WO2022009424A1 - Arm device - Google Patents

Arm device Download PDF

Info

Publication number
WO2022009424A1
WO2022009424A1 PCT/JP2020/027065 JP2020027065W WO2022009424A1 WO 2022009424 A1 WO2022009424 A1 WO 2022009424A1 JP 2020027065 W JP2020027065 W JP 2020027065W WO 2022009424 A1 WO2022009424 A1 WO 2022009424A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
arm device
arm
gas pressure
pressure
Prior art date
Application number
PCT/JP2020/027065
Other languages
French (fr)
Japanese (ja)
Inventor
貴皓 菅野
健嗣 川嶋
哲郎 宮嵜
利弘 川瀬
拓也 岩井
Original Assignee
国立大学法人東京医科歯科大学
リバーフィールド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学, リバーフィールド株式会社 filed Critical 国立大学法人東京医科歯科大学
Priority to PCT/JP2020/027065 priority Critical patent/WO2022009424A1/en
Publication of WO2022009424A1 publication Critical patent/WO2022009424A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators

Definitions

  • the present invention relates to an arm device used in a robot.
  • robot arms have been applied not only for industrial use but also as cooperative robots and surgery support robots that work in human living spaces.
  • Many industrial robots are vertical articulated robots that imitate human arms, and secure high rigidity by amplifying the torque of an electric motor using a reducer.
  • an arm device in which a plurality of joints constituting a gimbal close to a surgical instrument are driven by a pneumatic actuator (for example, Patent Document 1).
  • the above-mentioned arm device is provided with a plurality of parallel link mechanisms from the base to the gimbal, and the entire arm device becomes complicated and large.
  • the present invention has been made in view of such a situation, and one of its exemplary purposes is to provide a new arm device that is relatively space-saving.
  • the arm device of a certain aspect of the present invention is an arm device configured to be able to change the position and posture of the tip unit, and is a fixing portion for fixing the arm device to the base.
  • Multiple joints provided in the arm part from the fixed part to the tip unit, multiple gas pressure actuators that generate driving force to drive multiple joints by the pressure of the supplied gas, and supply to the gas pressure actuator. It is provided with a pressure control mechanism for controlling the pressure of the gas.
  • the first joint of the plurality of joints is configured such that the driving force generated by the first gas pressure actuator among the plurality of gas pressure actuators is transmitted via the timing belt.
  • the first gaseous pressure actuator can be arranged at a position away from the first joint. Further, by rotating the first joint via a timing belt instead of the link mechanism, a space-saving arm device can be realized.
  • the timing belt may be wound around the first pulley and the second pulley at both ends of the upper arm portion of the arm portion. As a result, the timing belt can be arranged along the upper arm portion on the upstream side of the arm portion, so that the extra space for arranging the timing belt can be reduced.
  • the first pneumatic actuator may have a first pneumatic cylinder and a first slider crank mechanism connected to the first pneumatic cylinder.
  • the first slider crank mechanism is configured to allow the first pulley on the upstream side of the upper arm to rotate forward and backward, and the first joint has the rotation of the first pulley via a timing belt. It may be rotated with the rotation of the transmitted second pulley.
  • the first joint can be rotated about the rotation axis by the linear movement of the first pneumatic cylinder located away from the first joint, so that the degree of freedom in the layout of the first pneumatic cylinder is high. Will increase.
  • a first gravity compensating mechanism for compensating for the gravitational torque acting on the rotation axis of the first joint may be further provided.
  • the first gravity compensating mechanism may be provided in parallel with the first gaseous pressure actuator.
  • the first gravity compensating mechanism can be arranged at a position away from the first joint, so that the degree of freedom in the layout of the first gravity compensating mechanism is increased.
  • an elastic member such as a compression coil spring or a leaf spring is used as the first gravity compensation mechanism.
  • the plurality of joints may have a second joint.
  • the second pneumatic actuator may have a second pneumatic cylinder and a second slider crank mechanism connected to the second pneumatic cylinder.
  • the second slider crank mechanism may be configured to rotate the upper arm portion in the vertical direction about the rotation axis of the second joint provided on the first pulley side of the upper arm portion.
  • a second gravity compensating mechanism for compensating for the gravitational torque acting on the rotation axis of the second joint may be further provided.
  • the second gravity compensating mechanism may be provided on the upper arm portion.
  • the plurality of gas pressure actuators may include a vane motor that converts gas pressure energy into rotational energy.
  • the plurality of joints may have a third joint that swivels the arm device relative to the base.
  • the third joint may be driven by a vane motor and the pressure control mechanism may control the pressure supplied to the vane motor from the pressure source.
  • rotation about the rotation axis of the third joint can be realized by controlling the pressure of the gas, so that heat generation can be suppressed as compared with the case where the third joint is rotated by the electric motor.
  • a plurality of gas pressure actuators, a pressure control mechanism, and a vane motor are integrated as an arm drive unit, and the arm drive unit may be arranged between the timing belt and the fixed portion. This makes it possible to reduce the weight and simplify the configuration of the arm portion from the upper arm portion to the forearm portion.
  • the plurality of joints may be configured to realize movement with 6 degrees of freedom.
  • the timing belt may be arranged below the fixed portion. Thereby, when the first joint functions as the elbow portion between the upper arm portion and the forearm portion, the forearm portion can be arranged upward from the elbow portion.
  • the present invention can be applied to, for example, an arm device of a surgical robot that can change the position and posture of a surgical tool such as a forceps or an endoscope, which is one of the tip units.
  • a surgical tool such as a forceps or an endoscope
  • remote control is possible based on the command of the robot on the master side operated by an operator such as a doctor.
  • it can also be used as an arm device for a surgical robot on the master side.
  • the tip unit may be a work or an end effector of an industrial robot as well as a surgical tool, but in the present embodiment, a case where the arm device is applied to a surgical robot will be described.
  • the arm device When applying the arm device to a surgical robot, it is necessary to cover the entire arm device with a drape to prevent infectious diseases. Therefore, especially when a high-output electric motor is used for the actuator, it is necessary to take measures to exhaust heat so that the heat of the actuator does not stay around the robot. Therefore, in the arm device according to the present embodiment, instead of the electric motor for moving the joint, a gas pressure actuator that generates almost no heat is positively used to suppress heat generation, and as a result, measures against waste heat are taken. It can be simplified as much as possible. Air is generally used as the gas used for the gas pressure actuator, but other gases may be used.
  • gas pressure actuator used as the actuator of the arm device according to the present embodiment can impart high back drivability as compared with the electric motor using the speed reducer. Therefore, it is suitable as an actuator for a medical robot.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an arm device according to the present embodiment.
  • the arm device 10 shown in FIG. 1 has a plurality of joints for realizing movement with six degrees of freedom so that the position and posture of the surgical tool 12, which is a tip unit, can be changed.
  • the arm device 10 includes a fixing portion 16 for fixing the arm device 10 to the base 14, and a plurality of joints 20, 22, 24, 26, 28 provided on the arm portion 18 from the fixing portion 16 to the surgical tool 12. , 30, a plurality of gas pressure actuators that generate a driving force for driving a plurality of joints by the pressure of the supplied gas, and a pressure control mechanism 32 that controls the pressure of the gas supplied to the gas pressure actuator.
  • the arm device 10 holds the position and posture of the surgical tool 12 so as to be changeable. Further, the arm device 10 is controlled by the control device 34 so that the surgical tool 12 passes through the pivot position P, which is a predetermined relative position with respect to the arm device 10, even if the position or posture of the surgical tool 12 is changed.
  • the pivot position P is a position called the so-called center of remote movement, which roughly coincides with the position of the trocar (instrument) 40 placed on the abdominal wall 38 of the patient (subject) 36 who is the target of endoscopic surgery. There is.
  • the surgical tool 12 which is forceps, is mainly provided with a main body portion 12a and a tubular portion 12b.
  • the main body portion 12a is a portion gripped by the arm device 10, and houses an imaging device that converts image information guided by the tubular portion 12b into an electronic signal.
  • the tubular portion 12b is a member extending in a tubular shape or a rod shape, and is inserted through the trocar 40 and inserted into the abdominal wall 38 of the patient. Further, the cylindrical portion 12b is formed so that an image signal can be transmitted from the tip end to the main body portion 12a.
  • the tubular portion 12b is provided with a tip portion 12c and a bent portion 12d.
  • the tip portion 12c is a portion of the tip of the tubular portion 12b that is the end on the side to be inserted into the patient 36. This embodiment will be described by applying it to an example in which the tip portion 12c is provided with a configuration in which an object is sandwiched.
  • the bent portion 12d is formed in a tubular shape or a columnar shape in which one end is arranged on the tip end portion 12c side and the other end portion is arranged on the tubular portion 12b. Further, the bent portion 12d has a structure that can be bent laterally with respect to the extending direction of the tubular portion 12b.
  • a known configuration can be used for the configuration of the bent portion 12d, and the configuration is not particularly limited.
  • the surgical tool 12 is further provided with a wire and a pneumatic actuator for the surgical tool (both not shown) used for bending the bent portion 12d.
  • the pressure control mechanism 32 includes a path for supplying the air boosted and sent from the air supply unit 42 to each gas pressure actuator, and a plurality of valves provided in the path.
  • the pressure of the air supplied to each gas pressure actuator is set to a desired value based on the operation information of the robot on the master side operated by the operator and the information from the sensors provided in each part of the arm device. The opening and closing of each valve of the pressure control mechanism 32 is controlled so as to be.
  • the arm device 10 includes a rotating portion 44 constituting the joint 20, a belt transmission mechanism 46 in which the joint 22 and the joint 24 are provided at both ends, and joints 26, 28, 30. It has a gimbal portion 48 and a grip portion 50 that grips the surgical tool 12 which is a tip unit, and can move at least 6 degrees of freedom.
