menores que 3 micra, pelo processo térmico descrito e reivindicado resulta em dimensões da ordem de nanopartículas. [0021] The document US 6069112 proposes to protect plants against sunburn by applying on the same finely divided particles involving Kaolin, Silica or T1O2, which are obtained from heat treatment between 300°C and 1200°C (which generates a pyrogenic material, amorphous in nature) which, although claimed for dimensions smaller than 3 microns, by the described and claimed thermal process results in dimensions on the order of nanoparticles.
[0022] O documento WO 2007/014826 A3 propõe uma composição para aplicação em plantas visando absorver a radiação UV com nanopartículas de óxidos metálicos com superfície específica maiores que 20 metros quadrados cobertos por grama aplicada (nanopartícula aproximadamente menor que 200nm), em que os óxidos metálicos sejam Ti, Zn, AI e/ou Si. [0022] The document WO 2007/014826 A3 proposes a composition for application in plants aiming to absorb UV radiation with nanoparticles of metallic oxides with specific surface larger than 20 square meters covered by applied gram (nanoparticle approximately smaller than 200nm), in which the metallic oxides are Ti, Zn, Al and/or Si.
[0023] Para os casos acima, envolvendo nanopartículas, existe um aspecto limitante no âmbito regulatório quanto ao seu uso em larga escala no meio agrícola. No artigo publicado em 2012, por Alexander Gogos e colaboradores ( Nanomateríals in plant protection and fertilization: current State, foreseen applications, and research priorities. J Agric Food Chem. 2012 Oct 3;60(39):9781-92), os autores concluem que as nanopartículas TÍO2 ou ZnO afetam negativamente a microbiota do solo e por outro lado reduzem o crescimento do trigo. Na mesma linha, em 2017, Branislav Ruttkay-Nedecky e colaboradores citam em seu trabalho “Nanoparticles based on essential metais and their phytotoxicity ” ( Journal of Nanobiotechnol (2017) 15:33) que tal tamanho nanométrico de partícula metálica provoca efeitos colaterais negativos nas plantas tratadas (fitotoxicidade) e mesmo indução de estresse oxidativo (ROS). [0023] For the above cases, involving nanoparticles, there is a limiting aspect in the regulatory scope regarding their large-scale use in the agricultural environment. In the article published in 2012 by Alexander Gogos and collaborators ( Nanomaterials in plant protection and fertilization: current State, foreseen applications, and research priorities. J Agric Food Chem. 2012 Oct 3;60(39):9781-92), the authors conclude that TÍO2 or ZnO nanoparticles negatively affect the soil microbiota and, on the other hand, reduce wheat growth. In the same vein, in 2017, Branislav Ruttkay-Nedecky and collaborators cite in their work “Nanoparticles based on essential metals and their phytotoxicity” ( Journal of Nanobiotechnol (2017) 15:33) that such a nanometric size of metallic particle causes negative side effects in treated plants (phytotoxicity) and even induction of oxidative stress (ROS).
[0024] Por fim, o documento US 9833003, propõe um composto a base de nanopartículas de T1O2 de dimensão ainda menor (2nm a 20nm) revestidas de ZnO e outros agentes. [0025] Em conclusão, no tocante a saúde vegetal, existe a necessidade de prover às plantas cultivadas uma proteção que atenue a incidência e efeitos negativos da radiação ultravioleta, os quais são e seguirão sendo ainda mais importantes na produção e produtividade agrícola sustentável, solução esta que seja agronomicamente viável de uso, sem efeitos negativos sobre o desenvolvimento de plantas e de baixo risco ecotoxicológico. [0024] Finally, US 9833003 proposes a compound based on T1O2 nanoparticles of even smaller size (2nm to 20nm) coated with ZnO and other agents. [0025] In conclusion, with regard to plant health, there is a need to provide cultivated plants with protection that mitigates the incidence and negative effects of ultraviolet radiation, which are and will continue to be even more important in sustainable agricultural production and productivity, a solution which is agronomically viable for use, with no negative effects on plant development and low ecotoxicological risk.
Síntese da invenção Synthesis of the invention
[0026] A presente invenção compreende uma composição mineral, para uso sobre plantas cultivadas anuais ou perenes, que atua como redutor da incidência e dos estresses abióticos causados pela radiação ultravioleta e atenua danos de estresses bióticos causados pela consequente maior severidade de fungos patogênicos e voracidade de insetos pragas herbívoros que atacam tais plantas, a dita composição compreendendo micropartículas de Dióxido de Silício (S1O2) na forma cristalina, insolúvel e inerte, opcionalmente combinada com micropartículas de Óxido de Zinco (ZnO) insolúvel, ambos, opcionalmente, combinados com Manganês (Mn) a partir de uma molécula solúvel contendo 0 mesmo. A dita composição é aplicada sobre a parte aérea das plantas via pulverização e então propicia atenuação dos estresses físicos e fisiológicos causados pela radiação ultravioleta na parte externa e interna dos tecidos vegetais com consequente redução da decorrente severidade de danos causados por determinados fungos e por insetos-pragas herbívoros oportunistas. [0026] The present invention comprises a mineral composition, for use on annual or perennial cultivated plants, which acts as a reducer of the incidence and abiotic stresses caused by ultraviolet radiation and attenuates damage from biotic stresses caused by the consequent greater severity of pathogenic fungi and voracity of insect herbivorous pests that attack such plants, said composition comprising microparticles of Silicon Dioxide (S1O2) in crystalline, insoluble and inert form, optionally combined with microparticles of insoluble Zinc Oxide (ZnO), both optionally combined with Manganese ( Mn) from a soluble molecule containing 0 same. Said composition is applied to the aerial part of the plants via spraying and then provides attenuation of the physical and physiological stresses caused by ultraviolet radiation on the external and internal part of the plant tissues with consequent reduction of the resulting severity of damages caused by certain fungi and by insects- opportunistic herbivorous pests.
[0027] Uma forma particular e básica de realização da invenção compreende uma concentração de Dióxido de Silício (S1O2) em sua forma cristalina, insolúvel, inerte e na dimensão de micropartículas, aplicada diretamente sobre a superfície das plantas, cuja forma e modalidade de uso até então não tem precedente de uso em aplicação sobre a parte aérea das plantas cultivadas. [0027] A particular and basic embodiment of the invention comprises a concentration of Silicon Dioxide (S1O2) in its crystalline form, insoluble, inert and in the dimension of microparticles, applied directly on the surface of plants, whose form and modality of use so far it has no precedent of use in application on the aerial part of cultivated plants.
[0028] A invenção compreende ainda métodos de uso da referida composição para favorecer a saúde intrínseca da planta, observável no desenvolvimento mais vigoroso de folhas, raízes, maior número de flores e frutos e, em última análise, preservando ou promovendo a produtividade agrícola e a qualidade de seus frutos, compreendendo a aplicação de tal composição sobre a superfície da parte aérea das plantas. [0029] Desta forma, a presente invenção compreende uma composição para atenuar estresses abióticos e bióticos em plantas, compreendendo micropartículas de Dióxido de Silício (SÍO2) na forma cristalina, insolúvel e inerte, sendo que ditas micropartículas de Dióxido de Silício apresentarem tamanho entre 1 e 70 micra. [0028] The invention further comprises methods of using said composition to favor the intrinsic health of the plant, observable in the more vigorous development of leaves, roots, greater number of flowers and fruits and, ultimately, preserving or promoting agricultural productivity and the quality of its fruits, including the application of such composition on the surface of the aerial part of the plants. [0029] Thus, the present invention comprises a composition to attenuate abiotic and biotic stresses in plants, comprising microparticles of Silicon Dioxide (SIO2) in crystalline, insoluble and inert form, said Silicon Dioxide microparticles having a size between 1 and 70 microns.
[0030] Mais especificamente, a composição da invenção compreende ainda Óxido de Zinco insolúvel, sendo que a proporção peso/peso do S1O2 e ZnO está compreendida entre 80:20 e 60:40; Manganês, provido por uma molécula ou composto em forma solúvel e absorvível pelas folhas das plantas, e sendo que o teor do elemento Manganês está compreendido entre 1 :4 a 1 :20 (p/p) em relação ao peso do S1O2. [0030] More specifically, the composition of the invention further comprises insoluble Zinc Oxide, wherein the weight/weight ratio of S1O2 and ZnO is comprised between 80:20 and 60:40; Manganese, provided by a molecule or compound in a soluble form and absorbable by the leaves of plants, and the content of the Manganese element is between 1:4 to 1:20 (w/w) in relation to the weight of S1O2.
[0031] A composição da invenção pode conter ainda outros aditivos, até o limite máximo de 70% em peso de aditivos em relação ao peso do S1O2, selecionados entre: nutrientes minerais de aplicabilidade foliar, antioxidantes vegetais ou minerais, filtros solares orgânicos ou inorgânicos, óleos minerais, óleos vegetais, biocidas, pesticidas, hormônios vegetais, e outros. [0031] The composition of the invention may also contain other additives, up to a maximum limit of 70% by weight of additives in relation to the weight of S1O2, selected from: mineral nutrients of foliar applicability, vegetable or mineral antioxidants, organic or inorganic sunscreens , mineral oils, vegetable oils, biocides, pesticides, vegetable hormones, and others.
[0032] A composição se apresenta para uso, preferencialmente, contendo um total de peso/peso entre 900 gr/kilo e 999 gr/kilo associada a componentes sólidos adjuvantes e tensoativo, ou contendo um total de peso/volume entre 1 gr/litro e 800 gr/litro em uma suspensão associada a componentes emolientes e suspensores de partículas insolúveis no meio, a estabilizantes e conservantes e a tensoativos. [0032] The composition is presented for use, preferably, containing a total weight/weight between 900 gr/kilo and 999 gr/kilo associated with solid components adjuvants and surfactant, or containing a total weight/volume between 1 gr/liter and 800 g/liter in a suspension associated with emollient components and suspenders of insoluble particles in the medium, stabilizers and preservatives and surfactants.
[0033] A presente invenção compreende ainda um método para atenuar estresses abióticos e bióticos em plantas, para preservar ou aumentar a produtividade e a qualidade das plantas cultivadas anuais ou perenes, dito método compreendendo pulverizar sobre as partes expostas da planta uma solução da composição da invenção. [0033] The present invention further comprises a method for attenuating abiotic and biotic stresses in plants, to preserve or increase the productivity and quality of annual or perennial cultivated plants, said method comprising spraying on the exposed parts of the plant a solution of the composition of the invention.
[0034] Em particular, o método para atenuar os danos físicos e fisiológicos causados sob estresse abiótico pela radiação ultravioleta UV-B e UV-A prevê a realização das pulverizações sobre as partes vegetais expostas a insolação direta e difusa, a partir do desenvolvimento inicial das plantas. Em uma aplicação específica, o método para atenuar a severidade de fungos patogênicos aumentada pelos danos causados pela radiação ultravioleta UV-B e UV-A às plantas cultivadas, compreende realizar as pulverizações preventivas antes do risco de infecção. Em outra aplicação específica, o método para atenuar a voracidade de insetos pragas herbívoros às plantas cultivadas compreende realizar as pulverizações a partir da incidência inicial da praga alvo em sua fase neonata. [0034] In particular, the method for mitigating the physical and physiological damage caused under abiotic stress by UV-B and UV-A ultraviolet radiation provides for spraying on plant parts exposed to direct and diffuse insolation, from the initial development of the plants. In a specific application, the method for mitigating the severity of pathogenic fungi increased by the damage caused by UV-B and UV-A ultraviolet radiation to cultivated plants, comprises carrying out preventive sprays before the risk of infection. In another specific application, the method to attenuate the voracity of herbivorous pest insects to cultivated plants comprises spraying from the initial incidence of the target pest in its neonatal phase.
Descrição das figuras Description of figures
[0035] A presente invenção será mais bem compreendida a partir da descrição detalhada que segue de suas formas preferenciais de realização, a qual tem por suporte as imagens abaixo relacionadas, trazidas a título ilustrativo e não limitativo, nas quais:[0035] The present invention will be better understood from the detailed description that follows of its preferred embodiments, which is supported by the images listed below, brought by way of illustration and not limitation, in which:
- a figura 1 ilustra uma escala visual diagramática, contendo imagens de folíolos de soja ordenadas conforme a severidade do dano causado pela radiação ultravioleta em situação de radiação UV-B e de UV-B + UV-A, que serve de base para a escala de 1 a 5 utilizada para qualificar os resultados dos estudos com a composição; - Figure 1 illustrates a diagrammatic visual scale, containing images of soybean leaflets ordered according to the severity of damage caused by ultraviolet radiation in situations of UV-B and UV-B + UV-A radiation, which serves as the basis for the scale from 1 to 5 used to qualify the results of studies with the composition;
- a figura 2 apresenta imagens selecionadas e extraídas do exemplo 02, mostrando folhas de alface da cultivar romana ( Lactuca sativa variedade longifolia), conforme os níveis de danos sofridos pela radiação ultravioleta e a resposta dos tratamentos alternativos para atenuação dos mesmos; - Figure 2 presents selected images extracted from example 02, showing lettuce leaves of the Roman cultivar (Lactuca sativa variety longifolia), according to the levels of damage suffered by ultraviolet radiation and the response of alternative treatments to attenuate them;
- a figura 3 apresenta imagens de folíolos de soja, selecionadas do exemplo 03 para ilustrar o impacto nos folíolos da planta (dimensão foliar e danos à cutícula), conforme a dose crescente de radiação UV-B em ambas situações experimentais, com e sem a aplicação da composição para atenuar os referidos impactos; - Figure 3 shows images of soybean leaflets, selected from example 03 to illustrate the impact on plant leaflets (leaf size and cuticle damage), according to the increasing dose of UV-B radiation in both experimental situations, with and without application of the composition to mitigate said impacts;
- a figura 4 apresenta uma fotografia mostrando duas plantas adultas de milho para comparação visual dos danos de estresse abiótico de uma planta sem proteção (a esquerda) com uma planta protegida pelo uso da composição; - Figure 4 presents a photograph showing two adult maize plants for visual comparison of abiotic stress damage of an unprotected plant (on the left) with a plant protected by the use of the composition;
- a figura 5 apresenta uma escala diagramática para avaliação da severidade do agente biótico patogênico em plantas, denominado fungo da ferrugem asiática da soja (Phakopsora pachyrhizi H. Sydow & P. Sydow) em folíolos (uma folha de um trifólio), adotada como referência para a avaliação do exemplo 04; - Figure 5 presents a diagrammatic scale for evaluating the severity of the pathogenic biotic agent in plants, called Asian soybean rust fungus (Phakopsora pachyrhizi H. Sydow & P. Sydow) in leaflets (a leaf of a trifoliate), adopted as reference for the evaluation of example 04;
- a figura 6 apresenta imagens ilustrativas do exemplo 04, com folíolos de plantas de soja infectadas com o agente biótico patogênico fungo da ferrugem asiática da soja ( Phakopsora pachyrhizi H. Sydow & P. Sydow), mostrando a severidade média resultante das alternativas testadas após o fungo ter sido inoculado e completado seu ciclo reprodutivo (esporulando novamente para aumentar a epidemia); e - a figura 7 apresenta imagens relativas ao exemplo 6, de folíolos de plantas de soja danificadas pela mastigação por larvas do inseto praga Spodopetra frugiperda, sob as alternativas de tratamento em condição típica de infestação por larvas recém eclodidas. Descrição detalhada da invenção - Figure 6 shows illustrative images of example 04, with leaflets of soybean plants infected with the pathogenic biotic agent fungus Asian soybean rust ( Phakopsora pachyrhizi H. Sydow & P. Sydow), showing the average severity resulting from the alternatives tested after the fungus has been inoculated and completed its cycle reproductive (sporulating again to increase the epidemic); and - Figure 7 presents images related to example 6, of leaflets of soybean plants damaged by chewing by larvae of the insect pest Spodopetra frugiperda, under the treatment alternatives in typical condition of infestation by newly hatched larvae. Detailed description of the invention
[0036] Para todos os efeitos da presente descrição, o termo “preservar a produtividade” ou “preservar a qualidade”, no contexto relacionado às plantas tratadas com a composição, significa minimizar as perdas que seriam impingidas pelos estresses abióticos e bióticos ou mesmo permitir um mais alto desempenho dentro da capacidade genética intrínseca da referida planta. [0036] For all purposes of this description, the term "preserve productivity" or "preserve quality", in the context related to plants treated with the composition, means to minimize the losses that would be imposed by abiotic and biotic stresses or even allow a higher performance within the intrinsic genetic capacity of said plant.
[0037] O termo “agronomicamente aceitável”, no contexto da presente invenção, significa o emprego de materiais que são referendados para uso seguro em áreas agrícolas e em plantas cultivadas, ou seja, aplicados com equipamentos e sob tecnologias de aplicação rotineiras na atividade de cultivo. [0037] The term "agronomically acceptable", in the context of the present invention, means the use of materials that are certified for safe use in agricultural areas and in cultivated plants, that is, applied with equipment and under routine application technologies in the activity of cultivation.
[0038] O termo “insetos mastigadores” ou “insetos herbívoros”, no conceito de estresses bióticos atenuados pelo tratamento de plantas com a referida composição, significa espécies de insetos que em sua fase larval causam danos às plantas pelo consumo de partes de plantas, tais como folhas, flores, botões florais, ramos, frutos, seiva, incluindo, mas não se limitando, os insetos da ordem Lepidoptera. [0038] The term "chewing insects" or "herbivorous insects", in the concept of biotic stresses attenuated by the treatment of plants with said composition, means insect species that in their larval stage cause damage to plants by consuming plant parts, such as leaves, flowers, flower buds, branches, fruits, sap, including, but not limited to, insects of the order Lepidoptera.
