WO2022009875A1 - Program for determining concentration level - Google Patents

Program for determining concentration level Download PDF

Info

Publication number
WO2022009875A1
WO2022009875A1 PCT/JP2021/025446 JP2021025446W WO2022009875A1 WO 2022009875 A1 WO2022009875 A1 WO 2022009875A1 JP 2021025446 W JP2021025446 W JP 2021025446W WO 2022009875 A1 WO2022009875 A1 WO 2022009875A1
Authority
WO
WIPO (PCT)
Prior art keywords
degree
information
concentration
user
association
Prior art date
Application number
PCT/JP2021/025446
Other languages
French (fr)
Japanese (ja)
Inventor
綾子 澤田
Original Assignee
Assest株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Assest株式会社 filed Critical Assest株式会社
Publication of WO2022009875A1 publication Critical patent/WO2022009875A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass

Definitions

  • the present invention relates to a concentration determination program that determines the concentration of users who listen to educational content.
  • Adaptive learning provides learning content customized for each user as a learner according to the degree of understanding and interests.
  • this adaptive learning it is possible to analyze the learner's strengths and weaknesses, or the tendency to make mistakes.
  • the most suitable educational content and test questions are selected and displayed to the user. This allows users to listen to educational content that suits their level, solve test questions, improve learning efficiency, and gain confidence by solving test questions that match their level. , It also leads to improvement of learning motivation.
  • the present invention has been devised in view of the above-mentioned problems, and an object thereof is to provide a concentration ratio determination program for determining the concentration degree of a user who listens to educational contents.
  • the present invention comprises an information acquisition step of acquiring image information by capturing an image of a user who visually recognizes the displayed educational content in a concentration determination program that determines the concentration of a user who listens to the educational content. For reference according to the image information acquired in the above information acquisition step by referring to the three or more levels of association between the reference image information obtained by capturing the image of the user who visually recognizes the displayed educational content and the degree of concentration of the user. It is characterized in that a computer is made to execute a discrimination step for discriminating the degree of concentration of a user based on image information.
  • FIG. 1 It is a block diagram which shows the whole structure of the system to which this invention is applied. It is a figure which shows the specific configuration example of a search device. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention.
  • FIG. 1 is a block diagram which shows the whole structure of the concentration degree determination system 1 in which the concentration degree determination program as 1st Embodiment is implemented.
  • the concentration level discrimination system 1 includes an information acquisition unit 9, a discrimination device 2 connected to the information acquisition unit 9, and a database 3 connected to the discrimination device 2.
  • the information acquisition unit 9 is a device for a person using this system to input various commands and information, and specifically, is composed of a keyboard, buttons, a touch panel, a mouse, a switch, and the like.
  • the information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an image pickup device capable of taking an image of a camera or the like.
  • the information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper-based document. Further, the information acquisition unit 9 may be integrated with the discrimination device 2 described later. The information acquisition unit 9 outputs the detected information to the discrimination device 2.
  • the information acquisition unit 9 may be configured by means for specifying the position information by scanning the map information. Further, the information acquisition unit 9 may be composed of an illuminance sensor for measuring a temperature sensor, a humidity sensor, and a wind direction sensor. Further, the information acquisition unit 9 may be composed of a communication interface for acquiring data on the weather from the Japan Meteorological Agency or a private weather forecast company. Further, the information acquisition unit 9 may be composed of a body sensor that is attached to the body to detect body data, and the body sensor detects, for example, body temperature, heart rate, blood pressure, number of steps, walking speed, and acceleration. It may be composed of a sensor for the purpose. Further, the body sensor may acquire biological data of not only humans but also animals. Further, the information acquisition unit 9 may be configured as a device for acquiring information such as drawings by scanning or reading from a database. In addition to these, the information acquisition unit 9 may be configured by an odor sensor that detects odors and scents.
  • Database 3 stores various information necessary for determining the degree of concentration.
  • the information necessary for determining the degree of concentration is reference image information obtained by capturing the image of the user who visually recognizes the educational content displayed in the past, and the user's problem regarding the problem to be asked in the educational content displayed in the past.
  • Reference answer content information regarding the answer content reference answer time information regarding the user's answer time to the question asked in the educational content displayed in the past, reference regarding the attributes of the user who listens to the educational content displayed in the past.
  • a data set of attribute information, reference frequency information regarding the frequency of listening to educational content displayed in the past by the user, and the concentration of the user who actually made a judgment on these is stored.
  • any one or more of the reference answer content information, the reference answer time information, the reference attribute information, and the reference frequency information, and the degree of concentration of the user are displayed. It is remembered as being associated with each other.
  • the discrimination device 2 is composed of, for example, an electronic device such as a personal computer (PC), but is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc., in addition to the PC. It may be the one to be converted.
  • PC personal computer
  • the user can obtain a search solution by this discrimination device 2.
  • the discriminating device 2 is composed of a PC, a tablet terminal, or the like
  • the educational content to be listened to by the user is displayed on the display screen of the discriminating device 2.
  • This educational content consists of educational programs, lectures, slides and charts provided to users.
  • This educational content may be composed of moving images or a series of still images.
  • This educational content may be one that records a lecture or lecture of a lecturer or a teacher and distributes it as moving image content.
  • this educational content may be composed of popular characters giving lessons on behalf of teachers for infants and elementary school students.
  • This educational content may be read from the database stored in the database 3 or may be distributed via an internet line from a database (not shown) installed at a distance.
  • FIG. 2 shows a specific configuration example of the discrimination device 2.
  • the discrimination device 2 performs wired communication or wireless communication with a control unit 24 for controlling the entire discrimination device 2 and an operation unit 25 for inputting various control commands via an operation button, a keyboard, or the like.
  • a communication unit 26 for the purpose, a determination unit 27 for making various judgments, and a storage unit 28 for storing a program for performing a search to be executed represented by a hard disk or the like are connected to the internal bus 21, respectively. .. Further, a display unit 23 as a monitor that actually displays information is connected to the internal bus 21.
  • the control unit 24 is a so-called central control unit for controlling each component mounted in the discrimination device 2 by transmitting a control signal via the internal bus 21. Further, the control unit 24 transmits various control commands via the internal bus 21 according to the operation via the operation unit 25.
  • the operation unit 25 is embodied by a keyboard or a touch panel, and an execution command for executing a program is input from the user.
  • the operation unit 25 notifies the control unit 24 of the execution command.
  • the control unit 24, including the discrimination unit 27, executes a desired processing operation in cooperation with each component.
  • the operation unit 25 may be embodied as the information acquisition unit 9 described above.
  • the discrimination unit 27 discriminates the search solution.
  • the discriminating unit 27 reads out various information stored in the storage unit 28 and various information stored in the database 3 as necessary information when executing the discriminating operation.
  • the discriminating unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any well-known artificial intelligence technology.
  • the display unit 23 is configured by a graphic controller that creates a display image based on the control by the control unit 24.
  • the display unit 23 is realized by, for example, a liquid crystal display (LCD) or the like.
  • the storage unit 28 When the storage unit 28 is composed of a hard disk, predetermined information is written to each address based on the control by the control unit 24, and is read out as needed. Further, the storage unit 28 stores a program for executing the present invention. This program will be read and executed by the control unit 24.
  • the concentration degree determination system 1 for example, as shown in FIG. 3, it is premised that the degree of association between the reference image information and the degree of concentration is set in advance.
  • the reference image information is an image obtained by capturing the facial expressions, movements, and gestures of the user who takes the educational content with a camera or the like. Since the educational content is actually displayed through the display screen of the discrimination device 2, it suffices to capture the face or body of the user who visually recognizes the display screen of the discrimination device 2.
  • the degree of concentration referred to here is a degree indicating how concentrated the users who take the educational content flowed from the discrimination device 2 are taking the course.
  • an expert or a trader may analyze the facial expressions of various users' facial expressions to categorize or rank the concentration in advance.
  • the degree of concentration for example, the eyes are extremely concentrated, the eyes are lively, sleepy, bored, looking down, incomprehensible, and the eyes are going in various directions (concentration). It may be composed of types including the actual listening attitude.
  • the degree of concentration may be ranked in a plurality of stages (for example, 100 stages, 10 stages, etc.) from the case where the concentration is extremely concentrated to the case where the concentration is not concentrated at all.
  • the concentration level may be judged based on the previous experience of the evaluator, or the user may be surveyed or interviewed to determine whether or not the concentration level is actually concentrated. You may.
  • the reference image information and the degree of concentration may be discriminated based on the feature amount learned in the past.
  • artificial intelligence is used to learn the user's image data and concentration, and when actually acquiring reference image information, the concentration is compared with these learned image data. May be determined.
  • the input data is, for example, reference image information P01 to P03.
  • the reference image information P01 to P03 as such input data is linked to the degree of concentration as output. In this output, the degree of concentration as an output solution is displayed.
  • the reference image information is related to each other through the degree of association of 3 or more levels with respect to the degree of concentration A to D as the output solution.
  • the reference image information is arranged on the left side through this degree of association, and each concentration degree is arranged on the right side through this degree of association.
  • the degree of association indicates the degree of concentration and the degree of relevance to the reference image information arranged on the left side.
  • this degree of association is an index showing what concentration each reference image information is likely to be associated with, and is used to select the most probable concentration from the reference image information. It shows the accuracy. In the example of FIG. 3, w13 to w19 are shown as the degree of association.
  • w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of concentration of each combination as an intermediate node and the degree of relevance to each other. On the contrary, the closer to one point, the lower the degree of relevance of each combination as an intermediate node to the price as an output.
  • the discrimination device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the discrimination device 2 accumulates a past data set and analyzes which of the reference image information and the concentration ratio in that case is adopted and evaluated in discriminating the actual search solution. , The degree of association shown in FIG. 3 is created by analysis.
  • the degree of concentration A is highly evaluated as the degree of concentration on the reference image information captured in the past.
  • the degree of association with the reference image information becomes stronger.
  • This analysis may be performed by artificial intelligence.
  • analysis is performed from various data as a result of evaluating the past concentration degree.
  • concentration degree A if there are many cases of concentration A, the degree of association that leads to the evaluation of this concentration is set higher, and if there are many cases of concentration B, this degree of concentration is set. Set a higher degree of association that leads to the evaluation of.
  • concentration degree A and the concentration degree C are linked, but from the previous case, the degree of association of w13 connected to the concentration degree A is set to 7 points, and the degree of association of w14 connected to the concentration degree C is set to 7.
  • the degree of association is set to 2 points.
  • the degree of association shown in FIG. 3 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • reference image information is input as input data
  • concentration is output as output data
  • at least one hidden layer is provided between the input node and the output node. You may let it learn by machine.
  • the above-mentioned degree of association is set in either one or both of the input node and the hidden layer node, and this is the weight of each node, and the output is selected based on this. Then, when this degree of association exceeds a certain threshold value, the output may be selected.
  • Such degree of association is what is called learned data in artificial intelligence.
  • the above-mentioned description is made in actually determining the concentration level from now on.
  • the degree of concentration will be searched using the trained data.
  • the image information of the user to be discriminated is newly acquired.
  • the user is made to take the educational content and the facial expression and body of the user who is taking the course are imaged. This imaging is performed via the information acquisition unit 9 described above.
  • the degree of concentration is determined based on the newly acquired image information in this way.
  • the degree of association shown in FIG. 3 (Table 1) acquired in advance is referred to.
  • the concentration B is associated with w15 and the concentration C is associated with the association w16 via the degree of association.
  • the concentration ratio B having a high degree of association is preferentially selected. That is, the higher the degree of association, the higher the priority of selection.
  • one or more of a spectrum image and an ultrasonic image may be acquired in addition to the image captured by a normal camera.
  • the reference answer content information includes all information regarding the user's answer content when a question is asked to the user or a question or test is given in the educational content. If the correct answer is set in advance for the question or question, the user's answer content may be composed of the correct answer rate for the correct answer, any question is the correct answer, and any question is. It may indicate whether the answer is incorrect. Further, the reference answer content information may be, for example, an answer based on the user's gesture or gesture, or an answer based on the user's action itself, when the user is an elementary school student or an infant.
  • the reference answer content information may be configured with image data obtained by capturing images of the user's gestures, gestures, and actions. If necessary, such image data may be automatically discriminated based on the feature amount of the analysis image using a deep learning technique, and the answer contents may be categorized. For example, it may be applied to the type that the infant understands what is said when he raises his hand, and the type that he cannot answer the question when the infant turns down.
  • the answer content information for reference may be obtained by reading the numbers and characters described by the user in the handwriting mode on the tablet terminal and converting them into data, for example, in the case of the answer consisting of the derivation of the formula in mathematics. Further, if the reference answer content information has the property of answering by inputting a number, key input of ⁇ or ⁇ , clicking with a mouse, or the like, it may be obtained from these input data. Further, when the reference answer content information is answered by the voice of the user, the voice may be obtained by incorporating the voice into the text data through the existing voice recognition technology.
  • the degree of concentration can be determined with higher accuracy by making a judgment by combining the reference answer content information in addition to the reference image information. Therefore, in addition to the reference image information, the reference answer content information is combined to form the above-mentioned degree of association.
  • the input data is, for example, reference image information P01 to P03 and reference answer content information P14 to 17.
  • the intermediate node shown in FIG. 5 is a combination of reference image information and reference answer content information as such input data.
  • Each intermediate node is further linked to the output. In this output, the degree of concentration as an output solution is displayed.
  • Each combination (intermediate node) of the reference image information and the reference answer content information is associated with each other through three or more levels of association with the degree of concentration as this output solution.
  • the reference image information and the reference answer content information are arranged on the left side through the degree of association, and the concentration degree is arranged on the right side through the degree of association.
  • the degree of association indicates the degree of concentration and the degree of relevance to the reference image information and the reference answer content information arranged on the left side.
  • this degree of association is an index indicating to what degree of concentration each reference image information and reference answer content information are likely to be associated with, and is a reference image information and reference answer content information. It shows the accuracy in selecting the most probable concentration level from. Therefore, the optimum concentration is searched for by combining the reference image information and the reference answer content information.
  • w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 steps, and the closer to 10 points, the higher the degree of relation between each combination as an intermediate node with the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
  • the discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data as to which of the reference image information, the reference answer content information, and the degree of concentration in that case is suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 5 is created. At this time, a degree of association is formed between the reference image information showing the contents of the educational content, the question, the facial expression of the user for the test or the question, and the reference answer content information indicating the mode of the answer to these. You may. This makes it possible to determine the degree of concentration from the newly acquired image information and answer content information in relation to the contents of educational content, questions, tests and questions.
  • the reference image information in the actual case in the past is the image data ⁇ .
  • the reference answer content information is the derivation ⁇ of the formula answered by the user.
  • the concentration degree indicating how much the concentration degree was actually is learned as a data set, and is defined in the form of the above-mentioned association degree.
  • This analysis may be performed by artificial intelligence.
  • the degree of concentration is analyzed from the past data.
  • concentration A the degree of association leading to this concentration A is set higher, and when there are many cases of concentration B and few cases of concentration A, it leads to concentration B.
  • the degree of association is set high, and the degree of association that leads to the concentration A is set low.
  • the intermediate node 61a it is linked to the output of the concentration degree A and the quality B, but from the previous case, the degree of association of w13 connected to the degree of concentration A is set to 7 points, and the degree of association of w14 connected to the degree of concentration B is set to 7. Is set to 2 points.
  • the degree of association shown in FIG. 5 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
  • the node 61b is a node of the combination of the reference image information P01 and the reference answer content information P14, and the degree of association C is the degree of association w15 and the degree of concentration E is the association.
  • the degree is w16.
  • the node 61c is a node in which the reference answer content information P15 and P17 are combined with respect to the reference image information P02, and the degree of association of the concentration B is w17 and the degree of association of the concentration D is w18.
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually determining the degree of concentration from now on, the above-mentioned learned data will be used. In such a case, the image information and the answer content information of the user who actually tries to determine the concentration degree are acquired. The user's image information and answer content information may be acquired in conjunction with the content of the educational content, the question, the test, and the timing of the question. As a result, it is possible to derive the degree of concentration by associating the contents of the educational contents, the questions, the facial expressions of the users with respect to the tests and the questions, and the contents of the answers with each other.
  • the degree of association shown in FIG. 5 (Table 1) acquired in advance is referred to.
  • the node 61d is associated with the node 61d via the degree of association.
  • the node 61d is associated with a concentration C of w19 and a concentration D of association w20.
  • the concentration C having a higher degree of association is selected as the optimum solution.
  • Table 2 below shows an example of the degree of association w1 to w12 extending from the input.
  • the intermediate node 61 may be selected based on the degree of association w1 to w12 extending from this input. That is, the larger the degree of association w1 to w12, the heavier the weighting in the selection of the intermediate node 61 may be. However, the degrees of association w1 to w12 may all have the same value, and the weights in the selection of the intermediate node 61 may all be the same.
  • the combination with the reference answer time information instead of the above-mentioned reference answer content information and the degree of concentration for the combination are set to three or more levels of association.
  • the degree of concentration for the combination are set to three or more levels of association.
  • This reference answer time information which is added as an explanatory variable instead of the reference answer content information, indicates the time until the above-mentioned answer is obtained.
  • the answer time is the time it takes for a question or question to be answered and the answer to be completed. The longer the answer time, the less concentrated the user can be considered.
