WO2022009819A1 - Information processing system, information processing method, and program - Google Patents

Information processing system, information processing method, and program Download PDF

Info

Publication number
WO2022009819A1
WO2022009819A1 PCT/JP2021/025239 JP2021025239W WO2022009819A1 WO 2022009819 A1 WO2022009819 A1 WO 2022009819A1 JP 2021025239 W JP2021025239 W JP 2021025239W WO 2022009819 A1 WO2022009819 A1 WO 2022009819A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
user
data
information processing
information
Prior art date
Application number
PCT/JP2021/025239
Other languages
French (fr)
Japanese (ja)
Inventor
滉允 清水
Original Assignee
株式会社Arblet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Arblet filed Critical 株式会社Arblet
Publication of WO2022009819A1 publication Critical patent/WO2022009819A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles

Definitions

  • This disclosure relates to information processing systems, information processing methods and programs.
  • a blood pressure information measuring system that acquires a user's electrocardiographic waveform data and pulse waveform data from a measuring device and generates blood pressure information is known (see, for example, Patent Document 1).
  • a development support server that generates a mathematical model that is a causal relationship for performing an operation from a user's measurement data to biometric information data and provides the mathematical model so that it can be used is also known (for example, Patent Document 2). reference.).
  • the self-driving vehicle since the self-driving vehicle operates to the destination without being driven by the driver including the user, there is no person to judge the situation when an unexpected situation occurs in the vehicle. There can be. Therefore, for example, if the user on board becomes unconscious, an abnormality can be found from the behavior of the vehicle if it is not an autonomous driving vehicle, but in the case of an autonomous driving vehicle, the vehicle continues to operate in an orderly manner. Therefore, the discovery of anomalies may be delayed. It is also possible to detect anomalies with a camera or microphone, but these interfaces may not be sufficient depending on the content of the anomaly (for example, a sudden change in the user's biometric information).
  • the above-mentioned autonomous driving vehicle calculates an operation route from map information and the like when the destination is determined, and automatically operates along the operation route.
  • users and passengers in the autonomous driving vehicle Even if an abnormality occurs, it is assumed that the destination cannot be changed to a medical institution or the like, and it may be difficult to take appropriate and prompt measures.
  • an information processing system an information processing method, and a program for controlling an autonomous driving vehicle based on an abnormality occurrence signal generated based on measurement data acquired from a measurement device worn by a user will be described.
  • the information processing system is an information processing system that receives measurement data from a measuring device worn by a user via a network and generates biometric data and an abnormality generation signal from the measured data.
  • a data management unit that stores the measurement data and the biometric data in association with user information about the user, a biometric data generation unit that executes a predetermined operation on the measurement data and generates the biometric data, and the biometric data.
  • an abnormality generation signal generation unit for generating an abnormality generation signal for indicating the abnormality occurrence of the user, and a vehicle management unit for controlling an automatically driving vehicle based on the abnormality generation signal are provided.
  • the information processing method is an information processing method that receives measurement data from a measuring device worn by a user via a network and generates biometric data and an abnormality generation signal from the measured data.
  • the management unit performs a step of storing the measurement data and the biometric data in association with the user information about the user, and the biometric data generation unit executes a predetermined operation on the measurement data to generate the biometric data.
  • the program receives measurement data from a measurement device worn by a user via a network, and executes an information processing method in a computer that generates biometric data and an abnormality generation signal from the measurement data.
  • the information processing method includes a step of storing the measurement data and the biometric data in association with user information about the user by the data management unit, and the biometric data generation unit for the measurement data.
  • the unit executes a step of controlling an automatically driving vehicle based on the abnormality occurrence signal.
  • the information processing system can detect a change in the user's biometric information based on the measurement data from the measuring device worn by the user, the user's biometric information is abrupt. When an abnormality such as a change occurs, it can be promptly dealt with by notifying the outside or transporting it to a hospital.
  • An information processing system that receives measurement data from a measurement device worn by a user via a network and generates biometric data and an abnormality occurrence signal from the measurement data.
  • a data management unit that stores the measurement data and the biometric data in association with the user information about the user.
  • a biometric data generation unit that executes a predetermined operation on the measurement data and generates the biometric data.
  • An abnormality generation signal generation unit that generates an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biometric data.
  • a vehicle management unit that controls an autonomously driven vehicle based on the abnormality occurrence signal is provided. An information processing system characterized by this.
  • the measurement data is data including at least one of the electrocardiogram, pulse wave, temperature, acceleration, and angular velocity of the user.
  • the biometric data includes blood pressure information, heartbeat information, blood oxygen level information, electrocardiographic information, respiratory rate, body temperature information, step count information, walking speed information, stride information, center of gravity position information, posture information, and behavior type. Data including at least one of information, stress information, exercise amount information, exercise load information, travel distance information, and activity amount information.
  • the information processing system according to any one of items 1 and 2, wherein the information processing system is characterized by the above.
  • the abnormality generation signal generation unit When the abnormality generation signal generation unit detects an abnormality regarding blood pressure information, the abnormality generation signal generation unit generates the abnormality generation signal.
  • the information processing system according to any one of items 1 to 3, wherein the information processing system is characterized by the above.
  • the abnormality generation signal generation unit generates the abnormality generation signal when an abnormality is detected in the heartbeat information.
  • the information processing system according to any one of items 1 to 4, wherein the information processing system is characterized by the above.
  • the abnormality generation signal generation unit generates the abnormality generation signal when an abnormality is detected with respect to the temperature information.
  • the abnormality generation signal generation unit generates the abnormality generation signal when an abnormality is detected in the operation information of the portion to which the measuring device is attached.
  • the information processing system according to any one of items 1 to 6, wherein the information processing system is characterized by the above.
  • the vehicle management unit operates the self-driving vehicle to a medical institution based on the abnormality occurrence signal.
  • the information processing system according to any one of items 1 to 7, wherein the information processing system is characterized by the above.
  • the vehicle management unit operates the self-driving vehicle to the user's position based on the abnormality occurrence signal and the user's position information.
  • the information processing system according to any one of items 1 to 7, wherein the information processing system is characterized by the above.
  • the vehicle management unit operates the self-driving vehicle to the position of the medical worker based on the abnormality occurrence signal and the position information of the medical worker.
  • the information processing system according to any one of items 1 to 7, wherein the information processing system is characterized by the above.
  • the information processing system is Further, a management server having at least the abnormality generation signal generation unit is provided. The management server notifies the contact related to the user of the occurrence of the abnormality based on the generation of the abnormality occurrence signal.
  • the information processing system according to any one of items 1 to 10, wherein the information processing system is characterized by the above.
  • the vehicle management unit comprises a step of controlling an autonomously driven vehicle based on the abnormality occurrence signal.
  • An information processing method characterized by that.
  • An information processing program that receives measurement data from a measurement device worn by a user via a network and executes an information processing method on a computer to generate biometric data and an abnormality occurrence signal from the measurement data.
  • the information processing method is A step of storing the measurement data and the biometric data in association with the user information about the user by the data management unit.
  • FIG. 1 is a block configuration diagram showing an information processing system 1 according to the first embodiment of the present disclosure.
  • the information processing system 1 receives, for example, the user's measurement data from the measurement device 300 via the network NW at the management server 100, and generates biometric data by performing a predetermined calculation on the measurement data. It is an information processing system that generates an abnormality occurrence signal based on the biometric data and controls the automatically driven vehicle 400 by the abnormality occurrence signal.
  • the information processing system 1 has a management server 100, a user terminal device 200, a measuring device 300, an autonomous driving vehicle 400, and a network NW.
  • the management server 100, the user terminal device 200, and the autonomous driving vehicle 400 are connected via the network NW.
  • the network NW is composed of the Internet, an intranet, a blockchain network, a wireless LAN (Local Area Network), a WAN (Wide Area Network), and the like.
  • the management server 100 is, for example, a device that receives user's measurement data from the measurement device 300 via a network via the user terminal device 200 and calculates the measurement data into biometric data, for example, various Web services. It consists of the server equipment provided.
  • the user terminal device 200 is an information processing device possessed by the user, such as a personal computer, a tablet terminal, a smartphone, a smart watch, a mobile phone, a PHS, or a PDA. It is used for displaying on a waveform graph or the like.
  • User information such as a user's identification number, date of birth, gender, height, and weight is registered in the user terminal device 200 in advance, and user information including the age calculated from the date of birth is associated with the measurement data. Is transmitted to the management server 100 via the network NW.
  • the measuring device 300 is a device that measures the biometric data of the user, and is, for example, a wearable device that is used by being worn on the body such as the wrist or arm of the user.
  • the measuring device 300 is, for example, a plurality of types of devices for measuring data of a user's electrocardiogram, pulse wave, temperature (body temperature), acceleration, and angular velocity.
  • a device may be configured in which two electrodes are brought into contact with the skin and the electrocardiogram is acquired as electrocardiographic waveform data from the time change of the difference in the detected potential.
  • the radio wave type may be data acquired by a galvanic skin reaction.
  • each light is radiated to the skin from LEDs that emit green, red, and infrared light, and the time change in the intensity of the light received by the photodiode causes a pulse wave due to the change in the volume of the blood vessel caused by the heartbeat of the user's heart.
  • It may be configured by a device that acquires pulse waveform data, and the pulse waveform that can be detected by this method is a photoelectric volume pulse waveform.
  • the device may be configured to acquire the user's skin temperature as data by a temperature sensor in contact with the user's skin. Further, it may be configured by a 3-axis acceleration sensor that detects the variation state of each of the orthogonal XYZ axes, and the user's motion is acquired as acceleration data, and for example, the measuring device 300 is attached to the user's wrist, arm, or the like. In this case, the measuring device 300 acquires acceleration data as an acceleration in which the swing of the wrist, arm, or the like and the movement of the whole body are combined.
  • a gyro sensor angular velocity sensor
  • the measuring device 300 may be configured by a gyro sensor (angular velocity sensor) that detects the rotational angular velocity in each of the orthogonal XYZ axes, and the user's motion is acquired as angular velocity data
  • the measuring device 300 is attached to the user's wrist, arm, or the like. If so, the measuring device 300 acquires the angular velocity data as the angular velocity in which the rotation of the wrist, the arm, or the like and the movement of the whole body are combined.
  • Bluetooth registered trademark
  • Afero registered trademark
  • Zigbee registered trademark
  • Z-Wave registered trademark
  • the user terminal device 200 and the measuring device 300 may be an integrated device.
  • the measuring device 300 may be provided with a communication function so as to be able to directly communicate with the management server 100. May be good.
  • the autonomous driving vehicle 400 may have a known configuration and may be managed by the management server 100, for example, but as illustrated in FIG. 2, the vehicle management server 500 that manages the autonomous driving vehicle 400 is independent. It is desirable that the management entity can be separated if the configuration is such that the management server 100 and the management server 100 are linked via the network NW.
  • the control of the autonomous driving vehicle 400 may also be a known method.
  • the vehicle management unit 520 is provided, and the server acquires the GPS information of the autonomous driving vehicle 400 to recognize the position information of each vehicle and recognizes the position information of each vehicle. Manage the route information instructed by the server. Further, a part or all of the functions of the vehicle management unit 520 may be provided in the management server 100 shown in FIG. 1 or FIG.
  • the self-driving vehicle 400 known driving control is performed according to map information, position information, information on the route to the destination, etc., and further, the surroundings of the self-driving vehicle 400 are based on sensors such as cameras possessed by the self-driving vehicle 400. Operation control is performed according to the situation.
  • the autonomous driving vehicle 400 may have a known configuration as described above, and is controlled by having a control unit and a storage unit (not shown). Further, the self-driving vehicle 400 may include a storage unit 420 in which, for example, a medical device such as an AED, a drug, an injection, a first aid item such as a bandage, a direct telephone call to a medical institution, or the like is stored.
  • the storage unit 420 is provided with, for example, a door having an electronic lock, and an abnormality occurrence signal or an abnormality occurrence from a management server 100, a user terminal device 200, a measuring device 300, an automatic driving vehicle 400, a vehicle management server 500, or the like. It may be unlocked by an instruction signal based on the signal so that the stored object can be used.
  • FIG. 3 is a diagram showing a hardware configuration of the management server 100.
  • FIG. 4 is a block diagram illustrating the functions of the storage unit 120 and the control unit 130. The configuration shown in the figure is an example, and may have other configurations.
  • the management server 100 includes a communication unit 110, a storage unit 120, a control unit 130, and an input / output unit 140. These functional units are realized by executing a predetermined program for the management server 100.
  • the communication unit 110 is a communication interface for communicating with the user terminal device 200, and communication is performed according to a communication protocol such as TCP / IP (Transmission Control Protocol / Internet Protocol).
  • a communication protocol such as TCP / IP (Transmission Control Protocol / Internet Protocol).
  • the storage unit 120 stores programs for executing various control processes and functions in the control unit 130, input data, and the like, and is composed of a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), and the like. To. Further, as shown in FIG. 4, the storage unit 120 associates the measurement data DB 121, which stores the measurement data by the measuring device 300 with the user information, and the biometric data calculated from the measurement data with the user information. The biometric data DB 122 to be stored and the user information DB 123 to store the user information including the user identification number are stored. Further, the user information includes the account information generated by the data management unit 131, and the user information DB 123 may store the account information in association with other user information. Further, the storage unit 120 temporarily stores the data that has communicated with the user terminal device 200. The data structure of the DB is not limited to this, and a part of the above-mentioned DB may be stored in the user terminal device 200 or the measuring device 300.
  • the control unit 130 controls the overall operation of the management server 100, and is composed of a CPU (Central Processing Unit) and the like. Further, as shown in FIG. 4, the control unit 130 includes functional units such as a data management unit 131, a biological data generation unit 132, an abnormality generation signal generation unit 133, and a data output unit 134.
  • a data management unit 131 controls the overall operation of the management server 100, and is composed of a CPU (Central Processing Unit) and the like. Further, as shown in FIG. 4, the control unit 130 includes functional units such as a data management unit 131, a biological data generation unit 132, an abnormality generation signal generation unit 133, and a data output unit 134.
  • the data management unit 131 generates account information for each user who uses the measuring device 300. This account information generation is performed when the user who uses the measuring device 300 registers the account information on the user terminal device 200. Therefore, the data management unit 131 controls whether or not the user terminal device 200 of the user can access various DBs in the storage unit 120 for each account.
  • the data management unit 131 stores various data such as measurement data, biometric data, and user support data in a corresponding DB in association with user information. Further, at this time, the data management unit 131 can associate the measurement data with predetermined tag information and store it.
  • FIG. 5 is a schematic diagram showing an example of tag information associated with the measurement data of FIG.
  • the data D1 shown in FIG. 5 is the measurement data of the measuring device 300.