[0039] A presente invenção revela uma composição química compreendendo uma suspensão concentrada de S1O2 (Dióxido de Silício) cristalina, insolúvel em água e na dimensão de micropartículas, alternativamente em combinação com ZnO (Óxido de Zinco) insolúvel em água e, alternativamente, ainda acrescida com molécula solúvel em água a base de Mn (Manganês), composição esta possível de ser diluída e se manter com partículas suspensas em um volume de água e então pulverizada sobre a folhagem, ramos e frutos de plantas cultivadas e assim atuar nas partes da planta para atenuar os danos decorrentes da radiação ultravioleta prejudiciais a esta. Assim, a presente composição de acordo com a invenção tem por escopo preservar os aspectos da saúde vegetal impactados negativamente pela radiação ultravioleta e, consequentemente, manter a capacidade produtiva das plantas ou mesmo aumentar a sua produtividade e a qualidade dos seus produtos para comercialização. A composição da invenção contém materiais considerados seguros para o uso na agricultura e pode ser aplicada de forma simples e com efeito desejado e esperado sobre qualquer espécie vegetal, incluindo as variedades destas. [0039] The present invention discloses a chemical composition comprising a concentrated suspension of crystalline S1O2 (Silicon Dioxide), insoluble in water and in microparticle size, alternatively in combination with ZnO (Zinc Oxide) insoluble in water and, alternatively, still added with a water-soluble molecule based on Mn (Manganese), this composition can be diluted and maintained with particles suspended in a volume of water and then sprayed on the foliage, branches and fruits of cultivated plants and thus act on the parts of the plant. plant to mitigate the damage caused by harmful ultraviolet radiation to it. Thus, the present composition according to the invention aims to preserve aspects of plant health negatively impacted by ultraviolet radiation and, consequently, maintain the productive capacity of plants or even increase their productivity and the quality of its products for commercialization. The composition of the invention contains materials considered safe for use in agriculture and can be applied simply and with the desired and expected effect on any plant species, including varieties thereof.
[0040] Mais especificamente, uma forma preferencial de realização da invenção compreende em bases p/p: [0040] More specifically, a preferred embodiment of the invention comprises on w/w bases:
- Dióxido de Silício (S1O2), de 20% a 80%, preferencialmente entre 50% e 70%, na forma cristalina, na dimensão de micropartículas e insolúvel em água; - Silicon Dioxide (S1O2), from 20% to 80%, preferably between 50% and 70%, in crystalline form, in microparticle size and insoluble in water;
- Óxido de Zinco (ZnO), de 5% a 30%, preferencialmente entre 15% e 25%, na dimensão de micropartículas, insolúvel em água; e - Zinc Oxide (ZnO), from 5% to 30%, preferably between 15% and 25%, in the microparticle dimension, insoluble in water; and
- Manganês, de 1 %-10%, preferencialmente de 3% a 8%, na forma de uma molécula solúvel em água contendo este elemento Mn, cuja proporção de tal molécula na composição disponha daquele teor de Mn na composição final, sendo que a proporção peso/peso entre o S1O2 e ZnO se situa na razão entre 80:20 e 20:80, preferencialmente entre 80:20 e 60:40; e sendo que a proporção do elemento Manganês, está compreendido entre 1 :4 a 1 :20 (p/p) em relação ao peso do S1O2; sendo o tamanho de partícula do S1O2 situado entre 1 e 70 micra, preferencialmente entre 1 e 40 micra; sendo o tamanho de partícula do ZnO situado entre 0,5 e 10 micra; e sendo a molécula provedora do Mn solúvel em água. - Manganese, from 1% to 10%, preferably from 3% to 8%, in the form of a water-soluble molecule containing this element Mn, whose proportion of such molecule in the composition has that Mn content in the final composition, and the weight/weight ratio between S1O2 and ZnO is between 80:20 and 20:80, preferably between 80:20 and 60:40; and the proportion of the element Manganese is comprised between 1:4 to 1:20 (w/w) in relation to the weight of S1O2; the particle size of the S1O2 being between 1 and 70 microns, preferably between 1 and 40 microns; the particle size of the ZnO being between 0.5 and 10 microns; and being the water-soluble Mn provider molecule.
[0041] Quando a composição seja apresentada na forma de Suspensão Concentrada a concentração do total de sólidos se dá entre 1% e 80% em p/v, preferencialmente entre 40% e 70%; sendo que tal suspensão concentrada contém um ou mais adjuvantes tais como umectantes, emolientes, óleos minerais ou vegetais, tensoativos, suspensores, estabilizantes, condicionantes e conservantes, que formam uma suspensão estável no armazenamento, propicia uma diluição adequada em calda de pulverização, uma distribuição de partículas uniforme nas gotas de pulverização e uma boa fixação destas sobre as partes da planta pulverizada. [0041] When the composition is presented in the form of Concentrated Suspension, the concentration of the total solids is between 1% and 80% in w/v, preferably between 40% and 70%; being that such concentrated suspension contains one or more adjuvants such as humectants, emollients, mineral or vegetable oils, surfactants, suspenders, stabilizers, conditioners and preservatives, which form a stable suspension in storage, providing an adequate dilution in spraying solution, a distribution of particles uniform in the spray drops and a good fixation of these on the parts of the sprayed plant.
[0042] Quando a composição seja apresentada na forma de Pó Molhável, a mesma pode conter um teor 0,1 a 10% de outros sólidos adjuvantes para boa suspensibilidade de calda de pulverização e cobertura e fixação de gotas pulverizadas, como por exemplo tensoativos, condicionadores e estabilizantes. [0042] When the composition is presented in the form of Wettable Powder, it may contain a content of 0.1 to 10% of other solid adjuvants for good suspension of spraying solution and coverage and fixation of sprayed drops, such as for example surfactants, conditioners and stabilizers.
[0043] Em uma forma particular de realização da composição, conforme a invenção, o Dióxido de Silício (ou Sílica), S1O2, na sua forma cristalina e insolúvel, e na dimensão de micropartículas, é obtido a partir do processamento da matéria prima conhecida como “areia industrial”, bem como por areia de quartzo ou silica sand, a qual não tem ainda uso para aplicação sobre as estruturas da parte aérea de plantas cultivadas, pois não é um fertilizante ou nutriente como fonte de Silício. Segundo a pesquisa publicada por Thomas P. Dolley em 2016 ( Minerais Yearbook. Silica. U.S. Geological Survey), os Estados Unidos da América são o maior produtor mundial de areia industrial, sendo que nenhum uso é apontado do produto para aplicação nas plantas cultivadas. Da mesma forma, a publicação de Adão e F. Lins em 2008 (Rochas Minerais Industriais. 2 Ed. CETEM-MCT. Cap 5 - Areia Industrial, pp 103-127), mostra que no Brasil igualmente não utiliza a areia industrial na área agrícola. A areia industrial naturalmente extraída compreende partículas de dimensão entre 0,1 e 0,5mm (100 a 500 micra), sendo que esta é lavada, seca e peneirada para classificações de faixa mais estreita de tamanho (peneiras ou malhas). [0043] In a particular embodiment of the composition, according to the invention, Silicon Dioxide (or Silica), S1O2, in its crystalline and insoluble form, and in the size of microparticles, is obtained from the processing of the known raw material as “industrial sand”, as well as quartz sand or silica sand, which is not yet used for application on the structures of the aerial part of cultivated plants, as it is not a fertilizer or nutrient as a source of silicon. According to research published by Thomas P. Dolley in 2016 (Minerals Yearbook. Silica. U.S. Geological Survey), the United States of America is the world's largest producer of industrial sand, and no use is indicated of the product for application in cultivated plants. Likewise, the publication by Adão and F. Lins in 2008 (Rochas Minerals Industriais. 2 Ed. CETEM-MCT. Cap 5 - Areia Industrial, pp 103-127), shows that in Brazil, the industrial sand is also not used in the area. agricultural. Naturally extracted industrial sand comprises particles between 0.1 and 0.5 mm (100 to 500 microns) in size, which is washed, dried and sieved to narrower size range classifications (sieve or mesh).
[0044] Com estas características de insolubilidade, inerte quimicamente e tamanho de partícula, é naturalmente inconcebível um uso da areia industrial para pulverização foliar em plantas. No entanto, e tal como surpreendentemente descoberto, o emprego de tal matéria prima na composição, de acordo com a invenção, traz inúmeros benefícios na atenuação de estresses abióticos, em especial ao formar uma barreira imediata e externa sobre a planta e para qualquer espécie de planta e mesmo em relação a composições que se utilizam de compostos de Silício solúvel que formam um fortalecimento interno nas folhas pela Sílica biogênica, após longo processo metabólico e apenas para espécies vegetais aptas. [0044] With these characteristics of insolubility, chemically inert and particle size, it is naturally inconceivable a use of industrial sand for foliar spraying on plants. However, and as surprisingly discovered, the use of such raw material in the composition, according to the invention, brings numerous benefits in the attenuation of abiotic stresses, in particular by forming an immediate and external barrier on the plant and for any species of plant. plant and even in relation to compositions that use soluble silicon compounds that form an internal strengthening in the leaves by biogenic silica, after a long metabolic process and only for suitable plant species.
[0045] São conhecidos na arte alguns usos em áreas agrícolas da Sílica cristalina, por exemplo como componente inerte na forma de grânulos (areia grossa) para completar a carga de fertilizantes ou, raramente, como elemento presente em pó de rocha para remineralizar solos empobrecidos. Ainda para fins de provimento equivalente ao nutricional com o elemento Silício, como se pode verificar na ampla revisão publicada por Rastogi et al (Application of Silicon nanoparticles in agriculture. 3 Biotech (2019) 9:90), existe a proposição de provimento do mesmo via aplicações foliares a partir de Sílica em partículas de dimensão nanométrica, amorfas (pirogênicas) ou cristalinas (moagem úmida), da ordem de poucos nanômetros, a qual mesmo na forma insolúvel em água se apresenta em tamanho tão pequeno que a planta consegue absorver a partícula através da epiderme das folhas e utilizar o Silício; entretanto estes autores alertam para a complexidade de uso pois possíveis efeitos indesejáveis no desenvolvimento das plantas ocorre pelo fato de que esta dimensão de partícula de Sílica deixa de ser inerte e de fato passa a apresentar extrema reação alcalina, que interfere na disponibilidade de nutrientes outros, pois são notadamente cátions. Por outro lado, quando o objetivo é prover Silício diretamente para fins nutricionais, a fonte sempre é distinta, sendo utilizada apenas a forma amorfa e solúvel, obtida com silicatos ou diatomitos (vide International Plant Nutrítion Institute em http://www.ipni.net/nutrifacts). [0045] Some uses in agricultural areas of crystalline silica are known in the art, for example as an inert component in the form of granules (coarse sand) to complete the load of fertilizers or, rarely, as an element present in rock dust to remineralize depleted soils. . Still for the purpose of providing equivalent to the nutritional one with the element Silicon, as can be seen in the extensive review published by Rastogi et al (Application of Silicon nanoparticles in agriculture. 3 Biotech (2019) 9:90), there is a proposal to provide the same via foliar applications from silica in nanometer-sized, amorphous (pyrogenic) or crystalline (wet milling) particles ), of the order of a few nanometers, which even in the water-insoluble form is so small that the plant can absorb the particle through the epidermis of the leaves and use Silicon; however, these authors warn of the complexity of use, as possible undesirable effects on plant development occur due to the fact that this Silica particle size is no longer inert and in fact starts to present an extreme alkaline reaction, which interferes with the availability of other nutrients, for they are notably cations. On the other hand, when the objective is to provide silicon directly for nutritional purposes, the source is always different, using only the amorphous and soluble form, obtained from silicates or diatoms (see International Plant Nutrition Institute at http://www.ipni. net/nutrifacts).
[0046] Assim, uma realização sob a invenção é o passo de moer ou micronizar tais partículas da Sílica cristalina da areia industrial até obter diâmetro menor, micrométrico e mais adequado daquele disposto naturalmente e nos processos básicos de peneiramento, diâmetro pequeno o suficiente para que as partículas passem a ser passíveis de suspensão em um meio liquido e consequentemente apto à pulverização foliar sobre plantas de forma agronomicamente aceitável, cujo tamanho de partícula mantém a Sílica quimicamente inerte e sem efeito nutricional. Uma concretização da composição é então que as partículas da Sílica (S1O2) cristalina sejam de tamanho entre 1 e 71 micra, preferencialmente de D90 entre 1 e 40 micra e mais preferencialmente de D50 entre 1 e 15 micra, sendo uma realização preferida da composição sob a invenção um tamanho de partícula de D90 entre 1 e 10 micra e D50 entre 1 e 5 micra, 0 qual permite uma suspensão em meio liquido com estabilidade sob a suave e constante agitação de um pulverizador agrícola para ser uniformemente pulverizada sobre a planta alvo. Em experimento controlado observou-se que uma calda de pulverização em descanso contendo desde 0,3% até 1,2% v/v desta configuração preferida de diâmetros de partículas da sílica moída e micronizada apresenta precipitação de apenas 5% em 10 minutos e 40% em 40 minutos. [0047] Como demonstrado pelos exemplos mais adiante, esta forma cristalina de S1O2 insolúvel e não absorvível, uma vez aplicada e depositada sobre a cutícula das partes vegetais (parte externa), se mostrou um elemento físico supreendentemente eficaz para atenuar os estresses e mesmo superior sobre a forma amorfa e/ou solúvel absorvível de sílicas ou silicatos, formas estas utilizadas para a nutrição de Si em plantas via solo ou foliar que resultam, por outro meio, em deposito de S1O2 biogênica (amorfa) sob a cutícula (parte interna da folha). O diferencial sob a presente invenção é o de dispor de forma direta e imediata o S1O2 sobre o alvo a ser protegido, em forma pouco lavável pela chuva ou irrigação, em dimensão de partícula com viabilidade de uso agronómico em pulverização e com tamanho e dureza que cumprem a função protetiva. Este aspecto de resistência à remoção pela lavagem das folhas propicia um adequado intervalo de proteção das plantas até que novas folhas surjam e mereçam ser igualmente tratadas e, da mesma forma, na medida em que a planta se desenvolve, as folhas anteriormente tratadas e protegidas passam a se situar nas partes internas e inferiores das plantas, que são zonas alvo preferenciais de algumas pragas e doenças e ao mesmo tempo difíceis de serem alcançadas pelas gotas de pulverização de pesticidas. [0046] Thus, an achievement under the invention is the step of grinding or micronizing such particles of crystalline silica from industrial sand until obtaining a smaller, micrometric and more suitable diameter of that naturally disposed and in the basic sieving processes, a diameter small enough for the particles become susceptible to suspension in a liquid medium and consequently suitable for foliar spraying on plants in an agronomically acceptable way, whose particle size keeps the silica chemically inert and without nutritional effect. An embodiment of the composition is then that the crystalline Silica (S1O2) particles are of a size between 1 and 71 microns, preferably of D90 between 1 and 40 microns and more preferably of D50 between 1 and 15 microns, a preferred embodiment of the composition being under the invention a particle size of D90 between 1 and 10 microns and D50 between 1 and 5 microns, which allows a suspension in liquid medium with stability under the gentle and constant agitation of an agricultural sprayer to be uniformly sprayed on the target plant. In a controlled experiment, it was observed that a resting spray mixture containing from 0.3% to 1.2% v/v of this preferred configuration of particle diameters of milled and micronized silica presents precipitation of only 5% in 10 minutes and 40 % in 40 minutes. [0047] As demonstrated by the examples below, this crystalline form of insoluble and non-absorbable S1O2, once applied and deposited on the cuticle of the plant parts (external part), has proved to be a surprisingly effective physical element to mitigate stresses and even superior on the amorphous and/or soluble absorbable form of silicas or silicates, these forms used for the nutrition of Si in plants via soil or foliar which result, in another way, in the deposit of biogenic (amorphous) S1O2 under the cuticle (internal part of the leaf). The differential under the present invention is to directly and immediately dispose the S1O2 on the target to be protected, in a form that is not easily washable by rain or irrigation, in a particle size with feasibility of agronomic use in spraying and with a size and hardness that fulfill a protective function. This aspect of resistance to removal by washing the leaves provides an adequate protection interval for the plants until new leaves appear and deserve to be treated equally and, in the same way, as the plant develops, the previously treated and protected leaves pass to be located in the inner and lower parts of the plants, which are preferential target areas for some pests and diseases and at the same time difficult to be reached by the spraying drops of pesticides.
[0048] Uma vantagem desta técnica de deposição direta sobre a epiderme foliar com o S1O2 na forma cristalina e inerte como descrito na presente invenção é ser utilizável e eficaz sobre qualquer espécie vegetal ou sobre qualquer variedade de uma espécie vegetal, uma vez que há total independência de qualquer metabolismo da planta em questão, distinto do uso de fonte solúvel de Silício que depende da capacidade diferenciada entre e intra espécies de absorver (na forma de ácido silícico), translocar e armazenar o Silício que finalmente gera S1O2 na planta, porém sendo biogênico, amorfo e sob a epiderme foliar. [0048] An advantage of this technique of direct deposition on the leaf epidermis with S1O2 in crystalline and inert form as described in the present invention is to be usable and effective on any plant species or on any variety of a plant species, since there is total independence of any metabolism of the plant in question, different from the use of a soluble source of Silicon that depends on the differentiated capacity between and intra species to absorb (in the form of silicic acid), translocate and store the Silicon that finally generates S1O2 in the plant, but being biogenic, amorphous and under the leaf epidermis.
[0049] A Sílica cristalina na dimensão de partículas adequada para utilização sob a presente invenção pode ser obtida de várias fontes minerais, mas especialmente pela moagem de areia industrial ou de quartzo pré triturado e, em qualquer dos casos, eventualmente sujeito a processos outros adicionais de micronização, incluída a coleta de poeira de processamento daquelas fontes, que levem a obtenção de material com tamanho de partícula menor que 71 micra. [0050] Outra realização da composição compreende a presença do Óxido de Zinco (ZnO), insolúvel, em dimensão de micropartículas, complementar ao Dióxido de Silício (S1O2) cristalino, para a funcionalidade desejada. No estado da técnica o ZnO na dimensão de micropartículas é utilizado na agricultura como um fertilizante de menor importância como fonte de Zinco, uma vez que o elemento nutritivo Zn é largamente provido a partir de fonte solúvel como por exemplo o Sulfato de Zinco (ZnS04). Neste contexto quando o ZnO é utilizado na nutrição de plantas, não é via uso foliar, mas preponderantemente via aplicação no solo, onde é lentamente solubilizado por ácidos fracos e absorvido pelas raízes das plantas, embora exista um pequeno uso de ZnO aplicado via foliar para correção de deficiência do mineral. Assim, uma realização da referida composição é a de que o ZnO se encontra em partículas de D90 entre 1 e 10 micra, o que permite uma suspensão de calda de pulverização até 1,2% v/v com estabilidade sob suave e constante agitação de um pulverizador agrícola para ser uniformemente aspergida sobre a parte aérea da planta alvo. [0049] Crystalline silica in the particle size suitable for use under the present invention can be obtained from various mineral sources, but especially by milling industrial sand or pre-crushed quartz and, in either case, possibly subject to other additional processes. micronization process, including the collection of processing dust from those sources, leading to material with a particle size smaller than 71 microns. [0050] Another embodiment of the composition comprises the presence of Zinc Oxide (ZnO), insoluble, in microparticle size, complementary to crystalline Silicon Dioxide (S1O2), for the desired functionality. In the state of the art, ZnO in the microparticle dimension is used in agriculture as a fertilizer of minor importance as a source of Zinc, since the nutritional element Zn is largely provided from a soluble source such as Zinc Sulfate (ZnS04) . In this context, when ZnO is used in plant nutrition, it is not via foliar use, but predominantly via soil application, where it is slowly solubilized by weak acids and absorbed by plant roots, although there is a small use of ZnO applied via foliar to mineral deficiency correction. Thus, an embodiment of said composition is that ZnO is present in D90 particles between 1 and 10 microns, which allows a spray mixture suspension of up to 1.2% v/v with stability under gentle and constant agitation of an agricultural sprayer to be evenly sprinkled on the aerial part of the target plant.