  • the discrimination accuracy should be improved by discriminating the concentration through the degree of association in combination with the reference image information. Can be done.
  • the input data is, for example, reference image information P01 to P03 and reference answer time information P18 to 21.
  • the intermediate node shown in FIG. 6 is a combination of reference image information and reference answer time information as such input data.
  • Each intermediate node is further linked to the output. In this output, the degree of concentration as an output solution is displayed.
  • Each combination (intermediate node) of the reference image information and the reference answer time information is associated with each other through three or more levels of association with the degree of concentration as this output solution.
  • the reference image information and the reference answer time information are arranged on the left side through the degree of association, and the concentration degree is arranged on the right side through the degree of association.
  • the degree of association indicates the degree of concentration and the degree of relevance to the reference image information and the reference answer time information arranged on the left side.
  • this degree of association is an index showing what degree of concentration each reference image information and reference answer time information are likely to be associated with, and is a reference image information and reference answer time information. It shows the accuracy in selecting the most probable concentration level from.
  • the discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, in discriminating the actual search solution, the discriminating device 2 prefers the reference image information, the reference answer time information obtained when acquiring the reference image information, and the degree of concentration in that case. Or, by accumulating past data and analyzing and analyzing these, the degree of association shown in FIG. 6 is created.
  • This analysis may be performed by artificial intelligence.
  • the degree of concentration is analyzed from the past data.
  • concentration A the degree of association that this concentration leads to A is set higher, and when there are many cases of concentration B and few cases of concentration A, the concentration is low.
  • the degree of association that leads to B is set high, and the degree of association that leads to A is set low.
  • the output of the concentration A and the concentration B is linked, but from the previous case, the association of w13 connected to the concentration A is set to 7 points, and the association of w14 connected to the concentration B is set to 7 points.
  • the degree is set to 2 points.
  • the degree of association shown in FIG. 6 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
  • the node 61b is a node in which the reference answer time information P18 is combined with the reference image information P01, the degree of association C is w15, and the degree of association E is the degree of association E. Is w16.
  • the node 61c is a node in which the reference answer time information P19 and P21 are combined with respect to the reference image information P02, and the degree of association of the concentration B is w17 and the degree of association of the concentration D is w18.
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually searching for the degree of concentration from now on, the above-mentioned learned data will be used. In such a case, the image information of the concentration target to be determined and the answer time information are actually acquired. Here, the answer time information is newly acquired when the degree of concentration is actually estimated, and the acquisition method is the same as the above-mentioned reference answer time information.
  • the optimum concentration level is searched for.
  • the degree of association shown in FIG. 6 (Table 1) acquired in advance is referred to.
  • the node 61d is associated via the degree of association.
  • the node 61d is associated with a concentration C of w19 and a concentration D of association w20.
  • the concentration C having a higher degree of association is selected as the optimum solution.
  • the combination with the reference attribute information instead of the above-mentioned reference answer content information and the degree of concentration for the combination are set to three or more levels of association. An example is shown.
  • This reference attribute information which is added as an explanatory variable instead of the reference answer content information, is based on the user's age, grade, level, duration of the educational content, gender, current school, place of residence, and working people. If so, show all information about user attributes such as work location, place of employment, years of service, etc. Since such reference attribute information also affects the degree of concentration, the discrimination accuracy can be improved by combining the information with the reference image information and discriminating the degree of concentration through the degree of association.
  • the input data is, for example, reference image information P01 to P03 and reference attribute information P18 to 21.
  • the intermediate node shown in FIG. 7 is a combination of reference image information and reference attribute information as such input data.
  • Each intermediate node is further linked to the output. In this output, the degree of concentration as an output solution is displayed.
  • Each combination of reference image information and reference attribute information is associated with each other through three or more levels of association with the degree of concentration as this output solution.
  • the reference image information and the reference attribute information are arranged on the left side via the degree of association, and the concentration degree is arranged on the right side via the degree of association.
  • the degree of association indicates the degree of concentration and the degree of relevance to the reference image information and the reference attribute information arranged on the left side.
  • this degree of association is an index showing what degree of concentration each reference image information and reference attribute information are likely to be associated with, and is the most from the reference image information and the reference attribute information. It shows the accuracy in selecting a certain degree of concentration.
  • the discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. 7. That is, in discriminating the actual search solution, the discriminating device 2 is more suitable for the reference image information, the reference attribute information obtained when the reference image information is acquired, and the degree of concentration in that case.
  • the degree of association shown in FIG. 7 is created by accumulating past data and analyzing and analyzing them.
  • This analysis may be performed by artificial intelligence.
  • the degree of concentration is analyzed from the past data.
  • concentration A the degree of association that this concentration leads to A is set higher, and when there are many cases of concentration B and few cases of concentration A, the concentration is low.
  • the degree of association that leads to B is set high, and the degree of association that leads to A is set low.
  • the output of the concentration A and the concentration B is linked, but from the previous case, the association of w13 connected to the concentration A is set to 7 points, and the association of w14 connected to the concentration B is set to 7 points.
  • the degree is set to 2 points.
  • the degree of association shown in FIG. 7 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
  • the node 61b is a node in which the reference attribute information P18 is combined with the reference image information P01, the degree of association C is w15, and the degree of association E is the degree of association E. It is w16.
  • the node 61c is a node in which the reference attribute information P19 and P21 are combined with respect to the reference image information P02, and the degree of association B is w17 and the degree of association D is w18.
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually searching for the degree of concentration from now on, the above-mentioned learned data will be used. In such a case, the image information to be determined for the degree of concentration and the attribute information are actually acquired.
  • the attribute information is newly acquired when the degree of concentration is actually estimated, and the acquisition method is the same as the above-mentioned reference attribute information.
  • the method of acquiring the attribute information and the reference attribute information may be acquired by keyboard input to a device such as a PC or a smartphone.
  • the degree of association shown in FIG. 7 (Table 1) acquired in advance is referred to.
  • the node 61d is associated via the degree of association.
  • the node 61d is associated with a concentration C of w19 and a concentration D of association w20.
  • the concentration C having a higher degree of association is selected as the optimum solution.
  • a combination with the reference frequency information instead of the above-mentioned reference answer content information and the degree of concentration for the combination are set to three or more levels of association. An example is shown.
  • This reference frequency information which is added as an explanatory variable instead of the reference answer content information, is all information regarding the frequency with which the user listens to the educational content.
  • the reference frequency information may indicate, for example, how many times a month or week the educational content is listened to, or how many intervals there are recently due to a slight skip. good.
  • the input data is, for example, reference image information P01 to P03 and reference frequency information P18 to 21.
  • the intermediate node shown in FIG. 8 is a combination of reference frequency information and reference image information as such input data. Each intermediate node is further linked to the output. In this output, the degree of concentration as an output solution is displayed.
  • Each combination of reference image information and reference frequency information is associated with each other through three or more levels of association with the degree of concentration as this output solution.
  • the reference image information and the reference frequency information are arranged on the left side via the degree of association, and the concentration degree is arranged on the right side via the degree of association.
  • the degree of association indicates the degree of concentration and the degree of relevance to the reference image information and the reference frequency information arranged on the left side.
  • this degree of association is an index showing what degree of concentration each reference image information and reference frequency information are likely to be associated with, and is the most from the reference image information and the reference frequency information. It shows the accuracy in selecting a certain degree of concentration.
  • the discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data as to which of the reference image information, the reference frequency information, and the degree of concentration in that case is suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 8 is created.
  • This analysis may be performed by artificial intelligence.
  • the degree of concentration is analyzed from the past data.
  • concentration A the degree of association that this concentration leads to A is set higher, and when there are many cases of concentration B and few cases of concentration A, the concentration is low.
  • the degree of association that leads to B is set high, and the degree of association that leads to A is set low.
  • the output of the concentration A and the concentration B is linked, but from the previous case, the association of w13 connected to the concentration A is set to 7 points, and the association of w14 connected to the concentration B is set to 7 points.
  • the degree is set to 2 points.
  • the degree of association shown in FIG. 8 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
  • the node 61b is a node in which the reference frequency information P18 is combined with the reference image information P01, the degree of association C is w15, and the degree of association E is the degree of association E. It is w16.
  • the node 61c is a node in which the reference frequency information P19 and P21 are combined with respect to the reference image information P02, and the degree of association B is w17 and the degree of association D is w18.
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually searching for the degree of concentration from now on, the above-mentioned learned data will be used. In such a case, the image information to be determined for the degree of concentration and the frequency information are actually acquired.
  • the frequency information is newly acquired when the degree of concentration is actually estimated, and the acquisition method is the same as the above-mentioned reference frequency information.
  • the degree of association shown in FIG. 8 (Table 1) acquired in advance is referred to.
  • the node 61d is associated via the degree of association.
  • the node 61d is associated with a concentration C of w19 and a concentration D of association w20.
  • the concentration C having a higher degree of association is selected as the optimum solution.
  • the degree of association is expressed by a 10-step evaluation, but it is not limited to this, and it may be expressed by a degree of association of 3 or more levels, and conversely, it may be expressed by 3 or more levels. For example, 100 steps or 1000 steps may be used.
  • this degree of association does not include those expressed in two stages, that is, whether or not they are related to each other, either 1 or 0.
  • the present invention having the above-mentioned configuration, anyone can easily determine and search the concentration level without any special skill or experience. Further, according to the present invention, it is possible to make a judgment of this search solution with higher accuracy than that made by a human being. Further, by configuring the above-mentioned degree of association with artificial intelligence (neural network or the like), it is possible to further improve the discrimination accuracy by learning this.
  • artificial intelligence neural network or the like
  • the above-mentioned input data and output data may not be completely the same in the process of training, so that the input data and the output data may be classified by type. That is, the information P01, P02, ... P15, 16, ... That constitute the input data are classified according to the criteria classified in advance on the system side or the user side according to the content of the information, and the classified inputs. A dataset may be created between the data and the output data and trained.
  • the degree of association in addition to the reference image information, there is an example in which the reference answer content information, the reference answer time information, the reference attribute information, and the reference frequency information are combined. I explained to you, but it is not limited to this. That is, the degree of association may be composed of a combination of any two or more of the reference answer content information, the reference answer time information, the reference attribute information, and the reference frequency information, in addition to the reference image information. In addition to the reference image information, the degree of association includes any one or more of the reference answer content information, the reference answer time information, the reference attribute information, and the reference frequency information, and other factors are added to this combination. The degree of association may be formed.
  • the educational content to be displayed next may be selected and displayed based on the desired concentration of the user.
  • one of the options may be selected according to the result of determining the concentration degree, and the educational content prepared for the selected option may be played next.
  • the educational content of the options selected when the concentration is low can be composed of the educational contents including the refreshing ones for improving the concentration.
  • the educational content may be selected based on the degree of achievement of the educational content.
  • FIG. 9 shows an example in which the combination of the above-mentioned reference answer content information, the reference answer time information, and the degree of achievement for the combination are set to three or more levels of association. Achievement is an index showing how well the content in educational content has been mastered.
  • the input data is, for example, reference answer content information P01 to P03 and reference answer time information P18 to 21.
  • the intermediate node shown in FIG. 9 is a combination of the reference answer content information and the reference answer time information as such input data.
  • Each intermediate node is further linked to the output. In this output, the degree of achievement as an output solution is displayed.
  • Each combination (intermediate node) of the reference answer content information and the reference answer time information is associated with each other through three or more levels of association with the achievement level as this output solution.
  • the reference answer content information and the reference answer time information are arranged on the left side through this degree of association, and the achievement degree is arranged on the right side through this degree of association.
  • the degree of association indicates the degree of high relevance to the degree of achievement with respect to the reference answer content information and the reference answer time information arranged on the left side.
  • this degree of association is an index indicating what degree of achievement each reference answer content information and reference answer time information are likely to be associated with, and is a reference answer content information and reference answer. It shows the accuracy in selecting the most probable achievement level from the time information.
  • the discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, in determining the actual search solution, the discrimination device 2 determines the reference answer content information, the reference answer time information obtained when acquiring the reference answer content information, and the degree of achievement in that case. Was suitable, or the past data is accumulated, and by analyzing and analyzing these, the degree of association shown in FIG. 6 is created.
  • This analysis may be performed by artificial intelligence.
  • the degree of achievement is analyzed from the past data. If there are many cases of achievement A, the degree of association that this achievement leads to A is set higher, and if there are many cases of achievement B and few cases of achievement A, the achievement is low.
  • the degree of association that leads to B is set high, and the degree of association that leads to A is set low.
  • the association degree of w13 connected to achievement degree A is set to 7 points, and the association of w14 connected to achievement degree B is linked.
  • the degree is set to 2 points.
  • the degree of association shown in FIG. 9 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
  • the node 61b is a node in which the reference answer time information P18 is combined with the reference answer content information P01, the degree of association C is w15, and the degree of association E is the degree E.
  • the degree is w16.
  • the node 61c is a node of a combination of the reference answer time information P19 and P21 with respect to the reference answer content information P02, and the degree of association of the achievement degree B is w17 and the degree of association of the achievement degree D is w18. ..
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually searching for the degree of achievement from now on, the above-mentioned learned data will be used. In such a case, the answer content information to be determined for the degree of achievement and the answer time information are actually acquired.
  • the answer time information is newly acquired when the achievement level is actually estimated, and the acquisition method is the same as the above-mentioned reference answer time information.
  • the optimum achievement level is searched for.
  • the degree of association shown in FIG. 9 (Table 1) acquired in advance is referred to.
  • the node 61d is associated via the degree of association.
  • the node 61d is associated with the achievement degree C by w19 and the achievement degree D by the association degree w20.
  • the achievement degree C having a higher degree of association is selected as the optimum solution.
  • This achievement level may be derived from the answer content information and the attribute information.
  • the combination of the reference answer content information and the reference attribute information and the degree of association with the user's achievement level of three or more levels are acquired in advance. Then, the degree of association is referred to, and the degree of achievement of the user is determined based on the reference answer content information according to the newly acquired answer content information and the reference attribute information according to the attribute information.
  • the present invention determines the degree of concentration and the degree of achievement based on the degree of association of two or more types of information, the reference information U and the reference information V. It is assumed that the reference information Y is the reference image information, and the reference information V is any one of the reference answer content information, the reference answer time information, the reference attribute information, and the reference frequency information.
  • the optimum solution search is performed through the degree of association set in three or more stages.
  • the degree of association can be described by, for example, a numerical value from 0 to 100% in addition to the above-mentioned 10 steps, but is not limited to this, and any step can be described as long as it can be described by a numerical value of 3 or more steps. It may be configured.
  • the degree of association is in descending order. It is also possible to search and display. If the user can be displayed in descending order of the degree of association in this way, it is possible to preferentially display more probable search solutions.
  • the search policy can be determined by the method of setting the threshold value by performing the search based on the degree of association of three or more stages. If the threshold value is lowered, even if the above-mentioned degree of association is 1%, it can be picked up without omission, but it is unlikely that a more appropriate discrimination result can be detected favorably, and a lot of noise may be picked up. be. On the other hand, if the threshold value is raised, there is a high possibility that the optimum search solution can be detected with high probability, but the degree of association is usually low and it is passed through, but it is suitable to appear once in tens or hundreds of times. Sometimes the solution is overlooked. It is possible to decide which one should be emphasized based on the ideas of the user side and the system side, but it is possible to increase the degree of freedom in selecting the points to be emphasized.
  • the above-mentioned degree of association may be updated.
  • This update may reflect information provided, for example, via a public communication network such as the Internet.
  • a public communication network such as the Internet.
  • the degree of association is increased or decreased according to these.
  • this update is equivalent to learning in terms of artificial intelligence. It can be said that it is a learning act because it acquires new data and reflects it in the learned data.
  • this update of the degree of association is done by the system side or the user side based on the contents of research data, papers, conference presentations, newspaper articles, books, etc. by experts, except when it is based on information that can be obtained from the public communication network. It may be updated artificially or automatically. Artificial intelligence may be utilized in these update processes.
  • the process of first creating a trained model and the above-mentioned update may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like.
  • unsupervised learning instead of reading and training the data set of input data and output data, information corresponding to the input data is read and trained, and the degree of association related to the output data is self-formed from there. You may let it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Tourism & Hospitality (AREA)
  • Hospice & Palliative Care (AREA)
  • Pathology (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biophysics (AREA)
  • Economics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electrically Operated Instructional Devices (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

