WO2022009939A1 - トリグリセリドの代謝能に関する値の取得方法、疾患の情報の提示方法、疾患の鑑別情報の提示方法、治療の有効性情報の提示方法、治療効果情報の提示方法、検査試薬、及び検査キット - Google Patents

トリグリセリドの代謝能に関する値の取得方法、疾患の情報の提示方法、疾患の鑑別情報の提示方法、治療の有効性情報の提示方法、治療効果情報の提示方法、検査試薬、及び検査キット Download PDF

Info

Publication number
WO2022009939A1
WO2022009939A1 PCT/JP2021/025687 JP2021025687W WO2022009939A1 WO 2022009939 A1 WO2022009939 A1 WO 2022009939A1 JP 2021025687 W JP2021025687 W JP 2021025687W WO 2022009939 A1 WO2022009939 A1 WO 2022009939A1
Authority
WO
WIPO (PCT)
Prior art keywords
triglyceride
subject
metabolic capacity
fatty acid
value
Prior art date
Application number
PCT/JP2021/025687
Other languages
English (en)
French (fr)
Inventor
賢一 平野
康洋 原
浩和 柏木
朗 鈴木
隆 神
健次 門出
勇太 村井
Original Assignee
国立大学法人大阪大学
国立研究開発法人理化学研究所
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 国立研究開発法人理化学研究所, 国立大学法人北海道大学 filed Critical 国立大学法人大阪大学
Priority to JP2022535379A priority Critical patent/JPWO2022009939A1/ja
Priority to US18/014,582 priority patent/US20230251278A1/en
Publication of WO2022009939A1 publication Critical patent/WO2022009939A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/34Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/323Arteriosclerosis, Stenosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/32Cardiovascular disorders
    • G01N2800/325Heart failure or cardiac arrest, e.g. cardiomyopathy, congestive heart failure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7057(Intracellular) signaling and trafficking pathways
    • G01N2800/7066Metabolic pathways
    • G01N2800/7085Lipogenesis or lipolysis, e.g. fatty acid metabolism
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • a method for obtaining a value related to the metabolic capacity of triglyceride a method for presenting information on a disease, a method for presenting differential information on a disease, a method for presenting efficacy information on treatment, a method for presenting information on therapeutic effect, a test reagent, and the like. And the test kit will be disclosed.
  • Triglyceride deposit cardiomyovasculopathy is a new disease unit found in heart transplant cases in Japan in 2008.
  • TGCV is an intractable disease that results in severe heart failure, arrhythmia, and coronary artery disease as a result of the accumulation of triglycerides in the myocardium and coronary arteries.
  • the number of potential patients for TGCV is estimated to be 40,000 to 50,000 nationwide, and the reserve group is estimated to be tens of thousands. However, the actual number of diagnoses is only 226 (of which 46 died) as of November 1st year of Reiwa (Non-Patent Documents 1 to 6).
  • 123 I-BMIPP ⁇ -methyl iodophenyl-pentadeca- noic acid
  • the 123 I-BMIPP scintigram restrains the patient for an extended period of time because it is tested in vivo.
  • One of the present inventions is to provide a method for acquiring a value related to the metabolic capacity of triglyceride of a subject, a test reagent used for the acquisition method, and a test kit in a shorter time than a conventional nuclear medicine test. Make it an issue.
  • the present inventor has found that by using a fluorescently labeled fatty acid, it is possible to obtain a value related to the metabolic capacity of triglyceride in a subject in a shorter time than in a conventional nuclear medicine examination.
  • the present invention has been completed based on the findings and includes the following aspects.
  • the first step is to mix a fatty acid compound labeled with a fluorescent substance and leukocytes collected from a subject in vitro, and bring the fatty acid labeled with the fluorescent substance into contact with the leukocytes.
  • the fatty acid compound is a fatty acid residue.
  • the fatty acid residue contains a group and has 8 to 26 carbon atoms, and some of the hydrogen atoms constituting the fatty acid residue are alkyl having 1 to 3 carbon atoms except for the methyl group at the end of the fatty acid residue.
  • the first step which may be substituted with a group
  • the second step in which the measured value of the fluorescence intensity derived from the fluorescent label in the leukocyte is obtained as a value relating to the metabolic capacity of the triglyceride.
  • Item 2. The acquisition method according to Item 1, wherein the hydrogen atom of the methyl group at the terminal of the fatty acid residue is substituted with a substituted or unsubstituted phenyl group.
  • Item 3. Item 2.
  • the acquisition method according to Item 1, wherein the fatty acid compound is represented by the following general formula (1). (N is an integer from 4 to 22.).
  • the acquisition method according to Item 1, wherein the fatty acid compound labeled with the fluorescent substance is represented by the following general formula (2). (N is an integer from 4 to 22; X includes the fluorescent material and the linker moiety).
  • Item 5 After the second step, the fluorescently labeled fatty acid compound is further removed from the leukocytes over 5 minutes to 2 hours, and the third step. After the third step, the fourth step of acquiring the measured value of the fluorescence intensity derived from the fluorescent label in the leukocyte, and the fourth step.
  • the measured value of the fluorescence intensity acquired in the second step is used as the first measured value
  • the measured value of the fluorescence intensity obtained in the fourth step is used as the second measured value
  • the value indicating the difference between the first measured value and the second measured value is shown.
  • Item 6 The value related to the metabolic capacity of triglyceride in the leukocyte of the subject obtained by the method for obtaining the value according to any one of Items 1 to 5 is compared with a predetermined reference range of the metabolic capacity of triglyceride, and the subject is described.
  • the subject When the metabolic capacity of triglyceride in the examiner's leukocyte is out of the reference range, the subject is a triglyceride-accumulating myocardial angiopathy, triglyceride-accumulating arteriosclerosis, or a preliminary group for these diseases. Including the suggested steps, How to present disease information.
  • Item 7 The value related to the metabolic capacity of triglyceride in the leukocyte of the subject obtained by the method for obtaining the value according to any one of Items 1 to 5 is compared with a predetermined reference range of the metabolic capacity of triglyceride, and the subject is described.
  • the step comprising a step suggesting that the subject is cholesterol-accumulating arteriosclerosis or a preliminary group thereof when the metabolic capacity of triglyceride in the leukocyte of the examiner is within the reference range. How to present disease identification information.
  • Item 8. The value related to the metabolic capacity of triglyceride in the leukocyte of the subject obtained by the method for obtaining the value according to any one of Items 1 to 5 is compared with a predetermined reference range of the metabolic capacity of triglyceride, and the subject is described. Including a step suggesting that the subject does not have dilated cardiomyopathy when the metabolic capacity of triglyceride in the leukocyte of the examiner is out of the reference range. How to present disease identification information.
  • the value related to the metabolic capacity of triglyceride in the leukocyte of the subject obtained by the method for obtaining the value according to any one of Items 1 to 5 is compared with a predetermined reference range of the metabolic capacity of triglyceride, and the above-mentioned Including a step suggesting that vasodilator therapy using a stent is not effective for the subject when the metabolic capacity of triglyceride in the leukocyte of the subject is out of the reference range. How to present information on the effectiveness of stent-based vasodilation therapy. Item 10.
  • the value related to the metabolic capacity of triglyceride in the leukocyte of the subject obtained by the method for obtaining the value according to any one of Items 1 to 5 is compared with a predetermined reference range of the metabolic capacity of triglyceride, and the above-mentioned
  • the metabolic capacity of triglyceride in the leukocyte of the subject is out of the standard range
  • administration of the medium-chain fatty acid composition and / or administration of the triglyceride-accumulating regressive composition to the subject is effective.
  • the value related to the past triglyceride metabolic capacity of the same subject is compared with the value related to the past triglyceride metabolic capacity of the same subject, and the value related to the past triglyceride metabolic capacity of the same subject is higher than the value related to the past triglyceride metabolic capacity of the same subject.
  • An arithmetic unit including a processing unit that executes each step according to item 8, 9, 10, or 12.
  • Item 13 A computer program that causes an arithmetic unit to execute each step according to item 8, 9, 10, or 12, when executed by a computer.
  • Item 14 A blood collection tube used for blood collection to collect white blood cells of a subject. The leukocyte is used in vitro to obtain a value relating to the metabolic capacity of the triglyceride according to any one of Items 1 to 5.
  • the blood collection tube stores a specific density fluid for separating leukocytes, or a specific gravity fluid for separating leukocytes and a leukocyte separating agent.
  • the blood collection tube Item 15.
  • a test reagent for evaluating the metabolic capacity of triglyceride which comprises a fatty acid compound labeled with a fluorescent substance, wherein the fatty acid compound contains a fatty acid residue and has 8 to 26 carbon atoms. A part of the hydrogen atom constituting the fatty acid residue may be substituted with an alkyl group having 1 to 3 carbon atoms except for the methyl group at the terminal of the fatty acid residue.
  • the test reagent Item 16.
  • Item 17. Compound represented by the following general formula (3): (N is an integer from 4 to 22; R 1 represents an alkylene group having 3 to 6 carbon atoms).
  • the metabolic capacity of triglyceride can be evaluated more easily than the method using a conventional nuclear medicine test. Further, according to the method for evaluating the metabolic capacity of triglyceride according to the present invention, it is possible to present information on a disease, information on differentiation of a disease, information on treatment of a disease, and the like for a patient who has undergone a test.
  • the outline of the method of obtaining the value regarding the metabolic capacity of triglyceride is shown.
  • A shows an outline of metabolism of a fluorescently labeled fatty acid compound in a cell.
  • B shows one embodiment of the acquisition method.
  • C shows another embodiment of the acquisition method.
  • the synthesis scheme of the fatty acid compound is shown.
  • A) shows the synthesis step Ia.
  • B) shows the synthesis step Ib.
  • C) shows synthesis step II.
  • (D) shows synthesis step III.
  • E shows the synthesis step IV.
  • An example of the appearance of the presentation system 1000, 2000, 3000, 4000, 5000 is shown.
  • An example of the hardware configuration of the presentation devices 10, 20, 30, 40, and 50 is shown.
  • the functional blocks of the presentation devices 10, 20, 30, 40, and 50 are shown.
  • the process flow of the disease information presentation program is shown.
  • the process flow of the program for presenting differential information of cholesterol-accumulating arteriosclerosis or preliminary group is shown.
  • the flow of processing of the presentation program of the differential information of dilated cardiomyopathy is shown.
  • the process flow of the program for presenting efficacy information on vasodilator therapy using a stent is shown.
  • the process flow of the program for presenting efficacy information about a medium-chain fatty acid composition and / or a triglyceride-accumulating arteriosclerosis-regressive composition is shown.
  • the flow of processing of the program for presenting treatment effect information is shown.
  • the flowchart for outputting the information which shows the difference between the 1st measurement value and the 2nd measurement value is shown.
  • the uptake ability of Alexa Fluor (trademark) 680-BMPP is shown.
  • the ability to take up fluorescein-labeled BMPP is shown. It shows the excretion ability of Alexa Fluor (trademark) 680-BMPP in leukocytes of healthy subjects and patients with primary triglyceride accumulation myocardial angiopathy. It shows the excretion ability of Alexa Fluor (trademark) 680 in leukocytes of healthy subjects and patients with primary triglyceride accumulation myocardial angiopathy.
  • the results of the Alexa Fluor (trademark) 680-BMPP emission amount examination based on the discharge time are shown.
  • A showing the result when the medium-chain fatty acid was administered to the rat shows the incidence of abdominal aortic aneurysm.
  • B indicates the presence or absence of rupture of the aortic aneurysm. It is sectional drawing of the blood vessel which shows the result of having performed MCT diet for 50 days to the patient of case 1 and evaluated the fat accumulation in the coronary artery before and after that, (A) is before the start of MCT diet, (B) is MCT. The result is 50 days after the start of the diet.
  • FIG. 1 It is a figure which shows the result (distance from the coronary artery ostium and the diameter of a blood vessel) which evaluated the fat accumulation in the coronary artery before and after the MCT diet for 4 years to the patient of case 2, and (A) is the MCT diet. Before the start, (B) is the result 4 years after the start of the MCT diet. It is cross-sectional view of the blood vessel which shows the result of having performed MCT diet for 4 years to the patient of case 2 and evaluated the fat accumulation in the coronary artery before and after that, (A) is before the start of MCT diet, (B) is MCT. This is the result 4 years after the start of the diet.
  • the upper row shows the excretion ability of Alexa Fluor (trademark) 680-BMPP in leukocytes before the start of treatment of the patient.
  • the lower row shows the excretion ability of Alexa Fluor (trademark) 680-BMPP in leukocytes of healthy subjects.
  • the upper row shows the excretion ability of Alexa Fluor (trademark) 680-BMPP in leukocytes after treatment of patients.
  • the lower row shows the excretion ability of Alexa Fluor (trademark) 680-BMPP in leukocytes of healthy subjects.
  • the acquisition method includes a first step of mixing a fatty acid compound labeled with a fluorescent substance and leukocytes collected from a subject in vitro and bringing the fatty acid labeled with the fluorescent substance into contact with the leukocytes, and fluorescence in the leukocytes.
  • the second step is to obtain the measured value of the fluorescence intensity derived from the label.
  • Fatty acid compounds labeled with a fluorescent substance are also referred to herein as "fluorescent labeled fatty acid compounds”.
  • acquisition method in units below.
  • FIG. (A) of FIG. 1 shows a schematic diagram of uptake of a fluorescently labeled fatty acid compound in cells and excretion depending on lipase activity.
  • Fluorescently labeled fatty acid compounds are taken up into cells as fatty acid analogs and esterified into trimer to triglycerides.
  • Triglyceride is rapidly metabolized by the action of intracellular lipase, becomes a monomeric fatty acid analog again, and is excreted into the cell.
  • FIG. 1B is a schematic diagram showing an example of an acquisition method including the first step and the second step.
  • the blood sample collected from the subject and the fluorescently labeled fatty acid compound are mixed in vitro so that the leukocytes in the blood sample are brought into contact with the fluorescently labeled fatty acid compound.
  • the fluorescence intensity of the fluorescently labeled fatty acid compound incorporated into leukocytes is measured in the second step, and the measured value is obtained as a value related to the metabolic capacity of triglyceride.
  • FIG. 1C includes a third step, a fourth step, and a fifth step in addition to the first step and the second step.
  • the fluorescently labeled fatty acid compound is used to remove the external liquid in which the cells are suspended. This also removes the fluorescently labeled fatty acid compound excreted from the leukocytes.
  • the measured value of the fluorescence intensity derived from the fluorescent substance bound to the fluorescently labeled fatty acid compound in the leukocyte is acquired.
  • the measured value of the fluorescence intensity acquired in the second step is used as the first measured value
  • the measured value of the fluorescence intensity obtained in the fourth step is used as the second measured value
  • the first measured value and the second measured value are used. Find the value that indicates the difference between. Then, the value of the value indicating the difference is acquired as the value relating to the metabolic capacity of the triglyceride.
  • the subject is not limited as long as he / she is subject to the test for the metabolic capacity of triglyceride.
  • patients with triglyceride-accumulating myocardial angiopathy, triglyceride-accumulating arteriosclerosis, or these preliminary groups may have normal serum triglyceride levels. Therefore, even if a normal blood test does not indicate dyslipidemia, the subject can be a subject.
  • the term "preliminary group" of a disease means a disease that has not developed a disease that is being tested at the testing stage, but may develop a disease that is being tested at the testing stage in the future. Intended.
  • Leukocytes collected from the subject are not restricted as long as they are alive to the extent that the bioactivity of the cells can be measured.
  • Blood collection for collecting leukocytes is not restricted as long as blood is collected using an anticoagulant.
  • As the anticoagulant heparin salt, Ethylenediaminetetraacetic acid (EDTA) salt, sodium citrate, CPD solution, ACD solution and the like can be used.
  • the leukocytes to be contacted with the fluorescently labeled fatty acid compound may be contained in whole blood or diluted blood obtained by diluting whole blood.
  • physiological saline, cell culture medium, specific density solution for leukocyte separation, which will be described later, or the like can be used.
  • the leukocyte to be contacted with the fluorescently labeled fatty acid compound may be a leukocyte fraction obtained by removing the erythrocyte fraction from whole blood. At this time, platelets may or may not be contained.
  • the type of leukocyte contained in the leukocyte fraction is not limited. All of neutrophils, lymphocytes, monocytes, eosinophils, and basophils may be used. Preferably, neutrophils and lymphocytes can be used.
  • a sample for measurement containing leukocytes is referred to as a leukocyte suspension.
  • the liquid in which the cells are suspended is called an external liquid.
  • a hemolytic agent When removing red blood cells, it is preferable not to use a hemolytic agent. When a hemolytic agent is used, it is preferable to hemolyze immediately before measuring the fluorescence intensity. This is to prevent the white blood cells from being killed by the hemolytic agent. Therefore, the removal of erythrocytes is carried out by, for example, a specific gravity solution for leukocyte separation such as HetaSep (Veritas), Lympolyte TM -poly Cell Separation Media (density 1.113 ⁇ 0.001 g / cm 3 at 22 ° C.). It is preferable to remove it using a thixotropic gel described in US5667963A or the like. When a hemolytic agent is used, for example, BD FACS Lysing Solution (BD Biosciences) or the like can be used.
  • BD FACS Lysing Solution BD Biosciences
  • the contact between the fluorescently labeled fatty acid compound and the leukocyte in the first step is not limited as long as it is carried out under the condition that the fluorescently labeled fatty acid compound can be taken up while the leukocyte is alive. Details of the fluorescently labeled fatty acid compound are described.
  • a fluorescently labeled fatty acid compound and a leukocyte are mixed by adding the fluorescently labeled fatty acid compound to the leukocyte suspension or mixing the fluorescently labeled fatty acid compound solution with the leukocyte suspension. Can be done by preparing.
  • the concentration of the fluorescently labeled fatty acid compound added to the leukocyte suspension is a concentration at which leukocytes do not die, and is not limited as long as the fluorescent substance in the leukocytes can be measured by a measuring device described later.
  • the final concentration of the fluorescently labeled fatty acid compound in the mixed solution of the fluorescently labeled fatty acid compound and leukocytes can be about 0.005 ⁇ M to about 1 mM.
  • the final concentration of the fluorescently labeled fatty acid compound may be, for example, about 0.005 ⁇ M to 0.5 ⁇ M in the case of a fluorescent substance of the Alexa TM series or a fluorescent substance having a fluorescence intensity equal to or higher than these. can.
  • the final concentration of the fluorescently labeled fatty acid compound can be about 0.1 ⁇ M to 1 mM in the case of a fluorescent substance such as FITC or rhodamine or a fluorescent substance having the same fluorescence intensity.
  • Number of white blood cells contained in the mixed solution of fluorescent-labeled fatty acid compounds and leukocytes can be from 10 3 to 10 7 about.
  • the contact time between the fluorescently labeled fatty acid compound and the leukocyte can be, for example, 10 minutes to 3 hours, preferably 30 minutes to 1 hour.
  • the temperature at which the fluorescently labeled fatty acid compound and the leukocyte are brought into contact with each other can be about 20 ° C. to 30 ° C., preferably about 23 ° C. to 28 ° C.
  • the fluorescence intensity of the fluorescent substance bound to the fluorescently labeled fatty acid compound in the leukocyte is measured.
  • the fluorescence intensity of the fluorescent substance in the leukocyte can be measured, for example, using a flow cytometer.
  • the external liquid containing the fluorescently labeled fatty acid compound that has not been incorporated may or may not be removed.
  • the fluorescence intensity of the fluorescent substance in the leukocyte for example, as another method, the leukocyte is recovered from a mixed solution of the fluorescently labeled fatty acid compound and the leukocyte by centrifugation or filtering, and the fluorescence intensity of the leukocyte is measured by using a fluorometer or the like. It may be measured. At this time, the leukocytes may or may not be dissolved. However, the accuracy is better when measured by dissolving.
  • the external solution is a physiological saline solution containing no fluorescently labeled fatty acid compound and cell culture.
  • the external solution is a physiological saline solution containing no fluorescently labeled fatty acid compound and cell culture.
  • the external liquid does not excrete the fluorescently labeled fatty acid compound from leukocytes by its own action. Therefore, it is preferable that the aqueous solution does not damage the cell membrane or change the intracellular osmotic pressure.
  • After replacing the external solution allow to stand for 5 to 2 hours, preferably 10 to 30 minutes. By this standing, the monomeric fluorescently labeled fatty acid compound is discharged from the leukocyte.
  • the fourth step after the third step is the same as the second step.
  • the measured value of the fluorescence intensity acquired in the second step is used as the first measured value
  • the measured value of the fluorescence intensity obtained in the fourth step is used as the second measured value
  • the first measured value and the second measured value are used. Find the value that indicates the difference between.
  • the first measured value obtained in the second step is a state in which the fluorescently labeled fatty acid compound is taken up and the leukocytes store the fluorescently labeled fatty acid compound in the cell.
  • the second measured value obtained in the fourth step is a state in which the fluorescently labeled fatty acid compound taken up by the cells is discharged. Therefore, a subject having a high ability to metabolize triglyceride has a large difference between the first measured value and the second measured value. On the other hand, in the subject having a low ability to metabolize triglyceride, the difference between the first measured value and the second measured value becomes small.
  • the fluorescence intensity is on the biaxial axis of the fluorescence intensity of each cell and the number of cells distributed in a predetermined range of the fluorescence intensity value. It can be represented by the represented histogram.
  • the first measured value and the second measured value of the fluorescence intensity can be expressed as the value of the most frequent fluorescence intensity (so-called peak value) of the histogram acquired by the flow cytometer. Alternatively, it can be expressed as the number of cells at each fluorescence intensity of the histogram acquired by the flow cytometer, or as the distribution range of the fluorescence intensity value of the histogram.
  • the fluorescence intensity may be the value itself obtained from the histogram obtained from the flow cytometer, or may be a value obtained by normalization, relative value, or the like.
  • the fluorescence intensity can be expressed by the fluorescence intensity of a sample containing leukocytes.
  • the fluorescence intensity is preferably expressed by the fluorescence intensity of a sample containing a fluorescently labeled fatty acid compound released from a sample in which leukocytes are dissolved.
  • the fluorescence intensity may be the value itself obtained from the fluorometer, or may be a value obtained by normalization, relative value, or the like.
  • the fluorescence intensity can be expressed by the fluorescence intensity of leukocytes containing a fluorescently labeled fatty acid compound without dissolving the leukocytes.
  • the white blood cells in the blood sample are bound to the solid phase by bringing the blood sample collected from the subject into contact with the solid phase outside the body.
  • the shape of the solid phase is not particularly limited, and examples thereof include microplates, microtubes, test tubes, beads, and membranes.
  • the material of the solid phase is not particularly limited, and for example, polystyrene, polypropylene and the like can be used for the microplate, the microtube, the test tube and the like.
  • polystyrene Xmap (registered trademark) beads (Luminex), MagPlex (registered trademark) microspheres (Luminex), and the like can be used.
  • a membrane, a nitrocellulose filter, a nylon filter, or the like can be used.
  • Leukocytes can be bound to the solid phase, for example, via a capture antibody capable of capturing leukocytes.
  • the capture antibody is not limited as long as it can capture leukocytes.
  • the capture antibody may be immobilized on the solid phase in advance, or may be immobilized on the solid phase after binding the leukocyte and the capture antibody.
  • a method for immobilizing a capture antibody on a solid phase is known.
  • Capturing antibodies are also known.
  • the Dynabeads series of Thermo Fisher Scientific Co., Ltd. using magnetic beads can be mentioned.
  • the contact between the fluorescently labeled fatty acid compound and the leukocyte may be performed after the leukocyte is bound to the solid phase. Further, the leukocytes incorporating the fluorescently labeled fatty acid compound may be bound to the solid phase after the fluorescently labeled fatty acid compound is brought into contact with the leukocytes.
  • the former is preferable.
  • an operation of washing the solid phase to remove cells and antibodies not bound to the solid phase may be included.
  • a physiological saline solution containing no fluorescently labeled fatty acid compound and an external solution such as a cell culture medium used in the third step can be used.
  • the fluorescence intensity of the cells bound to the solid phase is measured. Further, the third step and the fourth step are also performed in a state where the leukocytes are bound to the solid phase.
  • the fluorescence intensity may be the value itself obtained from the fluorometer, or may be a value obtained by normalization, relative value, or the like.
  • the value indicating the difference between the first measured value and the second measured value of the fluorescence intensity can be used as a value related to the metabolic capacity of triglyceride.
  • the value indicating the difference is not limited as long as the difference between the first measured value and the second measured value is known.
  • the value indicating the difference is a subtraction value obtained by subtracting the second measurement value from the first measurement value; a division value obtained by dividing the first measurement value by the second measurement value, or a value obtained by converting the division value into a percentage; Relative value of the other value to the value; Subtracted value obtained by subtracting the first measured value from the second measured value; Divided value obtained by dividing the second measured value by the first measured value, or a value obtained by converting the divided value into a percentage, etc. Can be.
  • the first value is obtained.
  • the larger the difference between the 1st measured value and the 2nd measured value the larger the value indicating the difference.
  • the value indicating the difference is a subtraction value obtained by subtracting the first measurement value from the second measurement value; a division value obtained by dividing the second measurement value by the first measurement value, or a value obtained by converting the division value into a percentage
  • the first value is obtained. The larger the difference between the 1st measured value and the 2nd measured value, the smaller the value indicating the difference.
  • the acquisition method determines whether or not these values are within a predetermined reference range for the values related to the metabolic capacity of triglyceride acquired in the second step or the values related to the metabolic capacity of triglyceride acquired in the fifth step.
  • the sixth step may be included.
  • the value related to the metabolic capacity of triglyceride of the subject is, for example, the value of triglyceride of a healthy person.
  • the predetermined reference range can be a range obtained by adding a certain width to the reference value.
  • the reference value can also be determined by a ROC (receiver operating characteristic curve) curve, a discriminant analysis method, a mode method, a Kittler method, a 3 ⁇ method, a p-tile method, or the like. Further, as reference values, sensitivity, specificity, negative predictive value, positive predictive value, first quartile, and the like can be exemplified.
  • the constant width added to the reference value can be determined by the standard deviation (SD), variance (CV). For example, the constant width added to the reference value can be ⁇ 2SD, ⁇ 1SD, ⁇ CV.
  • the value indicating the difference is a subtraction value obtained by subtracting the second measurement value from the first measurement value; a division value obtained by dividing the first measurement value by the second measurement value, or a value obtained by converting the division value into a percentage. If the examiner's value for the metabolic capacity of triglyceride is lower than the reference range, it can be determined to be out of the reference range.
  • the value indicating the difference is a subtraction value obtained by subtracting the first measurement value from the second measurement value; a division value obtained by dividing the second measurement value by the first measurement value, or a value obtained by converting the division value into a percentage. If the examiner's triglyceride metabolic capacity value is higher than the reference range, it can be determined to be outside the reference range.
  • the reference range is that when the value of the subject's triglyceride metabolic capacity is more than 0.9 times and less than 1.1 times the value of the healthy subject's triglyceride metabolic capacity, the subject's triglyceride. It can be determined that the value related to the metabolic capacity of triglyceride is similar to the value related to the metabolic capacity of triglyceride in a healthy person.
  • the value indicating the difference is a subtraction value obtained by subtracting the second measurement value from the first measurement value; a division value obtained by dividing the first measurement value by the second measurement value, or a value obtained by converting the division value into a percentage