  • the tag T1 is tag information associated with the data D1, and for example, the time information in which the measuring device 300 measures the data D1 or the time information in which the data D1 is transmitted from the measuring device 300 to the user terminal device 200 is time-series. It is stored as data. Alternatively, both the measured time information and the transmitted time information may be associated. For example, in the first line of the tag T1 shown in FIG. 5, "20180620120746144" is stored, but it indicates 12:07:46:144 ms on June 20, 2018. Such time information can be obtained from the communication log. This makes it possible to grasp which time zone the measurement data belongs to.
  • association of measurement data with such tag information is not limited to time information, and physical information or activity information indicating the user's physical condition or activity state may be freely entered and stored as tag information. Have them choose from a given option (for example, in response to the question "How are you feeling now?", Choose one of "1: good, 2: normal, 3: bad", etc.) and make that choice. You may try to remember the answer you gave.
  • the control unit 150 when the control unit 150 generates biometric data, it is possible to generate more accurate biometric data by associating the tag information with the biometric data.
  • the data management unit 131 can sort the data D1 in the time order of the tag T1 as shown in FIG.
  • the reason for this configuration is that the measurement data is acquired in chronological order based on the biometric data of the user, and it is easier to process if the measurement data is arranged in chronological order.
  • the received data may be reversed (the transmitted data transmitted later is received before the transmitted data transmitted earlier) due to a change in the communication status or the like. This is to prevent inconsistency in the measurement data at that time. This makes it possible to prevent inconsistencies in the measured data.
  • the biometric data generation unit 132 performs a predetermined operation on the measurement data stored in the measurement data DB 121 to generate biometric data.
  • This biometric data may be any information as long as it can be calculated from the measurement data, for example, the user's blood pressure information, heartbeat information, blood oxygen level information, maximum oxygen intake information, electrocardiographic information, etc. Breath rate, body temperature information, step count information, stride information, center of gravity position information, posture information, action type information, stress information, exercise amount information, exercise load information, movement distance information, movement speed information, activity amount information, hands or legs, etc. It is data such as operation information of the mounting part of the above, and is calculated from the measurement data by a known method.
  • the biometric data generated by the calculation is stored in the biometric data DB 122.
  • FIG. 6 is a diagram for explaining an example of an electrocardiographic waveform and a pulse wave measured by the measuring device 300 of FIG. 1, and is a diagram for explaining an example of the electrocardiographic waveform and the pulse wave of the user measured by the measuring device 300 and stored in the storage unit 120.
  • the photoelectric volume pulse waveform, the velocity pulse waveform in which the photoelectric volume pulse waveform is first-order differentiated by time, and the acceleration pulse waveform in which the photoelectric volume pulse waveform is second-order differentiated by time are shown.
  • the 6 shows an electrocardiographic waveform, a photoelectric volume pulse waveform, a velocity pulse waveform, and an acceleration pulse waveform in order from the top.
  • the vertical axis shows the intensity of each waveform, and the electrocardiographic waveform and the photoelectric volume pulse waveform are represented by MV indicating the potential.
  • the horizontal axis shows the passage of time, and shows the passage of time from left to right.
  • the electrocardiographic waveform is a waveform showing a periodic change in an electrical signal that causes a human heart to beat.
  • the names of P wave, Q wave, R wave, S wave, and T wave are assigned to the inflection points of the shape, respectively, and indicate one cycle of heartbeat.
  • the P wave represents the atrial contraction
  • the Q wave, the R wave, and the S wave represent the state of ventricular contraction
  • the T wave represents the start of ventricular dilation.
  • the photoelectric volume pulse waveform is a waveform showing changes in blood pressure and volume in the peripheral vascular system accompanying the beating of the human heart.
  • the names of A wave, P wave, V wave, and D wave are assigned to the inflection points of the shape, respectively, and indicate one cycle of the heartbeat.
  • the P wave is the Percussion wave (shock wave) generated by the left ventricular ejection
  • the V wave is the Valley wave (wave due to the overlapping uplift) generated when the aortic valve is closed
  • the D wave Indicates a Dicrotic wave (overlapping wave) which is a reflected vibration wave.
  • the velocity pulse waveform is the first derivative of the photoelectric volume pulse waveform with respect to time.
  • the acceleration pulse waveform is a first-order derivative of the velocity pulse waveform, that is, a second-order derivative of the photoelectric volume pulse waveform.
  • the acceleration pulse waveform has a wave (initial contraction positive wave), b wave (initial contraction negative wave), c wave (mid-contraction re-rise wave), and d wave (contraction) at each peak of the waveform.
  • the names of the late re-descending wave), the e wave (extended early positive wave), and the f wave (extended early negative wave) are assigned.
  • the ratio of the intensity of the b wave to the intensity of the a wave and the ratio of the intensity of the f wave to the intensity of the e wave are parameters indicating the elasticity, that is, the elasticity of the blood vessel, respectively.
  • the main vascular components are vascular endothelium (Endothelium), elastic fibers (Elastin), proteins (Collagen), and smooth muscle (Smooth Muscle). These components have different properties, and Collagen and Elastin have a strong influence on the elasticity of blood vessels at the maximum blood pressure and the minimum blood pressure, respectively.
  • the elasticity that differs depending on the blood pressure value is indicated by the parameters of the ratio of the intensity of the b wave to the intensity of the a wave (b / a) and the ratio of the intensity of the f wave to the intensity of the e wave (f / e). These values also fluctuate depending on the influence of age, gender, and environment variables. Therefore, the values of (b / a) and (f / e) can be calculated as the characteristic information of the acceleration pulse waveform.
  • the time difference between the time Tr at which the R wave is generated and the time Tp at which the P wave is generated is the ventricular systolic pulse wave propagation time PTT_SYS.
  • the time of the difference between the time Tt in which the T wave is generated and the time Td in which the D wave is generated is the ventricular diastolic pulse wave propagation time PTT_DIA. That is, from the R wave time Tr and T wave time Tt of the electrocardiographic waveform, and the T wave time Tp and D wave time Td of the photoelectric volume pulse waveform, the ventricular systolic pulse wave propagation time PTT_SYS and the ventricular diastole period.
  • the pulse wave propagation time PTT_DIA can be calculated.
  • the relationship between the pulse wave velocity and the Young's modulus of the arterial wall has a correlation expressed by a predetermined formula, and the relationship between the Young's modulus and the blood pressure value is also shown by a predetermined formula. It is known to be correlated. Therefore, the maximum blood pressure can be obtained by a predetermined formula of the ventricular systolic pulse wave velocity PTT_SYS, and the minimum blood pressure can be obtained by a predetermined formula of the ventricular diastolic pulse wave propagation time PTT_DIA. This makes it possible to calculate the maximum blood pressure and the minimum blood pressure.
  • Heart rate information which is biological data from measurement data, particularly a resting heart rate, for example, electrocardiographic waveform data measured by a measuring device 300 worn by a user at rest (for example, FIG. 6).
  • Heart rate information can be obtained from the intervals of QRS waves in (electrocardiographic waveform data, etc.).
  • the temperature information which is the biological data from the measurement data
  • the user's skin temperature data measured by the temperature sensor of the measuring device 300 worn by the user can be obtained as the temperature information.
  • a wearing part such as a user's hand, which is biological data
  • measurement data for example, a measuring device from acceleration data and angular velocity data measured by the measuring device 300 worn by the user. It is possible to obtain motion information on how fast and at what angle the site where the 300 is attached (for example, wrist or ankle) is moving.
  • the abnormality generation signal generation unit 133 generates an abnormality generation signal based on biological data such as the above-mentioned blood pressure information, heart rate information, temperature information, and operation information of the wearing site. More specifically, the biometric data constantly calculated by the biometric data generation unit 132 at predetermined intervals is stored in the biometric data DB 122, and the abnormality generation signal generation unit 133 and the past biometric data stored in the biometric data DB 122. When comparing current biometric data (for example, comparison with data from a few minutes ago, comparison with the average value of a predetermined period in the past, comparison with resting time, etc.) and there is a difference of more than a predetermined threshold. Generates an anomaly occurrence signal.
  • biological data such as the above-mentioned blood pressure information, heart rate information, temperature information, and operation information of the wearing site. More specifically, the biometric data constantly calculated by the biometric data generation unit 132 at predetermined intervals is stored in the biometric data DB 122, and the abnormality generation signal
  • the generation of the abnormality generation signal based on the operation information of the mounting site is not limited to this, and for example, after the comparison result has a difference of a predetermined threshold value or more, the user is not operating from the subsequent operation information.
  • An abnormality occurrence signal may be generated when it is determined that the continuation has continued for a predetermined period.
  • an abnormality occurrence signal may be generated when it is determined that an abnormality has occurred in a plurality of biometric data (for example, there are a plurality of biometric data whose comparison results have a difference of a predetermined threshold value or more). ..
  • the generated abnormality occurrence signal is linked to user information such as a medical institution or a close relative, directly from the data output unit 134 of the management server 100 or indirectly via the user terminal device 200 or the measuring device 300, for example. It may be controlled to send a notification indicating an abnormality (for example, a notification via a predetermined application stored in a device such as a PC or a smartphone or a notification using an e-mail address) to the contact.
  • the user terminal device 200 may start a call with the above contact.
  • the user's past biometric data, the current biometric data status, and the current location information may be transmitted together with the notification, or the contact device may be authorized to view the user's biometric data. It may be given. This makes it possible to automatically notify the occurrence of an abnormality even when it is difficult for the user to notify the occurrence of the abnormality.
  • appropriate information is shared especially with the medical institution, it becomes possible to immediately deal with the medical institution when dealing with the user.
  • the generated abnormality generation signal is transmitted to the vehicle management unit 520, for example, in the management server 100, directly from the management server 100, or indirectly via the user terminal device 200 or the measuring device 300.
  • the abnormality occurrence signal or the instruction signal based on the abnormality occurrence signal is recognized, and the vehicle management unit 520 may change the destination of the automatic driving vehicle 400 on which the user rides to a medical institution or the like. More specifically, the destination of the autonomous driving vehicle 400 is based on the position information of the autonomous driving vehicle 400, for example, map information registered in the management server 100 or the vehicle management server 500, registration information of a medical institution in advance, and the like.
  • It may be set to a nearby medical institution by searching, or may be set to a family medical institution associated with user information and registered in the user information DB 123, for example.
  • the above-mentioned notification to the medical institution or the like may be linked to notify the medical institution selected by the change of destination.
  • the generated abnormality generation signal is, for example, in the management server 100, directly from the management server 100, or indirectly via the user terminal device 200 or the measuring device 300, in the vehicle management unit 520.
  • the location information of the medical staff registered in advance in the management server 100 for example, arbitrary address information or medical engagement at a predetermined cycle.
  • the vehicle management unit 520 also recognizes the location information acquired from the user terminal (not shown), and when resetting the movement route to move to the medical institution as described above, the above medical staff
  • the location information point, or any point derived from the location information point and the current location of the auto-driving vehicle 400 (for example, medical staff can board the auto-driving vehicle 400 in the shortest time considering each other's moving speeds). Point, etc.) may be included as a relay point. This allows for more appropriate first aid before arriving at the medical institution.
  • the generated abnormality generation signal is, for example, directly from the data output unit 134 of the management server 100, or indirectly via the user terminal device 200, the measurement device 300, and the vehicle management server 500, and the automated driving vehicle 400.
  • the storage unit 420 which is transmitted to the server and stores, for example, an AED, a drug, an injection drug, or the like, may be unlocked and made available. This makes it possible to smoothly perform first aid and the like even when passengers are on board, for example.
  • the generated abnormality generation signal is, for example, directly from the data output unit 134 of the management server 100, or indirectly via the user terminal device 200, the measurement device 300, and the vehicle management server 500, for the autonomous driving vehicle 400.
  • It may be configured like a cot, for example, the backrest of the seat may automatically fall over, the window may be opened automatically, the lamp provided outside the vehicle may be automatically turned on, or the vehicle may be automatically turned on.
  • the equipment mounted on the self-driving vehicle may automatically operate appropriately in connection with the occurrence of an abnormality, such as the horn or the siren provided outside the vehicle automatically operating.
  • the data output unit 134 outputs biological data, abnormality occurrence signals, various notifications, etc. to each device such as the user terminal device 200 and the vehicle management server 500.
  • the output data may be displayed on the screen via, for example, a dedicated application so that the user can easily confirm the data.
  • the input / output unit 140 is an information input device such as a keyboard and a mouse, and an output device such as a display.
  • FIG. 7 is a flowchart showing an example of processing of the information processing system 1 of FIG.
  • the data management unit 131 As the process of step S101, the data management unit 131 generates account information for each user who uses the measuring device 300, and acquires predetermined user information from the user terminal device 200 or the like. The registered user information is stored in the user information DB 123 by the data management unit 131.
  • the process of step S101 may be performed as a pre-process for the user to use the measuring device 300, or may be performed when the user uses the measuring device 300 for the first time.
  • the measurement data is transmitted from the measuring device 300 to the management server 100 via the user terminal device 200, and is received via the communication unit 110.
  • the data management unit 131 stores the measurement data associated with the user information in the measurement data DB 121 of the storage unit 120.
  • the measurement data is read by the biological data generation unit 132, and the biological data is generated by a predetermined calculation or the like.
  • the generated biometric data is stored in the biometric data DB 122 by the data management unit 131.
  • step S104 the biometric data is read by the abnormality generation signal generation unit 133, the past biometric data and the current biometric data are compared at a predetermined cycle, and it is determined whether or not the abnormality generation signal is generated. For example, if there is no difference of the predetermined threshold value or more, the process returns to step S102, and if there is a difference of the predetermined threshold value or more, the process proceeds to the next step 105.
  • step S105 at least one of the biometric data, the abnormality occurrence signal, and the notification is output to the user terminal device 200, the vehicle management unit 520, and the autonomous driving vehicle 400 by the data output unit 134.
  • the information processing system assumes that the user is in the autonomous driving vehicle 400, but it is also useful when the user is outside the autonomous driving vehicle 400. That is, when the above-mentioned abnormality occurrence signal is generated, the user's position information is acquired by the GPS or the like provided in the user terminal device 200 or the measuring device 300, and the vehicle management is performed by combining the position information and the abnormality occurrence signal. By recognizing by the unit 520, the self-driving vehicle 400 can be directed to the place where the user who has the abnormality is present.
  • the autonomous driving vehicle 400 may use the autonomous driving vehicle 400 to transport the user to a medical institution, or the user may take out necessary equipment or the like from the storage unit 420 provided in the autonomous driving vehicle 400 and use it. It is possible to respond quickly to abnormalities in.
  • the information processing system can detect a change in the user's biometric information based on the measurement data from the measuring device worn by the user, a sudden change in the user's biometric information is possible.
  • an abnormality such as the above occurs, it is possible to take prompt action by notifying the outside of the automatically driven vehicle, transporting the vehicle to a hospital by the automatically driven vehicle, or directing the automatically driven vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Human Computer Interaction (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Mathematical Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

[Problem] To provide an information processing system, an information processing method, and a program in which an abnormality occurrence signal generation unit issues a notification through an abnormality occurrence signal indicating, in particular, an abnormality in a user on the basis of measurement data about the user. [Solution] An information processing system 1 receives measurement data over a network from a measurement device worn by a user and generates biometric data and an abnormality occurrence signal from the measurement data, and comprises a data management unit that causes the measurement data and the biometric data to be stored in association with user information related to the user, a biometric data generation unit that executes predetermined computations on the measurement data and generates the biometric data, an abnormality occurrence signal generation unit that generates the abnormality occurrence signal for indicating an abnormality occurring to the user on the basis of the biometric data, and a vehicle management unit that controls a self-driving vehicle on the basis of the abnormality occurrence signal.