  • the rotating portion 44 is a vane motor arranged further below the fixing portion 16 for fixing the arm device 10 below the base 14.
  • the vane motor converts the pressure energy of a gas into rotational energy. Therefore, unlike an electric motor, there is no heat generation due to power supply.
  • the joint 20 is driven by the rotating unit 44, and the pressure control mechanism 32 controls the pressure supplied from the air supply unit 42, which is a pressure supply source such as a pump, to the rotating unit 44.
  • the rotating portion 44 functions as a joint 20 that rotates (rotates) the arm device in the xy plane with respect to the base 14.
  • the rotation around the rotation axis of the joint 20 can be realized by the pressure control of the gas, heat generation can be suppressed as compared with the case where the joint 20 is rotated by the electric motor.
  • the pressure control mechanism 32 can be arranged at a position away from the joint 20, the degree of freedom in layout in the vicinity of the joint 20 is increased.
  • the joint 24 (first joint) has a rotating portion 56 in which the driving force generated by the gas pressure actuator 52 (first gas pressure actuator) is transmitted via the timing belt 54 of the belt transmission mechanism 46.
  • the driving force is transmitted to the rotating portion 56 of the joint 24 via the timing belt 54, so that the gas pressure actuator 52 can be arranged at a position away from the joint 24.
  • the gas pressure actuator 52 is fixedly arranged at the lower part of the base 14 which is a place different from the arm portion 18, thereby suppressing the weight increase of the arm portion 18 and reducing the inertia and the gravitational torque of the arm portion 18. Can be reduced.
  • the space-saving arm device 10 can be realized.
  • the timing belt 54 is wound around a first pulley 58 and a second pulley 60 at both ends of the upper arm portion 18a of the arm portion 18. As a result, the timing belt 54 can be arranged along the upper arm portion 18a on the upstream side of the arm portion 18, so that the extra space for arranging the timing belt 54 can be reduced.
  • the gas pressure actuator 52 has a pneumatic cylinder 52a and a first slider crank mechanism connected to the pneumatic cylinder 52a.
  • the first slider crank mechanism may be any as long as it can convert the linear motion of the pneumatic cylinder 52a into the rotary motion of the first pulley 58, and is appropriately selected from various configurations including a known mechanism.
  • the first slider crank mechanism according to the present embodiment is configured so that the first pulley 58 on the upstream side of the upper arm portion 18a can be rotated forward and backward, and the joint 24 is the first pulley.
  • the rotation of 58 is rotated with the rotation of the second pulley 60 transmitted via the timing belt 54.
  • the joint 24 can be rotated about the rotation axis by the linear movement of the pneumatic cylinder 52a located away from the joint 24, so that the degree of freedom in the layout of the pneumatic cylinder 52a is increased.
  • the joint 22 has a rotating portion 64 to which the driving force generated by the gas pressure actuator 62 (second gas pressure actuator) is transmitted.
  • the pneumatic actuator 62 has a pneumatic cylinder 62a and a second slider crank mechanism connected to the pneumatic cylinder 62a.
  • the second slider crank mechanism may be any as long as it can convert the linear motion of the pneumatic cylinder 62a into the rotary motion of the rotating portion 64, and is appropriately selected from various configurations including a known mechanism.
  • the second slider crank mechanism is configured to rotate the upper arm portion 18a in the vertical direction along the yz plane around the rotating portion 64 of the joint 22 provided on the first pulley 58 side of the upper arm portion 18a. ing.
  • the gas pressure actuators 52 and 62, the pressure control mechanism 32 and the rotating portion 44 are integrated as an arm drive unit 100.
  • the arm drive unit 100 is arranged between the timing belt 54 and the fixing portion 16. This makes it possible to reduce the weight and simplify the configuration of the arm portion 18 from the upper arm portion 18a to the forearm portion 18b.
  • the timing belt 54 is arranged below the fixed portion 16.
  • the joint 24 functions as the elbow portion 18c between the upper arm portion 18a and the forearm portion 18b
  • the forearm portion 18b can be arranged upward from the elbow portion 18c.
  • the posture and position of the surgical tool 12 can be changed around the desired pivot position P while avoiding interference with existing devices such as a shadowless lamp and an endoscopic monitor.
  • the gimbal portion 48 is mainly composed of a joint 26, a joint 28 and a joint 30 whose rotation axes intersect with each other, and a gas pressure actuator 26a, a gas pressure actuator 28a and a gas pressure actuator 30a.
  • the joint 26 is arranged at a position adjacent to the joint 24.
  • the joint 26 is arranged in a posture in which its rotation axis extends diagonally upward from the horizontal direction (xy plane).
  • the joint 28 is arranged between the joint 26 and the joint 30.
  • the joint 30 is arranged at a position adjacent to the grip portion 50.
  • the joint 26, the joint 28, and the joint 30 may be any mechanism as long as they can rotate around the rotation axis, and the mechanism is not particularly limited.
  • the gas pressure actuator 26a is arranged in the vicinity of the joint 26, and drives the joint 26 to rotate and controls the rotation angle. Further, the gas pressure actuator 26a generates a driving force by a gas supplied from the pressure control mechanism 32, or air in the present embodiment.
  • the gas pressure actuator 26a is a rotary pneumatic actuator, and has a configuration for directly generating torque for rotationally driving the joint 26.
  • a known configuration can be used, and the configuration is not particularly limited.
  • the gas pressure actuator 26a is provided with a pressure sensor 26s.
  • the pressure sensor 26s measures the pressure of air in the gaseous pressure actuator 26a.
  • the measured air pressure value is output to the control device 34 and fed back as information when controlling the pressure control mechanism 32.
  • a known sensor can be used and is not particularly limited.
  • the gas pressure actuator 28a is arranged in the vicinity of the joint 28, and rotates and drives the joint 28 and controls the rotation angle. Further, the gas pressure actuator 28a generates a driving force by a gas supplied from the outside, or air in the present embodiment.
  • the gas pressure actuator 28a is a rotary pneumatic actuator, and has a configuration for directly generating torque for rotationally driving the joint 28.
  • a known configuration can be used, and the configuration is not particularly limited.
  • the gas pressure actuator 28a is provided with a pressure sensor 28s.
  • the pressure sensor 28s measures the pressure of air in the gaseous pressure actuator 28a.
  • the measured air pressure value is output to the control device 34 and fed back as information when controlling the pressure control mechanism 32.
  • a known sensor can be used and is not particularly limited.
  • the gas pressure actuator 30a is arranged in the vicinity of the joint 30 and drives the joint 30 to rotate and controls the rotation angle. Further, the gas pressure actuator 30a generates a driving force by a gas supplied from the outside, or air in the present embodiment.
  • the gas pressure actuator 30a is a rotary pneumatic actuator, and has a configuration for directly generating torque for rotationally driving the joint 30.
  • a known configuration can be used, and the configuration is not particularly limited.
  • the gas pressure actuator 30a is provided with a pressure sensor 30s.
  • the pressure sensor 30s measures the pressure of air in the gaseous pressure actuator 30a.
  • the measured air pressure value is output to the control device 34 and fed back as information when controlling the pressure control mechanism 32.
  • a known sensor can be used and is not particularly limited.
  • the grip portion 50 is arranged at a position adjacent to the gimbal portion 48, in other words, at the tip of the arm device 10.
  • the gripping portion 50 may be configured as long as it can grip the surgical tool 12, and the specific configuration is not limited.
  • the control device 34 drives and controls the arm device 10, and is an information processing device such as a computer having a CPU (central processing unit), ROM, RAM, input / output interface, and the like.
  • the program stored in the storage device such as the ROM described above causes the CPU, ROM, RAM, and the input / output interface to cooperate with each other to function as a calculation unit and a control unit.
  • FIG. 2 is a schematic diagram for explaining the first slider crank mechanism.
  • the length and angle of each link of the first slider crank mechanism 66 are set so as to convert the linear movement of the pneumatic cylinder 52a into the rotational movement of the first pulley 58.
  • the first pulley 58 rotates in the direction of arrow B.
  • the first pulley 58 has a gravitational torque applied to a rotating portion 56 coaxially fixed to the second pulley 60 via a timing belt 54 (mainly a torque due to a load of an arm portion downstream of the joint 24 or a surgical tool). ) Is transmitted. Therefore, the compression coil spring 68 (first gravity compensation mechanism) provided in parallel with the pneumatic cylinder 52a is compressed, so that the force of the first pulley 58 in the direction of rotation in the arrow B direction is the compression coil spring. It will be in a state of being urged from 68. As a result, the compression coil spring 68 can be arranged at a position away from the joint 24, so that the degree of freedom in the layout of the compression coil spring 68 is increased.
  • FIG. 3 is a schematic diagram for explaining the second slider crank mechanism.
  • the length and angle of each link are set so as to convert the linear movement of the pneumatic cylinder 62a into the swinging movement of the upper arm portion 18a.
  • the pneumatic cylinder 62a moves in the direction of arrow A due to the air pressure supplied from the pressure control mechanism 32, the upper arm portion 18a fixed to the rotating portion 64 swings in the direction of arrow C.
  • the rotating portion 64 transmits the gravitational torque (mainly the torque due to the load of the arm portion downstream of the joint 22 and the surgical tool) applied to the fixed upper arm portion 18a. Therefore, the gas spring 72 (second gravity compensating mechanism) provided on the upper arm portion 18a is compressed, so that the rotating portion 64 is urged by the gas spring 72 in the direction of rotation in the direction of arrow C. It becomes a state. As a result, the timing belt 54 and the gas spring 72 can be provided together on the upper arm portion 18a, so that a more space-saving arm device 10 can be realized.
  • the gravitational torque mainly the torque due to the load of the arm portion downstream of the joint 22 and the surgical tool
  • the present invention has been described above with reference to the above-described embodiment, the present invention is not limited to the above-described embodiment, and the present invention is not limited to the above-described embodiment, and the present invention may be a combination or a replacement of the configurations of the embodiments as appropriate. It is included in the present invention. Further, it is also possible to appropriately rearrange the combinations and the order of processing in the embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to the embodiments, and such modifications are added. The embodiments described above may also be included in the scope of the present invention.
  • the present invention can be used for cooperative robots and surgery support robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