[0051] Uma vantagem na invenção é que enquanto a partícula dos elementos da referida composição no tamanho de micrometros propicia razoável efeito bloqueador de radiação ultravioleta, tal tamanho de partícula não traz as preocupações regulatórias atuais sobre o uso em larga escala no meio ambiente de nanopartículas de óxidos metálicos. [0051] An advantage of the invention is that while the particle size of the elements of said composition in micrometers provides a reasonable blocking effect of ultraviolet radiation, such particle size does not bring the current regulatory concerns about the large-scale use in the environment of nanoparticles. of metal oxides.
[0052] Como os dados dos exemplos 01, 02 e 03 mais adiante mostram, os elementos S1O2 e ZnO da referida composição atuam de forma aditiva para atenuar os estresses abióticos causados pela radiação ultravioleta que prejudicam a biomassa e produtividade das plantas. Como estes elementos da composição atuam de forma aditiva e mesmo de forma sinérgica como os dados de alguns exemplos adiante evidenciam, um aspecto de concretização da composição sob a invenção é que a proporção peso/peso do S1O2 e ZnO, sob os tamanhos de partícula descritos sejam entre 80:20 e 60:40. [0052] As the data from examples 01, 02 and 03 later show, the elements S1O2 and ZnO of said composition act in an additive way to attenuate the abiotic stresses caused by ultraviolet radiation that harm the biomass and productivity of plants. As these elements of the composition act additively and even synergistically, as the data of some examples below show, an aspect of embodiment of the composition under the invention is that the weight/weight ratio of S1O2 and ZnO, under the particle sizes described are between 80:20 and 60:40.
[0053] Os estresses provocados pela radiação ultravioleta, conforme revisto no estado da técnica, vão desde os danos físicos à planta até desordens fisiológicas causadas pelo aumento de radicais oxidativos. Assim, além de uma atenuação do fator de estresse no âmbito externo da planta, um melhor nível de eficiência pode ser alcançado quando o tratamento protetivo tenha ação também na bioquímica da planta, remediando em complemento as desordens fisiológicas causadas pela elevação de ROS, para o que a adequada nutrição de Cobre (Cu), Zinco (Zn) e especialmente o Manganês (Mn) são pré- condição. Como evidenciado pelos dados no exemplo 05, a combinação do elemento Manganês (Mn) à mistura Si02/Zn0 potencializou a proteção contra os danos causados pela radicação ultravioleta, notadamente no desenvolvimento das raízes da planta. Assim, outro aspecto da invenção é da adição opcional, junto à mistura SiC>2/ZnO, de uma porção de Manganês (Mn) a partir de uma molécula solúvel aceita para uso agronómico como nutriente de plantas como, por exemplo, Sulfato de Manganês (MnS04.3H20), Cloreto de Manganês (MnCl2.4H20), Carbonato de Manganês (MnCCh), Nitrato de Manganês (Mn (N03)2.6H20) ou Quelato de Manganês (CioHi2N20eMnNa2). Uma realização da composição é o uso, por exemplo, mas sem ser limitado a este exemplo, do Sulfato de Manganês, na proporção para a mistura Si02/Zn0 entre 1:1 e 1:10, sendo uma realização preferida na proporção 1:3. [0053] The stresses caused by ultraviolet radiation, as reviewed in the state of the art, range from physical damage to the plant to physiological disorders caused by the increase in oxidative radicals. Thus, in addition to an attenuation of the stress factor outside the plant, a better level of efficiency can be achieved. when the protective treatment also has an effect on the biochemistry of the plant, in addition to remedying the physiological disorders caused by the elevation of ROS, for which the adequate nutrition of Copper (Cu), Zinc (Zn) and especially Manganese (Mn) is pre- condition. As evidenced by the data in example 05, the combination of the element Manganese (Mn) to the mixture Si02/Zn0 potentiated the protection against damages caused by ultraviolet radiation, notably in the development of the roots of the plant. Thus, another aspect of the invention is the optional addition, together with the SiC>2/ZnO mixture, of a portion of Manganese (Mn) from a soluble molecule accepted for agronomic use as a plant nutrient such as, for example, Manganese Sulfate. (MnS04.3H20), Manganese Chloride (MnCl2.4H20), Manganese Carbonate (MnCCh), Manganese Nitrate (Mn (N03)2.6H20) or Manganese Chelate (CioHi2N20eMnNa2). One embodiment of the composition is the use, for example, but not limited to this example, of Manganese Sulfate, in the ratio for the SiO2/Zn0 mixture between 1:1 and 1:10, a preferred embodiment being in the ratio 1:3 .
[0054] Nas situações em que se atenuam os estresses abióticos nas plantas pelo uso da composição sob a invenção, uma adequada nutrição vegetal encontra condições para expressar aumentos constantes da produtividade de tais plantas. Assim, outra forma de realização da presente invenção prevê a composição em combinação com um ou mais componentes nutritivos vegetais agronomicamente aceitáveis, preconizados para aplicação foliar, visando fortalecer nutricionalmente a planta em outros aspectos, os quais podem ser adicionados em uma apresentação da composição da presente invenção, porem de forma não prevalente, ou seja em menos de 50% peso/peso da formulação final, tais como Nitrogénio (N), Fosforo (P), Potássio (K), Enxofre (S), Cálcio (Ca), Magnésio (Mn), Boro (B), Ferro (Fe), Cobre (Cu), Molibdênio (Mo), Cloreto (CI-), Zinco (Zn) solúvel, Cobalto (Co), e mesmo Silício (Si) solúvel, Níquel (Ni) e Selênio (Se). [0054] In situations where abiotic stresses in plants are attenuated by the use of the composition under the invention, an adequate plant nutrition finds conditions to express constant increases in the productivity of such plants. Thus, another embodiment of the present invention provides for the composition in combination with one or more agronomically acceptable plant nutritional components, recommended for foliar application, aiming to nutritionally strengthen the plant in other aspects, which can be added in a presentation of the composition of the present invention, but in a non-prevalent form, that is, in less than 50% weight/weight of the final formulation, such as Nitrogen (N), Phosphorus (P), Potassium (K), Sulfur (S), Calcium (Ca), Magnesium (Mn), Boron (B), Iron (Fe), Copper (Cu), Molybdenum (Mo), Chloride (CI-), Soluble Zinc (Zn), Cobalt (Co), and even Soluble Silicon (Si), Nickel (Ni) and Selenium (Se).
[0055] Dado que um efeito fotoquímico indesejável da radiação ultravioleta é a geração excessiva de espécies oxidativas reativas (ROS), a associação de antioxidantes à composição pode aumentar ainda mais a atenuação deste estresse abiótico nas plantas. Assim, outra forma de realização da presente invenção prevê a composição em combinação com um ou mais produtos antioxidantes, de forma não prevalente, ou seja menos de 50% peso/peso, tais como, mas sem ser limitado a estes, o ácido ascórbico, o ácido cítrico, o ácido málico, o alfa-tocoferol. [0055] Given that an undesirable photochemical effect of ultraviolet radiation is the excessive generation of reactive oxidative species (ROS), the association of antioxidants to the composition can further increase the attenuation of this abiotic stress in plants. Thus, another embodiment of the present invention provides for the composition in combination with one or more antioxidant products, in a non-prevalent manner, i.e. less than 50% w/w, such as, but not limited to, ascorbic acid, citric acid, malic acid, alpha-tocopherol.
[0056] Sob as práticas usuais de pulverizações sobre as plantas de lavoura é recorrente a necessidade e associação de diversos produtos em uma única operação, seja pela aquisição de formulações completas ou pela mistura destes na solução aquosa de aplicação, minimizando o trânsito de maquinário e gastos de energia, situação que é condicionada à compatibilidade entre os produtos em questão. Assim, dada a versatilidade química pelo aspecto inerte da composição sob a invenção, uma outra forma de realização da invenção é a combinação desta com outros filtros solares orgânicos ou inorgânicos, passíveis de uso agronómico, sob o objetivo de prover níveis ainda mais elevados de fator de proteção contra a radiação ultravioleta nas plantas alvo [0057] Uma realização da invenção é que a composição sob a invenção é apresentada em forma adequada para dispersão em água visando obter uma calda apta para pulverização, seja na forma de Pó Molhável (PM) ou então como Suspensão Concentrada (SC), sendo uma realização preferida, a apresentação como Suspensão Concentrada (SC). [0056] Under the usual practices of spraying on crop plants, the need and association of several products in a single operation is recurrent, either by acquiring complete formulations or by mixing them in the aqueous application solution, minimizing the transit of machinery and energy costs, a situation that is conditioned to the compatibility between the products in question. Thus, given the chemical versatility due to the inert aspect of the composition under the invention, another embodiment of the invention is the combination of it with other organic or inorganic sunscreens, capable of agronomic use, with the objective of providing even higher levels of factor. protection against ultraviolet radiation in target plants [0057] An embodiment of the invention is that the composition under the invention is presented in a form suitable for dispersion in water in order to obtain a sprayable spray, either in the form of Wettable Powder (WP) or then as Concentrated Suspension (SC), a preferred embodiment being the presentation as Concentrated Suspension (SC).
[0058] Quando a composição é apresentada como PM, o preparo da calda de pulverização pode adicionar adjuvantes para obter uma adequada cobertura pelas gotas sobre a parte externa das plantas. Assim uma realização quanto ao método de uso da composição formulada Pó Molhável (PM) é adição na calda de pulverização de suspensores, surfactantes, tensoativos aniônicos ou não iônicos, sendo uma realização preferida tensoativos não iônicos, para obter uma suspensão aquosa com concentração final de uso na aplicação entre 0,1% e 5%, preferencialmente entre 0,5 e 2,5%, que uma vez pulverizado sobre uma lavoura resulte em uma dose de 0,1 a 2,0 kg por hectare do produto PM formulado, preferencialmente uma dose entre 0,5 e 1,0 kg por hectare. [0058] When the composition is presented as PM, the preparation of the spray mixture can add adjuvants to obtain adequate coverage by the drops on the outside of the plants. Thus, an embodiment regarding the method of using the Wettable Powder (PM) formulated composition is the addition of suspenders, surfactants, anionic or non-ionic surfactants to the spray mixture, with non-ionic surfactants being a preferred embodiment, to obtain an aqueous suspension with a final concentration of use in the application between 0.1% and 5%, preferably between 0.5 and 2.5%, which, once sprayed on a crop, results in a dose of 0.1 to 2.0 kg per hectare of the formulated PM product, preferably a dose between 0.5 and 1.0 kg per hectare.
[0059] Uma realização da composição sob a invenção, quando apresentada na formulação SC é o de conter agentes umectantes e suspensores para partículas insolúveis, que permitam uma distribuição das partículas nas gotas de pulverização, uma decantação lenta e uma re-suspensão rápida da composição na calda de pulverização. Um exemplo, mas não somente este, de agente distribuidor de partículas são óleos minerais parafínicos ou vegetais, emulsionáveis ou auxiliados por agentes emulsificantes, em concentração adequada para propiciar uma suspensão aquosa uniforme e com lenta decantação. Assim, uma realização da composição na formulação SC é de poder conter surfactantes para gerar uma emulsão óleo/água umectando as partículas insolúveis e melhorar sua suspensibilidade. Outra forma de realização da composição na formulação SC é o de poder conter tensoativos aniônicos ou não iônicos, preferencialmente uma combinação de ambos, para promover uma melhor cobertura e fixação das gotas de pulverização sobre a superfície da planta alvo de tratamento. Ainda, outra realização da composição na formulação SC é o de poder conter agentes estabilizantes, conservantes e corantes, para preservar as propriedades da formulação SC sob armazenamento. [0059] An embodiment of the composition under the invention, when presented in the SC formulation, is to contain wetting and suspending agents for insoluble particles, which allow a distribution of the particles in the spray droplets, a slow settling and a rapid resuspension of the composition. in the spray solution. An example, but not the only one, of a particle distributing agent are oils paraffinic or vegetable minerals, emulsifiable or aided by emulsifying agents, in adequate concentration to provide a uniform aqueous suspension with slow settling. Thus, an embodiment of the composition in the SC formulation is that it can contain surfactants to generate an oil/water emulsion by wetting the insoluble particles and improving their suspensibility. Another embodiment of the composition in the SC formulation is that it may contain anionic or non-ionic surfactants, preferably a combination of both, to promote better coverage and fixation of the spray drops on the surface of the target plant for treatment. Yet another realization of the composition in the SC formulation is that it can contain stabilizing agents, preservatives and coloring agents to preserve the properties of the SC formulation upon storage.
[0060] Uma concretização na composição sob uma formulação SC (Suspensão Concentrada) é que a concentração peso/volume dos minerais esteja entre 1g e 800 g/litro para propiciar estabilidade de armazenamento e suspensibilidade sobre agitação. [0061] Um exemplo de concretização preferida para se obter a composição na formulação Suspensão Concentrada (SC), utilizando os minerais na granulometria preferida já descrita anteriormente, é de juntar 690 ml de água destilada, os minerais com 300 gramas de S1O2 e 100 gramas de ZnO e, opcionalmente, 200 gramas de MnS04.3H20, mais adjuvantes nos volumes de 60 ml de óleo emulsionável ou emulsionado uso sobre plantas e 20 ml de tensoativo não iônico. O volume total de água citado é dividido em duas partes, sendo a primeira para obter uma solução com os adjuvantes e pré-suspender os minerais e a segunda para completar e obter um volume final da Suspensão Concentrada. De acordo com a realização este volume de suspensão concentrada apresentado pode ser posteriormente diluído em um volume de 50 a 200 litros de água, preferencialmente entre 100 e 150 litros, e ser aplicado via pulverização para tratar 1 hectare de plantas cultivadas de porte mediano. A determinação do volume de água para diluição e pulverização deste volume da composição SC exemplificada é determinada pelas características do equipamento de pulverização. A dose por hectare, deste exemplo de formula descrita, pode ser reduzida em até 50% quando as plantas alvo de tratamento tenham pouca área foliar por metro quadrado a serem protegidas (plantas em estádio vegetativo inicial) ou aumentada em até 100% quando as plantas estejam na plenitude de desenvolvimento, com grande área foliar por metro quadrado. [0060] One embodiment in the composition under an SC (Suspension Concentrate) formulation is that the weight/volume concentration of the minerals is between 1g and 800 g/liter to provide storage stability and suspensibility under agitation. [0061] An example of a preferred embodiment to obtain the composition in the Concentrated Suspension (SC) formulation, using the minerals in the preferred granulometry already described above, is to add 690 ml of distilled water, the minerals with 300 grams of S1O2 and 100 grams of ZnO and, optionally, 200 grams of MnS04.3H20, plus adjuvants in the volumes of 60 ml of emulsifiable or emulsified oil used on plants and 20 ml of non-ionic surfactant. The total volume of water quoted is divided into two parts, the first to obtain a solution with the adjuvants and pre-suspend the minerals and the second to complete and obtain a final volume of the Concentrated Suspension. According to the embodiment, this volume of concentrated suspension presented can be later diluted in a volume of 50 to 200 liters of water, preferably between 100 and 150 liters, and be applied via spray to treat 1 hectare of medium-sized cultivated plants. The determination of the volume of water for diluting and spraying this volume of the exemplified SC composition is determined by the characteristics of the spraying equipment. The dose per hectare, of this example of the described formula, can be reduced by up to 50% when the target plants of treatment have little leaf area per square meter to be protected (plants in the initial vegetative stage) or increased by up to 100% when the plants be in fullness of development, with large leaf area per square meter.
[0062] Uma realização sob a presente invenção envolve métodos de proteger plantas e suas partes de danos decorrentes da exposição à radiação ultravioleta solar. Os danos neste caso são definidos como clorose, necrose e ou bronzeamento de folhas ou frutos, deformação e/ou menor desenvolvimento de folhas, redução no acúmulo de biomassa da planta, redução do desenvolvimento radicular, redução na viabilidade e fecundidade da polinização, abortamento de flores e frutos, estresse oxidativo aumentado, perda de água por aumento na transpiração foliar, redução nos teores de óleo e proteína nas partes da planta, redução de qualidade de fibras. Radiação ultravioleta solar como definida na presente invenção são as ondas eletromagnéticas entre 290 e 400 nanômetros. [0062] An embodiment under the present invention involves methods of protecting plants and their parts from damage arising from exposure to solar ultraviolet radiation. The damages in this case are defined as chlorosis, necrosis and/or tanning of leaves or fruits, deformation and/or less development of leaves, reduction in the accumulation of plant biomass, reduction of root development, reduction in the viability and fecundity of pollination, abortion of flowers and fruits, increased oxidative stress, water loss due to increased leaf transpiration, reduced oil and protein contents in plant parts, reduced fiber quality. Solar ultraviolet radiation as defined in the present invention is electromagnetic waves between 290 and 400 nanometers.