Description

情報処理システム、情報処理方法及びプログラムInformation processing system, information processing method and program
 本開示は、情報処理システム、情報処理方法及びプログラムに関する。 This disclosure relates to information processing systems, information processing methods and programs.
 測定装置を利用してユーザの生体データを連続的に取得し、その変化から病気の早期発見や病状変化の検出を行うことは、健康管理を行う上で有効である。そのためには、取得した複数の生体データから様々な健康状態を把握する必要がある。 It is effective for health management to continuously acquire the biometric data of the user using a measuring device and to detect the disease at an early stage and detect the change in the medical condition from the change. For that purpose, it is necessary to grasp various health conditions from a plurality of acquired biometric data.
 例えば、ユーザの心電波形のデータと脈波形のデータとを測定装置から取得し、血圧情報を生成する血圧情報測定システムが知られている(例えば、特許文献1参照。)。また、例えば、ユーザの測定データから生体情報データへ演算を行うための因果関係である数理モデルを生成し、数理モデルを利用可能に提供する開発支援サーバも知られている(例えば、特許文献2参照。)。 For example, a blood pressure information measuring system that acquires a user's electrocardiographic waveform data and pulse waveform data from a measuring device and generates blood pressure information is known (see, for example, Patent Document 1). Further, for example, a development support server that generates a mathematical model that is a causal relationship for performing an operation from a user's measurement data to biometric information data and provides the mathematical model so that it can be used is also known (for example, Patent Document 2). reference.).
特許第6202510号公報Japanese Patent No. 6202510 特許第6257015号公報Japanese Patent No. 6257015 特開2017-197070号公報Japanese Unexamined Patent Publication No. 2017-197070
 ところで、近年、自動運転車両を利用したサービスの実用化に向けた取り組みが進んでいる。ユーザ個人が所有する自動運転車両だけではなく、自動運転車両を配車するサービスについても開発が行われている(例えば、特許文献3参照。)。 By the way, in recent years, efforts have been made toward the practical application of services using autonomous vehicles. Not only self-driving vehicles owned by individual users but also services for allocating self-driving vehicles are being developed (see, for example, Patent Document 3).
 しかしながら、いずれの場合にはおいても、自動運転車両はユーザを含む運転手が運転することなく目的地まで運行するので、車内で不測の事態が発生した際にその状況を判断する人員がいないことがあり得る。そのため、例えば乗車しているユーザが意識不明となった場合には、もし自動運転車両でない場合には車両の挙動から異常を発見できるものの、自動運転車両の場合には整然と車両が運行を継続するため、異常の発見が遅れる可能性がある。また、カメラやマイクにより異常を発見することも考えられるが、異常の内容(例えば、ユーザの生体情報に関する急激な変化など)によっては、これらのインタフェースでは十分ではない場合があり得る。 However, in any case, since the self-driving vehicle operates to the destination without being driven by the driver including the user, there is no person to judge the situation when an unexpected situation occurs in the vehicle. There can be. Therefore, for example, if the user on board becomes unconscious, an abnormality can be found from the behavior of the vehicle if it is not an autonomous driving vehicle, but in the case of an autonomous driving vehicle, the vehicle continues to operate in an orderly manner. Therefore, the discovery of anomalies may be delayed. It is also possible to detect anomalies with a camera or microphone, but these interfaces may not be sufficient depending on the content of the anomaly (for example, a sudden change in the user's biometric information).
 また、上述の自動運転車両は、行き先を決定すると地図情報等から運行経路を算出し、当該運行経路に沿って自動的に運行するものであるが、自動運転車両に乗っているユーザや同乗者に異常が発生したとしても、医療機関等に行き先を変更できない場合が想定され、適切かつ迅速な処置を行うことが難しい場合があり得る。 In addition, the above-mentioned autonomous driving vehicle calculates an operation route from map information and the like when the destination is determined, and automatically operates along the operation route. However, users and passengers in the autonomous driving vehicle Even if an abnormality occurs, it is assumed that the destination cannot be changed to a medical institution or the like, and it may be difficult to take appropriate and prompt measures.
 そこで、本開示では、ユーザが装着する測定装置から取得した測定データに基づき生成された異常発生信号に基づき、自動運転車両を制御する情報処理システム、情報処理方法及びプログラムについて説明する。 Therefore, in the present disclosure, an information processing system, an information processing method, and a program for controlling an autonomous driving vehicle based on an abnormality occurrence signal generated based on measurement data acquired from a measurement device worn by a user will be described.
 本開示の一態様における情報処理システムは、ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データから生体データ及び異常発生信号の生成を行う情報処理システムであって、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるデータ管理部と、前記測定データに対して所定の演算を実行し、前記生体データを生成する生体データ生成部と、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成する異常発生信号生成部と、前記異常発生信号に基づいて、自動運転車両を制御する車両管理部と、を備える。 The information processing system according to one aspect of the present disclosure is an information processing system that receives measurement data from a measuring device worn by a user via a network and generates biometric data and an abnormality generation signal from the measured data. A data management unit that stores the measurement data and the biometric data in association with user information about the user, a biometric data generation unit that executes a predetermined operation on the measurement data and generates the biometric data, and the biometric data. Based on the above, an abnormality generation signal generation unit for generating an abnormality generation signal for indicating the abnormality occurrence of the user, and a vehicle management unit for controlling an automatically driving vehicle based on the abnormality generation signal are provided.
 本開示の一態様における情報処理方法は、ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データから生体データ及び異常発生信号の生成を行う情報処理方法であって、データ管理部により、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるステップと、生体データ生成部により、前記測定データに対して所定の演算を実行し、前記生体データを生成するステップと、異常発生信号生成部により、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成するステップと、車両管理部により、前記異常発生信号に基づいて、自動運転車両を制御するステップと、を備える。 The information processing method according to one aspect of the present disclosure is an information processing method that receives measurement data from a measuring device worn by a user via a network and generates biometric data and an abnormality generation signal from the measured data. The management unit performs a step of storing the measurement data and the biometric data in association with the user information about the user, and the biometric data generation unit executes a predetermined operation on the measurement data to generate the biometric data. The step, the step of generating the abnormality generation signal for indicating the abnormality occurrence of the user based on the biometric data by the abnormality generation signal generation unit, and the automatic driving vehicle based on the abnormality generation signal by the vehicle management unit. With steps to control.
 また、本開示の一態様におけるプログラムは、ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データから生体データ及び異常発生信号の生成を行う情報処理方法をコンピュータにおいて実行する情報処理プログラムであって、前記情報処理方法は、データ管理部により、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるステップと、生体データ生成部により、前記測定データに対して所定の演算を実行し、前記生体データを生成するステップと、異常発生信号生成部により、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成するステップと、車両管理部により、前記異常発生信号に基づいて、自動運転車両を制御するステップと、を実行する。 Further, the program according to one aspect of the present disclosure receives measurement data from a measurement device worn by a user via a network, and executes an information processing method in a computer that generates biometric data and an abnormality generation signal from the measurement data. In the information processing program, the information processing method includes a step of storing the measurement data and the biometric data in association with user information about the user by the data management unit, and the biometric data generation unit for the measurement data. A step of generating the biometric data by executing a predetermined calculation, a step of generating an anomaly generation signal for indicating the user's abnormality occurrence based on the biometric data by the abnormality generation signal generation unit, and vehicle management. The unit executes a step of controlling an automatically driving vehicle based on the abnormality occurrence signal.
 本開示によれば、本実施形態に係る情報処理システムは、ユーザが装着する測定装置からの測定データに基づき、特にユーザの生体情報の変化を検知可能であるため、ユーザの生体情報の急激な変化などの異常が発生した場合には、外部に報知したり、病院に搬送したりと、迅速な対処が可能となる。 According to the present disclosure, since the information processing system according to the present embodiment can detect a change in the user's biometric information based on the measurement data from the measuring device worn by the user, the user's biometric information is abrupt. When an abnormality such as a change occurs, it can be promptly dealt with by notifying the outside or transporting it to a hospital.
本開示の一実施形態に係る情報処理システムを示すブロック構成図である。It is a block block diagram which shows the information processing system which concerns on one Embodiment of this disclosure. 本開示の一実施形態に係る情報処理システムを示す他のブロック構成図である。It is another block block diagram which shows the information processing system which concerns on one Embodiment of this disclosure. 図1または図2の管理サーバ100のハードウェア構成を示す図である。It is a figure which shows the hardware configuration of the management server 100 of FIG. 1 or FIG. 図3の記憶部120および制御部130の機能を例示したブロック図である。It is a block diagram illustrating the function of the storage unit 120 and the control unit 130 of FIG. 図4の測定データに関連付けされるタグ情報の例を示す模式図である。It is a schematic diagram which shows the example of the tag information associated with the measurement data of FIG. 図1または図2の測定装置300で測定される心電波形及び脈波形の例について説明するための図である。It is a figure for demonstrating the example of the electrocardiographic waveform and the pulse waveform measured by the measuring apparatus 300 of FIG. 1 or FIG. 図1または図2の情報処理システム1の処理の例を示すフローチャートである。It is a flowchart which shows the example of the process of the information processing system 1 of FIG.
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態によるシステムは、以下のような構成を備える。 The contents of the embodiments of the present invention will be listed and described. The system according to the embodiment of the present invention has the following configurations.
[項目1]
 ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データから生体データ及び異常発生信号の生成を行う情報処理システムであって、
 前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるデータ管理部と、
 前記測定データに対して所定の演算を実行し、前記生体データを生成する生体データ生成部と、
 前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成する異常発生信号生成部と、
 前記異常発生信号に基づいて、自動運転車両を制御する車両管理部と、を備える、
 ことを特徴とする情報処理システム。
[項目2]
 前記測定データは、前記ユーザの心電、脈波、温度、加速度、角速度のうち少なくとも一つを含むデータである、
 ことを特徴とする項目1に記載の情報処理システム。
[項目3]
 前記生体データは、前記ユーザの血圧情報、心拍情報、血中酸素量情報、心電情報、呼吸数、体温情報、歩数情報、歩行速度情報、歩幅情報、重心の位置情報、姿勢情報、行動種別情報、ストレス情報、運動量情報、運動負荷情報、移動距離情報、活動量情報のうち少なくとも一つを含むデータである、
 ことを特徴とする項目1または項目2のいずれか1項に記載の情報処理システム。
[項目4]
 前記異常発生信号生成部は、血圧情報に関して異常を検出した場合に、前記異常発生信号を生成する、
 ことを特徴とする項目1ないし項目3のいずれか1項に記載の情報処理システム。
[項目5]
 前記異常発生信号生成部は、心拍情報に関して異常を検出した場合に、前記異常発生信号を生成する、
 ことを特徴とする項目1ないし項目4のいずれか1項に記載の情報処理システム。
[項目6]
 前記異常発生信号生成部は、温度情報に関して異常を検出した場合に、前記異常発生信号を生成する、
 ことを特徴とする項目1ないし項目5のいずれか1項に記載の情報処理システム。
[項目7]
 前記異常発生信号生成部は、前記測定装置を装着した部位の動作情報に関して異常を検出した場合に、前記異常発生信号を生成する、
 ことを特徴とする項目1ないし項目6のいずれか1項に記載の情報処理システム。
[項目8]
 前記車両管理部は、前記異常発生信号に基づき、医療機関へ前記自動運転車両を運行させる、
 ことを特徴とする項目1ないし項目7のいずれか1項に記載の情報処理システム。
[項目9]
 前記車両管理部は、前記異常発生信号及び前記ユーザの位置情報に基づき、前記ユーザの位置へ前記自動運転車両を運行させる、
 ことを特徴とする項目1ないし項目7のいずれか1項に記載の情報処理システム。
[項目10]
 前記車両管理部は、前記異常発生信号及び医療従事者の位置情報に基づき、前記医療従事者の位置へ前記自動運転車両を運行させる、
 ことを特徴とする項目1ないし項目7のいずれか1項に記載の情報処理システム。
[項目11]
 前記情報処理システムは、
 さらに、少なくとも前記異常発生信号生成部を有する管理サーバを備え、
 前記管理サーバは、前記異常発生信号の生成に基づき、前記ユーザに関連する連絡先へ異常の発生を通知する、
 ことを特徴とする項目1ないし項目10のいずれか1項に記載の情報処理システム。
[項目12]
 ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データから生体データ及び異常発生信号の生成を行う情報処理方法であって、
 データ管理部により、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるステップと、
 生体データ生成部により、前記測定データに対して所定の演算を実行し、前記生体データを生成するステップと、
 異常発生信号生成部により、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成するステップと、
 車両管理部により、前記異常発生信号に基づいて、自動運転車両を制御するステップと、を備える、
 ことを特徴とする情報処理方法。
[項目13]
 ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データから生体データ及び異常発生信号の生成を行う情報処理方法をコンピュータにおいて実行する情報処理プログラムであって、
 前記情報処理方法は、
 データ管理部により、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるステップと、
 生体データ生成部により、前記測定データに対して所定の演算を実行し、前記生体データを生成するステップと、
 異常発生信号生成部により、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成するステップと、
 車両管理部により、前記異常発生信号に基づいて、自動運転車両を制御するステップと、
 を実行する、
 ことを特徴とする情報処理プログラム。
[Item 1]
An information processing system that receives measurement data from a measurement device worn by a user via a network and generates biometric data and an abnormality occurrence signal from the measurement data.
A data management unit that stores the measurement data and the biometric data in association with the user information about the user.
A biometric data generation unit that executes a predetermined operation on the measurement data and generates the biometric data.
An abnormality generation signal generation unit that generates an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biometric data.
A vehicle management unit that controls an autonomously driven vehicle based on the abnormality occurrence signal is provided.
An information processing system characterized by this.
[Item 2]
The measurement data is data including at least one of the electrocardiogram, pulse wave, temperature, acceleration, and angular velocity of the user.
The information processing system according to item 1, wherein the information processing system is characterized by the above.
[Item 3]
The biometric data includes blood pressure information, heartbeat information, blood oxygen level information, electrocardiographic information, respiratory rate, body temperature information, step count information, walking speed information, stride information, center of gravity position information, posture information, and behavior type. Data including at least one of information, stress information, exercise amount information, exercise load information, travel distance information, and activity amount information.
The information processing system according to any one of items 1 and 2, wherein the information processing system is characterized by the above.
[Item 4]
When the abnormality generation signal generation unit detects an abnormality regarding blood pressure information, the abnormality generation signal generation unit generates the abnormality generation signal.
The information processing system according to any one of items 1 to 3, wherein the information processing system is characterized by the above.
[Item 5]
The abnormality generation signal generation unit generates the abnormality generation signal when an abnormality is detected in the heartbeat information.
The information processing system according to any one of items 1 to 4, wherein the information processing system is characterized by the above.
[Item 6]
The abnormality generation signal generation unit generates the abnormality generation signal when an abnormality is detected with respect to the temperature information.
The information processing system according to any one of items 1 to 5, wherein the information processing system is characterized by the above.
[Item 7]
The abnormality generation signal generation unit generates the abnormality generation signal when an abnormality is detected in the operation information of the portion to which the measuring device is attached.
The information processing system according to any one of items 1 to 6, wherein the information processing system is characterized by the above.
[Item 8]
The vehicle management unit operates the self-driving vehicle to a medical institution based on the abnormality occurrence signal.
The information processing system according to any one of items 1 to 7, wherein the information processing system is characterized by the above.
[Item 9]
The vehicle management unit operates the self-driving vehicle to the user's position based on the abnormality occurrence signal and the user's position information.
The information processing system according to any one of items 1 to 7, wherein the information processing system is characterized by the above.