An arm device 10 is configured to change the position and orientation of a tip end unit and comprises: a fixing unit 16 for fixing the arm device to a base 14; a plurality of joints 22, 24 that are provided in an arm part 18 extending from the fixing unit 16 to the tip end unit; a plurality of pneumatic actuators 52, 62 that use pressure of a supplied gas to generate a driving force to actuate the plurality of joints; and a pressure control mechanism 32 for controlling the pressure of the gas supplied to the pneumatic actuators. The joint 24 is configured such that the driving force generated from the pneumatic actuator 52 is transmitted thereto via a timing belt 54.

Description

アーム装置Arm device
 本発明は、ロボットに用いられるアーム装置に関する。 The present invention relates to an arm device used in a robot.
 近年、ロボットアームが産業用だけでなく、人の生活空間で作業を行う協調ロボットや手術支援ロボットとして応用されてきている。多くの産業用ロボットは、人の腕を模した垂直多関節ロボットであり、電動モータのトルクを減速機を用いて増幅することで高い剛性を確保している。 In recent years, robot arms have been applied not only for industrial use but also as cooperative robots and surgery support robots that work in human living spaces. Many industrial robots are vertical articulated robots that imitate human arms, and secure high rigidity by amplifying the torque of an electric motor using a reducer.
 しかしながら、協調ロボットや手術支援ロボットのアームとして扱う場合、人との接触時や鉗子挿入時にパッシブにアームを動作させる必要があるため、アームの剛性を小さくする機能(いわゆるバックドライバビリティを付与する機能)が必要となる。例えば、モータの性能よりも大きな出力を得るために高減速比の減速機を採用した場合、パッシブに動作するためにはエンドエフェクタや各軸に力センサを取り付けることになり、ロボットのサイズやコストが大きくなるといった問題がある。 However, when handling it as an arm of a cooperative robot or a surgery support robot, it is necessary to passively operate the arm when it comes into contact with a person or when forceps are inserted, so a function to reduce the rigidity of the arm (a function to impart so-called back drivability). )Is required. For example, if a reducer with a high reduction ratio is adopted in order to obtain an output larger than the performance of the motor, a force sensor must be attached to the end effector and each axis in order to operate passively, and the size and cost of the robot. There is a problem that becomes large.
 一方、減速機を用いずにアクチュエータにダイレクトドライブモータを使用した場合、バックドライバビリティをアームに付与することができるが、高トルクを出力するためにモータサイズを大きくするとアームのサイズも大きくなる。また、モータサイズが大きくなると大電流を流す必要があるため、モータの発熱が大きくなるといった問題もある。 On the other hand, if a direct drive motor is used for the actuator without using a reducer, back drivability can be given to the arm, but if the motor size is increased in order to output high torque, the size of the arm will also increase. Further, as the size of the motor increases, it is necessary to pass a large current, so that there is a problem that the heat generated by the motor increases.
 そこで、術具に近いジンバルを構成する複数の関節が空気圧アクチュエータで駆動されるアーム装置が考案されている(例えば、特許文献1)。 Therefore, an arm device has been devised in which a plurality of joints constituting a gimbal close to a surgical instrument are driven by a pneumatic actuator (for example, Patent Document 1).
特開2020-39434号公報Japanese Unexamined Patent Publication No. 2020-39434
 しかしながら、前述のアーム装置は、土台からジンバルまでの間に複数の平行リンク機構が設けられており、アーム装置全体が複雑化、大型化する。 However, the above-mentioned arm device is provided with a plurality of parallel link mechanisms from the base to the gimbal, and the entire arm device becomes complicated and large.
 本発明はこうした状況に鑑みてなされたものであり、その例示的な目的の一つは、比較的省スペースな新たなアーム装置を提供することにある。 The present invention has been made in view of such a situation, and one of its exemplary purposes is to provide a new arm device that is relatively space-saving.
 上記課題を解決するために、本発明のある態様のアーム装置は、先端ユニットの位置及び姿勢を変化できるように構成されたアーム装置であって、アーム装置を土台に固定するための固定部と、固定部から先端ユニットまでのアーム部分に設けられている複数の関節と、供給された気体の圧力によって複数の関節を駆動する駆動力を発生する複数の気体圧アクチュエータと、気体圧アクチュエータに供給する気体の圧力を制御する圧力制御機構と、を備える。複数の関節が有する第1の関節は、複数の気体圧アクチュエータのうち第1の気体圧アクチュエータが発生した駆動力がタイミングベルトを介して伝達されるように構成されている。 In order to solve the above problems, the arm device of a certain aspect of the present invention is an arm device configured to be able to change the position and posture of the tip unit, and is a fixing portion for fixing the arm device to the base. , Multiple joints provided in the arm part from the fixed part to the tip unit, multiple gas pressure actuators that generate driving force to drive multiple joints by the pressure of the supplied gas, and supply to the gas pressure actuator. It is provided with a pressure control mechanism for controlling the pressure of the gas. The first joint of the plurality of joints is configured such that the driving force generated by the first gas pressure actuator among the plurality of gas pressure actuators is transmitted via the timing belt.
 この態様によると、タイミングベルトを介して第1の関節に駆動力が伝達されるので、第1の気体圧アクチュエータを第1の関節から離れた位置に配置できる。また、リンク機構の代わりにタイミングベルトを介して第1の関節を回動することで、省スペースなアーム装置を実現できる。 According to this aspect, since the driving force is transmitted to the first joint via the timing belt, the first gaseous pressure actuator can be arranged at a position away from the first joint. Further, by rotating the first joint via a timing belt instead of the link mechanism, a space-saving arm device can be realized.
 タイミングベルトは、アーム部分のうち上腕部の両端にある第1のプーリ及び第2のプーリに巻かれていてもよい。これにより、タイミングベルトをアーム部分の上流側の上腕部に沿って配置できるため、タイミングベルトを配置するための余分なスペースを小さくできる。 The timing belt may be wound around the first pulley and the second pulley at both ends of the upper arm portion of the arm portion. As a result, the timing belt can be arranged along the upper arm portion on the upstream side of the arm portion, so that the extra space for arranging the timing belt can be reduced.
 第1の気体圧アクチュエータは、第1の空気圧シリンダと、第1の空気圧シリンダに接続されている第1のスライダクランク機構とを有してもよい。第1のスライダクランク機構は、上腕部の上流側にある第1のプーリを正転及び逆転できるように構成されており、第1の関節は、第1のプーリの回転がタイミングベルトを介して伝達された第2のプーリの回転に伴い回動されてもよい。これにより、第1の関節から離れた場所にある第1の空気圧シリンダの直線的な動きによって、第1の関節を回転軸を中心に回動できるので、第1の空気圧シリンダのレイアウトの自由度が増す。 The first pneumatic actuator may have a first pneumatic cylinder and a first slider crank mechanism connected to the first pneumatic cylinder. The first slider crank mechanism is configured to allow the first pulley on the upstream side of the upper arm to rotate forward and backward, and the first joint has the rotation of the first pulley via a timing belt. It may be rotated with the rotation of the transmitted second pulley. As a result, the first joint can be rotated about the rotation axis by the linear movement of the first pneumatic cylinder located away from the first joint, so that the degree of freedom in the layout of the first pneumatic cylinder is high. Will increase.
 第1の関節の回転軸に作用する重力トルクを補償する第1の重力補償機構を更に備えてもよい。第1の重力補償機構は、第1の気体圧アクチュエータと並列に設けられていてもよい。これにより、第1の重力補償機構を第1の関節から離れた場所に配置できるため、第1の重力補償機構のレイアウトの自由度が増す。ここで、第1の重力補償機構としては、例えば、圧縮コイルばねや板ばねといった弾性部材が用いられる。 A first gravity compensating mechanism for compensating for the gravitational torque acting on the rotation axis of the first joint may be further provided. The first gravity compensating mechanism may be provided in parallel with the first gaseous pressure actuator. As a result, the first gravity compensating mechanism can be arranged at a position away from the first joint, so that the degree of freedom in the layout of the first gravity compensating mechanism is increased. Here, as the first gravity compensation mechanism, for example, an elastic member such as a compression coil spring or a leaf spring is used.
 複数の関節は、第2の関節を有してもよい。複数の気体圧アクチュエータのうち第2の気体圧アクチュエータは、第2の空気圧シリンダと、第2の空気圧シリンダに接続されている第2のスライダクランク機構とを有してもよい。第2のスライダクランク機構は、上腕部の第1のプーリ側に設けられた第2の関節の回転軸を中心に該上腕部を上下方向に回動するように構成されていてもよい。 The plurality of joints may have a second joint. Of the plurality of pneumatic actuators, the second pneumatic actuator may have a second pneumatic cylinder and a second slider crank mechanism connected to the second pneumatic cylinder. The second slider crank mechanism may be configured to rotate the upper arm portion in the vertical direction about the rotation axis of the second joint provided on the first pulley side of the upper arm portion.
 第2の関節の回転軸に作用する重力トルクを補償する第2の重力補償機構を更に備えてもよい。第2の重力補償機構は、上腕部に設けられていてもよい。これにより、タイミングベルトと第2の重力補償機構を上腕部にまとめて設けることができるため、より省スペースなアーム装置を実現できる。 A second gravity compensating mechanism for compensating for the gravitational torque acting on the rotation axis of the second joint may be further provided. The second gravity compensating mechanism may be provided on the upper arm portion. As a result, the timing belt and the second gravity compensation mechanism can be provided together on the upper arm portion, so that a more space-saving arm device can be realized.
 複数の気体圧アクチュエータは、気体の圧力エネルギを回転エネルギに変換するベーンモータを含んでもよい。複数の関節は、土台に対してアーム装置を旋回させる第3の関節を有してもよい。第3の関節は、ベーンモータによって駆動され、圧力制御機構は、圧力供給源からベーンモータに供給する圧力を制御してもよい。これにより、第3の関節の回転軸を中心とする回動を、気体の圧力制御によって実現できるため、電動モータで第3の関節を回動させる場合と比較して発熱を抑えることができる。 The plurality of gas pressure actuators may include a vane motor that converts gas pressure energy into rotational energy. The plurality of joints may have a third joint that swivels the arm device relative to the base. The third joint may be driven by a vane motor and the pressure control mechanism may control the pressure supplied to the vane motor from the pressure source. As a result, rotation about the rotation axis of the third joint can be realized by controlling the pressure of the gas, so that heat generation can be suppressed as compared with the case where the third joint is rotated by the electric motor.
 複数の気体圧アクチュエータ、圧力制御機構及びベーンモータは、アーム駆動ユニットとして一体化されており、アーム駆動ユニットは、タイミングベルトと固定部との間に配置されていてもよい。これにより、アーム部分のうち上腕部から前腕部までの構成を軽量化、簡略化できる。 A plurality of gas pressure actuators, a pressure control mechanism, and a vane motor are integrated as an arm drive unit, and the arm drive unit may be arranged between the timing belt and the fixed portion. This makes it possible to reduce the weight and simplify the configuration of the arm portion from the upper arm portion to the forearm portion.