  • the value is applied.
  • the value of the metabolic capacity of triglyceride of the examiner is 0.9 times or less, preferably 0.7 times or less, more preferably 0.5 times or less of the value of the metabolic capacity of triglyceride of a healthy subject, the triglyceride of the subject is examined. It can be determined that the metabolic capacity of is out of the reference range.
  • the value regarding the triglyceride metabolic capacity of the subject is out of the reference range, it is determined that the triglyceride metabolic capacity of the subject is low, or it is suggested that the triglyceride metabolic capacity of the subject is low. Can be done.
  • the value indicating the difference is the subtracted value obtained by subtracting the first measured value from the second measured value; the divided value obtained by dividing the second measured value by the first measured value, or the value obtained by converting the divided value into a percentage.
  • the value related to the metabolic capacity of triglyceride of the examiner is 1.1 times or more, preferably 1.3 times or more, more preferably 1.5 times or more of the value related to the metabolic capacity of triglyceride of a healthy subject, the triglyceride of the subject is examined. It can be determined that the metabolic capacity of is out of the reference range.
  • the value regarding the triglyceride metabolic capacity of the subject is out of the reference range, it is determined that the triglyceride metabolic capacity of the subject is low, or it is suggested that the triglyceride metabolic capacity of the subject is low. Can be done.
  • the above 1. Disclosed is a method of presenting information using the values relating to the metabolic capacity of triglycerides obtained in. More specifically, it is compared with a predetermined reference range of the metabolic capacity of triglyceride, and when the metabolic capacity of triglyceride in the leukocyte of the subject is out of the standard range, predetermined information is presented.
  • “suggesting” may include showing a possibility and showing that the disease is a disease.
  • to “suggest” is to show the potential.
  • To "present” is to display the relevant information on the display of a personal computer or tablet used in the hospital so that doctors, laboratory technicians, nurses, etc. can recognize it, and to print it on paper media. May include.
  • Method of presenting disease information In the method of presenting disease information, the above 1.
  • the value related to the metabolic capacity of triglyceride in the leukocyte of the subject obtained by the acquisition method described in the above is compared with a predetermined reference range of the metabolic capacity of triglyceride, and the metabolic capacity of triglyceride in the leukocyte of the subject is out of the standard range.
  • a step suggesting that the subject is a triglyceride-accumulating myocardial angiopathy, triglyceride-accumulating arteriosclerosis, or a preliminary group of these diseases is included.
  • Triglyceride-accumulating myocardial angiopathy is a condition in which the intracellular metabolic capacity of triglyceride is reduced and triglyceride is accumulated in blood vessels in the myocardium.
  • Triglyceride-accumulating arteriosclerosis is a condition in which triglyceride accumulates in the cells constituting the artery, resulting in arteriosclerosis.
  • Triglyceride-accumulating arteriosclerosis unlike cholesterol-accumulating arteriosclerosis caused by local vascular deposition of cholesterol, causes diffuse sclerosis in blood vessels. Cholesterol-accumulating arteriosclerosis can be predicted from the total cholesterol level, HDL-cholesterol level, and LDL-cholesterol level in the blood.
  • Method of presenting differential information of cholesterol-accumulating arteriosclerosis or preliminary group In the method of presenting differential information of cholesterol-accumulating arteriosclerosis or preliminary group in the present embodiment, the above 1.
  • the value related to the metabolic capacity of triglyceride in the leukocyte of the subject obtained by the acquisition method described in the above is compared with a predetermined reference range of the metabolic capacity of triglyceride, and the metabolic capacity of triglyceride in the leukocyte of the subject is in the reference range.
  • the suggested step compares the value of triglyceride metabolic capacity in the leukocyte of the subject with a predetermined reference range of the metabolic capacity of triglyceride, and the metabolic capacity of triglyceride in the leukocyte of the subject is out of the standard range. Occasionally, it may be a step suggesting that the subject is not cholesterol-accumulating arteriosclerosis or a preliminary group thereof. Alternatively, the suggested step may be cholesterol-accumulating arteriosclerosis, or a preliminary group thereof, depending on whether the metabolic capacity of triglycerides in the leukocyte of the subject is within or outside the reference range. It may be a suggested step.
  • This embodiment is described in 2-1 above.
  • the opposite embodiment for example, to distinguish whether the subject has cholesterol-accumulating arteriosclerosis, triglyceride-accumulating arteriosclerosis, or a preliminary group of which disease.
  • Present information Local stent therapy can be applied to cholesterol-accumulating arteriosclerosis, but since neutral fat-accumulating arteriosclerosis is diffuse arteriosclerosis, local stent therapy is not effective.
  • Presenting information for differentiating whether a person has cholesterol-accumulating arteriosclerosis or neutral fat-accumulating arteriosclerosis is useful in determining the treatment method.
  • Method of presenting differential information of dilated cardiomyopathy in the method of presenting differential information of dilated cardiomyopathy in the present embodiment, the above 1.
  • the value related to the metabolic capacity of triglyceride in the leukocyte of the subject obtained by the acquisition method described in the above is compared with a predetermined reference range of the metabolic capacity of triglyceride, and the metabolic capacity of triglyceride in the leukocyte of the subject is in the reference range.
  • the suggested step is to compare the value of triglyceride metabolic capacity in the leukocyte of the subject with a predetermined reference range of triglyceride metabolic capacity, and when the triglyceride metabolic capacity in the leukocyte of the subject is within the reference range. It may be a step suggesting that the subject has dilated cardiomyopathy. Alternatively, the suggestion step may be a step of suggesting whether or not dilated cardiomyopathy is present, depending on whether the metabolic capacity of triglyceride in the leukocyte of the subject is within or outside the reference range. good.
  • Triglyceride-accumulating cardiomyopathy may need to be differentiated from dilated cardiomyopathy.
  • the therapeutic methods described below are effective for triglyceride-accumulating myocardial angiopathy.
  • treatment of dilated cardiomyopathy requires surgical treatment. Therefore, it is important to present information for differentiating triglyceride-accumulating cardiomyopathy from dilated cardiomyopathy in determining the treatment policy of the subject.
  • the suggested step is to compare the value of triglyceride metabolic capacity in the leukocyte of the subject with a predetermined reference range of triglyceride metabolic capacity, and when the triglyceride metabolic capacity in the leukocyte of the subject is within the reference range. It may be a step suggesting to the subject that vasodilation therapy using a stent is effective. Alternatively, the suggestion step suggests whether vasodilator therapy is effective, depending on whether the metabolic capacity of triglycerides in the leukocyte of the subject is within or outside the reference range. It may be a step of performing.
  • vasodilation therapy using a stent is effective without differentiating the disease. Suggest whether or not. By performing this test prior to catheter insertion for stent insertion, it is possible to select subjects for whom stent therapy is not effective.
  • Method for Presenting Effectiveness Information on Medium-Chain Fatty Acid Composition and / or Triglyceride-Accumulating Arteriosclerosis Retraction Composition In the method of presenting the validity information regarding, the above 1.
  • the value related to the metabolic ability of triglyceride in the leukocyte of the subject which was obtained by the acquisition method described in the above, is compared with a predetermined reference range of the metabolic ability of triglyceride, and the metabolic ability of triglyceride in the leukocyte of the subject is in the reference range. It comprises a step suggesting that administration of a medium chain fatty acid composition and / or administration of a triglyceride-accumulating arteriosclerotic retraction composition to a subject is effective when outside.
  • the suggested steps compare the values of triglyceride metabolic capacity in the subject's leukocytes with a predetermined reference range of triglyceride metabolic capacity and when the triglyceride metabolic capacity in the subject's leukocytes is within the reference range. It may be a step suggesting that the administration of the medium-chain fatty acid composition and / or the administration of the triglyceride-accumulating arteriosclerotic retraction composition to the subject is not effective.
  • the suggested steps include administration of medium chain fatty acid compositions and / or triglyceride-accumulating arteries, depending on whether the metabolic capacity of triglycerides in the leukocyte of the subject is outside or within the reference range. It may be a step suggesting whether or not administration of the curative regression composition is effective.
  • Medium-chain fatty acids are also called medium chain triglyceride (MCT).
  • the medium-chain fatty acid composition includes pentanoic acid (C5: valeric acid), hexanoic acid (C6: caproic acid), heptanic acid (C7: enanthic acid), octanoic acid (C8: caprylic acid), and nonanoic acid (C9: pelargone).
  • An oral composition or a parenteral composition containing medium-chain fatty acids such as acid), decanoic acid (C10: caprylic acid), and dodecanoic acid (C12: lauric acid) as active ingredients.
  • the medium-chain fatty acid composition is effective for the treatment or prevention of triglyceride-accumulating myocardial angiopathy or triglyceride-accumulating arteriosclerosis, and for the prevention of aortic aneurysm. Therefore, the medium-chain fatty acid composition may include a pharmaceutical composition and a food and drink composition.
  • the triglyceride-accumulating arteriosclerosis involution composition is an oral composition or a parenteral composition containing tricaprin as an active ingredient.
  • the active ingredient, tricaprin is triacylglycerol, which is composed only of medium-chain fatty acids having 10 carbon atoms as constituent fatty acids. That is, it is a triacylglycerol in which capric acid (decanoic acid) is ester-bonded to glycerol in three molecules.
  • the form of tricaprin is not limited, and it may be in the form of a liquid, a solid, or a powder.
  • the dose of the triglyceride-accumulating arteriosclerosis-regressive composition to humans can be appropriately selected according to the age, sex, body weight, degree of disease, etc. of the patient.
  • the dose of the active ingredient tricaprin is selected from the range of 1.0 g to 10.0 g per day, preferably from 1.5 g to 9.0 g.
  • the number of administrations per day may be once or may be divided into several times.
  • the administration period of the triglyceride-accumulating arteriosclerosis involution composition is not particularly limited as long as the termination time may be appropriately determined by evaluating the involution effect of the triglyceride-accumulating arteriosclerosis over time. It is preferable to use it so that it is administered for at least 50 days.
  • the administration period is 2 months or more, 3 months or more, 4 months or more, 5 months or more, 6 months or more, 7 months or more, 8 months or more, 9 months or more, 10 months or more, 11 It may be more than a month and more than a year.
  • the medium-chain fatty acid composition and / or the triglyceride-accumulating arteriosclerosis-regressive composition can be administered to a subject who has developed a disease to alleviate or treat the symptoms. also.
  • the medium-chain fatty acid composition and / or the triglyceride-accumulating arteriosclerosis-regressive composition can be administered to a subject in the preliminary group of the disease to reduce the risk of developing the disease.
  • the effect of medium-chain fatty acid compositions has been demonstrated by reducing the incidence of aortic aneurysms in high-fat diet-fed rats.
  • the effect of the triglyceride-accumulating arteriosclerosis-regressive composition is that the triglyceride in the coronary arteries is administered to patients with genetic ATGL (Adipose triglyceride lipase) deficiency and patients with refractory angina. It has been shown by the regression of cumulative arteriosclerosis.
  • ATGL Adipose triglyceride lipase
  • Method for Presenting Treatment Effect Information In the method for presenting treatment effect information in the present embodiment, a subject who has already started treatment with a medium-chain fatty acid composition and / or a neutral fat accumulation type arteriosclerosis retraction composition or the like Present information about therapeutic effects. Above 1. The value regarding the metabolic capacity of triglyceride in the leukocyte of the subject, which was obtained by the acquisition method described in the above, is compared with the value regarding the metabolic capacity of triglyceride in the past of the same subject, and the value of triglyceride in the leukocyte of the subject is compared.
  • the suggested step compares the value of triglyceride metabolism in the subject's leukocyte with the value of the subject's past triglyceride metabolism and the triglyceride metabolism in the subject's leukocyte. May be a step suggesting that the treatment applied to the subject is not effective when the value with respect to is less than or equal to the value with respect to the subject's past triglyceride metabolic capacity.
  • the suggested step depends on whether the value of the subject's leukocytes is higher than the value of the subject's past triglyceride metabolism or is less than or equal to the value of the subject's past triglyceride metabolism. It may be a step suggesting whether the treatment applied to the subject is effective or not.
  • the fatty acid compound contains a fatty acid residue, and the fatty acid residue has 8 to 26 carbon atoms.
  • the fatty acid residue refers to the acyl group portion of the fatty acid.
  • the carbon atom of the carboxy group of the fatty acid residue is at the 1-position, and the carbon atoms are numbered in order from 1 toward the methyl group terminal of the fatty acid residue.
  • the fatty acid residue may be a saturated fatty acid residue or an unsaturated fatty acid residue. It is preferably a saturated fatty acid residue.
  • a part of the hydrogen atom constituting the fatty acid residue may be substituted with an alkyl group having 1 to 3 carbon atoms except for the methyl group at the terminal of the fatty acid residue.
  • This substitution is referred to as a first substitution.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group and the like. It is preferably a methyl group, an ethyl group or an n-propyl group, and more preferably a methyl group.
  • the first substitution is preferably, for example, three places, preferably two places, and more preferably one place.
  • the first substitution may be at any position of the hydrogen atom constituting the fatty acid residue, but preferably, the hydrogen atom bonded to the carbon atom at the 2-position to the carbon atom at the 7-position is substituted. It is a thing. More preferably, it replaces a hydrogen atom bonded from a carbon atom at the 2-position to a carbon atom at the 4-position. Particularly preferably, the first substitution is a substitution at one place, which replaces a hydrogen atom bonded to a carbon atom at the third position.
  • the hydrogen atom of the methyl group at the end of the fatty acid residue may be substituted with a substituted or unsubstituted phenyl group.
  • the substitution of the hydrogen atom of the methyl group at the end of the fatty acid residue is called the second substitution.
  • an alkyl group having 1 to 3 carbon atoms can be mentioned as the substituent.
  • the alkyl group that replaces the phenyl group is preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group.
  • the fatty acid compound is preferably a compound represented by the following general formula (1):
  • n is preferably 8 to 20, more preferably 10 to 18, and particularly preferably 11.
  • the fluorescent substance on the methyl group at the end of the fatty acid residue or the substituent of the methyl group.
  • the fluorescent substance is not limited as long as it emits fluorescence. However, since a part of the blood component contains a component that emits fluorescence, it is preferable that the peak of the fluorescence wavelength of this component and the peak of the fluorescence wavelength of the fluorescent substance to be labeled do not overlap. Therefore, it is preferable that the fluorescent substance has, for example, a peak of the fluorescence wavelength in the range of 400 nm to 560 nm, or a peak of the fluorescence wavelength in the range of 600 nm to 810 nm.
  • FIG. 2 shows a method for producing a fatty acid compound for labeling a fluorescent substance.
  • the fatty acid compound for labeling a fluorescent substance is represented by the following general formula (3).
  • N is an integer from 4 to 22; R 1 represents an alkylene group having 3 to 6 carbon atoms).
  • the amino group of compound 20 is protected with a protecting group to produce compound 21.
  • the amino acid protecting group is exemplifiedly shown by Boc.
  • Boc represents a tert-butoxycarbonyl protecting group.
  • R 2 represents an alkylene group having 1 to 4 carbon atoms.
  • This step can be performed by a known method.
  • compound 20 is dissolved in a solvent such as dichloromethane, mixed with Di-tert-butyl Dicarbonate at around 0 ° C., slowly raised to room temperature, and further reacted at 23 ° C. to 28 ° C. for about 2 hours. , Compound 21 can be produced.
  • R 3 represents a halogen atom.
  • the halogen atom is preferably an iodine atom.
  • R 4 represents a protecting group for a hydroxyl group.
  • a phenyl group is preferable as the protecting group for the hydroxyl group.
  • the hydroxyl group can be protected by a known method.
  • compound 12 can be produced by dissolving compound 11 in a solvent such as triethylamine, adding benzyl chloride, and reacting at about 90 ° C. for about 2 hours, for example.
  • compound 12 and compound 21 are reacted to produce compound 13.
  • compound 12 is dissolved in tetrahydrofuran, bis (triphenylphosphine) palladium (II) dichloride is added and mixed, compound 21 dissolved in tetrahydrofuran is further added, and the mixture is stirred at about 23 ° C to 28 ° C for several minutes. Copper iodide is further added to the stirred mixture and stirred overnight at about 23 ° C. to 28 ° C. to produce compound 13.
  • compound 13 is reduced to produce compound 14.
  • the reduction reaction is known.
  • compound 13 is dissolved in a solvent such as methanol, 10% Pd / C is added thereto, and the mixture is stirred overnight at about 23 ° C. to 28 ° C. under a hydrogen atmosphere to produce compound 14.
  • Compound 14 is a compound represented by the general formula (4).
  • the protecting group of the amino group is removed from the compound 14 to produce the compound 15.
  • This reaction is known.
  • compound 15 can be produced by dissolving compound 14 in dichloromethane, adding trifluoroacetic acid, and stirring overnight at about 23 ° C. to 28 ° C.
  • Labeling of fluorescent substances on compound 15 can be carried out, for example, by an amine coupling reaction.
  • the NHS group of the fluorescent substance N-hydroxysuccinimide (NHS) ester and the amino group of compound 15 can be bonded by amine coupling by a known method.
  • the fluorescent substance N-hydroxysuccinimide (NHS) ester can be purchased from Thermo Fisher, etc.
  • a preferred embodiment of the fluorescently labeled fatty acid compound is as shown in the following general formula (2).
  • N is an integer from 4 to 22; X includes the fluorescent material and the linker moiety).
  • the linker represents an alkylene group having 3 to 6 carbon atoms, preferably an alkylene group having 3 or 4 carbon atoms, and particularly preferably an alkylene group having 3 carbon atoms.
  • a more preferable embodiment of the fluorescently labeled fatty acid compound is as shown in the following general formula (2').
  • N is an integer from 4 to 22; X includes the fluorescent material and the linker moiety).
  • the linker represents an alkylene group having 3 to 6 carbon atoms, preferably an alkylene group having 3 or 4 carbon atoms, and particularly preferably an alkylene group having 3 carbon atoms.
  • Test Reagents The present invention relates to test reagents for evaluating the metabolic capacity of triglycerides, including fatty acid compounds labeled with fluorescent substances.
  • the test reagent may be in a state in which a fatty acid compound labeled with a fluorescent substance is dissolved in a solvent such as dimethyl sulfoxide.
  • Blood collection tube used for blood collection to collect white blood cells of a subject.
  • the leukocytes collected from the blood collection tube of the present embodiment are in vitro to the above 1. It is used to obtain the value related to the metabolic capacity of the triglyceride described in.
  • the blood collection tube is described in 1. above.
  • the specific density solution for separating leukocytes or the specific density solution for separating leukocytes described in 1. above. Can store the leukocyte-separating agent mentioned in.
  • the blood collection tube is preferably a vacuum collection tube, and is preferably loadable in a vacuum blood collection folder. Further, the blood collection tube may be supplied as a test kit together with the test reagent.
  • Presentation system and presentation device One embodiment of the present disclosure is described in 2. above.
  • the present invention relates to a presentation system and a presentation device for executing the presentation method described in the above section using a computer.
  • FIG. 3 is an overview diagram of the disease information presentation device system 1000 (hereinafter, simply referred to as the presentation system 1000) and is presented.
  • the system 1000 may include an analyzer 90 as well as a disease information presenting device 10 (hereinafter, simply referred to as a presenting device 10).
  • the analyzer 90 can be a flow cytometer or a fluorometer.
  • FIG. 4 shows the hardware of the presentation device 10.
  • the presentation device 10 may be connected to the input device 111, the output device 112, and the media drive 113.
  • the (I / F) 107 and the media interface (I / F) 108 are connected to each other by a bus 109 so as to be capable of data communication.
  • the memory 102 and the storage device 104 may be collectively referred to as a storage unit.
  • the storage unit stores the measured value or the reference value volatilely or non-volatilely.
  • the processing unit 101 is a CPU of the presentation device 10, and is also called an arithmetic unit.
  • the processing unit 101 may cooperate with the GPU.
  • the processing unit 101 executes and acquires the disease information presentation program 1042a (hereinafter, simply referred to as the presentation program 1042a) described later in cooperation with the operation system (OS) 1041 stored in the storage device 104 or the ROM 103.
  • OS operation system
  • the computer functions as the presentation device 10.
  • the ROM 103 is composed of a mask ROM, a PROM, an EPROM, an EEPROM, and the like, and records the presentation program 1042a executed by the processing unit 101 and the data used for the presentation program 1042a.
  • the processing unit 101 may be the MPU 101.
  • the ROM 103 stores the boot program executed by the processing unit 101 when the presentation device 10 is started, and the programs and settings related to the operation of the hardware of the presentation device 10.
  • the memory 102 is composed of a RAM (Random access memory) such as a SRAM or a DRAM.
  • the memory 102 is used for reading the presentation program 1042a recorded in the ROM 103 and the storage device 104. Further, the memory 102 is used as a work area when the processing unit 101 executes these presentation programs 1042a.
  • the storage device 104 is composed of a hard disk, a semiconductor memory element such as a flash memory, an optical disk, or the like.
  • the storage device 104 stores various setting data used for executing various presentation programs 1042a and presentation programs 1042a to be executed by the processing unit 101, such as an operating system and an application program. Specifically, it is stored non-volatilely as the reference range database (DB) DB1 in which the reference range is recorded.
  • DB reference range database
  • the communication I / F 105 includes a serial interface such as USB, IEEE1394, RS-232C, a parallel interface such as SCSI, IDE, IEEE1284, an analog interface including a D / A converter, an A / D converter, and a network interface controller ( It is composed of Network interface controller (NIC) and the like.
  • the communication I / F 105 receives data from the analyzer 90 or other external device under the control of the processing unit 101, and stores or generates information by the presenting device 10 to the analyzer 90 or the outside as needed. Send or display.
  • the communication I / F 105 may communicate with the analyzer 90 or other external device via the network.
  • the input I / F 106 is composed of, for example, a serial interface such as USB, IEEE1394, RS-232C, a parallel interface such as SCSI, IDE, and IEEE1284, and an analog interface including a D / A converter and an A / D converter.
  • a serial interface such as USB, IEEE1394, RS-232C
  • a parallel interface such as SCSI, IDE, and IEEE1284
  • an analog interface including a D / A converter and an A / D converter.
  • the input I / F 106 accepts character input, click, voice input, and the like from the input device 111.
  • the received input contents are stored in the memory 102 or the storage device 104.
  • the input device 111 is composed of a touch panel, a keyboard, a mouse, a pen tablet, a microphone, and the like, and inputs characters or voices to the presentation device 10.
  • the input device 111 may be connected from the outside of the presentation device 10 or may be integrated with the presentation device 10.
  • the output I / F 107 is composed of an interface similar to that of the input I / F 106, for example.
  • the output I / F 107 outputs the information generated by the processing unit 101 to the output device 112.
  • the output I / F 107 outputs the information generated by the processing unit 101 and stored in the storage device 104 to the output device 112.
  • the output device 112 is composed of, for example, a display, a printer, or the like, and displays measurement results transmitted from the analyzer 90, various operation windows in the presentation device 10, analysis results, and the like.
  • the media I / F 108 reads, for example, application software stored in the media drive 113.
  • the read application software and the like are stored in the memory 102 or the storage device 104.
  • the media I / F 108 writes the information generated by the processing unit 101 to the media drive 113.
  • the media I / F 108 writes the information generated by the processing unit 101 and stored in the storage device 104 to the media drive 113.
  • the media drive 113 is composed of a flexible disk, a CD-ROM, a DVD-ROM, or the like.
  • the media drive 113 is connected to the media I / F 108 by a flexible disk drive, a CD-ROM drive, a DVD-ROM drive, or the like.
  • the media drive 113 may store an application program or the like for the computer to execute an operation.
  • the processing unit 101 may acquire the application software and various settings necessary for controlling the presentation device 10 via the network instead of reading from the ROM 103 or the storage device 104.
  • the application program is stored in the storage device of the server computer on the network, and the presentation device 10 may access the server computer to download the presentation program 1042a and store it in the ROM 103 or the storage device 104. It is possible.
  • the ROM 103 or the storage device 104 is installed with an operation system that provides a graphical user interface environment such as Windows (registered trademark) manufactured and sold by Microsoft Corporation in the United States.
  • the application program according to the second embodiment shall operate on the operating system. That is, the presentation device 10 may be a personal computer or the like.
  • the presentation system 1000 does not have to be installed in one place, and the presentation device 10 and the analysis device 90 may be arranged in different places and connected by a network. Further, the presentation device 10 may be a device that does not require an operator who omits the input device 111 and the output device 112.
  • FIG. 5 shows the functional configuration of the presentation device 10.
  • the presentation device 10 includes a test value acquisition unit M1, a reference range acquisition unit M2, a comparison unit M3, and a presentation unit M4.
  • the test value acquisition means M1 corresponds to step S11 shown in FIG. 6
  • the reference range acquisition means M2 corresponds to step S12 shown in FIG. 6
  • the comparison means M3 corresponds to step S13 shown in FIG. Corresponds to step S14 shown in FIG.
  • FIG. 6 shows an example of a flowchart of processing of the disease information presentation program 1042a (hereinafter, simply referred to as presentation program 1042a).
  • the processing unit 101 of the presentation device 10 starts the processing for presenting the disease information by inputting the processing start from the input device 111 by the operator.
  • the processing unit 101 acquires a value relating to the metabolic capacity of triglyceride in the leukocyte of the subject from the analyzer 90.
  • the operator may input a value regarding the metabolic capacity of triglyceride in the leukocyte of the subject from the input device 111, and the processing unit 101 may acquire the value by accepting this input.
  • step S12 the processing unit 101 acquires a predetermined reference range of the metabolic capacity of triglyceride stored in the reference range database DB1.
  • step S13 the processing unit 101 compares the value related to the metabolic capacity of triglyceride acquired in step S11 with the predetermined reference range acquired in step S12.
  • step S13 If the value related to the metabolic capacity of the acquired triglyceride is out of the reference range in step S13 (YES), the processing unit 101 proceeds to step S14, and the subject has triglyceride-accumulating myocardial angiopathy.
  • step S13 when the value related to the metabolic capacity of the acquired triglyceride is within the reference range (NO), the process proceeds to step S15, and the subject is given triglyceride-accumulating myocardial angiopathy as disease information.
  • Triglyceride-accumulating arteriosclerosis, or triglyceride-accumulating arteriosclerosis, or triglyceride-accumulating arteriosclerosis, or preparatory for these diseases A label indicating that it is not a group is output to the output device 112.
  • the label output in step S14 includes "triglyceride-accumulating myocardial angiopathy, triglyceride-accumulating arteriosclerosis, or a preliminary group of these diseases” or "triglyceride-accumulating myocardial angiopathy, medium". Information indicating that it is a triglyceride-accumulating arteriosclerosis, or a preliminary group of these diseases, is included.
  • the label output in step S15 is "not a preparatory group for triglyceride-accumulating myocardial angiopathy, triglyceride-accumulating arteriosclerosis, or these diseases” or "triglyceride-accumulating myocardial angiopathy, medium”.
  • the information may be a mark such as x, ⁇ , exclamation mark or the like. Details of the value, reference range, comparison method, determination method, etc. regarding the metabolic capacity of triglyceride are described in 2. above. The explanation of is used here.