[Problem] To determine the concentration level of a user listening to educational content. [Solution] This program for determining the concentration level of a user listening to educational content is characterized by a computer implementing: an information acquisition step in which image information is acquired by capturing an image of the user watching displayed educational content; and a determination step in which three or more levels of relatedness between the user's degree of concentration and reference image information, which has been obtained by capturing images of the user watching educational content shown in the past, are referenced and the user's concentration level is determined on the basis of the reference image information that corresponds to the image information acquired in the information acquisition step.

Description

集中度判別プログラムConcentration ratio determination program
 本発明は、教育コンテンツを聴講するユーザの集中度を判別する集中度判別プログラムに関する。 The present invention relates to a concentration determination program that determines the concentration of users who listen to educational content.
 近年アダプティブラーニングと呼ばれる教育システムが普及している。アダプティブラーニングは、理解度や興味等に合わせて学習者としてのユーザ一人ひとりにカスタマイズした学習コンテンツを提供するものである。このアダプティブラーニングでは、学習者の得意分野や不得意分野、或いは間違いやすい傾向を分析することができる。また、分析した結果、最適な教育コンテンツやテストの問題を選択してユーザに表示する。これにより、ユーザは自分のレベルに合った教育コンテンツを聴講し、テスト問題を解くことができ、学習効率を高めることができ、しかも自分のレベルに合ったテスト問題を解くことで、自信が生まれ、学習意欲の向上にもつながる。 In recent years, an education system called adaptive learning has become widespread. Adaptive learning provides learning content customized for each user as a learner according to the degree of understanding and interests. In this adaptive learning, it is possible to analyze the learner's strengths and weaknesses, or the tendency to make mistakes. In addition, as a result of analysis, the most suitable educational content and test questions are selected and displayed to the user. This allows users to listen to educational content that suits their level, solve test questions, improve learning efficiency, and gain confidence by solving test questions that match their level. , It also leads to improvement of learning motivation.
 しかしながら、このアダプティブラーニングの教育コンテンツを受けているユーザが果たしてやる気があるのか、集中しているのか分からない場合がある。仮にユーザが集中力を欠いている場合、学習の能率が大幅に低下してしまう。またユーザが集中していないのは、ユーザに提供している教育コンテンツがそもそもユーザのレベルに合っていなかったり、ユーザにとって興味の湧くものでは無い場合も考えられ、かかる場合にはユーザに提供する教育コンテンツを変更して表示する必要がある。 However, there are cases where it is not clear whether the users who receive this adaptive learning educational content are really motivated or concentrated. If the user lacks concentration, learning efficiency will be significantly reduced. In addition, the reason why the users are not concentrated may be that the educational content provided to the user does not match the user's level in the first place or is not of interest to the user, and in such a case, it is provided to the user. Educational content needs to be modified and displayed.
 しかしながら、教育コンテンツを聴講するユーザの集中力を測る方法が従来より提案されていないのが現状であった。 However, the current situation is that no method for measuring the concentration of users who listen to educational content has been proposed.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、教育コンテンツを聴講するユーザの集中度を判別する集中度判別プログラムを提供することにある。 Therefore, the present invention has been devised in view of the above-mentioned problems, and an object thereof is to provide a concentration ratio determination program for determining the concentration degree of a user who listens to educational contents.
 本発明は、教育コンテンツを聴講するユーザの集中度を判別する集中度判別プログラムにおいて、表示された教育コンテンツを視認するユーザの画像を撮像することにより画像情報を取得する情報取得ステップと、過去に表示された教育コンテンツを視認するユーザの画像を撮像した参照用画像情報と、ユーザの集中度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した画像情報に応じた参照用画像情報に基づき、ユーザの集中度を判別する判別ステップとをコンピュータに実行させることを特徴とする。 The present invention comprises an information acquisition step of acquiring image information by capturing an image of a user who visually recognizes the displayed educational content in a concentration determination program that determines the concentration of a user who listens to the educational content. For reference according to the image information acquired in the above information acquisition step by referring to the three or more levels of association between the reference image information obtained by capturing the image of the user who visually recognizes the displayed educational content and the degree of concentration of the user. It is characterized in that a computer is made to execute a discrimination step for discriminating the degree of concentration of a user based on image information.
 特段のスキルが無くても、教育コンテンツを聴講するユーザの集中度を高精度に判別することが可能となる。 Even if you do not have any special skills, it is possible to determine the concentration of users who listen to educational content with high accuracy.
本発明を適用したシステムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the system to which this invention is applied. 探索装置の具体的な構成例を示す図である。It is a figure which shows the specific configuration example of a search device. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention.
 以下、本発明を適用した集中度判別プログラムについて、図面を参照しながら詳細に説明をする。 Hereinafter, the concentration determination program to which the present invention is applied will be described in detail with reference to the drawings.
 第1実施形態
 図1は、第1実施形態としての集中度判別プログラムが実装される集中度判別システム1の全体構成を示すブロック図である。集中度判別システム1は、情報取得部9と、情報取得部9に接続された判別装置2と、判別装置2に接続されたデータベース3とを備えている。
1st Embodiment FIG. 1 is a block diagram which shows the whole structure of the concentration degree determination system 1 in which the concentration degree determination program as 1st Embodiment is implemented. The concentration level discrimination system 1 includes an information acquisition unit 9, a discrimination device 2 connected to the information acquisition unit 9, and a database 3 connected to the discrimination device 2.
 情報取得部9は、本システムを活用する者が各種コマンドや情報を入力するためのデバイスであり、具体的にはキーボードやボタン、タッチパネル、マウス、スイッチ等により構成される。情報取得部9は、テキスト情報を入力するためのデバイスに限定されるものではなく、マイクロフォン等のような音声を検知してこれをテキスト情報に変換可能なデバイスで構成されていてもよい。また情報取得部9は、カメラ等の画像を撮影可能な撮像装置として構成されていてもよい。情報取得部9は、紙媒体の書類から文字列を認識できる機能を備えたスキャナで構成されていてもよい。また情報取得部9は、後述する判別装置2と一体化されていてもよい。情報取得部9は、検知した情報を判別装置2へと出力する。また情報取得部9は地図情報をスキャニングすることで位置情報を特定する手段により構成されていてもよい。また情報取得部9は、温度センサ、湿度センサ、風向センサ、を測るための照度センサで構成されていてもよい。また情報取得部9は、天候についてのータを気象庁や民間の天気予報会社から取得する通信インターフェースで構成されていてもよい。また情報取得部9は身体に装着して身体のデータを検出するための身体センサで構成されていてもよく、この身体センサは、例えば体温、心拍数、血圧、歩数、歩く速度、加速度を検出するためのセンサで構成されていてもよい。また身体センサは人間のみならず動物の生体データを取得するものであってもよい。また情報取得部9は図面等の情報をスキャニングしたり、或いはデータベースから読み出すことで取得するデバイスとして構成されていてもよい。情報取得部9は、これら以外に臭気や香りを検知する臭気センサにより構成されていてもよい。 The information acquisition unit 9 is a device for a person using this system to input various commands and information, and specifically, is composed of a keyboard, buttons, a touch panel, a mouse, a switch, and the like. The information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an image pickup device capable of taking an image of a camera or the like. The information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper-based document. Further, the information acquisition unit 9 may be integrated with the discrimination device 2 described later. The information acquisition unit 9 outputs the detected information to the discrimination device 2. Further, the information acquisition unit 9 may be configured by means for specifying the position information by scanning the map information. Further, the information acquisition unit 9 may be composed of an illuminance sensor for measuring a temperature sensor, a humidity sensor, and a wind direction sensor. Further, the information acquisition unit 9 may be composed of a communication interface for acquiring data on the weather from the Japan Meteorological Agency or a private weather forecast company. Further, the information acquisition unit 9 may be composed of a body sensor that is attached to the body to detect body data, and the body sensor detects, for example, body temperature, heart rate, blood pressure, number of steps, walking speed, and acceleration. It may be composed of a sensor for the purpose. Further, the body sensor may acquire biological data of not only humans but also animals. Further, the information acquisition unit 9 may be configured as a device for acquiring information such as drawings by scanning or reading from a database. In addition to these, the information acquisition unit 9 may be configured by an odor sensor that detects odors and scents.
 データベース3は、集中度判別を行う上で必要な様々な情報が蓄積される。集中度判別を行う上で必要な情報としては、過去に表示された教育コンテンツを視認するユーザの画像を撮像した参照用画像情報、過去に表示された教育コンテンツ内において出題される問題に対するユーザの解答内容に関する参照用解答内容情報、過去に表示された教育コンテンツ内において出題される問題に対するユーザの解答時間に関する参照用解答時間情報、過去に表示された教育コンテンツを聴講するユーザの属性に関する参照用属性情報、ユーザによる過去に表示された教育コンテンツを聴講する頻度に関する参照用頻度情報と、これらに対して実際に判断がなされたユーザの集中度とのデータセットが記憶されている。 Database 3 stores various information necessary for determining the degree of concentration. The information necessary for determining the degree of concentration is reference image information obtained by capturing the image of the user who visually recognizes the educational content displayed in the past, and the user's problem regarding the problem to be asked in the educational content displayed in the past. Reference answer content information regarding the answer content, reference answer time information regarding the user's answer time to the question asked in the educational content displayed in the past, reference regarding the attributes of the user who listens to the educational content displayed in the past. A data set of attribute information, reference frequency information regarding the frequency of listening to educational content displayed in the past by the user, and the concentration of the user who actually made a judgment on these is stored.
 つまり、データベース3には、このような参照用画像情報に加え、参照用解答内容情報、参照用解答時間情報、参照用属性情報、参照用頻度情報の何れか1以上と、ユーザの集中度が互いに紐づけられて記憶されている。 That is, in the database 3, in addition to such reference image information, any one or more of the reference answer content information, the reference answer time information, the reference attribute information, and the reference frequency information, and the degree of concentration of the user are displayed. It is remembered as being associated with each other.
 判別装置2は、例えば、パーソナルコンピュータ(PC)等を始めとした電子機器で構成されているが、PC以外に、携帯電話、スマートフォン、タブレット型端末、ウェアラブル端末等、他のあらゆる電子機器で具現化されるものであってもよい。 The discrimination device 2 is composed of, for example, an electronic device such as a personal computer (PC), but is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc., in addition to the PC. It may be the one to be converted.
 ユーザは、この判別装置2による探索解を得ることができる。また、この判別装置2がPCやタブレット端末等で構成される場合には、この判別装置2の表示画面上にユーザが聴講する教育コンテンツが表示される。この教育コンテンツは、ユーザに対して提供する教育用のプログラムや講義、スライドや図表で構成される。この教育コンテンツは動画像で構成されていてもよいし、静止画像の連続で構成されていてもよい。この教育用コンテンツは、講師や教師の授業や講演を録画し、動画像コンテンツとして配信するものであってもよい。また、この教育コンテンツは幼児や小学生向けに、人気キャラクターが先生の代わりに授業をしてくれるようなもので構成されていてもよい。この教育コンテンツはデータベース3に格納されている中から読み出されるものであってもよいし、遠方に設置された図示しないデータベースからインターネット回線を通じて配信されるものであってもよい。 The user can obtain a search solution by this discrimination device 2. Further, when the discriminating device 2 is composed of a PC, a tablet terminal, or the like, the educational content to be listened to by the user is displayed on the display screen of the discriminating device 2. This educational content consists of educational programs, lectures, slides and charts provided to users. This educational content may be composed of moving images or a series of still images. This educational content may be one that records a lecture or lecture of a lecturer or a teacher and distributes it as moving image content. In addition, this educational content may be composed of popular characters giving lessons on behalf of teachers for infants and elementary school students. This educational content may be read from the database stored in the database 3 or may be distributed via an internet line from a database (not shown) installed at a distance.
 図2は、判別装置2の具体的な構成例を示している。この判別装置2は、判別装置2全体を制御するための制御部24と、操作ボタンやキーボード等を介して各種制御用の指令を入力するための操作部25と、有線通信又は無線通信を行うための通信部26と、各種判断を行う判別部27と、ハードディスク等に代表され、実行すべき検索を行うためのプログラムを格納するための記憶部28とが内部バス21にそれぞれ接続されている。さらに、この内部バス21には、実際に情報を表示するモニタとしての表示部23が接続されている。 FIG. 2 shows a specific configuration example of the discrimination device 2. The discrimination device 2 performs wired communication or wireless communication with a control unit 24 for controlling the entire discrimination device 2 and an operation unit 25 for inputting various control commands via an operation button, a keyboard, or the like. A communication unit 26 for the purpose, a determination unit 27 for making various judgments, and a storage unit 28 for storing a program for performing a search to be executed represented by a hard disk or the like are connected to the internal bus 21, respectively. .. Further, a display unit 23 as a monitor that actually displays information is connected to the internal bus 21.
  制御部24は、内部バス21を介して制御信号を送信することにより、判別装置2内に実装された各構成要素を制御するためのいわゆる中央制御ユニットである。また、この制御部24は、操作部25を介した操作に応じて各種制御用の指令を内部バス21を介して伝達する。 The control unit 24 is a so-called central control unit for controlling each component mounted in the discrimination device 2 by transmitting a control signal via the internal bus 21. Further, the control unit 24 transmits various control commands via the internal bus 21 according to the operation via the operation unit 25.
 操作部25は、キーボードやタッチパネルにより具現化され、プログラムを実行するための実行命令がユーザから入力される。この操作部25は、上記実行命令がユーザから入力された場合には、これを制御部24に通知する。この通知を受けた制御部24は、判別部27を始め、各構成要素と協調させて所望の処理動作を実行していくこととなる。この操作部25は、前述した情報取得部9として具現化されるものであってもよい。 The operation unit 25 is embodied by a keyboard or a touch panel, and an execution command for executing a program is input from the user. When the execution command is input by the user, the operation unit 25 notifies the control unit 24 of the execution command. Upon receiving this notification, the control unit 24, including the discrimination unit 27, executes a desired processing operation in cooperation with each component. The operation unit 25 may be embodied as the information acquisition unit 9 described above.
 判別部27は、探索解を判別する。この判別部27は、判別動作を実行するに当たり、必要な情報として記憶部28に記憶されている各種情報や、データベース3に記憶されている各種情報を読み出す。この判別部27は、人工知能により制御されるものであってもよい。この人工知能はいかなる周知の人工知能技術に基づくものであってもよい。 The discrimination unit 27 discriminates the search solution. The discriminating unit 27 reads out various information stored in the storage unit 28 and various information stored in the database 3 as necessary information when executing the discriminating operation. The discriminating unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any well-known artificial intelligence technology.
  表示部23は、制御部24による制御に基づいて表示画像を作り出すグラフィックコントローラにより構成されている。この表示部23は、例えば、液晶ディスプレイ(LCD)等によって実現される。 The display unit 23 is configured by a graphic controller that creates a display image based on the control by the control unit 24. The display unit 23 is realized by, for example, a liquid crystal display (LCD) or the like.
  記憶部28は、ハードディスクで構成される場合において、制御部24による制御に基づき、各アドレスに対して所定の情報が書き込まれるとともに、必要に応じてこれが読み出される。また、この記憶部28には、本発明を実行するためのプログラムが格納されている。このプログラムは制御部24により読み出されて実行されることになる。 When the storage unit 28 is composed of a hard disk, predetermined information is written to each address based on the control by the control unit 24, and is read out as needed. Further, the storage unit 28 stores a program for executing the present invention. This program will be read and executed by the control unit 24.
 上述した構成からなる集中度判別システム1における動作について説明をする。 The operation in the concentration ratio determination system 1 having the above-mentioned configuration will be described.
 集中度判別システム1では、例えば図3に示すように、参照用画像情報と、集中度との3段階以上の連関度が予め設定されていることが前提となる。参照用画像情報は、教育コンテンツを受講するユーザの顔の表情や動作、しぐさをカメラ等で撮像した画像である。実際に教育コンテンツは、判別装置2の表示画面を通じて表示されるものであることから、この判別装置2の表示画面を視認するユーザの顔や身体を撮像するものであればよい。 In the concentration degree determination system 1, for example, as shown in FIG. 3, it is premised that the degree of association between the reference image information and the degree of concentration is set in advance. The reference image information is an image obtained by capturing the facial expressions, movements, and gestures of the user who takes the educational content with a camera or the like. Since the educational content is actually displayed through the display screen of the discrimination device 2, it suffices to capture the face or body of the user who visually recognizes the display screen of the discrimination device 2.