 複数の関節は、6自由度の動きを実現できるように構成されていてもよい。タイミングベルトは、固定部より下方に配置されていてもよい。これにより、第1の関節を上腕部と前腕部の間の肘部分として機能させた場合、前腕部を肘部分から上方に向けて配置できる。 The plurality of joints may be configured to realize movement with 6 degrees of freedom. The timing belt may be arranged below the fixed portion. Thereby, when the first joint functions as the elbow portion between the upper arm portion and the forearm portion, the forearm portion can be arranged upward from the elbow portion.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、などの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above components and the conversion of the expression of the present invention between methods, devices, systems, etc. are also effective as aspects of the present invention.
 本発明によれば、比較的省スペースな新たなアーム装置を提供することができる。 According to the present invention, it is possible to provide a new arm device that saves a relatively large amount of space.
本実施の形態に係るアーム装置の概略構成を示す模式図である。It is a schematic diagram which shows the schematic structure of the arm device which concerns on this embodiment. 第1のスライダクランク機構を説明するための模式図である。It is a schematic diagram for demonstrating the 1st slider crank mechanism. 第2のスライダクランク機構を説明するための模式図である。It is a schematic diagram for demonstrating the 2nd slider crank mechanism.
 以下、本発明を実施の形態をもとに図面を参照しながら説明する。各図面に示される同一又は同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述される全ての特徴やその組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described with reference to the drawings based on the embodiments. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and duplicate description thereof will be omitted as appropriate. Further, the embodiment is not limited to the invention but is an example, and all the features and combinations thereof described in the embodiment are not necessarily essential to the invention.
 本発明は、例えば、先端ユニットの一つである鉗子や内視鏡といった術具の位置や姿勢を変化できる手術用ロボットのアーム装置に適用できる。スレーブ側の手術用ロボットに適用したアーム装置の場合、医者等の術者が操作するマスタ側ロボットの指令に基づいて遠隔操作が可能である。あるいは、マスタ側の手術用ロボットのアーム装置としても利用できる。先端ユニットは、術具に限らず産業用ロボットのワークやエンドエフェクタであってもよいが、本実施の形態では、アーム装置を手術ロボットに適用する場合について説明する。 The present invention can be applied to, for example, an arm device of a surgical robot that can change the position and posture of a surgical tool such as a forceps or an endoscope, which is one of the tip units. In the case of the arm device applied to the surgical robot on the slave side, remote control is possible based on the command of the robot on the master side operated by an operator such as a doctor. Alternatively, it can also be used as an arm device for a surgical robot on the master side. The tip unit may be a work or an end effector of an industrial robot as well as a surgical tool, but in the present embodiment, a case where the arm device is applied to a surgical robot will be described.
 アーム装置を手術ロボットに適用する場合、感染症対策のためにドレープを使用してアーム装置全体を覆う必要がある。そのため、特にアクチェータに高出力の電動モータを用いる場合、アクチュエータの熱がロボット周辺にこもらないように、排熱対策をする必要がある。そこで、本実施の形態に係るアーム装置は、関節を動かすための電動モータの代わりに、発熱がほとんどない気体圧アクチュエータを積極的に用いることで、熱の発生を抑え、結果として排熱対策を極力簡素化できる。なお、気体圧アクチュエータに用いられる気体としては空気が一般的であるが、それ以外の気体であってもよい。 When applying the arm device to a surgical robot, it is necessary to cover the entire arm device with a drape to prevent infectious diseases. Therefore, especially when a high-output electric motor is used for the actuator, it is necessary to take measures to exhaust heat so that the heat of the actuator does not stay around the robot. Therefore, in the arm device according to the present embodiment, instead of the electric motor for moving the joint, a gas pressure actuator that generates almost no heat is positively used to suppress heat generation, and as a result, measures against waste heat are taken. It can be simplified as much as possible. Air is generally used as the gas used for the gas pressure actuator, but other gases may be used.
 また、本実施の形態に係るアーム装置のアクチュエータとして用いられる気体圧アクチュエータは、減速機を用いた電動モータと比較して、高いバックドライバビリティを付与できる。そのため、医療用ロボットのアクチュエータとして好適である。 Further, the gas pressure actuator used as the actuator of the arm device according to the present embodiment can impart high back drivability as compared with the electric motor using the speed reducer. Therefore, it is suitable as an actuator for a medical robot.
 図1は、本実施の形態に係るアーム装置の概略構成を示す模式図である。図1に示すアーム装置10は、先端ユニットである術具12の位置及び姿勢を変化できるように、6自由度の動きを実現するための複数の関節を有する。アーム装置10は、アーム装置10を土台14に固定するための固定部16と、固定部16から術具12までのアーム部分18に設けられている複数の関節20,22,24,26,28,30と、供給された気体の圧力によって複数の関節を駆動する駆動力を発生する複数の気体圧アクチュエータと、気体圧アクチュエータに供給する気体の圧力を制御する圧力制御機構32と、を備える。 FIG. 1 is a schematic diagram showing a schematic configuration of an arm device according to the present embodiment. The arm device 10 shown in FIG. 1 has a plurality of joints for realizing movement with six degrees of freedom so that the position and posture of the surgical tool 12, which is a tip unit, can be changed. The arm device 10 includes a fixing portion 16 for fixing the arm device 10 to the base 14, and a plurality of joints 20, 22, 24, 26, 28 provided on the arm portion 18 from the fixing portion 16 to the surgical tool 12. , 30, a plurality of gas pressure actuators that generate a driving force for driving a plurality of joints by the pressure of the supplied gas, and a pressure control mechanism 32 that controls the pressure of the gas supplied to the gas pressure actuator.
 アーム装置10は、術具12の位置及び姿勢を変更可能に保持する。また、アーム装置10は、術具12の位置や姿勢を変更しても、術具12がアーム装置10に対する所定の相対位置であるピボット位置Pを通過するように制御装置34によって制御される。ピボット位置Pは、いわゆる遠隔運動中心と呼ばれる位置であり、内視鏡外科手術の対象である患者(被検体)36の腹壁38に配置されたトロッカー(器具)40の配置位置と概ね一致している。 The arm device 10 holds the position and posture of the surgical tool 12 so as to be changeable. Further, the arm device 10 is controlled by the control device 34 so that the surgical tool 12 passes through the pivot position P, which is a predetermined relative position with respect to the arm device 10, even if the position or posture of the surgical tool 12 is changed. The pivot position P is a position called the so-called center of remote movement, which roughly coincides with the position of the trocar (instrument) 40 placed on the abdominal wall 38 of the patient (subject) 36 who is the target of endoscopic surgery. There is.
 本実施の形態では、術具12が鉗子である例について説明する。鉗子である術具12には、本体部12aと、筒状部12bと、が主に設けられている。本体部12aは、アーム装置10によって把持される部分であって、筒状部12bにより導かれた画像情報を電子信号に変換する撮像機器が収納されている。 In this embodiment, an example in which the surgical tool 12 is a forceps will be described. The surgical tool 12, which is forceps, is mainly provided with a main body portion 12a and a tubular portion 12b. The main body portion 12a is a portion gripped by the arm device 10, and houses an imaging device that converts image information guided by the tubular portion 12b into an electronic signal.
 筒状部12bは、筒状又は棒状に延びる部材であって、トロッカー40に挿通されて患者の腹壁38の内部に挿入される。また、筒状部12bは、先端から本体部12aへ画像信号の伝達が可能に形成されている。 The tubular portion 12b is a member extending in a tubular shape or a rod shape, and is inserted through the trocar 40 and inserted into the abdominal wall 38 of the patient. Further, the cylindrical portion 12b is formed so that an image signal can be transmitted from the tip end to the main body portion 12a.
 筒状部12bには、先端部12cと、屈曲部12dと、が設けられている。先端部12cは、筒状部12bにおける患者36に差し込まれる側の端である先端の部分である。本実施形態には先端部12cに対象物を挟む構成が設けられている例に適用して説明する。 The tubular portion 12b is provided with a tip portion 12c and a bent portion 12d. The tip portion 12c is a portion of the tip of the tubular portion 12b that is the end on the side to be inserted into the patient 36. This embodiment will be described by applying it to an example in which the tip portion 12c is provided with a configuration in which an object is sandwiched.
 屈曲部12dは、一方の端部が先端部12c側に配置され、他方の端部が筒状部12bに配置される、筒状又は柱状に形成されたものである。また、屈曲部12dは、筒状部12bの伸びる方向に対して横方向へ屈曲可能な構成を有するものである。なお、屈曲部12dにおける構成は、公知の構成を用いることができ、特に限定するものではない。 The bent portion 12d is formed in a tubular shape or a columnar shape in which one end is arranged on the tip end portion 12c side and the other end portion is arranged on the tubular portion 12b. Further, the bent portion 12d has a structure that can be bent laterally with respect to the extending direction of the tubular portion 12b. A known configuration can be used for the configuration of the bent portion 12d, and the configuration is not particularly limited.
 術具12には、さらに、屈曲部12dの屈曲に用いられる、ワイヤ及び術具用の空気圧アクチュエータ(両者ともに不図示)が設けられている。 The surgical tool 12 is further provided with a wire and a pneumatic actuator for the surgical tool (both not shown) used for bending the bent portion 12d.
 また、圧力制御機構32は、空気供給部42から昇圧されて送られてきた空気を各気体圧アクチュエータに供給するための経路や、その経路に設けられた複数のバルブを備えている。制御装置34は、術者が操作するマスタ側のロボットの操作情報や、アーム装置の各部に設けられたセンサからの情報に基づいて、各気体圧アクチュエータに供給する空気の圧力が所望の値になるように、圧力制御機構32の各バルブの開閉を制御する。 Further, the pressure control mechanism 32 includes a path for supplying the air boosted and sent from the air supply unit 42 to each gas pressure actuator, and a plurality of valves provided in the path. In the control device 34, the pressure of the air supplied to each gas pressure actuator is set to a desired value based on the operation information of the robot on the master side operated by the operator and the information from the sensors provided in each part of the arm device. The opening and closing of each valve of the pressure control mechanism 32 is controlled so as to be.