[Item 10]
The vehicle management unit operates the self-driving vehicle to the position of the medical worker based on the abnormality occurrence signal and the position information of the medical worker.
The information processing system according to any one of items 1 to 7, wherein the information processing system is characterized by the above.
[Item 11]
The information processing system is
Further, a management server having at least the abnormality generation signal generation unit is provided.
The management server notifies the contact related to the user of the occurrence of the abnormality based on the generation of the abnormality occurrence signal.
The information processing system according to any one of items 1 to 10, wherein the information processing system is characterized by the above.
[Item 12]
It is an information processing method that receives measurement data from a measuring device worn by a user via a network and generates biometric data and an abnormality occurrence signal from the measured data.
A step of storing the measurement data and the biometric data in association with the user information about the user by the data management unit.
A step of executing a predetermined operation on the measurement data by the biometric data generation unit to generate the biometric data, and a step of generating the biometric data.
A step of generating an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biological data by the abnormality generation signal generation unit, and a step of generating the abnormality generation signal.
The vehicle management unit comprises a step of controlling an autonomously driven vehicle based on the abnormality occurrence signal.
An information processing method characterized by that.
[Item 13]
An information processing program that receives measurement data from a measurement device worn by a user via a network and executes an information processing method on a computer to generate biometric data and an abnormality occurrence signal from the measurement data.
The information processing method is
A step of storing the measurement data and the biometric data in association with the user information about the user by the data management unit.
A step of executing a predetermined operation on the measurement data by the biometric data generation unit to generate the biometric data, and a step of generating the biometric data.
A step of generating an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biological data by the abnormality generation signal generation unit, and a step of generating the abnormality generation signal.
A step of controlling an autonomous vehicle based on the abnormality occurrence signal by the vehicle management unit,
To execute,
An information processing program characterized by this.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本開示の内容を不当に限定するものではない。また、実施形態に示される構成要素のすべてが、本開示の必須の構成要素であるとは限らない。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The embodiments described below do not unreasonably limit the contents of the present disclosure described in the claims. Also, not all of the components shown in the embodiments are essential components of the present disclosure. In addition, the features shown in each embodiment can be applied to other embodiments as long as they do not contradict each other.
(実施形態1)
 <構成>
 図1は、本開示の実施形態1に係る情報処理システム1を示すブロック構成図である。この情報処理システム1は、例えば、ネットワークNWを介して測定装置300からユーザの測定データを管理サーバ100にて受信し、当該測定データに対して所定の演算を行うことで生体データを生成し、当該生体データに基づき異常発生信号を生成し、当該異常発生信号により自動運転車両400を制御する情報処理システムである。
(Embodiment 1)
<Structure>
FIG. 1 is a block configuration diagram showing an information processing system 1 according to the first embodiment of the present disclosure. The information processing system 1 receives, for example, the user's measurement data from the measurement device 300 via the network NW at the management server 100, and generates biometric data by performing a predetermined calculation on the measurement data. It is an information processing system that generates an abnormality occurrence signal based on the biometric data and controls the automatically driven vehicle 400 by the abnormality occurrence signal.
 情報処理システム1は、管理サーバ100と、ユーザ端末装置200と、測定装置300と、自動運転車両400と、ネットワークNWと、を有している。管理サーバ100と、ユーザ端末装置200と、自動運転車両400とは、ネットワークNWを介して接続される。ネットワークNWは、インターネット、イントラネット、ブロックチェーンネットワーク、無線LAN(Local Area Network)やWAN(Wide Area Network)等により構成される。 The information processing system 1 has a management server 100, a user terminal device 200, a measuring device 300, an autonomous driving vehicle 400, and a network NW. The management server 100, the user terminal device 200, and the autonomous driving vehicle 400 are connected via the network NW. The network NW is composed of the Internet, an intranet, a blockchain network, a wireless LAN (Local Area Network), a WAN (Wide Area Network), and the like.
 管理サーバ100は、例えば、ネットワークを介して測定装置300からユーザの測定データを、ユーザ端末装置200を経由して受信して測定データから生体データへ演算を行う装置であり、例えば各種Webサービスを提供するサーバ装置により構成されている。 The management server 100 is, for example, a device that receives user's measurement data from the measurement device 300 via a network via the user terminal device 200 and calculates the measurement data into biometric data, for example, various Web services. It consists of the server equipment provided.
 ユーザ端末装置200は、ユーザが所持する、例えばパーソナルコンピュータやタブレット端末、スマートフォン、スマートウォッチ、携帯電話、PHS、PDA等の情報処理装置であり、例えば、管理サーバ100で演算を行った生体データを波形グラフ等により表示させるなどに利用される。ユーザ端末装置200には、予めユーザの識別番号、生年月日、性別、身長、体重等のユーザ情報が登録されており、生年月日から算出した年齢等も含めたユーザ情報を測定データに関連付けてネットワークNWを介して管理サーバ100へ送信する。 The user terminal device 200 is an information processing device possessed by the user, such as a personal computer, a tablet terminal, a smartphone, a smart watch, a mobile phone, a PHS, or a PDA. It is used for displaying on a waveform graph or the like. User information such as a user's identification number, date of birth, gender, height, and weight is registered in the user terminal device 200 in advance, and user information including the age calculated from the date of birth is associated with the measurement data. Is transmitted to the management server 100 via the network NW.
 測定装置300は、ユーザの生体データを測定する装置であり、ユーザの手首や腕等の身体に装着して利用される、例えばウェアラブル装置である。この測定装置300は、例えばユーザの心電、脈波、温度(体温)、加速度、角速度のデータを測定するための複数種類の装置である。 The measuring device 300 is a device that measures the biometric data of the user, and is, for example, a wearable device that is used by being worn on the body such as the wrist or arm of the user. The measuring device 300 is, for example, a plurality of types of devices for measuring data of a user's electrocardiogram, pulse wave, temperature (body temperature), acceleration, and angular velocity.
 測定装置300の具体的な構成の例としては、2つの電極を皮膚に接触させ、検出電位の差の時間変化より心電を心電波形のデータとして取得する装置で構成しても良く、心電波形は、ガルバニック皮膚反応により取得されたデータでも良い。また、緑、赤、赤外の発光を行うLEDから各光を皮膚に照射し、フォトダイオードで受光した光の強度の時間変化により、ユーザの心臓の心拍により生ずる血管の容積変化により脈波を脈波形のデータとして取得する装置で構成しても良く、この方式で検出を行うことができる脈波形は光電式容積脈波形である。また、ユーザの皮膚に接触させる温度センサによりユーザの皮膚温度をデータとして取得する装置で構成しても良い。また、直交するXYZ軸それぞれの変異状態を検出する3軸加速度センサにより構成しても良く、ユーザの動作を加速度データとして取得し、例えば測定装置300がユーザの手首や腕等に装着されている場合、測定装置300は、手首や腕等の振りと、全身の動きが合成された加速度として加速度データの取得をする。さらに、直行するXYZ軸それぞれにおける回転角速度を検出するジャイロセンサ(角速度センサ)により構成しても良く、ユーザの動作を角速度データとして取得し、例えば測定装置300がユーザの手首や腕等に装着されている場合、測定装置300は、手首や腕等の回転と、全身の動きが合成された角速度として角速度データの取得をする。 As an example of the specific configuration of the measuring device 300, a device may be configured in which two electrodes are brought into contact with the skin and the electrocardiogram is acquired as electrocardiographic waveform data from the time change of the difference in the detected potential. The radio wave type may be data acquired by a galvanic skin reaction. In addition, each light is radiated to the skin from LEDs that emit green, red, and infrared light, and the time change in the intensity of the light received by the photodiode causes a pulse wave due to the change in the volume of the blood vessel caused by the heartbeat of the user's heart. It may be configured by a device that acquires pulse waveform data, and the pulse waveform that can be detected by this method is a photoelectric volume pulse waveform. Further, the device may be configured to acquire the user's skin temperature as data by a temperature sensor in contact with the user's skin. Further, it may be configured by a 3-axis acceleration sensor that detects the variation state of each of the orthogonal XYZ axes, and the user's motion is acquired as acceleration data, and for example, the measuring device 300 is attached to the user's wrist, arm, or the like. In this case, the measuring device 300 acquires acceleration data as an acceleration in which the swing of the wrist, arm, or the like and the movement of the whole body are combined. Further, it may be configured by a gyro sensor (angular velocity sensor) that detects the rotational angular velocity in each of the orthogonal XYZ axes, and the user's motion is acquired as angular velocity data, for example, the measuring device 300 is attached to the user's wrist, arm, or the like. If so, the measuring device 300 acquires the angular velocity data as the angular velocity in which the rotation of the wrist, the arm, or the like and the movement of the whole body are combined.
 ユーザ端末装置200と測定装置300との間は、Bluetooth(登録商標)、近距離無線通信(Near Field radio Communication=NFC)、Afero(登録商標)、Zigbee(登録商標)、Z-Wave(登録商標)、又は無線LAN等を用いて接続されている。なお、このような無線接続の代わりに有線で接続を行ってもよい。また、ユーザ端末装置200と測定装置300とは一体の機器であってもよく、例えば測定装置300にSIMを搭載するなどして通信機能を持たせて管理サーバ100と直接通信可能に構成してもよい。 Between the user terminal device 200 and the measuring device 300, Bluetooth (registered trademark), short-range wireless communication (Near Field radio Communication = NFS), Afero (registered trademark), Zigbee (registered trademark), Z-Wave (registered trademark). ) Or is connected using a wireless LAN or the like. In addition, instead of such a wireless connection, a wired connection may be made. Further, the user terminal device 200 and the measuring device 300 may be an integrated device. For example, the measuring device 300 may be provided with a communication function so as to be able to directly communicate with the management server 100. May be good.
 ユーザ端末装置200は、1または複数台あり、測定装置300を利用するユーザ数分ネットワークNWに接続されている。測定装置300は、1または複数台あり、1人のユーザが利用する台数分のユーザ端末装置200に接続されている。1人のユーザが複数の測定装置300を利用している場合は、1つのユーザ端末装置200に複数の測定装置300が接続されている。 There are one or more user terminal devices 200, and they are connected to the network NW for the number of users who use the measuring device 300. There are one or a plurality of measuring devices 300, and they are connected to the number of user terminal devices 200 used by one user. When one user uses a plurality of measuring devices 300, the plurality of measuring devices 300 are connected to one user terminal device 200.
 自動運転車両400は、既知の構成であってよく、例えば、管理サーバ100によって管理されてもよいが、図2に例示されるように、自動運転車両400を管理する車両管理サーバ500を独立して備え、管理サーバ100とネットワークNWを介して連携するような構成であると管理主体を分けることが可能であり望ましい。自動運転車両400の制御についても既知の方法であってよく、例えば、車両管理部520を備え、サーバにおいて自動運転車両400が有するGPS情報を取得することにより各車両の位置情報を認識するとともに、サーバから指示している経路情報を管理する。また、当該車両管理部520の機能の一部または全部は、図1または図2に示される管理サーバ100において設けられていてもよい。 The autonomous driving vehicle 400 may have a known configuration and may be managed by the management server 100, for example, but as illustrated in FIG. 2, the vehicle management server 500 that manages the autonomous driving vehicle 400 is independent. It is desirable that the management entity can be separated if the configuration is such that the management server 100 and the management server 100 are linked via the network NW. The control of the autonomous driving vehicle 400 may also be a known method. For example, the vehicle management unit 520 is provided, and the server acquires the GPS information of the autonomous driving vehicle 400 to recognize the position information of each vehicle and recognizes the position information of each vehicle. Manage the route information instructed by the server. Further, a part or all of the functions of the vehicle management unit 520 may be provided in the management server 100 shown in FIG. 1 or FIG.
一方、自動運転車両400においては、地図情報及び位置情報、行き先までの経路に関する情報などに応じた既知の運転制御が行われ、さらに自動運転車両400が有するカメラ等のセンサに基づいて自らの周辺状況に応じた運転制御が行われる。 On the other hand, in the self-driving vehicle 400, known driving control is performed according to map information, position information, information on the route to the destination, etc., and further, the surroundings of the self-driving vehicle 400 are based on sensors such as cameras possessed by the self-driving vehicle 400. Operation control is performed according to the situation.
 自動運転車両400は、上述のとおり既知の構成であってよく、図示しない制御部や記憶部を有して運転制御される。また、自動運転車両400は、例えばAEDや医薬品、注射薬などの医療機器または包帯などの応急処置品、医療機関への直通の電話などが格納された格納部420を備えてもよい。格納部420は、例えば電子錠を有する扉が設けられており、管理サーバ100やユーザ端末装置200、測定装置300、自動運転車両400、車両管理サーバ500などからの異常発生信号、または、異常発生信号に基づく指示信号により解錠し、格納された物を利用できるようにしてもよい。 The autonomous driving vehicle 400 may have a known configuration as described above, and is controlled by having a control unit and a storage unit (not shown). Further, the self-driving vehicle 400 may include a storage unit 420 in which, for example, a medical device such as an AED, a drug, an injection, a first aid item such as a bandage, a direct telephone call to a medical institution, or the like is stored. The storage unit 420 is provided with, for example, a door having an electronic lock, and an abnormality occurrence signal or an abnormality occurrence from a management server 100, a user terminal device 200, a measuring device 300, an automatic driving vehicle 400, a vehicle management server 500, or the like. It may be unlocked by an instruction signal based on the signal so that the stored object can be used.
<管理サーバ100>
 図3は、管理サーバ100のハードウェア構成を示す図である。図4は、記憶部120および制御部130の機能を例示したブロック図である。なお、図示された構成は一例であり、これ以外の構成を有していてもよい。
<Management server 100>
FIG. 3 is a diagram showing a hardware configuration of the management server 100. FIG. 4 is a block diagram illustrating the functions of the storage unit 120 and the control unit 130. The configuration shown in the figure is an example, and may have other configurations.
 管理サーバ100は、通信部110と、記憶部120と、制御部130と、入出力部140とを備える。これらの機能部は、管理サーバ100用の所定のプログラムを実行することにより実現される。 The management server 100 includes a communication unit 110, a storage unit 120, a control unit 130, and an input / output unit 140. These functional units are realized by executing a predetermined program for the management server 100.
 通信部110は、ユーザ端末装置200と通信を行うための通信インタフェースであり、例えばTCP/IP(Transmission Control Protocol/Internet Protocol)等の通信規約により通信が行われる。 The communication unit 110 is a communication interface for communicating with the user terminal device 200, and communication is performed according to a communication protocol such as TCP / IP (Transmission Control Protocol / Internet Protocol).
 記憶部120は、各種制御処理や制御部130内の各機能を実行するためのプログラム、入力データ等を記憶するものであり、RAM(Random Access Memory)、ROM(Read Only Memory)等から構成される。また、図4に示されるように、記憶部120は、測定装置300による測定データをユーザ情報と関連付けて記憶する測定データDB121と、測定データから演算されて生成される生体データをユーザ情報と関連付けて記憶する生体データDB122と、ユーザ識別番号を含むユーザ情報を記憶するユーザ情報DB123と、を記憶する。また、ユーザ情報は、データ管理部131により生成されたアカウント情報を含み、ユーザ情報DB123は、アカウント情報が他のユーザ情報と関連付けられて記憶するようにしてもよい。さらに、記憶部120は、ユーザ端末装置200と通信を行ったデータを一時的に記憶する。なお、DBのデータ構造は、これに限られるものではなく、上述のDBの一部をユーザ端末装置200または測定装置300に記憶するようにしてもよい。 The storage unit 120 stores programs for executing various control processes and functions in the control unit 130, input data, and the like, and is composed of a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), and the like. To. Further, as shown in FIG. 4, the storage unit 120 associates the measurement data DB 121, which stores the measurement data by the measuring device 300 with the user information, and the biometric data calculated from the measurement data with the user information. The biometric data DB 122 to be stored and the user information DB 123 to store the user information including the user identification number are stored. Further, the user information includes the account information generated by the data management unit 131, and the user information DB 123 may store the account information in association with other user information. Further, the storage unit 120 temporarily stores the data that has communicated with the user terminal device 200. The data structure of the DB is not limited to this, and a part of the above-mentioned DB may be stored in the user terminal device 200 or the measuring device 300.