 ここでいう集中度は、判別装置2から流される教育コンテンツを受講するユーザがどの程度集中して受講しているかを示す度合いである。この集中度については、専門家や業者が、様々なユーザの顔の画像の表情を分析して、予め集中度を類型化し、或いはランク付けするようにしてもよい。集中度の類型化方法としては、例えば、物凄く集中している、目が活き活きしている、眠そう、退屈そう、見下している、分からなさそう、いろいろな方向に目が行っている(集中していない)等、実際の聴講態度も含めた類型で構成するようにしてもよい。また集中度は、物凄く集中している場合から全く集中していない場合まで複数段階(例えば、100段階、10段階等)でランク付けしてもよい。 The degree of concentration referred to here is a degree indicating how concentrated the users who take the educational content flowed from the discrimination device 2 are taking the course. With respect to this concentration, an expert or a trader may analyze the facial expressions of various users' facial expressions to categorize or rank the concentration in advance. As a method of categorizing the degree of concentration, for example, the eyes are extremely concentrated, the eyes are lively, sleepy, bored, looking down, incomprehensible, and the eyes are going in various directions (concentration). It may be composed of types including the actual listening attitude. In addition, the degree of concentration may be ranked in a plurality of stages (for example, 100 stages, 10 stages, etc.) from the case where the concentration is extremely concentrated to the case where the concentration is not concentrated at all.
 集中度は、評価者による以前の経験に基づいてそのレベルを判断してもよいし、実際に集中しているか否かユーザにアンケートを調査したり聞き取りを行い、その集中度を判断するようにしてもよい。 The concentration level may be judged based on the previous experience of the evaluator, or the user may be surveyed or interviewed to determine whether or not the concentration level is actually concentrated. You may.
 これらの参照用画像情報と集中度は、以前において学習させた特徴量に基づいて判別するようにしてもよい。このとき人工知能を活用し、ユーザの画像データと、集中度を学習させておき、実際に参照用画像情報を取得する際には、これらの学習させた画像データと照らし合わせて、その集中度を判別するようにしてもよい。 The reference image information and the degree of concentration may be discriminated based on the feature amount learned in the past. At this time, artificial intelligence is used to learn the user's image data and concentration, and when actually acquiring reference image information, the concentration is compared with these learned image data. May be determined.
 図3の例では、入力データとして例えば参照用画像情報P01~P03であるものとする。このような入力データとしての参照用画像情報P01~P03は、出力としての集中度に連結している。この出力においては、出力解としての、集中度が表示されている。 In the example of FIG. 3, it is assumed that the input data is, for example, reference image information P01 to P03. The reference image information P01 to P03 as such input data is linked to the degree of concentration as output. In this output, the degree of concentration as an output solution is displayed.
 参照用画像情報は、この出力解としての集中度A~Dに対して3段階以上の連関度を通じて互いに連関しあっている。参照用画像情報がこの連関度を介して左側に配列し、各集中度が連関度を介して右側に配列している。連関度は、左側に配列された参照用画像情報に対して、何れの集中度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用画像情報が、いかなる集中度に紐付けられる可能性が高いかを示す指標であり、参照用画像情報から最も確からしい集中度を選択する上での的確性を示すものである。図3の例では、連関度としてw13~w19が示されている。このw13~w19は以下の表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としての集中度と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としての値段と互いに関連度合いが低いことを示している。 The reference image information is related to each other through the degree of association of 3 or more levels with respect to the degree of concentration A to D as the output solution. The reference image information is arranged on the left side through this degree of association, and each concentration degree is arranged on the right side through this degree of association. The degree of association indicates the degree of concentration and the degree of relevance to the reference image information arranged on the left side. In other words, this degree of association is an index showing what concentration each reference image information is likely to be associated with, and is used to select the most probable concentration from the reference image information. It shows the accuracy. In the example of FIG. 3, w13 to w19 are shown as the degree of association. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of concentration of each combination as an intermediate node and the degree of relevance to each other. On the contrary, the closer to one point, the lower the degree of relevance of each combination as an intermediate node to the price as an output.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 判別装置2は、このような図3に示す3段階以上の連関度w13~w19を予め取得しておく。つまり判別装置2は、実際の探索解の判別を行う上で、参照用画像情報と、その場合の集中度の何れが採用、評価されたか、過去のデータセットを蓄積しておき、これらを分析、解析することで図3に示す連関度を作り上げておく。 The discrimination device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the discrimination device 2 accumulates a past data set and analyzes which of the reference image information and the concentration ratio in that case is adopted and evaluated in discriminating the actual search solution. , The degree of association shown in FIG. 3 is created by analysis.
 例えば、過去において撮像した参照用画像情報に対する集中度としては集中度Aが多く評価されたものとする。このようなデータセットを集めて分析することにより、参照用画像情報との連関度が強くなる。 For example, it is assumed that the degree of concentration A is highly evaluated as the degree of concentration on the reference image information captured in the past. By collecting and analyzing such a data set, the degree of association with the reference image information becomes stronger.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用画像情報P01である場合に、過去の集中度の評価を行った結果の各種データから分析する。参照用画像情報P01である場合に、集中度Aの事例が多い場合には、この集中度の評価につながる連関度をより高く設定し、集中度Bの事例が多い場合には、この集中度の評価につながる連関度をより高く設定する。例えば参照用画像情報P01の例では、集中度Aと、集中度Cにリンクしているが、以前の事例から集中度Aにつながるw13の連関度を7点に、集中度Cにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of reference image information P01, analysis is performed from various data as a result of evaluating the past concentration degree. In the case of reference image information P01, if there are many cases of concentration A, the degree of association that leads to the evaluation of this concentration is set higher, and if there are many cases of concentration B, this degree of concentration is set. Set a higher degree of association that leads to the evaluation of. For example, in the example of the reference image information P01, the concentration degree A and the concentration degree C are linked, but from the previous case, the degree of association of w13 connected to the concentration degree A is set to 7 points, and the degree of association of w14 connected to the concentration degree C is set to 7. The degree of association is set to 2 points.
 また、この図3に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, the degree of association shown in FIG. 3 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 かかる場合には、図4に示すように、入力データとして参照用画像情報が入力され、出力データとして集中度が出力され、入力ノードと出力ノードの間に少なくとも1以上の隠れ層が設けられ、機械学習させるようにしてもよい。入力ノード又は隠れ層ノードの何れか一方又は両方において上述した連関度が設定され、これが各ノードの重み付けとなり、これに基づいて出力の選択が行われる。そして、この連関度がある閾値を超えた場合に、その出力を選択するようにしてもよい。 In such a case, as shown in FIG. 4, reference image information is input as input data, concentration is output as output data, and at least one hidden layer is provided between the input node and the output node. You may let it learn by machine. The above-mentioned degree of association is set in either one or both of the input node and the hidden layer node, and this is the weight of each node, and the output is selected based on this. Then, when this degree of association exceeds a certain threshold value, the output may be selected.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを、以前の評価対象のユーザの画像と実際に判別・評価した集中度とのデータセットを通じて作った後に、実際にこれから新たに集中度の判別を行う上で、上述した学習済みデータを利用して集中度を探索することとなる。かかる場合には、実際に判別対象のユーザの画像情報を新たに取得する。このとき、教育コンテンツをユーザに受講させ、その受講中のユーザの顔の表情や身体を撮像することが前提となる。この撮像は、上述した情報取得部9を介して行う。 Such degree of association is what is called learned data in artificial intelligence. After creating such trained data through a data set of the image of the user to be evaluated before and the concentration level actually discriminated / evaluated, the above-mentioned description is made in actually determining the concentration level from now on. The degree of concentration will be searched using the trained data. In such a case, the image information of the user to be discriminated is newly acquired. At this time, it is premised that the user is made to take the educational content and the facial expression and body of the user who is taking the course are imaged. This imaging is performed via the information acquisition unit 9 described above.
 このようにして新たに取得した画像情報に基づいて、集中度を判別する。かかる場合には、予め取得した図3(表1)に示す連関度を参照する。例えば、新たに取得した画像情報がP02と同一かこれに類似するものである場合には、連関度を介して集中度Bがw15、集中度Cが連関度w16で関連付けられている。かかる場合には、連関度の高い集中度Bを優先して選択する。即ち、連関度が高いものほど選択の優先度を高くする。 The degree of concentration is determined based on the newly acquired image information in this way. In such a case, the degree of association shown in FIG. 3 (Table 1) acquired in advance is referred to. For example, when the newly acquired image information is the same as or similar to P02, the concentration B is associated with w15 and the concentration C is associated with the association w16 via the degree of association. In such a case, the concentration ratio B having a high degree of association is preferentially selected. That is, the higher the degree of association, the higher the priority of selection.
 このようにして、新たに取得する画像情報から、最も好適な集中度を探索し、ユーザのみならず、教育コンテンツを提供する提供業者に通知、表示することができる。この探索結果を見ることにより、提供業者は、個々の教育コンテンツに対するユーザの集中度合を知ることができ、現状の教育コンテンツが果たしてユーザに対して最適なものであるのか、検証することが可能となる。 In this way, it is possible to search for the most suitable concentration level from the newly acquired image information, and notify and display not only the user but also the provider who provides the educational content. By looking at this search result, the provider can know the degree of concentration of the user on each educational content, and it is possible to verify whether the current educational content is really optimal for the user. Become.
 なお、上述した画像は、通常のカメラで撮像した画像以外に、スペクトル画像や超音波画像の何れか1以上を取得してもよい。かかる場合には、参照用画像情報として、取得する画像情報に応じたスペクトル画像、可視画像、超音波画像の何れか1以上を撮像しておくことが必要になる。 As the above-mentioned image, one or more of a spectrum image and an ultrasonic image may be acquired in addition to the image captured by a normal camera. In such a case, it is necessary to capture one or more of a spectral image, a visible image, and an ultrasonic image according to the image information to be acquired as reference image information.
 図5の例では、参照用画像情報と、参照用解答内容情報との組み合わせが形成されていることが前提となる。ここで参照用解答内容情報は、教育コンテンツの中でユーザに対して質問が行われたり、問題やテストが出題されたりする場合におけるそのユーザの解答内容に関するあらゆる情報が含まれる。ここでいうユーザの解答内容は、問題や質問に対して予め正解が設定されている場合には、その正解に対する正答率で構成されていてもよいし、いかなる問題が正解であり、いかなる問題が不正解であるかを示すものであってもよい。また、参照用解答内容情報は、例えばユーザが小学生や幼児である場合、ユーザの身振りや手ぶりによる解答、ユーザの行動そのものによる解答である場合もある。かかる場合には、ユーザの身振りや手ぶり、行動の画像を撮像した画像データで参照用解答内容情報を構成してもよい。このような画像データを必要に応じてディープラーニング技術を利用した、解析画像の特徴量に基づいて自動判別し、解答内容を類型化してもよい。例えば、幼児が手を挙げたら、言われたことを理解したという類型に当てはめ、幼児が下を向いたら、質問に対して答えられないという類型に当てはめるようにしてもよい。 In the example of FIG. 5, it is premised that a combination of the reference image information and the reference answer content information is formed. Here, the reference answer content information includes all information regarding the user's answer content when a question is asked to the user or a question or test is given in the educational content. If the correct answer is set in advance for the question or question, the user's answer content may be composed of the correct answer rate for the correct answer, any question is the correct answer, and any question is. It may indicate whether the answer is incorrect. Further, the reference answer content information may be, for example, an answer based on the user's gesture or gesture, or an answer based on the user's action itself, when the user is an elementary school student or an infant. In such a case, the reference answer content information may be configured with image data obtained by capturing images of the user's gestures, gestures, and actions. If necessary, such image data may be automatically discriminated based on the feature amount of the analysis image using a deep learning technique, and the answer contents may be categorized. For example, it may be applied to the type that the infant understands what is said when he raises his hand, and the type that he cannot answer the question when the infant turns down.
 また参照用解答内容情報は、例えば数学における式の導出からなる解答の場合、タブレット端末にユーザが手書きモードで記載した数字や文字を読み取り、これをデータ化して得たものであってもよい。また参照用解答内容情報が、番号の入力や○又は×のキー入力、或いはマウスによるクリック等で解答する性質のものは、これらの入力データから取得するものであってもよい。更に参照用解答内容情報は、ユーザによる音声により解答されるものである場合、当該音声を既存の音声認識技術を通じてテキストデータに落とし込んで得るようにしてもよい。 Further, the answer content information for reference may be obtained by reading the numbers and characters described by the user in the handwriting mode on the tablet terminal and converting them into data, for example, in the case of the answer consisting of the derivation of the formula in mathematics. Further, if the reference answer content information has the property of answering by inputting a number, key input of ○ or ×, clicking with a mouse, or the like, it may be obtained from these input data. Further, when the reference answer content information is answered by the voice of the user, the voice may be obtained by incorporating the voice into the text data through the existing voice recognition technology.
 参照用画像情報に加えて、参照用解答内容情報を組み合わせて判断することで、集中度をより高精度に判別することができる。このため、参照用画像情報に加えて、参照用解答内容情報を組み合わせて上述した連関度を形成しておく。 The degree of concentration can be determined with higher accuracy by making a judgment by combining the reference answer content information in addition to the reference image information. Therefore, in addition to the reference image information, the reference answer content information is combined to form the above-mentioned degree of association.
 図5の例では、入力データとして例えば参照用画像情報P01~P03、参照用解答内容情報P14~17であるものとする。このような入力データとしての、参照用画像情報に対して、参照用解答内容情報が組み合わさったものが、図5に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、集中度が表示されている。 In the example of FIG. 5, it is assumed that the input data is, for example, reference image information P01 to P03 and reference answer content information P14 to 17. The intermediate node shown in FIG. 5 is a combination of reference image information and reference answer content information as such input data. Each intermediate node is further linked to the output. In this output, the degree of concentration as an output solution is displayed.
 参照用画像情報と参照用解答内容情報との各組み合わせ(中間ノード)は、この出力解としての、集中度に対して3段階以上の連関度を通じて互いに連関しあっている。参照用画像情報と参照用解答内容情報がこの連関度を介して左側に配列し、集中度が連関度を介して右側に配列している。連関度は、左側に配列された参照用画像情報と参照用解答内容情報に対して、集中度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用画像情報と参照用解答内容情報が、いかなる集中度に紐付けられる可能性が高いかを示す指標であり、参照用画像情報と参照用解答内容情報から最も確からしい集中度を選択する上での的確性を示すものである。このため、これらの参照用画像情報と参照用解答内容情報の組み合わせで、最適な集中度を探索していくこととなる。 Each combination (intermediate node) of the reference image information and the reference answer content information is associated with each other through three or more levels of association with the degree of concentration as this output solution. The reference image information and the reference answer content information are arranged on the left side through the degree of association, and the concentration degree is arranged on the right side through the degree of association. The degree of association indicates the degree of concentration and the degree of relevance to the reference image information and the reference answer content information arranged on the left side. In other words, this degree of association is an index indicating to what degree of concentration each reference image information and reference answer content information are likely to be associated with, and is a reference image information and reference answer content information. It shows the accuracy in selecting the most probable concentration level from. Therefore, the optimum concentration is searched for by combining the reference image information and the reference answer content information.
 図5の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。 In the example of FIG. 5, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 steps, and the closer to 10 points, the higher the degree of relation between each combination as an intermediate node with the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