 アーム装置10は、図1に示すように、関節20を構成する回転部44と、関節22及び関節24が両端部に設けられているベルト伝達機構46と、関節26,28,30で構成されるジンバル部48と、先端ユニットである術具12を把持する把持部50とを有し、少なくとも6自由度の動きができる。 As shown in FIG. 1, the arm device 10 includes a rotating portion 44 constituting the joint 20, a belt transmission mechanism 46 in which the joint 22 and the joint 24 are provided at both ends, and joints 26, 28, 30. It has a gimbal portion 48 and a grip portion 50 that grips the surgical tool 12 which is a tip unit, and can move at least 6 degrees of freedom.
 回転部44は、土台14から下方にアーム装置10を固定する固定部16より更に下方に配置されたベーンモータである。ベーンモータは、気体の圧力エネルギを回転エネルギに変換するものである。そのため、電動モータのような給電による発熱がない。これにより、関節20は、回転部44によって駆動され、圧力制御機構32は、ポンプ等の圧力供給源である空気供給部42から回転部44に供給する圧力を制御する。 The rotating portion 44 is a vane motor arranged further below the fixing portion 16 for fixing the arm device 10 below the base 14. The vane motor converts the pressure energy of a gas into rotational energy. Therefore, unlike an electric motor, there is no heat generation due to power supply. As a result, the joint 20 is driven by the rotating unit 44, and the pressure control mechanism 32 controls the pressure supplied from the air supply unit 42, which is a pressure supply source such as a pump, to the rotating unit 44.
 また、回転部44は、土台14に対してアーム装置をxy平面内で旋回(回動)させる関節20として機能する。このように、関節20の回転軸を中心とする回動を、気体の圧力制御によって実現できるため、電動モータで関節20を回動させる場合と比較して発熱を抑えることができる。また、関節20から離した位置に圧力制御機構32を配置できるので、関節20近傍のレイアウトの自由度が増す。 Further, the rotating portion 44 functions as a joint 20 that rotates (rotates) the arm device in the xy plane with respect to the base 14. As described above, since the rotation around the rotation axis of the joint 20 can be realized by the pressure control of the gas, heat generation can be suppressed as compared with the case where the joint 20 is rotated by the electric motor. Further, since the pressure control mechanism 32 can be arranged at a position away from the joint 20, the degree of freedom in layout in the vicinity of the joint 20 is increased.
 関節24(第1の関節)は、気体圧アクチュエータ52(第1の気体圧アクチュエータ)が発生した駆動力がベルト伝達機構46のタイミングベルト54を介して伝達される回転部56を有する。これにより、タイミングベルト54を介して関節24の回転部56に駆動力が伝達されるので、気体圧アクチュエータ52を関節24から離れた位置に配置できる。本実施の形態では、気体圧アクチュエータ52をアーム部分18とは別の場所である土台14の下部に固定配置することで、アーム部分18の重量増加を抑え、アーム部分18のイナーシャや重力トルクを低減できる。また、リンク機構の代わりにタイミングベルト54を介して関節24を回動することで、省スペースなアーム装置10を実現できる。 The joint 24 (first joint) has a rotating portion 56 in which the driving force generated by the gas pressure actuator 52 (first gas pressure actuator) is transmitted via the timing belt 54 of the belt transmission mechanism 46. As a result, the driving force is transmitted to the rotating portion 56 of the joint 24 via the timing belt 54, so that the gas pressure actuator 52 can be arranged at a position away from the joint 24. In the present embodiment, the gas pressure actuator 52 is fixedly arranged at the lower part of the base 14 which is a place different from the arm portion 18, thereby suppressing the weight increase of the arm portion 18 and reducing the inertia and the gravitational torque of the arm portion 18. Can be reduced. Further, by rotating the joint 24 via the timing belt 54 instead of the link mechanism, the space-saving arm device 10 can be realized.
 タイミングベルト54は、アーム部分18のうち上腕部18aの両端にある第1のプーリ58及び第2のプーリ60に巻かれている。これにより、タイミングベルト54をアーム部分18の上流側の上腕部18aに沿って配置できるため、タイミングベルト54を配置するための余分なスペースを小さくできる。 The timing belt 54 is wound around a first pulley 58 and a second pulley 60 at both ends of the upper arm portion 18a of the arm portion 18. As a result, the timing belt 54 can be arranged along the upper arm portion 18a on the upstream side of the arm portion 18, so that the extra space for arranging the timing belt 54 can be reduced.
 気体圧アクチュエータ52は、空気圧シリンダ52aと、空気圧シリンダ52aに接続されている第1のスライダクランク機構とを有している。なお、第1のスライダクランク機構は、空気圧シリンダ52aの直線運動を第1のプーリ58の回転運動に変換できるものであればよく、公知の機構を含め種々の構成から適宜選択される。また、本実施の形態に係る第1のスライダクランク機構は、上腕部18aの上流側にある第1のプーリ58を正転及び逆転できるように構成されており、関節24は、第1のプーリ58の回転がタイミングベルト54を介して伝達された第2のプーリ60の回転に伴い回動される。これにより、関節24から離れた場所にある空気圧シリンダ52aの直線的な動きによって、関節24を回転軸を中心に回動できるので、空気圧シリンダ52aのレイアウトの自由度が増す。 The gas pressure actuator 52 has a pneumatic cylinder 52a and a first slider crank mechanism connected to the pneumatic cylinder 52a. The first slider crank mechanism may be any as long as it can convert the linear motion of the pneumatic cylinder 52a into the rotary motion of the first pulley 58, and is appropriately selected from various configurations including a known mechanism. Further, the first slider crank mechanism according to the present embodiment is configured so that the first pulley 58 on the upstream side of the upper arm portion 18a can be rotated forward and backward, and the joint 24 is the first pulley. The rotation of 58 is rotated with the rotation of the second pulley 60 transmitted via the timing belt 54. As a result, the joint 24 can be rotated about the rotation axis by the linear movement of the pneumatic cylinder 52a located away from the joint 24, so that the degree of freedom in the layout of the pneumatic cylinder 52a is increased.
 関節22は、気体圧アクチュエータ62(第2の気体圧アクチュエータ)が発生した駆動力が伝達される回転部64を有する。気体圧アクチュエータ62は、空気圧シリンダ62aと、空気圧シリンダ62aに接続されている第2のスライダクランク機構とを有している。なお、第2のスライダクランク機構は、空気圧シリンダ62aの直線運動を回転部64の回転運動に変換できるものであればよく、公知の機構を含め種々の構成から適宜選択される。第2のスライダクランク機構は、上腕部18aの第1のプーリ58側に設けられた関節22の回転部64を中心に上腕部18aをyz平面に沿って上下方向に回動するように構成されている。 The joint 22 has a rotating portion 64 to which the driving force generated by the gas pressure actuator 62 (second gas pressure actuator) is transmitted. The pneumatic actuator 62 has a pneumatic cylinder 62a and a second slider crank mechanism connected to the pneumatic cylinder 62a. The second slider crank mechanism may be any as long as it can convert the linear motion of the pneumatic cylinder 62a into the rotary motion of the rotating portion 64, and is appropriately selected from various configurations including a known mechanism. The second slider crank mechanism is configured to rotate the upper arm portion 18a in the vertical direction along the yz plane around the rotating portion 64 of the joint 22 provided on the first pulley 58 side of the upper arm portion 18a. ing.
 本実施の形態に係るアーム装置10では、気体圧アクチュエータ52,62、圧力制御機構32及び回転部44は、アーム駆動ユニット100として一体化されている。アーム駆動ユニット100は、タイミングベルト54と固定部16との間に配置されている。これにより、アーム部分18のうち上腕部18aから前腕部18bまでの構成を軽量化、簡略化できる。 In the arm device 10 according to the present embodiment, the gas pressure actuators 52 and 62, the pressure control mechanism 32 and the rotating portion 44 are integrated as an arm drive unit 100. The arm drive unit 100 is arranged between the timing belt 54 and the fixing portion 16. This makes it possible to reduce the weight and simplify the configuration of the arm portion 18 from the upper arm portion 18a to the forearm portion 18b.
 また、本実施の形態に係るタイミングベルト54は、固定部16より下方に配置されている。これにより、関節24を上腕部18aと前腕部18bの間の肘部分18cとして機能させた場合、前腕部18bを肘部分18cから上方に向けて配置できる。その結果、無影灯や内視鏡モニタなどの既存機器との干渉を避けつつ、所望のピボット位置Pを中心に術具12の姿勢や位置を変化できる。 Further, the timing belt 54 according to the present embodiment is arranged below the fixed portion 16. As a result, when the joint 24 functions as the elbow portion 18c between the upper arm portion 18a and the forearm portion 18b, the forearm portion 18b can be arranged upward from the elbow portion 18c. As a result, the posture and position of the surgical tool 12 can be changed around the desired pivot position P while avoiding interference with existing devices such as a shadowless lamp and an endoscopic monitor.
 ジンバル部48は、回転軸線が互いに交差する関節26、関節28及び関節30と、気体圧アクチュエータ26a、気体圧アクチュエータ28a及び気体圧アクチュエータ30aと、から主に構成されている。関節26は、図1に示すように、関節24と隣接する位置に配置されている。関節26は、その回転軸線が水平方向(xy平面)から斜め上方へ延びる姿勢に配置されている。 The gimbal portion 48 is mainly composed of a joint 26, a joint 28 and a joint 30 whose rotation axes intersect with each other, and a gas pressure actuator 26a, a gas pressure actuator 28a and a gas pressure actuator 30a. As shown in FIG. 1, the joint 26 is arranged at a position adjacent to the joint 24. The joint 26 is arranged in a posture in which its rotation axis extends diagonally upward from the horizontal direction (xy plane).
 関節28は、関節26と関節30との間に配置されている。関節30は、把持部50に隣接する位置に配置されている。なお、関節26、関節28及び関節30としては、回転軸回りの回転を可能とする機構であればよく、機構は特に限定されない。 The joint 28 is arranged between the joint 26 and the joint 30. The joint 30 is arranged at a position adjacent to the grip portion 50. The joint 26, the joint 28, and the joint 30 may be any mechanism as long as they can rotate around the rotation axis, and the mechanism is not particularly limited.
 気体圧アクチュエータ26aは、図1に示すように、関節26の近傍に配置されるものであって、関節26を回転駆動するとともに回転角度を制御するものである。また、気体圧アクチュエータ26aは、圧力制御機構32から供給される気体、本実施の形態では空気により駆動力を発生させるものである。 As shown in FIG. 1, the gas pressure actuator 26a is arranged in the vicinity of the joint 26, and drives the joint 26 to rotate and controls the rotation angle. Further, the gas pressure actuator 26a generates a driving force by a gas supplied from the pressure control mechanism 32, or air in the present embodiment.
 気体圧アクチュエータ26aは、回転型の空気圧アクチュエータであって、関節26を回転駆動するトルクを直接発生させる構成を有するものである。なお、気体圧アクチュエータ26aの構成としては公知の構成を用いることができ、特に構成を限定するものではない。 The gas pressure actuator 26a is a rotary pneumatic actuator, and has a configuration for directly generating torque for rotationally driving the joint 26. As the configuration of the gas pressure actuator 26a, a known configuration can be used, and the configuration is not particularly limited.
 気体圧アクチュエータ26aには、圧力センサ26sが設けられている。圧力センサ26sは、気体圧アクチュエータ26aにおける空気の圧力を測定するものである。測定された空気の圧力の値は、制御装置34へ出力され、圧力制御機構32を制御する際の情報としてフィードバックされる。圧力センサ26sとしては、公知のセンサを用いることができ、特に限定するものではない。 The gas pressure actuator 26a is provided with a pressure sensor 26s. The pressure sensor 26s measures the pressure of air in the gaseous pressure actuator 26a. The measured air pressure value is output to the control device 34 and fed back as information when controlling the pressure control mechanism 32. As the pressure sensor 26s, a known sensor can be used and is not particularly limited.