 制御部130は、管理サーバ100の全体の動作を制御するものであり、CPU(Central Processing Unit)等から構成される。また、図4に示されるように、制御部130は、データ管理部131、生体データ生成部132、異常発生信号生成部133、データ出力部134といった機能部を含む。 The control unit 130 controls the overall operation of the management server 100, and is composed of a CPU (Central Processing Unit) and the like. Further, as shown in FIG. 4, the control unit 130 includes functional units such as a data management unit 131, a biological data generation unit 132, an abnormality generation signal generation unit 133, and a data output unit 134.
 データ管理部131は、測定装置300を利用するユーザごとに、アカウント情報を生成する。このアカウント情報生成は、測定装置300を利用するユーザがユーザ端末装置200でアカウント情報を登録すると行われる。そのため、データ管理部131は、ユーザのユーザ端末装置200に対してアカウントごとに記憶部120内の各種DBへのアクセスの可否の制御を行う。データ管理部131は、測定データや生体データ、ユーザ支援データ等の各種データを対応するDBにユーザ情報に関連付けて記憶する。また、このとき、データ管理部131は、測定データに所定のタグ情報の関連付けを行って記憶させることが可能である。 The data management unit 131 generates account information for each user who uses the measuring device 300. This account information generation is performed when the user who uses the measuring device 300 registers the account information on the user terminal device 200. Therefore, the data management unit 131 controls whether or not the user terminal device 200 of the user can access various DBs in the storage unit 120 for each account. The data management unit 131 stores various data such as measurement data, biometric data, and user support data in a corresponding DB in association with user information. Further, at this time, the data management unit 131 can associate the measurement data with predetermined tag information and store it.
 図5は、図4の測定データに関連付けされるタグ情報の例を示す模式図である。図5に示すデータD1は、測定装置300の測定データである。タグT1は、データD1に関連付けされたタグ情報であり、例えば、測定装置300がデータD1を測定した時刻情報、またはデータD1が測定装置300からユーザ端末装置200へ送信された時刻情報が時系列データとして記憶される。もしくは、測定した時刻情報と送信された時刻情報との両方について関連付けを行っても良い。例えば、図5に示すタグT1の1行目では、「20180620120746144」が格納されているが、2018年06月20日12時07分46秒144ミリ秒を示している。このような時刻情報は通信ログより取得可能である。これにより、測定データがどの時間帯のものか把握することが可能である。 FIG. 5 is a schematic diagram showing an example of tag information associated with the measurement data of FIG. The data D1 shown in FIG. 5 is the measurement data of the measuring device 300. The tag T1 is tag information associated with the data D1, and for example, the time information in which the measuring device 300 measures the data D1 or the time information in which the data D1 is transmitted from the measuring device 300 to the user terminal device 200 is time-series. It is stored as data. Alternatively, both the measured time information and the transmitted time information may be associated. For example, in the first line of the tag T1 shown in FIG. 5, "20180620120746144" is stored, but it indicates 12:07:46:144 ms on June 20, 2018. Such time information can be obtained from the communication log. This makes it possible to grasp which time zone the measurement data belongs to.
 なお、このようなタグ情報による測定データの関連付けは、時刻情報に限られず、ユーザの身体状態や活動状態を示す身体情報や活動情報を自由記載で記入させてタグ情報として記憶しても良く、所定の選択肢から選択させ(例えば、「現在の体調は如何ですか?」という質問に対して、「1:良い、2:普通、3:悪い」のいずれかを選択させる、等)、その選択した回答を記憶するようにしても良い。これにより、制御部150にて生体データを生成する際に、当該タグ情報と生体データとを対応付けすることで、より精度の高い生体データを生成可能となり得る。 It should be noted that the association of measurement data with such tag information is not limited to time information, and physical information or activity information indicating the user's physical condition or activity state may be freely entered and stored as tag information. Have them choose from a given option (for example, in response to the question "How are you feeling now?", Choose one of "1: good, 2: normal, 3: bad", etc.) and make that choice. You may try to remember the answer you gave. As a result, when the control unit 150 generates biometric data, it is possible to generate more accurate biometric data by associating the tag information with the biometric data.
 また、例えばデータ管理部131は、図5に示すように、データD1をタグT1の時刻順に並べ替え(ソート)を行うことが可能である。このような構成にしたのは、測定データはユーザの生体データに基づいて時系列に取得したものであるから時系列に並んでいる方が処理しやすいからであるが、ユーザ端末装置200及び通信部110を経由して受信する際に通信状況の変化等により受信データの逆転(後で送信された送信データが先に送信された送信データより先に受信されること)等が起こる場合があり、そのときの測定データの不整合を防止するためである。これにより、測定データの不整合を防止することが可能である。 Further, for example, the data management unit 131 can sort the data D1 in the time order of the tag T1 as shown in FIG. The reason for this configuration is that the measurement data is acquired in chronological order based on the biometric data of the user, and it is easier to process if the measurement data is arranged in chronological order. When receiving via the unit 110, the received data may be reversed (the transmitted data transmitted later is received before the transmitted data transmitted earlier) due to a change in the communication status or the like. This is to prevent inconsistency in the measurement data at that time. This makes it possible to prevent inconsistencies in the measured data.
 生体データ生成部132は、測定データDB121に記憶された測定データに対して所定の演算を行い、生体データを生成する。この生体データは、測定データから算出可能なものであればどのような情報であってもよく、例えばユーザの血圧情報、心拍情報、血中酸素量情報、最大酸素摂取量情報、心電情報、呼吸数、体温情報、歩数情報、歩幅情報、重心の位置情報、姿勢情報、行動種別情報、ストレス情報、運動量情報、運動負荷情報、移動距離情報、移動速度情報、活動量情報、手または脚等の装着部位の動作情報などのデータであり、既知の手法により測定データから算出されるものである。演算により生成された生体データは、生体データDB122に記憶される。 The biometric data generation unit 132 performs a predetermined operation on the measurement data stored in the measurement data DB 121 to generate biometric data. This biometric data may be any information as long as it can be calculated from the measurement data, for example, the user's blood pressure information, heartbeat information, blood oxygen level information, maximum oxygen intake information, electrocardiographic information, etc. Breath rate, body temperature information, step count information, stride information, center of gravity position information, posture information, action type information, stress information, exercise amount information, exercise load information, movement distance information, movement speed information, activity amount information, hands or legs, etc. It is data such as operation information of the mounting part of the above, and is calculated from the measurement data by a known method. The biometric data generated by the calculation is stored in the biometric data DB 122.
 ここで、測定データから生体データである最大血圧と最小血圧を算出する方法を例示する。図6は、図1の測定装置300で測定される心電波形及び脈波の例について説明するための図であり、測定装置300が測定し、記憶部120に記憶されたユーザの心電波形及び光電式容積脈波形と、アプリが光電式容積脈波形を時間で1階微分した速度脈波形及び、光電式容積脈波形を時間で2階微分した加速度脈波形を示している。図6は上から順に、心電波形、光電式容積脈波形、速度脈波形及び加速度脈波形となる。縦軸は、各波形の強度を示しており、心電波形及び光電式容積脈波形は電位を示すmVで表される。横軸は時間経過を示し、左から右へ時間経過を示している。 Here, an example is a method of calculating the maximum blood pressure and the minimum blood pressure, which are biological data, from the measurement data. FIG. 6 is a diagram for explaining an example of an electrocardiographic waveform and a pulse wave measured by the measuring device 300 of FIG. 1, and is a diagram for explaining an example of the electrocardiographic waveform and the pulse wave of the user measured by the measuring device 300 and stored in the storage unit 120. And the photoelectric volume pulse waveform, the velocity pulse waveform in which the photoelectric volume pulse waveform is first-order differentiated by time, and the acceleration pulse waveform in which the photoelectric volume pulse waveform is second-order differentiated by time are shown. FIG. 6 shows an electrocardiographic waveform, a photoelectric volume pulse waveform, a velocity pulse waveform, and an acceleration pulse waveform in order from the top. The vertical axis shows the intensity of each waveform, and the electrocardiographic waveform and the photoelectric volume pulse waveform are represented by MV indicating the potential. The horizontal axis shows the passage of time, and shows the passage of time from left to right.
 心電波形は、人の心臓の拍動を引き起こす電気的信号の周期的変化を示す波形である。心電波形は、その形状の変曲点にそれぞれP波,Q波,R波,S波,T波の名称が割り当てられ、心拍の1サイクルを示している。P波は心房収縮を表し、Q波R波S波は心室収縮の状態を表し、T波は心室拡張の開始を表す。 The electrocardiographic waveform is a waveform showing a periodic change in an electrical signal that causes a human heart to beat. In the electrocardiographic waveform, the names of P wave, Q wave, R wave, S wave, and T wave are assigned to the inflection points of the shape, respectively, and indicate one cycle of heartbeat. The P wave represents the atrial contraction, the Q wave, the R wave, and the S wave represent the state of ventricular contraction, and the T wave represents the start of ventricular dilation.
 光電式容積脈波形は、人の心臓の拍動に伴う末梢血管系内の血圧・体積の変化を示す波形である。光電式容積脈波形は、その形状の変曲点にそれぞれA波、P波、V波、D波の名称が割り当てられ、心拍の1サイクルを示している。A波を動脈脈波が生じた時点の基準点として、P波が左心室駆出によって生じるPercussion波(衝撃波)、V波が大動脈弁の閉鎖時に生じるValley波(重複隆起による波)、D波が反射振動波であるDicrotic波(重複波)を示している。 The photoelectric volume pulse waveform is a waveform showing changes in blood pressure and volume in the peripheral vascular system accompanying the beating of the human heart. In the photoelectric volume pulse waveform, the names of A wave, P wave, V wave, and D wave are assigned to the inflection points of the shape, respectively, and indicate one cycle of the heartbeat. With the A wave as the reference point at the time when the arterial pulse wave is generated, the P wave is the Percussion wave (shock wave) generated by the left ventricular ejection, the V wave is the Valley wave (wave due to the overlapping uplift) generated when the aortic valve is closed, and the D wave. Indicates a Dicrotic wave (overlapping wave) which is a reflected vibration wave.
 速度脈波形は、光電式容積脈波形を時間で1階微分をしたものである。加速度脈波形は、速度脈波形を時間で1階微分したもの、すなわち光電式容積脈波形を2階微分したものである。加速度脈波形は、図6で示すように、その波形の各ピークにa波(収縮初期陽性波)、b波(収縮初期陰性波)、c波(収縮中期再上昇波)、d波(収縮後期再下降波)、e波(拡張初期陽性波)、f波(拡張初期陰性波)の名称が割り当てられている。 The velocity pulse waveform is the first derivative of the photoelectric volume pulse waveform with respect to time. The acceleration pulse waveform is a first-order derivative of the velocity pulse waveform, that is, a second-order derivative of the photoelectric volume pulse waveform. As shown in FIG. 6, the acceleration pulse waveform has a wave (initial contraction positive wave), b wave (initial contraction negative wave), c wave (mid-contraction re-rise wave), and d wave (contraction) at each peak of the waveform. The names of the late re-descending wave), the e wave (extended early positive wave), and the f wave (extended early negative wave) are assigned.
 b波の強度とa波の強度の比、及びf波の強度とe波の強度の比はそれぞれ血管の伸縮性すなわち弾性を示すパラメータである。主な血管の成分は、血管内皮(Endothelium)、弾性線維(Elastin)、タンパク質(Collagen)、平滑筋(Smooth Muscle)である。これらの成分は、それぞれ異なった性質があり、最大血圧、最小血圧時の血管の弾性はそれぞれCollagen、Elastinが強い影響力を担っている。そのため、血圧値によって異なる弾性をb波の強度とa波の強度の比である(b/a),f波の強度とe波の強度の比である(f/e)のパラメータで示すことができ、年齢・性別・環境変数の影響によってもこれらの値は変動する。そのため、(b/a),(f/e)の値は、加速度脈波形の特性情報として算出することができる。 The ratio of the intensity of the b wave to the intensity of the a wave and the ratio of the intensity of the f wave to the intensity of the e wave are parameters indicating the elasticity, that is, the elasticity of the blood vessel, respectively. The main vascular components are vascular endothelium (Endothelium), elastic fibers (Elastin), proteins (Collagen), and smooth muscle (Smooth Muscle). These components have different properties, and Collagen and Elastin have a strong influence on the elasticity of blood vessels at the maximum blood pressure and the minimum blood pressure, respectively. Therefore, the elasticity that differs depending on the blood pressure value is indicated by the parameters of the ratio of the intensity of the b wave to the intensity of the a wave (b / a) and the ratio of the intensity of the f wave to the intensity of the e wave (f / e). These values also fluctuate depending on the influence of age, gender, and environment variables. Therefore, the values of (b / a) and (f / e) can be calculated as the characteristic information of the acceleration pulse waveform.
 図6で示すように、R波の生じた時間TrとP波の生じた時間Tpの差分の時間が心室収縮期脈波伝搬時間PTT_SYSとなる。T波の生じた時間TtとD波の生じた時間Tdの差分の時間が心室拡張期脈波伝搬時間PTT_DIAとなる。すなわち、心電波形のR波の時間Tr及びT波の時間Ttと、光電式容積脈波形のT波の時間TpとD波の時間Tdから、心室収縮期脈波伝搬時間PTT_SYS及び心室拡張期脈波伝搬時間PTT_DIAを算出することができる。 As shown in FIG. 6, the time difference between the time Tr at which the R wave is generated and the time Tp at which the P wave is generated is the ventricular systolic pulse wave propagation time PTT_SYS. The time of the difference between the time Tt in which the T wave is generated and the time Td in which the D wave is generated is the ventricular diastolic pulse wave propagation time PTT_DIA. That is, from the R wave time Tr and T wave time Tt of the electrocardiographic waveform, and the T wave time Tp and D wave time Td of the photoelectric volume pulse waveform, the ventricular systolic pulse wave propagation time PTT_SYS and the ventricular diastole period. The pulse wave propagation time PTT_DIA can be calculated.
 また、脈波伝播速度と動脈壁の縦弾性係数との関係が所定の式で示される相関関係にあることが知られており、縦弾性係数と血圧値との関係も所定の式で示される相関関係にあることが知られている。そのため、最大血圧を心室収縮期脈波伝搬時間PTT_SYSの所定の式で求めることが可能であり、最小血圧を心室拡張期脈波伝搬時間PTT_DIAの所定の式で求めることが可能である。これにより、最大血圧と最小血圧を算出することが可能である。 Further, it is known that the relationship between the pulse wave velocity and the Young's modulus of the arterial wall has a correlation expressed by a predetermined formula, and the relationship between the Young's modulus and the blood pressure value is also shown by a predetermined formula. It is known to be correlated. Therefore, the maximum blood pressure can be obtained by a predetermined formula of the ventricular systolic pulse wave velocity PTT_SYS, and the minimum blood pressure can be obtained by a predetermined formula of the ventricular diastolic pulse wave propagation time PTT_DIA. This makes it possible to calculate the maximum blood pressure and the minimum blood pressure.
 また、測定データから生体データである心拍情報、特に安静時心拍数を算出する方法を例示すると、例えば安静時にユーザが装着している測定装置300により測定される心電波形データ(例えば、図6の心電波形データ等)におけるQRS波の間隔などから、心拍情報を得ることができる。 Further, exemplifying a method of calculating heart rate information which is biological data from measurement data, particularly a resting heart rate, for example, electrocardiographic waveform data measured by a measuring device 300 worn by a user at rest (for example, FIG. 6). Heart rate information can be obtained from the intervals of QRS waves in (electrocardiographic waveform data, etc.).
 また、測定データから生体データである温度情報を算出する方法を例示すると、例えばユーザが装着している測定装置300の温度センサにより測定されるユーザの皮膚温度データを温度情報として得ることができる。 Further, exemplifying the method of calculating the temperature information which is the biological data from the measurement data, for example, the user's skin temperature data measured by the temperature sensor of the measuring device 300 worn by the user can be obtained as the temperature information.
 また、測定データから生体データであるユーザの手等の装着部位の動作情報を算出する方法を例示すると、例えばユーザが装着している測定装置300により測定される加速度データおよび角速度データから、測定装置300を装着している部位(例えば、手首や足首など)がどれくらいの速度でどのような角度で動いているのかという動作情報を得ることができる。 Further, exemplifying a method of calculating motion information of a wearing part such as a user's hand, which is biological data, from measurement data, for example, a measuring device from acceleration data and angular velocity data measured by the measuring device 300 worn by the user. It is possible to obtain motion information on how fast and at what angle the site where the 300 is attached (for example, wrist or ankle) is moving.