  • Configuration of a system for presenting differential information of cholesterol-accumulating arteriosclerosis or preliminary group and a device for presenting differential information of cholesterol-accumulating arteriosclerosis or preliminary group (1) Configuration of presentation system 2000 Configuration of cholesterol-accumulating arteriosclerosis or Since the appearance of the presentation system 2000 for the identification information of the preliminary group (hereinafter, simply referred to as the presentation system 2000) is the same as that of the presentation system 1000 shown in FIG. 3, 6-1. The explanation of (1) is incorporated here. However, the presentation device 10 in FIG. 3 shall be read as a cholesterol-accumulating arteriosclerosis or a presentation device 20 for differential information of the preliminary group (hereinafter, simply referred to as a presentation device 20).
  • the hardware configuration of the presentation device 20 is the presentation device shown in FIG. 4, except that the storage device 104 stores the presentation program 1042b for the differential information of dilated cardiomyopathy. Since it is the same as No. 10, the above 6-1. The explanation of (2) is used here.
  • the functional configuration of the presentation device 20 is basically the same as that of the presentation device 10 shown in FIG.
  • the test value acquisition means M1 corresponds to step S21 shown in FIG. 7
  • the reference range acquisition means M2 corresponds to step S22 shown in FIG. 7
  • the comparison means M3 corresponds to step S23 shown in FIG.
  • Means M4 corresponds to step S24 shown in FIG.
  • FIG. 7 shows a program 1042b for presenting differential information on cholesterol-accumulating arteriosclerosis or preliminary group (hereinafter, simply referred to as presentation program 1042b). ) Is shown as an example of the processing flowchart.
  • the processing unit 101 of the presentation device 20 starts processing the discrimination information of cholesterol-accumulating arteriosclerosis or the preliminary group by inputting the processing start from the input device 111.
  • the processing unit 101 acquires a value relating to the metabolic capacity of triglyceride in the leukocyte of the subject from the analyzer 90.
  • the operator may input a value regarding the metabolic capacity of triglyceride in the leukocyte of the subject from the input device 111, and the processing unit 101 may acquire the value by accepting this input.
  • step S22 the processing unit 101 acquires a predetermined reference range of the metabolic capacity of triglyceride stored in the reference range database DB1.
  • step S23 the processing unit 101 compares the value related to the metabolic capacity of triglyceride acquired in step S21 with the predetermined reference range acquired in step S22.
  • step S23 If the value related to the metabolic capacity of the acquired triglyceride is out of the reference range (YES) in step S23, the processing unit 101 proceeds to step S24, and the subject has cholesterol-accumulating arteriosclerosis or It is determined that it is not the preliminary group, and a label indicating that the subject is not cholesterol-accumulating arteriosclerosis or the preliminary group is output to the output device 112 as differential information. Further, in step S23, when the value related to the metabolic capacity of the acquired triglyceride is within the reference range (NO), the process proceeds to step S25, and the subject has cholesterol-accumulating arteriosclerosis or a preliminary group thereof.
  • a label indicating that the subject is cholesterol-accumulating arteriosclerosis or a preliminary group thereof is output to the output device 112.
  • the label output in step S24 indicates that "it is not a cholesterol-accumulating arteriosclerosis or a preliminary group thereof” or “it does not suggest that it is a cholesterol-accumulating arteriosclerosis or a preliminary group thereof". Is included.
  • the label output in step S25 indicates that "cholesterol-accumulating arteriosclerosis or its preliminary group” or "indicating that it is cholesterol-accumulating arteriosclerosis or its preliminary group”. Is included.
  • the information may be a mark such as x, ⁇ , exclamation mark or the like. Details of the value, reference range, comparison method, determination method, etc. regarding the metabolic capacity of triglyceride are described in 2. above. The explanation of is used here.
  • Configuration of presentation system for differential information of dilated cardiomyopathy and presentation device for differential information of dilated cardiomyopathy (1) Configuration of presentation system 3000 Configuration of presentation system 3000 for differential information of dilated cardiomyopathy (hereinafter, simply referred to as presentation system 3000) Since the appearance of the above 6-1 is the same as that of the presentation system 1000 shown in FIG. The explanation of (1) is incorporated here. However, the presentation device 10 in FIG. 3 shall be read as a presentation device 30 (hereinafter, simply referred to as a presentation device 30) for differential information of dilated cardiomyopathy.
  • the hardware configuration of the presentation device 30 is the presentation device shown in FIG. 4, except that the storage device 104 stores the presentation program 1042c for the differential information of dilated cardiomyopathy. Since it is the same as No. 10, the above 6-1. The explanation of (2) is used here.
  • the functional configuration of the presentation device 30 is basically the same as that of the presentation device 10 shown in FIG.
  • the test value acquisition means M1 corresponds to step S31 shown in FIG. 8
  • the reference range acquisition means M2 corresponds to step S32 shown in FIG. 8
  • the comparison means M3 corresponds to step S33 shown in FIG.
  • the means M4 corresponds to step S34 shown in FIG.
  • FIG. 8 shows an example of a flowchart of processing of a program 1042c for presenting differential information of dilated cardiomyopathy (hereinafter, simply referred to as a presentation program 1042c).
  • the processing unit 101 of the presentation device 30 starts the processing for presenting the differential information of dilated cardiomyopathy by inputting the processing start from the input device 111 by the operator.
  • the processing unit 101 acquires a value relating to the metabolic capacity of triglyceride in the leukocyte of the subject from the analyzer 90.
  • the operator may input a value regarding the metabolic capacity of triglyceride in the leukocyte of the subject from the input device 111, and the processing unit 101 may acquire the value by accepting this input.
  • step S32 the processing unit 101 acquires a predetermined reference range of the metabolic capacity of triglyceride stored in the reference range database DB1.
  • step S33 the processing unit 101 compares the value related to the metabolic capacity of triglyceride acquired in step S31 with the predetermined reference range acquired in step S32.
  • step S33 If the value related to the metabolic capacity of the acquired triglyceride is out of the reference range (YES) in step S33, the processing unit 101 proceeds to step S34 and determines that the subject does not have dilated cardiomyopathy. , A label indicating that the subject does not have dilated cardiomyopathy is output to the output device 112 as differential information. Further, in step S33, when the value related to the metabolic capacity of the acquired triglyceride is within the reference range (NO), the process proceeds to step S35, and the subject is determined to have dilated cardiomyopathy and differentiated. As information, a label indicating that the subject has dilated cardiomyopathy is output to the output device 112.
  • the label output in step S34 contains information indicating "not dilated cardiomyopathy” or "not suggesting dilated cardiomyopathy”.
  • the label output in step S35 contains information indicating "has dilated cardiomyopathy” or “suggests to have dilated cardiomyopathy”.
  • the information may be a mark such as x, ⁇ , exclamation mark or the like. Details of the value, reference range, comparison method, determination method, etc. regarding the metabolic capacity of triglyceride are described in 2. above. The explanation of is used here.
  • the functional configuration of the presentation device 40 is basically the same as that of the presentation device 10 shown in FIG.
  • the test value acquisition means M1 corresponds to step S41 shown in FIG. 9
  • the reference range acquisition means M2 corresponds to step S42 shown in FIG. 9
  • the comparison means M3 corresponds to step S43 shown in FIG.
  • the means M4 corresponds to step S44 shown in FIG.
  • FIG. 9 shows processing of the efficacy information presentation program 1042d (hereinafter, simply referred to as presentation program 1042d) for stent-based vasodilator therapy. An example of the flowchart is shown.
  • the processing unit 101 of the presentation device 40 starts the processing for presenting the effectiveness information regarding the vasodilator therapy using the stent by inputting the processing start from the input device 111 by the operator.
  • the processing unit 101 acquires a value relating to the metabolic capacity of triglyceride in the leukocyte of the subject from the analyzer 90.
  • the operator may input a value regarding the metabolic capacity of triglyceride in the leukocyte of the subject from the input device 111, and the processing unit 101 may acquire the value by accepting this input.
  • step S42 the processing unit 101 acquires a predetermined reference range of the metabolic capacity of triglyceride stored in the reference range database DB1.
  • step S43 the processing unit 101 compares the value related to the metabolic capacity of triglyceride acquired in step S41 with the predetermined reference range acquired in step S42.
  • step S43 If the value related to the metabolic capacity of the acquired triglyceride is out of the reference range (YES) in step S43, the processing unit 101 proceeds to step S44, and the subject is given vasodilation therapy using a stent. It is determined that it is not effective, and a label indicating to the subject that vasodilation therapy using a stent is not effective is output to the output device 112 as efficacy information. Further, in step S43, when the value related to the metabolic capacity of the acquired triglyceride is within the reference range (NO), the process proceeds to step S35, and vasodilation therapy using a stent is effective for the subject.
  • a label indicating that vasodilation therapy using a stent is effective for the subject is output to the output device 112.
  • the label output in step S44 contains information indicating that "the stent is not valid” or "it does not suggest that the stent is valid”.
  • the label output in step S45 contains information indicating that "the stent is effective” or "suggests the effectiveness of the stent".
  • the information may be a mark such as x, ⁇ , exclamation mark or the like. Details of the value, reference range, comparison method, determination method, etc. regarding the metabolic capacity of triglyceride are described in 2. above. The explanation of is used here.
  • FIG. 3 The appearance of the presentation system 5000 (hereinafter, simply referred to as the presentation system 5000) for the presentation system 5000 (hereinafter, simply referred to as the presentation system 5000) regarding the medium-chain fatty acid composition and / or the triglyceride-accumulating arteriosclerosis retraction composition is shown in FIG. Since it is the same as the presentation system 1000 shown, the above 6-1. The explanation of (1) is incorporated here. However, the presentation device 10 in FIG. 3 should be read as a presentation device 50 (hereinafter, simply referred to as a presentation device 50) for efficacy information regarding the medium-chain fatty acid composition and / or the triglyceride-accumulating arteriosclerosis-regressive composition. And.
  • the functional configuration of the presentation device 50 is basically the same as that of the presentation device 10 shown in FIG.
  • the test value acquisition means M1 corresponds to step S51 shown in FIG. 10
  • the reference range acquisition means M2 corresponds to step S52 shown in FIG. 10
  • the comparison means M3 corresponds to step S53 shown in FIG.
  • the means M4 corresponds to step S54 shown in FIG.
  • FIG. 10 shows a medium-chain fatty acid composition and / or a triglyceride-accumulating arteriosclerosis.
  • An example of a flowchart of processing of a presentation program 1042e (hereinafter, simply referred to as a presentation program 1042e) of effectiveness information regarding a regression composition is shown.
  • the processing unit 101 of the presentation device 50 presents effectiveness information regarding the medium-chain fatty acid composition and / or the triglyceride-accumulating arteriosclerosis-regressive composition by inputting the start of processing from the input device 111 by the operator. Start the process for.
  • the processing unit 101 acquires a value relating to the metabolic capacity of triglyceride in the leukocyte of the subject from the analyzer 90.
  • the operator may input a value regarding the metabolic capacity of triglyceride in the leukocyte of the subject from the input device 111, and the processing unit 101 may acquire the value by accepting this input.
  • step S52 the processing unit 101 acquires a predetermined reference range of the metabolic capacity of triglyceride stored in the reference range database DB1.
  • step S53 the processing unit 101 compares the value related to the metabolic capacity of triglyceride acquired in step S51 with the predetermined reference range acquired in step S52.
  • step S53 If the value of the triglyceride obtained in step S53 regarding the metabolic capacity is out of the reference range (YES), the processing unit 101 proceeds to step S54 to administer the medium-chain fatty acid composition to the subject and to administer the medium-chain fatty acid composition. / Or the administration of the triglyceride-accumulating arteriosclerosis-regressive composition was determined to be effective, and the medium-chain fatty acid composition was administered to the subject as the effectiveness information, and / or the triglyceride-accumulating arteriosclerosis-regressive composition was administered. A label indicating that is valid is output to the output device 112.
  • step S53 when the value related to the metabolic capacity of the acquired triglyceride is within the reference range (NO), the process proceeds to step S55, and the subject is administered the medium-chain fatty acid composition and / or medium. It is determined that the administration of triglyceride-accumulating arteriosclerosis-regressive composition is not effective, and the administration of medium-chain fatty acid composition and / or the administration of triglyceride-accumulating arteriosclerosis-regressive composition to the subject is not effective as efficacy information. Is output to the output device 112.
  • the label output in step S54 indicates that "administration of medium-chain fatty acid composition and / or administration of triglyceride-accumulating arteriosclerosis-regressive composition is effective" or "administration of medium-chain fatty acid composition and / or Information indicating that it suggests the effectiveness of administration of the triglyceride-accumulating arteriosclerosis-regressive composition is included.
  • "administration of medium-chain fatty acid composition and / or administration of triglyceride-accumulating arteriosclerosis-regressive composition is not effective” or "administration of medium-chain fatty acid composition and / or It does not suggest that administration of triglyceride-accumulating arteriosclerosis-regressive composition is effective.
  • the information may be a mark such as x, ⁇ , exclamation mark or the like. Details of the value, reference range, comparison method, determination method, etc. regarding the metabolic capacity of triglyceride are described in 2. above. The explanation of is used here.
  • presentation system 6000 The appearance of the presentation system 6000 for treatment effect information (hereinafter, simply referred to as presentation system 6000) is the same as that of the presentation system 1000 shown in FIG. The explanation of (1) is incorporated here. However, the presentation device 10 in FIG. 3 shall be read as a presentation device 60 for treatment effect information (hereinafter, simply referred to as a presentation device 60).
  • the hardware configuration of the presentation device 60 is that the storage device 104 stores the treatment effect information presentation program 1042f using a stent, and the subject's past triglycerides. Since it is the same as the presentation device 10 shown in FIG. 4, except that the reference range database (DB) DB2 in which the values related to the metabolic capacity are recorded is stored, the above 6-1. The explanation of (2) is used here.
  • DB reference range database
  • the functional configuration of the presentation device 60 is basically the same as that of the presentation device 10 shown in FIG.
  • the test value acquisition means M1 corresponds to step S61 shown in FIG. 10
  • the reference range acquisition means M2 corresponds to step S62 shown in FIG. 10
  • the comparison means M3 corresponds to step S63 shown in FIG.
  • the means M4 corresponds to step S64 shown in FIG.
  • FIG. 11 shows an example of a flowchart of processing of the treatment effect information presentation program 1042f (hereinafter, simply referred to as presentation program 1042f).
  • the processing unit 101 of the presentation device 60 starts the processing for presenting the treatment effect information by inputting the processing start from the input device 111 by the operator.
  • the processing unit 101 acquires a value relating to the metabolic capacity of triglyceride in the leukocyte of the subject from the analyzer 90.
  • the operator may input a value regarding the metabolic capacity of triglyceride in the leukocyte of the subject from the input device 111, and the processing unit 101 may acquire the value by accepting this input.
  • step S62 the processing unit 101 acquires a value related to the past triglyceride metabolic ability of the same subject stored in the reference range database DB2.
  • step S63 the processing unit 101 compares the value regarding the triglyceride metabolic capacity acquired in step S61 with the value regarding the past triglyceride metabolic capacity of the subject acquired in step S62.
  • step S63 If the value of the acquired triglyceride metabolic capacity is higher than the value of the subject's past triglyceride metabolic capacity in step S63 (YES), the processing unit 101 proceeds to step S64 to perform the test. It is determined that the treatment applied to the person is effective, and a label indicating that the treatment is effective is output to the output device 112 as treatment effect information. Further, in step S63, when the value related to the acquired triglyceride metabolic capacity is lower than the value related to the past triglyceride metabolic capacity of the subject (NO), the process proceeds to step S65 and the subject is applied. It is determined that the treated treatment is not effective, and a label indicating that the treatment is not effective is output to the output device 112 as treatment effect information.
  • the label output in step S64 contains information indicating that "the treatment is effective” or “suggests the effectiveness of the treatment”.
  • the label output in step S65 contains information indicating that "treatment is not effective” or “does not suggest that treatment is effective”.
  • the information may be a mark such as x, ⁇ , exclamation mark or the like. Details of the value, reference range, comparison method, determination method, etc. regarding the metabolic capacity of triglyceride are described in 2. above. The explanation of is used here.
  • the presentation programs 1042a, 1042b, 1042c, 1042d, 1042e, 1042f have the first and second measured values shown in FIG. 12 before the respective steps S11, S21, S31, S41, S51, and S61. It may be provided with a process of generating information indicating a difference.
  • the processing unit 101 of each presentation device acquires the first measured value from the analyzer 90 in accordance with the measured value acquisition command input by the operator from the input device 111 in step S81. Further, the processing unit 101 of each presentation device acquires the second measured value from the analyzer 90 in accordance with the measured value acquisition command input by the operator from the input device 111 in step S82. Further, the processing unit 101 of each presenting device generates information indicating the difference between the first measured value and the second measured value by following the command input by the operator from the input device 111 or using the second measured value as a trigger.
  • the information indicating the difference is not limited as long as the difference between the first measured value and the second measured value is indicated. For example, it may be a subtraction value, a division value, a relative value, or the like. Further, the first measured value and the histogram showing the second measured value may be displayed side by side.
  • the present embodiment includes the presentation programs 1042a, 1042b, 1042c, 1042d, 1042e, 1042f described above. Further, an embodiment of the present embodiment relates to a program product such as a media drive that stores the presentation programs 1042a, 1042b, 1042c, 1042d, 1042e. That is, the presentation programs 1042a, 1042b, 1042c, 1042d, 1042e can be stored in a hard disk, a semiconductor memory element such as a flash memory, or a media drive such as an optical disk. Further, the media drive may be a computer such as a server device. The recording format of the program on the media drive is not limited as long as the presenting devices 10, 20, 30, 40, 50 can read the program. Recording on the media drive is preferably non-volatile.
  • BMPP 15- (4- (3-aminopropyl) phenyl) -3-methylpentadecanoic acid was synthesized by the following method.
  • EtOAc is intended for ethyl acetate
  • Boc is intended for a tert-butoxycarbonyl protecting group
  • MeOH is intended for methanol.
  • Step 1b Synthesis of benzyl 15- (4-iodophenyl) -3-methylpentadecanoate (2)
  • Step 2 Synthesis of Benzyl 15-(4- (3-((tert-butoxycarbonyl) amino) prop-1-yn-1-yl) phenyl) -3-methylpentadecanoate (3)
  • Triethylamine (110 mg, 1.1 mmol) and bis (triphenylphosphine) palladium (II) dichloride (51 mg, 0.073 mmol) were added to a THF solution of compound 2 (200 mg, 0.37 mmol) with stirring.
  • the reaction mixture of compound 2 was stirred at room temperature for several minutes.
  • Boc-protected propargylamine (170 mg, 1.1 mmol) dissolved in THF was slowly added to the reaction mixture of Compound 2 and stirred for 5 minutes.
  • Copper iodide (7 mg, 0.037 mmol) was added and the reaction mixture was stirred at room temperature overnight. After completion of the reaction, THF was removed in vacuo.
  • the obtained residue was purified by silica gel column chromatography using hexane / EtOAc (8: 2) to give the desired compound 3 (115 mg, 55% yield) as a yellow oil.
  • Step 3 Synthesis of 15-(4-(3-((tert-butoxycarbonyl) amino) propyl) phenyl) -3-methylpentadecanoic acid (4)
  • Step 4 Synthesis of 15- (4- (3-aminopropyl) phenyl) -3-methylpentadecanoic acid (5)
  • Alexa Fluor TM 680 NHS Ester Hydrolyzate (hereinafter simply referred to as “Alexa Fluor TM 680”) was added to a final concentration of 0.0074 ⁇ M, 0.022 ⁇ M, 0.067 ⁇ M, 0.2 ⁇ M, and allowed to stand at room temperature for 30 minutes. The fluorescently labeled substance was taken up by.
  • BD FACS Lysing Solution (BD Biosciences) to the sample after uptake and let it stand at room temperature for 30 minutes to hemolyze the erythrocytes, and then centrifuge at room temperature at 1500 rpm for 30 minutes to collect the leukocytes as a precipitate. , was resuspended in PBS to prepare a sample for FACS analysis.
  • FACS analysis uses leukocytes similarly prepared without the addition of Alexa Fluor TM 680-BMPP and is a gate for lymphocytes, monocytes, and neutrophils by dot plotting of forward and lateral scattered light. was made in advance and measured until 100,000 pieces were counted in the gate.
  • the histogram shifted to the right (that is, the cell population shifted to the higher fluorescence intensity) in the Alexa Fluor TM 680-BMPP group in the upper row in a concentration-dependent manner.
  • Alexa Fluor (trademark) 680-BMPP was taken up.
  • Method (i) Preparation of leukocyte cells Add 1/5 amount of leukocyte separating agent (HetaSep, Veritas) to 5.5 ml of whole blood collected from healthy subjects and patients, and leukocyte cells are prepared according to the product protocol. The cells were collected and resuspended in 2.1 ml of DMEM medium without serum (hereinafter referred to as DMEM-free medium). The uptake and excretion capacities of Alexa Fluor TM 680-BMPP were measured using 400 ⁇ l each as follows.
  • leukocyte separating agent HetaSep, Veritas
  • Alexa Fluor TM 680-BMPP or Alexa Fluor TM 680 was removed by centrifugation at room temperature, and the cells were resuspended in 500 ⁇ l of DMEM serum-free medium at 37 ° C. for 2 hours.
  • BD FACS Lysing Solution was added, and the cells were subjected to FACS in the same manner as the sample immediately after taking in. FACS analysis was performed in the same manner as in Experimental Example 2, and the fluorescence intensities of neutrophils, monocytes, and lymphocytes in the sample immediately after uptake and the sample for excretion measurement were compared.
  • FIG. 15 shows the ability of healthy subjects to excrete neutrophils, monocytes, and lymphocytes.
  • the lower part of FIG. 15 shows the ability of primary TGCV patients to excrete neutrophils, monocytes, and lymphocytes.
  • the excretion capacity of Alexa Fluor TM 680-BMPP in healthy neutrophils was fully demonstrated by the leftward shift of the histogram (ie, the shift of the cell population to the lower fluorescence intensity).
  • lymphocytes also showed excretion ability by shifting the fluorescence intensity to the left as a broad cell population.
  • FIG. 16 shows the emission capacity of Alexa Fluor (trademark) 680.
  • the reference numeral p indicates a histogram immediately after the uptake, and the reference numeral q indicates a histogram after the discharge.
  • the upper part of FIG. 16 shows the ability of healthy subjects to excrete neutrophils, monocytes, and lymphocytes.
  • the lower part of FIG. 16 shows the ability of primary TGCV patients to excrete neutrophils, monocytes, and lymphocytes. No difference in the excretion capacity of Alexa Fluor TM 680 was observed between leukocytes of healthy subjects and leukocytes of primary TGCV patients.
  • Alexa Fluor TM 680-BMPP uptake reaction Add 40 ⁇ l of Alexa Fluor TM 680-BMPP to 400 ⁇ l of resuspension of cells to a final concentration of 0.067 ⁇ M, and take up by standing at room temperature for 30 minutes. The reaction was carried out. Immediately after uptake, the measurement sample was hemolyzed by adding BD FACS Lysing Solution immediately after the reaction and subjected to FACS. On the other hand, for the sample for emission measurement, Alexa Fluor TM 680-BMPP was removed by centrifugation at room temperature, cells were resuspended in 500 ⁇ l of DMEM serum-free medium, and 0, 10, 30, 60, 20 at 37 ° C.
  • Results Figure 17 shows the results.
  • the upper part of FIG. 17 shows the result of healthy person A, and the lower part shows the result of healthy person B.
  • no shift in the histogram was observed from the discharge time of 10 minutes to 120 minutes, and it was considered that sufficient discharge was already performed at 10 minutes and the discharge time reached almost the background. From this, it was considered that the evaluation was possible even with a shorter discharge time.
  • Reference Example 6-1 Effect of medium-chain fatty acid 6-week-old (160-180 g) male SD rats were used. Eighteen animals were prepared as a control group and eight animals were prepared as a medium-chain fatty acid administration group. All rats were preliminarily bred for 1 week after being brought in with a normal diet only, and then the medium-chain fatty acid-administered group was fed a normal diet, and 1145 mg / kg body weight / day of high triglyceride content (98% of the constituent fatty acids were contained). Decanoic acid) was forcibly administered. The control group was also given a normal diet and was forced to administer 1145 mg / kg body weight / day of water.
  • the abdominal aortic aneurysm induction procedure is a process of inserting a catheter into the rat abdominal aorta and ligating the abdominal aorta together with the inserted catheter, and is based on the method disclosed in Patent Document 3.
  • the control group was fed a high-fat diet and continued to be forced to administer 1145 mg / kg body weight / day of water.
  • a high-fat diet was given to the medium-chain fatty acid-administered group, and high-content neutral fat was continuously forcibly administered.
  • four weeks after the abdominal aortic aneurysm induction treatment was completed the patient was euthanized and dissected. The results are shown in FIG. 18 (A).
  • the medium-chain fatty acid administration group the development of abdominal aortic aneurysm was observed in one animal.
  • abdominal aortic aneurysm The occurrence of abdominal aortic aneurysm could not be confirmed in 7 of the given groups. From the above, the incidence of abdominal aortic aneurysm was 38.9% in the control group and 12.5% in the medium-chain fatty acid administration group.
  • FIG. 18B shows the results of examining the presence or absence of rupture of the aortic aneurysm in the rats that developed the abdominal aortic aneurysm.
  • rupture of the abdominal aortic aneurysm was confirmed in 2 of the 7 control groups. No rupture of the abdominal aortic aneurysm was observed in the remaining 5 animals in the control group. On the other hand, no rupture of the abdominal aortic aneurysm was observed in one of the medium-chain fatty acid-administered groups that had an aortic aneurysm. From the above, the rupture rate of the abdominal aortic aneurysm was 28.6% in the control group and 0.0% in the medium-chain fatty acid administration group.
  • FIG. (A) is the result before the start of the MCT diet
  • (B) is the result 50 days after the start of the MCT diet. The results showed that the 50-day MCT diet regressed the triglyceride-accumulating arteriosclerosis of the coronary arteries.
  • FIGS. 20 and 21 The results are shown in FIGS. 20 and 21.
  • the horizontal axis is the distance from the coronary artery ostium
  • the vertical axis is the diameter of the blood vessel
  • (A) is the result before the start of the MCT diet
  • (B) is the result 4 years after the start of the MCT diet.
  • White is the blood flow site
  • gray is the triglyceride layer.
  • FIG. 21 is a cross-sectional view of six blood vessels (a to f) having a distance of 6.5 to 9.0 cm from the coronary artery ostium.
  • the 4-year MCT diet regressed the triglyceride-accumulating arteriosclerosis of the coronary arteries, and the diameter of the blood flow site was significantly widened.
  • FIG. 22 shows the excretion ability of Alexa Fluor TM 680-BMPP in leukocytes (neutrophils) before the start of treatment of the patient.
  • the lower part of FIG. 22 (A) shows the excretion ability of Alexa Fluor TM 680-BMPP in leukocytes of healthy subjects.
  • the upper part of FIG. 22 (B) shows the excretion ability of Alexa Fluor TM 680-BMPP in leukocytes after treatment of a patient.
  • FIG. 22 (A) shows the excretion ability of Alexa Fluor TM 680-BMPP in leukocytes (neutrophils) before the start of treatment of the patient.
  • the lower part of FIG. 22 (A) shows the excretion ability of Alexa Fluor TM 680-BMPP in leukocytes of healthy subjects.
  • the upper part of FIG. 22 (B) shows the excretion ability of Alexa Fluor TM 680-BMPP in leukocytes after treatment of a patient.
  • FIG. 22B shows the excretion ability of Alexa Fluor TM 680-BMPP in leukocytes of healthy subjects.
  • FIG. 22 (A) the excretion capacity of Alexa Fluor TM 680-BMPP in patients before the start of treatment is clearly shown by the fact that the shift of fluorescence intensity to the left is significantly smaller than that of healthy subjects. It was declining.
  • FIG. 22 (B) the excretion ability of Alexa Fluor TM 680-BMPP in the treated patients was restored to the same level as in healthy subjects. From this result, it was shown that the excretion ability of Alexa Fluor TM 680-BMPP is also useful for evaluating the effect of MCT diet.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Endocrinology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