 気体圧アクチュエータ28aは、関節28の近傍に配置されるものであって、関節28を回転駆動するとともに回転角度を制御するものである。また、気体圧アクチュエータ28aは、外部から供給される気体、本実施の形態では空気により駆動力を発生させるものである。 The gas pressure actuator 28a is arranged in the vicinity of the joint 28, and rotates and drives the joint 28 and controls the rotation angle. Further, the gas pressure actuator 28a generates a driving force by a gas supplied from the outside, or air in the present embodiment.
 気体圧アクチュエータ28aは、回転型の空気圧アクチュエータであって、関節28を回転駆動するトルクを直接発生させる構成を有するものである。なお、気体圧アクチュエータ28aの構成としては公知の構成を用いることができ、特に構成を限定するものではない。 The gas pressure actuator 28a is a rotary pneumatic actuator, and has a configuration for directly generating torque for rotationally driving the joint 28. As the configuration of the gas pressure actuator 28a, a known configuration can be used, and the configuration is not particularly limited.
 気体圧アクチュエータ28aには、圧力センサ28sが設けられている。圧力センサ28sは、気体圧アクチュエータ28aにおける空気の圧力を測定するものである。測定された空気の圧力の値は、制御装置34へ出力され、圧力制御機構32を制御する際の情報としてフィードバックされる。圧力センサ28sとしては、公知のセンサを用いることができ、特に限定するものではない。 The gas pressure actuator 28a is provided with a pressure sensor 28s. The pressure sensor 28s measures the pressure of air in the gaseous pressure actuator 28a. The measured air pressure value is output to the control device 34 and fed back as information when controlling the pressure control mechanism 32. As the pressure sensor 28s, a known sensor can be used and is not particularly limited.
 気体圧アクチュエータ30aは、関節30の近傍に配置されるものであって、関節30を回転駆動するとともに回転角度を制御するものである。また、気体圧アクチュエータ30aは、外部から供給される気体、本実施の形態では空気により駆動力を発生させるものである。 The gas pressure actuator 30a is arranged in the vicinity of the joint 30 and drives the joint 30 to rotate and controls the rotation angle. Further, the gas pressure actuator 30a generates a driving force by a gas supplied from the outside, or air in the present embodiment.
 気体圧アクチュエータ30aは、回転型の空気圧アクチュエータであって、関節30を回転駆動するトルクを直接発生させる構成を有するものである。なお、気体圧アクチュエータ30aの構成としては公知の構成を用いることができ、特に構成を限定するものではない。 The gas pressure actuator 30a is a rotary pneumatic actuator, and has a configuration for directly generating torque for rotationally driving the joint 30. As the configuration of the gas pressure actuator 30a, a known configuration can be used, and the configuration is not particularly limited.
 気体圧アクチュエータ30aには、圧力センサ30sが設けられている。圧力センサ30sは、気体圧アクチュエータ30aにおける空気の圧力を測定するものである。測定された空気の圧力の値は、制御装置34へ出力され、圧力制御機構32を制御する際の情報としてフィードバックされる。圧力センサ30sとしては、公知のセンサを用いることができ、特に限定するものではない。 The gas pressure actuator 30a is provided with a pressure sensor 30s. The pressure sensor 30s measures the pressure of air in the gaseous pressure actuator 30a. The measured air pressure value is output to the control device 34 and fed back as information when controlling the pressure control mechanism 32. As the pressure sensor 30s, a known sensor can be used and is not particularly limited.
 把持部50は、ジンバル部48と隣接する位置、言い換えるとアーム装置10の先端に配置されるものである。把持部50としては、術具12を把持することができる構成であればよく、具体的な構成を限定するものではない。 The grip portion 50 is arranged at a position adjacent to the gimbal portion 48, in other words, at the tip of the arm device 10. The gripping portion 50 may be configured as long as it can grip the surgical tool 12, and the specific configuration is not limited.
 制御装置34は、アーム装置10を駆動制御するものであり、CPU(中央演算処理ユニット)、ROM、RAM、入出力インタフェース等を有するコンピュータ等の情報処理装置である。上述のROM等の記憶装置に記憶されているプログラムは、CPU、ROM、RAM、入出力インタフェースを協働させて、演算部や制御部として機能させるものである。 The control device 34 drives and controls the arm device 10, and is an information processing device such as a computer having a CPU (central processing unit), ROM, RAM, input / output interface, and the like. The program stored in the storage device such as the ROM described above causes the CPU, ROM, RAM, and the input / output interface to cooperate with each other to function as a calculation unit and a control unit.
 次に、関節24の重力補償機構について説明する。図2は、第1のスライダクランク機構を説明するための模式図である。第1のスライダクランク機構66は、空気圧シリンダ52aの直線的な動きを第1のプーリ58の回転運動に変換するように、各リンクの長さや角度が設定されている。例えば、圧力制御機構32から供給された空気圧により空気圧シリンダ52aが矢印Aの向きに移動すると、第1のプーリ58は矢印Bの方向に回転する。 Next, the gravity compensation mechanism of the joint 24 will be described. FIG. 2 is a schematic diagram for explaining the first slider crank mechanism. The length and angle of each link of the first slider crank mechanism 66 are set so as to convert the linear movement of the pneumatic cylinder 52a into the rotational movement of the first pulley 58. For example, when the pneumatic cylinder 52a moves in the direction of arrow A due to the air pressure supplied from the pressure control mechanism 32, the first pulley 58 rotates in the direction of arrow B.
 第1のプーリ58は、タイミングベルト54を介して第2のプーリ60と同軸に固定されている回転部56にかかる重力トルク(主に関節24より下流側のアーム部分や術具の荷重によるトルク)が伝達されている。そこで、空気圧シリンダ52aと並列に設けられている圧縮コイルばね68(第1の重力補償機構)が圧縮されることで、第1のプーリ58は矢印B方向に回転する方向の力が圧縮コイルばね68から付勢された状態となる。これにより、圧縮コイルばね68を関節24から離れた場所に配置できるため、圧縮コイルばね68のレイアウトの自由度が増す。 The first pulley 58 has a gravitational torque applied to a rotating portion 56 coaxially fixed to the second pulley 60 via a timing belt 54 (mainly a torque due to a load of an arm portion downstream of the joint 24 or a surgical tool). ) Is transmitted. Therefore, the compression coil spring 68 (first gravity compensation mechanism) provided in parallel with the pneumatic cylinder 52a is compressed, so that the force of the first pulley 58 in the direction of rotation in the arrow B direction is the compression coil spring. It will be in a state of being urged from 68. As a result, the compression coil spring 68 can be arranged at a position away from the joint 24, so that the degree of freedom in the layout of the compression coil spring 68 is increased.
 次に、関節22の重力補償機構について説明する。図3は、第2のスライダクランク機構を説明するための模式図である。第2のスライダクランク機構70は、空気圧シリンダ62aの直線的な動きを上腕部18aの揺動運動に変換するように、各リンクの長さや角度が設定されている。例えば、圧力制御機構32から供給された空気圧により空気圧シリンダ62aが矢印Aの向きに移動すると、回転部64に固定されている上腕部18aは矢印Cの方向に揺動する。 Next, the gravity compensation mechanism of the joint 22 will be described. FIG. 3 is a schematic diagram for explaining the second slider crank mechanism. In the second slider crank mechanism 70, the length and angle of each link are set so as to convert the linear movement of the pneumatic cylinder 62a into the swinging movement of the upper arm portion 18a. For example, when the pneumatic cylinder 62a moves in the direction of arrow A due to the air pressure supplied from the pressure control mechanism 32, the upper arm portion 18a fixed to the rotating portion 64 swings in the direction of arrow C.
 回転部64は、固定されている上腕部18aにかかる重力トルク(主に関節22より下流側のアーム部分や術具の荷重によるトルク)が伝達されている。そこで、上腕部18aに設けられているガススプリング72(第2の重力補償機構)が圧縮されることで、回転部64は矢印C方向に回転する方向の力がガススプリング72から付勢された状態となる。これにより、タイミングベルト54とガススプリング72を上腕部18aにまとめて設けることができるため、より省スペースなアーム装置10を実現できる。 The rotating portion 64 transmits the gravitational torque (mainly the torque due to the load of the arm portion downstream of the joint 22 and the surgical tool) applied to the fixed upper arm portion 18a. Therefore, the gas spring 72 (second gravity compensating mechanism) provided on the upper arm portion 18a is compressed, so that the rotating portion 64 is urged by the gas spring 72 in the direction of rotation in the direction of arrow C. It becomes a state. As a result, the timing belt 54 and the gas spring 72 can be provided together on the upper arm portion 18a, so that a more space-saving arm device 10 can be realized.
 以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 Although the present invention has been described above with reference to the above-described embodiment, the present invention is not limited to the above-described embodiment, and the present invention is not limited to the above-described embodiment, and the present invention may be a combination or a replacement of the configurations of the embodiments as appropriate. It is included in the present invention. Further, it is also possible to appropriately rearrange the combinations and the order of processing in the embodiment based on the knowledge of those skilled in the art, and to add modifications such as various design changes to the embodiments, and such modifications are added. The embodiments described above may also be included in the scope of the present invention.
 本発明は、協調ロボットや手術支援ロボットに利用できる。 The present invention can be used for cooperative robots and surgery support robots.
 10…アーム装置、 12…術具、 14…土台、 16…固定部、 18…アーム部分、 18a…上腕部、 20,22,24,26…関節、 26a…気体圧アクチュエータ、 28…関節、 28a…気体圧アクチュエータ、 30…関節、 30a…気体圧アクチュエータ、 32…圧力制御機構、 34…制御装置、 44…回転部、 46…ベルト伝達機構、 52…気体圧アクチュエータ、 52a…空気圧シリンダ、 54…タイミングベルト、 56…回転部、 58…第1のプーリ、 60…第2のプーリ、 62…気体圧アクチュエータ、 62a…空気圧シリンダ、 64…回転部、 66…第1のスライダクランク機構、 68…圧縮コイルばね、 70…第2のスライダクランク機構、 72…ガススプリング、 100…アーム駆動ユニット。 10 ... arm device, 12 ... surgical tool, 14 ... base, 16 ... fixed part, 18 ... arm part, 18a ... upper arm part, 20, 22, 24, 26 ... joint, 26a ... gas pressure actuator, 28 ... joint, 28a ... Gas pressure actuator, 30 ... Joint, 30a ... Gas pressure actuator, 32 ... Pressure control mechanism, 34 ... Control device, 44 ... Rotating part, 46 ... Belt transmission mechanism, 52 ... Gas pressure actuator, 52a ... Pneumatic cylinder, 54 ... Timing belt, 56 ... Rotating part, 58 ... First pulley, 60 ... Second pulley, 62 ... Gas pressure actuator, 62a ... Pneumatic cylinder, 64 ... Rotating part, 66 ... First slider crank mechanism, 68 ... Compression Coil spring, 70 ... second slider crank mechanism, 72 ... gas spring, 100 ... arm drive unit.