[0063] No exemplo 05 mais adiante os dados mostram que a composição, enquanto atenuou os estresses abióticos, reduziu a severidade de fungo fitopatogênico. Também, no exemplo 06, os dados indicam que o uso da composição associada a fungicidas propiciou os melhores resultados em produtividade de plantas em situação de lavoura. Assim, outra realização sob a presente invenção envolve métodos pelo uso da composição aplicada regularmente sobre as plantas para proteger tais plantas e suas partes de doenças fúngicas e de patogenicidade aumentada pela debilidade da planta exposta à radiação ultravioleta solar. Doenças neste caso sendo definidas como fungos, bactérias e vírus. [0063] In example 05 further on the data show that the composition, while attenuating abiotic stresses, reduced the severity of phytopathogenic fungus. Also, in example 06, the data indicate that the use of the composition associated with fungicides provided the best results in plant productivity in crop conditions. Thus, another embodiment under the present invention involves methods by using the composition regularly applied to plants to protect such plants and parts thereof from fungal diseases and from pathogenicity increased by the debility of the plant exposed to solar ultraviolet radiation. Diseases in this case being defined as fungi, bacteria and viruses.
[0064] Uma outra realização sob a presente invenção envolve métodos de reduzir danos e proliferação de insetos pragas herbívoros que infestam as referidas plantas cultivadas a partir do uso da referida composição. Os dados apresentados no exemplo 07, obtidos de ensaios controlados, demonstram que o componente S1O2 cristalino e insolúvel e na dimensão de micropartículas, presente na composição sob a referida invenção, apresenta desempenho em reduzir a voracidade e desenvolvimento de espécies lepidópteras (lagartas) importantes na agricultura, que causam danos económicos pela destruição das folhas e frutos. O desempenho do componente sob a presente invenção, observado a partir dos dados, é nitidamente superior àquele propiciado pelo Silício solúvel, relatado no estado da técnica como algo funcional para esta finalidade e, de fato o desempenho observado aproxima-se do nível de um inseticida piretróide avaliado como padrão positivo. [0064] Another embodiment under the present invention involves methods of reducing damage and proliferation of herbivorous pest insects that infest said cultivated plants from the use of said composition. The data presented in example 07, obtained from controlled tests, demonstrate that the crystalline and insoluble S1O2 component and in the microparticle size, present in the composition under the said invention, presents performance in reducing the voracity and development of lepidopteran species (caterpillars) important in the agriculture, which cause economic damage through the destruction of leaves and fruits. The performance of the component under the present invention, observed from the data, is clearly superior to that provided by soluble silicon, reported in the prior art as something functional for this purpose and, in fact, the observed performance approximates the level of a pyrethroid insecticide evaluated as a positive standard.
[0065] No que se refere aos métodos citados, a suspensão aquosa para pulverização da referida composição, independente da formulação de apresentação, pode ser aplicada sobre as plantas cultivadas por meio de equipamentos pulverizadores típicos que se utilizam em lavouras, com bicos de pulverização de líquidos comumente determinados para obter gotículas finas que recubram adequadamente a superfície das folhas e frutos das plantas. Uma realização da invenção é que a composição seja aplicada a partir dos primeiros estádios vegetativos das plantas, repetindo o tratamento em intervalos de 05 a 30 dias, à medida que a espécie de planta alvo produz novas folhas e/ou cresce em volume de biomassa total que se torna novamente sujeita aos danos da radiação ultravioleta e/ou há indícios de que os alvos bióticos vão ocorrer. [0065] With regard to the aforementioned methods, the aqueous suspension for spraying said composition, regardless of the presentation formulation, can be applied on cultivated plants by means of typical spray equipment used in crops, with spray nozzles of liquids commonly determined to obtain fine droplets that adequately cover the surface of the leaves and fruits of the plants. An embodiment of the invention is that the composition is applied from the first vegetative stages of the plants, repeating the treatment at intervals of 05 to 30 days, as the target plant species produces new leaves and/or grows in volume of total biomass. that again becomes subject to damage from ultraviolet radiation and/or there are indications that biotic targets will occur.
[0066] As plantas cultivadas definidas sob a presente invenção são aquelas de importância agrícola, económica ou ornamentais, anuais ou perenes. Exemplos de plantas cultivadas incluem, de forma não limitativa: soja, milho, feijão, arroz, algodão, cana-de-açúcar, trigo, café, cacau, citrus, videira, eucalipto, cacau, batata, alface, entre outros. [0066] The cultivated plants defined under the present invention are those of agricultural, economic or ornamental importance, annual or perennial. Examples of cultivated plants include, without limitation: soy, corn, beans, rice, cotton, sugar cane, wheat, coffee, cocoa, citrus, vine, eucalyptus, cocoa, potato, lettuce, among others.
[0067] A seguir são apresentados exemplos com resultados experimentais obtidos com o uso da referida invenção no que se refere aos estresses abióticos causados pela radicação ultravioleta. [0067] The following are examples with experimental results obtained with the use of said invention with regard to abiotic stresses caused by ultraviolet radiation.
[0068] Uma vez que o conhecimento sobre os danos de radiação ultravioleta sobre plantas é recente, não se encontra no meio científico uma escala diagramática padronizada ilustrativa dos danos visuais propiciados pela radiação ultravioleta, e menos ainda para UV-B e UV-A. Por isto, como parte dos estudos de onde se se extraem alguns dos exemplos apresentados, foi estabelecida uma escala de 1 a 5 (1= sem danos a 5 = máximo dano com praticamente destruição da folha), que está apresentada ilustrativamente na figura 1, a qual baliza as notas de “Dano Visual de Estresse” nos exemplos apresentados. [0068] Since the knowledge about the damage of ultraviolet radiation on plants is recent, there is no standardized diagrammatic scale illustrative of the visual damage caused by ultraviolet radiation in the scientific environment, and even less for UV-B and UV-A. For this reason, as part of the studies from which some of the examples presented are extracted, a scale from 1 to 5 was established (1= no damage to 5 = maximum damage with practically destruction of the leaf), which is illustratively presented in figure 1, which marks the notes of “Visual Stress Damage” in the examples presented.
[0069] As doses de radiação ultravioleta (R-UV) ou para suas faixas UV-B e/ou UV- A, utilizadas nos estudos exemplificados, são dadas em kJoules/m2/dia para os ensaios com radicação ultravioleta controlada em casa de vegetação e, para ensaios no ambiente a campo, em IUV (índices UV). Para ensaios com radicação ultravioleta controlada estabeleceu-se uma dose fixa referência como parâmetro, uma vez que no ambiente a dose diária de radicação ultravioleta que atinge as plantas na superfície terrestre é variável: pela latitude, altitude, época do ano, horário do dia e pelas variações nos aerossóis na atmosfera. Assim, como referência das doses de radicação ultravioleta que podem ocorrer sobre plantas cultivadas a campo em pleno verão para as regiões Sudeste e Centro Oeste do Brasil, foram estimados os valores de 1040 kJ/m2/dia, sendo composta por 1012 kJ/m2/dia de UV-A e 28 kJ/m2/dia de UV-B. A estimativa parte do cálculo que considera a Irradiação Global Horizontal para o mês de janeiro e região agrícola Sudeste e Centro Oeste do Brasil, sendo em média 5500 Wh/m2/dia, ou 18,9 MJ/m2/dia, segundo os dados publicados pelo INPE (Instituto Nacional de Pesquisa Espaciais do Brasil (Atlas brasileiro de energia solar. 2.ed. - São José dos Campos: INPE, 2017. Cap.8, pp 35-41. Em URL). Ainda segundo o INPE (vide URL http://satelite.cptec.inpe.br/uv/) a fração de radicação ultravioleta desta irradiação é da ordem de 7%, ou seja, 1386 kJ/m2/dia, a qual é a radicação ultravioleta máxima que ainda é atenuada pelos elementos na atmosfera até efetivamente atingir as folhas das plantas. A análise dos gráficos de índice UV (IUV) publicados diariamente pelo mesmo INPE, com medições a cada 15 minutos do IUV máximo e IUV atenuado, mostra que em média, para o mês de janeiro, nesta região, ocorre uma atenuação de 25% do IUV, que resulta finalmente em 1040 kJ/m2/dia de radicação ultravioleta sobre as plantas a qual está corroborada no âmbito dos dados tomados durante cinco anos para o mês e região, publicado por Escobedo, J.F. e colaboradores em 2008 (Variações mensais das frações solares UV, PAR e IV da Radiação Global em Botucatu. II Congresso Brasileiro de Energia Solar e III Conferência Regional Latino-Americana da ISES - Florianópolis, 18 a 21 de novembro de 2008). Para a estimativa das frações UV-B e UV-A nesta dose total R-UV encontrada, tal foi dividida conforme os índices percentuais variáveis ao longo do dia, publicados por Marcelo Corrêa ( Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America. Anais de Dermatologia 2015;90(3):297-313), cujos cálculos mostraram nesta situação de mês e região que a fração UV-B é da ordem de 2,67% da dose de radicação ultravioleta diária, ou seja 28 kJ/m2/dia e o restante 1012 kJ/m2/dia sendo de UV-A. Assim, para os estudos realizados em condições controladas de casa de vegetação, as doses de radicação ultravioleta foram geradas com lâmpadas especiais e o ajuste da dose feito pelo tempo de exposição e distância entre lâmpada e planta alvo, calibrado com o medidor de radiação ultravioleta INSTRUTHERM MRU-201, o qual executa leitura da radiação dentro do espectro de 290 a 390nm na escala de pW/cm2, enquanto que para os estudos a campo, foram tomados os dados publicados diariamente pelo IN PE para estimar as doses incidentes no experimento [0069] The doses of ultraviolet radiation (R-UV) or for its UV-B and/or UV-A ranges, used in the exemplified studies, are given in kJoules/m 2 /day for the tests with controlled ultraviolet radiation in a greenhouse and, for tests in the field environment, in IUV (UV indices). For tests with controlled ultraviolet radiation, a fixed reference dose was established as a parameter, since in the environment the daily dose of ultraviolet radiation that reaches plants on the earth's surface is variable: by latitude, altitude, time of year, time of day and by variations in aerosols in the atmosphere. Thus, as a reference for the doses of ultraviolet radiation that can occur on plants grown in the field in midsummer for the Southeast and Midwest regions of Brazil, values of 1040 kJ/m 2 /day were estimated, comprising 1012 kJ/m 2 /day of UV-A and 28 kJ/m 2 /day of UV-B. The estimate is based on the calculation that considers the Horizontal Global Irradiation for the month of January and the Southeast and Midwest agricultural regions of Brazil, with an average of 5500 Wh/m 2 /day, or 18.9 MJ/m 2 /day, according to the data published by INPE (National Institute for Space Research in Brazil (Brazilian atlas of solar energy. 2nd ed. - São José dos Campos: INPE, 2017. Cap.8, pp. 35-41. In URL). Also according to INPE (see URL http://satelite.cptec.inpe.br/uv/) the ultraviolet radiation fraction of this irradiation is of the order of 7%, that is, 1386 kJ/m 2 /day, which is the maximum ultraviolet radiation which is still attenuated by the elements in the atmosphere until it effectively reaches the leaves of the plants. The analysis of the UV index (UVI) graphs published daily by the same INPE, with measurements every 15 minutes of the maximum UVI and attenuated UVI, shows that, on average, for the month of January, in this region, there is an attenuation of 25% of the UVI, which finally results in 1040 kJ/m 2 /day of ultraviolet radiation. eta on plants, which is corroborated within the scope of data taken over five years for the month and region, published by Escobedo, JF and collaborators in 2008 (Monthly variations of UV, PAR and IV solar fractions of Global Radiation in Botucatu. II Brazilian Solar Energy Congress and III ISES Latin American Regional Conference - Florianópolis, November 18 to 21, 2008). To estimate the UV-B and UV-A fractions in this total R-UV dose found, this was divided according to the percentage rates that vary throughout the day, published by Marcelo Corrêa ( Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America. Anais de Dermatologia 2015;90(3):297-313), whose calculations showed in this situation of month and region that the UV-B fraction is around 2.67% of the dose of daily ultraviolet radiation, ie 28 kJ/m 2 /day and the remaining 1012 kJ/m 2 /day being UV-A. Thus, for the studies carried out under controlled conditions in a greenhouse, the doses of ultraviolet radiation were generated with special lamps and the dose adjustment was made by the exposure time and distance between the lamp and the target plant, calibrated with the INSTRUTHERM ultraviolet radiation meter. MRU-201, which performs radiation reading within the spectrum from 290 to 390nm on the pW/cm 2 scale, while for field studies, data published daily by IN PE were taken to estimate the incident doses in the experiment
[0070] Para execução dos experimentos utilizou-se plantas de soja [Glycine max (L.) Merrill] do cultivar NA5909RG de ampla adaptação, cultivadas em vasos e nutridas via ferti-irrigação diária com suprimento completo de macro e micro nutrientes solúveis segundo a necessidade estabelecida na “marcha de absorção de nutrientes pela soja” publicada pela EMBRAPA. As plantas foram cultivadas sob ambiente controlado de casa de vegetação protegido por plástico GINEGAR de 150 micra com filtro UV, que permite a transmitância e difusão da luz PAR mas impede a transmitância da radiação ultravioleta (R-UV), confirmado pela mensuração da radicação ultravioleta com o leitor INSTRUTHERM MRU-201, que registrou no ambiente externo à casa de vegetação picos de 6200 pW/cm2 enquanto sob a casa de vegetação registrou valores de 20 pW/cm2 e à sombra de apenas 5 pW/cm2. A radicação ultravioleta controlada foi fornecida com lâmpadas especiais conforme o experimento: a radiação UV-B pura foi obtida com a lâmpada Philips TL 40W/12S; a radiação UV-A pura obtida com a lâmpada Philips TL-K 40W/10-R; a irradiância para todo o espectro solar (UV-A, UV-B, PAR e IR) a partir da lâmpada Osram Vitalux 300W e, ainda, em algum estudo a lâmpada REPTO LUX PRO 10.0 que propicia radiação UV-A e UV-B. O cultivo com e sem radiação ultravioleta se deu sob o mesmo ambiente de casa de vegetação, utilizando cortina separadora com o mesmo plástico com filtro UV para excluir a radiação UV-A e/ou UV-B sobre tratamentos controle, e assim isolando outros fatores ambientais que pudessem interferir nos resultados. [0070] For the execution of the experiments, soybean plants [Glycine max (L.) Merrill] of the cultivar NA5909RG of wide adaptation were used, cultivated in pots and nourished via daily ferti-irrigation with a complete supply of soluble macro and micro nutrients according to the need established in the “March of Nutrient Absorption by Soybean” published by EMBRAPA. The plants were grown under a controlled environment in a greenhouse protected by 150 micron GINEGAR plastic with a UV filter, which allows the transmittance and diffusion of PAR light but prevents the transmittance of ultraviolet radiation (R-UV), confirmed by the measurement of ultraviolet radiation. with the INSTRUTHERM MRU-201 reader, which recorded peaks of 6200 pW/cm 2 outside the greenhouse, while under the greenhouse it recorded values of 20 pW/cm 2 and only 5 pW/cm 2 in the shade. Controlled ultraviolet radiation was provided with special lamps according to the experiment: pure UV-B radiation was obtained with a Philips TL 40W/12S lamp; the pure UV-A radiation obtained with the Philips TL-K 40W/10-R lamp; irradiance for the entire solar spectrum (UV-A, UV-B, PAR and IR) from the Osram Vitalux 300W lamp and, in some study, the REPTO LUX PRO 10.0 lamp that provides UV-A and UV-B radiation . The cultivation with and without ultraviolet radiation took place under the same greenhouse environment, using the same plastic separator curtain with UV filter to exclude UV-A and/or UV-B radiation on control treatments, and thus isolating other factors. environmental factors that could interfere with the results.
[0071] Para a execução dos estudos, a composição sob a invenção foi formulada sob alternativas de ingredientes, concentração, codificação e formulação. Para melhor entendimento dos Exemplos, as alternativas com a composição sob a invenção são adiante apresentadas como COMP01-04 e os produtos da arte como REF(n), detalhados em suas características na Tabela 1 a seguir. [0071] For the execution of the studies, the composition under the invention was formulated under alternative ingredients, concentration, coding and formulation. For the best Understanding the Examples, the alternatives with the composition under the invention are presented below as COMP01-04 and the products of the art as REF(n), detailed in their characteristics in Table 1 below.
Tabela 1: Códigos, composição e formulação dos produtos testados
Figure imgf000028_0001
Table 1: Codes, composition and formulation of tested products
Figure imgf000028_0001
[0072] Na Tabela 1 acima, nas COMP01, COMP02, COMP03 e COMP04, o S1O2 é Cristalino e insolúvel com >99,0% de pureza em micropartículas cuja dimensão segundo laudos analíticos se situam entre 2 a 71 pm; o ZnO é insolúvel com >99,5% de pureza em micropartículas cuja dimensão segundo laudos analíticos se situam entre 0,9 a 18pm. A COMP02 é uma Suspensão Concentrada dos elementos auxiliada, na formulação de 1000 ml, por 67 ml de óleo mineral parafínico, 2 ml de surfactante não iônico e 877 ml de água destilada. A COMP03 é uma Suspensão Concentrada dos elementos auxiliada, na formulação de 1000 ml, por 20 ml de óleo vegetal; 20 gr de surfactante aniônico; 8 ml de surfactante não iônico e 700 ml de água destilada. [0073] Os exemplos apresentados a seguir evidenciam a invenção com base em dados experimentais, mas não devem servir como limitantes ao escopo da mesma. [0072] In Table 1 above, in COMP01, COMP02, COMP03 and COMP04, S1O2 is Crystalline and insoluble with >99.0% purity in microparticles whose dimensions according to analytical reports are between 2 to 71 pm; ZnO is insoluble with >99.5% purity in microparticles whose size according to analytical reports is between 0.9 to 18pm. COMP02 is a Concentrated Suspension of the elements aided, in the formulation of 1000 ml, by 67 ml of paraffinic mineral oil, 2 ml of non-ionic surfactant and 877 ml of distilled water. COMP03 is a Concentrated Suspension of the elements assisted, in the formulation of 1000 ml, by 20 ml of vegetable oil; 20 g of anionic surfactant; 8 ml of non-ionic surfactant and 700 ml of distilled water. [0073] The examples presented below demonstrate the invention based on experimental data, but should not serve as limitations to its scope.
Exemplo 01 Example 01