 異常発生信号生成部133は、上述の血圧情報や、心拍情報、温度情報、装着部位の動作情報などの生体データに基づく異常発生信号を生成する。より具体的には、生体データ生成部132により所定の間隔で常時算出される生体データを生体データDB122に記憶し、異常発生信号生成部133が当該生体データDB122に記憶された過去の生体データと現在の生体データを比較し(例えば、数分前のデータとの比較や、過去の所定期間の平均値との比較、安静時との比較など)、所定の閾値以上の差異があった場合には異常発生信号を生成する。これにより、血圧情報や心拍情報、温度情報等の生体データでは例えば体調が著しく悪化した場合などに異常発生を確認することが可能となり、装着部位の動作情報等の生体データでは例えば意識を失って倒れた場合などに異常発生を確認することが可能となる。さらに、装着部位の動作情報に基づく異常発生信号の生成は、これに限らず、例えば、比較結果が所定の閾値以上の差異があった後、その後の動作情報からユーザが動作していない状態が所定期間続いていることを判定した場合に異常発生信号を生成するようにしてもよい。また、複数の生体データにおいて異常が発生している(例えば、比較結果が所定の閾値以上の差異がある生体データが複数あるなど)と判定した場合に異常発生信号を生成するなどしてもよい。 The abnormality generation signal generation unit 133 generates an abnormality generation signal based on biological data such as the above-mentioned blood pressure information, heart rate information, temperature information, and operation information of the wearing site. More specifically, the biometric data constantly calculated by the biometric data generation unit 132 at predetermined intervals is stored in the biometric data DB 122, and the abnormality generation signal generation unit 133 and the past biometric data stored in the biometric data DB 122. When comparing current biometric data (for example, comparison with data from a few minutes ago, comparison with the average value of a predetermined period in the past, comparison with resting time, etc.) and there is a difference of more than a predetermined threshold. Generates an anomaly occurrence signal. This makes it possible to confirm the occurrence of abnormalities in biometric data such as blood pressure information, heart rate information, and temperature information, for example, when the physical condition deteriorates significantly, and in biometric data such as motion information of the wearing site, for example, lose consciousness. It is possible to confirm the occurrence of an abnormality in the event of a fall. Further, the generation of the abnormality generation signal based on the operation information of the mounting site is not limited to this, and for example, after the comparison result has a difference of a predetermined threshold value or more, the user is not operating from the subsequent operation information. An abnormality occurrence signal may be generated when it is determined that the continuation has continued for a predetermined period. Further, an abnormality occurrence signal may be generated when it is determined that an abnormality has occurred in a plurality of biometric data (for example, there are a plurality of biometric data whose comparison results have a difference of a predetermined threshold value or more). ..
 生成された異常発生信号は、例えば管理サーバ100のデータ出力部134から直接的に、または、ユーザ端末装置200若しくは測定装置300を介して間接的に、医療機関または近親者などユーザ情報に紐づけられた連絡先へ異常を示す通知(例えば、PCまたはスマートフォンなどのデバイスに記憶された所定のアプリケーションを介した通知やメールアドレスを利用した通知など)を発信するように制御してもよいし、ユーザ端末装置200において上記連絡先との通話を開始するようにしてもよい。この時に、ユーザの過去の生体データや現在の生体データの状況、現在位置情報も通知に併せて発信するようにしてもよいし、連絡先のデバイスに対してユーザの生体データを閲覧する権限を付与してもよい。これにより、ユーザ自らが異常発生状況を知らせることが難しい場合であっても、自動的に異常発生を知らせることが可能となる。加えて、特に医療機関に適切な情報が共有されるので、医療機関がユーザの処置にあたる際などには直ちに対処可能となる。 The generated abnormality occurrence signal is linked to user information such as a medical institution or a close relative, directly from the data output unit 134 of the management server 100 or indirectly via the user terminal device 200 or the measuring device 300, for example. It may be controlled to send a notification indicating an abnormality (for example, a notification via a predetermined application stored in a device such as a PC or a smartphone or a notification using an e-mail address) to the contact. The user terminal device 200 may start a call with the above contact. At this time, the user's past biometric data, the current biometric data status, and the current location information may be transmitted together with the notification, or the contact device may be authorized to view the user's biometric data. It may be given. This makes it possible to automatically notify the occurrence of an abnormality even when it is difficult for the user to notify the occurrence of the abnormality. In addition, since appropriate information is shared especially with the medical institution, it becomes possible to immediately deal with the medical institution when dealing with the user.
 また、生成された異常発生信号は、例えば管理サーバ100内で、または、管理サーバ100から直接的に、若しくは、ユーザ端末装置200や測定装置300を介して間接的に、車両管理部520にて異常発生信号または異常発生信号に基づく指示信号が認識され、当該車両管理部520によりユーザが乗車する自動運転車両400の行き先を医療機関等に変更してもよい。より具体的には、自動運転車両400の行き先を、自動運転車両400の位置情報に基づき、例えば、管理サーバ100や車両管理サーバ500に登録された地図情報や事前の医療機関の登録情報などを検索するなどして近隣の医療機関に設定したり、例えば、ユーザ情報に関連付けられてユーザ情報DB123に登録されたかかりつけの医療機関へと設定するようにしてもよい。また、上述の医療機関等への通知を連動させ、当該行き先変更により選択された医療機関へ通知するようにしてもよい。 Further, the generated abnormality generation signal is transmitted to the vehicle management unit 520, for example, in the management server 100, directly from the management server 100, or indirectly via the user terminal device 200 or the measuring device 300. The abnormality occurrence signal or the instruction signal based on the abnormality occurrence signal is recognized, and the vehicle management unit 520 may change the destination of the automatic driving vehicle 400 on which the user rides to a medical institution or the like. More specifically, the destination of the autonomous driving vehicle 400 is based on the position information of the autonomous driving vehicle 400, for example, map information registered in the management server 100 or the vehicle management server 500, registration information of a medical institution in advance, and the like. It may be set to a nearby medical institution by searching, or may be set to a family medical institution associated with user information and registered in the user information DB 123, for example. In addition, the above-mentioned notification to the medical institution or the like may be linked to notify the medical institution selected by the change of destination.
 また、生成された異常発生信号は、例えば管理サーバ100内で、または、管理サーバ100から直接的に、若しくは、ユーザ端末装置200や測定装置300を介して間接的に、車両管理部520にて異常発生信号または異常発生信号に基づく指示信号が認識されることに加えて、例えば管理サーバ100内に事前に登録された医療従事者の位置情報(例えば、任意の住所情報や所定周期で医療従事者端末(不図示)から取得した位置情報など)も併せて車両管理部520にて認識し、上述のとおり医療機関へと移動するために移動経路を再設定する際に、上記医療従事者の位置情報の地点、または、当該位置情報の地点と自動運転車両400の現在地とから導かれる任意の地点(例えば、お互いの移動速度を考慮して最短で医療従事者が自動運転車両400に乗車可能な地点など)を中継地点として含めてもよい。これにより、医療機関に到着する前に、より適切な応急処置が可能となる。 Further, the generated abnormality generation signal is, for example, in the management server 100, directly from the management server 100, or indirectly via the user terminal device 200 or the measuring device 300, in the vehicle management unit 520. In addition to recognizing the abnormality occurrence signal or the instruction signal based on the abnormality occurrence signal, for example, the location information of the medical staff registered in advance in the management server 100 (for example, arbitrary address information or medical engagement at a predetermined cycle). The vehicle management unit 520 also recognizes the location information acquired from the user terminal (not shown), and when resetting the movement route to move to the medical institution as described above, the above medical staff The location information point, or any point derived from the location information point and the current location of the auto-driving vehicle 400 (for example, medical staff can board the auto-driving vehicle 400 in the shortest time considering each other's moving speeds). Point, etc.) may be included as a relay point. This allows for more appropriate first aid before arriving at the medical institution.
 また、生成された異常発生信号は、例えば管理サーバ100のデータ出力部134から直接的に、または、ユーザ端末装置200や測定装置300、車両管理サーバ500を介して間接的に、自動運転車両400に送信され、例えばAEDや医薬品、注射薬などが格納された格納部420が解錠されて利用可能とされてもよい。これにより、例えば同乗者が乗り合わせていた場合においても、応急処置等をスムーズに行うことが可能である。 Further, the generated abnormality generation signal is, for example, directly from the data output unit 134 of the management server 100, or indirectly via the user terminal device 200, the measurement device 300, and the vehicle management server 500, and the automated driving vehicle 400. The storage unit 420, which is transmitted to the server and stores, for example, an AED, a drug, an injection drug, or the like, may be unlocked and made available. This makes it possible to smoothly perform first aid and the like even when passengers are on board, for example.
 また、生成された異常発生信号は、例えば管理サーバ100のデータ出力部134から直接的に、または、ユーザ端末装置200や測定装置300、車両管理サーバ500を介して間接的に、自動運転車両400に送信され、例えば座席の背もたれが自動的に倒れるなどして簡易ベッドのように構成されてもよいし、自動的に窓を開いたり、車外に設けられたランプが自動的に点灯したり、クラクションや車外に設けられたサイレンが自動的に作動するなど、自動運転車両に搭載された設備が異常発生に関連して自動的に適切な動作をするようにしてもよい。 Further, the generated abnormality generation signal is, for example, directly from the data output unit 134 of the management server 100, or indirectly via the user terminal device 200, the measurement device 300, and the vehicle management server 500, for the autonomous driving vehicle 400. It may be configured like a cot, for example, the backrest of the seat may automatically fall over, the window may be opened automatically, the lamp provided outside the vehicle may be automatically turned on, or the vehicle may be automatically turned on. The equipment mounted on the self-driving vehicle may automatically operate appropriately in connection with the occurrence of an abnormality, such as the horn or the siren provided outside the vehicle automatically operating.
 データ出力部134は、上述のように、生体データや異常発生信号、各種通知などをユーザ端末装置200等の各デバイスや車両管理サーバ500へ出力する。ユーザ端末装置200等においては、出力データを例えば専用のアプリケーションを介して画面に表示するなどしてユーザが容易に確認可能としてもよい。 As described above, the data output unit 134 outputs biological data, abnormality occurrence signals, various notifications, etc. to each device such as the user terminal device 200 and the vehicle management server 500. In the user terminal device 200 or the like, the output data may be displayed on the screen via, for example, a dedicated application so that the user can easily confirm the data.
 入出力部140は、キーボード・マウス類等の情報入力機器、及びディスプレイ等の出力機器である。 The input / output unit 140 is an information input device such as a keyboard and a mouse, and an output device such as a display.
 <処理の流れ>
 図7を参照しながら、情報処理システム1が実行する情報処理方法の処理の流れについて説明する。図7は、図1の情報処理システム1の処理の例を示すフローチャートである。
<Processing flow>
The processing flow of the information processing method executed by the information processing system 1 will be described with reference to FIG. 7. FIG. 7 is a flowchart showing an example of processing of the information processing system 1 of FIG.
 ステップS101の処理として、データ管理部131では、測定装置300を利用するユーザごとにアカウント情報が生成され、ユーザ端末装置200等から所定のユーザ情報を取得する。登録されたユーザ情報は、データ管理部131により、ユーザ情報DB123に記憶される。ステップS101の処理は、ユーザが測定装置300を利用するための前処理として行われてもよいし、ユーザが測定装置300を初めて利用する際に行われてもよい。 As the process of step S101, the data management unit 131 generates account information for each user who uses the measuring device 300, and acquires predetermined user information from the user terminal device 200 or the like. The registered user information is stored in the user information DB 123 by the data management unit 131. The process of step S101 may be performed as a pre-process for the user to use the measuring device 300, or may be performed when the user uses the measuring device 300 for the first time.
 ステップS102の処理として、ユーザが測定装置300を利用すると、測定データが測定装置300からユーザ端末装置200を介して管理サーバ100へ送信され、通信部110を介して受信される。データ管理部131により、記憶部120の測定データDB121内においてユーザ情報に関連付けられて測定データが記憶される。 When the user uses the measuring device 300 as the process of step S102, the measurement data is transmitted from the measuring device 300 to the management server 100 via the user terminal device 200, and is received via the communication unit 110. The data management unit 131 stores the measurement data associated with the user information in the measurement data DB 121 of the storage unit 120.
 ステップS103の処理として、生体データ生成部132により測定データが読み取られ、所定の演算等により生体データの生成が行われる。生成された生体データは、データ管理部131により、生体データDB122に記憶される。 As the process of step S103, the measurement data is read by the biological data generation unit 132, and the biological data is generated by a predetermined calculation or the like. The generated biometric data is stored in the biometric data DB 122 by the data management unit 131.
 ステップS104の処理として、異常発生信号生成部133により生体データが読み取られ、過去の生体データと現在の生体データとの比較を所定周期で行い、異常発生信号を生成するか否かを判断する。例えば、所定の閾値以上の差異がない場合には、ステップS102へ戻り、所定の閾値以上の差異がある場合には、次のステップ105へ進む。 As the process of step S104, the biometric data is read by the abnormality generation signal generation unit 133, the past biometric data and the current biometric data are compared at a predetermined cycle, and it is determined whether or not the abnormality generation signal is generated. For example, if there is no difference of the predetermined threshold value or more, the process returns to step S102, and if there is a difference of the predetermined threshold value or more, the process proceeds to the next step 105.
 ステップS105の処理として、データ出力部134により生体データ、異常発生信号、通知のうち少なくともいずれか1つが、ユーザ端末装置200や車両管理部520、自動運転車両400へ出力される。 As the process of step S105, at least one of the biometric data, the abnormality occurrence signal, and the notification is output to the user terminal device 200, the vehicle management unit 520, and the autonomous driving vehicle 400 by the data output unit 134.
(実施形態2)
 上述の実施形態1においては、ユーザが自動運転車両400に乗車中を想定した情報処理システムであるが、ユーザが自動運転車両400外にいる場合においても有用である。すなわち、上述の異常発生信号が生成された際に、ユーザ端末装置200または測定装置300に備えられたGPS等によりユーザの位置情報を取得し、当該位置情報と異常発生信号とを併せて車両管理部520により認識することで、異常が発生したユーザがいる場所に自動運転車両400を向かわせることができる。
(Embodiment 2)
In the first embodiment described above, the information processing system assumes that the user is in the autonomous driving vehicle 400, but it is also useful when the user is outside the autonomous driving vehicle 400. That is, when the above-mentioned abnormality occurrence signal is generated, the user's position information is acquired by the GPS or the like provided in the user terminal device 200 or the measuring device 300, and the vehicle management is performed by combining the position information and the abnormality occurrence signal. By recognizing by the unit 520, the self-driving vehicle 400 can be directed to the place where the user who has the abnormality is present.
 そして、例えば、周囲の人々が自動運転車両400を利用してユーザを医療機関へ搬送したり、自動運転車両400に備えられた格納部420から必要な機器等を持ち出して利用することで、ユーザの異常に対して迅速に対応が可能である。 Then, for example, people around the user may use the autonomous driving vehicle 400 to transport the user to a medical institution, or the user may take out necessary equipment or the like from the storage unit 420 provided in the autonomous driving vehicle 400 and use it. It is possible to respond quickly to abnormalities in.
 <効果>
 以上のように、本実施形態に係る情報処理システムは、ユーザが装着する測定装置からの測定データに基づき、特にユーザの生体情報の変化を検知可能であるため、ユーザの生体情報の急激な変化などの異常が発生した場合には、自動運転車両の外部に報知したり、自動運転車両により病院に搬送したり、自動運転車両を向かわせたりと、迅速な対処が可能となる。
<Effect>
As described above, since the information processing system according to the present embodiment can detect a change in the user's biometric information based on the measurement data from the measuring device worn by the user, a sudden change in the user's biometric information is possible. When an abnormality such as the above occurs, it is possible to take prompt action by notifying the outside of the automatically driven vehicle, transporting the vehicle to a hospital by the automatically driven vehicle, or directing the automatically driven vehicle.
 以上、開示に係る実施形態について説明したが、これらはその他の様々な形態で実施することが可能であり、種々の省略、置換および変更を行なって実施することが出来る。これらの実施形態および変形例ならびに省略、置換および変更を行なったものは、特許請求の範囲の技術的範囲とその均等の範囲に含まれる。 Although the embodiments related to the disclosure have been described above, these can be implemented in various other embodiments, and can be implemented by making various omissions, substitutions, and changes. These embodiments and variations as well as those with omissions, substitutions and modifications are included in the technical scope of the claims and the equivalent scope thereof.
  1   情報処理システム
  100 管理サーバ
  200 ユーザ端末装置
  300 測定装置
  400 自動運転車両
  500 車両管理サーバ
  NW  ネットワーク
1 Information system 100 Management server 200 User terminal device 300 Measuring device 400 Automated driving vehicle 500 Vehicle management server NW network