従来の核医学検査よりも短時間で、被検者のトリグリセリドの代謝能に関する値を取得する方法と、前記取得方法に使用する検査試薬、及び検査キットを提供する。 下記工程を含む、被検者の白血球におけるトリグリセリドの代謝能に関する値の取得方法:蛍光物質を標識した脂肪酸化合物と、被検者から採取した白血球とを体外で混合し、前記蛍光物質を標識した脂肪酸と白血球とを接触させる第1工程であって、前記脂肪酸化合物は、脂肪酸残基を含み、前記脂肪酸残基の炭素数が8から26であり、前記脂肪酸残基を構成する水素原子の一部は、前記脂肪酸残基の末端のメチル基を除き炭素数1から3のアルキル基で置換されていてもよい、第1工程、及び前記白血球における蛍光標識に由来する蛍光強度の測定値を、前記トリグリセリドの代謝能に関する値として取得する第2工程、により課題を解決する。

Description

トリグリセリドの代謝能に関する値の取得方法、疾患の情報の提示方法、疾患の鑑別情報の提示方法、治療の有効性情報の提示方法、治療効果情報の提示方法、検査試薬、及び検査キット
 本明細書には、トリグリセリドの代謝能に関する値の取得方法、疾患の情報の提示方法、疾患の鑑別情報の提示方法、治療の有効性情報の提示方法、治療効果情報の提示方法、検査試薬、及び検査キットが開示される。
 中性脂肪蓄積心筋血管症 (Triglyceride deposit cardiomyovasculopathy, TGCV) は、2008年にわが国の心臓移植症例より見出された新規疾患単位である。TGCVは、中性脂肪が心筋と冠動脈に蓄積する結果、重症心不全、不整脈、冠動脈疾患を来す難病である。TGCVは、全国の潜在患者数が4万人から5万人であり、予備群は、数万人と推定される。しかし、実診断数は令和元年11月の時点で226例(内、46例は死亡)にとどまる(非特許文献1~6)。
Li M, et. al. Orphanet J Rare Dis 2019;14:134. doi:10.1186/s13023-019-1087-4. Miyauchi H, et. al. Ann Nucl Cardiol 2018;4:94-100. Higashi M, et. al. Ann Nucl Cardiol 2017;3:94-102. Hirano K, et. al.. Eur Heart J 2015; 36:580. Ikeda Y, et. al. Eur Heart J 2014;35:875. Hirano K, et. al. N Engl J Med 2008;359:2396-2398.
 TGCVの実診断数と潜在患者数が大きく乖離する理由として、TGCVの診断が現在123Iラベルβ-methyl iodophenyl-pentadeca- noic acid(123I-BMIPP)シンチグラムを用いた核医学検査により行われていること挙げられる。すなわち、123I-BMIPP[商品名:カルディオダイン(登録商標)注]を患者に投与し、30分後に心臓をSPECTで撮像し、さらに3~4時間後に心臓の123I-BMIPPの再分布像を取得し、心臓のトリグリセリドの代謝能を評価する。123I-BMIPPシンチグラムは、in vivoで検査を行うため、長時間患者を拘束する。また、核医学検査室自体を保有する医療施設は少なく、前記シンチグラムを行える施設は、日本には10数施設しかない。このような検査環境から、TGCVを検出するための検査を手軽に行うことができず、検査自体が少なくなっていると考えら得られる。
 本発明は、従来の核医学検査よりも短時間で、被検者のトリグリセリドの代謝能に関する値を取得する方法と、前記取得方法に使用する検査試薬、及び検査キットを提供することを一つの課題とする。
 本発明者は、鋭意研究を重ねたところ、蛍光標識脂肪酸を使用することで、従来の核医学検査よりも短時間で、被検者のトリグリセリドの代謝能に関する値を取得できることを見出した。
 本発明は、当該知見に基づいて完成されたものであり、以下の態様を含む。
項1.
 下記工程を含む、被検者の白血球におけるトリグリセリドの代謝能に関する値の取得方法:
 蛍光物質を標識した脂肪酸化合物と、被検者から採取した白血球とを体外で混合し、前記蛍光物質を標識した脂肪酸と白血球とを接触させる第1工程であって、前記脂肪酸化合物は、脂肪酸残基を含み、前記脂肪酸残基の炭素数が8から26であり、前記脂肪酸残基を構成する水素原子の一部は、前記脂肪酸残基の末端のメチル基を除き炭素数1から3のアルキル基で置換されていてもよい、第1工程、及び
 前記白血球における蛍光標識に由来する蛍光強度の測定値を、前記トリグリセリドの代謝能に関する値として取得する第2工程。
項2.
 前記脂肪酸残基の末端のメチル基の水素原子が、置換もしくは非置換のフェニル基で置換されている、項1に記載の取得方法。
項3.
 前記脂肪酸化合物が下記一般式(1)で表される、項1に記載の取得方法:
Figure JPOXMLDOC01-appb-C000009
(nは、4から22の整数である。)。
項4.
 前記蛍光物質を標識した脂肪酸化合物が下記一般式(2)で表される、項1に記載の取得方法:
Figure JPOXMLDOC01-appb-C000010
(nは、4から22の整数である。Xは、蛍光物質と、リンカー部分を含む。)。
項5.
 第2工程の後に、さらに前記蛍光標識した脂肪酸化合物を白血球から5分から2時間かけて除去する第3工程と、
 第3工程の後に前記白血球における蛍光標識に由来する蛍光強度の測定値を取得する第4工程と、
 第2工程で取得した蛍光強度の測定値を第1測定値とし、第4工程で取得した蛍光強度の測定値を第2測定値として、第1測定値と第2測定値の差を示す値を求め、前記差を示す値を前記トリグリセリドの代謝能に関する値として取得する第5工程を含む、項1から5のいずれか一項に記載の取得方法。
項6.
 項1から5のいずれか一項に記載の値の取得方法により取得された前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、前記被検者が中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群であることを示唆する工程を含む、
疾患の情報の提示方法。
項7.
 項1から5のいずれか一項に記載の値の取得方法により取得された前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲内である時に、前記被検者がコレステロール蓄積型動脈硬化症、又はその予備群であることを示唆する工程を含む、
疾患の鑑別情報の提示方法。
項8.
 項1から5のいずれか一項に記載の値の取得方法により取得された前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、前記被検者が拡張型心筋症ではないことを示唆する工程を含む、
疾患の鑑別情報の提示方法。
項9.
 項1から5のいずれか一項に記載の値の取得方法により取得された、前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、前記被検者にステントを用いた血管拡張療法が有効ではないことを示唆する工程を含む、
ステントによる血管拡張療法の有効性情報の提示方法。
項10.
 項1から5のいずれか一項に記載の値の取得方法により取得された、前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、前記被検者への中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与が有効であることを示唆する工程を含む、
組成物の有効性情報の提示方法。
項11.
 請求項1から5のいずれか一項に記載の値の取得方法により取得された、前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、被検者の白血球におけるトリグリセリドの代謝能に関する値を、同一の被検者の過去のトリグリセリドの代謝能に関する値と比較し、前記被検者の白血球におけるトリグリセリドの代謝能に関する値が、前記同一の被検者の過去のトリグリセリドの代謝能に関する値よりも高い時に、前記被検者に適用した治療が有効であることを示唆する工程を含む、
治療効果情報の提示方法。
項12.
 項8、9、10、又は12に記載の各工程を実行する処理部を備えた、演算装置。
項13.
 コンピュータに実行させた時に、演算装置に、項8、9、10、又は12に記載の各工程を実行させる、コンピュータプログラム。
項14.
 被検者の白血球を採取するための採血に使用される採血管であって、
 前記白血球は、体外で項1から5のいずれか一項に記載のトリグリセリドの代謝能に関する値を取得するために使用され、
 前記採血管は、白血球を分離するための比重液、又は白血球を分離するための比重液と白血球分離剤を格納する、
前記採血管。
項15.
 蛍光物質を標識した脂肪酸化合物を含む、トリグリセリドの代謝能を評価するための検査試薬であって、前記脂肪酸化合物は、脂肪酸残基を含み、前記脂肪酸残基の炭素数が8から26であり、前記脂肪酸残基を構成する水素原子の一部は、前記脂肪酸残基の末端のメチル基を除き炭素数1から3のアルキル基で置換されていてもよい、
前記検査試薬。
項16.
 項14に記載の採血管と、請求項15に記載の検査試薬を組み合わせた、検査キット。
項17.
 下記一般式(3)で表される化合物:
Figure JPOXMLDOC01-appb-C000011
(nは、4から22の整数である。Rは、炭素数3から6のアルキレン基を示す。)。
項18.
  下記一般式(3)で表される化合物:
Figure JPOXMLDOC01-appb-C000012
(nは、4から22の整数である。Rは、炭素数3から6のアルキレン基を示す。)の製造方法であって、
 下記一般式(4)で表される化合物:
Figure JPOXMLDOC01-appb-C000013
(nは、4から22の整数である。Rは、炭素数3から6のアルキレン基を示す。Bocは、tert-ブトキシカルボニル保護基を示す。)
から、tert-ブトキシカルボニル保護基を除去する工程を含む、
前記製造方法。
項19.
 下記一般式(2)で表される化合物:
Figure JPOXMLDOC01-appb-C000014
(nは、4から22の整数である。Xは、蛍光物質と、リンカー部分を含む。)。
項20.
 下記一般式(2)で表される化合物:
Figure JPOXMLDOC01-appb-C000015
(nは、4から22の整数である。Xは、蛍光物質と、リンカー部分を含む。)
の製造方法であって、
 下記一般式(3)で表される化合物:
Figure JPOXMLDOC01-appb-C000016
(nは、4から22の整数である。Rは、炭素数3から6のアルキレン基を示す。)と、蛍光物質とをアミンカップリングにより結合する工程を含む、
製造方法。
 本発明によれば、従来の核医学検査を用いた方法よりも、簡便にトリグリセリドの代謝能を評価することができる。また、発明に係るトリグリセリドの代謝能の評価方法によれば、検査を受けた患者について、疾患の情報、疾患の鑑別情報、疾患の治療情報等を提示することができる。
トリグリセリドの代謝能に関する値の取得方法の概要を示す。(A)は、細胞内における蛍光標識脂肪酸化合物の代謝の概要を示す。(B)は、取得方法の一実施形態を示す。(C)は、取得方法の別の実施形態を示す。 脂肪酸化合物の合成スキームを示す。(A)は、合成工程Iaを示す。(B)は、合成工程Ibを示す。(C)は、合成工程IIを示す。(D)は、合成工程IIIを示す。(E)は、合成工程IVを示す。 提示システム1000,2000,3000,4000,5000の外観の例を示す。 提示装置10,20,30,40,50のハードウエアの構成の例を示す。 提示装置10,20,30,40,50の機能ブロックを示す。 疾患の情報の提示プログラムの処理の流れを示す。 コレステロール蓄積型動脈硬化症、又は予備群の鑑別情報の提示プログラムの処理の流れを示す。 拡張型心筋症の鑑別情報の提示プログラムの処理の流れを示す。 ステントを用いた血管拡張療法に関する有効性情報の提示プログラムの処理の流れを示す。 中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物に関する有効性情報の提示プログラムの処理の流れを示す。 治療効果情報の提示プログラムの処理の流れを示す。 第1測定値と第2測定値の差を示す情報を出力するためのフローチャートを示す。 Alexa Fluor (商標)680-BMPPの取り込み能を示す。 フルオレセイン標識BMPPの取り込み能を示す。 健常人と原発性中性脂肪蓄積心筋血管症患者の白血球におけAlexa Fluor (商標)680-BMPPの排出能を示す。 健常人と原発性中性脂肪蓄積心筋血管症患者の白血球におけAlexa Fluor (商標)680の排出能を示す。 排出時間によるAlexa Fluor (商標)680-BMPP排出量検討結果を示す。 ラットに中鎖脂肪酸投与を行った際の結果を示す(A)は腹部大動脈瘤の発生率を示す。(B)は大動脈瘤の破裂の発生の有無を示す。 症例1の患者に50日間のMCT食事療法を行い、その前後の冠動脈内の脂肪蓄積を評価した結果を示す血管の断面図であり、(A)がMCT食事療法開始前、(B)がMCT食事療法開始から50日後の結果である。 症例2の患者に4年間のMCT食事療法を行い、その前後の冠動脈内の脂肪蓄積を評価した結果(冠動脈口からの距離と血管の直径)を示す図であり、(A)がMCT食事療法開始前、(B)がMCT食事療法開始から4年後の結果である。 症例2の患者に4年間のMCT食事療法を行い、その前後の冠動脈内の脂肪蓄積を評価した結果を示す血管の断面図であり、(A)がMCT食事療法開始前、(B)がMCT食事療法開始から4年後の結果である。 (A)上段は、患者の治療開始前の白血球におけるAlexa Fluor (商標)680-BMPPの排出能を示す。(A)下段は、健常人の白血球におけるAlexa Fluor (商標)680-BMPPの排出能を示す。(B)上段は、患者の治療後の白血球におけるAlexa Fluor (商標)680-BMPPの排出能を示す。(B)下段は、健常人の白血球におけるAlexa Fluor (商標)680-BMPPの排出能を示す。
1.トリグリセリドの代謝能に関する値の取得方法
 本発明のある実施形態は、被検者の細胞におけるトリグリセリドの代謝能に関する値の取得方法に関する。前記取得方法は、蛍光物質を標識した脂肪酸化合物と、被検者から採取した白血球とを体外で混合し、前記蛍光物質を標識した脂肪酸と白血球とを接触させる第1工程と、前記白血球における蛍光標識に由来する蛍光強度の測定値を取得する第2工程を含む。蛍光物質を標識した脂肪酸化合物は、本明細書において「蛍光標識脂肪酸化合物」ともいう。また、トリグリセリドの代謝能に関する値の取得方法は、以下、単位に「取得方法」と呼ぶ場合がある。
 図1を用いてトリグリセリドの代謝能に関する値の取得方法について説明する。図1の(A)は、細胞における蛍光標識脂肪酸化合物の取り込みと、リパーゼ活性に依存した排出の模式図を示す。蛍光標識脂肪酸化合物は脂肪酸アナログとして細胞内に取り込まれ、3量体にエステル化されてトリグリセリドとなる。トリグリセリドは、細胞内のリパーゼの働きにより、速やかに代謝され、再度単量体の脂肪酸アナログとなり、細胞内に排出される。
 図1の(B)は、第1工程と第2工程を含む取得方法の例を示す模式図である。第1工程において、被検者から採血した血液試料と、蛍光標識脂肪酸化合物を体外で混合することにより、血液試料中の白血球と、蛍光標識脂肪酸化合物を接触させる。
 次に、第2工程において白血球に取り込まれている蛍光標識脂肪酸化合物の蛍光強度を測定し、その測定値をトリグリセリドの代謝能に関する値として取得する。
 図1の(C)は、第1工程と第2工程に加え、第3工程と、第4工程と、第5工程とを備える。第3工程では、第2工程の後に、蛍光標識脂肪酸化合物を細胞が浮遊している外液を除去する。これにより、蛍光標識脂肪酸化合物を白血球から排出された蛍光標識脂肪酸化合物も除去する。
 第4工程は、第3工程の後に前記白血球における蛍光標識脂肪酸化合物に結合している蛍光物質に由来する蛍光強度の測定値を取得する。
 第5工程では、第2工程で取得した蛍光強度の測定値を第1測定値とし、第4工程で取得した蛍光強度の測定値を第2測定値とし、第1測定値と第2測定値の差を示す値を求める。そして、前記差を示す値の値を前記トリグリセリドの代謝能に関する値として取得する。
 取得方法において、被検者は、トリグリセリドの代謝能に関する検査を受ける対象である限り制限されない。例えば、中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症の患者又はこれら予備群は、血清中のトリグリセリド値が正常であることもある。したがって、通常の血液検査で脂質代謝異常が指摘されていない場合でも、被検者になり得る。本明細書において、疾患の「予備群」とは、検査段階で検査対象となっている疾患を発症していないものの、将来、検査段階で検査対象となっている疾患を発症する可能性のある者を意図する。
 被検者から採取された白血球は、細胞の生理活性を測定できる程度に生存している限り制限されない。白血球を採取するための採血は、抗凝固剤を使って採血をする限り制限されない。抗凝固剤として、ヘパリン塩、Ethylenediaminetetraacetic acid (EDTA)塩、クエン酸ナトリウム、CPD液、ACD液等を使用することができる。蛍光標識脂肪酸化合物と接触させる白血球は全血、全血を希釈した希釈血液に含まれている状態であってもよい。全血の希釈には、生理食塩水、細胞培養培地、後述する白血球分離用の比重液等を使用できる。また、蛍光標識脂肪酸化合物と接触させる白血球は、全血から赤血球画分を取り除いた白血球画分であってもよい。このとき、血小板は含んでいても含んでいなくてもよい。
 白血球画分に含まれる白血球の種類は、制限されない。好中球、リンパ球、単球、好酸球、及び好塩基球のすべてを使用してもよい。好ましくは、好中球、及びリンパ球を使用することができる。以下、白血球を含む測定用の試料を白血球浮遊液と呼ぶ。また、細胞を浮遊させている液体を外液と呼ぶ。
 赤血球を取り除く際には、溶血剤を用いないことが好ましい。溶血剤を用いる場合には、蛍光強度を測定する直前に溶血させることが好ましい。溶血剤により、白血球が死滅することを防ぐためである。したがって、赤血球の除去は、例えば、HetaSep (ベリタス社)、Lympholyte(商標)-poly Cell Separation Media(22℃における密度1.113±0.001 g/cm)等の白血球分離用の比重液、US5667963A等に記載されているチクソトロピックゲルを使って除去することが好ましい。また、溶血剤を使用する場合には、例えばBD FACS Lysing Solution(BD Biosciences)等を使用することができる。
 第1工程における、蛍光標識脂肪酸化合物と白血球との接触は、白血球が生存した状態で蛍光標識脂肪酸化合物を取り込むことができる条件で行われる限り制限されない。蛍光標識脂肪酸化合物の詳細は供述する。
 蛍光標識脂肪酸化合物と白血球との接触は、例えば白血球浮遊液に蛍光標識脂肪酸化合物を添加するか、蛍光標識脂肪酸化合物の溶液と白血球浮遊液を混合することにより蛍光標識脂肪酸化合物と白血球との混合液を調製することで行うことができる。白血球浮遊液に添加される蛍光標識脂肪酸化合物の濃度は、白血球が死滅しない濃度であり、白血球内の蛍光物質を後述する測定機器で測定できる濃度である限り制限されない。例えば、蛍光標識脂肪酸化合物と白血球の混合液における蛍光標識脂肪酸化合物の終濃度は、0.005 μMから1 mM程度とすることができる。前記蛍光標識脂肪酸化合物の終濃度は、例えばAlexa(商標)シリーズの蛍光物質もしくはこれらの同等品以上の蛍光強度を有する蛍光物質であれば、0.005 μMから0.5 μM程度とすることができる。前記蛍光標識脂肪酸化合物の終濃度は、例えばFITC、ローダミン等の蛍光物質もしくはこれら同等の蛍光強度を有する蛍光物質であれば、0.1 μMから1 mM程度とすることができる。蛍光標識脂肪酸化合物と白血球の混合液に含まれる白血球数は、103個から10個程度とすることができる。
 蛍光標識脂肪酸化合物と白血球の接触時間は、例えば10分から3時間、好ましくは30分間から1時間とすることができる。蛍光標識脂肪酸化合物と白血球を接触させる時の温度は、20℃~30℃、好ましくは23℃~28℃程度とすることができる。
 第2工程において、白血球内の蛍光標識脂肪酸化合物に結合している蛍光物質の蛍光強度を測定する。白血球内の蛍光物質の蛍光強度は、例えば、フローサイトメータを使用して測定することができる。この場合、取り込まれていない蛍光標識脂肪酸化合物を含む外液は、除去しても除去していなくてもよい。白血球内の蛍光物質の蛍光強度は、例えば、別の方法として、蛍光標識脂肪酸化合物と白血球の混合液から、例えば白血球を遠心分離やフィルタリングで回収し、白血球の蛍光強度をフルオロメータ等を使用し測定してもよい。このとき、白血球は、溶解しても溶解しなくてもよい。しかし、溶解して測定した方が精度はよい。
 第3工程を行う場合、蛍光標識脂肪酸化合物と白血球の混合液から、第2工程に例示する方法にしたがって、白血球を回収し、外液を蛍光標識脂肪酸化合物を含まない生理食塩水、及び細胞培養培地等の新しい外液に置換する。外液は、それ自身の作用により白血球から蛍光標識脂肪酸化合物を排泄させないことが好ましい。このため、細胞膜に損傷を与えたり、細胞内の浸透圧を変化させない水溶液であることが好ましい。外液を置換した後、5分から2時間、好ましくは10分間から30分間静置する。この静置により、白血球内から、単量体の蛍光標識脂肪酸化合物が排出される。
 第3工程の後の第4工程は、第2工程と同様である。
 第5工程は、第2工程で取得した蛍光強度の測定値を第1測定値とし、第4工程で取得した蛍光強度の測定値を第2測定値として、第1測定値と第2測定値の差を示す値を求める。第2工程で取得した第1測定値は、蛍光標識脂肪酸化合物を取り込み、白血球が蛍光標識脂肪酸化合物を細胞内に貯めている状態である。第4工程で取得した第2測定値は、細胞が取り込んだ蛍光標識脂肪酸化合物を排出している状態である。したがって、トリグリセリドの代謝能が高い被検者は、第1測定値と第2測定値の差が大きくなる。一方、トリグリセリドの代謝能が低い被検者は、第1測定値と第2測定値の差が小さくなる。