[0074] Plantas de soja foram cultivadas sem exposição à radiação ultravioleta (controle negativo) e sob a exposição à radiação UV-A mais UV-B sem tratamento protetor (controle positivo) ou com tratamentos protetores (alternativas). Sob a invenção revelada, foi testada a referida composição sob a fórmula COMP01, bem como os componentes isolados da mesma (SÍO2 cristalino insolúvel, correspondente a COMP04, e ZnO insolúvel). Para equivalência, as doses dos tratamentos contendo Silício foram ajustadas entre os produtos para a 140 gramas/hectare deste elemento. A dose de ZnO relativa ao S1O2 foi estabelecida na proporção de 25%:75% respectivamente. Uma vez que no estado da técnica existe referência ao Silício solúvel como atenuador dos estresses causados pela radiação ultravioleta, foram adotados como referência de verificação duas fontes solúveis do elemento: o Silicato de Potássio (forma mais comumente utilizada na nutrição foliar, a partir de fertilizante foliar SC comercial disponível no mercado, SIFOL®), como REF01, e o Ácido Silícico (forma que é a prontamente absorvível pela planta, a partir de fertilizante foliar comercial disponível no mercado, SIFOL POWDER®), como REF02. As plantas foram tratadas por pulverização entre os estádios de 2 trifólios (V2) até 5 trifólios (V5) em intervalos de 5 dias e foram irradiadas por 14 dias com doses equivalentes a 38 kJ/m2/dia de radiação UV-B mais 1376 kJ/m2/dia de radiação UV-A, a partir de 24 horas do primeiro tratamento até 24 horas após o último tratamento e foram avaliadas no início da fase reprodutiva (R1), cujos dados são apresentados na tabela 2. Foram avaliados os danos às folhas sob o estresse conforme a escala dada na figura 1; o impacto no desenvolvimento da parte aérea da planta pela medição da área foliar total por planta e pelo peso do conjunto de folhas de cada planta; pela mensuração do desenvolvimento das raízes por três meios (o peso seco, o volume espacial e a capacidade de retenção de água uma vez reidratadas). As avaliações são uma média de 3 repetições (1 planta = 1 repetição). [0074] Soybean plants were grown without exposure to ultraviolet radiation (negative control) and under exposure to UV-A plus UV-B radiation without protective treatment (positive control) or with protective treatments (alternatives). Under the disclosed invention, said composition was tested under the formula COMP01, as well as the isolated components thereof (insoluble crystalline SiO2, corresponding to COMP04, and insoluble ZnO). For equivalence, doses of treatments containing Silicon were adjusted between products to 140 grams/hectare of this element. The dose of ZnO relative to S1O2 was established in the proportion of 25%:75% respectively. Since in the state of the art there is a reference to soluble silicon as an attenuator of the stresses caused by ultraviolet radiation, two soluble sources of the element were adopted as a verification reference: Potassium Silicate (the form most commonly used in foliar nutrition, from fertilizer commercially available SC foliar fertilizer, SIFOL®), as REF01, and Silicic Acid (the form that is readily absorbable by the plant, from commercially available commercial foliar fertilizer, SIFOL POWDER®), as REF02. The plants were spray treated between the stages of 2 trifoliate (V2) to 5 trifoliate (V5) at 5-day intervals and were irradiated for 14 days with doses equivalent to 38 kJ/m 2 /day of UV-B radiation plus 1376 kJ/m 2 /day of UV-A radiation, from 24 hours after the first treatment to 24 hours after the last treatment and were evaluated at the beginning of the reproductive phase (R1), whose data are presented in table 2. damage to leaves under stress as per the scale given in figure 1; the impact on the development of the aerial part of the plant by measuring the total leaf area per plant and the weight of the set of leaves of each plant; by measuring root development by three means (dry weight, spatial volume and water holding capacity once rehydrated). Ratings are an average of 3 replicates (1 plant = 1 replicate).
Tabela 2: Resposta de plantas de soja [Glycine max (L.) Merrill] ao estresse de radiação ultravioleta, UV-A mais UV-B, quanto aos danos foliares, seu desenvolvimento vegetativo e radicular, sob as alternativas testadas. Table 2: Response of soybean plants [Glycine max (L.) Merrill] to the stress of ultraviolet radiation, UV-A plus UV-B, regarding leaf damage, its vegetative development and root, under the tested alternatives.
Tabela 2
Figure imgf000030_0001
Table 2
Figure imgf000030_0001
[0075] Como se observa na Tabela 2, comparando o tratamento 2 sobre o tratamento 1 , a radiação ultravioleta impactou negativamente em 35% os aspectos de desenvolvimento de parte aérea e em 50% os aspectos relativos à raiz. No estado da técnica, embora já exista suspeita de que as raízes sejam indiretamente prejudicadas pela radiação ultravioleta, raros são os estudos específicos neste sentido; e este experimento vem demonstrar isto. Observa-se então que os elementos da composição da referida invenção atuam de forma eficaz, isoladamente (tratamento 5 e 6) e especialmente em conjunto (tratamento 7), para atenuar pela metade ou mais os danos na parte aérea e totalmente os danos ao sistema radicular. A composição tem ainda desempenho nitidamente superior aos tratamentos utilizados a partir de referências previas (tratamento 3 e 4). [0075] As seen in Table 2, comparing treatment 2 to treatment 1, ultraviolet radiation negatively impacted aspects of shoot development by 35% and aspects related to the root in 50%. In the state of the art, although there is already a suspicion that the roots are indirectly harmed by ultraviolet radiation, specific studies in this sense are rare; and this experiment demonstrates this. It is then observed that the elements of the composition of said invention act effectively, alone (treatment 5 and 6) and especially together (treatment 7), to mitigate by half or more the damage to the shoot and completely the damage to the system. root. The composition also has a clearly superior performance to the treatments used from previous references (treatment 3 and 4).
Exemplo 02 Example 02
[0076] Neste estudo plantas da alface da cultivar Romana ( Lactuca sativa variedade longifolia) foram utilizadas para avaliar a proteção ao estresse por radiação ultravioleta. Esta espécie foi escolhida pela alta sensibilidade uma vez que possui folhas de epiderme delicada e de coloração verde intensa (clorofila). Sob a invenção revelada, foi testada a referida composição, sob a formulação COMP01, bem como os seus componentes isolados (S1O2 cristalino insolúvel, correspondente a COMP04, e ZnO insolúvel, ambos na dimensão de micropartículas). Dado que no estado da técnica há referência ao uso de partículas nanométricas de óxidos metálicos, obtidas por alta temperatura (pirogênica), para atenuar a radiação ultravioleta em plantas, a Sílica Pirogênica ( Fumed Silica ) foi colocada como uma referência (REF03). Todos os tratamentos foram igualados para uma solução de 2 gramas/litro das alternativas, nas quais plântulas em vaso da Alface (de aproximadamente 5 cm de altura) foram mergulhadas por 3 segundos e postas a secar. Na sequência as plântulas foram cultivadas nos vasos, em semi-hidroponia, à sombra e sob a dose média diária de 28 kJ radiação U-VB mais 128 kJ radiação ultravioleta U-VA por quatro dias, propiciada pela lâmpada Osram Vitalux 300W, exceto o tratamento 1 que foi mantido protegido da radiação UV e sob luz indireta do sol. No quinto dia as folhas das plantas foram extraídas e avaliadas. O estresse causado pela radiação ultravioleta foi avaliado com notas para Clorose (escala de 1 a 5, onde 1 = totalmente verde a 5 = totalmente amarelo) e necroses (escala de 1 a 5, onde 1 = sem feridas e 5 = feridas distribuídas por toda a área foliar). A figura 3 do anexo ilustra alguns exemplos. As folhas foram ainda fotografadas sobre escalímetro e mensuradas em seu tamanho quanto a área foliar. Os dados são apresentados na tabela 3. [0076] In this study, lettuce plants of the Romana cultivar (Lactuca sativa variety longifolia) were used to evaluate the protection to stress by ultraviolet radiation. This species was chosen for its high sensitivity as it has leaves with a delicate epidermis and an intense green color (chlorophyll). Under the disclosed invention, said composition was tested, under the formulation COMP01, as well as its isolated components (insoluble crystalline S1O2, corresponding to COMP04, and insoluble ZnO, both in the microparticle dimension). Given that in the state of the art there is reference to the use of nanometric particles of metallic oxides, obtained by high temperature (pyrogenic), to attenuate ultraviolet radiation in plants, Fumed Silica (Fumed Silica) was placed as a reference (REF03). All treatments were matched to a 2 grams/liter solution of the alternatives, in which lettuce potted seedlings (approximately 5 cm high) were immersed for 3 seconds and allowed to dry. The seedlings were then cultivated in the pots, in semi-hydroponics, in the shade and under the average daily dose of 28 kJ U-VB radiation plus 128 kJ U-VA ultraviolet radiation for four days, provided by the Osram Vitalux 300W lamp, except for the treatment 1 that was kept protected from UV radiation and under indirect sunlight. On the fifth day, the leaves of the plants were extracted and evaluated. The stress caused by ultraviolet radiation was evaluated with scores for Chlorosis (scale from 1 to 5, where 1 = totally green to 5 = totally yellow) and necrosis (scale from 1 to 5, where 1 = no wounds and 5 = wounds distributed by entire leaf area). Figure 3 in the annex illustrates some examples. The leaves were also photographed on a scalemeter and measured in terms of their size and leaf area. The data are presented in table 3.
Tabela 3: Resposta de plantas de alface romana ( Lactuca sativa variedade longifolia) ao estresse de radiação UV-A e UV-B e seu desenvolvimento vegetativo sob as alternativas testadas. Table 3: Response of romaine lettuce plants (Lactuca sativa variety longifolia) to UV-A and UV-B radiation stress and their vegetative development under the tested alternatives.
Tabela 3
Figure imgf000031_0001
Figure imgf000031_0002
e folhas totalmente amarelas, com mínima clorofila.
Figure imgf000032_0001
Table 3
Figure imgf000031_0001
Figure imgf000031_0002
and totally yellow leaves, with minimal chlorophyll.
Figure imgf000032_0001
[0077] Como se observa acima, nos aspectos de clorose e necrose, a radiação ultravioleta causou danos de 50% (escala de 1 a 5) nas plantas sem proteção (tratamento 2 relativo ao tratamento 1). Observa-se que os elementos da composição da referida invenção atuam de forma eficaz em reduzir os danos de estresse, tanto isoladamente (tratamentos 4 e 5 versus tratamento 2) como em conjunto (tratamento 6) e neste caso apresentando sinergia, para atenuar quase que totalmente os danos visíveis nas folhas. Quanto ao desenvolvimento da biomassa, os tratamentos com os elementos da composição isolados (tratamentos 4 e 5) mantiveram desenvolvimento superior ao controle positivo (2) enquanto sob a composição (tratamento 6) as plantas superaram todos os demais tratamentos. A superioridade do tratamento 6 relativo ao Tratamento 1 (sem radiação ultravioleta) é explicada pelo fato da lâmpada no estudo irradiar também a frequência PAR. A composição apresentou desempenho nitidamente superior ao tratamento utilizado a partir de referências previas (tratamento 3) como aquelas dadas no pedido de patente WO 2007/014826 A3, que envolve nano partículas de Sílica amorfa, o qual nestas condições extremas de radiação ultravioleta não propiciou uma proteção razoável para evitar necroses ou para permitir um normal desenvolvimento das folhas. Exemplo 03 [0077] As noted above, in the aspects of chlorosis and necrosis, ultraviolet radiation caused 50% damage (scale from 1 to 5) in plants without protection (treatment 2 relative to treatment 1). It is observed that the elements of the composition of the said invention act effectively to reduce stress damage, both alone (treatments 4 and 5 versus treatment 2) and together (treatment 6) and in this case presenting synergy, to attenuate almost fully visible damage to the leaves. As for the biomass development, the treatments with the elements of the composition isolated (treatments 4 and 5) maintained development superior to the positive control (2) while under the composition (treatment 6) the plants surpassed all the other treatments. The superiority of Treatment 6 over Treatment 1 (without ultraviolet radiation) is explained by the fact that the lamp in the study also radiates the PAR frequency. The composition showed clearly superior performance to the treatment used from previous references (treatment 3) such as those given in patent application WO 2007/014826 A3, which involves nanoparticles of amorphous silica, which in these extreme conditions of ultraviolet radiation did not provide a reasonable protection to avoid necrosis or to allow normal leaf development. Example 03
[0078] O estudo neste exemplo avaliou o desempenho de composição sob a invenção sob diferentes níveis de radiação UV-B. O componente UV-B da radicação ultravioleta foi o adotado neste experimento por ser considerado por muitos estudiosos como o mais danoso ou eritematoso. A espécie de planta cultivada em objeto foi a Soja [Glycine max (L.) Merrill]. Em ambiente controlado de estufa, um grupo de vasos foi mantido em isolamento da radiação UV-B e outro grupo teve os vasos posicionados em plataformas com diferentes proximidades à lâmpada geradora da radiação UV-B (ajustadas seguindo as medições de intensidade com o medidor Instrutherm MRU-201). Assim, foi propiciado níveis de radiação UV-B de 0, de 38 e de 55 kJoules/m2/dia durante 14 dias, entre os estádios V2 até V5 (de dois até cinco trifólios). Em cada nível de radiação foram utilizados 2 vasos, um SEM aplicação foliar da referida composição e outro COM a aplicação. Em cada vaso foram cultivadas 3 plantas, senda cada planta avaliada como uma repetição. Sob a invenção revelada, foi testada a referida composição sob a fórmula COMP01, com aspersão de uma suspensão contendo 4,0 gramas por litro de água destilada, mais um tensoativo não iônico em dose recomendada de bula (0,5 ml/litro) para adequado espalhamento de gotículas. Os vasos com aplicação receberam a pulverização da composição sob a invenção a cada 5 dias, a partir de 24 horas antes do início da radiação. As plantas foram avaliadas quanto ao estresse sobre planta inteira aos 5, 8 e 14 dias após o fim do período sob a radiação, seguindo a escala dada na figura 1 do anexo, produzindo um dado médio por repetição de três leituras. Além disso, na sequência da avaliação aos 14 dias após a suspensão da radiação, as folhas foram extraídas e fotografadas e avaliadas individualmente (Folíolos Individuais, como ilustrados na figura 3 do anexo), sob a citada escala, gerando uma leitura ainda mais precisa dos danos causados pelo estresse. Em complemento, como a literatura reporta que a radiação UV-B impacta negativamente a dimensão das folhas, os folíolos dos trifólios 3 e 4 (que no momento eram aqueles totalmente expandidos e maduros) foram individualmente medidos (em cm2) e calculada sua média para cada repetição. Finalmente, o volume de raiz de cada planta, de cada repetição, foi medido por dois meios: em peso seco e em volume (deslocamento de água após a imediata imersão). Os dados são apresentados na Tabela 4. [0078] The study in this example evaluated the composition performance under the invention under different levels of UV-B radiation. The UV-B component of ultraviolet radiation was adopted in this experiment because it is considered by many scholars as the most harmful or erythematous. The object cultivated plant species was Soybean [Glycine max (L.) Merrill]. In a controlled greenhouse environment, a group of vessels was kept in isolation from UV-B radiation and another group had the vessels positioned on platforms with different proximity to the lamp generating the UV-B radiation (adjusted following the intensity measurements with the Instrutherm meter. MRU-201). Thus, UV-B radiation levels of 0, 38 and 55 kJoules/m 2 /day were provided for 14 days, between stages V2 to V5 (from two to five trefoils). At each radiation level, 2 pots were used, one WITHOUT foliar application of said composition and another WITH application. In each pot, 3 plants were grown, with each plant being evaluated as a repetition. Under the disclosed invention, the aforementioned composition was tested under the formula COMP01, with a suspension containing 4.0 grams per liter of distilled water, plus a non-ionic surfactant in the recommended dose of the package insert (0.5 ml/liter) for adequate droplet scattering. The pots with application received the spraying of the composition under the invention every 5 days, starting 24 hours before the start of the radiation. The plants were evaluated for stress on the whole plant at 5, 8 and 14 days after the end of the period under radiation, following the scale given in figure 1 of the annex, producing an average data by repetition of three readings. In addition, following the evaluation at 14 days after the suspension of radiation, the leaves were extracted and photographed and evaluated individually (Individual Leaflets, as illustrated in figure 3 of the annex), under the aforementioned scale, generating an even more accurate reading of the damage caused by stress. In addition, as the literature reports that UV-B radiation negatively impacts leaf size, the leaflets of trifoliates 3 and 4 (which at the time were fully expanded and mature) were individually measured (in cm 2 ) and averaged for each repetition. Finally, the root volume of each plant, of each repetition, was measured by two means: in dry weight and in volume (displacement of water after immediate immersion). The data are presented in Table 4.
Tabela 4: Resposta de plantas de soja [Glycine max (L.) Merrill] à exposição sob diferentes doses de radiação UV-B, com e sem aplicação da composição (4,0 g/litro da COMP01) para sua proteção, quanto ao dano foliar pelo estresse (clorose, necrose, má formação), ao desenvolvimento vegetativo (folhas) e radicular (raízes) sob as alternativas testadas. Table 4: Response of soybean plants [Glycine max (L.) Merrill] to exposure under different doses of UV-B radiation, with and without application of the composition (4.0 g/liter of COMP01) for its protection, regarding the leaf damage by stress (chlorosis, necrosis, malformation), to vegetative (leaves) and root (roots) development under the tested alternatives.
Tabela 4
Figure imgf000033_0001
Figure imgf000034_0001
Table 4
Figure imgf000033_0001
Figure imgf000034_0001
[0079] Os níveis de dose da radiação UV-B neste exemplo são desafiadores, pois representam +50% a +100% aquele tomado como referência para cultivo a pleno verão. Os danos causados pela radiação UV-B nos tratamentos desafios (tratamento 3 e 5 (sob radiação UV-B e não aplicados) comparados ao tratamento 1 (controle, sem radiação UV- B e não aplicado)) foram severos, da ordem de 35% a 48% de danos foliares, de -34% a -48% na dimensão das folhas e de -45% nas raízes. A composição (COMP01), conforme a invenção foi eficaz em atenuar em boa parte os crescentes danos na parte aérea e evitou integralmente os danos ao sistema radicular. [0079] The UV-B radiation dose levels in this example are challenging, as they represent +50% to +100% that taken as a reference for mid-summer cultivation. The damage caused by UV-B radiation in the challenge treatments (treatment 3 and 5 (under UV-B radiation and not applied) compared to treatment 1 (control, without UV-B radiation and not applied)) were severe, in the order of 35 % to 48% of leaf damage, from -34% to -48% in leaf size and from -45% to roots. The composition (COMP01), according to the invention, was effective in mitigating to a large extent the growing damage to the shoot and completely avoided damage to the root system.
[0080] Esclarece-se que o pequeno desvio no estresse (de 1 para 1 ,5 numa escala de 1 a 5) no tratamento 1 , das plantas não expostas à radiação UV-B, deve-se a um período de 30 horas em que os vasos não foram irrigados, que causaram sintomas nas folhas por déficit hídrico (os quais se parecem com aqueles causados pela radiação). Assim, supreendentemente, a composição da invenção, uma vez sobre as folhas, também atua beneficamente em preservar a água e turgência das folhas em situação de estresse hídrico. Exemplo 04 [0080] It is clarified that the small deviation in stress (from 1 to 1.5 on a scale of 1 to 5) in treatment 1, of plants not exposed to UV-B radiation, is due to a period of 30 hours in that the pots were not irrigated, which caused symptoms in the leaves due to water deficit (which resemble those caused by radiation). Thus, surprisingly, the composition of the invention, once on the leaves, also acts beneficially in preserving the water and turgor of the leaves in a situation of water stress. Example 04