Claims (13)

  1.  ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データに基づき異常発生信号の生成を行う情報処理システムであって、
     前記ユーザに関するユーザ情報に関連付けて前記測定データおよび生体データを記憶させるデータ管理部と、
     前記測定データに対して所定の演算を実行し、前記生体データを生成する生体データ生成部と、
     前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成する異常発生信号生成部と、
     前記異常発生信号に基づいて、自動運転車両を制御する車両管理部と、を備え、
     前記自動運転車両は、少なくとも異常発生信号の生成前において、取得した経路情報に基づき自動運転制御され、前記異常発生信号に基づき、座席の背もたれが倒れるように制御される、
     ことを特徴とする情報処理システム。
    An information processing system that receives measurement data from a measurement device worn by a user via a network and generates an abnormality occurrence signal based on the measurement data.
    A data management unit that stores measurement data and biometric data in association with user information about the user.
    A biometric data generation unit that executes a predetermined operation on the measurement data and generates the biometric data.
    An abnormality generation signal generation unit that generates an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biometric data.
    A vehicle management unit that controls an autonomously driven vehicle based on the abnormality occurrence signal is provided.
    The autonomous driving vehicle is automatically controlled based on the acquired route information at least before the generation of the abnormality occurrence signal, and is controlled so that the backrest of the seat falls down based on the abnormality occurrence signal.
    An information processing system characterized by this.
  2.  ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データに基づき異常発生信号の生成を行う情報処理システムであって、
     前記ユーザに関するユーザ情報に関連付けて前記測定データおよび生体データを記憶させるデータ管理部と、
     前記測定データに対して所定の演算を実行し、前記生体データを生成する生体データ生成部と、
     前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成する異常発生信号生成部と、
     前記異常発生信号に基づいて、自動運転車両を制御する車両管理部と、を備え、
     前記自動運転車両は、前記異常発生信号に基づき、医療機器、医薬品、注射薬、応急処置品、医療機関への直通電話のうちの少なくとも1つが格納された格納部が解錠制御される、
     ことを特徴とする情報処理システム。
    An information processing system that receives measurement data from a measurement device worn by a user via a network and generates an abnormality occurrence signal based on the measurement data.
    A data management unit that stores measurement data and biometric data in association with user information about the user.
    A biometric data generation unit that executes a predetermined operation on the measurement data and generates the biometric data.
    An abnormality generation signal generation unit that generates an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biometric data.
    A vehicle management unit that controls an autonomously driven vehicle based on the abnormality occurrence signal is provided.
    Based on the abnormality occurrence signal, the self-driving vehicle is controlled to unlock the storage unit in which at least one of a medical device, a drug, an injectable drug, an emergency treatment product, and a direct telephone call to a medical institution is stored.
    An information processing system characterized by this.
  3.  ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データに基づき異常発生信号の生成を行う情報処理システムであって、
     前記ユーザに関するユーザ情報に関連付けて前記測定データおよび生体データを記憶させるデータ管理部と、
     前記測定データに対して所定の演算を実行し、前記生体データを生成する生体データ生成部と、
     前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成する異常発生信号生成部と、
     前記異常発生信号に基づいて、自動運転車両を制御する車両管理部と、を備え、
     前記車両管理部は、前記ユーザが前記自動運転車両に搭乗した状態で現在地から医療機関へ向かう経路上に、医療従事者の位置情報に基づき前記医療従事者と接触するための中継地点を設定し、前記現在地から前記中継地点を経由して前記医療機関へ向かうように前記自動運転車両を制御する、
     ことを特徴とする情報処理システム。
    An information processing system that receives measurement data from a measurement device worn by a user via a network and generates an abnormality occurrence signal based on the measurement data.
    A data management unit that stores measurement data and biometric data in association with user information about the user.
    A biometric data generation unit that executes a predetermined operation on the measurement data and generates the biometric data.
    An abnormality generation signal generation unit that generates an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biometric data.
    A vehicle management unit that controls an autonomously driven vehicle based on the abnormality occurrence signal is provided.
    The vehicle management unit sets a relay point for contacting the medical staff based on the position information of the medical staff on the route from the current location to the medical institution while the user is in the self-driving vehicle. Control the self-driving vehicle from the current location to the medical institution via the relay point.
    An information processing system characterized by this.
  4.  前記異常発生信号生成部は、前記ユーザの血圧情報に関して異常を検出した場合に、前記異常発生信号を生成する、
     ことを特徴とする請求項1ないし請求項3のいずれか1項に記載の情報処理システム。
    The abnormality generation signal generation unit generates the abnormality generation signal when an abnormality is detected in the blood pressure information of the user.
    The information processing system according to any one of claims 1 to 3, wherein the information processing system is characterized by the above.
  5.  前記異常発生信号生成部は、前記ユーザの心拍情報に関して異常を検出した場合に、前記異常発生信号を生成する、
     ことを特徴とする請求項1ないし請求項4のいずれか1項に記載の情報処理システム。
    The abnormality generation signal generation unit generates the abnormality generation signal when an abnormality is detected in the heartbeat information of the user.
    The information processing system according to any one of claims 1 to 4, wherein the information processing system is characterized by the above.
  6.  前記異常発生信号生成部は、前記ユーザの皮膚温度情報に関して異常を検出した場合に、前記異常発生信号を生成する、
     ことを特徴とする請求項1ないし請求項5のいずれか1項に記載の情報処理システム。
    The abnormality generation signal generation unit generates the abnormality generation signal when an abnormality is detected in the skin temperature information of the user.
    The information processing system according to any one of claims 1 to 5, wherein the information processing system is characterized by the above.
  7.  前記異常発生信号生成部は、前記測定装置を装着した前記ユーザの部位の動作情報に関して異常を検出した場合に、前記異常発生信号を生成する、
     ことを特徴とする請求項1ないし請求項6のいずれか1項に記載の情報処理システム。
    The abnormality generation signal generation unit generates the abnormality generation signal when an abnormality is detected in the operation information of the part of the user who is equipped with the measuring device.
    The information processing system according to any one of claims 1 to 6, wherein the information processing system is characterized by the above.
  8.  ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データに基づき異常発生信号の生成を行う情報処理方法であって、
     データ管理部により、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるステップと、
     生体データ生成部により、前記測定データに対して所定の演算を実行し、前記生体データを生成するステップと、
     異常発生信号生成部により、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成するステップと、
     車両管理部により、前記異常発生信号に基づいて、自動運転車両を制御するステップと、を含み、
     前記自動運転車両は、少なくとも異常発生信号の生成前において、取得した経路情報に基づき自動運転制御され、前記異常発生信号に基づき、座席の背もたれが倒れるように制御される、
     ことを特徴とする情報処理方法。
    It is an information processing method that receives measurement data from a measurement device worn by a user via a network and generates an abnormality occurrence signal based on the measurement data.
    A step of storing the measurement data and the biometric data in association with the user information about the user by the data management unit.
    A step of executing a predetermined operation on the measurement data by the biometric data generation unit to generate the biometric data, and a step of generating the biometric data.
    A step of generating an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biological data by the abnormality generation signal generation unit, and a step of generating the abnormality generation signal.
    The vehicle management unit includes a step of controlling the self-driving vehicle based on the abnormality occurrence signal.
    The autonomous driving vehicle is automatically controlled based on the acquired route information at least before the generation of the abnormality occurrence signal, and is controlled so that the backrest of the seat falls down based on the abnormality occurrence signal.
    An information processing method characterized by that.
  9.  ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データに基づき異常発生信号の生成を行う情報処理方法であって、
     データ管理部により、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるステップと、
     生体データ生成部により、前記測定データに対して所定の演算を実行し、前記生体データを生成するステップと、
     異常発生信号生成部により、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成するステップと、
     車両管理部により、前記異常発生信号に基づいて、自動運転車両を制御するステップと、を含み、
     前記自動運転車両は、前記異常発生信号に基づき、医療機器、医薬品、注射薬、応急処置品、医療機関への直通電話のうちの少なくとも1つが格納された格納部が解錠制御される、
     ことを特徴とする情報処理方法。
    It is an information processing method that receives measurement data from a measurement device worn by a user via a network and generates an abnormality occurrence signal based on the measurement data.
    A step of storing the measurement data and the biometric data in association with the user information about the user by the data management unit.
    A step of executing a predetermined operation on the measurement data by the biometric data generation unit to generate the biometric data, and a step of generating the biometric data.
    A step of generating an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biological data by the abnormality generation signal generation unit, and a step of generating the abnormality generation signal.
    The vehicle management unit includes a step of controlling the self-driving vehicle based on the abnormality occurrence signal.
    Based on the abnormality occurrence signal, the self-driving vehicle is controlled to unlock the storage unit in which at least one of a medical device, a drug, an injectable drug, an emergency treatment product, and a direct telephone call to a medical institution is stored.
    An information processing method characterized by that.
  10.  ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データに基づき異常発生信号の生成を行う情報処理方法であって、
     データ管理部により、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるステップと、
     生体データ生成部により、前記測定データに対して所定の演算を実行し、前記生体データを生成するステップと、
     異常発生信号生成部により、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成するステップと、
     車両管理部により、前記異常発生信号に基づいて、自動運転車両を制御するステップと、を含み、
     前記車両管理部により、前記ユーザが前記自動運転車両に搭乗した状態で現在地から医療機関へ向かう経路上に、医療従事者の位置情報に基づき前記医療従事者と接触するための中継地点を設定し、前記現在地から前記中継地点を経由して前記医療機関へ向かうように前記自動運転車両を制御する、
    ステップをさらに含む、
     ことを特徴とする情報処理方法。
    It is an information processing method that receives measurement data from a measurement device worn by a user via a network and generates an abnormality occurrence signal based on the measurement data.
    A step of storing the measurement data and the biometric data in association with the user information about the user by the data management unit.
    A step of executing a predetermined operation on the measurement data by the biometric data generation unit to generate the biometric data, and a step of generating the biometric data.
    A step of generating an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biological data by the abnormality generation signal generation unit, and a step of generating the abnormality generation signal.
    The vehicle management unit includes a step of controlling the self-driving vehicle based on the abnormality occurrence signal.
    The vehicle management unit sets a relay point for contacting the medical staff based on the position information of the medical staff on the route from the current location to the medical institution while the user is in the self-driving vehicle. Control the self-driving vehicle from the current location to the medical institution via the relay point.
    Including more steps,
    An information processing method characterized by that.
  11.  ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データに基づき異常発生信号の生成を行う情報処理方法をコンピュータにおいて実行する情報処理プログラムであって、
     前記情報処理方法は、
     データ管理部により、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるステップと、
     生体データ生成部により、前記測定データに対して所定の演算を実行し、前記生体データを生成するステップと、
     異常発生信号生成部により、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成するステップと、
     車両管理部により、前記異常発生信号に基づいて、自動運転車両を制御するステップと、を実行し、
     前記自動運転車両は、少なくとも異常発生信号の生成前において、取得した経路情報に基づき自動運転制御され、前記異常発生信号に基づき、座席の背もたれが倒れるように制御される、
     ことを特徴とする情報処理プログラム。
    An information processing program that executes an information processing method in a computer that receives measurement data from a measurement device worn by a user via a network and generates an abnormality occurrence signal based on the measurement data.
    The information processing method is
    A step of storing the measurement data and the biometric data in association with the user information about the user by the data management unit.
    A step of executing a predetermined operation on the measurement data by the biometric data generation unit to generate the biometric data, and a step of generating the biometric data.
    A step of generating an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biological data by the abnormality generation signal generation unit, and a step of generating the abnormality generation signal.
    The vehicle management unit executes a step of controlling the autonomous driving vehicle based on the abnormality occurrence signal.
    The autonomous driving vehicle is automatically controlled based on the acquired route information at least before the generation of the abnormality occurrence signal, and is controlled so that the backrest of the seat falls down based on the abnormality occurrence signal.
    An information processing program characterized by this.
  12.  ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データに基づき異常発生信号の生成を行う情報処理方法をコンピュータにおいて実行する情報処理プログラムであって、
     前記情報処理方法は、
     データ管理部により、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるステップと、
     生体データ生成部により、前記測定データに対して所定の演算を実行し、前記生体データを生成するステップと、
     異常発生信号生成部により、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成するステップと、
     車両管理部により、前記異常発生信号に基づいて、自動運転車両を制御するステップと、を実行し、
     前記自動運転車両は、前記異常発生信号に基づき、医療機器、医薬品、注射薬、応急処置品、医療機関への直通電話のうちの少なくとも1つが格納された格納部が解錠制御される、
     ことを特徴とする情報処理プログラム。
    An information processing program that executes an information processing method in a computer that receives measurement data from a measurement device worn by a user via a network and generates an abnormality occurrence signal based on the measurement data.
    The information processing method is
    A step of storing the measurement data and the biometric data in association with the user information about the user by the data management unit.
    A step of executing a predetermined operation on the measurement data by the biometric data generation unit to generate the biometric data, and a step of generating the biometric data.
    A step of generating an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biological data by the abnormality generation signal generation unit, and a step of generating the abnormality generation signal.
    The vehicle management unit executes a step of controlling the autonomous driving vehicle based on the abnormality occurrence signal.
    Based on the abnormality occurrence signal, the self-driving vehicle is controlled to unlock the storage unit in which at least one of a medical device, a drug, an injectable drug, an emergency treatment product, and a direct telephone call to a medical institution is stored.
    An information processing program characterized by this.
  13.  ネットワークを介してユーザが装着する測定装置から測定データを受信し、前記測定データに基づき異常発生信号の生成を行う情報処理方法をコンピュータにおいて実行する情報処理プログラムであって、
     前記情報処理方法は、
     データ管理部により、前記ユーザに関するユーザ情報に関連付けて前記測定データおよび前記生体データを記憶させるステップと、
     生体データ生成部により、前記測定データに対して所定の演算を実行し、前記生体データを生成するステップと、
     異常発生信号生成部により、前記生体データに基づき、前記ユーザの異常発生を示すための異常発生信号を生成するステップと、
     車両管理部により、前記異常発生信号に基づいて、自動運転車両を制御するステップと、を実行し、
     前記車両管理部により、前記ユーザが前記自動運転車両に搭乗した状態で現在地から医療機関へ向かう経路上に、医療従事者の位置情報に基づき前記医療従事者と接触するための中継地点を設定し、前記現在地から前記中継地点を経由して前記医療機関へ向かうように前記自動運転車両を制御する、
    ステップをさらに含む、
     ことを特徴とする情報処理プログラム。