 ここで、フローサイトメータを使って白血球の蛍光強度を測定する場合には、例えば、蛍光強度は、細胞一つ一つの蛍光強度と所定の蛍光強度値の範囲に分布する細胞数の二軸で表されるヒストグラムで表すことができる。蛍光強度の第1測定値及び第2測定値は、フローサイトメータにより取得されるヒストグラムの最頻蛍光強度の値(いわゆる、ピーク値)として表すことができる。あるいは、フローサイトメータにより取得されるヒストグラムの各蛍光強度における細胞数、又はヒストグラムの蛍光強度値の分布範囲として表すことができる。前記蛍光強度は、フローサイトメータから得られたヒストグラムから得られる値そのものであってもよいが、正規化、相対値化等を行った値であってもよい。
 フルオロメータを使って白血球の蛍光強度を測定する場合には、例えば蛍光強度は、白血球を含むサンプルの蛍光強度で表すことができる。このとき、サンプルに含まれる白血球数をサンプル間で一定にしておくか、測定後に蛍光強度を白血球数に応じて補正することが好ましい。
 フルオロメータを使って白血球の蛍光強度を測定する場合には、例えば蛍光強度は、白血球を溶解させたサンプルから遊離した蛍光標識脂肪酸化合物を含むサンプルの蛍光強度で表すことが好ましい。このとき、白血球の溶解サンプルを調製する際に、溶解前の白血球数をサンプル間で一定にしておくか、測定後に蛍光強度を溶解前の白血球数に応じて補正することが好ましい。前記蛍光強度は、フルオロメータから得られる値そのものであってもよいが、正規化、相対値化等を行った値であってもよい。
 フルオロメータを使って白血球の蛍光強度を測定する場合には、例えば蛍光強度は、白血球を溶解させずに蛍光標識脂肪酸化合物を含む白血球における蛍光強度で表すこともできる。例えば、第1工程において、被検者から採血した血液試料と固相を体外で接触させることにより、血液試料中の白血球を固相に結合させる。固相は、固相の形状は特に限定されず、例えば、マイクロプレート、マイクロチューブ、試験管、ビーズ、膜等が挙げられる。固相の素材は特に限定されず、例えば、マイクロプレート、マイクロチューブ、試験管等には、ポリスチレン、ポリプロピレン等を使用することができる。また、ビーズの場合には、ポリスチレンXmap(登録商標)ビーズ(Luminex社)やMagPlex(登録商標)ミクロスフェア(Luminex社)等を使用することができる。膜の場合には、ニトロセルロースフィルター、ナイロンフィルター等を使用することができる。白血球は、例えば白血球を捕捉可能な捕捉抗体を介して固相に結合されうる。捕捉抗体は白血球を捕捉できる限り制限されない。捕捉抗体は、あらかじめ固相に固定化されていてもよく、白血球と捕捉抗体とを結合させてから固相に固定化してもよい。
 固相への捕捉抗体の固定化方法は、公知である。また、捕捉抗体も公知である。例えば、あらかじめ捕捉抗体が固定化されている担体として、磁気ビーズを利用したThermo Fisher Scientifec社のDynabeadsシリーズを挙げることができる。
 蛍光標識脂肪酸化合物と白血球との接触は、白血球を固相に結合させてから行ってもよい。また、蛍光標識脂肪酸化合物と白血球とを接触させてから、蛍光標識脂肪酸化合物を取り込んだ白血球を固相に結合させてっもよい。好ましくは前者である。
 第1工程の後、第2工程を行う前に、固相に結合していない細胞や抗体を除去する、固相を洗浄する操作を含んでもよい。洗浄する場合には、例えば、第3工程で使用する、蛍光標識脂肪酸化合物を含まない生理食塩水、及び細胞培養培地等の外液を使用することができる。
 第2工程では、固相に結合した細胞の蛍光強度を測定する。また、第3の工程、第4工程も、白血球が固相に結合した状態で行う。前記蛍光強度は、フルオロメータから得られる値そのものであってもよいが、正規化、相対値化等を行った値であってもよい。
 蛍光強度の第1測定値及び第2測定値の差を示す値は、トリグリセリドの代謝能に関する値として、使用することができる。ここで、差を示す値は、第1測定値及び第2測定値の差がわかる限り、制限されない。例えば、差を示す値は、第1測定値から第2測定値を引いた減算値;第1測定値を第2測定値で割った除算値、あるいは除算値を百分率に換算した値;一方の値に対するもう一方の値の相対値;第2測定値から第1測定値を引いた減算値;第2測定値を第1測定値で割った除算値、あるいは除算値を百分率に換算した値等でありうる。差を示す値が、第1測定値から第2測定値を引いた減算値;第1測定値を第2測定値で割った除算値、あるいは除算値を百分率に換算した値である時、第1測定値と第2測定値の差が大きいほど、差を示す値は大きくなる。差を示す値が、第2測定値から第1測定値を引いた減算値;第2測定値を第1測定値で割った除算値、あるいは除算値を百分率に換算した値である時、第1測定値と第2測定値の差が大きいほど、差を示す値は小さくなる。
 さらに、取得方法は、第2工程で取得したトリグリセリドの代謝能に関する値、又は第5工程で取得したトリグリセリドの代謝能に関する値について、これらの値が所定の基準範囲内であるか否かを判定する第6工程を含んでいてもよい。
 第2工程又は第6工程で取得したトリグリセリドの代謝能に関する値が所定の基準範囲内であるか否かを判断する場合、被検者のトリグリセリドの代謝能に関する値が、例えば健常者のトリグリセリドの代謝能に関する値と比較し、同程度である場合に、被検者のトリグリセリドの代謝能に関する値は基準範囲内であると決定することができる。所定の基準範囲は、基準値に一定の幅を加えた範囲とすることができる。基準値は、ROC(receiver operating characteristic curve)曲線、判別分析法、モード法、Kittler法、3σ法、p‐tile法等により決定することもできる。また、基準値として、感度、特異度、陰性的中率、陽性的中率、第一四分位数等を例示できる。基準値に加えられる一定の幅は、標準偏差(SD)、分散(CV)で決定することができる。例えば、基準値に加えられる一定の幅は、±2SD、±1SD、±CV、とすることができる。差を示す値が、第1測定値から第2測定値を引いた減算値;第1測定値を第2測定値で割った除算値、あるいは除算値を百分率に換算した値である時、被検者のトリグリセリドの代謝能に関する値が基準範囲よりも低い場合には、基準範囲外と決定することができる。差を示す値が、第2測定値から第1測定値を引いた減算値;第2測定値を第1測定値で割った除算値、あるいは除算値を百分率に換算した値である時、被検者のトリグリセリドの代謝能に関する値が基準範囲よりも高い場合には、基準範囲外と決定することができる。
 また、基準範囲は、被検者のトリグリセリドの代謝能に関する値が、健常者のトリグリセリドの代謝能に関する値の0.9倍を超える値から1.1倍未満である時、被検者のトリグリセリドの代謝能に関する値が健常者のトリグリセリドの代謝能に関する値と同程度であると決定することができる。
 差を示す値が、第1測定値から第2測定値を引いた減算値;第1測定値を第2測定値で割った除算値、あるいは除算値を百分率に換算した値である時、被検者のトリグリセリドの代謝能に関する値が健常者のトリグリセリドの代謝能に関する値の0.9倍以下、好ましくは0.7倍以下、さらに好ましくは0.5倍以下の時に、被検者のトリグリセリドの代謝能が基準範囲外であると決定することができる。さらに、被検者のトリグリセリドの代謝能に関する値が基準範囲外である時、被検者のトリグリセリドの代謝能は低いと決定する、又は被検者のトリグリセリドの代謝能は低いことを示唆することができる。
 差を示す値が、第2測定値から第1測定値を引いた減算値;第2測定値を第1測定値で割った除算値、あるいは除算値を百分率に換算した値である時、被検者のトリグリセリドの代謝能に関する値が健常者のトリグリセリドの代謝能に関する値の1.1倍以上、好ましくは1.3倍以上、さらに好ましくは1.5倍以上の時に、被検者のトリグリセリドの代謝能が基準範囲外であると決定することができる。さらに、被検者のトリグリセリドの代謝能に関する値が基準範囲外である時、被検者のトリグリセリドの代謝能は低いと決定する、又は被検者のトリグリセリドの代謝能は低いことを示唆することができる。
2.情報の提示方法
 本明細書には、上記1.で取得したトリグリセリドの代謝能に関する値を使用し、情報を提示する方法が開示される。より具体的には、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時、所定の情報を提示する。ここで下記各提示方法において、「示唆」することには、可能性を示すこと、疾患であることを示すことが含まれ得る。好ましくは、「示唆」することには、可能性を示すことである。「提示」することには、関連する情報を医師、検査技師、看護師等が認識できるように、院内で使用されているパーソナルコンピュータやタブレットの表示部に表示すること、紙媒体に印刷することを含み得る。
2-1.疾患の情報の提示方法
 疾患の情報の提示方法では、上記1.に記載の取得方法により取得された、被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、被検者が中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群であることを示唆する工程を含む。中性脂肪蓄積心筋血管症は、トリグリセリドの細胞内における代謝能が低下し、血管細胞内にトリグリセリドが心筋内の血管に蓄積した状態である。中性脂肪蓄積型動脈硬化症は、動脈を構成する細胞にトリグリセリドが蓄積し、動脈硬化を来した状態である。中性脂肪蓄積型動脈硬化症は、コレステロールの局所的な血管沈着によって起こるコレステロール蓄積型動脈硬化症とは異なり、血管内にびまん性な硬化を起こす。コレステロール蓄積型動脈硬化症は、血中の総コレステロール値、HDL-コレステロール値、LDL-コレステロール値から疾患予備群を予測することが可能である。しかし、中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症の発症は、必ずしも血中のトリグリセリド値とは相関しないため、本方法が有用である。また、本方法は、血管内皮細胞へのトリグリセリドの蓄積の可能性を末梢の白血球を用いて予測できるため、検査が簡便で有あり、短時間で検査を行うことができる。
2-2.コレステロール蓄積型動脈硬化症、又は予備群の鑑別情報の提示方法
 本実施形態におけるコレステロール蓄積型動脈硬化症、又は予備群の鑑別情報の提示方法では、上記1.に記載の取得方法により取得された、被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、被検者の白血球におけるトリグリセリドの代謝能が基準範囲内である時に、前記被検者がコレステロール蓄積型動脈硬化症、又はその予備群であることを示唆する工程を含む。また、示唆する工程は、被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、前記被検者がコレステロール蓄積型動脈硬化症、又はその予備群でないことを示唆する工程であってもよい。あるいは、示唆する工程は、被検者の白血球におけるトリグリセリドの代謝能が基準範囲内であるか基準範囲外であるかに応じて、コレステロール蓄積型動脈硬化症、又はその予備群であるかないかを示唆する工程であってもよい。
 本実施形態は、上記2-1.とは逆の態様であり、例えば、被検者がコレステロール蓄積型動脈硬化症であるか中性脂肪蓄積型動脈硬化症であるか、あるいはどちらの疾患の予備群であるかを鑑別するための情報を提示する。コレステロール蓄積型動脈硬化症には、局所的なステント療法が適用されうるが、中性脂肪蓄積型動脈硬化症はびまん性の動脈硬化であるため、局所的なステント療法が有効でないため、被検者がコレステロール蓄積型動脈硬化症であるか中性脂肪蓄積型動脈硬化症のどちらであるか鑑別するための情報を提示することは、治療方法を確定する上で有用である。
2-3.拡張型心筋症の鑑別情報の提示方法
 本実施形態における拡張型心筋症の鑑別情報の提示方法では、上記1.に記載の取得方法により取得された、被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、被検者が拡張型心筋症ではないことを示唆する工程を含む。示唆する工程は、被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、被検者の白血球におけるトリグリセリドの代謝能が基準範囲内である時に、被検者が拡張型心筋症であることを示唆する工程であってもよい。あるいは、示唆する工程は、被検者の白血球におけるトリグリセリドの代謝能が基準範囲内であるか基準範囲外であるかに応じて、拡張型心筋症であるかないかを示唆する工程であってもよい。
 中性脂肪蓄積心筋血管症は、拡張型心筋症との鑑別が必要となる場合がある。中性脂肪蓄積心筋血管症には、後述する治療方法が有効である。一方、拡張型心筋症の治療には、外科的処置が必要となる。このため、中性脂肪蓄積心筋血管症と拡張型心筋症を鑑別するための情報を提示することは、被検者の治療方針を決定する上で重要である。
2-4.ステントを用いた血管拡張療法に関する有効性情報の提示方法
 本実施形態におけるステントを用いた血管拡張療法に関する有効性情報の提示方法では、上記1.に記載の取得方法により取得された、被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、被検者にステントを用いた血管拡張療法が有効ではないことを示唆する工程を含む。示唆する工程は、被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、被検者の白血球におけるトリグリセリドの代謝能が基準範囲内である時に、被検者にステントを用いた血管拡張療法が有効であることを示唆する工程であってもよい。あるいは、示唆する工程は、示唆する工程は、被検者の白血球におけるトリグリセリドの代謝能が基準範囲内であるか基準範囲外であるかに応じて、血管拡張療法が有効であるかないかを示唆する工程であってもよい。
 上記2-2.では、コレステロール蓄積型動脈硬化症であるか中性脂肪蓄積型動脈硬化症であるかを鑑別したが、本実施形態では、疾患の鑑別を行うことなくステントを用いた血管拡張療法の有効であるかないかを示唆する。ステント挿入のためのカテーテル挿入前にこの検査を行うことにより、ステント療法が有効でない被検者を選別することができる。
2-5.中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物に関する有効性情報の提示方法
 本実施形態に係る中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物に関する有効性情報の提示方法では、上記1.に記載の取得方法により取得された、被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、被検者への中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与が有効であることを示唆する工程を含む。示唆する工程は、被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、被検者の白血球におけるトリグリセリドの代謝能が基準範囲内である時に、被検者への中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与が有効でないことを示唆する工程であってもよい。あるいは、示唆する工程は、被検者の白血球におけるトリグリセリドの代謝能が基準範囲外であるか基準範囲内であるかに応じて、中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与が有効であるかないかを示唆する工程であってもよい。
 中鎖脂肪酸はmedium chain triglyceride(MCT)とも呼ばれる。中鎖脂肪酸組成物とは、ペンタン酸(C5:吉草酸)、ヘキサン酸(C6:カプロン酸)、ヘプタン酸(C7:エナント酸)、オクタン酸(C8:カプリル酸)、ノナン酸(C9:ペラルゴン酸)、デカン酸(C10:カプリン酸)、ドデカン酸(C12:ラウリン酸)等の中鎖脂肪酸を有効成分とする経口組成物又は非経口組成物である。中鎖脂肪酸組成物は、中性脂肪蓄積心筋血管症、又は中性脂肪蓄積型動脈硬化症の治療又は予防、大動脈瘤の予防に有効である。したがって、中鎖脂肪酸組成物は医薬組成物、飲食品組成物を含み得る。
 中性脂肪蓄積型動脈硬化退縮組成物は、トリカプリンを有効成分として含有する経口組成物又は非経口組成物である。有効成分のトリカプリンは、構成脂肪酸として、炭素数10の中鎖脂肪酸のみから構成されているトリアシルグリセロールである。すなわち、グリセロールにカプリン酸(デカン酸)が3分子エステル結合したトリアシルグリセロールである。トリカプリンの形態は限定されず、液体状であってもよく、固体状であってもよく、粉末体状であってもよい。中性脂肪蓄積型動脈硬化退縮組成物のヒトへの投与量は、患者の年齢、性別、体重、疾患の程度等に応じて適宜選択することができる。通常、有効成分のトリカプリンの投与量は1日あたり1.0g~10.0gの範囲から選択され、好ましくは1.5g~9.0gから選択される。1日あたりの投与回数は1回でもよく、数回に分けてもよい。
 中性脂肪蓄積型動脈硬化退縮組成物の投与期間は、中性脂肪蓄積型動脈硬化の退縮効果を経時的に評価することにより適宜終了時期を決定すればよく、特に限定されない。少なくとも50日間投与されるように使用することが好ましい。投与期間は、2か月間以上、3か月間以上、4か月間以上、5か月間以上、6か月間以上、7か月間以上、8か月間以上、9か月間以上、10か月間以上、11か月間以上、1年間以上であってもよい。
 中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物は、疾患を発症した被検者に投与することで症状を軽減又は治療することができる。また。中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物は、前記疾患の予備群の被検者に投与することで、疾患の発症リスクを低減することができる。中鎖脂肪酸組成物の効果は高脂肪食接種ラットにおいて、大動脈瘤の発生率の低減により示されている。また、中性脂肪蓄積型動脈硬化退縮組成物の効果は、遺伝的ATGL(Adipose triglyceride lipase)欠損症患者への投与例、及び難治性狭心症患者への投与例において、冠動脈の中性脂肪蓄積型動脈硬化が退縮することにより示されている。
2-6.治療効果情報の提示方法
 本実施形態における治療効果情報の提示方法では、既に、中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物等による治療が開始された被検者における治療効果に関する情報を提示する。上記1.に記載の取得方法により取得された、被検者の白血球におけるトリグリセリドの代謝能に関する値を、同一の被検者の過去のトリグリセリドの代謝能に関する値と比較し、被検者の白血球におけるトリグリセリドの代謝能に関する値が、同一の被検者の過去のトリグリセリドの代謝能に関する値よりも高い時に、被検者に適用した治療が有効であることを示唆する工程を含む。この提示方法により、示唆する工程は、被検者の白血球におけるトリグリセリドの代謝能に関する値を、被検者の過去のトリグリセリドの代謝能に関する値と比較し、被検者の白血球におけるトリグリセリドの代謝能に関する値が被検者の過去のトリグリセリドの代謝能に関する値以下である時に、被検者に適用した治療が有効でないことを示唆する工程であってもよい。あるいは、示唆する工程は、被検者の白血球における被検者の過去のトリグリセリドの代謝能に関する値よりも高いか、被検者の過去のトリグリセリドの代謝能に関する値以下であるかに応じて、被検者に適用した治療が有効であるかないかを示唆する工程であってもよい。
3.蛍光標識脂肪酸化合物
3-1.蛍光標識脂肪酸化合物の構造
 本項において、本明細書において使用される蛍光標識した脂肪酸化合物について説明する。
 脂肪酸化合物は、脂肪酸残基を含み、前記脂肪酸残基の炭素数は8から26である。脂肪酸残基とは、脂肪酸のアシル基部分をいう。ここで、本明細書では前記脂肪酸残基のカルボキシ基の炭素原子を1位とし、脂肪酸残基のメチル基末端に向かって、炭素原子に1から順に整数で番号をふるものとする。本明細書において、脂肪酸残基は、飽和脂肪酸残基であっても、不飽和脂肪酸残基であってもよい。好ましくは、飽和脂肪酸残基である。前記脂肪酸残基を構成する水素原子の一部は、前記脂肪酸残基の末端のメチル基を除き炭素数1から3のアルキル基で置換されていてもよい。この置換を、第1の置換と称する。アルキル基としてメチル基、エチル基、n-プロピル基、イソプロピル基等を挙げることができる。好ましくは、メチル基、エチル基、n-プロピル基であり、より好ましくは、メチル基である。第1の置換は、例えば、3箇所、好ましくは2箇所、より好ましくは1箇所であることが好ましい。第1の置換は、前記脂肪酸残基を構成する水素原子のいずれの場所にあってもよいが、好ましくは、第2位の炭素原子から第7位の炭素原子に結合する水素原子を置換するものである。より好ましくは、第2位の炭素原子から第4位の炭素原子に結合する水素原子を置換するものである。特に好ましくは、第1の置換は1箇所の置換で有り、第3位の炭素原子に結合する水素原子を置換するものである。
 前記脂肪酸残基の末端のメチル基の水素原子は、置換もしくは非置換のフェニル基で置換されていてもよい。前記脂肪酸残基の末端のメチル基の水素原子の置換を第2の置換と呼ぶ。前記フェニル基が置換されているものである場合、置換基として炭素数1から3のアルキル基を挙げることができる。フェニル基を置換するアルキル基として、好ましくは、メチル基、エチル基、n-プロピル基、イソプロピル基である。
 脂肪酸化合物として、好ましくは、下記一般式(1)で表される化合物:
Figure JPOXMLDOC01-appb-C000017
 