[0081] O exemplo a seguir foi realizado em condições de lavoura a campo, com milho (Zea mays L.) no município de Holambra - SP, Brasil, Sitio Palha Grande. A semeadura foi realizada em 27 de novembro de 2019, com o cultivar híbrido PHI 3707 VYH em uma área 9 hectares, sendo a colheita em início de abril de 2020. A área tratada com a composição COMP03 sob a invenção, envolvendo uma parcela de 3 hectares em faixa central da área total e o restante de 6 hectares foi deixado sem tratamento e tomado como área controle. Os estádios de desenvolvimento do milho, bem como os momentos críticos de definição do seu potencial produtivo são de amplo consenso, como por exemplo nas publicações de lowa State University (Abendroth, L.J. et al, 2011. Corn Growth and Development. lowa State University. Em URL https://store.extension.iastate.edu/product/6065) ou da EMBRAPA (Magalhaes, P.C., Durães, F.O.M., 2006. Fisiologia da Produção do Milho. Embrapa Sete Lagoas. Circular Técnica 76), que identificam o período entre os estádios V3 (três folhas) e V8 (oito folhas) como de alta sensibilidade aos estresses, pois é quando toda a estrutura dos órgãos reprodutivos no interior do colmo já está diferenciada, acima da superfície do solo e sendo definida. Assim, neste experimento, a área teste foi objeto de duas aplicações com a composição sob a invenção, aos 19 e 25 dias após a emergência das plântulas germinadas, ou seja em V4 e V6, com a COMP03 na dose de 1 ,0 litro por hectare, suspenso em volume de água de 100 litros/ha. Os dados de índice UV foram registrados diariamente a partir da consulta ao INPE (em URL http://satelite.cptec.inpe.br/uv/) bem como os índices de precipitação pluviométrica junto ao INMET (Instituto Nacional de Meteorologia em URL http://www.inmet.gov.br/portal/) e, com a análise de ambos os dados foi qualificado um índice de estresse semanal sobre a área do experimento. A tabela 5 a seguir reúne estes dados o período das oito semanas iniciais de desenvolvimento da lavoura, o qual envolve o período vegetativo completo. [0081] The following example was carried out under field conditions, with corn (Zea mays L.) in the municipality of Holambra - SP, Brazil, Sitio Palha Grande. Sowing was carried out on November 27, 2019, with the hybrid cultivar PHI 3707 VYH in an area of 9 hectares, being harvested in early April 2020. The area treated with the composition COMP03 under the invention, involving a plot of 3 hectares in the central strip of the total area and the remaining 6 hectares were left untreated and taken as a control area. The stages of maize development, as well as the critical moments for defining its productive potential, are widely agreed, as for example in the publications of Iowa State University (Abendroth, LJ et al, 2011. Corn Growth and Development. Iowa State University. At URL https://store.extension.iastate.edu/product/6065) or from EMBRAPA (Magalhaes, PC, Durães, FOM, 2006. Physiology of Corn Production. Embrapa Sete Lagoas. Circular Technique 76), which identify the period between the V3 (three leaves) and V8 (eight leaves) stages as highly sensitive to stress, as it is when the entire structure of the organs reproductive plants inside the culm is already differentiated, above the soil surface and being defined. Thus, in this experiment, the test area was subjected to two applications with the composition under the invention, at 19 and 25 days after the emergence of germinated seedlings, that is, in V4 and V6, with COMP03 at a dose of 1.0 liter per hectare, suspended in a volume of water of 100 liters/ha. The UV index data were recorded daily from the INPE consultation (at URL http://satelite.cptec.inpe.br/uv/) as well as the rainfall index with INMET (National Institute of Meteorology at URL http ://www.inmet.gov.br/portal/) and, with the analysis of both data, a weekly stress index on the area of the experiment was qualified. Table 5 below gathers these data for the period of the initial eight weeks of crop development, which involves the complete vegetative period.
Tabela 5: Ciclo de desenvolvimento vegetativo da lavoura de milho sob o experimento, níveis e momentos de estresse resultantes e do tratamento protetivo. Table 5: Vegetative development cycle of the corn crop under the experiment, resulting stress levels and moments and the protective treatment.
Tabela 5
Figure imgf000035_0001
Table 5
Figure imgf000035_0001
[0082] A colheita de toda as parcelas, com colheitadeira, resultou em produtividade de 8040 kg/ha na área controle e de 9060 kg/ha na área tratada, ou seja, um aumento de 12,7%, resultado da proteção realizada aos estresses abióticos nos estádios mais sensíveis, coincidentes com elevada radiação UV alto e potencializada pelo déficit hídrico concomitante. Uma amostra de 10 espigas foi tomada ao acaso em cada área e avaliadas, resultando em 29 grãos por fileira na área controle e 35 na área tratada. Setenta dias após as aplicações, na semana N14, plantas inteiras foram sacadas de ambas áreas e feito registro fotográfico, no qual ainda se observa nitidamente a atenuação dos efeitos do estresse pelo uso da composição (figura 04 do anexo). A hipótese de que o resultado fosse efeito nutricional dos elementos da composição não se sustenta pois a Sílica da composição é inerte, bem como o Oxido de Zinco insolúvel em uso foliar. Neste sentido, o estudo de dois anos sobre nutrição de milho pela Fundação MS (Dirceu Luiz Broch e Sidnei Kuster Ranno, 2009. Tecnologia e Produção: Milho Safrinha e Culturas de Inverno 2009. Fundação MS) conclui que apenas a forma solúvel de Zinco e aplicado em elevadas doses de 300 gr/ha do elemento, propicia algum efeito na produtividade, variável entre zero e 240 kg/ha. Já para o Manganês é raro que o milho responda positivamente à nutrição foliar com o mesmo, como se verifica no amplo estudo de 2014 da Universidade de lowa (Antonio P. Mallarino, 2014. Corn and soybean yield responses to micronutrientes fertilization. 2014 Integrated Crop Management Conference - lowa State University) o qual em rede de 65 ensaios durante 2 anos, em 3 tipos de solos de pH e M.O (que podem gerar deficiência de Mn), mostrou que não há efeito na produtividade do milho pelo Manganês. [0082] The harvest of all plots, with a combine, resulted in productivity of 8040 kg/ha in the control area and 9060 kg/ha in the treated area, that is, an increase of 12.7%, as a result of the protection carried out to the abiotic stresses in the most sensitive stages, coincident with high UV radiation and potentiated by water deficit concomitant. A sample of 10 ears was randomly taken from each area and evaluated, resulting in 29 grains per row in the control area and 35 in the treated area. Seventy days after the applications, in week N14, whole plants were removed from both areas and a photographic record was made, in which the attenuation of the effects of stress by the use of the composition can still be clearly observed (figure 04 in the annex). The hypothesis that the result was a nutritional effect of the elements of the composition is not supported because the Silica of the composition is inert, as well as the insoluble Zinc Oxide in foliar use. In this sense, the two-year study on corn nutrition by the MS Foundation (Dirceu Luiz Broch and Sidnei Kuster Ranno, 2009. Technology and Production: Safrinha Corn and Winter Crops 2009. MS Foundation) concludes that only the soluble form of Zinc and applied at high doses of 300 g/ha of the element, it provides some effect on productivity, varying between zero and 240 kg/ha. As for manganese, it is rare for corn to respond positively to foliar nutrition with it, as seen in a large 2014 study by the University of Iowa (Antonio P. Mallarino, 2014. Corn and soybean yield responses to micronutrients fertilization. 2014 Integrated Crop Management Conference - Iowa State University) which in a network of 65 tests over 2 years, in 3 types of soils of pH and OM (which can generate Mn deficiency), showed that there is no effect on corn productivity by Manganese.
[0083] A seguir são apresentados exemplos com resultados experimentais obtidos com o uso da referida invenção no que se refere aos estresses bióticos potencializados ou não pela radicação ultravioleta. [0083] The following are examples with experimental results obtained with the use of said invention with regard to biotic stresses potentiated or not by ultraviolet radiation.
[0084] No campo de estresse biótico de relevância económica na agricultura, em regiões de alta incidência de radiação ultravioleta, o melhor exemplo envolve o fungo da Ferrugem Asiática da Soja ( Phakopsora pachyrhizi H. Sydow & P. Sydow), que causa perdas de 10% a 90% quando ocorre. No Brasil, um dos maiores produtores mundiais de soja, esta doença é particularmente limitante. Até o presente momento existia o consenso dos especialistas de que temperaturas elevadas e regime de chuvas favorável propiciariam a ocorrência e consequente severidade do fungo. Sob este consenso os pesquisadores da EMBRAPA liderados Guilherme A.S. Megeto, estudaram 12591 registros de ocorrência da doença sob 45 variáveis climáticas (situações previas de temperatura e precipitação) e publicaram em 2014 artigo propondo um modelo preditivo com 108 regras sob tais variáveis, o qual resulta em 78% de acerto para a ocorrência da doença (Árvore de decisão para classificação de ocorrências de ferrugem asiática em lavouras comerciais com base em variáveis meteorológicas. Eng. Agríc., Jaboticabal, v.34, n.3, p.590-599, maio/jun. 2014). [0084] In the field of biotic stress of economic relevance in agriculture, in regions of high incidence of ultraviolet radiation, the best example involves the Asian Soybean Rust fungus ( Phakopsora pachyrhizi H. Sydow & P. Sydow), which causes losses of 10% to 90% when it occurs. In Brazil, one of the world's largest soybean producers, this disease is particularly limiting. Until now, there was a consensus among specialists that high temperatures and a favorable rainfall regime would favor the occurrence and consequent severity of the fungus. Under this consensus, EMBRAPA researchers, led by Guilherme AS Megeto, studied 12,591 records of the occurrence of the disease under 45 climatic variables (previous situations of temperature and precipitation) and published in 2014 an article proposing a predictive model with 108 rules under such variables, which results in a 78% accuracy for the occurrence of the disease (Decision tree for classification of occurrences of Asian rust in commercial crops based on meteorological variables. Eng. Agríc., Jaboticabal, v.34, n.3, p.590-599, May/Jun. 2014).
[0085] Os autores da presente invenção, investigando os efeitos dos estresses causados pela radiação ultravioleta, consideraram a hipótese de que os danos causados por esta à planta pudessem fragiliza-la a ponto de permitir a instalação e maior severidade do fungo. A partir desta hipótese, foram analisados os dados diários de radiação ultravioleta gerados pelo INPE - Instituto Nacional de Pesquisas Espaciais (em http://satelite.cptec.inpe.br/uv/) sobre as zonas da América do Sul e, por outro lado, as ocorrências de focos da Ferrugem Asiática a Soja, nos mesmos períodos e zonas, publicados pelo Consórcio Anti-Ferrugem (em www.consorcioantiferrugem.net/#/main). Descobriu-se nesta investigação uma correlação surpreendentemente positiva. Para testar esta hipótese, foi realizado o estudo controlado, dado sob o exemplo 5 adiante. Exemplo 05 [0085] The authors of the present invention, investigating the effects of stresses caused by ultraviolet radiation, considered the hypothesis that the damage caused by this to the plant could weaken it to the point of allowing the installation and greater severity of the fungus. Based on this hypothesis, the daily data of ultraviolet radiation generated by INPE - National Institute for Space Research (at http://satelite.cptec.inpe.br/uv/) on the areas of South America and, on the other On the other hand, the occurrences of outbreaks from Asian Rust to Soybean, in the same periods and areas, published by the Anti-Rust Consortium (at www.consorcioantiferrugem.net/#/main). A surprisingly positive correlation was found in this investigation. To test this hypothesis, the controlled study, given under example 5 below, was carried out. Example 05
[0086] Plantas de soja foram cultivadas lado a lado sob três situações de exposição à radiação ultravioleta: (A) UV ambiente (plantas sob o sol), (B) UV artificial (UV-B+UV-A) e (C) sem UV. As plantas na situação (B) e (C) estiveram protegidas da radiação solar por filme plástico anti-UV, bem como para o isolamento adicional das plantas na situação (C). O estudo foi instalado em 22/02/2019, e no transcorrer dos 60 dias de cultivo das plantas as medições de radiação ultravioleta ambiente indicaram doses diárias médias de 24 kJoules/m2 de radiação UV-B e 889 k Joules/m2 de radiação UV-A. Para o ambiente controlado (B) a radiação artificial foi ajustada para produzir a dose de 25 k Joules/m2 de radiação UV-B e 907 k Joules/m2 de radiação UV-A durante 31 dias. Sob a invenção revelada, foi testada a referida composição sob as fórmulas anteriormente especificadas COMP01 e COMP02. No caso da segunda formula, existe a presença, adicional e opcional da composição sob a invenção, do elemento Manganês, o qual objetiva complementar no âmbito interno da folha as atenuações do estresse abiótico, desde o maquinário fisiológico celular como promotor de antioxidante. Na situação (B) as plantas foram sujeitas às doses de radiação ultravioleta desde o estádio V2 até R3 por 11 dias, seguido de intervalo de 5 dias e novamente por outros 20 dias. Os tratamentos com as fórmulas sob a referida composição foram aplicados 06 vezes neste período, a partir de 02 horas antes da exposição à radiação ultravioleta e depois a cada 5 dias de intervalo. As plantas foram sujeitas a duas inoculações com uredosporos do fungo (obtidos das regiões Sul e Sudeste do Brasil), a primeira aos 13 dias após iniciados os tratamentos e exposição à radicação ultravioleta e a segunda 12 dias após a primeira. Em cada inoculação a quantidade de inoculo foi elevada, a partir de folhas de soja sob intensa severidade (> 50%) e em esporulação, em quantidade de aproximadamente 20 folhas com inoculo para cada planta inoculada. Os uredosporos do fungo foram extraídos das folhas com pincel úmido de água destilada com tensoativo, juntados em etapas de volumes a cada 30 minutos e pulverizados repetidamente sobre todas as plantas. Aos 14 dias após a segunda inoculação os folíolos (folhas individuais de um trifólio) foram extraídos das plantas, em ordem do trifólio 1 ao trifólio 6, fotografadas na face superior (adaxial) e inferior (abaxial) e depois avaliadas em percentual de severidade para cada folíolo seguindo a Escala proposta em 2006 por Godoy et al ( Diagrammatic Scale for Assessment of Soybean Rust Severity. Fitopatol. Bras. 31(1), jan. - fev. 2006) conforme figura 5 do anexo. Para análise e apresentação dos dados da Ferrugem foram consideradas as severidades no intervalo dos trifólios 2 a 5, por serem os mais susceptíveis. Foram ainda avaliados os danos às folhas sob o estresse, conforme a escala dada na figura 1 do anexo, aos 12, 30 e 40 dias após iniciada a exposição à radiação ultravioleta e consolidadas por repetição; o impacto no desenvolvimento da parte aérea da planta pela medição da área foliar total por planta; pela mensuração do desenvolvimento das raízes quanto ao volume espacial e capacidade de retenção da água após reidratação. As avaliações são uma média de 3 repetições (1 planta = 1 repetição). Os resultados são apresentados na Tabela 6 a seguir. [0086] Soybean plants were grown side by side under three situations of exposure to ultraviolet radiation: (A) ambient UV (plants under the sun), (B) artificial UV (UV-B+UV-A) and (C) no UV. Plants in situation (B) and (C) were protected from solar radiation by anti-UV plastic film, as well as for additional isolation of plants in situation (C). The study was installed on 02/22/2019, and during the 60 days of plant cultivation, measurements of ambient ultraviolet radiation indicated average daily doses of 24 kJoules/m 2 of UV-B radiation and 889 k Joules/m 2 of UV-A radiation. For the controlled environment (B) the artificial radiation was adjusted to produce a dose of 25 k Joules/m 2 of UV-B radiation and 907 k Joules/m 2 of UV-A radiation for 31 days. Under the disclosed invention, said composition was tested under the above specified formulas COMP01 and COMP02. In the case of the second formula, there is the presence, additional and optional of the composition under the invention, of the element Manganese, which aims to complement within the leaf the attenuation of abiotic stress, from the cellular physiological machinery as an antioxidant promoter. In situation (B) the plants were subjected to doses of ultraviolet radiation from the V2 to R3 stage for 11 days, followed by an interval of 5 days and again for another 20 days. The treatments with the formulas under said composition were applied 06 times in this period, from 02 hours before exposure to ultraviolet radiation and then every 5 days apart. The plants were subjected to two inoculations with uredospores of the fungus (obtained from the South and Southeast regions of Brazil), the first at 13 days after starting treatments and exposure to ultraviolet radiation and the second 12 days after the first. In each inoculation, the amount of inoculum was increased, starting from soybean leaves under intense severity (> 50%) and in sporulation, in an amount of approximately 20 leaves with inoculum for each inoculated plant. The uredospores of the fungus were extracted from the leaves with a wet brush of distilled water with surfactant, added in steps of volumes every 30 minutes and sprayed repeatedly on all plants. At 14 days after the second inoculation, the leaflets (individual leaves of a trefoil) were extracted from the plants, in order from trefoil 1 to trefoil 6, photographed on the upper (adaxial) and lower (abaxial) faces and then evaluated in percentage of severity for each leaflet following the Scale proposed in 2006 by Godoy et al (Diagrammatic Scale for Assessment of Soybean Rust Severity. Fitopatol. Bras. 31(1), Jan. - Feb. 2006) according to figure 5 in the annex. For analysis and presentation of data from Ferrugem, the severities in the range of trefoils 2 to 5 were considered, as they are the most susceptible. The damage to leaves under stress was also evaluated, according to the scale given in figure 1 of the annex, at 12, 30 and 40 days after exposure to ultraviolet radiation began and consolidated by repetition; the impact on the development of the aerial part of the plant by measuring the total leaf area per plant; by measuring root development in terms of spatial volume and water retention capacity after rehydration. Ratings are an average of 3 replicates (1 plant = 1 replicate). The results are shown in Table 6 below.
Tabela 6: Efeito de fórmulas da composição sob a invenção sobre os estresses abióticos (danos a estrutura vegetativa e reprodutiva) e bióticos (fungo patogênico) da soja, sob radiação UV-B e UV-A) Table 6: Effect of formulas of the composition under the invention on abiotic (damage to vegetative and reproductive structure) and biotic (pathogenic fungus) stresses of soybean under UV-B and UV-A radiation)
Tabela 6
Figure imgf000039_0001
Table 6
Figure imgf000039_0001
[0087] Os impactos maiores na planta pela radiação solar ambiente (tratamento 1) comparado à artificial (tratamento 2) são esperados, uma vez que no ambiente incide a dose plena de raios em cada comprimento de onda do espectro (de 290 a 390nm), ao passo que as lâmpadas emulam raios em picos dentro da faixa, no caso da radiação UV- B em 305nm e a radiação UV-A) em 365nm. [0087] The greater impacts on the plant by ambient solar radiation (treatment 1) compared to the artificial one (treatment 2) are expected, since the full dose of rays at each wavelength of the spectrum (from 290 to 390nm) is expected in the environment. , while the lamps emulate rays at peaks within the range, in the case of UV-B radiation at 305nm and UV-A radiation at 365nm.