 判別装置2は、このような図5に示す3段階以上の連関度w13~w22を予め取得しておく。つまり判別装置2は、実際の探索解の判別を行う上で、参照用画像情報と参照用解答内容情報、並びにその場合の集中度が何れが見合うものであったか、過去のデータを蓄積しておき、これらを分析、解析することで図5に示す連関度を作り上げておく。このとき、教育コンテンツの中身や質問、テストや問題に対するユーザの表情等を写した参照用画像情報や、これらに対する解答の態様を示す参照用解答内容情報との間で連関度を形成するようにしてもよい。これにより、教育コンテンツの中身や質問、テストや問題に関連付けて、新たに取得した画像情報や解答内容情報から集中度を判別することが可能となる。 The discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data as to which of the reference image information, the reference answer content information, and the degree of concentration in that case is suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 5 is created. At this time, a degree of association is formed between the reference image information showing the contents of the educational content, the question, the facial expression of the user for the test or the question, and the reference answer content information indicating the mode of the answer to these. You may. This makes it possible to determine the degree of concentration from the newly acquired image information and answer content information in relation to the contents of educational content, questions, tests and questions.
 例えば、過去にあった実際の事例における参照用画像情報が、画像データαであるものとする。また参照用解答内容情報が、ユーザが解答した式の導出βであるものとする。かかる場合に、実際にその集中度がいくらであったかを示す集中度をデータセットとして学習させ、上述した連関度という形で定義しておく。 For example, it is assumed that the reference image information in the actual case in the past is the image data α. Further, it is assumed that the reference answer content information is the derivation β of the formula answered by the user. In such a case, the concentration degree indicating how much the concentration degree was actually is learned as a data set, and is defined in the form of the above-mentioned association degree.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用画像情報P01で、参照用解答内容情報P16である場合に、その集中度を過去のデータから分析する。集中度がAの事例が多い場合には、この集中度Aにつながる連関度をより高く設定し、集中度Bの事例が多く、集中度Aの事例が少ない場合には、集中度Bにつながる連関度を高くし、集中度Aにつながる連関度を低く設定する。例えば中間ノード61aの例では、集中度Aと品質Bの出力にリンクしているが、以前の事例から集中度Aにつながるw13の連関度を7点に、集中度Bにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference image information P01 and the reference answer content information P16, the degree of concentration is analyzed from the past data. When there are many cases of concentration A, the degree of association leading to this concentration A is set higher, and when there are many cases of concentration B and few cases of concentration A, it leads to concentration B. The degree of association is set high, and the degree of association that leads to the concentration A is set low. For example, in the example of the intermediate node 61a, it is linked to the output of the concentration degree A and the quality B, but from the previous case, the degree of association of w13 connected to the degree of concentration A is set to 7 points, and the degree of association of w14 connected to the degree of concentration B is set to 7. Is set to 2 points.
 また、この図5に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。その他、人工知能に関する構成は、図4における説明と同様である。 Further, the degree of association shown in FIG. 5 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
 図5に示す連関度の例で、ノード61bは、参照用画像情報P01に対して、参照用解答内容情報P14の組み合わせのノードであり、集中度Cの連関度がw15、集中度Eの連関度がw16となっている。ノード61cは、参照用画像情報P02に対して、参照用解答内容情報P15、P17の組み合わせのノードであり、集中度Bの連関度がw17、集中度Dの連関度がw18となっている。 In the example of the degree of association shown in FIG. 5, the node 61b is a node of the combination of the reference image information P01 and the reference answer content information P14, and the degree of association C is the degree of association w15 and the degree of concentration E is the association. The degree is w16. The node 61c is a node in which the reference answer content information P15 and P17 are combined with respect to the reference image information P02, and the degree of association of the concentration B is w17 and the degree of association of the concentration D is w18.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから集中度を判別する際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際に集中度を判別しようとするユーザの画像情報、解答内容情報を取得する。このユーザの画像情報や解答内容情報は、教育コンテンツの中身や質問、テストや問題の出すタイミングに連動させて取得するようにしてもよい。これにより、教育コンテンツの中身や質問、テストや問題に対するユーザの表情や解答内容を互いに関連付けて集中度を導出することができる。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually determining the degree of concentration from now on, the above-mentioned learned data will be used. In such a case, the image information and the answer content information of the user who actually tries to determine the concentration degree are acquired. The user's image information and answer content information may be acquired in conjunction with the content of the educational content, the question, the test, and the timing of the question. As a result, it is possible to derive the degree of concentration by associating the contents of the educational contents, the questions, the facial expressions of the users with respect to the tests and the questions, and the contents of the answers with each other.
 このようにして新たに取得した画像情報、解答内容情報に基づいて、最適な集中度を探索する。かかる場合には、予め取得した図5(表1)に示す連関度を参照する。例えば、新たに取得した画像情報がP02と同一かこれに類似するものである場合であって、解答内容情報がP17である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、集中度Cがw19、集中度Dが連関度w20で関連付けられている。かかる場合には、連関度のより高い集中度Cを最適解として選択する。 Search for the optimum concentration level based on the newly acquired image information and answer content information in this way. In such a case, the degree of association shown in FIG. 5 (Table 1) acquired in advance is referred to. For example, when the newly acquired image information is the same as or similar to P02 and the answer content information is P17, the node 61d is associated with the node 61d via the degree of association. The node 61d is associated with a concentration C of w19 and a concentration D of association w20. In such a case, the concentration C having a higher degree of association is selected as the optimum solution.
 また、入力から伸びている連関度w1~w12の例を以下の表2に示す。 Table 2 below shows an example of the degree of association w1 to w12 extending from the input.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この入力から伸びている連関度w1~w12に基づいて中間ノード61が選択されていてもよい。つまり連関度w1~w12が大きいほど、中間ノード61の選択における重みづけを重くしてもよい。しかし、この連関度w1~w12は何れも同じ値としてもよく、中間ノード61の選択における重みづけは何れも全て同一とされていてもよい。 The intermediate node 61 may be selected based on the degree of association w1 to w12 extending from this input. That is, the larger the degree of association w1 to w12, the heavier the weighting in the selection of the intermediate node 61 may be. However, the degrees of association w1 to w12 may all have the same value, and the weights in the selection of the intermediate node 61 may all be the same.
 図6は、上述した参照用画像情報に加え、上述した参照用解答内容情報の代わりに参照用解答時間情報との組み合わせと、当該組み合わせに対する集中度との3段階以上の連関度が設定されている例を示している。 In FIG. 6, in addition to the above-mentioned reference image information, the combination with the reference answer time information instead of the above-mentioned reference answer content information and the degree of concentration for the combination are set to three or more levels of association. Here is an example.
 参照用解答内容情報の代わりに説明変数として加えられるこの参照用解答時間情報は、上述した解答が出るまでの時間を示すものである。解答時間とは、質問や出題がされて、解答を完了するまでの時間とする。この解答時間が長いほどユーザは集中力を欠いているものとみなすことができる。 This reference answer time information, which is added as an explanatory variable instead of the reference answer content information, indicates the time until the above-mentioned answer is obtained. The answer time is the time it takes for a question or question to be answered and the answer to be completed. The longer the answer time, the less concentrated the user can be considered.
 このため、このような参照用解答時間情報に含まれる解答時間も集中力に影響を及ぼすことから、参照用画像情報と組み合わせ、連関度を通じて集中度を判別することで、判別精度を向上させることができる。 Therefore, since the answer time included in such reference answer time information also affects the concentration, the discrimination accuracy should be improved by discriminating the concentration through the degree of association in combination with the reference image information. Can be done.
 図6の例では、入力データとして例えば参照用画像情報P01~P03、参照用解答時間情報P18~21であるものとする。このような入力データとしての、参照用画像情報に対して、参照用解答時間情報が組み合わさったものが、図6に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、集中度が表示されている。 In the example of FIG. 6, it is assumed that the input data is, for example, reference image information P01 to P03 and reference answer time information P18 to 21. The intermediate node shown in FIG. 6 is a combination of reference image information and reference answer time information as such input data. Each intermediate node is further linked to the output. In this output, the degree of concentration as an output solution is displayed.
 参照用画像情報と参照用解答時間情報との各組み合わせ(中間ノード)は、この出力解としての、集中度に対して3段階以上の連関度を通じて互いに連関しあっている。参照用画像情報と参照用解答時間情報がこの連関度を介して左側に配列し、集中度が連関度を介して右側に配列している。連関度は、左側に配列された参照用画像情報と参照用解答時間情報に対して、集中度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用画像情報と参照用解答時間情報が、いかなる集中度に紐付けられる可能性が高いかを示す指標であり、参照用画像情報と参照用解答時間情報から最も確からしい集中度を選択する上での的確性を示すものである。 Each combination (intermediate node) of the reference image information and the reference answer time information is associated with each other through three or more levels of association with the degree of concentration as this output solution. The reference image information and the reference answer time information are arranged on the left side through the degree of association, and the concentration degree is arranged on the right side through the degree of association. The degree of association indicates the degree of concentration and the degree of relevance to the reference image information and the reference answer time information arranged on the left side. In other words, this degree of association is an index showing what degree of concentration each reference image information and reference answer time information are likely to be associated with, and is a reference image information and reference answer time information. It shows the accuracy in selecting the most probable concentration level from.
 判別装置2は、このような図6に示す3段階以上の連関度w13~w22を予め取得しておく。つまり判別装置2は、実際の探索解の判別を行う上で、参照用画像情報と、参照用画像情報を取得する際に得た参照用解答時間情報、並びにその場合の集中度が何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図6に示す連関度を作り上げておく。 The discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, in discriminating the actual search solution, the discriminating device 2 prefers the reference image information, the reference answer time information obtained when acquiring the reference image information, and the degree of concentration in that case. Or, by accumulating past data and analyzing and analyzing these, the degree of association shown in FIG. 6 is created.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用画像情報P01で、参照用解答時間情報P20である場合に、その集中度を過去のデータから分析する。集中度Aの事例が多い場合には、この集中度がAにつながる連関度をより高く設定し、集中度がBの事例が多く、集中度がAの事例が少ない場合には、集中度がBにつながる連関度を高くし、集中度がAにつながる連関度を低く設定する。例えば中間ノード61aの例では、集中度Aと集中度Bの出力にリンクしているが、以前の事例から集中度Aにつながるw13の連関度を7点に、集中度Bにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference image information P01 and the reference answer time information P20, the degree of concentration is analyzed from the past data. When there are many cases of concentration A, the degree of association that this concentration leads to A is set higher, and when there are many cases of concentration B and few cases of concentration A, the concentration is low. The degree of association that leads to B is set high, and the degree of association that leads to A is set low. For example, in the example of the intermediate node 61a, the output of the concentration A and the concentration B is linked, but from the previous case, the association of w13 connected to the concentration A is set to 7 points, and the association of w14 connected to the concentration B is set to 7 points. The degree is set to 2 points.
 また、この図6に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。その他、人工知能に関する構成は、図4における説明と同様である。 Further, the degree of association shown in FIG. 6 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
 図6に示す連関度の例で、ノード61bは、参照用画像情報P01に対して参照用解答時間情報P18の組み合わせのノードであり、集中度Cの連関度がw15、集中度Eの連関度がw16となっている。ノード61cは、参照用画像情報P02に対して、参照用解答時間情報P19、P21の組み合わせのノードであり、集中度Bの連関度がw17、集中度Dの連関度がw18となっている。 In the example of the degree of association shown in FIG. 6, the node 61b is a node in which the reference answer time information P18 is combined with the reference image information P01, the degree of association C is w15, and the degree of association E is the degree of association E. Is w16. The node 61c is a node in which the reference answer time information P19 and P21 are combined with respect to the reference image information P02, and the degree of association of the concentration B is w17 and the degree of association of the concentration D is w18.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから集中度の探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にその集中度の判別対象の画像情報と、解答時間情報とを取得する。ここで解答時間情報は、集中度を実際に見積もる際に、新たに取得するが、その取得方法は、上述した参照用解答時間情報と同様である。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually searching for the degree of concentration from now on, the above-mentioned learned data will be used. In such a case, the image information of the concentration target to be determined and the answer time information are actually acquired. Here, the answer time information is newly acquired when the degree of concentration is actually estimated, and the acquisition method is the same as the above-mentioned reference answer time information.
 このようにして新たに取得した画像情報と、解答時間情報に基づいて、最適な集中度を探索する。かかる場合には、予め取得した図6(表1)に示す連関度を参照する。例えば、新たに取得した画像情報がP02と同一かこれに類似するものである場合であって、解答時間情報がP21と同一か又は類似する場合には、連関度を介してノード61dが関連付けられており、このノード61dは、集中度Cがw19、集中度Dが連関度w20で関連付けられている。かかる場合には、連関度のより高い集中度Cを最適解として選択する。 Based on the image information newly acquired in this way and the answer time information, the optimum concentration level is searched for. In such a case, the degree of association shown in FIG. 6 (Table 1) acquired in advance is referred to. For example, when the newly acquired image information is the same as or similar to P02 and the answer time information is the same as or similar to P21, the node 61d is associated via the degree of association. The node 61d is associated with a concentration C of w19 and a concentration D of association w20. In such a case, the concentration C having a higher degree of association is selected as the optimum solution.
 図7は、上述した参照用画像情報に加え、上述した参照用解答内容情報の代わりに参照用属性情報との組み合わせと、当該組み合わせに対する集中度との3段階以上の連関度が設定されている例を示している。 In FIG. 7, in addition to the above-mentioned reference image information, the combination with the reference attribute information instead of the above-mentioned reference answer content information and the degree of concentration for the combination are set to three or more levels of association. An example is shown.
 参照用解答内容情報の代わりに説明変数として加えられるこの参照用属性情報は、ユーザの年齢や学年、レベル、その教育コンテンツの受講期間、性別、現在通学している学校、居住地、社会人であれば勤務地、勤務先、勤続年数等、ユーザの属性に関するあらゆる情報を示す。このような参照用属性情報も集中度に影響を及ぼすことから、参照用画像情報と組み合わせ、連関度を通じて集中度を判別することで、判別精度を向上させることができる。 This reference attribute information, which is added as an explanatory variable instead of the reference answer content information, is based on the user's age, grade, level, duration of the educational content, gender, current school, place of residence, and working people. If so, show all information about user attributes such as work location, place of employment, years of service, etc. Since such reference attribute information also affects the degree of concentration, the discrimination accuracy can be improved by combining the information with the reference image information and discriminating the degree of concentration through the degree of association.
 図7の例では、入力データとして例えば参照用画像情報P01~P03、参照用属性情報P18~21であるものとする。このような入力データとしての、参照用画像情報に対して、参照用属性情報が組み合わさったものが、図7に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、集中度が表示されている。 In the example of FIG. 7, it is assumed that the input data is, for example, reference image information P01 to P03 and reference attribute information P18 to 21. The intermediate node shown in FIG. 7 is a combination of reference image information and reference attribute information as such input data. Each intermediate node is further linked to the output. In this output, the degree of concentration as an output solution is displayed.