(nは、4から22の整数である。)
である。
 下記一般式(1)で表される化合物において、nは好ましくは8から20であり、より好ましくは10から18であり、特に好ましくは11である。
 蛍光物質の標識は、前記脂肪酸残基の末端のメチル基、又は前記メチル基の置換基に行うことが好ましい。
 蛍光物質は、蛍光を発する限り制限されない。しかし、血液成分の一部に蛍光を発する成分が含まれるため、この成分の蛍光波長のピークと標識する蛍光物質の蛍光波長のピークが重ならないことが好ましい。したがって、蛍光物質は、例えば、蛍光波長のピークが400nmから560nmの範囲であるもの、あるいは蛍光波長のピークが、600nmから810nmの範囲であることが好ましい。Alexa Fluor(商標) 488、FITC、フルオレセイン、Cy3、Cy2、Alexa Fluor(商標) 546、Alexa Fluor(商標) 555、Alexa Fluor(商標) 633、Alexa Fluor(商標) 647、Alexa Fluor(商標) 680、Alexa Fluor(商標) 700、Alexa Fluor(商標) 750、Alexa Fluor(商標) 790、ローダミン、Cy5及びこれらの同等品を挙げることができる。
3-2.蛍光物質を標識するための脂肪酸化合物の製造
 蛍光物質を標識するための脂肪酸化合物の製造方法を図2に示す。蛍光物質を標識するための脂肪酸化合物は、下記一般式(3)で表される。
Figure JPOXMLDOC01-appb-C000018
(nは、4から22の整数である。Rは、炭素数3から6のアルキレン基を示す。)。
 図2(A)に示す合成工程Iaにおいて化合物20のアミノ基を保護基で保護し、化合物21を生成する。図2では、例示的にアミノ酸保護基をBocで示す。Bocは、tert-ブトキシカルボニル保護基を示す。図2(A)においてRは、炭素数1から4のアルキレン基を示す。この工程は、公知の方法により行うことができる。例えば、化合物20をジクロロメタン等の溶媒に溶解し、0℃前後でDi-tert-butyl Dicarbonateと混合し、温度をゆっくりと室温に上げ、さらに2時間程度23℃から28℃程度で反応させることにより、化合物21を生成することができる。
 図2(B)に示す合成工程Ibにおいて、化合物11の水酸基を保護基で保護し、化合物12を生成する。図2において、Rはハロゲン原子を示す。ハロゲン原子として好ましくは、ヨウ素原子である。Rは水酸基の保護基を示す。水酸基の保護基として好ましくは、フェニル基である。水酸基の保護は、公知の方法で行うことができる。例えば、化合物11をトリエチルアミン等の溶媒に溶解し、塩化ベンジルを加え、例えば90℃程度で2時間程度反応させることにより化合物12を生成することができる。
 図2(C)に示す合成工程IIにおいて、化合物12と化合物21を反応させ、化合物13を生成する。例えば、化合物12をテトラヒドロフランに溶解し、そこにビス(トリフェニルホスフィン)パラジウム(II)ジクロリドを加え混合し、さらにテトラヒドロフランに溶解した化合物21を加え、23℃から28℃程度で数分撹拌する。撹拌後の混合液に、さらにヨウ化銅を添加し、一晩程度23℃から28℃程度で撹拌し、化合物13を生成する。
 図2(D)に示す合成工程IIIにおいて、化合物13を還元し化合物14を生成する。還元反応は、公知である。例えば、化合物13をメタノール等の溶媒に溶解し、そこに10% Pd/Cを添加し、水素雰囲気下で一晩23℃から28℃程度で撹拌し、化合物14を生成する。化合物14は、一般式(4)で表される化合物である。
 図2(E)に示す合成工程IVにおいて、化合物14からアミノ基の保護基を除去し、化合物15を生成する。この反応は公知である。例えば、化合物14をジクロロメタンに溶解し、トリフルオロ酢酸を添加し、一晩23℃から28℃程度撹拌することにより、化合物15を生成することができる。
3-3.脂肪酸化合物への蛍光物質の標識
 化合物15への蛍光物質の標識は、例えばアミンカップリング反応により行うことができる。例えば、蛍光物質のN-ヒドロキシスクシンイミド(NHS)エステルのNHS基と、化合物15のアミノ基を公知の方法によりアミンカップリングすることで、結合させることができる。蛍光物質のN-ヒドロキシスクシンイミド(NHS)エステルは、サーモフィッシャー社等から購入可能である。
 好ましい蛍光標識脂肪酸化合物の態様は、下記一般式(2)の通りである。
Figure JPOXMLDOC01-appb-C000019
(nは、4から22の整数である。Xは、蛍光物質と、リンカー部分を含む。)。
 上記式においてリンカーは、炭素数3から6のアルキレン基、好ましくは炭素数3または4のアルキレン基、特に好ましくは、炭素数3のアルキレン基を示す。
 さらに好ましい蛍光標識脂肪酸化合物の態様は、下記一般式(2’)のとおりである。
Figure JPOXMLDOC01-appb-C000020
(nは、4から22の整数である。Xは、蛍光物質と、リンカー部分を含む。)。
 上記式においてリンカーは、炭素数3から6のアルキレン基、好ましくは炭素数3または4のアルキレン基、特に好ましくは、炭素数3のアルキレン基を示す。
4.検査試薬
 蛍光物質を標識した脂肪酸化合物を含む、トリグリセリドの代謝能を評価するための検査試薬に関する。検査試薬は、蛍光物質を標識した脂肪酸化合物をジメチルスルホキシド等の溶媒に溶解した状態であってもよい。
5.採血管
 被検者の白血球を採取するための採血に使用される採血管に関する。
 本実施形態の採血管で採取された白血球は、体外で上記1.に記載のトリグリセリドの代謝能に関する値を取得するために使用される。採血管は、上記1.で述べた白血球を分離するための比重液、又は白血球を分離するための比重液と上記1.で述べた白血球分離剤を格納しうる。採血管は、真空採血管であることが好ましく、真空採血フォルダに装填可能であることが好ましい。
 さらに、採血管は、前記検査試薬とともに検査キットとして供給されてもよい。
6.提示システム及び提示装置
 本開示の一実施形態は上記2.で述べた提示方法をコンピュータを用いて実行するための提示システム及び提示装置に関する。
6-1.疾患の情報の提示システム及び疾患の情報の提示装置の構成
(1)提示システム1000構成
 図3は、疾患の情報の提示装置システム1000(以下、単に提示システム1000という)の概観図であり、提示システム1000は一態様として、疾患の情報の提示装置10(以下、単に提示装置10という)の他、分析装置90とを備えていてもよい。分析装置90は、フローサイトメータ又はフルオロメータであり得る。
(2)提示装置10のハードウエア構成
 図4に、提示装置10のハードウエアを示す。提示装置10は、入力デバイス111と、出力デバイス112と、メディアドライブ113とに接続されていてもよい。
 提示装置10において、処理部101と、メモリ102と、ROM(read only memory)103と、記憶デバイス104と、通信インタフェース(I/F)105と、入力インタフェース(I/F)106と、出力インタフェース(I/F)107と、メディアインターフェース(I/F)108は、バス109によって互いにデータ通信可能に接続されている。メモリ102と記憶デバイス104とを合わせて、単に記憶部と呼ぶこともある。記憶部は、前記測定値や基準値を揮発性に、又は不揮発性に記憶する。
 処理部101は、提示装置10のCPUであり、演算装置ともいう。処理部101は、GPUと協働してもよい。処理部101が、記憶デバイス104又はROM103に記憶されているオペレーションシステム(OS)1041と協働して後述する疾患の情報の提示プログラム1042a(以下、単に提示プログラム1042aと呼ぶ)を実行し、取得されるデータの処理を行うことにより、コンピュータが提示装置10として機能する。
 ROM103は、マスクROM、PROM、EPROM、EEPROMなどによって構成され、処理部101により実行される提示プログラム1042a及びこれに用いるデータが記録されている。処理部101はMPU101としてもよい。ROM103は、提示装置10の起動時に、処理部101によって実行されるブートプログラムや提示装置10のハードウエアの動作に関連するプログラムや設定を記憶する。
 メモリ102は、SRAM又はDRAMなどのRAM(Random access memory)によって構成される。メモリ102は、ROM103及び記憶デバイス104に記録されている提示プログラム1042aの読み出しに用いられる。また、メモリ102は、処理部101がこれらの提示プログラム1042aを実行する時の作業領域として利用される。
 記憶デバイス104は、ハードディスク、フラッシュメモリ等の半導体メモリ素子、光ディスク等によって構成される。記憶デバイス104には、オペレーティングシステム及びアプリケーションプログラムなどの、処理部101に実行させるための種々の提示プログラム1042a及び提示プログラム1042aの実行に用いる各種設定データが記憶されている。具体的には、基準範囲を記録した基準範囲データベース(DB)DB1として不揮発性に記憶する。
 通信I/F105は、USB、IEEE1394、RS-232Cなどのシリアルインタフェース、SCSI、IDE、IEEE1284などのパラレルインタフェース、及びD/A変換器、A/D変換器などからなるアナログインタフェース、ネットワークインタフェースコントローラ(Network interface controller:NIC)等から構成される。通信I/F105は、処理部101の制御下で、分析装置90又は他の外部機器からのデータを受信し、必要に応じて提示装置10が保存又は生成する情報を、分析装置90又は外部に送信又は表示する。通信I/F105は、ネットワークを介して分析装置90又は他の外部機器と通信を行ってもよい。
 入力I/F106は、例えばUSB、IEEE1394、RS-232Cなどのシリアルインタフェース、SCSI、IDE、IEEE1284などのパラレルインタフェース、及びD/A変換器、A/D変換器などからなるアナログインタフェースなどから構成される。入力I/F106は、入力デバイス111から文字入力、クリック、音声入力等を受け付ける。受け付けた入力内容は、メモリ102又は記憶デバイス104に記憶される。
 入力デバイス111は、タッチパネル、キーボード、マウス、ペンタブレット、マイク等から構成され、提示装置10に文字入力又は音声入力を行う。入力デバイス111は、提示装置10の外部から接続されても、提示装置10と一体となっていてもよい。
 出力I/F107は、例えば入力I/F106と同様のインタフェースから構成される。出力I/F107は、処理部101が生成した情報を出力デバイス112に出力する。出力I/F107は、処理部101が生成し、記憶デバイス104に記憶した情報を、出力デバイス112に出力する。
 出力デバイス112は、例えばディスプレイ、プリンター等で構成され、分析装置90から送信される測定結果及び提示装置10における各種操作ウインドウ、分析結果等を表示する。
 メディアI/F108は、メディアドライブ113に記憶された例えばアプリケーションソフト等を読み出す。読み出されたアプリケーションソフト等は、メモリ102又は記憶デバイス104に記憶される。また、メディアI/F108は、処理部101が生成した情報をメディアドライブ113に書き込む。メディアI/F108は、処理部101が生成し、記憶デバイス104に記憶した情報を、メディアドライブ113に書き込む。
 メディアドライブ113は、フレキシブルディスク、CD-ROM、又はDVD-ROM等で構成される。メディアドライブ113は、フレキシブルディスクドライブ、CD-ROMドライブ、又はDVD-ROMドライブ等によってメディアI/F108と接続される。メディアドライブ113には、コンピュータがオペレーションを実行するためのアプリケーションプログラム等が格納されていてもよい。
 処理部101は、提示装置10の制御に必要なアプリケーションソフトや各種設定をROM103又は記憶デバイス104からの読み出しにかえて、ネットワークを介して取得してもよい。前記アプリケーションプログラムがネットワーク上のサーバコンピュータの記憶デバイス内に格納されており、このサーバコンピュータに提示装置10がアクセスして、提示プログラム1042aをダウンロードし、これをROM103又は記憶デバイス104に記憶することも可能である。
 また、ROM103又は記憶デバイス104には、例えば米国マイクロソフト社が製造販売するWindows(登録商標)などのグラフィカルユーザインタフェース環境を提供するオペレーションシステムがインストールされている。第2の実施形態に係るアプリケーションプログラムは、前記オペレーティングシステム上で動作するものとする。すなわち、提示装置10は、パーソナルコンピュータ等であり得る。
 提示システム1000は一カ所に設置されている必要はなく、提示装置10と分析装置90が別所に配置され、これらがネットワークで接続されていてもよい。また、提示装置10は、入力デバイス111や出力デバイス112を省略した操作者を必要としない装置であってもよい。
(3)提示装置10の機能構成
 図5に、提示装置10の機能構成を示す。提示装置10は、被検値取得手段M1と、基準範囲取得手段M2と、比較手段M3と、提示手段M4とを備える。被検値取得手段M1は図6に示すステップS11に相当し、基準範囲取得手段M2は図6に示すステップS12に相当し、比較手段M3は図6に示すステップS13に相当し、提示手段M4は図6に示すステップS14に相当する。
(4)疾患の情報の提示プログラムの処理
 図6に疾患の情報の提示プログラム1042a(以下、単に提示プログラム1042aと呼ぶ)の処理のフローチャートの一例を示す。
 提示装置10の処理部101は、オペレータが入力デバイス111から処理開始の入力を行うことにより、疾患の情報を提示するための処理を開始する。ステップS11において、処理部101は、分析装置90から、被検者の白血球におけるトリグリセリドの代謝能に関する値を取得する。あるいは、オペレータが被検者の白血球におけるトリグリセリドの代謝能に関する値を入力デバイス111から入力し、処理部101がこの入力を受け付けることにより取得してもよい。
 次に処理部101は、ステップS12において、基準範囲データベースDB1に記憶されているトリグリセリドの代謝能の所定の基準範囲を取得する。
 次に処理部101は、ステップS13において、ステップS11で取得したトリグリセリドの代謝能に関する値と、ステップS12において取得した所定の基準範囲とを比較する。
 処理部101は、ステップS13において、取得したトリグリセリドの代謝能に関する値が、基準範囲外である場合(YESの場合)には、ステップS14に進み、被検者が中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群であると決定し、疾患の情報として被検者が中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群であることを示すラベルを出力デバイス112に出力する。また、ステップS13において、取得したトリグリセリドの代謝能に関する値が、基準範囲内である場合(NOである場合)に、ステップS15に進み、疾患の情報として被検者が中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群ではないと決定し、被検者が中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群でないことを示すラベルを出力デバイス112に出力する。ステップS14において出力されるラベルには、「中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群である」、又は「中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群であることを示唆する」ことを示す情報が含まれる。ステップS15において出力されるラベルには、「中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群ではない」、又は「中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群であることを示唆しない」ことを示す情報が含まれる。前記情報は、×、〇、感嘆符等のマークであってもよい。
 トリグリセリドの代謝能に関する値、基準範囲、比較方法、判定方法等の詳細は、上記2.の説明をここに援用する。
6-2.コレステロール蓄積型動脈硬化症、又は予備群の鑑別情報の提示システム及びコレステロール蓄積型動脈硬化症、又は予備群の鑑別情報の提示装置の構成
(1)提示システム2000構成
 コレステロール蓄積型動脈硬化症、又は予備群の鑑別情報の提示システム2000(以下、単に提示システム2000という)の外観は、図3に示す提示システム1000と同様であるので、上記6-1.(1)の説明をここに援用する。ただし、図3における提示装置10は、コレステロール蓄積型動脈硬化症、又は予備群の鑑別情報の提示装置20(以下、単に提示装置20と呼ぶ)と読み替えるものとする。
(2)提示装置20のハードウエア構成
 提示装置20のハードウエア構成は、記憶デバイス104に、拡張型心筋症の鑑別情報の提示プログラム1042bを格納している点を除き、図4に示す提示装置10と同様であるので、上記6-1.(2)の説明をここに援用する。
(3)提示装置20の機能構成
 提示装置20の機能構成は、基本的に図5に示す提示装置10と同様である。ただし、被検値取得手段M1は図7に示すステップS21に相当し、基準範囲取得手段M2は図7に示すステップS22に相当し、比較手段M3は図7に示すステップS23に相当し、提示手段M4は図7に示すステップS24に相当する。
(4)コレステロール蓄積型動脈硬化症、又は予備群の鑑別情報の提示プログラムの処理
 図7にコレステロール蓄積型動脈硬化症、又は予備群の鑑別情報の提示プログラム1042b(以下、単に提示プログラム1042bと呼ぶ)の処理のフローチャートの一例を示す。
 提示装置20の処理部101は、オペレータが入力デバイス111から処理開始の入力を行うことにより、コレステロール蓄積型動脈硬化症、又は予備群の鑑別情報の処理を開始する。ステップS21において、処理部101は、分析装置90から、被検者の白血球におけるトリグリセリドの代謝能に関する値を取得する。あるいは、オペレータが被検者の白血球におけるトリグリセリドの代謝能に関する値を入力デバイス111から入力し、処理部101がこの入力を受け付けることにより取得してもよい。
 次に処理部101は、ステップS22において、基準範囲データベースDB1に記憶されているトリグリセリドの代謝能の所定の基準範囲を取得する。
 次に処理部101は、ステップS23において、ステップS21で取得したトリグリセリドの代謝能に関する値と、ステップS22において取得した所定の基準範囲とを比較する。
 処理部101は、ステップS23において、取得したトリグリセリドの代謝能に関する値が、基準範囲外である場合(YESの場合)には、ステップS24に進み、被検者がコレステロール蓄積型動脈硬化症、又はその予備群でないと決定し、鑑別情報として被検者がコレステロール蓄積型動脈硬化症、又はその予備群でないことを示すラベルを出力デバイス112に出力する。また、ステップS23において、取得したトリグリセリドの代謝能に関する値が、基準範囲内である場合(NOである場合)に、ステップS25に進み、被検者がコレステロール蓄積型動脈硬化症、又はその予備群であると決定し、鑑別情報として被検者がコレステロール蓄積型動脈硬化症、又はその予備群であることを示すラベルを出力デバイス112に出力する。ステップS24において出力されるラベルには、「コレステロール蓄積型動脈硬化症、又はその予備群ではない」、又は「コレステロール蓄積型動脈硬化症、又はその予備群であることを示唆しない」ことを示す情報が含まれる。ステップS25において出力されるラベルには、「コレステロール蓄積型動脈硬化症、又はその予備群である」、又は「コレステロール蓄積型動脈硬化症、又はその予備群であることを示唆する」ことを示す情報が含まれる。前記情報は、×、〇、感嘆符等のマークであってもよい。
 トリグリセリドの代謝能に関する値、基準範囲、比較方法、判定方法等の詳細は、上記2.の説明をここに援用する。
6-3.拡張型心筋症の鑑別情報の提示システム及び拡張型心筋症の鑑別情報の提示装置の構成
(1)提示システム3000構成
 拡張型心筋症の鑑別情報の提示システム3000(以下、単に提示システム3000という)の外観は、図3に示す提示システム1000と同様であるので、上記6-1.(1)の説明をここに援用する。ただし、図3における提示装置10は、拡張型心筋症の鑑別情報の提示装置30(以下、単に提示装置30と呼ぶ)と読み替えるものとする。
(2)提示装置30のハードウエア構成
 提示装置30のハードウエア構成は、記憶デバイス104に、拡張型心筋症の鑑別情報の提示プログラム1042cを格納している点を除き、図4に示す提示装置10と同様であるので、上記6-1.(2)の説明をここに援用する。
(3)提示装置30の機能構成
 提示装置30の機能構成は、基本的に図5に示す提示装置10と同様である。ただし、被検値取得手段M1は図8に示すステップS31に相当し、基準範囲取得手段M2は図8に示すステップS32に相当し、比較手段M3は図8に示すステップS33に相当し、提示手段M4は図8に示すステップS34に相当する。
(4)拡張型心筋症の鑑別情報の提示プログラムの処理
 図8に拡張型心筋症の鑑別情報の提示プログラム1042c(以下、単に提示プログラム1042cと呼ぶ)の処理のフローチャートの一例を示す。
 提示装置30の処理部101は、オペレータが入力デバイス111から処理開始の入力を行うことにより、拡張型心筋症の鑑別情報を提示するための処理を開始する。ステップS31において、処理部101は、分析装置90から、被検者の白血球におけるトリグリセリドの代謝能に関する値を取得する。あるいは、オペレータが被検者の白血球におけるトリグリセリドの代謝能に関する値を入力デバイス111から入力し、処理部101がこの入力を受け付けることにより取得してもよい。
 次に処理部101は、ステップS32において、基準範囲データベースDB1に格納されているトリグリセリドの代謝能の所定の基準範囲を取得する。
 次に処理部101は、ステップS33において、ステップS31で取得したトリグリセリドの代謝能に関する値と、ステップS32において取得した所定の基準範囲とを比較する。
 処理部101は、ステップS33において、取得したトリグリセリドの代謝能に関する値が、基準範囲外である場合(YESの場合)には、ステップS34に進み、被検者が拡張型心筋症でないと決定し、鑑別情報として被検者が拡張型心筋症でないことを示すラベルを出力デバイス112に出力する。また、ステップS33において、取得したトリグリセリドの代謝能に関する値が、基準範囲内である場合(NOである場合)に、ステップS35に進み、被検者が拡張型心筋症であると決定し、鑑別情報として被検者が拡張型心筋症であることを示すラベルを出力デバイス112に出力する。ステップS34において出力されるラベルには、「拡張型心筋症ではない」、又は「拡張型心筋症であることを示唆しない」ことを示す情報が含まれる。ステップS35において出力されるラベルには、「拡張型心筋症である」、又は「拡張型心筋症であることを示唆する」ことを示す情報が含まれる。前記情報は、×、〇、感嘆符等のマークであってもよい。
 トリグリセリドの代謝能に関する値、基準範囲、比較方法、判定方法等の詳細は、上記2.の説明をここに援用する。
6-4.ステントを用いた血管拡張療法に関する有効性情報の提示システム及びステントを用いた血管拡張療法に関する有効性情報の提示装置の構成
(1)提示システム4000構成
 ステントを用いた血管拡張療法に関する有効性情報の提示システム4000(以下、単に提示システム4000という)の外観は、図3に示す提示システム1000と同様であるので、上記6-1.(1)の説明をここに援用する。ただし、図3における提示装置10は、ステントを用いた血管拡張療法に関する有効性情報の提示装置40(以下、単に提示装置40と呼ぶ)と読み替えるものとする。
(2)提示装置40のハードウエア構成
 提示装置40のハードウエア構成は、記憶デバイス104にステントを用いた血管拡張療法に関する有効性情報の提示プログラム1042dを格納している点を除き、図4に示す提示装置10と同様であるので、上記6-1.(2)の説明をここに援用する。
(3)提示装置40の機能構成
 提示装置40の機能構成は、基本的に図5に示す提示装置10と同様である。ただし、被検値取得手段M1は図9に示すステップS41に相当し、基準範囲取得手段M2は図9に示すステップS42に相当し、比較手段M3は図9に示すステップS43に相当し、提示手段M4は図9に示すステップS44に相当する。
(4)ステントを用いた血管拡張療法に関する有効性情報の提示プログラムの処理
 図9にステントを用いた血管拡張療法に関する有効性情報の提示プログラム1042d(以下、単に提示プログラム1042dと呼ぶ)の処理のフローチャートの一例を示す。
 提示装置40の処理部101は、オペレータが入力デバイス111から処理開始の入力を行うことにより、ステントを用いた血管拡張療法に関する有効性情報を提示するための処理を開始する。ステップS41において、処理部101は、分析装置90から、被検者の白血球におけるトリグリセリドの代謝能に関する値を取得する。あるいは、オペレータが被検者の白血球におけるトリグリセリドの代謝能に関する値を入力デバイス111から入力し、処理部101がこの入力を受け付けることにより取得してもよい。
 次に処理部101は、ステップS42において、基準範囲データベースDB1に格納されているトリグリセリドの代謝能の所定の基準範囲を取得する。
 次に処理部101は、ステップS43において、ステップS41で取得したトリグリセリドの代謝能に関する値と、ステップS42において取得した所定の基準範囲とを比較する。
 処理部101は、ステップS43において、取得したトリグリセリドの代謝能に関する値が、基準範囲外である場合(YESの場合)には、ステップS44に進み、被検者にステントを用いた血管拡張療法が有効ではないと決定し、有効性情報として被検者にステントを用いた血管拡張療法が有効ではないことを示すラベルを出力デバイス112に出力する。また、ステップS43において、取得したトリグリセリドの代謝能に関する値が、基準範囲内である場合(NOである場合)に、ステップS35に進み、被検者にステントを用いた血管拡張療法が有効であると決定し、有効性情報として被検者にステントを用いた血管拡張療法が有効であることを示すラベルを出力デバイス112に出力する。ステップS44において出力されるラベルには、「ステントは有効ではない」、又は「ステントは有効であることを示唆しない」ことを示す情報が含まれる。ステップS45において出力されるラベルには、「ステントは有効である」、又は「ステントの有効性を示唆する」ことを示す情報が含まれる。前記情報は、×、〇、感嘆符等のマークであってもよい。
 トリグリセリドの代謝能に関する値、基準範囲、比較方法、判定方法等の詳細は、上記2.の説明をここに援用する。
6-5.中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物に関する有効性情報の提示システム及び中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物に関する有効性情報の提示装置の構成
(1)提示システム5000構成
 中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物に関する有効性情報の提示システム5000(以下、単に提示システム5000という)の外観は、図3に示す提示システム1000と同様であるので、上記6-1.(1)の説明をここに援用する。ただし、図3における提示装置10は、中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物に関する有効性情報の提示装置50(以下、単に提示装置50と呼ぶ)と読み替えるものとする。
(2)提示装置50のハードウエア構成
 提示装置50のハードウエア構成は、記憶デバイス104にステントを用いた血管拡張療法に関する有効性情報の提示プログラム1042eを格納している点を除き、図4に示す提示装置10と同様であるので、上記6-1.(2)の説明をここに援用する。
(3)提示装置50の機能構成
 提示装置50の機能構成は、基本的に図5に示す提示装置10と同様である。ただし、被検値取得手段M1は図10に示すステップS51に相当し、基準範囲取得手段M2は図10に示すステップS52に相当し、比較手段M3は図10に示すステップS53に相当し、提示手段M4は図10に示すステップS54に相当する。
(4)中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物に関する有効性情報の提示プログラムの処理
 図10に中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物に関する有効性情報の提示プログラム1042e(以下、単に提示プログラム1042eと呼ぶ)の処理のフローチャートの一例を示す。
 提示装置50の処理部101は、オペレータが入力デバイス111から処理開始の入力を行うことにより、中鎖脂肪酸組成物、及び/又は中性脂肪蓄積型動脈硬化退縮組成物に関する有効性情報を提示するための処理を開始する。ステップS51において、処理部101は、分析装置90から、被検者の白血球におけるトリグリセリドの代謝能に関する値を取得する。あるいは、オペレータが被検者の白血球におけるトリグリセリドの代謝能に関する値を入力デバイス111から入力し、処理部101がこの入力を受け付けることにより取得してもよい。
 次に処理部101は、ステップS52において、基準範囲データベースDB1に格納されているトリグリセリドの代謝能の所定の基準範囲を取得する。
 次に処理部101は、ステップS53において、ステップS51で取得したトリグリセリドの代謝能に関する値と、ステップS52において取得した所定の基準範囲とを比較する。