[0088] Os dados obtidos neste experimento apoiaram a hipótese dos autores da presente invenção, de que a intensidade e dose da radiação ultravioleta fragiliza e expõe mais a planta, no caso a soja, ao fungo da Ferrugem Asiática da Soja, o que é uma descoberta. No tratamento 1 sob radicação ultravioleta solar plena em todos os comprimentos de onda (290 a 400nm), observou-se severidade alta e comparável ao que ocorre em lavouras comerciais não tratadas com fungicidas. No tratamento 2, sob radicação ultravioleta artificial nos comprimentos de onda de 305nm (UV-B) e 365nm (U- VA), a severidade foi também elevada. Por outro lado, ao ter suprimido totalmente a radicação ultravioleta, mesmo sem tratamento contra o fungo, a severidade foi reduzida em 80% (tratamento 5 vs tratamento 1). Para este estresse biótico, que agora se demonstra relacionado à saúde da planta impactada pela radiação ultravioleta, o método de tratamento com a composição se mostrou efetivo em atenuar a severidade do fungo, tendo sido mais eficaz quanto maior foi seu efeito em proteger a planta dos danos abióticos (folhas, biomassa, raiz). Em outro aspecto, tal qual se encontra referenciado na literatura, o número de vagens (frutos) foi impactado negativamente pela radicação ultravioleta na ordem de 35% (tratamento 1 e 2 vs tratamento 5), sendo que o sob o método pelo uso da composição, especialmente com a formula utilizada no tratamento 4, as perdas na frutificação foram remediadas. [0088] The data obtained in this experiment supported the hypothesis of the authors of the present invention, that the intensity and dose of ultraviolet radiation weakens and exposes the plant more, in this case soybean, to the Asian Soybean Rust fungus, which is a discovery. In treatment 1 under full solar ultraviolet radiation at all wavelengths (290 to 400nm), high severity was observed, comparable to what occurs in commercial crops not treated with fungicides. In treatment 2, under artificial ultraviolet radiation at wavelengths of 305nm (UV-B) and 365nm (UV-VA), the severity was also high. On the other hand, having totally suppressed ultraviolet radiation, even without treatment against the fungus, the severity was reduced by 80% (treatment 5 vs treatment 1). For this biotic stress, which is now shown to be related to the health of the plant impacted by ultraviolet radiation, the treatment method with the composition proved to be effective in attenuating the severity of the fungus, having been more effective the greater its effect in protecting the plant from abiotic damage (leaves, biomass, root). In another aspect, as mentioned in the literature, the number of pods (fruits) was negatively impacted by ultraviolet radiation in the order of 35% (treatment 1 and 2 vs treatment 5), and under the method by using the composition , especially with the formula used in treatment 4, fruiting losses were remedied.
[0089] Os dados obtidos pelos autores desta invenção demonstram pela primeira vez a correlação entre a incidência de radiação ultravioleta e a severidade do fungo da Ferrugem Asiática da Soja, uma doença de grande importância nos países produtores, especialmente no Brasil. Em acordo com os dados na Tabela 6, o uso da composição reduziu a severidade da doença ao tempo que protegeu a planta hospedeira da radiação. Assim, uma realização sob a invenção é o método de atenuar a severidade da infecção pela Ferrugem Asiática da Soja, pela atenuação prévia dos danos da radiação ultravioleta, por meio de aplicação externa de protetores contra dita radiação com ou sem associação a tratamentos fungicidas específicos. [0089] The data obtained by the authors of this invention demonstrate for the first time the correlation between the incidence of ultraviolet radiation and the severity of the Asian Soybean Rust fungus, a disease of great importance in producing countries, especially in Brazil. In accordance with the data in Table 6, use of the composition reduced disease severity while protecting the host plant from radiation. Thus, an embodiment under the invention is the method of attenuating the severity of infection by Asian Soybean Rust, by prior attenuation of damage from ultraviolet radiation, by means of external application of protectors against said radiation with or without association with specific fungicide treatments.
[0090] Anualmente o Centro de Pesquisa de Soja da EMBRAPA publica os resultados de desempenho dos fungicidas para esta importante doença na cultura sojícola. Na publicação referente à safra 2018/19, por Godoy e colaboradores (Eficiência de fungicidas para o controle da ferrugem asiática da soja, ( Phakopsora pachyrhizi), na safra 2018/19. Embrapa Soja. Circular Técnica 148. Julho, 2019), um total de 13 produtos comerciais e 10 novos em fase de Registro foram avaliados em 25 experimentos de campo, cujos resultados foram de nível de controle de 50% a 80% da doença (reduziu a severidade de 75% para até 15%), ou seja, não se obtém total controle e, portanto, existe ainda uma perda de produtividade. Assim, uma realização sob a presente invenção é o método de associar fungicidas específicos à composição, objetivando elevar o índice de eficácia no combate à fungos patogênicos por múltiplos meios: ação direta fungistática e indireta via melhora na resistência intrínseca da planta. [0090] Annually, the EMBRAPA Soybean Research Center publishes the performance results of fungicides for this important disease in soybean crops. In the publication referring to the 2018/19 crop, by Godoy and collaborators (Efficiency of fungicides for the control of Asian soybean rust, ( Phakopsora pachyrhizi), in the 2018/19 crop. Embrapa Soja. Technical Circular 148. July, 2019), a A total of 13 commercial products and 10 new ones in the registration phase were evaluated in 25 field experiments, whose results were from a control level of 50% to 80% of the disease (reduced the severity from 75% to up to 15%), that is, , total control is not obtained and, therefore, there is still a loss of productivity. Thus, an achievement under the present invention is the method of associating specific fungicides to the composition, aiming to increase the efficiency index in the fight against pathogenic fungi by multiple means: direct fungistatic and indirect action via improvement in the intrinsic resistance of the plant.
Exemplo 6 Example 6
[0091] Este experimento foi realizado em condição de lavoura de soja a campo, com a composição codificada COMP01, visando medir os efeitos na produtividade de grãos sob uma alternativa com o uso da composição combinada com a gestão fitossanitária empregada para contribuir com a eficácia de fungicidas contra a Ferrugem Asiática da Soja. O estudo foi instalado no Município de Rio Verde - GO, Brasil, Fazenda Rio Verdinho, sobre duas Cultivares (variedades) distintas, plantadas na segunda quinzena de novembro de 2018, cujo estádio vegetativo ocorreu em dezembro, o reprodutivo em janeiro e a colheita na primeira quinzena de fevereiro. Uma área denominada “A, com a Cultivar BMX Foco IPRO foi dividida nas parcelas 1 (padrão utilizado pelo agricultor tomado com referência) e 2 (área experimental com a composição); da mesma forma a outra área denominada “B, com a Cultivar BMX Bónus IPRO, foi dividida em parcelas 1 e 2. Enquanto as parcelas 1 envolvem extensa área cultivada, as parcelas 2, em cada situação, ocuparam uma superfície de teste de 4000m2. Na área voltada ao uso da composição, as aplicações foram feitas objetivando atenuar os estresses abióticos causados pela radiação ultravioleta bem como para favorecer a eficácia dos fungicidas contra a Ferrugem Asiática. Assim a composição foi empregada três vezes nas áreas 2A e 2B (na Tabela 7 abaixo com denominação “Área Experimental”): uma vez na fase vegetativa da lavoura, no estádio V4 (40 DAP - Dias Após o Plantio), e outras duas vezes na fase reprodutiva em associação com os fungicidas (aos 53 DAP combinado com Azoxistrobina + Ciproconazol e depois, aos 68 DAP combinado com Azoxistrobina + Benzovindiflupir). A dose da composição foi de 500 gramas/ha da fórmula COMP01 mais um tensoativo não iônico em dose de bula. Nas áreas em referência 1A e 1B (na Tabela 7 abaixo com denominação “Padrão Agricultor”) foram realizadas as duas aplicações com os mesmos fungicidas e nos mesmos momentos da fase reprodutiva (aos 53 DAP com Azoxistrobina + Ciproconazol e depois, aos 68 DAP com Azoxistrobina + Benzovindiflupir). O índice UV obtido a partir dos dados publicados pelo INPE (Instituto Nacional de Pesquisas Espaciais) alcançou máximas atenuadas entre 11 e 12 no mês de dezembro de 2018 e 12 a 14 no mês de janeiro de 2019, todas classificadas como Extremamente Alta. No momento da colheita, foram tomadas 6 amostras de 5m2 (repetições) na área referência (1) e também na área experimental (2). Os grãos tiveram a umidade medida e a produtividade foi estimada para um mesmo índice de peso seco. Na Tabela 7 a seguir são apresentados os dados médios de produtividade e os tratamentos. [0091] This experiment was carried out in soybean field conditions, with the composition coded COMP01, aiming to measure the effects on grain yield under an alternative with the use of the composition combined with the phytosanitary management employed to contribute to the effectiveness of fungicides against Asian Soybean Rust. The study was installed in the Municipality of Rio Verde - GO, Brazil, Fazenda Rio Verdinho, on two different cultivars (varieties), planted in the second half of November 2018, whose vegetative stage occurred in December, the reproductive stage in January and the harvest in first half of February. An area called “A, with Cultivar BMX Foco IPRO was divided into plots 1 (standard used by the farmer taken as a reference) and 2 (experimental area with the composition); in the same way, the other area called “B, with Cultivar BMX Bónus IPRO, was divided into plots 1 and 2. While plots 1 involve an extensive cultivated area, plots 2, in each situation, occupied a test surface of 4000m 2 . In the area dedicated to the use of the composition, the applications were made aiming to attenuate the abiotic stresses caused by ultraviolet radiation as well as to favor the effectiveness of fungicides against Asian Rust. Thus, the composition was used three times in areas 2A and 2B (in Table 7 below with the name “Experimental Area”): once in the vegetative stage of the crop, in the V4 stage (40 DAP - Days After Planting), and twice in the reproductive phase in association with fungicides (at 53 DAP combined with Azoxystrobin + Cyproconazole and then at 68 DAP combined with Azoxystrobin + Benzovindiflupyr). The dose of the composition was 500 grams/ha of the formula COMP01 plus a non-ionic surfactant in the package insert. In the reference areas 1A and 1B (in Table 7 below with the name “Agriculturist Standard”), both applications were carried out with the same fungicides and at the same moments of the reproductive phase (at 53 DAP with Azoxystrobin + Cyproconazole and then, at 68 DAP with Azoxystrobin + Benzovindiflupyr). The UV index obtained from data published by INPE (National Institute for Space Research) reached attenuated maximums between 11 and 12 in December 2018 and 12 to 14 in January 2019, all classified as Extremely High. At the time of collection, 6 samples of 5m 2 (replications) were taken in the reference area (1) and also in the experimental area (2). The grains had their moisture measured and yield was estimated for the same dry weight index. In Table 7 below, the average data of productivity and treatments.
Tabela 7: Efeito do uso da composição COMP01 sobre a produtividade da soja, em sistema de manejo preventivo dos estresses abióticos da radiação ultravioleta e como alternativa de complemento ao controle de estresse biótico decorrente da ferrugem asiática da soja. Table 7: Effect of the use of the COMP01 composition on soybean productivity, in a preventive management system for abiotic stresses from ultraviolet radiation and as an alternative to complement the control of biotic stress caused by Asian soybean rust.
Tabela 7
Figure imgf000042_0001
Table 7
Figure imgf000042_0001
[0092] O ciclo (início da floração e maturação dos grãos) das plantas em todos os casos (1 ou 2) permaneceu inalterado para cada cultivar (A ou B). Os dados indicam que os resultados de incremento na produtividade ocorreram de forma similar e independentes da genética da cultivar utilizada. As observações nas parcelas onde a composição foi utilizada constataram uma aparência de folhas mais lisas e as plantas tendendo a mais vigor. [0092] The cycle (beginning of flowering and maturation of grains) of plants in all cases (1 or 2) remained unchanged for each cultivar (A or B). The data indicate that the results of increased productivity occurred in a similar way and independently of the genetics of the cultivar used. Observations in the plots where the composition was used found an appearance of smoother leaves and plants tending to have more vigor.
[0093] As plantas cultivadas são objeto de ataque predatório causado por diversas ordens de insetos pragas que prejudicam a produtividade de lavouras, sendo assim comum o emprego de moléculas inseticidas para diminuir a infestação de tais insetos quando atingem nível de dano económico. As pragas mastigadoras de partes de plantas (herbívoros) são especialmente importantes pois destroem a área foliar ou frutos inteiros, dentre estas as da ordem Lepidoptera (lagartas). O exemplo 07 a seguir traz dados de estudo feito sob condições controladas, seguindo protocolos típicos para avaliação de eficácia de inseticidas, no qual se observa que o componente para três espécies de alta relevância na agricultura. [0093] Cultivated plants are subject to predatory attack caused by several orders of insect pests that impair the productivity of crops, so it is common to use insecticide molecules to reduce the infestation of such insects when they reach a level of economic damage. Pests chewing plant parts (herbivores) are especially important because they destroy the leaf area or whole fruits, among them those of the order Lepidoptera (caterpillars). Example 07 below brings data from a study carried out under controlled conditions, following typical protocols for evaluating the effectiveness of insecticides, in which it is observed that the component for three species of high relevance in agriculture.
Exemplo 07 Example 07
[0094] Este estudo foi realizado em condições controladas e estufa e laboratório. Plantas de soja foram cultivadas em vasos até atingirem o estádio V3, quando foram pulverizadas com os seguintes tratamentos: apenas água (Check Negativo); REF01 na dose de 12 ml/litro de água (Referência no estado da técnica); inseticida Decis 25 CE (Deltametrina 25 g i.a/l) na dose de 4 ml/litro de água (Check Positivo) e; S1O2 cristalino insolúvel e na dimensão de micropartículas na dose de 3 g/litro de água, como contido e qualificado na composição (COMPn). As doses de REF01 e S1O2 foram calculadas para equivalerem no teor final do elemento Si. Folíolos das plantas tratadas foram coletados e colocados em placa de Petri, sobre papel filtro umedecido, sendo em seguida infestados com larvas de espécies Lepidoptera e incubados por 5 dias até a avaliação. Para simular as condições mais adversas (deterioração do produto aplicado e larvas maiores), as folhas foram coletadas em duas épocas: 06 horas e 4 dias após a aplicação, sendo que na primeira época (Tabela 8A) as larvas infestadas possuíam 3-4mm (primeiro instar) e na segunda época (Tabela 8B) possuíam 4 a 8mm (segundo instar). Para cada praga e época testada, um total de 04 folhas (quatro) foi utilizado, servindo cada uma como repetição. As espécies estudas foram Chrysodeixis includens, Spodoptera frugiperda e Helicoverpa armígera, todas de grande relevância na agricultura (Soja, Algodão, Milho, Feijão, etc), criadas e caracterizadas em dieta desde a oviposição. O consumo foliar (desfolha) e o tamanho das larvas foram avaliados. [0094] This study was carried out under controlled conditions and greenhouse and laboratory. Soybean plants were grown in pots until they reached the V3 stage, when they were sprayed with the following treatments: water only (Check Negative); REF01 in a dose of 12 ml/liter of water (Reference in the state of the art); Decis 25 EC insecticide (Deltamethrin 25 g ai/l) at a dose of 4 ml/liter of water (Check Positive) and; insoluble crystalline S1O2 and in microparticle size at a dose of 3 g/liter of water, as contained and qualified in the composition (COMPn). The doses of REF01 and S1O2 were calculated to be equivalent to the final content of the element Si. Leaflets of the treated plants were collected and placed in a Petri dish on moistened filter paper, then infested with larvae of Lepidoptera species and incubated for 5 days until the evaluation. To simulate the most adverse conditions (deterioration of the applied product and larger larvae), the leaves were collected at two times: 06 hours and 4 days after application, and in the first time (Table 8A) the infested larvae were 3-4 mm ( first instar) and in the second season (Table 8B) were 4 to 8 mm (second instar). For each pest and time tested, a total of 04 leaves (four) were used, each one serving as a repetition. The species studied were Chrysodeixis includens, Spodoptera frugiperda and Helicoverpa armigera, all of great importance in agriculture (Soybean, Cotton, Corn, Beans, etc.), reared and characterized in the diet since oviposition. Leaf consumption (defoliation) and larval size were evaluated.
Tabela 8A: Eficácia do tratamento foliar da soja com S1O2 cristalino sobre a voracidade e desenvolvimento de lepidópteras. Infestação 6 horas após o tratamento. Média de consumo de 4 folíolos infestados e media de tamanho de todas as larvas do conjunto das 4 repetições. Table 8A: Efficacy of soybean foliar treatment with crystalline S1O2 on lepidopteran voracity and development. Infestation 6 hours after treatment. Mean consumption of 4 infested leaflets and mean size of all larvae in the set of 4 replicates.
Tabela 8 A
Figure imgf000043_0001
Table 8 A
Figure imgf000043_0001
Tabela 8B: Eficácia do tratamento foliar da soja com S1O2 cristalino sobre a voracidade e desenvolvimento de lepidópteras. Infestação 4 dias após o tratamento. Média de consumo de 4 folíolos infestados e média de tamanho de todas as larvas do conjunto das 4 repetições. Table 8B: Efficacy of soybean foliar treatment with crystalline S1O2 on lepidopteran voracity and development. Infestation 4 days after treatment. Average consumption of 4 infested leaflets and average size of all larvae in the set of 4 replicates.
Tabela 8B
Figure imgf000044_0001
Table 8B
Figure imgf000044_0001
Os dados acima mostram que o novo componente S1O2 nas composições conforme a presente invenção é eficaz em reduzir a voracidade das pragas mastigadoras, sendo superior aquele propiciado pelo Silício na forma solúvel reportado no estado da técnica. O uso do S1O2 cristalino insolúvel e dimensão de micropartículas reduziu a voracidade das pragas entre 50 e 70% e reduziu o desenvolvimento de tamanho das mesmas em 30 a 35%. Para o caso da espécie S. frugiperda, o S1O2 cristalino insolúvel e dimensão de micropartículas teve eficácia próxima a um inseticida reconhecido, sendo que esta espécie é considerada polífaga (ataca inúmeras espécies de plantas) e de grande capacidade de desenvolver resistência a inseticidas e proteínas Bt, segundo publicação de especialistas do IRAC (em https://www.irac-online.org > resistência-de- spodoptera-frugiperda, acessado em 04/09/2019). A forma preconizada para mitigar a resistência de pragas é a rotatividade de distintos modos de ação (MoA) dos inseticidas empregados na produção agrícola e mesmo a associação de múltiplos modos de ação. Assim, uma realização sob a presente invenção é o método de associar inseticidas específicos à composição, objetivando elevar o índice de eficácia no combate à insetos herbívoros por múltiplos modos de ação. The above data show that the new S1O2 component in the compositions according to the present invention is effective in reducing the voracity of chewing pests, being superior to that provided by Silicon in the soluble form reported in the state of the art. The use of insoluble crystalline S1O2 and microparticle size reduced pest voracity between 50 and 70% and reduced pest size development by 30 to 35%. In the case of the species S. frugiperda, the insoluble crystalline S1O2 and microparticle size had an efficacy close to that of a recognized insecticide, and this species is considered polyphagous (attacks numerous plant species) and has a great capacity to develop resistance to insecticides and proteins. Bt, according to a publication by IRAC experts (at https://www.irac-online.org > spodoptera-frugiperda-resistance, accessed 9/4/2019). The recommended way to mitigate pest resistance is the rotation of different modes of action (MoA) of insecticides used in agricultural production and even the association of multiple modes of action. Thus, an embodiment of the present invention is the method of associating specific insecticides to the composition, aiming to increase the effectiveness rate in combating herbivorous insects by multiple modes of action.