 参照用画像情報と参照用属性情報との各組み合わせ(中間ノード)は、この出力解としての、集中度に対して3段階以上の連関度を通じて互いに連関しあっている。参照用画像情報と参照用属性情報がこの連関度を介して左側に配列し、集中度が連関度を介して右側に配列している。連関度は、左側に配列された参照用画像情報と参照用属性情報に対して、集中度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用画像情報と参照用属性情報が、いかなる集中度に紐付けられる可能性が高いかを示す指標であり、参照用画像情報と参照用属性情報から最も確からしい集中度を選択する上での的確性を示すものである。 Each combination of reference image information and reference attribute information (intermediate node) is associated with each other through three or more levels of association with the degree of concentration as this output solution. The reference image information and the reference attribute information are arranged on the left side via the degree of association, and the concentration degree is arranged on the right side via the degree of association. The degree of association indicates the degree of concentration and the degree of relevance to the reference image information and the reference attribute information arranged on the left side. In other words, this degree of association is an index showing what degree of concentration each reference image information and reference attribute information are likely to be associated with, and is the most from the reference image information and the reference attribute information. It shows the accuracy in selecting a certain degree of concentration.
 判別装置2は、このような図7に示す3段階以上の連関度w13~w22を予め取得しておく。つまり判別装置2は、実際の探索解の判別を行う上で、参照用画像情報と、参照用画像情報を取得する際に得た参照用属性情報、並びにその場合の集中度が何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図7に示す連関度を作り上げておく。 The discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. 7. That is, in discriminating the actual search solution, the discriminating device 2 is more suitable for the reference image information, the reference attribute information obtained when the reference image information is acquired, and the degree of concentration in that case. The degree of association shown in FIG. 7 is created by accumulating past data and analyzing and analyzing them.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用画像情報P01で、参照用属性情報P20である場合に、その集中度を過去のデータから分析する。集中度Aの事例が多い場合には、この集中度がAにつながる連関度をより高く設定し、集中度がBの事例が多く、集中度がAの事例が少ない場合には、集中度がBにつながる連関度を高くし、集中度がAにつながる連関度を低く設定する。例えば中間ノード61aの例では、集中度Aと集中度Bの出力にリンクしているが、以前の事例から集中度Aにつながるw13の連関度を7点に、集中度Bにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference image information P01 and the reference attribute information P20, the degree of concentration is analyzed from the past data. When there are many cases of concentration A, the degree of association that this concentration leads to A is set higher, and when there are many cases of concentration B and few cases of concentration A, the concentration is low. The degree of association that leads to B is set high, and the degree of association that leads to A is set low. For example, in the example of the intermediate node 61a, the output of the concentration A and the concentration B is linked, but from the previous case, the association of w13 connected to the concentration A is set to 7 points, and the association of w14 connected to the concentration B is set to 7 points. The degree is set to 2 points.
 また、この図7に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。その他、人工知能に関する構成は、図4における説明と同様である。 Further, the degree of association shown in FIG. 7 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
 図7に示す連関度の例で、ノード61bは、参照用画像情報P01に対して参照用属性情報P18の組み合わせのノードであり、集中度Cの連関度がw15、集中度Eの連関度がw16となっている。ノード61cは、参照用画像情報P02に対して、参照用属性情報P19、P21の組み合わせのノードであり、集中度Bの連関度がw17、集中度Dの連関度がw18となっている。 In the example of the degree of association shown in FIG. 7, the node 61b is a node in which the reference attribute information P18 is combined with the reference image information P01, the degree of association C is w15, and the degree of association E is the degree of association E. It is w16. The node 61c is a node in which the reference attribute information P19 and P21 are combined with respect to the reference image information P02, and the degree of association B is w17 and the degree of association D is w18.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから集中度の探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にその集中度の判別対象の画像情報と、属性情報とを取得する。ここで属性情報は、集中度を実際に見積もる際に、新たに取得するが、その取得方法は、上述した参照用属性情報と同様である。属性情報、参照用属性情報の取得方法は、PCやスマートフォン等へのデバイスへのキーボード入力で取得してもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually searching for the degree of concentration from now on, the above-mentioned learned data will be used. In such a case, the image information to be determined for the degree of concentration and the attribute information are actually acquired. Here, the attribute information is newly acquired when the degree of concentration is actually estimated, and the acquisition method is the same as the above-mentioned reference attribute information. The method of acquiring the attribute information and the reference attribute information may be acquired by keyboard input to a device such as a PC or a smartphone.
 このようにして新たに取得した画像情報と、属性情報に基づいて、最適な集中度を探索する。かかる場合には、予め取得した図7(表1)に示す連関度を参照する。例えば、新たに取得した画像情報がP02と同一かこれに類似するものである場合であって、属性情報がP21と同一か又は類似する場合には、連関度を介してノード61dが関連付けられており、このノード61dは、集中度Cがw19、集中度Dが連関度w20で関連付けられている。かかる場合には、連関度のより高い集中度Cを最適解として選択する。 Search for the optimum concentration based on the newly acquired image information and attribute information in this way. In such a case, the degree of association shown in FIG. 7 (Table 1) acquired in advance is referred to. For example, when the newly acquired image information is the same as or similar to P02 and the attribute information is the same as or similar to P21, the node 61d is associated via the degree of association. The node 61d is associated with a concentration C of w19 and a concentration D of association w20. In such a case, the concentration C having a higher degree of association is selected as the optimum solution.
 図8は、上述した参照用画像情報に加え、上述した参照用解答内容情報の代わりに参照用頻度情報との組み合わせと、当該組み合わせに対する集中度との3段階以上の連関度が設定されている例を示している。 In FIG. 8, in addition to the above-mentioned reference image information, a combination with the reference frequency information instead of the above-mentioned reference answer content information and the degree of concentration for the combination are set to three or more levels of association. An example is shown.
 参照用解答内容情報の代わりに説明変数として加えられるこの参照用頻度情報は、ユーザが教育コンテンツを聴講する頻度に関するあらゆる情報である。参照用頻度情報は、例えば月又は週何回、何時間教育コンテンツを聴講するのか、を示すものであってもよいし、最近サボり気味でどの程度のインターバルがあるかを示すものであってもよい。 This reference frequency information, which is added as an explanatory variable instead of the reference answer content information, is all information regarding the frequency with which the user listens to the educational content. The reference frequency information may indicate, for example, how many times a month or week the educational content is listened to, or how many intervals there are recently due to a slight skip. good.
 図8の例では、入力データとして例えば参照用画像情報P01~P03、参照用頻度情報P18~21であるものとする。このような入力データとしての、参照用画像情報に対して、参照用頻度情報が組み合わさったものが、図8に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、集中度が表示されている。 In the example of FIG. 8, it is assumed that the input data is, for example, reference image information P01 to P03 and reference frequency information P18 to 21. The intermediate node shown in FIG. 8 is a combination of reference frequency information and reference image information as such input data. Each intermediate node is further linked to the output. In this output, the degree of concentration as an output solution is displayed.
 参照用画像情報と参照用頻度情報との各組み合わせ(中間ノード)は、この出力解としての、集中度に対して3段階以上の連関度を通じて互いに連関しあっている。参照用画像情報と参照用頻度情報がこの連関度を介して左側に配列し、集中度が連関度を介して右側に配列している。連関度は、左側に配列された参照用画像情報と参照用頻度情報に対して、集中度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用画像情報と参照用頻度情報が、いかなる集中度に紐付けられる可能性が高いかを示す指標であり、参照用画像情報と参照用頻度情報から最も確からしい集中度を選択する上での的確性を示すものである。 Each combination of reference image information and reference frequency information (intermediate node) is associated with each other through three or more levels of association with the degree of concentration as this output solution. The reference image information and the reference frequency information are arranged on the left side via the degree of association, and the concentration degree is arranged on the right side via the degree of association. The degree of association indicates the degree of concentration and the degree of relevance to the reference image information and the reference frequency information arranged on the left side. In other words, this degree of association is an index showing what degree of concentration each reference image information and reference frequency information are likely to be associated with, and is the most from the reference image information and the reference frequency information. It shows the accuracy in selecting a certain degree of concentration.
 判別装置2は、このような図8に示す3段階以上の連関度w13~w22を予め取得しておく。つまり判別装置2は、実際の探索解の判別を行う上で、参照用画像情報と、参照用頻度情報、並びにその場合の集中度が何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図8に示す連関度を作り上げておく。 The discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data as to which of the reference image information, the reference frequency information, and the degree of concentration in that case is suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 8 is created.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用画像情報P01で、参照用頻度情報P20である場合に、その集中度を過去のデータから分析する。集中度Aの事例が多い場合には、この集中度がAにつながる連関度をより高く設定し、集中度がBの事例が多く、集中度がAの事例が少ない場合には、集中度がBにつながる連関度を高くし、集中度がAにつながる連関度を低く設定する。例えば中間ノード61aの例では、集中度Aと集中度Bの出力にリンクしているが、以前の事例から集中度Aにつながるw13の連関度を7点に、集中度Bにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference image information P01 and the reference frequency information P20, the degree of concentration is analyzed from the past data. When there are many cases of concentration A, the degree of association that this concentration leads to A is set higher, and when there are many cases of concentration B and few cases of concentration A, the concentration is low. The degree of association that leads to B is set high, and the degree of association that leads to A is set low. For example, in the example of the intermediate node 61a, the output of the concentration A and the concentration B is linked, but from the previous case, the association of w13 connected to the concentration A is set to 7 points, and the association of w14 connected to the concentration B is set to 7 points. The degree is set to 2 points.
 また、この図8に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。その他、人工知能に関する構成は、図4における説明と同様である。 Further, the degree of association shown in FIG. 8 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
 図8に示す連関度の例で、ノード61bは、参照用画像情報P01に対して参照用頻度情報P18の組み合わせのノードであり、集中度Cの連関度がw15、集中度Eの連関度がw16となっている。ノード61cは、参照用画像情報P02に対して、参照用頻度情報P19、P21の組み合わせのノードであり、集中度Bの連関度がw17、集中度Dの連関度がw18となっている。 In the example of the degree of association shown in FIG. 8, the node 61b is a node in which the reference frequency information P18 is combined with the reference image information P01, the degree of association C is w15, and the degree of association E is the degree of association E. It is w16. The node 61c is a node in which the reference frequency information P19 and P21 are combined with respect to the reference image information P02, and the degree of association B is w17 and the degree of association D is w18.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから集中度の探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にその集中度の判別対象の画像情報と、頻度情報とを取得する。ここで頻度情報は、集中度を実際に見積もる際に、新たに取得するが、その取得方法は、上述した参照用頻度情報と同様である。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually searching for the degree of concentration from now on, the above-mentioned learned data will be used. In such a case, the image information to be determined for the degree of concentration and the frequency information are actually acquired. Here, the frequency information is newly acquired when the degree of concentration is actually estimated, and the acquisition method is the same as the above-mentioned reference frequency information.
 このようにして新たに取得した画像情報と、頻度情報に基づいて、最適な集中度を探索する。かかる場合には、予め取得した図8(表1)に示す連関度を参照する。例えば、新たに取得した画像情報がP02と同一かこれに類似するものである場合であって、頻度情報がP21と同一か又は類似する場合には、連関度を介してノード61dが関連付けられており、このノード61dは、集中度Cがw19、集中度Dが連関度w20で関連付けられている。かかる場合には、連関度のより高い集中度Cを最適解として選択する。 Search for the optimum concentration based on the newly acquired image information and frequency information in this way. In such a case, the degree of association shown in FIG. 8 (Table 1) acquired in advance is referred to. For example, when the newly acquired image information is the same as or similar to P02 and the frequency information is the same as or similar to P21, the node 61d is associated via the degree of association. The node 61d is associated with a concentration C of w19 and a concentration D of association w20. In such a case, the concentration C having a higher degree of association is selected as the optimum solution.
 上述した連関度においては、10段階評価で連関度を表現しているが、これに限定されるものではなく、3段階以上の連関度で表現されていればよく、逆に3段階以上であれば100段階でも1000段階でも構わない。一方、この連関度は、2段階、つまり互いに連関しているか否か、1又は0の何れかで表現されるものは含まれない。 In the above-mentioned degree of association, the degree of association is expressed by a 10-step evaluation, but it is not limited to this, and it may be expressed by a degree of association of 3 or more levels, and conversely, it may be expressed by 3 or more levels. For example, 100 steps or 1000 steps may be used. On the other hand, this degree of association does not include those expressed in two stages, that is, whether or not they are related to each other, either 1 or 0.
 上述した構成からなる本発明によれば、特段のスキルや経験が無くても、誰でも手軽に集中度の判別・探索を行うことができる。また本発明によれば、この探索解の判断を、人間が行うよりも高精度に行うことが可能となる。更に、上述した連関度を人工知能(ニューラルネットワーク等)で構成することにより、これを学習させることでその判別精度を更に向上させることが可能となる。 According to the present invention having the above-mentioned configuration, anyone can easily determine and search the concentration level without any special skill or experience. Further, according to the present invention, it is possible to make a judgment of this search solution with higher accuracy than that made by a human being. Further, by configuring the above-mentioned degree of association with artificial intelligence (neural network or the like), it is possible to further improve the discrimination accuracy by learning this.
 なお、上述した入力データ、及び出力データは、学習させる過程で完全に同一のものが存在しない場合も多々あることから、これらの入力データと出力データを類型別に分類した情報であってもよい。つまり、入力データを構成する情報P01、P02、・・・・P15、16、・・・は、その情報の内容に応じて予めシステム側又はユーザ側において分類した基準で分類し、その分類した入力データと出力データとの間でデータセットを作り、学習させるようにしてもよい。 Note that the above-mentioned input data and output data may not be completely the same in the process of training, so that the input data and the output data may be classified by type. That is, the information P01, P02, ... P15, 16, ... That constitute the input data are classified according to the criteria classified in advance on the system side or the user side according to the content of the information, and the classified inputs. A dataset may be created between the data and the output data and trained.
 なお、上述した連関度では、参照用画像情報に加え、参照用解答内容情報、参照用解答時間情報、参照用属性情報、参照用頻度情報、の何れかとの組み合わせで構成されている場合を例にとり説明をしたが、これに限定されるものではない。つまり連関度は、参照用画像情報に加え、参照用解答内容情報、参照用解答時間情報、参照用属性情報、参照用頻度情報の何れか2以上との組み合わせで構成されていてもよい。また連関度は、参照用画像情報に加え、参照用解答内容情報、参照用解答時間情報、参照用属性情報、参照用頻度情報の何れか1以上に加え、他のファクターがこの組み合わせに加わって連関度が形成されていてもよい。 In the above-mentioned degree of association, in addition to the reference image information, there is an example in which the reference answer content information, the reference answer time information, the reference attribute information, and the reference frequency information are combined. I explained to you, but it is not limited to this. That is, the degree of association may be composed of a combination of any two or more of the reference answer content information, the reference answer time information, the reference attribute information, and the reference frequency information, in addition to the reference image information. In addition to the reference image information, the degree of association includes any one or more of the reference answer content information, the reference answer time information, the reference attribute information, and the reference frequency information, and other factors are added to this combination. The degree of association may be formed.
 いずれの場合も、その連関度の参照情報に合わせたデータの入力がなされ、その連関度を利用して集中度を求める。
 なお、本発明においては、求めたユーザの集中度に基づき、次に表示する教育コンテンツを選択して表示するようにしてもよい。このとき、ユーザの集中度を判別した教育コンテンツの後に、複数の選択肢があり、その選択肢毎にそれぞれ教育コンテンツが用意されている。そして、集中度を判別した結果に応じて選択肢の何れかを選択し、選択した選択肢に用意されている教育コンテンツを次に流すようにしてもよい。例えば集中力が低かった場合に選ばれる選択肢の教育コンテンツは、より集中力を高めるための気分転換的なものを含めたもので構成することも可能となる。
 なお、このような教育用コンテンツを選択する場合、以下に説明するように、教育コンテンツに対する達成度を踏まえて行うようにしてもよい。
In either case, data is input according to the reference information of the degree of association, and the degree of concentration is obtained by using the degree of association.
In the present invention, the educational content to be displayed next may be selected and displayed based on the desired concentration of the user. At this time, there are a plurality of options after the educational content for determining the degree of concentration of the user, and the educational content is prepared for each option. Then, one of the options may be selected according to the result of determining the concentration degree, and the educational content prepared for the selected option may be played next. For example, the educational content of the options selected when the concentration is low can be composed of the educational contents including the refreshing ones for improving the concentration.
When selecting such educational content, as described below, the educational content may be selected based on the degree of achievement of the educational content.
 図9は、上述した参照用解答内容情報と、参照用解答時間情報との組み合わせと、当該組み合わせに対する達成度との3段階以上の連関度が設定されている例を示している。達成度とは、教育コンテンツにおける内容をどの程度マスターしたかを示す指標である。 FIG. 9 shows an example in which the combination of the above-mentioned reference answer content information, the reference answer time information, and the degree of achievement for the combination are set to three or more levels of association. Achievement is an index showing how well the content in educational content has been mastered.
 図9の例では、入力データとして例えば参照用解答内容情報P01~P03、参照用解答時間情報P18~21であるものとする。このような入力データとしての、参照用解答内容情報に対して、参照用解答時間情報が組み合わさったものが、図9に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、達成度が表示されている。 In the example of FIG. 9, it is assumed that the input data is, for example, reference answer content information P01 to P03 and reference answer time information P18 to 21. The intermediate node shown in FIG. 9 is a combination of the reference answer content information and the reference answer time information as such input data. Each intermediate node is further linked to the output. In this output, the degree of achievement as an output solution is displayed.
 参照用解答内容情報と参照用解答時間情報との各組み合わせ(中間ノード)は、この出力解としての、達成度に対して3段階以上の連関度を通じて互いに連関しあっている。参照用解答内容情報と参照用解答時間情報がこの連関度を介して左側に配列し、達成度が連関度を介して右側に配列している。連関度は、左側に配列された参照用解答内容情報と参照用解答時間情報に対して、達成度と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用解答内容情報と参照用解答時間情報が、いかなる達成度に紐付けられる可能性が高いかを示す指標であり、参照用解答内容情報と参照用解答時間情報から最も確からしい達成度を選択する上での的確性を示すものである。 Each combination (intermediate node) of the reference answer content information and the reference answer time information is associated with each other through three or more levels of association with the achievement level as this output solution. The reference answer content information and the reference answer time information are arranged on the left side through this degree of association, and the achievement degree is arranged on the right side through this degree of association. The degree of association indicates the degree of high relevance to the degree of achievement with respect to the reference answer content information and the reference answer time information arranged on the left side. In other words, this degree of association is an index indicating what degree of achievement each reference answer content information and reference answer time information are likely to be associated with, and is a reference answer content information and reference answer. It shows the accuracy in selecting the most probable achievement level from the time information.
 判別装置2は、このような図9に示す3段階以上の連関度w13~w22を予め取得しておく。つまり判別装置2は、実際の探索解の判別を行う上で、参照用解答内容情報と、参照用解答内容情報を取得する際に得た参照用解答時間情報、並びにその場合の達成度が何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図6に示す連関度を作り上げておく。 The discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, in determining the actual search solution, the discrimination device 2 determines the reference answer content information, the reference answer time information obtained when acquiring the reference answer content information, and the degree of achievement in that case. Was suitable, or the past data is accumulated, and by analyzing and analyzing these, the degree of association shown in FIG. 6 is created.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用解答内容情報P01で、参照用解答時間情報P20である場合に、その達成度を過去のデータから分析する。達成度Aの事例が多い場合には、この達成度がAにつながる連関度をより高く設定し、達成度がBの事例が多く、達成度がAの事例が少ない場合には、達成度がBにつながる連関度を高くし、達成度がAにつながる連関度を低く設定する。例えば中間ノード61aの例では、達成度Aと達成度Bの出力にリンクしているが、以前の事例から達成度Aにつながるw13の連関度を7点に、達成度Bにつながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference answer content information P01 and the reference answer time information P20, the degree of achievement is analyzed from the past data. If there are many cases of achievement A, the degree of association that this achievement leads to A is set higher, and if there are many cases of achievement B and few cases of achievement A, the achievement is low. The degree of association that leads to B is set high, and the degree of association that leads to A is set low. For example, in the example of the intermediate node 61a, it is linked to the output of achievement degree A and achievement degree B, but from the previous case, the association degree of w13 connected to achievement degree A is set to 7 points, and the association of w14 connected to achievement degree B is linked. The degree is set to 2 points.
 また、この図9に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。その他、人工知能に関する構成は、図4における説明と同様である。 Further, the degree of association shown in FIG. 9 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence. Other than that, the configuration related to artificial intelligence is the same as the description in FIG.
 図9に示す連関度の例で、ノード61bは、参照用解答内容情報P01に対して参照用解答時間情報P18の組み合わせのノードであり、達成度Cの連関度がw15、達成度Eの連関度がw16となっている。ノード61cは、参照用解答内容情報P02に対して、参照用解答時間情報P19、P21の組み合わせのノードであり、達成度Bの連関度がw17、達成度Dの連関度がw18となっている。 In the example of the degree of association shown in FIG. 9, the node 61b is a node in which the reference answer time information P18 is combined with the reference answer content information P01, the degree of association C is w15, and the degree of association E is the degree E. The degree is w16. The node 61c is a node of a combination of the reference answer time information P19 and P21 with respect to the reference answer content information P02, and the degree of association of the achievement degree B is w17 and the degree of association of the achievement degree D is w18. ..
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから達成度の探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にその達成度の判別対象の解答内容情報と、解答時間情報とを取得する。ここで解答時間情報は、達成度を実際に見積もる際に、新たに取得するが、その取得方法は、上述した参照用解答時間情報と同様である。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually searching for the degree of achievement from now on, the above-mentioned learned data will be used. In such a case, the answer content information to be determined for the degree of achievement and the answer time information are actually acquired. Here, the answer time information is newly acquired when the achievement level is actually estimated, and the acquisition method is the same as the above-mentioned reference answer time information.
 このようにして新たに取得した解答内容情報と、解答時間情報に基づいて、最適な達成度を探索する。かかる場合には、予め取得した図9(表1)に示す連関度を参照する。例えば、新たに取得した解答内容情報がP02と同一かこれに類似するものである場合であって、解答時間情報がP21と同一か又は類似する場合には、連関度を介してノード61dが関連付けられており、このノード61dは、達成度Cがw19、達成度Dが連関度w20で関連付けられている。かかる場合には、連関度のより高い達成度Cを最適解として選択する。 Based on the answer content information newly acquired in this way and the answer time information, the optimum achievement level is searched for. In such a case, the degree of association shown in FIG. 9 (Table 1) acquired in advance is referred to. For example, when the newly acquired answer content information is the same as or similar to P02 and the answer time information is the same as or similar to P21, the node 61d is associated via the degree of association. The node 61d is associated with the achievement degree C by w19 and the achievement degree D by the association degree w20. In such a case, the achievement degree C having a higher degree of association is selected as the optimum solution.
 この達成度は、解答内容情報と、属性情報とから導くようにしてもよい。かかる場合には、参照用解答内容情報と、参照用属性情報とを有する組み合わせと、ユーザの達成度との3段階以上の連関度を予め取得しておく。そして、その連関度を参照し、新たに取得した解答内容情報に応じた参照用解答内容情報及び属性情報に応じた参照用属性情報に基づき、ユーザの達成度を判別する。 This achievement level may be derived from the answer content information and the attribute information. In such a case, the combination of the reference answer content information and the reference attribute information and the degree of association with the user's achievement level of three or more levels are acquired in advance. Then, the degree of association is referred to, and the degree of achievement of the user is determined based on the reference answer content information according to the newly acquired answer content information and the reference attribute information according to the attribute information.
 このようにして達成度を取得した後、上述した集中度と併せて、教育コンテンツを選択する。かかる場合には、達成度と集中度がそれぞれどのような度合である場合に、いかなる教育コンテンツを選択するかを予め設定しておき、実際に求めた達成度と集中度に応じてこれを選択するようにしてもよい。 After obtaining the achievement level in this way, select the educational content together with the above-mentioned concentration level. In such a case, set in advance what kind of educational content should be selected when the degree of achievement and the degree of concentration are respectively, and select this according to the degree of achievement and the degree of concentration actually obtained. You may try to do it.
 また本発明は、図10に示すように参照用情報Uと参照用情報Vという2種類以上の情報の組み合わせの連関度に基づいて集中度や達成度を判別するものである。この参照用情報Yが参照用画像情報であり、参照用情報Vが参照用解答内容情報、参照用解答時間情報、参照用属性情報、参照用頻度情報の何れかであるものとする。 Further, as shown in FIG. 10, the present invention determines the degree of concentration and the degree of achievement based on the degree of association of two or more types of information, the reference information U and the reference information V. It is assumed that the reference information Y is the reference image information, and the reference information V is any one of the reference answer content information, the reference answer time information, the reference attribute information, and the reference frequency information.
 このとき、図10に示すように、参照用情報Uについて得られた出力をそのまま入力データとして、参照用情報Vとの組み合わせの中間ノード61を介して出力(集中度)と関連付けられていてもよい。例えば、参照用情報U(参照用画像情報)について、図3に示すように出力解を出した後、これをそのまま入力として、他の参照用情報Vとの間での連関度を利用し、出力(集中度)を探索するようにしてもよい。 At this time, as shown in FIG. 10, even if the output obtained for the reference information U is used as input data as it is and is associated with the output (concentration ratio) via the intermediate node 61 in combination with the reference information V. good. For example, for reference information U (reference image information), after outputting an output solution as shown in FIG. 3, this is used as an input as it is, and the degree of association with other reference information V is used. The output (concentration ratio) may be searched.
 また、本発明によれば、3段階以上に設定されている連関度を介して最適な解探索を行う点に特徴がある。連関度は、上述した10段階以外に、例えば0~100%までの数値で記述することができるが、これに限定されるものではなく3段階以上の数値で記述できるものであればいかなる段階で構成されていてもよい。 Further, according to the present invention, there is a feature that the optimum solution search is performed through the degree of association set in three or more stages. The degree of association can be described by, for example, a numerical value from 0 to 100% in addition to the above-mentioned 10 steps, but is not limited to this, and any step can be described as long as it can be described by a numerical value of 3 or more steps. It may be configured.
 このような3段階以上の数値で表される連関度に基づいて最も確からしい集中度、を判別することで、探索解の可能性の候補として複数考えられる状況下において、当該連関度の高い順に探索して表示することも可能となる。このように連関度の高い順にユーザに表示できれば、より確からしい探索解を優先的に表示することも可能となる。 By discriminating the most probable concentration level based on the degree of association represented by the numerical values of three or more stages, in a situation where there are multiple possible candidates for the search solution, the degree of association is in descending order. It is also possible to search and display. If the user can be displayed in descending order of the degree of association in this way, it is possible to preferentially display more probable search solutions.
 これに加えて、本発明によれば、連関度が1%のような極めて低い出力の判別結果も見逃すことなく判断することができる。連関度が極めて低い判別結果であっても僅かな兆候として繋がっているものであり、何十回、何百回に一度は、その判別結果として役に立つ場合もあることをユーザに対して注意喚起することができる。 In addition to this, according to the present invention, it is possible to judge without overlooking the discrimination result of the extremely low output such as 1% of the degree of association. It warns the user that even a judgment result with an extremely low degree of association is connected as a slight sign, and may be useful as the judgment result once every tens or hundreds of times. be able to.
 更に本発明によれば、このような3段階以上の連関度に基づいて探索を行うことにより、閾値の設定の仕方で、探索方針を決めることができるメリットがある。閾値を低くすれば、上述した連関度が1%のものであっても漏れなく拾うことができる反面、より適切な判別結果を好適に検出できる可能性が低く、ノイズを沢山拾ってしまう場合もある。一方、閾値を高くすれば、最適な探索解を高確率で検出できる可能性が高い反面、通常は連関度は低くてスルーされるものの何十回、何百回に一度は出てくる好適な解を見落としてしまう場合もある。いずれに重きを置くかは、ユーザ側、システム側の考え方に基づいて決めることが可能となるが、このような重点を置くポイントを選ぶ自由度を高くすることが可能となる。 Further, according to the present invention, there is a merit that the search policy can be determined by the method of setting the threshold value by performing the search based on the degree of association of three or more stages. If the threshold value is lowered, even if the above-mentioned degree of association is 1%, it can be picked up without omission, but it is unlikely that a more appropriate discrimination result can be detected favorably, and a lot of noise may be picked up. be. On the other hand, if the threshold value is raised, there is a high possibility that the optimum search solution can be detected with high probability, but the degree of association is usually low and it is passed through, but it is suitable to appear once in tens or hundreds of times. Sometimes the solution is overlooked. It is possible to decide which one should be emphasized based on the ideas of the user side and the system side, but it is possible to increase the degree of freedom in selecting the points to be emphasized.
 更に本発明では、上述した連関度を更新させるようにしてもよい。この更新は、例えばインターネットを始めとした公衆通信網を介して提供された情報を反映させるようにしてもよい。また参照用画像情報を初めとする各参照用情報を取得し、これらに対する集中度、改善施策に関する知見、情報、データを取得した場合、これらに応じて連関度を上昇させ、或いは下降させる。 Further, in the present invention, the above-mentioned degree of association may be updated. This update may reflect information provided, for example, via a public communication network such as the Internet. In addition, when each reference information such as reference image information is acquired and the degree of concentration for these, knowledge, information, and data regarding improvement measures are acquired, the degree of association is increased or decreased according to these.
 つまり、この更新は、人工知能でいうところの学習に相当する。新たなデータを取得し、これを学習済みデータに反映させることを行っているため、学習行為といえるものである。 In other words, this update is equivalent to learning in terms of artificial intelligence. It can be said that it is a learning act because it acquires new data and reflects it in the learned data.
 また、この連関度の更新は、公衆通信網から取得可能な情報に基づく場合以外に、専門家による研究データや論文、学会発表や、新聞記事、書籍等の内容に基づいてシステム側又はユーザ側が人為的に、又は自動的に更新するようにしてもよい。これらの更新処理においては人工知能を活用するようにしてもよい。 In addition, this update of the degree of association is done by the system side or the user side based on the contents of research data, papers, conference presentations, newspaper articles, books, etc. by experts, except when it is based on information that can be obtained from the public communication network. It may be updated artificially or automatically. Artificial intelligence may be utilized in these update processes.
 また学習済モデルを最初に作り上げる過程、及び上述した更新は、教師あり学習のみならず、教師なし学習、ディープラーニング、強化学習等を用いるようにしてもよい。教師なし学習の場合には、入力データと出力データのデータセットを読み込ませて学習させる代わりに、入力データに相当する情報を読み込ませて学習させ、そこから出力データに関連する連関度を自己形成させるようにしてもよい。 In addition, the process of first creating a trained model and the above-mentioned update may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like. In the case of unsupervised learning, instead of reading and training the data set of input data and output data, information corresponding to the input data is read and trained, and the degree of association related to the output data is self-formed from there. You may let it.
1 集中度判別システム
2 判別装置
21 内部バス
23 表示部
24 制御部
25 操作部
26 通信部
27 判別部
28 記憶部
61 ノード
 
1 Concentration ratio discrimination system 2 Discrimination device 21 Internal bus 23 Display unit 24 Control unit 25 Operation unit 26 Communication unit 27 Discrimination unit 28 Storage unit 61 Node

Claims (9)

  1.  教育コンテンツを聴講するユーザの集中度を判別する集中度判別プログラムにおいて、
     表示された教育コンテンツを視認するユーザの画像を撮像することにより画像情報を取得する情報取得ステップと、
     過去に表示された教育コンテンツを視認するユーザの画像を撮像した参照用画像情報と、ユーザの集中度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した画像情報に応じた参照用画像情報に基づき、ユーザの集中度を判別する判別ステップとをコンピュータに実行させること
     を特徴とする集中度判別プログラム。
    In the concentration determination program that determines the concentration of users who listen to educational content
    An information acquisition step to acquire image information by capturing an image of a user who visually recognizes the displayed educational content, and
    Referencing the reference image information obtained by capturing the image of the user who visually recognizes the educational content displayed in the past and the degree of association between the user's concentration level and the user's concentration level in three or more stages, and responding to the image information acquired in the above information acquisition step. A concentration determination program characterized by having a computer execute a determination step for determining a user's concentration level based on reference image information.
  2.  上記情報取得ステップでは、上記教育コンテンツ内において出題される問題に対する上記ユーザの解答内容に関する解答内容情報を取得し、
     上記判別ステップでは、上記参照用画像情報と、過去に表示された教育コンテンツ内において出題される問題に対するユーザの解答内容に関する参照用解答内容情報とを有する組み合わせと、ユーザの集中度との3段階以上の連関度を参照し、更に上記情報取得ステップにおいて取得した解答内容情報に応じた参照用解答内容情報に基づき、ユーザの集中度を判別すること
     を特徴とする請求項1記載の集中度判別プログラム。
    In the information acquisition step, the answer content information regarding the answer content of the user for the question to be asked in the educational content is acquired.
    In the discrimination step, there are three stages: a combination of the reference image information, a reference answer content information regarding the user's answer content to a question to be asked in the educational content displayed in the past, and a user concentration level. The concentration degree determination according to claim 1, wherein the concentration degree of the user is determined based on the reference answer content information according to the answer content information acquired in the above information acquisition step with reference to the above association degree. program.
  3.  上記情報取得ステップでは、上記教育コンテンツ内において出題される問題に対する上記ユーザの解答時間に関する解答時間情報を取得し、
     上記判別ステップでは、上記参照用画像情報と、過去に表示された教育コンテンツ内において出題される問題に対するユーザの解答時間に関する参照用解答時間情報とを有する組み合わせと、ユーザの集中度との3段階以上の連関度を参照し、更に上記情報取得ステップにおいて取得した解答時間情報に応じた参照用解答時間情報に基づき、ユーザの集中度を判別すること
     を特徴とする請求項1記載の集中度判別プログラム。
    In the information acquisition step, the answer time information regarding the answer time of the user for the question to be asked in the educational content is acquired.
    In the determination step, there are three stages: a combination of the reference image information, a reference answer time information regarding the user's answer time for a question to be asked in the educational content displayed in the past, and a user's concentration degree. The concentration degree determination according to claim 1, wherein the concentration degree of the user is determined based on the reference answer time information according to the answer time information acquired in the above information acquisition step with reference to the above association degree. program.
  4.  上記情報取得ステップでは、上記教育コンテンツを聴講するユーザの属性に関する属性情報を取得し、
     上記判別ステップでは、上記参照用画像情報と、過去に表示された教育コンテンツを聴講するユーザの属性に関する参照用属性情報とを有する組み合わせと、ユーザの集中度との3段階以上の連関度を参照し、更に上記情報取得ステップにおいて取得した属性情報に応じた参照用属性情報に基づき、ユーザの集中度を判別すること
     を特徴とする請求項1記載の集中度判別プログラム。
    In the above information acquisition step, attribute information regarding the attributes of the user who listens to the above educational content is acquired.
    In the above-mentioned determination step, the combination having the above-mentioned reference image information and the reference attribute information regarding the attribute of the user who listens to the educational content displayed in the past and the degree of association with the user's concentration ratio are referred to three or more stages. The concentration level determination program according to claim 1, further comprising determining the concentration level of the user based on the reference attribute information corresponding to the attribute information acquired in the above information acquisition step.
  5.  上記情報取得ステップでは、上記ユーザによる上記教育コンテンツを聴講する頻度に関する頻度情報を取得し、
     上記判別ステップでは、上記参照用画像情報と、ユーザによる過去に表示された教育コンテンツを聴講する頻度に関する参照用頻度情報とを有する組み合わせと、ユーザの集中度との3段階以上の連関度を参照し、更に上記情報取得ステップにおいて取得した頻度情報に応じた参照用頻度情報に基づき、ユーザの集中度を判別すること
     を特徴とする請求項1記載の集中度判別プログラム。
    In the above information acquisition step, frequency information regarding the frequency of listening to the above educational content by the above user is acquired.
    In the determination step, reference is made to a combination having the reference image information, the reference frequency information regarding the frequency of listening to the educational content displayed in the past by the user, and the degree of association of three or more levels with the concentration level of the user. The concentration degree determination program according to claim 1, further comprising determining the concentration degree of the user based on the reference frequency information according to the frequency information acquired in the above information acquisition step.
  6.  上記判別ステップにおいて判別されたユーザの集中度に基づき、次に表示する教育コンテンツを選択して表示する選択ステップを更に有すること
     を特徴とする請求項1~5のうち何れか1項記載の集中度判別プログラム。
    The concentration according to any one of claims 1 to 5, further comprising a selection step of selecting and displaying educational content to be displayed next based on the concentration level of the user determined in the determination step. Degree determination program.
  7.  上記情報取得ステップでは、上記教育コンテンツ内において出題される問題に対する上記ユーザの解答内容に関する解答内容情報と、上記教育コンテンツ内において出題される問題に対する上記ユーザの解答時間に関する解答時間情報とを取得し、
     上記判別ステップでは、
     上記参照用解答内容情報と、上記参照用解答時間情報とを有する組み合わせと、ユーザの達成度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した解答内容情報に応じた参照用解答内容情報及び解答時間情報に応じた参照用解答時間情報に基づき、ユーザの達成度を判別し、
     上記判別ステップにおいて判別されたユーザの集中度とユーザの達成度とに基づき、次に表示する教育コンテンツを選択して表示する選択ステップを更に有すること
     を特徴とする請求項1記載の集中度判別プログラム。
    In the information acquisition step, the answer content information regarding the answer content of the user for the question given in the educational content and the answer time information regarding the answer time of the user for the question given in the educational content are acquired. ,
    In the above determination step,
    Referencing the combination of the reference answer content information and the reference answer time information and the degree of association with the user's achievement level in three or more stages, and referring to the answer content information acquired in the information acquisition step. Based on the answer content information and the reference answer time information according to the answer time information, the achievement level of the user is determined.
    The concentration level determination according to claim 1, further comprising a selection step for selecting and displaying the educational content to be displayed next based on the concentration level of the user determined in the determination step and the achievement level of the user. program.
  8.  上記情報取得ステップでは、上記教育コンテンツ内において出題される問題に対する上記ユーザの解答内容に関する解答内容情報と、上記教育コンテンツを聴講するユーザの属性に関する属性情報とを取得し、
     上記参照用解答内容情報と、上記参照用属性情報とを有する組み合わせと、ユーザの達成度との3段階以上の連関度を参照し、上記情報取得ステップにおいて取得した解答内容情報に応じた参照用解答内容情報及び属性情報に応じた参照用属性情報に基づき、ユーザの達成度を判別し、
     上記判別ステップにおいて判別されたユーザの集中度とユーザの達成度とに基づき、次に表示する教育コンテンツを選択して表示する選択ステップを更に有すること
     を特徴とする請求項1記載の集中度判別プログラム。
    In the information acquisition step, the answer content information regarding the answer content of the user to the question to be asked in the educational content and the attribute information regarding the attribute of the user who listens to the educational content are acquired.
    For reference according to the answer content information acquired in the information acquisition step by referring to the combination of the reference answer content information and the reference attribute information and the degree of association with the user's achievement level in three or more stages. Based on the answer content information and the reference attribute information according to the attribute information, the achievement level of the user is determined.
    The concentration level determination according to claim 1, further comprising a selection step for selecting and displaying the educational content to be displayed next based on the concentration level of the user determined in the determination step and the achievement level of the user. program.
  9.  上記判別ステップでは、人工知能におけるニューラルネットワークのノードの各出力の重み付け係数に対応する上記連関度を形成すること
     を特徴とする請求項1~8のうち何れか1項記載の集中度判別プログラム。
    The concentration determination program according to any one of claims 1 to 8, wherein in the determination step, the degree of association corresponding to the weighting coefficient of each output of the node of the neural network in artificial intelligence is formed.
PCT/JP2021/025446 2020-07-07 2021-07-06 Program for determining concentration level WO2022009875A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-116757 2020-07-07
JP2020116757A JP6906820B1 (en) 2020-07-07 2020-07-07 Concentration ratio determination program

Publications (1)

Publication Number Publication Date
WO2022009875A1 true WO2022009875A1 (en) 2022-01-13

Family

ID=76919734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025446 WO2022009875A1 (en) 2020-07-07 2021-07-06 Program for determining concentration level

Country Status (2)

Country Link
JP (3) JP6906820B1 (en)
WO (1) WO2022009875A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230081013A (en) * 2021-11-30 2023-06-07 주식회사 마블러스 Method for human recognition based on deep-learning, and method for magnaing untact education
KR102558675B1 (en) * 2022-03-21 2023-07-25 맹진영 Method and apparatus for operating teacher training program for advanced placement, gce advanced level and internationale baccalaureat
WO2023199422A1 (en) 2022-04-13 2023-10-19 日本電気株式会社 Inner state inference device, inner state inference method, and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083539A (en) * 2010-10-12 2012-04-26 Engineer Mentor Association Web type training system
JP2018165760A (en) * 2017-03-28 2018-10-25 富士通株式会社 Question control program, method for controlling question, and question controller
JP2018175507A (en) * 2017-04-14 2018-11-15 ダイキン工業株式会社 Physical state determination device
WO2019176374A1 (en) * 2018-03-16 2019-09-19 京セラドキュメントソリューションズ株式会社 Information processing device and information processing method
JP6621092B1 (en) * 2019-02-07 2019-12-18 Assest株式会社 Risk determination program and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083539A (en) * 2010-10-12 2012-04-26 Engineer Mentor Association Web type training system
JP2018165760A (en) * 2017-03-28 2018-10-25 富士通株式会社 Question control program, method for controlling question, and question controller
JP2018175507A (en) * 2017-04-14 2018-11-15 ダイキン工業株式会社 Physical state determination device
WO2019176374A1 (en) * 2018-03-16 2019-09-19 京セラドキュメントソリューションズ株式会社 Information processing device and information processing method
JP6621092B1 (en) * 2019-02-07 2019-12-18 Assest株式会社 Risk determination program and system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Neural network", WIKIPEDIA, 10 May 2012 (2012-05-10), XP055886152, Retrieved from the Internet <URL:https://web.archive.org/web/20120510032822/http://ja.wikipedia.org/wiki/%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%A9%E3%83%AB%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF> *
SHIMADA DAIKI, IYATOMI HITOSHI: "Feasibility Investigation for Estimation of Audiences' Attention with Semi-supervised Learning", PROCEEDINGS OF THE FUZZY SYSTEM SYMPOSIUM, JAPAN SOCIETY FOR FUZZY THEORY AND INTELLIGENT INFORMATICS, 4 September 2015 (2015-09-04), pages 395 - 398, XP055886149, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/fss/31/0/31_395/_article/-char/ja/> DOI: 10.14864/fss.31.0_395 *
YOSHIHASHI RYOSUKE: "Deep Convolutional Neural Networks, FEASIBILITY STUDY ON EVALUATION OF AUDIENCE'S CONCENTRATION IN THE CLASSROOM WITH DEEP CONVOLUTIONAL NEURAL NETWORKS", BULLETIN OF GRADUATE STUDIES OF HOSEI UNIVERSITY. GRADUATE SCHOOL OF SCIENCE AND ENGINEERING VOL. 56, GRADUATE SCHOOL OF SCIENCE AND ENGINEERING, HOSEI UNIVERSITY REPOSITORY, 24 March 2015 (2015-03-24), XP055886147, Retrieved from the Internet <URL:https://hosei.repo.nii.ac.jp/?action=pages_view_main& active_action=repository_view_main_item_detail&item_id=11294& item_no=1&page_id=13&block_id=83> *

Also Published As

Publication number Publication date
JP6906820B1 (en) 2021-07-21
JP2022014473A (en) 2022-01-20
JP2022014889A (en) 2022-01-20
JP2022014890A (en) 2022-01-20

Similar Documents

Publication Publication Date Title
WO2022009875A1 (en) Program for determining concentration level
Hussain et al. Student Engagement Predictions in an e‐Learning System and Their Impact on Student Course Assessment Scores
CN110678935A (en) Interactive adaptive learning and neurocognitive disorder diagnosis system applying face tracking and emotion detection and related methods thereof
US20130216995A1 (en) Method, apparatus and system for learning plan analysis
CN111062842A (en) Method and device for dynamically generating personalized questions
US9652996B2 (en) Measuring cognitive load
Ilić et al. Intelligent techniques in e-learning: a literature review
CN115081965B (en) Big data analysis system of condition of learning and condition of learning server
WO2019180652A1 (en) Interactive, adaptive, and motivational learning systems using face tracking and emotion detection with associated methods
US11416558B2 (en) System and method for recommending personalized content using contextualized knowledge base
Clarke et al. Classification accuracy of easyCBM first-grade mathematics measures: Findings and implications for the field
CN112818761A (en) Man-machine interaction method and system for online education based on artificial intelligence
Mujtaba et al. Artificial intelligence in computerized adaptive testing
CN115907507A (en) Classroom behavior detection and learning situation analysis method for students in combined classroom scene
Taylor et al. High performance coach cognition in the wild: Using applied cognitive task analysis for practical insights–cognitive challenges and curriculum knowledge
JP2021096836A (en) Bullying indication determination program and system, and bullying determination program and system
CN112085628A (en) Student self-adaptive education method and system based on artificial intelligence
JP2023003053A (en) Concentration level determination program
JP2022014474A (en) Education content selective display program
JP7427906B2 (en) Information processing device, control method and program
US11538355B2 (en) Methods and systems for predicting a condition of living-being in an environment
JP2023003054A (en) Concentration level determination program
JP2023003055A (en) Achievement level determination program
JP2023003516A (en) Concentration degree determination program
JP2023003517A (en) Achievement degree determination program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21837606

Country of ref document: EP

Kind code of ref document: A1