 処理部101は、ステップS53において、取得したトリグリセリドの代謝能に関する値が、基準範囲外である場合(YESの場合)には、ステップS54に進み、被検者に中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与が有効であると決定し、有効性情報として被検者に中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与が有効であることを示すラベルを出力デバイス112に出力する。また、ステップS53において、取得したトリグリセリドの代謝能に関する値が、基準範囲内である場合(NOである場合)に、ステップS55に進み、被検者に中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与が有効でないと決定し、有効性情報として被検者に中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与が有効でないことを示すラベルを出力デバイス112に出力する。ステップS54において出力されるラベルには、「中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与は有効である」、又は「中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与の有効性を示唆する」ことを示す情報が含まれる。ステップS55において出力されるラベルには、「中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与は有効ではない」、又は「中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与は有効であることを示唆しない」ことを示す情報が含まれる。前記情報は、×、〇、感嘆符等のマークであってもよい。
 トリグリセリドの代謝能に関する値、基準範囲、比較方法、判定方法等の詳細は、上記2.の説明をここに援用する。
6-6.治療効果情報の提示システム、及び/又は治療効果情報の提示装置の構成
(1)提示システム6000構成
 治療効果情報の提示システム6000(以下、単に提示システム6000という)の外観は、図3に示す提示システム1000と同様であるので、上記6-1.(1)の説明をここに援用する。ただし、図3における提示装置10は、治療効果情報の提示装置60(以下、単に提示装置60と呼ぶ)と読み替えるものとする。
(2)提示装置60のハードウエア構成
 提示装置60のハードウエア構成は、記憶デバイス104にステントを用いた治療効果情報の提示プログラム1042fを格納している点、及び被検者の過去のトリグリセリドの代謝能に関する値を記録した基準範囲データベース(DB)DB2を記憶している点を除き、図4に示す提示装置10と同様であるので、上記6-1.(2)の説明をここに援用する。
(3)提示装置60の機能構成
 提示装置60の機能構成は、基本的に図5に示す提示装置10と同様である。ただし、被検値取得手段M1は図10に示すステップS61に相当し、基準範囲取得手段M2は図10に示すステップS62に相当し、比較手段M3は図10に示すステップS63に相当し、提示手段M4は図10に示すステップS64に相当する。
(4)治療効果情報の提示プログラムの処理
 図11に治療効果情報の提示プログラム1042f(以下、単に提示プログラム1042fと呼ぶ)の処理のフローチャートの一例を示す。
 提示装置60の処理部101は、オペレータが入力デバイス111から処理開始の入力を行うことにより、治療効果情報を提示するための処理を開始する。ステップS61において、処理部101は、分析装置90から、被検者の白血球におけるトリグリセリドの代謝能に関する値を取得する。あるいは、オペレータが被検者の白血球におけるトリグリセリドの代謝能に関する値を入力デバイス111から入力し、処理部101がこの入力を受け付けることにより取得してもよい。
 次に処理部101は、ステップS62において、基準範囲データベースDB2に格納されている同一被検者の過去のトリグリセリドの代謝能に関する値を取得する。
 次に処理部101は、ステップS63において、ステップS61で取得したトリグリセリドの代謝能に関する値と、ステップS62において取得した被検者の過去のトリグリセリドの代謝能に関する値とを比較する。
 処理部101は、ステップS63において、取得したトリグリセリドの代謝能に関する値が、被検者の過去のトリグリセリドの代謝能に関する値よりも高い場合(YESの場合)には、ステップS64に進み、被検者に適用された治療が有効であると決定し、治療効果情報として治療が有効であることを示すラベルを出力デバイス112に出力する。また、ステップS63において、取得したトリグリセリドの代謝能に関する値が、被検者の過去のトリグリセリドの代謝能に関する値よりも低い場合(NOである場合)に、ステップS65に進み、被検者に適用された治療が有効でないと決定し、治療効果情報として治療が有効でないことを示すラベルを出力デバイス112に出力する。ステップS64において出力されるラベルには、「治療は有効である」、又は「治療の有効性を示唆する」ことを示す情報が含まれる。ステップS65において出力されるラベルには、「治療は有効ではない」、又は「治療は有効であることを示唆しない」ことを示す情報が含まれる。前記情報は、×、〇、感嘆符等のマークであってもよい。
 トリグリセリドの代謝能に関する値、基準範囲、比較方法、判定方法等の詳細は、上記2.の説明をここに援用する。
6-7.変形例
 上記提示プログラム1042a,1042b,1042c,1042d,1042e,1042fは、それぞれのステップS11、S21、S31、S41,S51,S61の前に、図12に示す第1測定値と第2測定値の差を示す情報を生成する処理を備えていてもよい。
 各提示装置の処理部101は、ステップS81において分析装置90からオペレータが入力デバイス111から入力した測定値取得指令にしたがって、第1測定値を取得する。また、各提示装置の処理部101は、ステップS82において分析装置90からオペレータが入力デバイス111から入力した測定値取得指令にしたがって、第2測定値を取得する。さらに、各提示装置の処理部101は、オペレータが入力デバイス111から入力した指令に従うか、第2測定値をトリガとして第1測定値と第2測定値の差を示す情報を生成する。差を示す情報は、第1測定値と第2測定値の差を示す限り制限されない。例えば減算値、除算値、相対値等であってもよい。また、第1測定値と第2測定値を示すヒストグラム等を並べて表示するものであってもよい。
7.提示プログラムを格納する記憶装置
 本実施形態は、上述した提示プログラム1042a,1042b,1042c,1042d,1042e,1042fを含む。
 さらに、本実施形態のある実施形態は、前記提示プログラム1042a,1042b,1042c,1042d,1042eを記憶した、メディアドライブ等のプログラム製品に関する。すなわち、前記提示プログラム1042a,1042b,1042c,1042d,1042eは、ハードディスク、フラッシュメモリ等の半導体メモリ素子、光ディスク等のメディアドライブに格納され得る。また、メディアドライブはサーバ装置等のコンピュータであってもよい。メディアドライブへのプログラムの記録形式は、提示装置10,20,30,40,50がプログラムを読み取り可能である限り制限されない。前記メディアドライブへの記録は、不揮発性であることが好ましい。
 以下に、実施例を示して本発明についてより詳細に説明するが、本発明は実施例に限定して解釈されるものではない。
1.実験例1:蛍光標識脂肪酸の調製
 蛍光標識脂肪酸が脂肪酸アナログとして細胞に取り込まれ、排出されることを検証するため、Alexa Fluor (商標) 680を標識した15-phenyl-3-methylpentadecanoic acid(以下、蛍光標識BMPPと呼ぶ)を調製した。
1-1.BMPPの調製
 以下の方法により、15-(4-(3-aminopropyl)phenyl)-3-methylpentadecanoic acidを合成した。なお、以下の合成系において、EtOAcは酢酸エチルを意図し、Bocはtert-ブトキシカルボニル保護基を意図し、MeOHはメタノールを意図する。
(1)Step 1a: Tert-butyl prop-2-yn-1-ylcarbamateの合成
Figure JPOXMLDOC01-appb-C000021
 プロパルギルアミン(1 g、18.2 mmol)のCH2Cl2(25 mL)溶液に、撹拌しながら0℃でのCH2Cl2に溶解した Boc無水物(4 g、18.2 mmol)を加えた。温度をゆっくりと室温に上げ、さらに2時間撹拌した。反応の完了後、CH2Cl2を真空で蒸発させ、残留物をEtOAcで抽出した。 有機層をMgSO4上で乾燥させ、真空で濃縮した。得られた残留物をヘキサン/ EtOAc(8:2)を使用したシリカゲルカラムクロマトグラフィーにより精製して、所望のBoc保護プロパルギルアミン(2.4g、収率95%)を淡黄色の固体として得た。
1H NMR (CDCl3, 500 MHz): δ = 4.71 (1H, s), 3.92 (2H, s), 2.22 (1H, t, J=2.5 Hz), 1.45 (9H, s)
(2)Step 1b: benzyl 15-(4-iodophenyl)-3-methylpentadecanoate (2)の合成
Figure JPOXMLDOC01-appb-C000022
 15-(4-iodophenyl)-3-methylpentadecanoic acid:BMIPP(200 mg、0.44 mmol)のトリエチルアミン溶液(約0.3 mL、1:1 v / v)に撹拌しながら、塩化ベンジル(275 mg、2.2 mmol)を添加した。 反応混合物を90℃で2時間撹拌した。反応が完了した後、残留物をEtOAcで抽出した。有機層をMgSO4上で乾燥させ、真空で濃縮した。得られた残留物を、ヘキサン/ EtOAc(9:1)を使用してシリカゲルカラムクロマトグラフィーにより精製して、所望の化合物2(215mg、収率90%)を無色の油として得た。
1H NMR (CDCl3, 500 MHz): δ = 7.60 (2H, d, J=8.3 Hz), 7.36 (5H, m), 6.94 (2H, d, J=8.1 Hz), 5.12 (2H, s), 2.54 (2H, t, J=7.8 Hz), 2.36 (1H, dd, J=14.9, 6.1 Hz), 2.17 (1H, dd, J=14.6, 8.0 Hz), 1.56-1.59 (2H, m), 1.24-1.29 (20H, m), 0.93 (3H, d, J=6.6 Hz).
(3)Step 2: Benzyl 15-(4-(3-((tert-butoxycarbonyl)amino)prop-1-yn-1-yl)phenyl)-3-methylpentadecanoate (3)の合成
Figure JPOXMLDOC01-appb-C000023
 化合物2(200 mg、0.37 mmol)のTHF溶液に、撹拌しながらトリエチルアミン(110 mg、1.1 mmol)及びビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(51 mg、0.073 mmol)を加えた。化合物2の反応混合物を室温で数分間撹拌した。THFに溶解したBoc保護プロパルギルアミン(170 mg、1.1 mmol)を化合物2の反応混合物にゆっくりと加え、5分間撹拌した。ヨウ化銅(7 mg、0.037 mmol)を加え、反応混合物を室温で一晩撹拌した。反応の完了後、THFを真空で除去した。得られた残留物をヘキサン/EtOAc(8:2)を使用したシリカゲルカラムクロマトグラフィーにより精製して、所望の化合物3(115 mg、収率55 %)を黄色の油として得た。
1H NMR (CDCl3, 500 MHz): δ = 7.31-7.38 (7H, m), 7.12 (2H, d, J=8.3 Hz), 5.12 (2H, s), 4.75 (1H, s) 4.15 (2H, s), 2.58 (2H, t, J=7.8 Hz), 2.36 (1H, dd, J=14.6, 6.1 Hz), 2.17 (1H, dd, J=14.6, 8.0 Hz), 1.57-1.62 (2H, m), 1.47 (9H, s), 1.24-1.30 (20H, m), 0.93 (3H, d, J=6.8).
(4)Step 3:15-(4-(3-((tert-butoxycarbonyl)amino)propyl)phenyl)-3-methylpentadecanoic acid (4)の合成
Figure JPOXMLDOC01-appb-C000024
 化合物3(100 mg、0.174mmol)をMeOH(10 ml)溶液に、撹拌しながら10% Pd / C(120 mg、0.12 mmol)を加えた。反応混合物を、H2雰囲気下、室温で一晩撹拌した。 固体を濾別し、濾液を真空下で濃縮して残留物を得、これをCHCl/MeOH(9.5:0.5)を使用してシリカゲルカラムクロマトグラフィーにより精製して、化合物4(75mg、収率92%)を無色油として得た。
1H NMR (CDCl3, 500 MHz): δ = 7.09 (4H, m), 4.53 (1H, s), 3.15 (1H, s), 2.61 (2H, t, J=7.7 Hz), 2.57 (2H, t, J=7.3), 2.33-2.37 (1H, dd, J=15.9, 6.1 Hz), 2.16 (1H, dd, J=14.9, 8.0 Hz), 1.93-1.98 (1H, m), 1.77-1.82 (2H, m), 1.56-1.60 (2H, m), 1.45 (9H, s), 1.24-1.30 (20H, m), 0.97 (3H, d, J=6.6 Hz).
(5)Step 4: 15-(4-(3-aminopropyl)phenyl)-3-methylpentadecanoic acid (5)の合成
Figure JPOXMLDOC01-appb-C000025
 化合物4(70 mg、0.143 mmol)のCH2Cl2(8 mL)溶液に、撹拌しながらTFA(160 mg、1.43 mmol)を加えた。反応混合物を室温で1.5時間撹拌した。反応の完了後、溶媒を真空で蒸発させ、残留物をEtOAcで抽出した。 有機層をMgSO4で乾燥させ、真空で濃縮して、所望の化合物5(52mg、収率93%)を白色の固体として得た。
1H NMR (CD3OD, 500 MHz): δ = 7.11 (4H, s), 2.91 (2H, t, J=7.5 Hz), 2.68 (2H, t, J=7.5 Hz), 2.57 (2H, t, J=8.5), 2.28 (1H, dd, J=14.4, 5.7 Hz), 2.07 (1H, dd, J=14.4, 7.1 Hz), 1.91-1.95 (2H, m), 1.57-1.60 (2H, m), 1.20-1.31 (20H, m), 0.95 (3H, d, J=6.6 Hz).
 以下、化合物5をNH2-BMPPと称する。
1-2.蛍光標識BMPPの調製
 1 mgのNH2-BMPPを0.8 mLのDMSOと0.1 mLのNa2CO3(10 mM)溶液に溶解した。Alexa Fluor (商標)680-NHSのDMSO溶液(DMSOに1 mg溶解)50μLを終濃度0.9mMとなるようにNH2-BMPP溶液に添加した。室温で、24時間、BMPPとAlexa Fluor (商標)680-NHSを反応させた。サイズ排除クロマトグラフィー(GE-Healthcare、PD10)を使用してAlexa Fluor (商標)680結合BMPP(以下、Alexa Fluor (商標)680-BMPP)を精製した。
2.実験例2:被検者から採取した全血を用いた白血球におけるAlexa Fluor (商標)680-BMPPの取り込み能の評価
 (1)方法
 健常人からヘパリン採血した全血各200μをサンプルとして用いた。蛍光標識BMPP添加群には、実験例1で調製したAlexa Fluor (商標)680-BMPPを終濃度0.0074μM、0.022μM、0.067μM、0.2μMとなるように添加、陰性コントロール群には、Alexa Fluor (商標)680 NHS Ester 加水分解物(以下、単に「Alexa Fluor (商標)680とする」)を終濃度0.0074μM、0.022μM、0.067μM、0.2μMとなるように添加し、室温30分間静置による蛍光標識体の取り込みを行った。
 取り込み後のサンプルに対しBD FACS Lysing Solution(BD Biosciences)を2 ml添加し、室温30分間静置することで赤血球を溶血させた後、室温、1500 rpm 30分間の遠心によって白血球を沈殿として回収し、PBSに再懸濁することでFACS解析用サンプルとした。FACS解析は、Alexa Fluor (商標)680-BMPPを添加せずに同様に調製した白血球を用いて、前方散乱光と側方散乱光のドットプロットによってリンパ球、単球、好中球の入るゲートをあらかじめ作っておき、そのゲート内で10万個がカウントされるまで測定することで行った。
(2)結果
 図13において、上段はAlexa Fluor (商標)680-BMPPを添加による結果を示し、下段はAlexa Fluor (商標)680を添加による結果を示す。符号a、b、c、dは、それぞれ終濃度0.0074μM、0.022μM、0.067μM、0.2μMの結果を示す。横軸はAlexa Fluor (商標)680の蛍光強度を示し、縦軸はその蛍光強度における細胞数を示す。
 好中球、単球、リンパ球いずれも、上段のAlexa Fluor (商標)680-BMPP群において濃度依存的してヒストグラムが右方にシフト(すなわち細胞集団が蛍光強度の高い方へシフト)したことにより、Alexa Fluor (商標)680-BMPPの濃度依存的な取り込み量の増加を確認できた。
3.実験例3:被検者から採取した全血を用いた白血球におけるフルオレセイン標識BMPPの取り込み能の評価
(1)方法
 Alexa Fluor (商標)680-BMPPの取り込みが蛍光色素に依存するものではないことを確認するため、Alexa Fluor (商標)680にかえてフルオレセインを用いて蛍光標識BMPP(以下、フルオレセイン標識BMPP)を調製した。フルオレセイン標識BMPPを終濃度、0μM、0.13μM、0.27μM、0.53μMとなるようにヘパリン採血した健常人全血に添加し、実験例2と同様の方法で好中球、単球、リンパ球のフルオレセイン標識BMPPの取り込み能を評価した。
 (2)結果
 結果を図14に示す。各ヒストグラムの曲線は左から、終濃度、0μM、0.13μM、0.27μM、又は0.53μMを示す。横軸はフルオレセインの蛍光強度を示し、縦軸はその蛍光強度における細胞数を示す。フルオレセインを標識したBMPPを用いた場合でもAlexa Fluor (商標)680を標識したBMPPを用いた場合と同様に、濃度依存的な取り込み量の増加を確認できた。
4.実験例4:健常人と原発性中性脂肪蓄積心筋血管症患者の白血球における蛍光標識BMPPの代謝能の比較
 次に、健常人と原発性中性脂肪蓄積心筋血管症患者の全血から赤血球除去試薬によって調製した白血球細胞を用いて、Alexa Fluor (商標)680-BMPPの取り込み能と排出能を評価した。
(1)方法
(i)白血球細胞の調製
 健常人及び患者からヘパリン採血した全血5.5 mlに対し1/5量の白血球分離剤(HetaSep,ベリタス社)を添加し、製品プロトコルにしたがって白血球細胞を回収し、血清未添加のDMEM培地(以下、DMEM無血清培地)2.1 mlに再浮遊させた。 Alexa Fluor (商標)680-BMPPの取り込み能と排出能の測定は以下にように400μlずつを用いて行った。
(ii)白血球細胞を用いたAlexa Fluor (商標)680-BMPPの取り込み能と排出能の測定 細胞の再浮遊液400μlに対しAlexa Fluor (商標)680-BMPP 40μl又はもしくはAlexa Fluor(商標) 680 40μlを終濃度で0.067μMとなるように添加し、室温30分間静置による蛍光標識体の取り込み反応を行った。取り込み直後測定用サンプルは、反応後すぐにBD FACS Lysing Solutionを加え溶血させFACSに供した。一方、排出測定用サンプルは、室温での遠心分離によりAlexa Fluor (商標)680-BMPP又はAlexa Fluor(商標) 680を除去し、DMEM無血清培地500μlに細胞を再浮遊させ、37℃、2時間静置することで取り込んだAlexa Fluor (商標)680-BMPP又はAlexa Fluor(商標) 680の排出反応を行った後、BD FACS Lysing Solutionを加え、取り込み直後サンプルと同様にFACSに供した。FACS解析は、実験例2と同様の方法行い、取り込み直後サンプルと、排出測定用サンプルにおける、好中球、単球、及びリンパ球それぞれについて蛍光強度を比較した。
(2)結果
 結果を図15に示す。符号mは取り込み直後のヒストグラムを示し、符号nは排出後のヒストグラムを示す。図15上段は、健常人の好中球、単球、及びリンパ球の排出能を示す。図15下段は、原発性TGCV患者の好中球、単球、及びリンパ球の排出能を示す。健常人の好中球におけるAlexa Fluor (商標)680-BMPPの排出能は、ヒストグラムが左方にシフト(すなわち細胞集団が蛍光強度の低い方へシフト)したことにより十分に示された。また、リンパ球においても、蛍光強度がブロードな細胞集団として左にシフトしたことによって排出能が示された。原発性TGCV患者の好中球におけるAlexa Fluor (商標)680-BMPPの排出能は、健常人と比較して蛍光強度の左へシフトが顕著に小さいことから、明らかに低下していることが示された。原発性TGCV患者のリンパ球におけるAlexa Fluor (商標)680-BMPPの排出能は、健常人と比較して蛍光強度の左へシフトが小さい傾向にあることから低下していることが示された。
 図16に、Alexa Fluor (商標)680の排出能を示す。符号pは取り込み直後のヒストグラムを示し、符号qは排出後のヒストグラムを示す。図16上段は、健常人の好中球、単球、及びリンパ球の排出能を示す。図16下段は、原発性TGCV患者の好中球、単球、及びリンパ球の排出能を示す。健常者の白血球と原発性TGCV患者の白血球の間にAlexa Fluor (商標)680の排出能の差は認められなかった。
 以上のことから、原発性TGCV患者の白血球では、健常人と比較してAlexa Fluor (商標)680-BMPPの排出能が低下することが示された。そして、この結果は、Alexa Fluor (商標)680に依存していないことが示された。
5.実験例5:排出時間によるAlexa Fluor (商標)680-BMPP排出量への影響の検討
(1)方法
(i)白血球サンプルの調製
 健常人2名からヘパリン採血したそれぞれの全血6 mlに対し1/5量のHetaSep(ベリタス社)を添加し、製品プロトコルにしたがって白血球細胞を回収後、DMEM無血清培地2.1 mlに再浮遊させた。 Alexa Fluor (商標)680-BMPPの取り込み能と排出能の測定は以下にように400μlずつを用いて行った。
(ii)Alexa Fluor (商標)680-BMPP取り込み反応
 細胞の再浮遊液400μlに対しAlexa Fluor (商標)680-BMPP 40μlを終濃度で0.067μMとなるように添加し、室温30分間静置による取り込み反応を行った。取り込み直後測定用サンプルは、反応後すぐにBD FACS Lysing Solutionを加え溶血させFACSに供した。一方、排出測定用サンプルは、室温での遠心分離によりAlexa Fluor (商標)680-BMPPを除去し、DMEM無血清培地500μlに細胞を再浮遊させ、37℃において0、10、30、60、 20分間静置することで取り込んだAlexa Fluor (商標)680-BMPPの排出反応を行った後、BD FACS Lysing Solutionを加え、取り込み直後サンプルと同様にFACSに供した。FACS解析は、実験例2と同様の方法行い、各排出時間における、好中球、単球、及びリンパ球それぞれについて蛍光強度を比較した。
(2)結果
 図17に結果示す。図17上段は健常人Aの結果を、下段は健常人Bの結果を示す。両者とも排出時間10分間から120分間でヒストグラムのシフトは見られず、既に10分間の時点で十分な排出が行われ、ほぼバックグラウンドまで達していると考えられた。このことから、より短い排出時間でも、評価は可能であると考えられた。
6.参考実施例
6-1.参考実施例1:中鎖脂肪酸の効果
 6週齢(160~180g)の雄のSDラットを使用した。コントロール群として18匹、中鎖脂肪酸投与群として8匹用意した。すべてのラットは、普通食のみで搬入後1週間予備飼育した後、中鎖脂肪酸投与群には、普通食を与え、1145mg/kg体重/日の高含有中性脂肪(構成脂肪酸の98%がデカン酸)を強制投与した。コントロール群も普通食を与え、1145mg/kg体重/日の水を強制投与した。
 搬入後2週間目からは、全てのラットに、高脂肪食を与えた。そして、中鎖脂肪酸投与群には、1145mg/kg体重/日の高含有中性脂肪を強制投与した。また、コントロール群は、1145mg/kg体重/日の水を強制投与した。
 搬入後3週間目で、腹部大動脈瘤誘導処置を行った。腹部大動脈瘤誘導処置は、ラット腹部大動脈にカテーテルを挿入し、挿入したカテーテルとともに腹部大動脈を結紮する処理であり、特許文献3に開示されている方法に準じた。
 その後4週間の間、コントロール群は、高脂肪食を与え、1145mg/kg体重/日の水を強制投与し続けた。また、中鎖脂肪酸投与群には高脂肪食を与え、高含有中性脂肪を強制投与し続けた。そして、腹部大動脈瘤誘導処置を行ってから4週間が終了した後に安楽死させて解剖した。
 図18(A)に結果を示す。中鎖脂肪酸投与群では、1匹に腹部大動脈瘤の発生が認められた。中鎖脂肪酸投
 与群の内7匹には、腹部大動脈瘤の発生を確認できなかった。以上のことより、腹部大動脈瘤の発生率は、コントロール群で38.9%であり、中鎖脂肪酸投与群では12.5%であった。
 図18(B)には、腹部大動脈瘤を発生したラットの内、大動脈瘤の破裂の発生の有無を調べた結果を示す。表2を参照して、コントロール群7匹の内、2匹に腹部大動脈瘤の破裂が確認された。コントロール群の残り5匹については、腹部大動脈瘤の破裂は認められなかった。
 一方、中鎖脂肪酸投与群の内、大動脈瘤を発生していた1匹には、腹部大動脈瘤の破裂は認められなかった。
 以上のことより、腹部大動脈瘤の破裂率は、コントロール群で28.6%であり、中鎖脂肪酸投与群では0.0%であった。
6-2.参考実施例2:トリカプリンの投与効果
〔症例1〕
(1)患者
 遺伝的ATGL(Adipose triglyceride lipase)欠損症の44歳女性。冠動脈CT検査により中性脂肪蓄積型動脈硬化であることが認められたため、MCT食事療法を開始した。1日あたり6~9gのトリカプリンを、50日間、1日3回食後に摂取させた。
(2)冠動脈内に蓄積した脂肪の評価
 MCT食事療法開始前及びMCT食事療法開始から50日後に、通常の冠動脈CTを行い、左前下行枝の三次元DICOM画像を取得した。0.1mmのボクセルにて再サンプリングし、ボクセル内CT値により層別色付けを行った。ボクセル間についてはスムージングを行った。層別色付けは以下のように行った。
明るい灰色:-25HU~0HU(脂肪が大量)
中間の灰色:0HU~40HU(脂肪が中等度)
濃い灰色:40HU~125HU(脂肪なし)
(3)結果
 層別色付けした冠動脈の断面図を図19に示した。(A)がMCT食事療法開始前、(B)がMCT食事療法開始から50日後の結果である。この結果から、50日間のMCT食事療法により、冠動脈の中性脂肪蓄積型動脈硬化が退縮したことが示された。
〔症例2〕
(1)患者
 難治性狭心症に何年も苦しんできた65歳男性。複数の抗狭心症薬とスタチン等の併用治療を行っても、狭心症はむしろ悪化した。冠動脈CT検査により中性脂肪蓄積型動脈硬化であることが認められたため、MCT食事療法を開始した。MCTとしてトリカプリンを、1日あたり1.5g、4年間、1日3回食後に摂取させた。
(2)冠動脈内に蓄積した脂肪の評価
 MCT食事療法開始前及びMCT食事療法開始から4年後に、通常の冠動脈CTを行い、症例1と同じ方法で左前下行枝内部の層別色付けを行った。
(3)結果
 結果を図20及び図21に示した。図20は、横軸が冠動脈口からの距離、縦軸が血管の直径であり、(A)がMCT食事療法開始前、(B)がMCT食事療法開始から4年後の結果である。白色が血流部位、灰色が中性脂肪層である。図21は、冠動脈口からの距離が6.5~9.0cm部分の血管の6か所(a~f)の断面図である。図20及び図21から明らかなように、4年間のMCT食事療法により、冠動脈の中性脂肪蓄積型動脈硬化が退縮し、血流部位の直径が顕著に広くなっていた。
7.実験例6:トリカプリン治療前後における白血球の蛍光標識BMPPの代謝能の比較
 次に、前記6-2.に示した〔症例1〕の患者のからトリカプリン治療前後に採取した全血を用いてAlexa Fluor (商標)680-BMPPの取り込み能と排出能を比較した。
(1)方法
 白血球細胞の調製及び白血球細胞を用いたAlexa Fluor (商標)680-BMPPの取り込み能と排出能の測定は、実験例に準じて行った。
(2)結果
 結果を図22に示す。符号mは取り込み直後のヒストグラムを示し、符号nは排出後のヒストグラムを示す。図22(A)上段は、患者の治療開始前の白血球(好中球)におけるAlexa Fluor (商標)680-BMPPの排出能を示す。図22(A)下段は、健常人の白血球におけるAlexa Fluor (商標)680-BMPPの排出能を示す。図22(B)上段は、患者の治療後の白血球におけるAlexa Fluor (商標)680-BMPPの排出能を示す。図22(B)下段は、健常人の白血球におけるAlexa Fluor (商標)680-BMPPの排出能を示す。図22(A)に示すように、治療開始前の患者におけるAlexa Fluor (商標)680-BMPPの排出能は、健常人と比較して蛍光強度の左へシフトが顕著に小さいことから、明らかに低下していた。図22(B)に示すように、治療後の患者におけるAlexa Fluor (商標)680-BMPPの排出能は、健常人と同程度まで回復していた。この結果から、Alexa Fluor (商標)680-BMPPの排出能は、MCT食事療法の効果の評価にも有用であることが示された。