     
    An information processing program that executes an information processing method in a computer that receives measurement data from a measurement device worn by a user via a network and generates an abnormality occurrence signal based on the measurement data.
    The information processing method is
    A step of storing the measurement data and the biometric data in association with the user information about the user by the data management unit.
    A step of executing a predetermined operation on the measurement data by the biometric data generation unit to generate the biometric data, and a step of generating the biometric data.
    A step of generating an abnormality generation signal for indicating the occurrence of an abnormality of the user based on the biological data by the abnormality generation signal generation unit, and a step of generating the abnormality generation signal.
    The vehicle management unit executes a step of controlling the autonomous driving vehicle based on the abnormality occurrence signal.
    The vehicle management unit sets a relay point for contacting the medical staff based on the position information of the medical staff on the route from the current location to the medical institution while the user is in the self-driving vehicle. Control the self-driving vehicle from the current location to the medical institution via the relay point.
    Including more steps,
    An information processing program characterized by this.

PCT/JP2021/025239 2020-07-09 2021-07-05 Information processing system, information processing method, and program WO2022009819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-118832 2020-07-09
JP2020118832A JP6830704B1 (en) 2020-07-09 2020-07-09 Information processing system, information processing method and program

Publications (1)

Publication Number Publication Date
WO2022009819A1 true WO2022009819A1 (en) 2022-01-13

Family

ID=74562438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025239 WO2022009819A1 (en) 2020-07-09 2021-07-05 Information processing system, information processing method, and program

Country Status (2)

Country Link
JP (2) JP6830704B1 (en)
WO (1) WO2022009819A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157493A (en) * 2001-11-19 2003-05-30 Mazda Motor Corp Running support device for vehicle
JP2007249477A (en) * 2006-03-15 2007-09-27 Denso Corp Onboard information transmission device
JP2018043569A (en) * 2016-09-13 2018-03-22 トヨタ自動車株式会社 Vehicular drive support apparatus
JP2018062237A (en) * 2016-10-12 2018-04-19 本田技研工業株式会社 Vehicle control system, vehicle control method and vehicle control program
JP2018121829A (en) * 2017-01-31 2018-08-09 株式会社Arblet Blood pressure information measuring system, blood pressure information measuring method, blood pressure information measuring program, blood pressure information measuring device, server device, arithmetic method, and arithmetic program
JP2018131202A (en) * 2018-04-27 2018-08-23 株式会社デンソー Halt-time vehicle control unit
JP2018194961A (en) * 2017-05-15 2018-12-06 オムロン株式会社 Driver monitoring device, driver monitoring method, and driver monitoring program
JP2019164022A (en) * 2018-03-20 2019-09-26 株式会社Jvcケンウッド Transportation assist device, transportation assist system, transportation assist method, and program
WO2019221240A1 (en) * 2018-05-16 2019-11-21 社会医療法人蘇西厚生会 まつなみリサーチパーク Safe driving assistance system
JP2020009384A (en) * 2018-07-12 2020-01-16 株式会社Arblet Data management server, data management method, and data management program

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050183A (en) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd Pickup support device and pick-up support system using same
JP2011076531A (en) * 2009-10-01 2011-04-14 Mitsubishi Electric Corp Monitoring control system and monitoring control method
JP2018073107A (en) * 2016-10-28 2018-05-10 トヨタ自動車株式会社 Transportation system and method for providing information
JP6616797B2 (en) * 2017-05-01 2019-12-04 本田技研工業株式会社 Emergency transportation arrangement device, emergency transportation arrangement system, and emergency transportation arrangement method
DE102018216180A1 (en) * 2018-09-21 2020-03-26 Volkswagen Aktiengesellschaft Method for operating an emergency assistance system for a motor vehicle, emergency assistance system and motor vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157493A (en) * 2001-11-19 2003-05-30 Mazda Motor Corp Running support device for vehicle
JP2007249477A (en) * 2006-03-15 2007-09-27 Denso Corp Onboard information transmission device
JP2018043569A (en) * 2016-09-13 2018-03-22 トヨタ自動車株式会社 Vehicular drive support apparatus
JP2018062237A (en) * 2016-10-12 2018-04-19 本田技研工業株式会社 Vehicle control system, vehicle control method and vehicle control program
JP2018121829A (en) * 2017-01-31 2018-08-09 株式会社Arblet Blood pressure information measuring system, blood pressure information measuring method, blood pressure information measuring program, blood pressure information measuring device, server device, arithmetic method, and arithmetic program
JP2018194961A (en) * 2017-05-15 2018-12-06 オムロン株式会社 Driver monitoring device, driver monitoring method, and driver monitoring program
JP2019164022A (en) * 2018-03-20 2019-09-26 株式会社Jvcケンウッド Transportation assist device, transportation assist system, transportation assist method, and program
JP2018131202A (en) * 2018-04-27 2018-08-23 株式会社デンソー Halt-time vehicle control unit
WO2019221240A1 (en) * 2018-05-16 2019-11-21 社会医療法人蘇西厚生会 まつなみリサーチパーク Safe driving assistance system
JP2020009384A (en) * 2018-07-12 2020-01-16 株式会社Arblet Data management server, data management method, and data management program

Also Published As

Publication number Publication date
JP6830704B1 (en) 2021-02-17
JP2022016262A (en) 2022-01-21
JP2022015768A (en) 2022-01-21

Similar Documents

Publication Publication Date Title
US10602964B2 (en) Location, activity, and health compliance monitoring using multidimensional context analysis
WO2022097592A1 (en) Information processing system, server, information processing method, and program
JP6919959B1 (en) Information processing system, server, information processing method and program
WO2022054797A1 (en) Information processing system, server, information processing method, and program
JP6887194B1 (en) Information processing systems, servers, information processing methods and programs
WO2022009819A1 (en) Information processing system, information processing method, and program
WO2022009817A1 (en) Server, user assistance system, user assistance method, and program
Ianculescu et al. Improving the Elderly’s Fall Management through Innovative Personalized Remote Monitoring Solution
JP7033362B1 (en) Information processing system, server, information processing method and program
US20240324970A1 (en) Sensing respiration parameters as indicator of sudden cardiac arrest event
JP6934219B1 (en) Information processing systems, servers, information processing methods and programs
JP6916573B1 (en) Information processing systems, servers, information processing methods and programs
JP7033363B1 (en) Information processing system, server, information processing method and program
WO2021246346A1 (en) Information processing system, server, information processing method, and program
WO2021246264A1 (en) Server, adjustment information provision method, and program
JP6978144B1 (en) Information processing system, server, information processing method and program
JP6945908B1 (en) Information processing systems, servers, information processing methods and programs
JP2023036455A (en) Information processing system, server, information processing method, and program
Carnì et al. Monitoring Assisted Livings through Wireless Body Sensor Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838471

Country of ref document: EP

Kind code of ref document: A1