Claims (9)

  1.  先端ユニットの位置及び姿勢を変化できるように構成されたアーム装置であって、
     アーム装置を土台に固定するための固定部と、
     前記固定部から前記先端ユニットまでのアーム部分に設けられている複数の関節と、
     供給された気体の圧力によって前記複数の関節を駆動する駆動力を発生する複数の気体圧アクチュエータと、
     前記気体圧アクチュエータに供給する気体の圧力を制御する圧力制御機構と、を備え、
     前記複数の関節が有する第1の関節は、前記複数の気体圧アクチュエータのうち第1の気体圧アクチュエータが発生した駆動力がタイミングベルトを介して伝達されるように構成されていることを特徴とするアーム装置。
    An arm device configured to change the position and posture of the tip unit.
    A fixing part for fixing the arm device to the base,
    A plurality of joints provided on the arm portion from the fixing portion to the tip unit, and
    A plurality of gas pressure actuators that generate a driving force to drive the plurality of joints by the pressure of the supplied gas, and a plurality of gas pressure actuators.
    A pressure control mechanism for controlling the pressure of the gas supplied to the gas pressure actuator is provided.
    The first joint of the plurality of joints is characterized in that the driving force generated by the first gas pressure actuator among the plurality of gas pressure actuators is transmitted via a timing belt. Arm device.
  2.  前記タイミングベルトは、前記アーム部分のうち上腕部の両端にある第1のプーリ及び第2のプーリに巻かれていることを特徴とする請求項1に記載のアーム装置。 The arm device according to claim 1, wherein the timing belt is wound around a first pulley and a second pulley at both ends of the upper arm portion of the arm portion.
  3.  前記第1の気体圧アクチュエータは、第1の空気圧シリンダと、前記第1の空気圧シリンダに接続されている第1のスライダクランク機構とを有し、
     前記第1のスライダクランク機構は、上腕部の上流側にある第1のプーリを正転及び逆転できるように構成されており、
     前記第1の関節は、前記第1のプーリの回転が前記タイミングベルトを介して伝達された前記第2のプーリの回転に伴い回動されることを特徴とする請求項2に記載のアーム装置。
    The first pneumatic actuator has a first pneumatic cylinder and a first slider crank mechanism connected to the first pneumatic cylinder.
    The first slider crank mechanism is configured to be able to rotate forward and reverse the first pulley on the upstream side of the upper arm portion.
    The arm device according to claim 2, wherein the first joint is rotated along with the rotation of the second pulley transmitted through the timing belt. ..
  4.  前記第1の関節の回転軸に作用する重力トルクを補償する第1の重力補償機構を更に備え、
     前記第1の重力補償機構は、前記第1の気体圧アクチュエータと並列に設けられていることを特徴とする請求項3に記載のアーム装置。
    Further provided with a first gravity compensating mechanism for compensating for the gravitational torque acting on the axis of rotation of the first joint.
    The arm device according to claim 3, wherein the first gravity compensating mechanism is provided in parallel with the first gaseous pressure actuator.
  5.  前記複数の関節は、第2の関節を有し、
     前記複数の気体圧アクチュエータのうち第2の気体圧アクチュエータは、第2の空気圧シリンダと、前記第2の空気圧シリンダに接続されている第2のスライダクランク機構とを有し、
     前記第2のスライダクランク機構は、前記上腕部の前記第1のプーリ側に設けられた前記第2の関節の回転軸を中心に該上腕部を上下方向に回動するように構成されていることを特徴とする請求項2乃至4のいずれか1項に記載のアーム装置。
    The plurality of joints have a second joint and
    The second pneumatic actuator among the plurality of gaseous pressure actuators has a second pneumatic cylinder and a second slider crank mechanism connected to the second pneumatic cylinder.
    The second slider crank mechanism is configured to rotate the upper arm portion in the vertical direction about the rotation axis of the second joint provided on the first pulley side of the upper arm portion. The arm device according to any one of claims 2 to 4, wherein the arm device is characterized by the above.
  6.  前記第2の関節の回転軸に作用する重力トルクを補償する第2の重力補償機構を更に備え、
     前記第2の重力補償機構は、前記上腕部に設けられていることを特徴とする請求項5に記載のアーム装置。
    Further provided with a second gravity compensating mechanism for compensating for the gravitational torque acting on the axis of rotation of the second joint.
    The arm device according to claim 5, wherein the second gravity compensating mechanism is provided on the upper arm portion.
  7.  前記複数の気体圧アクチュエータは、気体の圧力エネルギを回転エネルギに変換するベーンモータを含み、
     前記複数の関節は、土台に対してアーム装置を旋回させる第3の関節を有し、
     前記第3の関節は、前記ベーンモータによって駆動され、
     前記圧力制御機構は、圧力供給源から前記ベーンモータに供給する圧力を制御することを特徴とする請求項1乃至6のいずれか1項に記載のアーム装置。
    The plurality of gas pressure actuators include a vane motor that converts gas pressure energy into rotational energy.
    The plurality of joints have a third joint that swivels the arm device relative to the base.
    The third joint is driven by the vane motor and
    The arm device according to any one of claims 1 to 6, wherein the pressure control mechanism controls the pressure supplied from the pressure supply source to the vane motor.
  8.  前記複数の気体圧アクチュエータ、前記圧力制御機構及び前記ベーンモータは、アーム駆動ユニットとして一体化されており、
     前記アーム駆動ユニットは、前記タイミングベルトと前記固定部との間に配置されていることを特徴とする請求項7に記載のアーム装置。
    The plurality of gas pressure actuators, the pressure control mechanism, and the vane motor are integrated as an arm drive unit.
    The arm device according to claim 7, wherein the arm drive unit is arranged between the timing belt and the fixing portion.
  9.  前記複数の関節は、6自由度の動きを実現できるように構成されており、
     前記タイミングベルトは、前記固定部より下方に配置されていることを特徴とする請求項1乃至8のいずれか1項に記載のアーム装置。
    The plurality of joints are configured to be capable of 6 degrees of freedom of movement.
    The arm device according to any one of claims 1 to 8, wherein the timing belt is arranged below the fixed portion.
PCT/JP2020/027065 2020-07-10 2020-07-10 Arm device WO2022009424A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027065 WO2022009424A1 (en) 2020-07-10 2020-07-10 Arm device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/027065 WO2022009424A1 (en) 2020-07-10 2020-07-10 Arm device