Claims (20)

  1.  下記工程を含む、被検者の白血球におけるトリグリセリドの代謝能に関する値の取得方法:
     蛍光物質を標識した脂肪酸化合物と、被検者から採取した白血球とを体外で混合し、前記蛍光物質を標識した脂肪酸と白血球とを接触させる第1工程であって、前記脂肪酸化合物は、脂肪酸残基を含み、前記脂肪酸残基の炭素数が8から26であり、前記脂肪酸残基を構成する水素原子の一部は、前記脂肪酸残基の末端のメチル基を除き炭素数1から3のアルキル基で置換されていてもよい、第1工程、及び
     前記白血球における蛍光標識に由来する蛍光強度の測定値を、前記トリグリセリドの代謝能に関する値として取得する第2工程。
  2.  前記脂肪酸残基の末端のメチル基の水素原子が、置換もしくは非置換のフェニル基で置換されている、請求項1に記載の取得方法。
  3.  前記脂肪酸化合物が下記一般式(1)で表される、請求項1に記載の取得方法:
    Figure JPOXMLDOC01-appb-C000001
    (nは、4から22の整数である。)。
  4.  前記蛍光物質を標識した脂肪酸化合物が下記一般式(2)で表される、請求項1に記載の取得方法:
    Figure JPOXMLDOC01-appb-C000002
    (nは、4から22の整数である。Xは、蛍光物質と、リンカー部分を含む。)。
  5.  第2工程の後に、さらに前記蛍光標識した脂肪酸化合物を前記白血球から5分から2時間かけて除去する第3工程と、
     第3工程の後に前記白血球における蛍光標識に由来する蛍光強度の測定値を取得する第4工程と、
     第2工程で取得した蛍光強度の測定値を第1測定値とし、第4工程で取得した蛍光強度の測定値を第2測定値として、第1測定値と第2測定値の差を示す値を求め、前記差を示す値を前記トリグリセリドの代謝能に関する値として取得する第5工程を含む、請求項1から4のいずれか一項に記載の取得方法。
  6.  請求項1から5のいずれか一項に記載の値の取得方法により取得された前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、前記被検者が中性脂肪蓄積心筋血管症、中性脂肪蓄積型動脈硬化症、又はこれらの疾患の予備群であることを示唆する工程を含む、
    疾患の情報の提示方法。
  7.  請求項1から5のいずれか一項に記載の値の取得方法により取得された前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲内である時に、前記被検者がコレステロール蓄積型動脈硬化症、又はその予備群であることを示唆する工程を含む、
    疾患の鑑別情報の提示方法。
  8.  請求項1から5のいずれか一項に記載の値の取得方法により取得された前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、前記被検者が拡張型心筋症ではないことを示唆する工程を含む、
    疾患の鑑別情報の提示方法。
  9.  請求項1から5のいずれか一項に記載の値の取得方法により取得された、前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、前記被検者にステントを用いた血管拡張療法が有効ではないことを示唆する工程を含む、
    ステントによる血管拡張療法の有効性情報の提示方法。
  10.  請求項1から5のいずれか一項に記載の値の取得方法により取得された、前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、トリグリセリドの代謝能の所定の基準範囲と比較し、前記被検者の白血球におけるトリグリセリドの代謝能が基準範囲外である時に、前記被検者への中鎖脂肪酸組成物投与、及び/又は中性脂肪蓄積型動脈硬化退縮組成物投与が有効であることを示唆する工程を含む、
    組成物の有効性情報の提示方法。
  11.  請求項1から5のいずれか一項に記載の値の取得方法により取得された、前記被検者の白血球におけるトリグリセリドの代謝能に関する値を、被検者の白血球におけるトリグリセリドの代謝能に関する値を、同一の被検者の過去のトリグリセリドの代謝能に関する値と比較し、前記被検者の白血球におけるトリグリセリドの代謝能に関する値が、前記同一の被検者の過去のトリグリセリドの代謝能に関する値よりも高い時に、前記被検者に適用した治療が有効であることを示唆する工程を含む、
    治療効果情報の提示方法。
  12.  請求項8、9、10、又は12に記載の各工程を実行する処理部を備えた、演算装置。
  13.  コンピュータに実行させた時に、演算装置に、請求項8、9、10、又は12に記載の各工程を実行させる、コンピュータプログラム。
  14.  被検者の白血球を採取するための採血に使用される採血管であって、
     前記白血球は、体外で請求項1から5のいずれか一項に記載のトリグリセリドの代謝能に関する値を取得するために使用され、
     前記採血管は、白血球を分離するための比重液、又は白血球を分離するための比重液と白血球分離剤を格納する、
    前記採血管。
  15.  蛍光物質を標識した脂肪酸化合物を含む、トリグリセリドの代謝能を評価するための検査試薬であって、前記脂肪酸化合物は、脂肪酸残基を含み、前記脂肪酸残基の炭素数が8から26であり、前記脂肪酸残基を構成する水素原子の一部は、前記脂肪酸残基の末端のメチル基を除き炭素数1から3のアルキル基で置換されていてもよい、
    前記検査試薬。
  16.  請求項14に記載の採血管と、請求項15に記載の検査試薬を組み合わせた、検査キット。
  17.  下記一般式(3)で表される化合物:
    Figure JPOXMLDOC01-appb-C000003
    (nは、4から22の整数である。Rは、炭素数3から6のアルキレン基を示す。)。
  18.   下記一般式(3)で表される化合物:
    Figure JPOXMLDOC01-appb-C000004
    (nは、4から22の整数である。Rは、炭素数3から6のアルキレン基を示す。)の製造方法であって、
     下記一般式(4)で表される化合物:
    Figure JPOXMLDOC01-appb-C000005
    (nは、4から22の整数である。Rは、炭素数3から6のアルキレン基を示す。Bocは、tert-ブトキシカルボニル保護基を示す。)
    から、tert-ブトキシカルボニル保護基を除去する工程を含む、
    前記製造方法。
  19.  下記一般式(2)で表される化合物:
    Figure JPOXMLDOC01-appb-C000006
    (nは、4から22の整数である。Xは、蛍光物質と、リンカー部分を含む。)。
  20.  下記一般式(2)で表される化合物:
    Figure JPOXMLDOC01-appb-C000007
    (nは、4から22の整数である。Xは、蛍光物質と、リンカー部分を含む。)
    の製造方法であって、
     下記一般式(3)で表される化合物:
    Figure JPOXMLDOC01-appb-C000008
    (nは、4から22の整数である。Rは、炭素数3から6のアルキレン基を示す。)と、蛍光物質とをアミンカップリングにより結合する工程を含む、
    製造方法。
PCT/JP2021/025687 2020-07-07 2021-07-07 トリグリセリドの代謝能に関する値の取得方法、疾患の情報の提示方法、疾患の鑑別情報の提示方法、治療の有効性情報の提示方法、治療効果情報の提示方法、検査試薬、及び検査キット WO2022009939A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022535379A JPWO2022009939A1 (ja) 2020-07-07 2021-07-07
US18/014,582 US20230251278A1 (en) 2020-07-07 2021-07-07 Acquisition method of value relating to triglyceride metabolic capacity, presentation method of disease information, presentation method of disease differentiation information, presentation method of therapy efficacy information, presentation method of therapeutic effect information, test reagent and test kit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020117350 2020-07-07
JP2020-117350 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022009939A1 true WO2022009939A1 (ja) 2022-01-13

Family

ID=79553186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025687 WO2022009939A1 (ja) 2020-07-07 2021-07-07 トリグリセリドの代謝能に関する値の取得方法、疾患の情報の提示方法、疾患の鑑別情報の提示方法、治療の有効性情報の提示方法、治療効果情報の提示方法、検査試薬、及び検査キット

Country Status (3)

Country Link
US (1) US20230251278A1 (ja)
JP (1) JPWO2022009939A1 (ja)
WO (1) WO2022009939A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520969A (ja) * 2004-11-15 2008-06-19 クアントミックス・リミテッド 代謝疾患の分析のための装置及び方法
US20180179574A1 (en) * 2015-09-03 2018-06-28 The University Of Chicago Systems and methods for characterization of hypertriglyceridemia

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520969A (ja) * 2004-11-15 2008-06-19 クアントミックス・リミテッド 代謝疾患の分析のための装置及び方法
US20180179574A1 (en) * 2015-09-03 2018-06-28 The University Of Chicago Systems and methods for characterization of hypertriglyceridemia

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CALDER, PHILIP C. ET AL.: "Triacylglycerol metabolism by lymphocytes and the effect of triacylglycerols on lymphocyte proliferation", BIOCHEMICAL JOURNAL, vol. 298, 1994, pages 605 - 611, XP055898511 *
GOODMAN, M. M. ET AL.: "New Myocardial Imaging Agents: Synthesis of 15-(p-Iodophenyl)-3(R, S)- methylpentadecanoic Acid by Decomposition of a 3, 3-(1, 5-Pentanediyl)triazene Precursor", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 49, 1984, pages 2322 - 2325, XP055898515 *

Also Published As

Publication number Publication date
US20230251278A1 (en) 2023-08-10
JPWO2022009939A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
Därr et al. Novel insights into the polycythemia–paraganglioma–somatostatinoma syndrome
Schwarz et al. Morphology of coronary atherosclerotic lesions in patients with end-stage renal failure
Liu et al. Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication
CN105246889B (zh) 氟化整联蛋白拮抗剂
JPWO2013172344A1 (ja) 高血中高感度c反応性蛋白質患者の心血管疾患一次予防剤
CN105349642B (zh) 一种急性心肌梗死标志物及其应用
CN102421742B (zh) 3-戊基苯乙酸的盐及其药物用途
Shen et al. Invariant natural killer T cells shape the gut microbiota and regulate neutrophil recruitment and function during intestinal inflammation
WO2016208776A1 (ja) 多器官連関システムを基盤とした予測装置、及び予測プログラム
US20200231596A1 (en) Matter of composition, synthesis, formulation and application of fl118 platform positions 7 and 9-derived analogues for treatment of human disease
Cortenbach et al. Topography of immune cell infiltration in different stages of coronary atherosclerosis revealed by multiplex immunohistochemistry
WO2022009939A1 (ja) トリグリセリドの代謝能に関する値の取得方法、疾患の情報の提示方法、疾患の鑑別情報の提示方法、治療の有効性情報の提示方法、治療効果情報の提示方法、検査試薬、及び検査キット
CN105349641B (zh) 急性心肌梗死相关基因serpinb13及其应用
Onofrey et al. Ocular therapeutics handbook: a clinical manual
Trinidad-Hernandez et al. Contained ruptured paravisceral aortic aneurysm related to immunoglobulin G4 aortitis
CN105177171B (zh) Akr1b10在制备急性心肌梗死诊疗制剂中的应用
US10746721B2 (en) Method for rapid testing allergy
Hamouda et al. POS-123 Determinants of Outcome in Crescentic Glomerulonephritis: A Retrospective Study of 78 patients from Tunisia, North Africa
CN113607711B (zh) 一种基于斑马鱼平台筛选抗血管生成化合物或评价化合物抗血管生成效果和毒性作用的方法
Lee et al. Measurement of human erythrocyte C4d to erythrocyte complement receptor 1 ratio in cardiac transplant recipients with acute symptomatic allograft failure
US20220265593A1 (en) Compositions comprising 15-hepe and methods of treating or preventing hematologic disorders, and/or related diseases
Hamouda et al. POS-124 Glomerulonephritis with Antiglomerular basement membrane: Clinical features, Management and Outcomes
Giannikopoulos et al. Cinacalcet-induced leukocytoclastic vasculitis
Minarik et al. Hereditary Haemorrhagic Telangiectasia (HHT) Marked by ACVRL1C1120T Variant Displays Hypopigmented Naevi and Frequent Bleeding Episodes if CYP2C9 Co-Mutated: Clinical Notes & Rationale of Patient Registry
Nadziakiewicz et al. Tacrolimus and mycophenolic acid blood concentration and cellular rejection after heart transplantation in first endomyocardial biopsy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022535379

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837727

Country of ref document: EP

Kind code of ref document: A1