Claims

Reivindicações claims
1. Composição para atenuar estresses abióticos e bióticos em plantas, caracterizada por compreender micropartículas de Dióxido de Silício na forma cristalina, insolúvel e inerte, sendo que ditas micropartículas de Dióxido de Silício apresentarem tamanho entre 1 e 70 micra. 1. Composition to attenuate abiotic and biotic stresses in plants, characterized by comprising Silicon Dioxide microparticles in crystalline, insoluble and inert form, said Silicon Dioxide microparticles having a size between 1 and 70 microns.
2. Composição, de acordo com a reivindicação 1, caracterizada por compreender Oxido de Zinco insolúvel. Composition according to claim 1, characterized in that it comprises insoluble Zinc Oxide.
3. Composição, em acordo com a reivindicação 2, caracterizada por a proporção peso/peso do S1O2 e ZnO estar compreendida entre 80:20 e 60:40. Composition according to claim 2, characterized in that the weight/weight ratio of S1O2 and ZnO is between 80:20 and 60:40.
4. Composição, em acordo com a reivindicação 1, caracterizada por compreender o mineral Manganês, provido por uma molécula ou composto em forma solúvel e absorvível pelas folhas das plantas, e sendo que o teor do elemento manganês está compreendido entre 1 :4 a 1 :20 (p/p) em relação ao peso do S1O2. Composition according to claim 1, characterized in that it comprises the mineral Manganese, provided by a molecule or compound in a soluble and absorbable form by plant leaves, and the content of the manganese element being between 1:4 to 1 :20 (w/w) in relation to the weight of S1O2.
5. Composição, de acordo com qualquer uma das reivindicações anteriores, caracterizada por compreender ainda nutrientes minerais de aplicabilidade foliar, antioxidantes vegetais ou minerais, filtros solares orgânicos ou inorgânicos, óleos minerais, óleos vegetais, biocidas, pesticidas, hormônios vegetais até o limite máximo de 70% em peso de aditivos em relação ao peso do S1O2. 5. Composition according to any one of the preceding claims, characterized in that it also comprises mineral nutrients of foliar applicability, vegetable or mineral antioxidants, organic or inorganic sunscreens, mineral oils, vegetable oils, biocides, pesticides, vegetable hormones up to the maximum limit of 70% by weight of additives in relation to the weight of S1O2.
6. Composição, de acordo com qualquer uma das reivindicações anteriores, caracterizada por conter um total de peso/peso entre 900 gr/kilo e 999 gr/kilo associada a componentes sólidos adjuvantes e tensoativos. 6. Composition according to any one of the preceding claims, characterized in that it contains a total weight/weight between 900 gr/kilo and 999 gr/kilo associated with solid adjuvants and surfactants components.
7. Composição, de acordo com qualquer uma das reivindicações anteriores, caracterizada por conter um total de peso/volume entre 1 gr/litro e 800 gr/litro em uma suspensão associada a componentes emolientes e suspensores de partículas insolúveis no meio, a estabilizantes e conservantes e a tensoativos. 7. Composition according to any one of the preceding claims, characterized in that it contains a total weight/volume between 1 gr/liter and 800 gr/liter in a suspension associated with emollient components and suspenders of insoluble particles in the medium, stabilizers and preservatives and surfactants.
8. Método para atenuar estresses abióticos e bióticos em plantas, para preservar ou aumentar a produtividade e a qualidade das plantas cultivadas anuais ou perenes, caracterizado por compreender pulverizar sobre as partes expostas da planta uma solução da composição conforme definida na reivindicação 1. 8. Method to alleviate abiotic and biotic stresses in plants, to preserve or increase the productivity and quality of annual or perennial cultivated plants, characterized by spraying on the exposed parts of the plant a solution of the composition as defined in claim 1.
9. Método, em acordo com a reivindicação 8, para atenuar os danos físicos e fisiológicos causados sob estresse abiótico pela radiação ultravioleta UV-B e UV-A caracterizado por realizar as pulverizações sobre as partes vegetais expostas a isolação direta e difusa, a partir do desenvolvimento inicial das plantas. Method, according to claim 8, for mitigating physical and physiological conditions caused under abiotic stress by UV-B and UV-A ultraviolet radiation characterized by spraying on plant parts exposed to direct and diffuse isolation, from the initial development of plants.
10. Método, de acordo com a reivindicação 8, para atenuar a severidade de fungos patogênicos aumentada pelos danos causados pela radiação ultravioleta UV-B e UV-A às plantas cultivadas, caracterizado por realizar as pulverizações preventivas antes do risco de infecção. Method, according to claim 8, for mitigating the severity of pathogenic fungi increased by the damage caused by UV-B and UV-A ultraviolet radiation to cultivated plants, characterized by carrying out preventive sprays before the risk of infection.
11. Método, em acordo com a reivindicação 8, para atenuar a voracidade de insetos pragas herbívoros às plantas cultivadas caracterizado por realizar as pulverizações a partir da incidência inicial da praga alvo em sua fase neonata. Method, according to claim 8, to attenuate the voracity of herbivorous insect pests to cultivated plants, characterized by carrying out sprays from the initial incidence of the target pest in its neonatal phase.
PCT/BR2021/050241 2020-07-16 2021-06-04 Composition and method for attenuating abiotic and biotic stresses in plants WO2022011441A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102020014535-5 2020-07-16
BR102020014535-5A BR102020014535B1 (en) 2020-07-16 2020-07-16 COMPOSITION AND METHOD TO MITIGATE ABIOTICAL AND BIOTIC STRESS IN PLANTS

Publications (1)

Publication Number Publication Date
WO2022011441A1 true WO2022011441A1 (en) 2022-01-20

Family

ID=73045713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050241 WO2022011441A1 (en) 2020-07-16 2021-06-04 Composition and method for attenuating abiotic and biotic stresses in plants

Country Status (2)

Country Link
BR (1) BR102020014535B1 (en)
WO (1) WO2022011441A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069112A (en) * 1997-03-05 2000-05-30 Englehard Corporation Method for preventing physiological disorders without diminishing photosynthesis
WO2010008476A1 (en) * 2008-06-23 2010-01-21 Purfresh, Inc. Methods to increase crop yield
US20140044862A1 (en) * 2010-08-26 2014-02-13 Scott May Sunscreen compositions for application to plants
CN108069790A (en) * 2016-11-10 2018-05-25 深圳市芭田生态工程股份有限公司 Liquid silicon fertilizer and preparation method thereof and application method
CN110885276A (en) * 2019-12-25 2020-03-17 众德肥料(烟台)有限公司 Leaf fertilizer containing amino acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069112A (en) * 1997-03-05 2000-05-30 Englehard Corporation Method for preventing physiological disorders without diminishing photosynthesis
WO2010008476A1 (en) * 2008-06-23 2010-01-21 Purfresh, Inc. Methods to increase crop yield
US20140044862A1 (en) * 2010-08-26 2014-02-13 Scott May Sunscreen compositions for application to plants
CN108069790A (en) * 2016-11-10 2018-05-25 深圳市芭田生态工程股份有限公司 Liquid silicon fertilizer and preparation method thereof and application method
CN110885276A (en) * 2019-12-25 2020-03-17 众德肥料(烟台)有限公司 Leaf fertilizer containing amino acid

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALVES, I. A.: "Avaliação dos efeitos do uso do silicio e do zinco no cultivo de rucula em sistema de produção hidroponico", TRABALHO DE CONCLUSAO DE CURSO - CURSO DE ENGENHARIA AGRONOMICA - CENTRO UNIVERSITARIO CATOLICO SALESIANO AUXILIUM, 2018, Unisalesiano, pages 62, XP055898814 *
C. MEHARG ET AL.: "Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice?", ENVIRONMENTAL AND EXPERIMENTAL BOTANY, vol. 120, 2015, pages 8 - 17, XP029285621, ISSN: 0098-8472, DOI: https://doi.org/10.1016/j.envexpbot. 2015.07.00 1 *
GOUSSAIN MARCIO M., MORAES JAIR C., CARVALHO JANICE G., NOGUEIRA NEUSA L., ROSSI MÔNICA L.: "Efeito da aplicação de silício em plantas de milho no desenvolvimento biológico da lagarta-do-cartucho Spodoptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae)", NEOTROPICAL ENTOMOLOGY, vol. 31, no. 2, 1 January 2002 (2002-01-01), BR , pages 305 - 310, XP055899633, ISSN: 1519-566X, DOI: 10.1590/S1519-566X2002000200019 *
JÚNIOR PEREIRA PÉRICLES: "Doses de silfcio na produtividade de soja [Glycine max (L.) Merrill] e suas caracteristicas agronomicas", DISSERTAÇÃO (MESTRADO) - UNIVERSIDADE FEDERAL DE LAVRAS, 1 January 2008 (2008-01-01), pages 1 - 37, XP055898799 *
OLIVEIRA R. L.: "Aplicação de silicio na fisiologia, na produção e na mitigação de estresse causado pela deficiencia de manganes em plantas de sorgo granifero", DISSERTAÇÃO (MESTRADO EM AGRONOMIA) - FACULDADE DE CIENCIAS AGRARIAS E VETERINARIAS, UNIVERSIDADE ESTADUAL PAULISTA, 1 January 2017 (2017-01-01), pages 1 - 56, XP055899631 *
PUPPE DANIEL, SOMMER MICHAEL, SPARKS DONALD L.: "Chapter One - Experiments, Uptake Mechanisms, and Functioning of Silicon Foliar Fertilization", ADVANCES IN AGRONOMY , vol. 152, 30 November 2017 (2017-11-30), US , pages 1 - 49, XP009534149, ISSN: 0065-2113, ISBN: 9780120007936, DOI: 10.1016/bs.agron.2018.07.003 *
YE YUQING; MEDINA-VELO ILLYA A.; COTA-RUIZ KENI; MORENO-OLIVAS FABIOLA; GARDEA-TORRESDEY JORGE L.: "Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds?", ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, vol. 184, 17 September 2019 (2019-09-17), US , XP085838756, ISSN: 0147-6513, DOI: 10.1016/j.ecoenv.2019.109671 *

Also Published As

Publication number Publication date
BR102020014535A2 (en) 2020-10-27
BR102020014535B1 (en) 2021-09-28

Similar Documents

Publication Publication Date Title
KR101502503B1 (en) Cultivation method of fruit, vegetable or grain using natural mineral composition
Liu et al. Effects of soil drought on photosynthetic traits and antioxidant enzyme activities in Hippophae rhamnoides seedlings
US8012911B2 (en) Methods to increase crop yield
Radkowski et al. Effects of Foliar Application of Titanium on Seed Yield in Timothy (L.)
Alotaibi et al. Effect of green synthesized cerium oxide nanoparticles on fungal disease of wheat plants: a field study
Tadesse Post-harvest loss of stored grain, its causes and reduction strategies
ES2364684B1 (en) PROCEDURE FOR OBTAINING A MICORRIZOGEN AGENT.
RU2450516C1 (en) Method of producing paste-like product for stimulating growth and development of plants and paste-like product for stimulating growth and development of plants
Iqbal et al. Phytohormones promote the growth, pigment biosynthesis and productivity of green gram [Vigna radiata (L.) R. Wilczek]
Xu et al. Responses of creeping bentgrass to trinexapac-ethyl and biostimulants under summer stress
WO2022011441A1 (en) Composition and method for attenuating abiotic and biotic stresses in plants
Ameen et al. Impacts of Climate Change on Fruit Physiology and Quality
Abdel-Aziz et al. Effects of fogging system and nitric oxide on growth and yield of ‘naomi’mango trees exposed to frost stress
Gonçalves et al. Banana production methods
CN110519987A (en) The composite of octadecanol
ES2624200T3 (en) Regulatory product for health in plants, procedure for obtaining and using it
Day Biological and mechanical approaches to sunscald management in bell pepper production
Singh et al. Improvement in growth and yield of strawberry (Fragaria× ananassa Duch.) by mulch colour
Bhardwaj et al. Efficacy of new miticides against European red mite (Panonychus ulmi) on apple (malus domestics)
Gade et al. Leaf reddening and its management in cotton
Cristina ASPECTS REGARDING SOME PHYSIOLOGICAL DISEASES IN SOME CULTURE PLANTS IN THE CITY OF PITESTI.
Thibisha et al. Effectiveness of GRAS substances for managing leaf diseases in brinjal (Solanum melongena L.)
EP3861858A1 (en) Composition for the protection of agricultural crops
Ziska Climate change, plant biology and public health
da Silva et al. Silicon Mitigates the Attack of Pests and Diseases on Ipê-Roxo (Handroanthus impetiginosus) Seedlings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842711

Country of ref document: EP

Kind code of ref document: A1