Publications (1)

Publication Number Publication Date
WO2022009424A1 true WO2022009424A1 (en) 2022-01-13

Family

ID=79553228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027065 WO2022009424A1 (en) 2020-07-10 2020-07-10 Arm device

Country Status (1)

Country Link
WO (1) WO2022009424A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018175863A (en) * 2017-04-20 2018-11-15 リバーフィールド株式会社 Arm device
JP2020039434A (en) * 2018-09-06 2020-03-19 リバーフィールド株式会社 Arm apparatus, control method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018175863A (en) * 2017-04-20 2018-11-15 リバーフィールド株式会社 Arm device
JP2020039434A (en) * 2018-09-06 2020-03-19 リバーフィールド株式会社 Arm apparatus, control method, and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IWASA, TOSHIHIRO; TADANO, KOTARO; KAWASHIMA, KENJI: "3A1-G04: Operation System of Movable-Tip Laparoscope using Pneumatic-Driven Robot Arm", PROCEEDINGS OF THE 2014 JSME CONFERENCE ON ROBOTICS AND MECHATRONICS; TOYAMA, JAPAN; MAY 25-29, 2014, 25 May 2014 (2014-05-25) - 29 May 2014 (2014-05-29), JP, pages 1 - 4, XP009534190 *
TOYOYAMA, SHOHEI; ISHIHARA, HISASHI; ASADA, MINORU: "3A1-C05: Lower Body Design of Infant-like Robot using Pneumatic Actuator", PROCEEDINGS OF THE 2014 JSME CONFERENCE ON ROBOTICS AND MECHATRONICS; TOYAMA, JAPAN; MAY 25-29, 2014, 25 May 2014 (2014-05-25) - 29 May 2014 (2014-05-29), JP, pages 1 - 4, XP009534191 *

Similar Documents

Publication Publication Date Title
US20210369360A1 (en) Mechanical manipulator for surgical instruments
Li et al. A robotic system with multichannel flexible parallel manipulators for single port access surgery
Simaan et al. A dexterous system for laryngeal surgery
US9649096B2 (en) Motorized surgical instruments
US9895798B2 (en) Device for movement between an input member and an output member
CN101912307B (en) Offset remote center manipulator
CN105538288B (en) Robot
CN111084661A (en) Operation support device, method of controlling the same, and recording medium
US20130298759A1 (en) Integrated mecatronic structure for portable manipulator assembly
JP2010518972A (en) Improved manipulator
EP3137766A1 (en) Compliant actuator
US20210393350A1 (en) Parallel link device, master-slave system, and medical master-slave system
KR20120061594A (en) Surgical instrument
Ikuta et al. Biomedical micro robots driven by miniature cybernetic actuator
JPWO2019088094A1 (en) Manipulator and surgery support robot system
Orekhov et al. A surgical parallel continuum manipulator with a cable-driven grasper
WO2020044838A1 (en) Parallel wire device, parallel wire system, medical robot operation device, mobile projection device, and mobile imaging device
KR20230058117A (en) Control of Surgical Instruments with Backlash, Friction, and Compliance Under External Load in a Surgical Robotic System
WO2022009424A1 (en) Arm device
JP2007223039A (en) Joint structure body and robot arm
CN113365572B (en) Compact dental robotic system
WO2021192255A1 (en) Surgical tool
JP7463003B1 (en) Arm mechanism
Lowery et al. Design of a Modular Cost-Effective Robot Arm for Increased Dexterity in Laparoscopic Surgery
WO2022249524A1 (en) Arm device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP