WO2022249524A1 - Arm device - Google Patents

Arm device Download PDF

Info

Publication number
WO2022249524A1
WO2022249524A1 PCT/JP2021/048774 JP2021048774W WO2022249524A1 WO 2022249524 A1 WO2022249524 A1 WO 2022249524A1 JP 2021048774 W JP2021048774 W JP 2021048774W WO 2022249524 A1 WO2022249524 A1 WO 2022249524A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
arm device
driving
surgical instrument
axis
Prior art date
Application number
PCT/JP2021/048774
Other languages
French (fr)
Japanese (ja)
Inventor
和仁 若菜
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2022249524A1 publication Critical patent/WO2022249524A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/30Surgical pincettes without pivotal connections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms

Definitions

  • this disclosure relates to an arm device that supports surgical tools used in surgical operations such as ophthalmic surgery and laparoscopic surgery.
  • a surgical robot rigidly supports a surgical tool at the distal end of a robot arm with a multi-link structure. Then, surgery is performed by a robot by inserting a surgical tool into a surgical site such as an abdomen or an eyeball via a mantle tube called a trocar. From the standpoint of minimal invasiveness, it is desirable to reduce the load applied to the insertion site when the surgical instrument is operated or the eye moves during surgery.
  • RCM Remote Center of Motion
  • RCM uses a mechanical structure such as a link to place the center of rotation (that is, the remote center of rotation) at the insertion position of the trocar away from the center of rotation of the driving mechanism such as the motor, thereby allowing the surgical instrument to pivot (fixed point). It is a structure that realizes By applying the RCM mechanism, even if the surgical instrument is operated using the arm during surgery, the surgical instrument always passes through the trocar insertion point, so minimally invasive and safe surgery can be realized.
  • a first drive portion secured to the base portion for axially rotating a first drive shaft For example, a first drive portion secured to the base portion for axially rotating a first drive shaft, a second drive portion secured to the base portion for axially rotating a second drive shaft, and at least one parallel drive portion.
  • An arm portion including a link and supporting a predetermined jig is provided, and the posture of the arm portion is changed by driving the first driving portion and the second driving portion to perform a predetermined rotational motion with respect to the predetermined jig.
  • a supporting arm device has been proposed in which the RCM mechanism is applied (see Patent Document 1).
  • An object of the present disclosure is to provide an arm device that supports a surgical tool and realizes pivotal movement of the surgical tool.
  • the present disclosure has been made in consideration of the above problems, a driving link having rotational degrees of freedom about at least the pitch and yaw axes with respect to the base; a first drive section fixed to the base section for generating motion of the driving link about the pitch axis; a second drive section fixed to the base section for generating motion of the driving link about the yaw axis; It is an arm device comprising
  • the arm device according to the present disclosure further includes a parallel link mechanism that follows rotational motion of the driving link about the pitch axis and about the yaw axis.
  • the first driving section generates motion of the driving link about the pitch axis by means of a slider crank mechanism.
  • the slider-crank mechanism includes a slider that reciprocates in the yaw axis direction and a rod that connects the driving link and the slider.
  • a link rotates around the pitch axis.
  • the second drive unit includes a rotary motor and a speed reduction mechanism that reduces the speed of rotation of the rotary motor and transmits it to the yaw axis.
  • the arm device includes a medical surgical instrument mounted on a link at a distal end of the parallel link mechanism, a third driving section that drives the medical surgical instrument around a roll axis, and the medical It further comprises a fourth driving section that drives the surgical instrument.
  • an arm device that pivots a surgical instrument and realizes rotational motion on two axes without angular interference with each other.
  • FIG. 1 is a diagram showing the configuration of the degrees of freedom of the arm device 100.
  • FIG. 2 shows the arm device 100 with the tip of the driving link 101 at the retracted position.
  • FIG. 3 shows the arm device 100 with the tip of the drive link 101 at the push-out position.
  • FIG. 4 is a diagram showing the configuration of the degrees of freedom of the arm device 400.
  • FIG. 5 shows the arm device 400 with the surgical instrument 430 in the retracted position.
  • FIG. 6 is a diagram showing the arm device 400 with the surgical tool 430 in the pushing position.
  • FIG. 7 is a diagram (perspective view) showing a specific configuration example of the arm device 700. As shown in FIG. FIG. FIG.
  • FIG. 8 is a diagram (side view) showing a specific configuration example of the arm device 700.
  • FIG. 9 is a diagram (front view) showing a specific configuration example of the arm device 700.
  • FIG. 10 is a diagram showing how the RCM link of the arm device 700 is rotated 70 degrees in the pitch axis direction.
  • FIG. 11 is a diagram showing how the RCM link of the arm device 700 is rotated by 0 degrees in the pitch axis direction.
  • FIG. 12 is a diagram showing how the RCM link of the arm device 700 is rotated -50 degrees in the pitch axis direction.
  • FIG. 13 is a diagram showing how the RCM link of arm device 700 is rotated by 75 degrees in the yaw axis direction.
  • FIG. 14 is a diagram showing how the RCM link of the arm device 700 is rotated by 0 degrees in the yaw axis direction.
  • FIG. 15 is a diagram showing how the RCM link of arm device 700 is rotated by -75 degrees in the yaw axis direction.
  • FIG. 16 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis.
  • FIG. 17 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis.
  • FIG. 18 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis.
  • FIG. 19 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis.
  • FIG. 20 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis.
  • FIG. 21 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis.
  • FIG. 22 is a diagram showing how the cable 2201 is wound around the input capstan 742 and the output capstan 743 .
  • FIG. 23 is an enlarged view showing the periphery of the surgical instrument 750 mounted on the second driven link 708. As shown in FIG. FIG. FIG.
  • FIG. 24 is a diagram showing an image of applying the arm device according to the present disclosure to ophthalmic surgery.
  • FIG. 25 is a diagram showing an image of applying the arm device according to the present disclosure to brain surface surgery.
  • FIG. 26 is a diagram showing an image of applying the arm device according to the present disclosure to laparoscopic surgery.
  • FIG. 27 is a diagram showing an example of a parallel link type RCM mechanism.
  • FIG. 28 is a diagram showing an example of a parallel link type RCM mechanism.
  • FIG. 29 is a diagram showing an example of a parallel link type RCM mechanism.
  • FIG. 30 is a diagram showing an example of a parallel link type RCM mechanism.
  • FIG. 31 is a diagram showing an example of a parallel link type RCM mechanism.
  • FIG. 32 is a diagram showing an example of a parallel link type RCM mechanism.
  • . 27 to 32 each illustrate a parallel link type RCM mechanism.
  • the parallel link 2700 shown in FIG. 27 includes two links 2701 and 2702 pivotally supported by the base via joints 2711 and 2712, respectively, and two links 2703 and 2704 arranged parallel to the base, respectively.
  • link 2701 is coupled to links 2703 and 2704 via joints 2713 and 2714, respectively
  • link 2702 is supported by links 2703 and 2704 via joints 2715 and 2716, respectively, so as to be parallel to link 2701.
  • link 2705 is supported via joints 2717 and 2718 at the tips (distal ends) of links 2703 and 2704, respectively, so as to be parallel to links 2701 and 2702.
  • the joints 2713, 2715, 2716, and 2717 are ball joints capable of rotating about three orthogonal axes.
  • the parallel link 2800 shown in FIG. 28 includes two links 2801 and 2802 pivotally supported by the base via joints 2811 and 2812, respectively, and two links 2803 and 2804 arranged parallel to the base, respectively.
  • link 2801 is coupled to links 2803 and 2804 via joints 2813 and 2814, respectively
  • link 2802 is supported by links 2803 and 2804 via joints 2815 and 2816, respectively, so as to be parallel to link 2801.
  • link 2805 is supported through joints 2817 and 2818 at the tips (distal ends) of links 2803 and 2804, respectively, so as to be parallel to links 2801 and 2802.
  • the joints 2813, 2816, and 2817 are ball joints capable of rotating about three orthogonal axes.
  • the parallel link 2900 shown in FIG. 29 consists of two links 2901 and 2902 pivotally supported by the base via joints 2911 and 2912, respectively, and two links 2903 and 2904 arranged parallel to the base, respectively.
  • link 2901 is coupled to link 2904 via joint 2914
  • link 2902 is supported by links 2903 and 2904 via joints 2915 and 2916, respectively, so as to be parallel to link 2901.
  • link 2905 is supported in parallel with links 2901 and 2902 via joints 2917 and 2918 at the tips (distal ends) of links 2903 and 2904, respectively.
  • the joints 2915, 2916, and 2917 are ball joints capable of rotating about three orthogonal axes.
  • the parallel link 3000 shown in FIG. 30 includes two links 3001 and 3002 pivotally supported by the base via joints 3011 and 3012, respectively, and two links 3003 and 3004 arranged parallel to the base, respectively.
  • link 3001 is coupled to link 3003 via joint 3013
  • link 3002 is supported by links 3003 and 3004 via joints 3015 and 3016, respectively, so as to be parallel to link 3001.
  • link 3005 is supported via joints 3017 and 3018 at the tips (distal ends) of links 3003 and 3004, respectively, so as to be parallel to links 3001 and 3002.
  • the joints 3015 and 3017 are ball joints capable of rotating about three orthogonal axes.
  • the parallel link 3100 shown in FIG. 31 includes two links 3101 and 3102 pivotally supported by the base via joints 3111 and 3112, respectively, and two links 3103 and 3104 arranged parallel to the base, respectively.
  • link 3101 is coupled to links 3103 and 3104 via joints 3113 and 3114 respectively
  • link 3102 is supported by link 3103 via joint 3115 so as to be parallel to link 3101 .
  • link 3105 is supported through joints 3117 and 27518 at the tips (distal ends) of links 3103 and 3104, respectively, so as to be parallel to links 3101 and 3102.
  • the joints 3113, 3115, and 3117 are ball joints capable of rotating about three orthogonal axes.
  • the parallel link 3200 shown in FIG. 32 includes two links 3201 and 3202 pivotally supported by the base via joints 3211 and 3212, respectively, and two links 3203 and 3204 arranged parallel to the base, respectively.
  • link 3201 is coupled to links 3203 and 3204 via joints 3213 and 3214 respectively
  • link 3202 is supported by link 3204 via joint 3216 so as to be parallel to link 3201 .
  • link 3205 is supported via joints 3217 and 3218 at the tips (distal ends) of links 3203 and 3204, respectively, so as to be parallel to links 3201 and 3202.
  • the joints 3213, 3216, and 3217 are ball joints capable of rotating about three orthogonal axes.
  • each of the driving link and the driven link is fixed to the fixed link, and the motion of the driving link is transmitted to the driven link via the intermediate link.
  • the driven link drives while maintaining an angle with the driving link. Therefore, if the driven link is an arm, the tip of the arm will be pivoted at the pivot point.
  • the parallel link type RCM mechanism only the structural structure of the mechanism can be achieved without the translational movement due to the posture change of the arm in the two rotational degrees of freedom of pitch and yaw. can achieve pivotal movement of the tip (distal end) of the arm.
  • Such a parallel link type RCM mechanism can simplify the fixed point of the intended pivot motion, and can be expected to have a low inertia. If the arm having the RCM mechanism further includes three translational degrees of freedom to configure the manipulator device, the entire device can be designed compactly.
  • the present disclosure proposes an arm device having a parallel link type RCM mechanism capable of parallel driving without causing the yaw axis and the pitch axis to interfere with each other.
  • the details of the arm device according to the present disclosure will be described in section B and thereafter.
  • FIG. 1 shows a configuration example of degrees of freedom of an arm device 100 to which the present disclosure is applied.
  • the illustrated arm device 100 includes a drive link 101, a first drive section 103 that generates motion of the drive link 101 about the pitch axis, and a second drive section 104 that generates motion of the drive link 101 about the yaw axis.
  • the driving link 101 is coupled to the base portion 102 via a passive joint portion 111 having rotational degrees of freedom about the pitch axis and the yaw axis.
  • Both the first drive section 103 and the second drive section 104 are fixed to the base section 102 corresponding to the mechanical ground.
  • the first driving section 103 generates rotational motion of the driving link 101 about the pitch axis by means of a slider crank mechanism.
  • the slider crank mechanism is composed of a slider 105 that reciprocates in the yaw axis direction and linearly moves in the yaw axis direction, and a rod 106 that connects the slider 105 and the driving link 101 . Both ends of the rod 106 are connected to the slider 105 and the driving link 101 through passive joints 112 and 113 rotatable about the pitch axis.
  • a joint portion 112 at one end of the rod 106 is connected to the driving link 101 at a position separated from the base portion 102 . Therefore, the section from the passive joint portion 111 to the passive joint portion 112 of the driving link 101 corresponds to the crank in the slider crank mechanism.
  • FIG. 2 shows a state in which the slider 105 advances in the yaw axis direction and the leading end of the driving link 101 is at the retracted position.
  • 3 shows a state in which the slider 105 is retracted in the yaw axis direction and the leading end of the driving link 101 is at the pushed position.
  • the rectilinear motion of the slider 105 in the slider-crank mechanism is achieved using, for example, a ball screw, the details of which will be given later.
  • the second driving section 104 generates rotational motion around the yaw axis about the passive joint section 111 of the driving link 101 by the driving force of the rotary motor.
  • a passive joint 114 rotatable about the yaw axis is arranged between the slider 105 and the rod 106 so that the rotational motion of the driving link 101 about the yaw axis is not transmitted to the slider 105 via the rod 106 .
  • the output shaft of the yaw axis rotating motor is drawn so as to coincide with the central axis of the passive joint section 111 .
  • a rotation motor may be arranged to transmit the rotational force to the driving link 101 via a transmission mechanism such as a cable.
  • the arm device 100 shown in FIG. 1 uses the first drive section 103 and the second drive section 104 fixed to the base section 102, respectively, to interfere with the rotation of the driving link 101 on the pitch axis and the yaw axis. can be realized without Since they can rotate in two directions without interfering with each other, the control of the driving link 101 is simplified.
  • FIG. 4 shows an example of the degree-of-freedom configuration of an arm device 200 having a parallel link type RCM mechanism to which the present disclosure is applied.
  • the arm device 400 achieves two-way rotation of the pitch axis and the yaw axis without mutual interference by a driving mechanism similar to that of the arm device 100 shown in FIG.
  • the tip (distal end) of the arm can be pivoted only by the mechanical structure, with two rotational degrees of freedom of pitch and yaw, without translational movement accompanying changes in the posture of the arm.
  • the arm device 400 includes a driving link 401, a first driving section 403 that generates movement of the driving link 401 about the pitch axis, and a second driving section 404 that generates movement of the driving link 401 about the yaw axis.
  • the driving link 401 is coupled to the fixed link 422 via a passive joint section 411 having rotational degrees of freedom about the pitch axis and the yaw axis.
  • Both the first drive section 403 and the second drive section 404 are fixed to a base section 402 corresponding to a mechanical ground.
  • the first drive unit 403 is composed of a slider crank mechanism composed of a slider 405 that reciprocates in the yaw axis direction and linearly moves in the yaw axis direction, and a rod 406 that connects the slider 405 and the drive link 401 .
  • the rectilinear motion of the slider 405 in the slider-crank mechanism is achieved using, for example, a ball screw, the details of which will be given later.
  • Both ends of the rod 406 are connected to the slider 405 and the driving link 401 through passive joints 412 and 413 rotatable about the pitch axis.
  • a joint portion 412 at one end of the rod 406 is connected to the driving link 401 at a position separated from the fixed link 422 .
  • the section from the passive joint portion 411 to the passive joint portion 412 of the driving link 401 corresponds to the crank in the slider crank mechanism.
  • the rectilinear motion of the slider 405 reciprocating in the yaw axis direction is transmitted to the driving link 401 via the rod 406 and converted into rotational motion about the pitch axis about the passive joint 411 of the driving link 401. .
  • the second driving section 404 rotates the fixed link 422 around the yaw axis with respect to the base section 402 by the driving force of the rotary motor.
  • a rotational motion about the yaw axis centering on the passive joint portion 411 of the driving link 401 is generated.
  • a passive joint 414 rotatable about the yaw axis is arranged between the slider 405 and the rod 406 so that the rotational motion of the driving link 401 about the yaw axis is not transmitted to the slider 405 via the rod 406 . .
  • the output shaft of the yaw axis rotation motor is drawn so as to coincide with the central axis of the passive joint portion 411 .
  • a rotation motor may be arranged to transmit rotational force to the driving link 401 via a transmission mechanism such as a cable.
  • the arm device 400 basically has a parallel link type RCM mechanism shown in FIG.
  • the arm device 400 includes parallel links that operate according to the rotational motion of the driving link 401 in the pitch and yaw directions described above.
  • the parallel links comprise a driving link 401 , a first driven link 407 and a second driven link 408 , a first intermediate link 409 and a second intermediate link 410 and a fixed link 422 .
  • the driving link 401 is coupled to the fixed link 422 via a passive joint section 411 having rotational freedom around the pitch axis.
  • the first intermediate link 409 is coupled to the fixed link 422 via a passive joint portion 416 having rotational freedom about the pitch axis.
  • the fixed link 422 is rotated about the yaw axis with respect to the base portion 402 by the second drive portion 404 .
  • the driving link 401, the first driven link 407 and the second driven link 408 are connected by the first intermediate link 409 and the second intermediate link 410 so as to maintain their parallel relationship. It is
  • the driving link 401 and the first driven link 407 are connected at one end by a fixed link 422, and are also connected by a first intermediate link 409 so as to maintain a parallel relationship.
  • the driving link 401 and the first intermediate link 409 are coupled via a passive joint 418 having rotational freedom about the pitch axis.
  • the first driven link 407 and the first intermediate link 409 are coupled via a passive joint portion 417 having rotational freedom around the pitch axis.
  • the driving link 401 and the second driven link 408 are connected by a first intermediate link 409 and a second intermediate link 410 so as to maintain a parallel relationship.
  • the driving link 401 and the first intermediate link 409 are coupled via a passive joint 418 having rotational freedom about the pitch axis, and the driving link 401 and the second intermediate link 410 are coupled via the rotational freedom about the pitch axis. is coupled via a passive joint 419 with .
  • the second driven link 408 and the first intermediate link 409 are coupled via a passive joint 420 having rotational freedom about the pitch axis, and the second driven link 408 and the second intermediate link 410 are connected to the pitch axis. It is connected via a passive joint 421 having rotational freedom around the axis.
  • the reciprocating motion of slider 405 is transmitted to driving link 401 via rod 406 .
  • the driving link 401 rotates about the pitch axis around the passive joint portion 411 .
  • the rotational motion of the driving link 401 is transmitted to the first driven link 407 by the first intermediate link 409 .
  • the first driven link 407 rotates about the pitch axis around the driven joint portion 416 while maintaining the angle with the driving link 401 .
  • the rotational motion of the driving link 401 is transmitted to the second driven link 408 by the first intermediate link 409 and the second intermediate link 410, and the second driven link 408 maintains an angle with the driving link 401. works while
  • the tip of the second driven link 408 is a medical instrument 430 such as forceps.
  • a medical instrument 430 such as forceps.
  • the RCM can be placed at the intersection of a straight line (or a straight line connecting the passive joints 411 and 416) to achieve pivotal movement of the surgical tool 430.
  • FIG. 5 shows a state in which the slider 405 advances in the yaw axis direction and the surgical instrument 430 at the tip of the driving link 401 and the second driven link 408 is in the retracted position.
  • FIG. 6 also shows a state in which the slider 405 is retracted in the yaw axis direction and the surgical instrument 430 at the distal end of the driving link 401 and the driven link 408 is at the pushing position.
  • 5 and 6 also show that the RCM is arranged at the tip of the second driven link 408 and the surgical instrument 403 is pivoting.
  • the driving link 401, the first driven link 407 and the second driven link 408 are all yawed by the same angle. Rotate around an axis. Rotation in the two directions of pitch and yaw in parallel links, including motive link 401, is not interfered with. Therefore, even when rotating about the yaw axis, the RCM is arranged at the tip of the second driven link 408 and the surgical instrument 403 pivots.
  • the rotation of the driving link 401 about the pitch axis and the rotation about the yaw axis can be driven in parallel.
  • the second driven link 408 is maintained parallel to the driving link 401 by the first intermediate link 409 and the second intermediate link 410, and rotates about the pitch axis and the yaw axis following the driving link 401.
  • the main feature of the RCM mechanism in the arm device 400 is that the surgical instrument 430 mounted at the tip of the second driven link 408 can be rotated about the pitch axis and the rotation about the yaw axis in parallel. The point is that the two axes do not angularly interfere with each other.
  • the mechanical points for realizing this parallel drive are summarized below. Note that these points also apply to the arm device 100 shown in FIGS.
  • the drive link 401 is used as a crank in a slider crank mechanism, and the drive link 401 is driven around the pitch axis by the reciprocating motion of the slider 405 .
  • the slider 405 of the slider crank mechanism reciprocates along the yaw axis.
  • the rod 406 connecting the slider 405 and the crank (driving link 401) is rotatable around the yaw axis.
  • the arm device 400 shown in FIGS. 4 to 6 has a rotational degree of freedom to rotate the surgical instrument 403 around the roll axis and a degree of freedom to drive the surgical instrument 403 (for example, the surgical instrument 403 can be opened and closed like forceps). If it is operable, it may be further provided with a degree of freedom of opening and closing). In this case, the arm device 400 realizes a total of four degrees of freedom of operation of the surgical tool, including the degrees of freedom about the pitch axis and the yaw axis. Furthermore, if the arm device 400 is mounted on an XYZ stage capable of 3-axis translational motion, a parallel link capable of 3-axis rotational motion, or the like, a total of 7 degrees of freedom of operation of the surgical instrument can be realized.
  • the parallel link type RCM structure to which the present disclosure is applicable is not limited to the configuration example shown in FIG.
  • two actuators, each located at the base are used, one of which uses a slider-crank mechanism to produce motion about the pitch axis of the driving link.
  • a parallel link type RCM mechanism capable of parallel driving without mutual interference between the yaw axis and the pitch axis is realized. can be realized.
  • FIG. 7 to 9 show specific configuration examples of an arm device 700 to which the present disclosure is applied.
  • 7 is a perspective view of the arm device 700
  • FIG. 8 is a side view of the arm device 700
  • FIG. 9 is a front view of the arm device.
  • the arm device 700 basically has the same degree-of-freedom configuration as the arm device 400 described in Section C above.
  • the arm device 700 includes a driving link 701, a first driving section that generates rotational movement of the driving link 701 about the pitch axis, and a second driving section that generates rotational movement of the driving link 701 about the yaw axis.
  • the driving link 701 operates as a driving link of an RCM link, which will be described later, but is connected to a fixed link 722 of the RCM link via a passive joint portion 711 having rotational degrees of freedom around the pitch axis and the yaw axis.
  • both the first drive section and the second drive section are fixed to the RCM base section 702 corresponding to the mechanical ground.
  • the first drive section has a slider crank mechanism composed of a slider 705 that reciprocates in the yaw axis direction and linearly moves in the yaw axis direction, and a rod 706 that connects the slider 705 and the drive link 701 . Both ends of the rod 706 are connected to the slider 705 and the driving link 701 through passive joints 712 and 713 rotatable about the pitch axis. A passive joint portion 712 at one end of the rod 706 connects the driving link 701 and the rod 706 at a position separated from the fixed link 722 . Therefore, the section from the passive joint portion 711 to the passive joint portion 712 of the driving link 701 corresponds to the crank in the slider crank mechanism.
  • the rectilinear motion of the slider 705 reciprocating in the yaw axis direction is transmitted to the driving link 701 via the rod 706 and converted into rotational motion about the pitch axis about the passive joint 711 of the driving link 701. .
  • the linear motion of the slider 705 in the slider crank mechanism is realized using a ball screw mechanism.
  • the ball screw mechanism shown in FIG. It has a spline nut 733 screwed into the ball screw groove, and a ball spline rod 734 arranged parallel to the ball screw shaft 731 and inserted through the spline nut 733 .
  • the ball spline rod 734 is arranged so as to match the yaw axis of the arm device 700, and is supported by the RCM base portion 702 so as to be rotatable around the yaw axis.
  • the fixed link 722 of the RCM link is connected to the tip of the ball spline rod 734 and is rotatable around the yaw axis together with the ball spline rod 734 .
  • a spline nut 733 is used as the slider 705 in the slider crank mechanism.
  • a ball spline rod 734 is inserted through the spline nut 733 .
  • the ball spline rod 734 is rotatable around the yaw axis with respect to the spline nut 733 . Therefore, the slider 705 is held in a fixed upward orientation by the ball spline rod 734 at any position in the yaw axis direction.
  • the spline nut 733 as the slider 705 and the rod 706 of the slider crank mechanism are connected via a bearing portion 735 made of a ball bearing that can rotate smoothly around the yaw axis. Therefore, since the rod 706 is rotatably supported by the slider 705 via the bearing portion 735 about the yaw axis, the rotation of the drive link 701 about the yaw axis is not transmitted to the slider 705 .
  • the bearing portion 735 corresponds to the passive joint portion 414 in FIG.
  • the second driving section includes a yaw axis motor 741 arranged below the RCM base section 702, a cable reducer input capstan (hereinafter simply referred to as "input capstan”) 742, and a cable reducer output capstan. It consists of a cable reducer consisting of a stun (hereafter simply “output capstan”) 743 .
  • the input capstan 742 is attached to the output shaft of the yaw axis motor 741 and rotates together with the output shaft of the yaw axis motor 741 .
  • the output capstan 743 is coupled to the tip of the ball spline rod 734 and rotates together with the ball spline rod 734 .
  • the ball spline rod 734 is arranged so as to match the yaw axis of the arm device 700 (described above).
  • a power transmission cable is wound around the input capstan 742 and the output capstan 743 . Therefore, the rotational motion of the yaw-axis motor 741 is decelerated through the cable speed reducer and transmitted to the fixed link 722 at the tip of the ball spline rod 734 to generate the rotational motion of the drive link 701 around the yaw axis.
  • the main feature of the link mechanism in the arm device 700 is that the rotation of the driving link 701 about the pitch axis and the rotation about the yaw axis can be driven in parallel, and these two axes do not interfere angularly with each other.
  • the mechanical points for realizing this parallel drive are summarized below.
  • the driving link 701 is used as a crank in a slider crank mechanism, and the driving link 701 is driven around the pitch axis by the reciprocating motion of the slider 705 . Specifically, when the pitch shaft motor 732 rotates, the ball screw shaft 731 connected to its output shaft also rotates. By transmitting, a rotational motion of the driving link 701 around the pitch axis is generated.
  • the slider 705 of the slider crank mechanism reciprocates along the yaw axis. Specifically, by using a ball spline rod 734 for the yaw axis and a spline nut 733 as the slider 705 of the slider crank mechanism, reciprocating motion in the yaw axis direction is realized.
  • the rod 706 connecting the slider 405 and the crank (driving link 401) is rotatable around the yaw axis.
  • the spline nut 733 (slider 705) and the rod 706 of the slider crank mechanism are connected via a bearing portion 735 composed of a ball bearing capable of smoothly rotating about the yaw axis.
  • the rod 706 can transmit the thrust of the slider 705 in the pitch axis direction to the driving link 701 without being affected by the posture of the slider 701 in the yaw axis direction.
  • the shape of the RCM link so as not to interfere with the movement of the rod 706 to transmit the thrust in the pitch axis direction to the driving link 701 as much as possible, it is possible to achieve a wide range of motion of the pitch axis, for example ⁇ 60 degrees.
  • the yaw axis motion is generated by decelerating the rotation of the yaw axis motor 741 with the cable speed reducer to rotate the ball spline rod 734 .
  • FIG. 22 shows how the cable 2201 is wrapped around the input capstan 742 and the output capstan 743 .
  • the cable deceleration structure combines complete backlashlessness with high backdrivability, making it a common practice in bilateral control systems that require precise position and force control.
  • the cable speed reducer is composed of an input capstan 742 coupled to the output shaft of the yaw axis motor 741 and an output capstan 743 coupled to the tip of the ball spline rod 734 .
  • FIGS. 7 to 9 by arranging the cable speed reducer at the tip of the RCM base portion 702, a wide yaw axis movable range of ⁇ 75 degrees, for example, can be realized.
  • the first drive section that generates linear motion of the slider crank mechanism is composed of a rotary motor (pitch axis motor 732) and a ball screw mechanism.
  • a rotary motor pitch axis motor 732
  • a ball screw mechanism a rotary motor that controls the slider crank mechanism.
  • any one of the following means (1) to (3) may be used to generate linear motion of the slider 705 .
  • a cable speed reducer is used as a mechanism for transmitting the rotational motion of the yaw axis motor 741 to the ball spline rod 734 as the yaw axis (for example, FIG. 22 ), but not limited to.
  • the rotation of the yaw axis motor 741 may be decelerated and transmitted to the ball spline rod 734 using any one of the following means (1) to (6), or the ball spline rod 734 may be driven directly. good.
  • Reduction structure using spur gear (2) Reduction structure using belt (3) Direct drive using high-output electromagnetic motor (4) Reduction structure using strain wave gear, planetary gear, or traction drive (5) Ultrasonic motor (6) Electrostatic motor
  • the arm device 700 basically has a parallel link type RCM mechanism shown in FIG.
  • the arm device 700 includes parallel links that operate according to the pitch and yaw rotational movements of the driving link 701 described above.
  • the parallel links comprise a driving link 701 , a first driven link 707 and a second driven link 708 , a first intermediate link 709 and a second intermediate link 710 and a fixed link 722 .
  • the first driven link 707 has a U-shape through which the rod 706 is inserted.
  • a rod 706 passes through the inside of the U-shape of the first driven link 707 to connect between the slider 705 and the driving link 701 .
  • the second driven link 708 at the distal end is a drive mechanism for supporting the surgical instrument 750, rotating the surgical instrument 750 around the roll axis, and opening and closing the surgical instrument (such as forceps) 750.
  • the details of this point will be given later.
  • the driving link 701 is coupled to the fixed link 722 via a passive joint section 711 having rotational freedom around the pitch axis.
  • the first intermediate link 709 is coupled to the fixed link 722 via a passive joint 716 having rotational freedom about the pitch axis.
  • the fixed link 722 rotates around the yaw axis with respect to the RCM base portion 702 by being driven by the yaw axis motor 741 .
  • the driving link 701 and the first driven link 707 and the second driven link 708 are connected by a first intermediate link 709 and a second intermediate link 710 so as to maintain a parallel relationship with each other. .
  • the driving link 701 and the first driven link 707 are connected at one end by a fixed link 722, and are also connected by a first intermediate link 709 so as to maintain a parallel relationship.
  • the driving link 701 and the first intermediate link 709 are coupled via a passive joint 718 having rotational freedom about the pitch axis.
  • the first driven link 707 and the first intermediate link 709 are coupled via a passive joint portion 717 having rotational freedom around the pitch axis.
  • the driving link 701 and the second driven link 708 are connected by a first intermediate link 709 and a second intermediate link 710 so as to maintain a parallel relationship.
  • the driving link 701 and the first intermediate link 709 are coupled via a passive joint 718 having rotational freedom about the pitch axis, and the driving link 701 and the second intermediate link 710 are coupled via the rotational freedom about the pitch axis. is coupled via a passive joint 719 with .
  • the second driven link 708 and the first intermediate link 709 are coupled via a passive joint 720 having rotational freedom about the pitch axis, and the second driven link 708 and the second intermediate link 710 are connected to the pitch axis. It is connected via a passive joint 721 having rotational freedom around the axis.
  • the reciprocating motion of slider 705 is transmitted to driving link 701 via rod 706 .
  • the driving link 701 rotates around the pitch axis with the passive joint portion 711 as the center.
  • the rotational motion of the driving 7-link 401 is transmitted to the first driven link 707 by the first intermediate link 709 .
  • the first driven link 707 rotates about the pitch axis around the driven joint portion 716 while maintaining the angle with the driving link 701 .
  • the rotational motion of driving link 701 is transmitted to second driven link 708 by first intermediate link 709 and second intermediate link 710, and second driven link 708 maintains an angle with driving link 701. works while
  • the tip of the second driven link 708 is a medical instrument 750 such as forceps.
  • a medical instrument 750 such as forceps.
  • the longitudinal direction (or roll axis) of the surgical instrument 705 and the second A RCM can be placed at the intersection of the tip of the driven link 708 and the straight line (or yaw axis) extending the fixed link 722 to provide pivoting motion of the surgical tool 750 .
  • the arm device 700 can drive the rotation of the drive link 701 about the pitch axis and the rotation about the yaw axis in parallel, and these two axes do not interfere with each other. Therefore, the RCM link mechanism supporting the surgical instrument 750 at the distal end of the arm device 700 can be driven in parallel in two directions of the pitch axis and the yaw axis, and these two axes do not interfere angularly with each other.
  • FIG. 10 to 12 show how the arm device 700 drives the RCM link in the pitch axis direction by driving the pitch axis motor 732.
  • FIG. 10 shows the RCM link rotated 70 degrees along the pitch axis
  • FIG. 11 shows the RCM link rotated 0 degrees along the pitch axis
  • FIG. It shows a state rotated by -50 degrees in the direction.
  • the first driven link 707 is configured in a U-shape (see above and FIG. 7), so that the rod 706 does not interfere with the movement of the thrust in the pitch axis direction to the driving link 701 as much as possible.
  • By designing the shape it is possible to realize a wide range of motion of the pitch axis of ⁇ 60 degrees, for example.
  • FIGS. 13 to 15 show how the arm device 700 drives the RCM link in the yaw axis direction by driving the yaw axis motor 741.
  • FIG. 13 shows the RC link rotated 75 degrees along the yaw axis
  • FIG. 14 shows the RC link rotated 0 degrees along the yaw axis
  • FIG. It shows a state rotated -75 degrees in the direction.
  • FIGS. 16 to 21 show in time sequence how the arm device 700 simultaneously drives the pitch axis motor 732 and the yaw axis motor 741 to drive the RCM link in parallel in the two directions of the pitch axis and the yaw axis. is shown.
  • the RCM link of the arm device 700 is configured so that the pitch axis and the yaw axis do not angularly interfere with each other. It should also be understood from FIGS. 16-21 that the RCM link drives in parallel in two directions, the pitch and yaw axes, without angular interference.
  • a second driven link 708 at the distal end supports a surgical instrument 750 and is for driving a rotary drive mechanism for rotating the surgical instrument 750 about the roll axis and a movable portion of the surgical instrument (such as forceps) 750 . Equipped with a surgical instrument drive mechanism.
  • FIG. 23 shows an enlarged view of the surgical instrument 750 mounted on the second driven link 708 .
  • a surgical tool unit 2301 is mounted on the front side of the second driven link 708 at the distal end of the arm device 700.
  • FIG. A surgical tool 750 is replaceably attached to the lower end of the surgical tool unit 2301 .
  • a hollow cylindrical surgical instrument shaft 2303 including a surgical instrument 750 at its distal end is inserted into a receiving portion at the lower end of the surgical instrument unit 2301 .
  • the surgical instrument shaft 2303 is attached to the surgical instrument unit 2301 via a bearing 2321 so as to be rotatable about the roll axis.
  • the surgical instrument shaft 2303 is arranged so that its longitudinal direction coincides with the roll axis of the arm device 700 .
  • the surgical instrument 750 at the distal end of the surgical instrument shaft 2302 serves as the RCM.
  • the surgical instrument 750 is, for example, forceps, scissors, forceps, bipolar forceps, clip forceps, and a camera (endoscope, etc.).
  • a surgical tool driving actuator 2302 is mounted on the upper end of the surgical tool unit 2301 . If the surgical instrument 750 has a movable portion such as forceps that can be opened and closed, the surgical instrument 750 can be operated by the driving force generated by the surgical instrument driving actuator 2302 .
  • the surgical instrument driving actuator 2302 is composed of a rotary motor, and a slide mechanism using a lead screw 2304 converts the rotary motion of this rotary motor into a linear motion in the roll axis direction.
  • the upper end of a transmission rod 2330 passing through the hollow surgical instrument shaft 2303 is fixed to the nut of the lead screw 2304, and the linear motion transmitted by the transmission rod 2330 drives the surgical instrument 750 such as opening and closing forceps. can be realized.
  • the surgical instrument driving actuator 2302 may be a linear actuator.
  • the lead screw 2304 is composed of a lead screw that is axially driven and a nut that is screwed onto the lead screw and linearly moves as the lead screw is axially rotated, but details are omitted in FIG. 23 for the sake of simplification. do.
  • the forceps is configured by attaching a pair of jaw members 2331 and 2332 having substantially symmetrical shapes so as to be rotatable around an opening/closing shaft 2333 .
  • Each of the jaw members 2331 and 2332 has elongated cam slots 2334 and 2335 inclined with respect to the roll axis (or the longitudinal axis of the surgical instrument shaft 2303) on the root side (proximal end side) of the opening/closing axis 2333. respectively.
  • Each cam slot 2334 and 2335 receives a small cylindrical pin 2336 projecting near the distal end of transmission rod 2330 .
  • each cam slot 2334 and 2335 converts the translational motion of pin 2336 into rotational motion of respective jaw members 2331 and 2332 about opening and closing axis 2333 (see, eg, US Pat. No. 5,400,000).
  • the pin 2336 moves distally, the forceps close and when the pin 2336 moves proximally, the forceps open.
  • a roll shaft motor 2311 for rotationally driving the surgical instrument 750 around the roll shaft is mounted on the back side of the second driven link 708.
  • the roll shaft motor 2311 is arranged so that its output shaft is parallel to the roll shaft and separated from the roll shaft.
  • the surgical instrument shaft 2303 is attached to the surgical instrument unit 2301 via a bearing 2321 so as to be rotatable around the roll axis (described above).
  • the rotational force of the roll shaft motor 2311 is transmitted to the capstan attached to the surgical instrument shaft 2303 via a timing belt 2312 wound around the output shaft capstan of the roll shaft motor 2311 , thereby rotating the surgical instrument 750 . It can be rotated around the roll axis.
  • Operation of the surgical instrument 750 by the surgical instrument drive actuator 2302 (opening and closing forceps, etc.) and rotation of the surgical instrument 750 in the roll direction by the roll shaft motor 2311 can be driven in parallel without mutual interference.
  • the mechanical points for achieving this interference-free parallel drive are summarized below.
  • the forceps are opened and closed by converting the linear motion of the surgical instrument driving actuator 2302 into the rotational motion of each jaw member by a slider crank system.
  • the linear motion of the surgical instrument driving actuator 2302 is performed in the roll axis direction.
  • the transmission rod (or the surgical instrument shaft 2303 through which the transmission rod is inserted) that transmits the linear motion of the surgical instrument driving actuator 2302 is freely rotatable around the roll axis.
  • Operation of the surgical instrument 750 by the surgical instrument drive actuator 2302 (opening and closing of forceps, etc.) and rotation of the surgical instrument 750 in the roll direction by the roll shaft motor 2311 are driven in parallel without mutual interference, thereby rolling the surgical instrument 750. Infinite rotation can be achieved by eliminating restrictions on the range of motion of the axis. Further, when the surgical instrument 750 is forceps, the opening angle of the forceps is, for example, 20 degrees.
  • Reference number 2340 in FIG. 23 indicates a force sensor.
  • a force sensor 2340 is mounted on the second driven link 708 and used to measure the external force that the surgical instrument 750 receives from the surgical site or the like.
  • the force sensor 2340 is composed of a strain-generating body and a strain detection element attached to the surface of the strain-generating body.
  • the strain-generating body is fixed to the second driven link 708, but may be a fir with a portion of the second driven link 708 having a strain-generating body structure.
  • the strain detection element may be, for example, a strain gauge whose electric resistance value changes according to the amount of strain, or an FBG (Fiber Bragg Gratings) that changes the wavelength of light transmitted through the optical fiber according to the amount of strain.
  • the force sensor 2340 is a 6DoF (Degrees of Freedom) force sensor capable of measuring external forces and moments in three directions, for example, configured by arranging one set of strain detection elements in each of the three axial directions of the strain body. may
  • the arm device 700 it is possible to reduce the weight, achieve high rigidity, and achieve parallel drive and a wide range of motion at the same time.
  • the arm device has a structure that supports the surgical instrument at the distal end by the parallel link type RCM mechanism, so the surgical instrument or the trocar through which the surgical instrument is inserted Since the surgical instrument can be pivoted around the insertion position as a pivot point, minimally invasive surgery can be achieved. Further, according to the arm device according to the present disclosure, the parallel driving of the yaw axis and the pitch axis in the RCM link, and the parallel driving of the roll axis and the forceps opening/closing axis of the surgical instrument supported at the distal end of the RCM link are controlled by inter-axis interference. Since the control model is simple, the inertia of each output shaft can be reduced.
  • FIG. 24 shows an image of applying the arm device according to the present disclosure to ophthalmic surgery.
  • the arm device 2400 is depicted as having a degree-of-freedom configuration as shown in FIGS.
  • the arm device 2400 may be mounted on a device capable of adjusting its three-dimensional position and orientation, such as an XYZ stage or parallel link (none of which is shown).
  • a surgical instrument 2401 supported at the distal end of an arm device 2400 is inserted into the eyeball via a trocar 2402 stuck into the surface of the eyeball 2410, and the tip of the surgical instrument 2401 is It reaches near the fundus (retina).
  • the arm device 2400 is capable of pivoting with the insertion position of the trocar 2402 through which the surgical instrument 2401 is inserted as the pivot point. Therefore, when the surgical instrument 2401 is driven in parallel in two directions of pitch and yaw, the load acting on the eyeball at the insertion position of the trocar 2402 can be suppressed, and minimally invasive ophthalmic surgery can be realized.
  • FIG. 25 shows an image of applying the arm device according to the present disclosure to brain surface surgery.
  • the arm device 2500 is depicted as having a degree-of-freedom configuration as shown in FIGS.
  • the arm device 2500 may be mounted on a device capable of adjusting its three-dimensional position and orientation, such as an XYZ stage or parallel link (none of which is shown).
  • the tip of surgical instrument 2501 supported by the distal end of arm device 2500 abuts brain surface 2510 .
  • the arm device 2500 is capable of pivoting the surgical tool with the tip of the surgical tool 2501 as a pivot point.
  • the surgical instrument 2501 when the surgical instrument 2501 is driven in parallel in two directions of pitch and yaw, the distal end of the surgical instrument 2501 does not move and damage the brain surface 2510 other than the trunk, thereby realizing minimally invasive brain surface surgery. can be done. Although illustration is omitted, the same can be said when the arm device according to the present disclosure is applied to body surface surgery.
  • FIG. 26 shows an image of applying the arm device according to the present disclosure to laparoscopic surgery.
  • the arm device 2600 is depicted as having a degree-of-freedom configuration as shown in FIGS.
  • the arm device 2600 may be mounted on a device capable of adjusting its three-dimensional position and orientation, such as an XYZ stage or parallel link (none of which is shown).
  • a surgical instrument 2601 supported at the distal end of an arm device 2600 is inserted into an abdominal cavity 2610 via a trocar 2602 inserted into the patient's abdomen, and the tip of the surgical instrument 2601 is It reaches the target organ.
  • the arm device 2600 is capable of pivoting with the insertion position of the trocar 2602 through which the surgical instrument 2601 is inserted as the pivot point. Therefore, when the surgical instrument 2601 is driven in parallel in two directions of pitch and yaw, the load acting on the abdomen at the insertion position of the trocar 2602 can be suppressed, and minimally invasive laparoscopic surgery can be realized.
  • the arm device according to the present disclosure supports a surgical instrument at its distal end, is applied to eye surgery, brain surface surgery, body surface surgery, laparoscopic surgery, etc., and uses a parallel drive RCM mechanism to perform minimally invasive surgery.
  • the arm device according to the present disclosure supports, for example, forceps, scissors, scissors, bipolar forceps, clip forceps, etc. as surgical tools, and pivots the surgical tool using the insertion position of the trocar, the brain surface, or the body surface as a pivot point (RCM). Since it can be moved, minimally invasive surgery can be achieved.
  • RCM pivot point
  • the present disclosure can also be applied to various industrial fields other than medicine.
  • a driving link having rotational degrees of freedom about at least the pitch axis and the yaw axis with respect to the base; a first drive section fixed to the base section for generating motion of the driving link about the pitch axis; a second drive section fixed to the base section for generating motion of the driving link about the yaw axis;
  • An arm device comprising
  • the first driving section generates motion of the driving link about the pitch axis by a slider crank mechanism.
  • the slider crank mechanism is composed of a slider that reciprocates in the yaw axis direction and a rod that connects the driving link and the slider, and the reciprocating motion of the slider is transmitted through the rod. , the driving link rotates about the pitch axis;
  • the rod is connected to the slider via a bearing rotatable about the yaw axis;
  • the first drive unit includes a rotary motor and a ball screw mechanism that converts rotary motion of the rotary motor into linear motion of the slider in the yaw axis direction.
  • the arm device according to any one of (3) to (5) above.
  • the second drive unit includes a rotary motor and a speed reduction mechanism that reduces rotation of the rotary motor and transmits the reduced speed to the yaw axis.
  • the arm device according to any one of (1) to (6) above.
  • the speed reduction mechanism includes an input capstan attached to the output shaft of the rotary motor, an output capstan attached to the yaw shaft, and a rotational force wound around the input capstan and the output capstan.
  • (11) further comprising a third driving unit that drives the medical surgical instrument around a roll axis;
  • the third drive unit includes a rotary motor and a transmission unit that transmits rotation of the rotary motor to the medical surgical instrument.
  • the medical surgical instrument is forceps, scissors, forceps, bipolar forceps, clip forceps, or a camera.
  • the arm device according to any one of (10) to (12) above.
  • the medical surgical tool is forceps or other surgical tool that can be opened and closed; Further comprising a fourth driving unit for driving the medical surgical instrument,
  • the arm device according to any one of (10) to (13) above.
  • the fourth drive unit includes a rotary motor and a lead screw that converts rotary motion of the rotary motor into linear motion in the roll axial direction, driving the medical surgical instrument by linear motion of a transmission rod coupled to a nut of the lead screw;
  • (16) further comprising a force sensor mounted on the link at the distal end of the parallel link mechanism and detecting an external force acting on the medical surgical instrument;
  • the arm device according to any one of (10) to (15) above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Manipulator (AREA)

Abstract

Provided is an arm device that supports a surgical instrument for surgery, and achieves a pivot motion of the surgical instrument. The arm device comprises: a driving link having a degree of freedom in rotation around at least a pitch axis and a yaw axis with respect to a base unit; a first drive unit that is fixed to the base unit, and generates a movement of the driving link around the pitch axis; a second drive unit that is fixed to the base unit, and generates a movement of the driving link around the yaw axis; and further a parallel link mechanism that moves following the rotation motions of the driving link around the pitch axis and around the yaw axis.

Description

アーム装置arm device
 本明細書で開示する技術(以下、「本開示」とする)は、例えば眼科手術や腹腔鏡手術などの外科手術に使用される術具を支持するアーム装置に関する。 The technology disclosed in this specification (hereinafter referred to as "this disclosure") relates to an arm device that supports surgical tools used in surgical operations such as ophthalmic surgery and laparoscopic surgery.
 最近では、医療分野にもロボティックス技術が導入され、マスタスレーブ方式の手術システムを利用して安全且つ正確に手術を遂行するようになってきている(例えば、特許文献1を参照のこと)。手術システムにロボティックス技術を取り入れることによって、術者の手の振戦の抑止、操作支援や術者間の技量の相違の吸収、遠隔からの手術の実施などが可能になる。 Recently, robotics technology has been introduced in the medical field, and surgical operations are being performed safely and accurately using a master-slave surgical system (see, for example, Patent Document 1). . By incorporating robotics technology into the surgical system, it becomes possible to suppress the tremor of the operator's hand, assist in operation, absorb differences in skill between operators, and perform surgery remotely.
 一般に、手術ロボットは、多リンク構造のロボットアームの遠位端で術具が剛に支持されている。そして、トロッカーと呼ばれる外套管経由で腹部や眼球などの術部に術具を刺入して、ロボットによる手術が実施される。手術中、術具を操作したときや眼球が動いたときに刺入部に加わる負荷を低減することが低侵襲の観点で望ましい。 In general, a surgical robot rigidly supports a surgical tool at the distal end of a robot arm with a multi-link structure. Then, surgery is performed by a robot by inserting a surgical tool into a surgical site such as an abdomen or an eyeball via a mantle tube called a trocar. From the standpoint of minimal invasiveness, it is desirable to reduce the load applied to the insertion site when the surgical instrument is operated or the eye moves during surgery.
 このため、RCM(Remote Center of Motion)機構を有する手術ロボットが導入されている。RCMは、リンクなどのメカニカル構造によって、モータなどの駆動機構の回転中心から離れたトロッカーの刺入位置に回転中心(すなわち、遠隔回転中心)を配置して、術具をピボット(不動点)運動を実現する構造である。RCM機構を適用することによって、手術中にアームを使って術具を操作しても、術具はトロッカー刺入点を常に通るので、低侵襲で安全な手術を実現することができる。 For this reason, surgical robots with an RCM (Remote Center of Motion) mechanism have been introduced. RCM uses a mechanical structure such as a link to place the center of rotation (that is, the remote center of rotation) at the insertion position of the trocar away from the center of rotation of the driving mechanism such as the motor, thereby allowing the surgical instrument to pivot (fixed point). It is a structure that realizes By applying the RCM mechanism, even if the surgical instrument is operated using the arm during surgery, the surgical instrument always passes through the trocar insertion point, so minimally invasive and safe surgery can be realized.
 例えば、ベース部に固定され、第1の駆動軸を軸回転させる第1の駆動部と、ベース部に固定され、第2の駆動軸を軸回転させる第2の駆動部と、少なくとも1つの平行リンクを含み、所定の治具を支持するアーム部を備え、第1の駆動部及び第2の駆動部の駆動によりアーム部の姿勢を変化させ、所定の治具に対して所定の回転運動を行い、RCM機構を適用した支持アーム装置が提案されている(特許文献1を参照のこと)。 For example, a first drive portion secured to the base portion for axially rotating a first drive shaft, a second drive portion secured to the base portion for axially rotating a second drive shaft, and at least one parallel drive portion. An arm portion including a link and supporting a predetermined jig is provided, and the posture of the arm portion is changed by driving the first driving portion and the second driving portion to perform a predetermined rotational motion with respect to the predetermined jig. A supporting arm device has been proposed in which the RCM mechanism is applied (see Patent Document 1).
WO2019/077755WO2019/077755 WO2019/054073、図18WO2019/054073, Fig. 18
 本開示の目的は、外科手術用の術具を支持し、術具のピボット運動を実現するアーム装置を提供することにある。 An object of the present disclosure is to provide an arm device that supports a surgical tool and realizes pivotal movement of the surgical tool.
 本開示は、上記課題を参酌してなされたものであり、
 ベース部に対し少なくともピッチ軸及びヨー軸回りに回転自由度を持つ原動リンクと、
 前記ベース部に固定され、前記原動リンクの前記ピッチ軸回りの動作を生成する第1の駆動部と、
 前記ベース部に固定され、前記原動リンクの前記ヨー軸回りの動作を生成する第2の駆動部と、
を具備するアーム装置である。本開示に係るアーム装置は、前記原動リンクの前記ピッチ軸回り及び前記ヨー軸回りの回転運動に従動する平行リンク機構をさらに備える。
The present disclosure has been made in consideration of the above problems,
a driving link having rotational degrees of freedom about at least the pitch and yaw axes with respect to the base;
a first drive section fixed to the base section for generating motion of the driving link about the pitch axis;
a second drive section fixed to the base section for generating motion of the driving link about the yaw axis;
It is an arm device comprising The arm device according to the present disclosure further includes a parallel link mechanism that follows rotational motion of the driving link about the pitch axis and about the yaw axis.
 前記第1の駆動部は、スライダクランク機構によって前記原動リンクの前記ピッチ軸回りの動作を生成する。前記スライダクランク機構は、前記ヨー軸方向に往復運動するスライダと、前記原動リンクと前記スライダ間を接続するロッドで構成され、前記スライダの前記往復運動が前記ロッドを介して伝達されて、前記原動リンクが前記ピッチ軸回りに回転運動する。 The first driving section generates motion of the driving link about the pitch axis by means of a slider crank mechanism. The slider-crank mechanism includes a slider that reciprocates in the yaw axis direction and a rod that connects the driving link and the slider. A link rotates around the pitch axis.
 また、前記第2の駆動部は、回転モータと、前記回転モータの回転を減速して前記ヨー軸に伝達する減速機構を備える。 Also, the second drive unit includes a rotary motor and a speed reduction mechanism that reduces the speed of rotation of the rotary motor and transmits it to the yaw axis.
 本開示に係るアーム装置は、前記平行リンク機構の遠位端のリンクに搭載された医療用術具と、前記医療用術具をロール軸回りに駆動する第3の駆動部と、前記医療用術具を駆動する第4の駆動部をさらに備える。 The arm device according to the present disclosure includes a medical surgical instrument mounted on a link at a distal end of the parallel link mechanism, a third driving section that drives the medical surgical instrument around a roll axis, and the medical It further comprises a fourth driving section that drives the surgical instrument.
 本開示によれば、術具をピボット運動させるとともに2軸の互いに角度干渉しない回転運動を実現するアーム装置を提供することができる。 According to the present disclosure, it is possible to provide an arm device that pivots a surgical instrument and realizes rotational motion on two axes without angular interference with each other.
 なお、本明細書に記載された効果は、あくまでも例示であり、本開示によりもたらされる効果はこれに限定されるものではない。また、本開示が、上記の効果以外に、さらに付加的な効果を奏する場合もある。 It should be noted that the effects described in this specification are merely examples, and the effects brought about by the present disclosure are not limited to these. In addition, the present disclosure may have additional effects in addition to the effects described above.
 本開示のさらに他の目的、特徴や利点は、後述する実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。 Further objects, features, and advantages of the present disclosure will become apparent from more detailed descriptions based on the embodiments described later and the accompanying drawings.
図1は、アーム装置100の自由度構成を示した図である。FIG. 1 is a diagram showing the configuration of the degrees of freedom of the arm device 100. As shown in FIG. 図2は、原動リンク101の先端が引き込み位置にある状態のアーム装置100を示した図である。FIG. 2 shows the arm device 100 with the tip of the driving link 101 at the retracted position. 図3は、原動リンク101の先端が押し出し位置にある状態のアーム装置100を示した図である。FIG. 3 shows the arm device 100 with the tip of the drive link 101 at the push-out position. 図4は、アーム装置400の自由度構成を示した図である。FIG. 4 is a diagram showing the configuration of the degrees of freedom of the arm device 400. As shown in FIG. 図5は、術具430が引き込み位置にある状態のアーム装置400を示した図である。FIG. 5 shows the arm device 400 with the surgical instrument 430 in the retracted position. 図6は、術具430が押し出し位置にある状態のアーム装置400を示した図である。FIG. 6 is a diagram showing the arm device 400 with the surgical tool 430 in the pushing position. 図7は、アーム装置700の具体的な構成例を示した図(斜視図)である。FIG. 7 is a diagram (perspective view) showing a specific configuration example of the arm device 700. As shown in FIG. 図8は、アーム装置700の具体的な構成例を示した図(側面図)である。FIG. 8 is a diagram (side view) showing a specific configuration example of the arm device 700. As shown in FIG. 図9は、アーム装置700の具体的な構成例を示した図(正面図)である。FIG. 9 is a diagram (front view) showing a specific configuration example of the arm device 700. As shown in FIG. 図10は、アーム装置700のRCMリンクがピッチ軸方向に70度回転した様子を示した図である。FIG. 10 is a diagram showing how the RCM link of the arm device 700 is rotated 70 degrees in the pitch axis direction. 図11は、アーム装置700のRCMリンクがピッチ軸方向に0度回転した様子を示した図である。FIG. 11 is a diagram showing how the RCM link of the arm device 700 is rotated by 0 degrees in the pitch axis direction. 図12は、アーム装置700のRCMリンクがピッチ軸方向に-50度回転した様子を示した図である。FIG. 12 is a diagram showing how the RCM link of the arm device 700 is rotated -50 degrees in the pitch axis direction. 図13は、アーム装置700のRCMリンクがヨー軸方向に75度回転した様子を示した図である。FIG. 13 is a diagram showing how the RCM link of arm device 700 is rotated by 75 degrees in the yaw axis direction. 図14は、アーム装置700のRCMリンクがヨー軸方向に0度回転した様子を示した図である。FIG. 14 is a diagram showing how the RCM link of the arm device 700 is rotated by 0 degrees in the yaw axis direction. 図15は、アーム装置700のRCMリンクがヨー軸方向に-75度回転した様子を示した図である。FIG. 15 is a diagram showing how the RCM link of arm device 700 is rotated by -75 degrees in the yaw axis direction. 図16は、アーム装置700がRCMリンクをピッチ軸及びヨー軸の2方向にパラレル駆動させている様子を示した図である。FIG. 16 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis. 図17は、アーム装置700がRCMリンクをピッチ軸及びヨー軸の2方向にパラレル駆動させている様子を示した図である。FIG. 17 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis. 図18は、アーム装置700がRCMリンクをピッチ軸及びヨー軸の2方向にパラレル駆動させている様子を示した図である。FIG. 18 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis. 図19は、アーム装置700がRCMリンクをピッチ軸及びヨー軸の2方向にパラレル駆動させている様子を示した図である。FIG. 19 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis. 図20は、アーム装置700がRCMリンクをピッチ軸及びヨー軸の2方向にパラレル駆動させている様子を示した図である。FIG. 20 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis. 図21は、アーム装置700がRCMリンクをピッチ軸及びヨー軸の2方向にパラレル駆動させている様子を示した図である。FIG. 21 is a diagram showing how the arm device 700 drives the RCM link in parallel in two directions of the pitch axis and the yaw axis. 図22は、入力キャプスタン742と出力キャプスタン743におけるケーブル2201の巻き付け方法を示した図である。FIG. 22 is a diagram showing how the cable 2201 is wound around the input capstan 742 and the output capstan 743 . 図23は、第2の従動リンク708に搭載された術具750の周辺を拡大して示した図である。FIG. 23 is an enlarged view showing the periphery of the surgical instrument 750 mounted on the second driven link 708. As shown in FIG. 図24は、本開示に係るアーム装置を眼科手術に適用したイメージを示した図である。FIG. 24 is a diagram showing an image of applying the arm device according to the present disclosure to ophthalmic surgery. 図25は、本開示に係るアーム装置を脳表手術に適用したイメージを示した図である。FIG. 25 is a diagram showing an image of applying the arm device according to the present disclosure to brain surface surgery. 図26は、本開示に係るアーム装置を腹腔鏡手術に適用したイメージを示した図である。FIG. 26 is a diagram showing an image of applying the arm device according to the present disclosure to laparoscopic surgery. 図27は、平行リンク型のRCM機構例を示した図である。FIG. 27 is a diagram showing an example of a parallel link type RCM mechanism. 図28は、平行リンク型のRCM機構例を示した図である。FIG. 28 is a diagram showing an example of a parallel link type RCM mechanism. 図29は、平行リンク型のRCM機構例を示した図である。FIG. 29 is a diagram showing an example of a parallel link type RCM mechanism. 図30は、平行リンク型のRCM機構例を示した図である。FIG. 30 is a diagram showing an example of a parallel link type RCM mechanism. 図31は、平行リンク型のRCM機構例を示した図である。FIG. 31 is a diagram showing an example of a parallel link type RCM mechanism. 図32は、平行リンク型のRCM機構例を示した図である。FIG. 32 is a diagram showing an example of a parallel link type RCM mechanism.
 以下、図面を参照しながら本開示について、以下の順に従って説明する。 The present disclosure will be described in the following order with reference to the drawings.
A.概要
B.アーム装置の自由度構成(1)
C.アーム装置の自由度構成(2)
D.アーム装置の具体的な構成例
 D-1.ピッチ及びヨーの2方向の回転駆動機構について
 D-2.RCM機構について
 D-3.術具のロール方向の回転駆動機構及び開閉駆動機構について
 D-4.アーム装置の利点
E.医療分野での適用例
A. OverviewB. Freedom configuration of arm device (1)
C. Freedom configuration of arm device (2)
D. Specific configuration example of arm device D-1. Rotation drive mechanism in two directions of pitch and yaw D-2. About RCM Mechanism D-3. Rotation drive mechanism and opening/closing drive mechanism in roll direction of surgical instrument D-4. Advantages of the Arm DeviceE. Application example in the medical field
A.概要
 外科手術用の術具を支持するアーム装置においては、低侵襲で手術を行うために、トロッカーの刺入位置をRCMとする術具のピボット運動を実現する機構が常套手段として用いられている。図27~図32には、平行リンク型のRCM機構をそれぞれ例示している。
A. Outline In an arm device that supports a surgical instrument, a mechanism that realizes pivotal movement of the surgical instrument with the insertion position of the trocar as the RCM is commonly used in order to perform minimally invasive surgery. . 27 to 32 each illustrate a parallel link type RCM mechanism.
 図27に示す平行リンク2700は、それぞれ関節2711及び2712を介してベースに軸支された2本のリンク2701及び2702と、それぞれベースと平行となるように配置された2本のリンク2703及び2704を含み、リンク2701はリンク2703及び2704とはそれぞれ関節2713及び2714を介して結合し、リンク2702はリンク2701と平行となるようにそれぞれ関節2715及び2716を介してリンク2703及び2704によって支持されている。さらに、リンク2705は、リンク2701及び2702と平行となるように、リンク2703及び2704のそれぞれ先端(遠位端)の関節2717及び2718を介して支持されている。但し、関節2713、2715、2716、2717は、直交3軸回りの回転が可能なボールジョイントとする。例えばリンク2701又は2702の一方を原動リンクとして、図27中の矢印Pで示すピッチ軸回りに回転運動させた場合、中間リンク2703及び2704を介して遠位端のリンク2705にも伝達される。その際、いずれの回転角度においても、リンク2705とリンク2701及び2702との平行な関係が維持される。したがって、リンク2705は、下端のベースとの交点Oをピボット点としてピボット運動することになる。 The parallel link 2700 shown in FIG. 27 includes two links 2701 and 2702 pivotally supported by the base via joints 2711 and 2712, respectively, and two links 2703 and 2704 arranged parallel to the base, respectively. , link 2701 is coupled to links 2703 and 2704 via joints 2713 and 2714, respectively, and link 2702 is supported by links 2703 and 2704 via joints 2715 and 2716, respectively, so as to be parallel to link 2701. there is Furthermore, link 2705 is supported via joints 2717 and 2718 at the tips (distal ends) of links 2703 and 2704, respectively, so as to be parallel to links 2701 and 2702. However, the joints 2713, 2715, 2716, and 2717 are ball joints capable of rotating about three orthogonal axes. For example, when one of the links 2701 or 2702 is used as a driving link and is rotated about the pitch axis indicated by arrow P in FIG. At that time, the parallel relationship between the link 2705 and the links 2701 and 2702 is maintained at any rotation angle. Therefore, the link 2705 pivots with the intersection O of the lower end with the base as the pivot point.
 図28に示す平行リンク2800は、それぞれ関節2811及び2812を介してベースに軸支された2本のリンク2801及び2802と、それぞれベースと平行となるように配置された2本のリンク2803及び2804を含み、リンク2801はリンク2803及び2804とはそれぞれ関節2813及び2814を介して結合し、リンク2802はリンク2801と平行となるようにそれぞれ関節2815及び2816を介してリンク2803及び2804によって支持されている。さらに、リンク2805は、リンク2801及び2802と平行となるように、リンク2803及び2804のそれぞれ先端(遠位端)の関節2817及び2818を介して支持されている。但し、関節2813、2816、2817は、直交3軸回りの回転が可能なボールジョイントとする。例えばリンク2801又は2802の一方を原動リンクとして、図28中の矢印Pで示すピッチ軸回りに回転運動させた場合、中間リンク2803及び2804を介して遠位端のリンク2805にも伝達される。その際、いずれの回転角度においても、リンク2805とリンク2801及び2802との平行な関係が維持される。したがって、リンク2805は、下端のベースとの交点Oをピボット点としてピボット運動することになる。 The parallel link 2800 shown in FIG. 28 includes two links 2801 and 2802 pivotally supported by the base via joints 2811 and 2812, respectively, and two links 2803 and 2804 arranged parallel to the base, respectively. , link 2801 is coupled to links 2803 and 2804 via joints 2813 and 2814, respectively, and link 2802 is supported by links 2803 and 2804 via joints 2815 and 2816, respectively, so as to be parallel to link 2801. there is Further, link 2805 is supported through joints 2817 and 2818 at the tips (distal ends) of links 2803 and 2804, respectively, so as to be parallel to links 2801 and 2802. However, the joints 2813, 2816, and 2817 are ball joints capable of rotating about three orthogonal axes. For example, when one of the links 2801 or 2802 is used as a driving link and is rotated around the pitch axis indicated by the arrow P in FIG. At that time, the parallel relationship between the link 2805 and the links 2801 and 2802 is maintained at any rotation angle. Therefore, the link 2805 pivots with the intersection O of the lower end with the base as the pivot point.
 図29に示す平行リンク2900は、それぞれ関節2911及び2912を介してベースに軸支された2本のリンク2901及び2902と、それぞれベースと平行となるように配置された2本のリンク2903及び2904を含み、リンク2901はリンク2904とは関節2914を介して結合し、リンク2902はリンク2901と平行となるようにそれぞれ関節2915及び2916を介してリンク2903及び2904によって支持されている。さらに、リンク2905は、リンク2901及び2902と平行となるように、リンク2903及び2904のそれぞれ先端(遠位端)の関節2917及び2918を介して支持されている。但し、関節2915、2916、2917は、直交3軸回りの回転が可能なボールジョイントとする。例えばリンク2901又は2902の一方を原動リンクとして、図29中の矢印Pで示すピッチ軸回りに回転運動させた場合、中間リンク2903及び2904を介して遠位端のリンク2905にも伝達される。その際、いずれの回転角度においても、リンク2905とリンク2901及び2902との平行な関係が維持される。したがって、リンク2905は、下端のベースとの交点Oをピボット点としてピボット運動することになる。 The parallel link 2900 shown in FIG. 29 consists of two links 2901 and 2902 pivotally supported by the base via joints 2911 and 2912, respectively, and two links 2903 and 2904 arranged parallel to the base, respectively. , link 2901 is coupled to link 2904 via joint 2914, and link 2902 is supported by links 2903 and 2904 via joints 2915 and 2916, respectively, so as to be parallel to link 2901. Further, link 2905 is supported in parallel with links 2901 and 2902 via joints 2917 and 2918 at the tips (distal ends) of links 2903 and 2904, respectively. However, the joints 2915, 2916, and 2917 are ball joints capable of rotating about three orthogonal axes. For example, if one of the links 2901 or 2902 is used as a driving link and is rotated around the pitch axis indicated by the arrow P in FIG. At that time, the parallel relationship between the link 2905 and the links 2901 and 2902 is maintained at any rotation angle. Therefore, the link 2905 pivots with the intersection O of the lower end with the base as the pivot point.
 図30に示す平行リンク3000は、それぞれ関節3011及び3012を介してベースに軸支された2本のリンク3001及び3002と、それぞれベースと平行となるように配置された2本のリンク3003及び3004を含み、リンク3001はリンク3003とは関節3013を介して結合し、リンク3002はリンク3001と平行となるようにそれぞれ関節3015及び3016を介してリンク3003及び3004によって支持されている。さらに、リンク3005は、リンク3001及び3002と平行となるように、リンク3003及び3004のそれぞれ先端(遠位端)の関節3017及び3018を介して支持されている。但し、関節3015、3017は、直交3軸回りの回転が可能なボールジョイントとする。例えばリンク3001又は3002の一方を原動リンクとして、図30中の矢印Pで示すピッチ軸回りに回転運動させた場合、中間リンク3003及び3004を介して遠位端のリンク3005にも伝達される。その際、いずれの回転角度においても、リンク3005とリンク3001及び3002との平行な関係が維持される。したがって、リンク3005は、下端のベースとの交点Oをピボット点としてピボット運動することになる。 The parallel link 3000 shown in FIG. 30 includes two links 3001 and 3002 pivotally supported by the base via joints 3011 and 3012, respectively, and two links 3003 and 3004 arranged parallel to the base, respectively. , link 3001 is coupled to link 3003 via joint 3013, and link 3002 is supported by links 3003 and 3004 via joints 3015 and 3016, respectively, so as to be parallel to link 3001. Furthermore, link 3005 is supported via joints 3017 and 3018 at the tips (distal ends) of links 3003 and 3004, respectively, so as to be parallel to links 3001 and 3002. As shown in FIG. However, the joints 3015 and 3017 are ball joints capable of rotating about three orthogonal axes. For example, when one of the links 3001 or 3002 is used as a driving link and is rotated around the pitch axis indicated by the arrow P in FIG. At that time, the parallel relationship between the link 3005 and the links 3001 and 3002 is maintained at any rotation angle. Therefore, the link 3005 pivots with the intersection point O of the lower end with the base as the pivot point.
 図31に示す平行リンク3100は、それぞれ関節3111及び3112を介してベースに軸支された2本のリンク3101及び3102と、それぞれベースと平行となるように配置された2本のリンク3103及び3104を含み、リンク3101はリンク3103及び3104とはそれぞれ関節3113及び3114を介して結合し、リンク3102はリンク3101と平行となるように関節3115を介してリンク3103によって支持されている。さらに、リンク3105は、リンク3101及び3102と平行となるように、リンク3103及び3104のそれぞれ先端(遠位端)の関節3117及び27518を介して支持されている。但し、関節3113、3115、3117は、直交3軸回りの回転が可能なボールジョイントとする。例えばリンク3101又は3102の一方を原動リンクとして、図31中の矢印Pで示すピッチ軸回りに回転運動させた場合、中間リンク3103及び3104を介して遠位端のリンク3105にも伝達される。その際、いずれの回転角度においても、リンク3105とリンク3101及び3102との平行な関係が維持される。したがって、リンク3105は、下端のベースとの交点Oをピボット点としてピボット運動することになる。 The parallel link 3100 shown in FIG. 31 includes two links 3101 and 3102 pivotally supported by the base via joints 3111 and 3112, respectively, and two links 3103 and 3104 arranged parallel to the base, respectively. , link 3101 is coupled to links 3103 and 3104 via joints 3113 and 3114 respectively, and link 3102 is supported by link 3103 via joint 3115 so as to be parallel to link 3101 . Furthermore, link 3105 is supported through joints 3117 and 27518 at the tips (distal ends) of links 3103 and 3104, respectively, so as to be parallel to links 3101 and 3102. However, the joints 3113, 3115, and 3117 are ball joints capable of rotating about three orthogonal axes. For example, when one of the links 3101 or 3102 is used as a driving link and is rotated about the pitch axis indicated by arrow P in FIG. At that time, the parallel relationship between the link 3105 and the links 3101 and 3102 is maintained at any rotation angle. Therefore, the link 3105 pivots with the intersection point O of the lower end with the base as the pivot point.
 図32に示す平行リンク3200は、それぞれ関節3211及び3212を介してベースに軸支された2本のリンク3201及び3202と、それぞれベースと平行となるように配置された2本のリンク3203及び3204を含み、リンク3201はリンク3203及び3204とはそれぞれ関節3213及び3214を介して結合し、リンク3202はリンク3201と平行となるように関節3216を介してリンク3204によって支持されている。さらに、リンク3205は、リンク3201及び3202と平行となるように、リンク3203及び3204のそれぞれ先端(遠位端)の関節3217及び3218を介して支持されている。但し、関節3213、3216、3217は、直交3軸回りの回転が可能なボールジョイントとする。例えばリンク3201又は3202の一方を原動リンクとして、図32中の矢印Pで示すピッチ軸回りに回転運動させた場合、中間リンク3203及び3204を介して遠位端のリンク3205にも伝達される。その際、いずれの回転角度においても、リンク3205とリンク3201及び3202との平行な関係が維持される。したがって、リンク3205は、下端のベースとの交点Oをピボット点としてピボット運動することになる。 The parallel link 3200 shown in FIG. 32 includes two links 3201 and 3202 pivotally supported by the base via joints 3211 and 3212, respectively, and two links 3203 and 3204 arranged parallel to the base, respectively. , link 3201 is coupled to links 3203 and 3204 via joints 3213 and 3214 respectively, and link 3202 is supported by link 3204 via joint 3216 so as to be parallel to link 3201 . Furthermore, link 3205 is supported via joints 3217 and 3218 at the tips (distal ends) of links 3203 and 3204, respectively, so as to be parallel to links 3201 and 3202. However, the joints 3213, 3216, and 3217 are ball joints capable of rotating about three orthogonal axes. For example, when one of the links 3201 or 3202 is used as a driving link and is rotated around the pitch axis indicated by the arrow P in FIG. At that time, the parallel relationship between the link 3205 and the links 3201 and 3202 is maintained at any rotation angle. Therefore, the link 3205 pivots with the intersection O of the lower end with the base as the pivot point.
 要するに、平行リンクでは、原動リンクと従動リンクのそれぞれの一端が固定リンクに固定され、原動リンクの動作が中間リンクを介して従動リンクに伝達される。従動リンクは原動リンクとの角度を保ちながら駆動する。そこで、従動リンクをアームとすると、アームの先端をピボット点としてピボット運動することになる。図27~図32から分かるように、平行リンク型のRCM機構によれば、ピッチ及びヨーの2軸回転自由度で、アームの姿勢変化に伴う並進移動を有さずに、機構上の構造のみによってアームの先端(遠位端)のピボット運動を実現することができる。このような平行リンク型のRCM機構は、目的のピボット運動の不動点を簡素にすることができ、低慣性化も望める。RCM機構を持つアームにさらに並進3自由度を含めてマニピュレータ装置を構成する場合には、装置全体をコンパクトに設計することが可能である。 In short, in the parallel link, one end of each of the driving link and the driven link is fixed to the fixed link, and the motion of the driving link is transmitted to the driven link via the intermediate link. The driven link drives while maintaining an angle with the driving link. Therefore, if the driven link is an arm, the tip of the arm will be pivoted at the pivot point. As can be seen from FIGS. 27 to 32, according to the parallel link type RCM mechanism, only the structural structure of the mechanism can be achieved without the translational movement due to the posture change of the arm in the two rotational degrees of freedom of pitch and yaw. can achieve pivotal movement of the tip (distal end) of the arm. Such a parallel link type RCM mechanism can simplify the fixed point of the intended pivot motion, and can be expected to have a low inertia. If the arm having the RCM mechanism further includes three translational degrees of freedom to configure the manipulator device, the entire device can be designed compactly.
 アーム装置の俊敏な動作を実現するためには、RCM機構に関わるリンクを駆動するモータの出力を上げる、又はモータの出力側の慣性を低減する必要がある。後者に有効な方法として、ヨー軸とピッチ軸をパラレル駆動させるRCM機構が考えられるが、メカ的な性能(可動域、トルク伝達性、バックドライバビリティ)の低下や制御の複雑化を伴うことが懸念される。 In order to realize the agile operation of the arm device, it is necessary to increase the output of the motor that drives the links involved in the RCM mechanism, or reduce the inertia on the output side of the motor. As an effective method for the latter, an RCM mechanism that drives the yaw axis and pitch axis in parallel can be considered, but it is accompanied by a decrease in mechanical performance (range of motion, torque transmission, back drivability) and complication of control. Concerned.
 そこで、本開示では、ヨー軸とピッチ軸を互いに干渉させずにパラレル駆動が可能な平行リンク型のRCM機構を持つアーム装置について、提案するものである。以下のB項以降で、本開示に係るアーム装置の詳細について説明する。 Therefore, the present disclosure proposes an arm device having a parallel link type RCM mechanism capable of parallel driving without causing the yaw axis and the pitch axis to interfere with each other. The details of the arm device according to the present disclosure will be described in section B and thereafter.
B.アーム装置の自由度構成(1)
 図1には、本開示を適用したアーム装置100の自由度構成例を示している。図示のアーム装置100は、原動リンク101と、原動リンク101のピッチ軸回りの動作を生成する第1の駆動部103と、原動リンク101のヨー軸回りの動作を生成する第2の駆動部104を備えている。ここで、原動リンク101は、ピッチ軸回り及びヨー軸回りの回転自由度を持つ受動関節部111を介して、ベース部102に結合している。また、第1の駆動部103と第2の駆動部104はいずれも、メカニカルグランドに相当するベース部102に固定されている。
B. Freedom configuration of arm device (1)
FIG. 1 shows a configuration example of degrees of freedom of an arm device 100 to which the present disclosure is applied. The illustrated arm device 100 includes a drive link 101, a first drive section 103 that generates motion of the drive link 101 about the pitch axis, and a second drive section 104 that generates motion of the drive link 101 about the yaw axis. It has Here, the driving link 101 is coupled to the base portion 102 via a passive joint portion 111 having rotational degrees of freedom about the pitch axis and the yaw axis. Both the first drive section 103 and the second drive section 104 are fixed to the base section 102 corresponding to the mechanical ground.
 第1の駆動部103は、スライダクランク機構によって原動リンク101のピッチ軸回りの回転動作を生成する。具体的には、スライダクランク機構は、ヨー軸方向に往復運動するヨー軸方向に直動するスライダ105と、スライダ105と原動リンク101間を接続するロッド106で構成される。ロッド106の両端はピッチ軸回りに回転可能な受動関節部112及び113を介してスライダ105と原動リンク101の各々と接続されている。また、ロッド106の一端の関節部112は、ベース部102から離間した位置で原動リンク101に接続されている。したがって、原動リンク101のうち受動関節部111から受動関節部112の区間がスライダクランク機構におけるクランクに相当する。 The first driving section 103 generates rotational motion of the driving link 101 about the pitch axis by means of a slider crank mechanism. Specifically, the slider crank mechanism is composed of a slider 105 that reciprocates in the yaw axis direction and linearly moves in the yaw axis direction, and a rod 106 that connects the slider 105 and the driving link 101 . Both ends of the rod 106 are connected to the slider 105 and the driving link 101 through passive joints 112 and 113 rotatable about the pitch axis. A joint portion 112 at one end of the rod 106 is connected to the driving link 101 at a position separated from the base portion 102 . Therefore, the section from the passive joint portion 111 to the passive joint portion 112 of the driving link 101 corresponds to the crank in the slider crank mechanism.
 スライダ105がヨー軸方向に往復する直進運動は、ロッド106を介して、クランクとしての原動リンク101に伝達されて、原動リンク101の受動関節部111を中心とするピッチ軸回りの回転運動に変換される。参考のため、図2には、スライダ105がヨー軸方向に前進して、原動リンク101の先端が引き込み位置にある状態を示している。また、図3には、スライダ105がヨー軸方向に後退して、原動リンク101の先端が押し出し位置にある状態を示している。スライダクランク機構におけるスライダ105の直進運動は例えばボールねじを使って実現されるが、詳細は後述に譲る。 The rectilinear motion of the slider 105 reciprocating in the yaw axis direction is transmitted to the driving link 101 as a crank via the rod 106 and converted into rotational motion about the pitch axis centering on the passive joint 111 of the driving link 101. be done. For reference, FIG. 2 shows a state in which the slider 105 advances in the yaw axis direction and the leading end of the driving link 101 is at the retracted position. 3 shows a state in which the slider 105 is retracted in the yaw axis direction and the leading end of the driving link 101 is at the pushed position. The rectilinear motion of the slider 105 in the slider-crank mechanism is achieved using, for example, a ball screw, the details of which will be given later.
 一方、第2の駆動部104は、回転モータの駆動力によって原動リンク101の受動関節部111を中心とするヨー軸回りの回転動作を生成する。原動リンク101のヨー軸回りの回転運動がロッド106を介してスライダ105に伝達されないように、スライダ105とロッド106の間には、ヨー軸回りに回転可能な受動関節部114が配置されている。図1では、図面の簡素化のため、ヨー軸回転用モータの出力軸が受動関節部111の中心軸が一致するように描いているが、受動関節部111の中心軸から離間してヨー軸回転用モータを配置して、ケーブルなどの伝達機構を介して原動リンク101に回転力を伝達するように構成してもよい。 On the other hand, the second driving section 104 generates rotational motion around the yaw axis about the passive joint section 111 of the driving link 101 by the driving force of the rotary motor. A passive joint 114 rotatable about the yaw axis is arranged between the slider 105 and the rod 106 so that the rotational motion of the driving link 101 about the yaw axis is not transmitted to the slider 105 via the rod 106 . . In FIG. 1 , for the sake of simplification of the drawing, the output shaft of the yaw axis rotating motor is drawn so as to coincide with the central axis of the passive joint section 111 . A rotation motor may be arranged to transmit the rotational force to the driving link 101 via a transmission mechanism such as a cable.
 図1に示したアーム装置100は、それぞれベース部102に固定された第1の駆動部103と第2の駆動部104を用いて、原動リンク101のピッチ軸回転及びヨー軸回転を互いに干渉されずに実現することができる。互いに非干渉で2方向に回転可能であることから、原動リンク101の制御が簡素化する。 The arm device 100 shown in FIG. 1 uses the first drive section 103 and the second drive section 104 fixed to the base section 102, respectively, to interfere with the rotation of the driving link 101 on the pitch axis and the yaw axis. can be realized without Since they can rotate in two directions without interfering with each other, the control of the driving link 101 is simplified.
C.アーム装置の自由度構成(2)
 図4には、本開示を適用して、平行リンク型のRCM機構を持つアーム装置200の自由度構成例を示している。アーム装置400は、図1に示したアーム装置100と同様の駆動機構によって、互いに干渉されないピッチ軸及びヨー軸の2方向の回転を実現する。さらに、平行リンクを用いて、ピッチ及びヨーの2軸回転自由度で、アームの姿勢変化に伴う並進移動を有さずに、機構上の構造のみによってアームの先端(遠位端)のピボット運動を実現する。
C. Freedom configuration of arm device (2)
FIG. 4 shows an example of the degree-of-freedom configuration of an arm device 200 having a parallel link type RCM mechanism to which the present disclosure is applied. The arm device 400 achieves two-way rotation of the pitch axis and the yaw axis without mutual interference by a driving mechanism similar to that of the arm device 100 shown in FIG. Furthermore, using a parallel link, the tip (distal end) of the arm can be pivoted only by the mechanical structure, with two rotational degrees of freedom of pitch and yaw, without translational movement accompanying changes in the posture of the arm. Realize
 まず、アーム装置400のピッチ及びヨーの2方向の回転駆動機構について説明する。 First, the pitch and yaw rotation drive mechanism of the arm device 400 will be described.
 アーム装置400は、原動リンク401と、原動リンク401のピッチ軸回りの動作を生成する第1の駆動部403と、原動リンク401のヨー軸回りの動作を生成する第2の駆動部404を備えている。ここで、原動リンク401は、ピッチ軸回り及びヨー軸回りの回転自由度を持つ受動関節部411を介して、固定リンク422に結合している。また、第1の駆動部403と第2の駆動部404はいずれも、メカニカルグランドに相当するベース部402に固定されている。 The arm device 400 includes a driving link 401, a first driving section 403 that generates movement of the driving link 401 about the pitch axis, and a second driving section 404 that generates movement of the driving link 401 about the yaw axis. ing. Here, the driving link 401 is coupled to the fixed link 422 via a passive joint section 411 having rotational degrees of freedom about the pitch axis and the yaw axis. Both the first drive section 403 and the second drive section 404 are fixed to a base section 402 corresponding to a mechanical ground.
 第1の駆動部403は、ヨー軸方向に往復運動するヨー軸方向に直動するスライダ405と、スライダ405と原動リンク401間を接続するロッド406で構成されるスライダクランク機構からなる。スライダクランク機構におけるスライダ405の直進運動は例えばボールねじを使って実現されるが、詳細は後述に譲る。ロッド406の両端はピッチ軸回りに回転可能な受動関節部412及び413を介してスライダ405と原動リンク401の各々と接続されている。また、ロッド406の一端の関節部412は、固定リンク422から離間した位置で原動リンク401に接続されている。したがって、原動リンク401のうち受動関節部411から受動関節部412の区間がスライダクランク機構におけるクランクに相当する。そして、スライダ405がヨー軸方向に往復する直進運動は、ロッド406を介して原動リンク401に伝達されて、原動リンク401の受動関節部411を中心とするピッチ軸回りの回転運動に変換される。 The first drive unit 403 is composed of a slider crank mechanism composed of a slider 405 that reciprocates in the yaw axis direction and linearly moves in the yaw axis direction, and a rod 406 that connects the slider 405 and the drive link 401 . The rectilinear motion of the slider 405 in the slider-crank mechanism is achieved using, for example, a ball screw, the details of which will be given later. Both ends of the rod 406 are connected to the slider 405 and the driving link 401 through passive joints 412 and 413 rotatable about the pitch axis. A joint portion 412 at one end of the rod 406 is connected to the driving link 401 at a position separated from the fixed link 422 . Therefore, the section from the passive joint portion 411 to the passive joint portion 412 of the driving link 401 corresponds to the crank in the slider crank mechanism. The rectilinear motion of the slider 405 reciprocating in the yaw axis direction is transmitted to the driving link 401 via the rod 406 and converted into rotational motion about the pitch axis about the passive joint 411 of the driving link 401. .
 また、第2の駆動部404は、回転モータの駆動力によって、ベース部402に対し固定リンク422をヨー軸回りに回転する。その結果、原動リンク401の受動関節部411を中心とするヨー軸回りの回転動作を生成する。原動リンク401のヨー軸回りの回転運動がロッド406を介してスライダ405に伝達されないように、スライダ405とロッド406の間には、ヨー軸回りに回転可能な受動関節部414が配置されている。図4では、図面の簡素化のため、ヨー軸回転用モータの出力軸が受動関節部411の中心軸が一致するように描いているが、受動関節部411の中心軸から離間してヨー軸回転用モータを配置して、ケーブルなどの伝達機構を介して原動リンク401に回転力を伝達するように構成してもよい。 Also, the second driving section 404 rotates the fixed link 422 around the yaw axis with respect to the base section 402 by the driving force of the rotary motor. As a result, a rotational motion about the yaw axis centering on the passive joint portion 411 of the driving link 401 is generated. A passive joint 414 rotatable about the yaw axis is arranged between the slider 405 and the rod 406 so that the rotational motion of the driving link 401 about the yaw axis is not transmitted to the slider 405 via the rod 406 . . In FIG. 4 , for the sake of simplification of the drawing, the output shaft of the yaw axis rotation motor is drawn so as to coincide with the central axis of the passive joint portion 411 . A rotation motor may be arranged to transmit rotational force to the driving link 401 via a transmission mechanism such as a cable.
 続いて、アーム装置400におけるRCM機構について説明する。アーム装置400は、基本的には、図29に示した平行リンク型のRCM機構を備えている。 Next, the RCM mechanism in arm device 400 will be described. The arm device 400 basically has a parallel link type RCM mechanism shown in FIG.
 アーム装置400は、上述した原動リンク401のピッチ及びヨー方向の回転運動に従って動作する平行リンクを含んでいる。この平行リンクは、原動リンク401と、第1の従動リンク407及び第2の従動リンク408と、第1の中間リンク409及び第2の中間リンク410と、固定リンク422を備えている。 The arm device 400 includes parallel links that operate according to the rotational motion of the driving link 401 in the pitch and yaw directions described above. The parallel links comprise a driving link 401 , a first driven link 407 and a second driven link 408 , a first intermediate link 409 and a second intermediate link 410 and a fixed link 422 .
 原動リンク401は、ピッチ軸回りの回転自由度を持つ受動関節部411を介して、固定リンク422に結合している。また、第1の中間リンク409は、ピッチ軸回りの回転自由度を持つ受動関節部416を介して、固定リンク422に結合している。なお、固定リンク422は、第2の駆動部404によって、ベース部402に対してヨー軸回りに回転動作する。 The driving link 401 is coupled to the fixed link 422 via a passive joint section 411 having rotational freedom around the pitch axis. Also, the first intermediate link 409 is coupled to the fixed link 422 via a passive joint portion 416 having rotational freedom about the pitch axis. The fixed link 422 is rotated about the yaw axis with respect to the base portion 402 by the second drive portion 404 .
 ここで、原動リンク401と、第1の従動リンク407及び第2の従動リンク408は、互いの平行な関係が保たれるように、第1の中間リンク409及び第2の中間リンク410によって連結されている。 Here, the driving link 401, the first driven link 407 and the second driven link 408 are connected by the first intermediate link 409 and the second intermediate link 410 so as to maintain their parallel relationship. It is
 原動リンク401と第1の従動リンク407は、各々の一端が固定リンク422で連結されるとともに、互いの平行な関係が保たれるように、第1の中間リンク409で連結されている。原動リンク401と第1の中間リンク409は、ピッチ軸回りの回転自由度を持つ受動関節部418を介して結合している。また、第1の従動リンク407と第1の中間リンク409は、ピッチ軸回りの回転自由度を持つ受動関節部417を介して結合している。 The driving link 401 and the first driven link 407 are connected at one end by a fixed link 422, and are also connected by a first intermediate link 409 so as to maintain a parallel relationship. The driving link 401 and the first intermediate link 409 are coupled via a passive joint 418 having rotational freedom about the pitch axis. Also, the first driven link 407 and the first intermediate link 409 are coupled via a passive joint portion 417 having rotational freedom around the pitch axis.
 また、原動リンク401と第2の従動リンク408は、互いの平行な関係が保たれるように、第1の中間リンク409及び第2の中間リンク410で連結されている。原動リンク401と第1の中間リンク409は、ピッチ軸回りの回転自由度を持つ受動関節部418を介して結合し、原動リンク401と第2の中間リンク410は、ピッチ軸回りの回転自由度を持つ受動関節419を介して結合している。第2の従動リンク408と第1の中間リンク409は、ピッチ軸回りの回転自由度を持つ受動関節部420を介して結合し、第2の従動リンク408と第2の中間リンク410は、ピッチ軸回りの回転自由度を持つ受動関節421を介して結合している。 Also, the driving link 401 and the second driven link 408 are connected by a first intermediate link 409 and a second intermediate link 410 so as to maintain a parallel relationship. The driving link 401 and the first intermediate link 409 are coupled via a passive joint 418 having rotational freedom about the pitch axis, and the driving link 401 and the second intermediate link 410 are coupled via the rotational freedom about the pitch axis. is coupled via a passive joint 419 with . The second driven link 408 and the first intermediate link 409 are coupled via a passive joint 420 having rotational freedom about the pitch axis, and the second driven link 408 and the second intermediate link 410 are connected to the pitch axis. It is connected via a passive joint 421 having rotational freedom around the axis.
 スライダ405の往復運動はロッド406を介して原動リンク401に伝達される。これに対し、原動リンク401は、受動関節部411を中心としてピッチ軸回りに回転動作する。また、原動リンク401の回転動作は、第1の中間リンク409によって第1の従動リンク407に伝達される。そして、第1の従動リンク407は、原動リンク401との角度を保ちながら、受動関節部416を中心としてピッチ軸回りに回転動作する。さらに原動リンク401の回転動作は、第1の中間リンク409及び第2の中間リンク410によって第2の従動リンク408に伝達されて、第2の従動リンク408は、原動リンク401との角度を保ちながら動作する。 The reciprocating motion of slider 405 is transmitted to driving link 401 via rod 406 . On the other hand, the driving link 401 rotates about the pitch axis around the passive joint portion 411 . Also, the rotational motion of the driving link 401 is transmitted to the first driven link 407 by the first intermediate link 409 . Then, the first driven link 407 rotates about the pitch axis around the driven joint portion 416 while maintaining the angle with the driving link 401 . Furthermore, the rotational motion of the driving link 401 is transmitted to the second driven link 408 by the first intermediate link 409 and the second intermediate link 410, and the second driven link 408 maintains an angle with the driving link 401. works while
 第2の従動リンク408の先端は、例えば鉗子などの医療用術具430である。上述したように原動リンク401のピッチ軸回りの任意の回転位置において第2の従動リンク408との平行な関係が保たれている場合、第2の従動リンク408の先端と固定リンク422を延長する直線(又は、受動関節部411と受動関節部416を結ぶ直線)との交点にRCMを配置して、術具430のピボット運動を実現することができる。 The tip of the second driven link 408 is a medical instrument 430 such as forceps. As described above, when the parallel relationship with the second driven link 408 is maintained at any rotational position around the pitch axis of the driving link 401, the tip of the second driven link 408 and the fixed link 422 are extended. The RCM can be placed at the intersection of a straight line (or a straight line connecting the passive joints 411 and 416) to achieve pivotal movement of the surgical tool 430. FIG.
 図5には、スライダ405がヨー軸方向に前進して、原動リンク401及び第2の従動リンク408の先端の術具430が引き込み位置にある状態を示している。また、図6には、スライダ405がヨー軸方向に後退して、原動リンク401及び従動リンク408の先端の術具430が押し出し位置にある状態を示している。図5及び図6からも、第2の従動リンク408の先端にRCMが配置されて、術具403のピボット運動していることが分かる。 FIG. 5 shows a state in which the slider 405 advances in the yaw axis direction and the surgical instrument 430 at the tip of the driving link 401 and the second driven link 408 is in the retracted position. FIG. 6 also shows a state in which the slider 405 is retracted in the yaw axis direction and the surgical instrument 430 at the distal end of the driving link 401 and the driven link 408 is at the pushing position. 5 and 6 also show that the RCM is arranged at the tip of the second driven link 408 and the surgical instrument 403 is pivoting.
 また、固定リンク422が第2の駆動部404によってベース部402に対してヨー軸回りに回転動作すると、原動リンク401、第1の従動リンク407及び第2の従動リンク408はともに同じ角度だけヨー軸回りに回転する。原動リンク401を含む平行リンクにおけるピッチ及びヨーの2方向の回転は干渉されない。したがって、ヨー軸回りに回転動作した際においても、第2の従動リンク408の先端にRCMが配置されて、術具403のピボット運動することに相違はない。 Further, when the fixed link 422 rotates around the yaw axis with respect to the base portion 402 by the second driving portion 404, the driving link 401, the first driven link 407 and the second driven link 408 are all yawed by the same angle. Rotate around an axis. Rotation in the two directions of pitch and yaw in parallel links, including motive link 401, is not interfered with. Therefore, even when rotating about the yaw axis, the RCM is arranged at the tip of the second driven link 408 and the surgical instrument 403 pivots.
 アーム装置400では、原動リンク401のピッチ軸回りの回転及びヨー軸回りの回転をパラレル駆動することができる。第2の従動リンク408は、第1の中間リンク409及び第2の中間リンク410によって原動リンク401と平行関係が保たれ、原動リンク401に追従してピッチ軸回り及びヨー軸回りに回転動作する。アーム装置400におけるRCM機構の主な特長は、第2の従動リンク408の先端に搭載された術具430の、ピッチ軸回りの回転及びヨー軸回りの回転をパラレル駆動することができ、これら2つの軸が互いに角度干渉しない点にある。このパラレル駆動を実現する機構上のポイントは以下に集約される。なお、これらのポイントは、図1~3に示したアーム装置100にも当てはまる。 In the arm device 400, the rotation of the driving link 401 about the pitch axis and the rotation about the yaw axis can be driven in parallel. The second driven link 408 is maintained parallel to the driving link 401 by the first intermediate link 409 and the second intermediate link 410, and rotates about the pitch axis and the yaw axis following the driving link 401. . The main feature of the RCM mechanism in the arm device 400 is that the surgical instrument 430 mounted at the tip of the second driven link 408 can be rotated about the pitch axis and the rotation about the yaw axis in parallel. The point is that the two axes do not angularly interfere with each other. The mechanical points for realizing this parallel drive are summarized below. Note that these points also apply to the arm device 100 shown in FIGS.
(1)原動リンク401をスライダクランク機構におけるクランクとし、スライダ405の往復動作によって原動リンク401をピッチ軸回りに駆動する。
(2)スライダクランク機構のスライダ405はヨー軸に沿って往復動作する。
(3)スライダ405とクランク(原動リンク401)を連結するロッド406が、ヨー軸回りに回転可能である。
(1) The drive link 401 is used as a crank in a slider crank mechanism, and the drive link 401 is driven around the pitch axis by the reciprocating motion of the slider 405 .
(2) The slider 405 of the slider crank mechanism reciprocates along the yaw axis.
(3) The rod 406 connecting the slider 405 and the crank (driving link 401) is rotatable around the yaw axis.
 なお、図4~図6に示したアーム装置400は、術具403をロール軸回りに回転させる回転自由度と、術具403を駆動する自由度(例えば、術具403が鉗子のように開閉操作可能な場合は開閉自由度)をさらに備えていてもよい。この場合、アーム装置400は、上述したピッチ軸及びヨー軸回りの自由度を含めて合計で4自由度の術具動作を実現することになる。さらに、アーム装置400を3軸並進運動が可能なXYZステージや、3軸回転運動が可能なパラレルリンクなどに搭載すれば、合計で7自由度の術具動作を実現することができる。 The arm device 400 shown in FIGS. 4 to 6 has a rotational degree of freedom to rotate the surgical instrument 403 around the roll axis and a degree of freedom to drive the surgical instrument 403 (for example, the surgical instrument 403 can be opened and closed like forceps). If it is operable, it may be further provided with a degree of freedom of opening and closing). In this case, the arm device 400 realizes a total of four degrees of freedom of operation of the surgical tool, including the degrees of freedom about the pitch axis and the yaw axis. Furthermore, if the arm device 400 is mounted on an XYZ stage capable of 3-axis translational motion, a parallel link capable of 3-axis rotational motion, or the like, a total of 7 degrees of freedom of operation of the surgical instrument can be realized.
 また、本開示を適用可能な平行リンク型のRCM構造は、図4に示した構成例に限定されない。例えば、図27~図32に示したいずれの平行リンクに対しても、それぞれベースに配置した2つのアクチュエータを使い、そのうちの一方はスライダクランク機構を用いて原動リンクのピッチ軸回りの動作を生成するとともに、他方のアクチュエータを使って原動リンクのヨー軸回りの動作を生成するように構成することで、ヨー軸とピッチ軸を互いに干渉させずにパラレル駆動が可能な平行リンク型のRCM機構を実現することができる。 Also, the parallel link type RCM structure to which the present disclosure is applicable is not limited to the configuration example shown in FIG. For example, for any of the parallel links shown in FIGS. 27-32, two actuators, each located at the base, are used, one of which uses a slider-crank mechanism to produce motion about the pitch axis of the driving link. At the same time, by using the other actuator to generate the movement of the drive link around the yaw axis, a parallel link type RCM mechanism capable of parallel driving without mutual interference between the yaw axis and the pitch axis is realized. can be realized.
D.アーム装置の具体的な構成例
 このD項では、上記C項で説明したアーム装置400を医療分野に適用した例について説明する。
D. Specific configuration example of the arm device In this section D, an example in which the arm device 400 described in the above section C is applied to the medical field will be described.
 図7~図9には、本開示を適用したアーム装置700の具体的な構成例を示している。但し、図7はアーム装置700の斜視図、図8はアーム装置700の側面図、図9はアーム装置の正面図である。アーム装置700は、基本的には、上記C項で説明したアーム装置400と同様の自由度構成を備えている。 7 to 9 show specific configuration examples of an arm device 700 to which the present disclosure is applied. 7 is a perspective view of the arm device 700, FIG. 8 is a side view of the arm device 700, and FIG. 9 is a front view of the arm device. The arm device 700 basically has the same degree-of-freedom configuration as the arm device 400 described in Section C above.
D-1.ピッチ及びヨーの2方向の回転駆動機構について
 まず、アーム装置700のピッチ及びヨーの2方向の回転駆動機構について説明する。
D-1. Pitch and Yaw Bi-directional Rotational Drive Mechanism First, the pitch and yaw bidirectional rotational drive mechanism of the arm device 700 will be described.
 アーム装置700は、原動リンク701と、原動リンク701のピッチ軸回りの回転動作を生成する第1の駆動部と、原動リンク701のヨー軸回りの回転動作を生成する第2の駆動部を備えている。ここで、原動リンク701は、後述するRCMリンクの原動リンクとして動作するが、ピッチ軸回り及びヨー軸回りの回転自由度を持つ受動関節部711を介して、RCMリンクの固定リンク722に結合している。また、第1の駆動部と第2の駆動部はいずれも、メカニカルグランドに相当するRCMベース部702に固定されている。 The arm device 700 includes a driving link 701, a first driving section that generates rotational movement of the driving link 701 about the pitch axis, and a second driving section that generates rotational movement of the driving link 701 about the yaw axis. ing. Here, the driving link 701 operates as a driving link of an RCM link, which will be described later, but is connected to a fixed link 722 of the RCM link via a passive joint portion 711 having rotational degrees of freedom around the pitch axis and the yaw axis. ing. Also, both the first drive section and the second drive section are fixed to the RCM base section 702 corresponding to the mechanical ground.
 第1の駆動部は、ヨー軸方向に往復運動するヨー軸方向に直動するスライダ705と、スライダ705と原動リンク701間を接続するロッド706で構成されるスライダクランク機構を備えている。ロッド706の両端はピッチ軸回りに回転可能な受動関節部712及び713を介してスライダ705と原動リンク701の各々と接続されている。また、ロッド706の一端の受動関節部712は、固定リンク722から離間した位置で原動リンク701とロッド706を接続している。したがって、原動リンク701のうち受動関節部711から受動関節部712の区間がスライダクランク機構におけるクランクに相当する。そして、スライダ705がヨー軸方向に往復する直進運動は、ロッド706を介して原動リンク701に伝達されて、原動リンク701の受動関節部711を中心とするピッチ軸回りの回転運動に変換される。 The first drive section has a slider crank mechanism composed of a slider 705 that reciprocates in the yaw axis direction and linearly moves in the yaw axis direction, and a rod 706 that connects the slider 705 and the drive link 701 . Both ends of the rod 706 are connected to the slider 705 and the driving link 701 through passive joints 712 and 713 rotatable about the pitch axis. A passive joint portion 712 at one end of the rod 706 connects the driving link 701 and the rod 706 at a position separated from the fixed link 722 . Therefore, the section from the passive joint portion 711 to the passive joint portion 712 of the driving link 701 corresponds to the crank in the slider crank mechanism. The rectilinear motion of the slider 705 reciprocating in the yaw axis direction is transmitted to the driving link 701 via the rod 706 and converted into rotational motion about the pitch axis about the passive joint 711 of the driving link 701. .
 スライダクランク機構におけるスライダ705の直進運動はボールねじ機構を使って実現されている。図7に示すボールねじ機構は、軸方向にらせん状のボールねじ溝が形成された駆動軸としてのボールねじ軸731と、ボールねじ731を回転駆動するピッチ軸モータ732と、ボールねじ軸731のボールねじ溝と螺合するスプラインナット733と、ボールねじ軸731と平行となるように配置され且つスプラインナット733に挿通されたボールスプラインロッド734を備えている。 The linear motion of the slider 705 in the slider crank mechanism is realized using a ball screw mechanism. The ball screw mechanism shown in FIG. It has a spline nut 733 screwed into the ball screw groove, and a ball spline rod 734 arranged parallel to the ball screw shaft 731 and inserted through the spline nut 733 .
 ここで、ボールスプラインロッド734は、アーム装置700のヨー軸と一致するように配置され、ヨー軸回りに回転可能となるようにRCMベース部702に支持されてている。RCMリンクの固定リンク722は、ボールスプラインロッド734の先端と結合しており、ボールスプラインロッド734と一体となってヨー軸回りに回転可能である。スプラインナット733を、スライダクランク機構におけるスライダ705として用いている。スプラインナット733には、ボールスプラインロッド734が挿通されている。ボールスプラインロッド734は、スプラインナット733に対してヨー軸回りに回転可能である。したがって、スライダ705は、任意のヨー軸方向の位置において、ボールスプラインロッド734によって、上を向く一定の姿勢に保持される。 Here, the ball spline rod 734 is arranged so as to match the yaw axis of the arm device 700, and is supported by the RCM base portion 702 so as to be rotatable around the yaw axis. The fixed link 722 of the RCM link is connected to the tip of the ball spline rod 734 and is rotatable around the yaw axis together with the ball spline rod 734 . A spline nut 733 is used as the slider 705 in the slider crank mechanism. A ball spline rod 734 is inserted through the spline nut 733 . The ball spline rod 734 is rotatable around the yaw axis with respect to the spline nut 733 . Therefore, the slider 705 is held in a fixed upward orientation by the ball spline rod 734 at any position in the yaw axis direction.
 スライダ705としてのスプラインナット733と、スライダクランク機構におけるロッド706の間は、ヨー軸中心に滑らかに回転可能なボールベアリングからなる軸受部735を介して接続されている。したがって、ロッド706は軸受部735を介してヨー軸回りに回転可能にスライダ705に支持されているので、原動リンク701のヨー軸回りの回転動作はスライダ705には伝達されない。軸受部735は、図4中の受動関節部414に相当する。 The spline nut 733 as the slider 705 and the rod 706 of the slider crank mechanism are connected via a bearing portion 735 made of a ball bearing that can rotate smoothly around the yaw axis. Therefore, since the rod 706 is rotatably supported by the slider 705 via the bearing portion 735 about the yaw axis, the rotation of the drive link 701 about the yaw axis is not transmitted to the slider 705 . The bearing portion 735 corresponds to the passive joint portion 414 in FIG.
 ピッチ軸モータ732がボールねじ軸731を回転すると、スプラインナット733にはボールねじ軸731の軸方向に直進する推力が発生する。スプラインナット733は、ピッチ軸モータ732の回転によりボールねじ軸731からの推力を受けると、ボールスプラインロッド734の長手方向すなわちヨー軸方向に前進又は後退する。そして、スライダ705のヨー軸方向の直進運動は、ロッド706を介して原動リンク701に伝達されて、原動リンク701の受動関節部711を中心とするピッチ軸回りの回転運動に変換される。 When the pitch-axis motor 732 rotates the ball screw shaft 731 , thrust is generated in the spline nut 733 in the axial direction of the ball screw shaft 731 . The spline nut 733 advances or retreats in the longitudinal direction of the ball spline rod 734, that is, in the yaw axis direction, upon receiving thrust from the ball screw shaft 731 due to the rotation of the pitch axis motor 732. The linear motion of the slider 705 in the yaw axis direction is transmitted to the driving link 701 via the rod 706 and converted into rotational motion about the pitch axis about the passive joint portion 711 of the driving link 701 .
 一方、第2の駆動部は、RCMベース部702の下方に配置されたヨー軸モータ741と、ケーブル減速機入力キャプスタン(以下、単に「入力キャプスタン」とする)742及びケーブル減速機出力キャプスタン(以下、単に「出力キャプスタン」とする)743からなるケーブル減速機からなる。入力キャプスタン742は、ヨー軸モータ741の出力軸に取り付けられ、ヨー軸モータ741の出力軸と一体で回転する。また、出力キャプスタン743は、ボールスプラインロッド734の先端に結合され、ボールスプラインロッド734と一体で回転する。ボールスプラインロッド734は、アーム装置700のヨー軸と一致するように配置されている(前述)。そして、入力キャプスタン742及び出力キャプスタン743には動力伝達用のケーブルが巻き付けられている。したがって、ヨー軸モータ741の回転動作は、ケーブル減速機を介して減速してボールスプラインロッド734の先端の固定リンク722に伝達されて、原動リンク701のヨー軸回りの回転動作を生成する。 On the other hand, the second driving section includes a yaw axis motor 741 arranged below the RCM base section 702, a cable reducer input capstan (hereinafter simply referred to as "input capstan") 742, and a cable reducer output capstan. It consists of a cable reducer consisting of a stun (hereafter simply “output capstan”) 743 . The input capstan 742 is attached to the output shaft of the yaw axis motor 741 and rotates together with the output shaft of the yaw axis motor 741 . Also, the output capstan 743 is coupled to the tip of the ball spline rod 734 and rotates together with the ball spline rod 734 . The ball spline rod 734 is arranged so as to match the yaw axis of the arm device 700 (described above). A power transmission cable is wound around the input capstan 742 and the output capstan 743 . Therefore, the rotational motion of the yaw-axis motor 741 is decelerated through the cable speed reducer and transmitted to the fixed link 722 at the tip of the ball spline rod 734 to generate the rotational motion of the drive link 701 around the yaw axis.
 アーム装置700におけるリンク機構の主な特長は、原動リンク701のピッチ軸回りの回転及びヨー軸回りの回転をパラレル駆動することができ、これら2つの軸が互いに角度干渉しない点にある。このパラレル駆動を実現する機構上のポイントは以下に集約される。 The main feature of the link mechanism in the arm device 700 is that the rotation of the driving link 701 about the pitch axis and the rotation about the yaw axis can be driven in parallel, and these two axes do not interfere angularly with each other. The mechanical points for realizing this parallel drive are summarized below.
(1)原動リンク701をスライダクランク機構におけるクランクとし、スライダ705の往復動作によって原動リンク701をピッチ軸回りに駆動する。具体的には、ピッチ軸モータ732が回転するとその出力軸に連結されたボールねじ軸731も回転し、スライダ705(スプラインナット733)はボールねじ軸731により推力を受け、その推力をロッド706に伝達することで、原動リンク701のピッチ軸回りの回転動作を生成する。 (1) The driving link 701 is used as a crank in a slider crank mechanism, and the driving link 701 is driven around the pitch axis by the reciprocating motion of the slider 705 . Specifically, when the pitch shaft motor 732 rotates, the ball screw shaft 731 connected to its output shaft also rotates. By transmitting, a rotational motion of the driving link 701 around the pitch axis is generated.
(2)スライダクランク機構のスライダ705はヨー軸に沿って往復動作する。具体的には、ヨー軸にボールスプラインロッド734を使用し、さらにスプラインナット733をスライダクランク機構のスライダ705として用いていることによって、ヨー軸方向の往復動作を実現している。 (2) The slider 705 of the slider crank mechanism reciprocates along the yaw axis. Specifically, by using a ball spline rod 734 for the yaw axis and a spline nut 733 as the slider 705 of the slider crank mechanism, reciprocating motion in the yaw axis direction is realized.
(3)スライダ405とクランク(原動リンク401)を連結するロッド706が、ヨー軸回りに回転可能である。具体的には、スプラインナット733(スライダ705)とスライダクランク機構におけるロッド706の間は、ヨー軸中心に滑らかに回転可能なボールベアリングからなる軸受部735を介して接続されているので、原動リンク701のヨー軸方向の姿勢に影響を受けることなく、ロッド706がスライダ705のピッチ軸方向の推力を原動リンク701に伝達することができる。 (3) The rod 706 connecting the slider 405 and the crank (driving link 401) is rotatable around the yaw axis. Specifically, the spline nut 733 (slider 705) and the rod 706 of the slider crank mechanism are connected via a bearing portion 735 composed of a ball bearing capable of smoothly rotating about the yaw axis. The rod 706 can transmit the thrust of the slider 705 in the pitch axis direction to the driving link 701 without being affected by the posture of the slider 701 in the yaw axis direction.
 ロッド706がピッチ軸方向の推力を原動リンク701に伝達する動作と極力干渉しないようにRCMリンクの形状を設計することで、例えば±60度の広いピッチ軸可動域を実現することができる。 By designing the shape of the RCM link so as not to interfere with the movement of the rod 706 to transmit the thrust in the pitch axis direction to the driving link 701 as much as possible, it is possible to achieve a wide range of motion of the pitch axis, for example ±60 degrees.
 また、ヨー軸動作は、上述したように、ヨー軸モータ741の回転をケーブル減速機で減速してボールスプラインロッド734を回転させることで生成される。参考のため、図22には、入力キャプスタン742と出力キャプスタン743におけるケーブル2201の巻き付け方法を示している。ケーブル減速構造は、完全なるバックラッシュレスと高いバックドライバビリティを併せ持つので、精密な位置及び力制御が要求されるバイラテラル制御システムでは常套手段となっている。ケーブル減速機は、ヨー軸モータ741の出力軸に結合された入力キャプスタン742と、ボールスプラインロッド734の先端に結合された出力キャプスタン743で構成される。図7~図9に示すように、ケーブル減速機をRCMベース部702の先端部に配置することで、例えば±75度の広いヨー軸可動域を実現することができる。 Also, as described above, the yaw axis motion is generated by decelerating the rotation of the yaw axis motor 741 with the cable speed reducer to rotate the ball spline rod 734 . For reference, FIG. 22 shows how the cable 2201 is wrapped around the input capstan 742 and the output capstan 743 . The cable deceleration structure combines complete backlashlessness with high backdrivability, making it a common practice in bilateral control systems that require precise position and force control. The cable speed reducer is composed of an input capstan 742 coupled to the output shaft of the yaw axis motor 741 and an output capstan 743 coupled to the tip of the ball spline rod 734 . As shown in FIGS. 7 to 9, by arranging the cable speed reducer at the tip of the RCM base portion 702, a wide yaw axis movable range of ±75 degrees, for example, can be realized.
 図7~図9に示したアーム装置700では、スライダクランク機構(スライダ705)の直動動作を生成する第1の駆動部は、回転モータ(ピッチ軸モータ732)とボールねじ機構で構成されているが、これに限定されるものではない。例えば、以下の(1)~(3)のいずれかの手段を用いてスライダ705の直動動作を生成するようにしてもよい。 In the arm device 700 shown in FIGS. 7 to 9, the first drive section that generates linear motion of the slider crank mechanism (slider 705) is composed of a rotary motor (pitch axis motor 732) and a ball screw mechanism. However, it is not limited to this. For example, any one of the following means (1) to (3) may be used to generate linear motion of the slider 705 .
(1)空圧、水圧、油圧などを駆動源としたシリンジ型アクチュエータ
(2)超音波直動モータ
(3)直動電磁モータ
(1) Syringe-type actuator driven by air pressure, water pressure, hydraulic pressure, etc. (2) Ultrasonic linear motor (3) Linear electromagnetic motor
 また、図7~図9に示したアクチュエータ装置700では、ヨー軸モータ741の回転動作をヨー軸としてのボールスプラインロッド734に伝達する機構として、ケーブル減速機を用いているが(例えば、図22を参照のこと)、これに限定されるものではない。例えば、以下の(1)~(6)のいずれかの手段を用いてヨー軸モータ741の回転を減速してボールスプラインロッド734に伝達し、又はボールスプラインロッド734を直接駆動するようにしてもよい。 Further, in the actuator device 700 shown in FIGS. 7 to 9, a cable speed reducer is used as a mechanism for transmitting the rotational motion of the yaw axis motor 741 to the ball spline rod 734 as the yaw axis (for example, FIG. 22 ), but not limited to. For example, the rotation of the yaw axis motor 741 may be decelerated and transmitted to the ball spline rod 734 using any one of the following means (1) to (6), or the ball spline rod 734 may be driven directly. good.
(1)平歯ギアによる減速構造
(2)ベルトによる減速構造
(3)高出力電磁モータによるダイレクトドライブ
(4)波動歯車、遊星歯車、又はトラクションドライブなどを用いた減速構造
(5)超音波モータ
(6)静電モータ
(1) Reduction structure using spur gear (2) Reduction structure using belt (3) Direct drive using high-output electromagnetic motor (4) Reduction structure using strain wave gear, planetary gear, or traction drive (5) Ultrasonic motor (6) Electrostatic motor
D-2.RCM機構について
 続いて、アーム装置700におけるRCM機構について説明する。アーム装置700は、基本的には、図29に示した平行リンク型のRCM機構を備えている。
D-2. Regarding the RCM Mechanism Next, the RCM mechanism in the arm device 700 will be described. The arm device 700 basically has a parallel link type RCM mechanism shown in FIG.
 アーム装置700は、上述した原動リンク701のピッチ及びヨー方向の回転運動に従って動作する平行リンクを含んでいる。この平行リンクは、原動リンク701と、第1の従動リンク707及び第2の従動リンク708と、第1の中間リンク709及び第2の中間リンク710と、固定リンク722を備えている。 The arm device 700 includes parallel links that operate according to the pitch and yaw rotational movements of the driving link 701 described above. The parallel links comprise a driving link 701 , a first driven link 707 and a second driven link 708 , a first intermediate link 709 and a second intermediate link 710 and a fixed link 722 .
 第1の従動リンク707は、ロッド706を挿通するU字形状を有している。ロッド706は、第1の従動リンク707のU字の内側を通って、スライダ705と原動リンク701間を接続している。また、遠位端の第2の従動リンク708は、術具750を支持するとともに、術具750をロール軸回りに回転したり術具(鉗子など)750を開閉操作したりするための駆動機構を搭載しているが、この点の詳細については後述に譲る。 The first driven link 707 has a U-shape through which the rod 706 is inserted. A rod 706 passes through the inside of the U-shape of the first driven link 707 to connect between the slider 705 and the driving link 701 . Further, the second driven link 708 at the distal end is a drive mechanism for supporting the surgical instrument 750, rotating the surgical instrument 750 around the roll axis, and opening and closing the surgical instrument (such as forceps) 750. However, the details of this point will be given later.
 原動リンク701は、ピッチ軸回りの回転自由度を持つ受動関節部711を介して、固定リンク722に結合している。また、第1の中間リンク709は、ピッチ軸回りの回転自由度を持つ受動関節部716を介して、固定リンク722に結合している。上述したように、固定リンク722は、ヨー軸モータ741の駆動によって、RCMベース部702に対してヨー軸回りに回転動作する。 The driving link 701 is coupled to the fixed link 722 via a passive joint section 711 having rotational freedom around the pitch axis. Also, the first intermediate link 709 is coupled to the fixed link 722 via a passive joint 716 having rotational freedom about the pitch axis. As described above, the fixed link 722 rotates around the yaw axis with respect to the RCM base portion 702 by being driven by the yaw axis motor 741 .
 原動リンク701と、第1の従動リンク707及び第2の従動リンク708は、互いの平行な関係が保たれるように、第1の中間リンク709及び第2の中間リンク710によって連結されている。 The driving link 701 and the first driven link 707 and the second driven link 708 are connected by a first intermediate link 709 and a second intermediate link 710 so as to maintain a parallel relationship with each other. .
 原動リンク701と第1の従動リンク707は、各々の一端が固定リンク722で連結されるとともに、互いの平行な関係が保たれるように、第1の中間リンク709で連結されている。原動リンク701と第1の中間リンク709は、ピッチ軸回りの回転自由度を持つ受動関節部718を介して結合している。また、第1の従動リンク707と第1の中間リンク709は、ピッチ軸回りの回転自由度を持つ受動関節部717を介して結合している。 The driving link 701 and the first driven link 707 are connected at one end by a fixed link 722, and are also connected by a first intermediate link 709 so as to maintain a parallel relationship. The driving link 701 and the first intermediate link 709 are coupled via a passive joint 718 having rotational freedom about the pitch axis. Also, the first driven link 707 and the first intermediate link 709 are coupled via a passive joint portion 717 having rotational freedom around the pitch axis.
 また、原動リンク701と第2の従動リンク708は、互いの平行な関係が保たれるように、第1の中間リンク709及び第2の中間リンク710で連結されている。原動リンク701と第1の中間リンク709は、ピッチ軸回りの回転自由度を持つ受動関節部718を介して結合し、原動リンク701と第2の中間リンク710は、ピッチ軸回りの回転自由度を持つ受動関節719を介して結合している。第2の従動リンク708と第1の中間リンク709は、ピッチ軸回りの回転自由度を持つ受動関節部720を介して結合し、第2の従動リンク708と第2の中間リンク710は、ピッチ軸回りの回転自由度を持つ受動関節721を介して結合している。 Also, the driving link 701 and the second driven link 708 are connected by a first intermediate link 709 and a second intermediate link 710 so as to maintain a parallel relationship. The driving link 701 and the first intermediate link 709 are coupled via a passive joint 718 having rotational freedom about the pitch axis, and the driving link 701 and the second intermediate link 710 are coupled via the rotational freedom about the pitch axis. is coupled via a passive joint 719 with . The second driven link 708 and the first intermediate link 709 are coupled via a passive joint 720 having rotational freedom about the pitch axis, and the second driven link 708 and the second intermediate link 710 are connected to the pitch axis. It is connected via a passive joint 721 having rotational freedom around the axis.
 スライダ705の往復運動はロッド706を介して原動リンク701に伝達される。これに対し、原動リンク701は、受動関節部711を中心としてピッチ軸回りに回転動作する。また、原動7ンク401の回転動作は、第1の中間リンク709によって第1の従動リンク707に伝達される。そして、第1の従動リンク707は、原動リンク701との角度を保ちながら、受動関節部716を中心としてピッチ軸回りに回転動作する。さらに原動リンク701の回転動作は、第1の中間リンク709及び第2の中間リンク710によって第2の従動リンク708に伝達されて、第2の従動リンク708は、原動リンク701との角度を保ちながら動作する。 The reciprocating motion of slider 705 is transmitted to driving link 701 via rod 706 . On the other hand, the driving link 701 rotates around the pitch axis with the passive joint portion 711 as the center. Also, the rotational motion of the driving 7-link 401 is transmitted to the first driven link 707 by the first intermediate link 709 . Then, the first driven link 707 rotates about the pitch axis around the driven joint portion 716 while maintaining the angle with the driving link 701 . Further, the rotational motion of driving link 701 is transmitted to second driven link 708 by first intermediate link 709 and second intermediate link 710, and second driven link 708 maintains an angle with driving link 701. works while
 第2の従動リンク708の先端は、例えば鉗子などの医療用術具750である。上述したように原動リンク701のピッチ軸回りの任意の回転位置において第2の従動リンク708との平行な関係が保たれている場合、術具705の長手方向(又は、ロール軸)と第2の従動リンク708の先端と固定リンク722を延長する直線(又は、ヨー軸)との交点にRCMを配置して、術具750のピボット運動を実現することができる。 The tip of the second driven link 708 is a medical instrument 750 such as forceps. As described above, when the parallel relationship with the second driven link 708 is maintained at any rotational position around the pitch axis of the driving link 701, the longitudinal direction (or roll axis) of the surgical instrument 705 and the second A RCM can be placed at the intersection of the tip of the driven link 708 and the straight line (or yaw axis) extending the fixed link 722 to provide pivoting motion of the surgical tool 750 .
 また、アーム装置700は、原動リンク701のピッチ軸回りの回転及びヨー軸回りの回転をパラレル駆動することができ、これら2つの軸が互いに角度干渉しない。したがって、アーム装置700において遠位端に術具750を支持するRCMリンク機構は、ピッチ軸及びヨー軸の2方向にパラレル駆動することができ、これら2つの軸が互いに角度干渉しない。 In addition, the arm device 700 can drive the rotation of the drive link 701 about the pitch axis and the rotation about the yaw axis in parallel, and these two axes do not interfere with each other. Therefore, the RCM link mechanism supporting the surgical instrument 750 at the distal end of the arm device 700 can be driven in parallel in two directions of the pitch axis and the yaw axis, and these two axes do not interfere angularly with each other.
 図10~図12には、アーム装置700がピッチ軸モータ732の駆動によりRCMリンクをピッチ軸方向に駆動させた様子を示している。このうち、図10にはRCMリンクがピッチ軸方向に70度回転した様子を示し、図11にはRCMリンクがピッチ軸方向に0度回転した様子を示し、図12にはRCMリンクがピッチ軸方向に-50度回転した様子を示している。第1の従動リンク707をU字形状に構成するなど(前述及び図7を参照のこと)、ロッド706がピッチ軸方向の推力を原動リンク701に伝達する動作と極力干渉しないようにRCMリンクの形状を設計することで、例えば±60度の広いピッチ軸可動域を実現することができる。 10 to 12 show how the arm device 700 drives the RCM link in the pitch axis direction by driving the pitch axis motor 732. FIG. 10 shows the RCM link rotated 70 degrees along the pitch axis, FIG. 11 shows the RCM link rotated 0 degrees along the pitch axis, and FIG. It shows a state rotated by -50 degrees in the direction. The first driven link 707 is configured in a U-shape (see above and FIG. 7), so that the rod 706 does not interfere with the movement of the thrust in the pitch axis direction to the driving link 701 as much as possible. By designing the shape, it is possible to realize a wide range of motion of the pitch axis of ±60 degrees, for example.
 一方、図13~図15には、アーム装置700がヨー軸モータ741の駆動によりRCMリンクをヨー軸方向に駆動させた様子を示している。このうち、図13にはRCリンクがヨー軸方向に75度回転した様子を示し、図14にはRCリンクがヨー軸方向に0度回転した様子を示し、図13にはRCリンクがヨー軸方向に-75度回転した様子を示している。図7~図9に示したようにケーブル減速機をRCMベース部702の先端部に配置することで、±75度の広いヨー軸可動域を実現することができる。  On the other hand, FIGS. 13 to 15 show how the arm device 700 drives the RCM link in the yaw axis direction by driving the yaw axis motor 741. FIG. Of these, FIG. 13 shows the RC link rotated 75 degrees along the yaw axis, FIG. 14 shows the RC link rotated 0 degrees along the yaw axis, and FIG. It shows a state rotated -75 degrees in the direction. By arranging the cable reducer at the tip of the RCM base portion 702 as shown in FIGS. 7 to 9, a wide yaw axis movable range of ±75 degrees can be realized.
 また、図16~図21には、アーム装置700がピッチ軸モータ732及びヨー軸モータ741を同時に駆動させて、RCMリンクをピッチ軸及びヨー軸の2方向にパラレル駆動させている様子を時系列で示している。図7~図9を参照しながら既に説明したように、アーム装置700のRCMリンクはピッチ軸及びヨー軸が互いに角度干渉しないように構成されている。図16~図21からも、RCMリンクが、角度干渉しないでピッチ軸及びヨー軸の2方向にパラレル駆動するということを理解されたい。 16 to 21 show in time sequence how the arm device 700 simultaneously drives the pitch axis motor 732 and the yaw axis motor 741 to drive the RCM link in parallel in the two directions of the pitch axis and the yaw axis. is shown. As already described with reference to FIGS. 7-9, the RCM link of the arm device 700 is configured so that the pitch axis and the yaw axis do not angularly interfere with each other. It should also be understood from FIGS. 16-21 that the RCM link drives in parallel in two directions, the pitch and yaw axes, without angular interference.
D-3.術具のロール方向の回転駆動機構及び開閉駆動機構について
 続いて、アーム装置700における術具のロール方向の回転駆動機構及び開閉駆動機構について説明する。
D-3. Roll Direction Rotation Drive Mechanism and Opening/Closing Drive Mechanism of Surgical Instrument Subsequently, the roll direction rotation drive mechanism and opening/closing drive mechanism of the surgical instrument in the arm device 700 will be described.
 遠位端の第2の従動リンク708は、術具750を支持するとともに、術具750をロール軸回りに回転するための回転駆動機構及び術具(鉗子など)750の可動部分を駆動するための術具駆動機構を搭載している。参考のため、図23には、第2の従動リンク708に搭載された術具750の周辺を拡大して示している。 A second driven link 708 at the distal end supports a surgical instrument 750 and is for driving a rotary drive mechanism for rotating the surgical instrument 750 about the roll axis and a movable portion of the surgical instrument (such as forceps) 750 . Equipped with a surgical instrument drive mechanism. For reference, FIG. 23 shows an enlarged view of the surgical instrument 750 mounted on the second driven link 708 .
 図7、図8、及び図23に示すように、アーム装置700の遠位端の第2の従動リンク708の正面側には、術具ユニット2301が搭載されている。そして、術具ユニット2301の下端には、術具750が交換可能に装着されている。具体的には、先端部に術具750を含む中空円筒状の術具シャフト2303が、術具ユニット2301の下端の受容部に差し込まれている。図23の左上の拡大図に示すように、術具シャフト2303は、軸受2321を介して、術具ユニット2301に対しロール軸回りに回転可能に取り付けられている。ここで、術具シャフト2303の長手方向がアーム装置700のロール軸と一致するように配置されている。理想的には、術具シャフト2302の先端の術具750(又は、術具750が挿通されるトロッカー(図示しない)の刺入位置)がRCMとなる。 As shown in FIGS. 7, 8, and 23, a surgical tool unit 2301 is mounted on the front side of the second driven link 708 at the distal end of the arm device 700. FIG. A surgical tool 750 is replaceably attached to the lower end of the surgical tool unit 2301 . Specifically, a hollow cylindrical surgical instrument shaft 2303 including a surgical instrument 750 at its distal end is inserted into a receiving portion at the lower end of the surgical instrument unit 2301 . As shown in the upper left enlarged view of FIG. 23, the surgical instrument shaft 2303 is attached to the surgical instrument unit 2301 via a bearing 2321 so as to be rotatable about the roll axis. Here, the surgical instrument shaft 2303 is arranged so that its longitudinal direction coincides with the roll axis of the arm device 700 . Ideally, the surgical instrument 750 at the distal end of the surgical instrument shaft 2302 (or the insertion position of a trocar (not shown) through which the surgical instrument 750 is inserted) serves as the RCM.
 術具750は、例えば鉗子やはさみ、攝子、バイポーラ鑷子、クリップ鉗子、カメラ(内視鏡など)である。また、術具ユニット2301の上端には、術具駆動用アクチュエータ2302が搭載されている。術具750が開閉可能な鉗子のように可動部分を有する術具の場合、術具駆動用アクチュエータ2302が生成する駆動力によって術具750を動作させることができる。 The surgical instrument 750 is, for example, forceps, scissors, forceps, bipolar forceps, clip forceps, and a camera (endoscope, etc.). A surgical tool driving actuator 2302 is mounted on the upper end of the surgical tool unit 2301 . If the surgical instrument 750 has a movable portion such as forceps that can be opened and closed, the surgical instrument 750 can be operated by the driving force generated by the surgical instrument driving actuator 2302 .
 術具駆動用アクチュエータ2302は、回転モータからなり、この回転モータの回転動作を、リードスクリュー2304を用いたスライド機構によってロール軸方向の直動動作を変換する。そして、中空の術具シャフト2303内を挿通する伝達ロッド2330の上端をリードスクリュー2304のナットに固定して、伝達ロッド2330によって伝達される直動動作によって、鉗子の開閉といった術具750の駆動を実現することができる。あるいは、術具駆動用アクチュエータ2302は直動アクチュエータであってもよい。リードスクリュー2304は、軸転駆動するリードスクリューと、リードスクリューに螺合されてリードスクリューの軸転に伴って直動するナットで構成されるが、図23では簡素化のため詳細の図示を省略する。 The surgical instrument driving actuator 2302 is composed of a rotary motor, and a slide mechanism using a lead screw 2304 converts the rotary motion of this rotary motor into a linear motion in the roll axis direction. The upper end of a transmission rod 2330 passing through the hollow surgical instrument shaft 2303 is fixed to the nut of the lead screw 2304, and the linear motion transmitted by the transmission rod 2330 drives the surgical instrument 750 such as opening and closing forceps. can be realized. Alternatively, the surgical instrument driving actuator 2302 may be a linear actuator. The lead screw 2304 is composed of a lead screw that is axially driven and a nut that is screwed onto the lead screw and linearly moves as the lead screw is axially rotated, but details are omitted in FIG. 23 for the sake of simplification. do.
 ここで、鉗子の開閉構造について、図23の左下の拡大図を参照しながら、簡単に説明しておく。鉗子は、ほぼ対称的な形状からなる1対のジョー部材2331及び2332をそれぞれ開閉軸2333回りに回転可能に取り付けて構成される。各ジョー部材2331及び2332は、開閉軸2333よりも根元側(近位端側)に、ロール軸(又は、術具シャフト2303の長手軸)に対して傾斜した長穴状のカムスロット2334及び2335をそれぞれ有している。各カムスロット2334及び2335は伝達ロッド2330の先端付近に突設された小さい円柱状のピン2336を受容している。術具駆動用アクチュエータ2302によって伝達ロッド2330が術具シャフト2303の長手軸方向に直動動作すると、伝達ロッド2330の先端のピン2336が各カムスロット2334及び2335の内壁を摺動しながらロール軸方向に前進又は後退する。このようにして、各カムスロット2334及び2335がピン2336の直動動作を各々のジョー部材2331及び2332の開閉軸2333回りの回転動作に変換する(例えば、特許文献1を参照のこと)。ピン2336が遠位に移動すると鉗子は閉じ、ピン2336が近位に移動すると鉗子は開く。直動動作する伝達ロッド2330(又は、ピン2336)をスライダとし、この直動動作を回転動作に変換するカムスロット2334及び2335をクランクとみなすと、スライダクランク方式により鉗子を開閉動作しているということができる。 Here, the opening and closing structure of the forceps will be briefly explained with reference to the enlarged view at the bottom left of FIG. The forceps is configured by attaching a pair of jaw members 2331 and 2332 having substantially symmetrical shapes so as to be rotatable around an opening/closing shaft 2333 . Each of the jaw members 2331 and 2332 has elongated cam slots 2334 and 2335 inclined with respect to the roll axis (or the longitudinal axis of the surgical instrument shaft 2303) on the root side (proximal end side) of the opening/closing axis 2333. respectively. Each cam slot 2334 and 2335 receives a small cylindrical pin 2336 projecting near the distal end of transmission rod 2330 . When the transmission rod 2330 linearly moves in the longitudinal axis direction of the surgical instrument shaft 2303 by the surgical instrument driving actuator 2302, the pin 2336 at the tip of the transmission rod 2330 slides on the inner walls of the respective cam slots 2334 and 2335 and moves in the roll axial direction. move forward or backward to In this manner, each cam slot 2334 and 2335 converts the translational motion of pin 2336 into rotational motion of respective jaw members 2331 and 2332 about opening and closing axis 2333 (see, eg, US Pat. No. 5,400,000). When the pin 2336 moves distally, the forceps close and when the pin 2336 moves proximally, the forceps open. Assuming that the transmission rod 2330 (or pin 2336) that performs linear motion is a slider, and the cam slots 2334 and 2335 that convert this linear motion into rotational motion are regarded as cranks, the forceps are opened and closed by a slider-crank system. be able to.
 また、図7、図8、及び図23に示すように、第2の従動リンク708の背面側には、術具750をロール軸回りに回転駆動するためのロール軸モータ2311が搭載されている。ロール軸モータ2311は、出力軸がロール軸と平行となるように、且つ、ロール軸から離間して配置されている。術具シャフト2303は、軸受2321を介して、術具ユニット2301に対しロール軸回りに回転可能に取り付けられている(前述)。そして、ロール軸モータ2311の回転力は、ロール軸モータ2311の出力軸キャプスタンに巻き付けられたタイミングベルト2312を介して、術具シャフト2303に取り付けられたキャプスタンに伝達されて、術具750をロール軸回りに回転させることができる。 7, 8, and 23, a roll shaft motor 2311 for rotationally driving the surgical instrument 750 around the roll shaft is mounted on the back side of the second driven link 708. . The roll shaft motor 2311 is arranged so that its output shaft is parallel to the roll shaft and separated from the roll shaft. The surgical instrument shaft 2303 is attached to the surgical instrument unit 2301 via a bearing 2321 so as to be rotatable around the roll axis (described above). The rotational force of the roll shaft motor 2311 is transmitted to the capstan attached to the surgical instrument shaft 2303 via a timing belt 2312 wound around the output shaft capstan of the roll shaft motor 2311 , thereby rotating the surgical instrument 750 . It can be rotated around the roll axis.
 術具駆動用アクチュエータ2302による術具750の操作(鉗子の開閉など)と、ロール軸モータ2311による術具750のロール方向の回転を、互いに干渉なくパラレルに駆動可能な構成になっているという点に留意されたい。この干渉なしパラレル駆動を実現する機構上のポイントは以下に集約される。 Operation of the surgical instrument 750 by the surgical instrument drive actuator 2302 (opening and closing forceps, etc.) and rotation of the surgical instrument 750 in the roll direction by the roll shaft motor 2311 can be driven in parallel without mutual interference. Please note. The mechanical points for achieving this interference-free parallel drive are summarized below.
(1)術具駆動用アクチュエータ2302の直動動作を、スライダクランク方式により各ジョー部材の回転動作に変換することで、鉗子の開閉動作が行われる。
(2)術具駆動用アクチュエータ2302の直動動作はロール軸方向に行われる。
(3)術具駆動用アクチュエータ2302の直動動作を伝達する伝達ロッド(又は、伝達ロッドを挿通する術具シャフト2303)は、ロール軸回りに自由回転可能である。
(1) The forceps are opened and closed by converting the linear motion of the surgical instrument driving actuator 2302 into the rotational motion of each jaw member by a slider crank system.
(2) The linear motion of the surgical instrument driving actuator 2302 is performed in the roll axis direction.
(3) The transmission rod (or the surgical instrument shaft 2303 through which the transmission rod is inserted) that transmits the linear motion of the surgical instrument driving actuator 2302 is freely rotatable around the roll axis.
 術具駆動用アクチュエータ2302による術具750の操作(鉗子の開閉など)と、ロール軸モータ2311による術具750のロール方向の回転を、互いに干渉なくパラレルに駆動することで、術具750のロール軸可動域に制限をなくして無限回転を可能にすることができる。また、術具750を鉗子とする場合の鉗子の開き角度は例えば20度である。 Operation of the surgical instrument 750 by the surgical instrument drive actuator 2302 (opening and closing of forceps, etc.) and rotation of the surgical instrument 750 in the roll direction by the roll shaft motor 2311 are driven in parallel without mutual interference, thereby rolling the surgical instrument 750. Infinite rotation can be achieved by eliminating restrictions on the range of motion of the axis. Further, when the surgical instrument 750 is forceps, the opening angle of the forceps is, for example, 20 degrees.
 なお、図23中の参照番号2340は、力センサを示している。力センサ2340は、第2の従動リンク708に搭載され、術具750が術部などから受ける外力の測定に使用される。ここで、力センサ2340は、起歪体と、起歪体の表面に貼設された歪み検出素子で構成される。起歪体は、第2の従動リンク708に固定されるが、第2の従動リンク708の一部を起歪体構造にしたもみでもよい。また、歪み検出素子は、例えば、歪み量に応じて電気抵抗値が変化する歪みゲージや、歪み量に応じて光ファイバ内を透過する光の波長を変化させるFBG(Fiber Bragg Gratings)でもよい。力センサ2340は、例えば起歪体の3軸方向にそれぞれ1セットの歪み検出素子を配設して構成される、3方向の外力及びモーメントを計測可能な6DoF(Degrees of Freedom)力センサであってもよい。 Reference number 2340 in FIG. 23 indicates a force sensor. A force sensor 2340 is mounted on the second driven link 708 and used to measure the external force that the surgical instrument 750 receives from the surgical site or the like. Here, the force sensor 2340 is composed of a strain-generating body and a strain detection element attached to the surface of the strain-generating body. The strain-generating body is fixed to the second driven link 708, but may be a fir with a portion of the second driven link 708 having a strain-generating body structure. The strain detection element may be, for example, a strain gauge whose electric resistance value changes according to the amount of strain, or an FBG (Fiber Bragg Gratings) that changes the wavelength of light transmitted through the optical fiber according to the amount of strain. The force sensor 2340 is a 6DoF (Degrees of Freedom) force sensor capable of measuring external forces and moments in three directions, for example, configured by arranging one set of strain detection elements in each of the three axial directions of the strain body. may
D-4.アーム装置の利点
 このD項の最後に、アーム装置700の利点についてまとめておく。
D-4. Advantages of Arm Apparatus At the end of Section D, the advantages of the arm apparatus 700 are summarized.
(1)RCMリンクのヨー軸とピッチ軸をパラレル駆動させる構造とすることで、それぞれの出力軸の慣性を低減することができる。
(2)術具750のロール軸と鉗子開閉軸をパラレル駆動させる構造とすることで、それぞれの出力軸の慣性を低減することができる。
(3)上記(1)及び(2)におけるパラレル駆動は軸干渉しないので、制御モデルが簡単である。
(4)各軸の可動域が広い。具体的には、RCMリンクのヨー軸回りに±75度、ピッチ軸回りに±60度の可動域を持ち、術具750はロール軸回りに無限回転可能である。
(5)スライダクランク機構を用いてRCMリンクのピッチ軸駆動を行うことにより、比較適合性が高い。
(1) By adopting a structure in which the yaw axis and the pitch axis of the RCM link are driven in parallel, the inertia of each output axis can be reduced.
(2) Inertia of each output shaft can be reduced by adopting a structure in which the roll shaft of the surgical instrument 750 and the forceps opening/closing shaft are driven in parallel.
(3) The control model is simple because the parallel drive in (1) and (2) does not interfere with the axes.
(4) Wide range of motion for each axis. Specifically, it has a movable range of ±75 degrees around the yaw axis of the RCM link and ±60 degrees around the pitch axis, and the surgical instrument 750 is infinitely rotatable around the roll axis.
(5) Comparability is high by using a slider crank mechanism to drive the pitch axis of the RCM link.
 また、アーム装置700の利点として、重量を軽量化できる、高剛性を実現できる、パラレル駆動と広可動域を同時に実現できる、という点を挙げることもできる。 In addition, as advantages of the arm device 700, it is possible to reduce the weight, achieve high rigidity, and achieve parallel drive and a wide range of motion at the same time.
E.医療分野での適用例
 このE項では、本開示に係るアーム装置の医療分野での適用例について説明する。上記C~D項で説明したように、本開示に係るアーム装置は平行リンク型のRCM機構によって遠位端の術具を支持する構造であるので、術具、又は術具を挿通するトロッカーの刺入位置をピボット点とする術具のピボット運動が可能であることから、低侵襲の手術を実現することができる。また、本開示に係るアーム装置によれば、RCMリンクにおけるヨー軸とピッチ軸のパラレル駆動、並びにRCMリンクの遠位端で支持する術具のロール軸及び鉗子開閉軸のパラレル駆動を軸間干渉なしで実現するので、各出力軸の慣性を低減できるとともに、制御モデルが簡単である。
E. Medical Applications This Section E describes the medical applications of the arm apparatus according to the present disclosure. As explained in the above sections C to D, the arm device according to the present disclosure has a structure that supports the surgical instrument at the distal end by the parallel link type RCM mechanism, so the surgical instrument or the trocar through which the surgical instrument is inserted Since the surgical instrument can be pivoted around the insertion position as a pivot point, minimally invasive surgery can be achieved. Further, according to the arm device according to the present disclosure, the parallel driving of the yaw axis and the pitch axis in the RCM link, and the parallel driving of the roll axis and the forceps opening/closing axis of the surgical instrument supported at the distal end of the RCM link are controlled by inter-axis interference. Since the control model is simple, the inertia of each output shaft can be reduced.
 図24には、本開示に係るアーム装置を眼科手術に適用したイメージを示している。但し、図面の簡素化のため、アーム装置2400は図4~図6に示したような自由度構成として描いている。なお、アーム装置2400は、XYZステージやパラレルリンクなど(いずれも図示しない)の3次元位置及び姿勢を調整可能な装置の上に搭載されていてもよい。図24に示すように、アーム装置2400の遠位端に支持された術具2401は、眼球2410の表面に刺し込まれたトロッカー2402を介して眼球内に刺入され、術具2401の先端は眼底付近(網膜)に到達している。アーム装置2400は、術具2401を挿通するトロッカー2402の刺入位置をピボット点とするピボット運動が可能である。したがって、術具2401をピッチ及びヨーの2方向にパラレル駆動した際に、トロッカー2402の刺入位置で眼球に作用する負荷を抑制して、低侵襲により眼科手術を実現することができる。 FIG. 24 shows an image of applying the arm device according to the present disclosure to ophthalmic surgery. However, for the sake of simplification of the drawing, the arm device 2400 is depicted as having a degree-of-freedom configuration as shown in FIGS. The arm device 2400 may be mounted on a device capable of adjusting its three-dimensional position and orientation, such as an XYZ stage or parallel link (none of which is shown). As shown in FIG. 24, a surgical instrument 2401 supported at the distal end of an arm device 2400 is inserted into the eyeball via a trocar 2402 stuck into the surface of the eyeball 2410, and the tip of the surgical instrument 2401 is It reaches near the fundus (retina). The arm device 2400 is capable of pivoting with the insertion position of the trocar 2402 through which the surgical instrument 2401 is inserted as the pivot point. Therefore, when the surgical instrument 2401 is driven in parallel in two directions of pitch and yaw, the load acting on the eyeball at the insertion position of the trocar 2402 can be suppressed, and minimally invasive ophthalmic surgery can be realized.
 また、図25には、本開示に係るアーム装置を脳表手術に適用したイメージを示している。但し、図面の簡素化のため、アーム装置2500は図4~図6に示したような自由度構成として描いている。なお、アーム装置2500は、XYZステージやパラレルリンクなど(いずれも図示しない)の3次元位置及び姿勢を調整可能な装置の上に搭載されていてもよい。図25に示すように、アーム装置2500の遠位端に支持された術具2501の先端は脳表2510に当接している。アーム装置2500は、術具2501の先端をピボット点として術具のピボット運動が可能である。したがって、術具2501をピッチ及びヨーの2方向にパラレル駆動した際に、術具2501の先端は幹部以外の脳表2510に移動して傷つけることはなく、低侵襲により脳表手術を実現することができる。図示を省略するが、本開示に係るアーム装置を体表手術に適用した場合にも同様のことが言える。 In addition, FIG. 25 shows an image of applying the arm device according to the present disclosure to brain surface surgery. However, for the sake of simplification of the drawings, the arm device 2500 is depicted as having a degree-of-freedom configuration as shown in FIGS. The arm device 2500 may be mounted on a device capable of adjusting its three-dimensional position and orientation, such as an XYZ stage or parallel link (none of which is shown). As shown in FIG. 25, the tip of surgical instrument 2501 supported by the distal end of arm device 2500 abuts brain surface 2510 . The arm device 2500 is capable of pivoting the surgical tool with the tip of the surgical tool 2501 as a pivot point. Therefore, when the surgical instrument 2501 is driven in parallel in two directions of pitch and yaw, the distal end of the surgical instrument 2501 does not move and damage the brain surface 2510 other than the trunk, thereby realizing minimally invasive brain surface surgery. can be done. Although illustration is omitted, the same can be said when the arm device according to the present disclosure is applied to body surface surgery.
 また、図26には、本開示に係るアーム装置を腹腔鏡手術に適用したイメージを示している。但し、図面の簡素化のため、アーム装置2600は図4~図6に示したような自由度構成として描いている。なお、アーム装置2600は、XYZステージやパラレルリンクなど(いずれも図示しない)の3次元位置及び姿勢を調整可能な装置の上に搭載されていてもよい。図26に示すように、アーム装置2600の遠位端に支持された術具2601は、患者の腹部に刺し込まれたトロッカー2602を介して腹腔2610内に刺入され、術具2601の先端は対象とする臓器に到達している。アーム装置2600は、術具2601を挿通するトロッカー2602の刺入位置をピボット点とするピボット運動が可能である。したがって、術具2601をピッチ及びヨーの2方向にパラレル駆動した際に、トロッカー2602の刺入位置で腹部に作用する負荷を抑制して、低侵襲により腹腔鏡手術を実現することができる。 Also, FIG. 26 shows an image of applying the arm device according to the present disclosure to laparoscopic surgery. However, for the sake of simplification of the drawings, the arm device 2600 is depicted as having a degree-of-freedom configuration as shown in FIGS. The arm device 2600 may be mounted on a device capable of adjusting its three-dimensional position and orientation, such as an XYZ stage or parallel link (none of which is shown). As shown in FIG. 26, a surgical instrument 2601 supported at the distal end of an arm device 2600 is inserted into an abdominal cavity 2610 via a trocar 2602 inserted into the patient's abdomen, and the tip of the surgical instrument 2601 is It reaches the target organ. The arm device 2600 is capable of pivoting with the insertion position of the trocar 2602 through which the surgical instrument 2601 is inserted as the pivot point. Therefore, when the surgical instrument 2601 is driven in parallel in two directions of pitch and yaw, the load acting on the abdomen at the insertion position of the trocar 2602 can be suppressed, and minimally invasive laparoscopic surgery can be realized.
 以上、特定の実施形態を参照しながら、本開示について詳細に説明してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。 The present disclosure has been described in detail above with reference to specific embodiments. However, it is obvious that those skilled in the art can modify or substitute the embodiments without departing from the gist of the present disclosure.
 本開示に係るアーム装置は、例えば遠位端で術具を支持して、眼科手術や脳表手術又は体表手術、腹腔鏡手術などに適用して、パラレル駆動のRCM機構により低侵襲の手術を実現することができる。本開示に係るアーム装置は、術具として、例えば鉗子やはさみ、攝子、バイポーラ、クリップ鉗子などを支持し、トロッカーの刺入位置や脳表又は体表をピボット点(RCM)として術具をピボット運動させることができるので、低侵襲の手術を実現することができる。もちろん、本開示を医療以外のさまざまな産業分野にも適用することができる。 The arm device according to the present disclosure, for example, supports a surgical instrument at its distal end, is applied to eye surgery, brain surface surgery, body surface surgery, laparoscopic surgery, etc., and uses a parallel drive RCM mechanism to perform minimally invasive surgery. can be realized. The arm device according to the present disclosure supports, for example, forceps, scissors, scissors, bipolar forceps, clip forceps, etc. as surgical tools, and pivots the surgical tool using the insertion position of the trocar, the brain surface, or the body surface as a pivot point (RCM). Since it can be moved, minimally invasive surgery can be achieved. Of course, the present disclosure can also be applied to various industrial fields other than medicine.
 要するに、例示という形態により本開示について説明してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本開示の要旨を判断するためには、特許請求の範囲を参酌すべきである。 In short, the present disclosure has been described in the form of an example, and the content of the specification should not be construed in a restrictive manner. In order to determine the gist of the present disclosure, the scope of the claims should be considered.
 なお、本開示は、以下のような構成をとることも可能である。 It should be noted that the present disclosure can also be configured as follows.
(1)ベース部に対し少なくともピッチ軸及びヨー軸回りに回転自由度を持つ原動リンクと、
 前記ベース部に固定され、前記原動リンクの前記ピッチ軸回りの動作を生成する第1の駆動部と、
 前記ベース部に固定され、前記原動リンクの前記ヨー軸回りの動作を生成する第2の駆動部と、
を具備するアーム装置。
(1) a driving link having rotational degrees of freedom about at least the pitch axis and the yaw axis with respect to the base;
a first drive section fixed to the base section for generating motion of the driving link about the pitch axis;
a second drive section fixed to the base section for generating motion of the driving link about the yaw axis;
An arm device comprising
(2)前記第1の駆動部は、スライダクランク機構によって前記原動リンクの前記ピッチ軸回りの動作を生成する、
上記(1)に記載のアーム装置。
(2) The first driving section generates motion of the driving link about the pitch axis by a slider crank mechanism.
The arm device according to (1) above.
(3)前記スライダクランク機構は、前記ヨー軸方向に往復運動するスライダと、前記原動リンクと前記スライダ間を接続するロッドで構成され、前記スライダの前記往復運動が前記ロッドを介して伝達されて、前記原動リンクが前記ピッチ軸回りに回転運動する、
上記(2)に記載のアーム装置。
(3) The slider crank mechanism is composed of a slider that reciprocates in the yaw axis direction and a rod that connects the driving link and the slider, and the reciprocating motion of the slider is transmitted through the rod. , the driving link rotates about the pitch axis;
The arm device according to (2) above.
(4)前記ロッドは、前記スライダに対し前記ヨー軸回りに回転可能である、
上記(1)乃至(3)のいずれかに記載のアーム装置。
(4) the rod is rotatable about the yaw axis with respect to the slider;
The arm device according to any one of (1) to (3) above.
(5)前記ロッドは、前記ヨー軸回りに回転可能な軸受を介して前記スライダに接続される、
上記(4)に記載のアーム装置。
(5) the rod is connected to the slider via a bearing rotatable about the yaw axis;
The arm device according to (4) above.
(6)前記第1の駆動部は、回転モータと、前記回転モータの回転動作を前記スライダの前記ヨー軸方向の直動動作に変換するボールねじ機構を備える、
上記(3)乃至(5)のいずれかに記載のアーム装置。
(6) The first drive unit includes a rotary motor and a ball screw mechanism that converts rotary motion of the rotary motor into linear motion of the slider in the yaw axis direction.
The arm device according to any one of (3) to (5) above.
(7)前記第2の駆動部は、回転モータと、前記回転モータの回転を減速して前記ヨー軸に伝達する減速機構を備える、
上記(1)乃至(6)のいずれかに記載のアーム装置。
(7) The second drive unit includes a rotary motor and a speed reduction mechanism that reduces rotation of the rotary motor and transmits the reduced speed to the yaw axis.
The arm device according to any one of (1) to (6) above.
(8)前記減速機構は、前記回転モータの出力軸に取り付けられた入力キャプスタンと、前記ヨー軸に取り付けられた出力キャプスタンと、前記入力キャプスタンと前記出力キャプスタンに巻き付けられて回転力を伝達するケーブルからなるケーブル減速機である、
上記(7)に記載のアーム装置。
(8) The speed reduction mechanism includes an input capstan attached to the output shaft of the rotary motor, an output capstan attached to the yaw shaft, and a rotational force wound around the input capstan and the output capstan. is a cable reducer consisting of a cable that transmits the
The arm device according to (7) above.
(9)前記原動リンクの前記ピッチ軸回り及び前記ヨー軸回りの回転運動に従動する平行リンク機構をさらに備える、
上記(1)乃至(8)のいずれかに記載のアーム装置。
(9) further comprising a parallel link mechanism that follows the rotational motion of the driving link about the pitch axis and about the yaw axis;
The arm device according to any one of (1) to (8) above.
(10)前記平行リンク機構の遠位端のリンクに搭載された医療用術具をさらに備える、
上記(9)に記載のアーム装置。
(10) further comprising a medical instrument mounted on a link at the distal end of the parallel link mechanism;
The arm device according to (9) above.
(11)前記医療用術具をロール軸回りに駆動する第3の駆動部をさらに備える、
上記(10)に記載のアーム装置。
(11) further comprising a third driving unit that drives the medical surgical instrument around a roll axis;
The arm device according to (10) above.
(12)前記第3の駆動部は、回転モータと、前記回転モータの回転を前記医療用術具に伝達する伝達部を備える、
上記(11)に記載のアーム装置。
(12) The third drive unit includes a rotary motor and a transmission unit that transmits rotation of the rotary motor to the medical surgical instrument.
The arm device according to (11) above.
(13)前記医療用術具は、鉗子、はさみ、攝子、バイポーラ鑷子、クリップ鉗子、カメラのうちいずれかである、
上記(10)乃至(12)のいずれかに記載のアーム装置。
(13) The medical surgical instrument is forceps, scissors, forceps, bipolar forceps, clip forceps, or a camera.
The arm device according to any one of (10) to (12) above.
(14)前記医療用術具は、開閉操作可能な鉗子又はその他の術具であり、
 前記医療用術具を駆動する第4の駆動部をさらに備える、
上記(10)乃至(13)のいずれかに記載のアーム装置。
(14) the medical surgical tool is forceps or other surgical tool that can be opened and closed;
Further comprising a fourth driving unit for driving the medical surgical instrument,
The arm device according to any one of (10) to (13) above.
(15)前記第4の駆動部は、回転モータと、前記回転モータの回転動作を前記ロール軸方向の直動動作に変換するリードスクリューを備え、
 前記リードスクリューのナットに結合された伝達ロッドの直動動作によって前記医療用術具を駆動する、
上記(14)に記載のアーム装置。
(15) The fourth drive unit includes a rotary motor and a lead screw that converts rotary motion of the rotary motor into linear motion in the roll axial direction,
driving the medical surgical instrument by linear motion of a transmission rod coupled to a nut of the lead screw;
The arm device according to (14) above.
(16)前記平行リンク機構の遠位端の前記リンクに搭載され、前記医療用術具に作用する外力を検出する力センサをさらに備える、
上記(10)乃至(15)のいずれかに記載のアーム装置。
(16) further comprising a force sensor mounted on the link at the distal end of the parallel link mechanism and detecting an external force acting on the medical surgical instrument;
The arm device according to any one of (10) to (15) above.
 100…アーム装置、101…原動リンク、102…ベース部
 103…第1の駆動部、104…第2の駆動部、105…スライダ
 106…ロッド、111、112、113、114…受動関節部
 400…アーム装置、401…原動リンク、402…ベース部
 403…第1の駆動部、404…第2の駆動部、405…スライダ
 406…ロッド、407…第1の従動リンク
 408…第2の従動リンク、409…第1の中間リンク
 410…第2の中間リンク
 411、412、413、414…受動関節部
 417、418、419、420、421…受動関節部
 422…固定リンク
 700…アーム装置、701…原動リンク、702…RCMベース部
 705…スライダ、706…ロッド、707…第1の従動リンク
 708…第2の従動リンク、709…第1の中間リンク
 710…第2の中間リンク、711、712、713…受動関節部
 731…ボールねじ軸、732…ピッチ軸モータ
 733…スプラインナット、734…ボールスプラインロッド
 735…軸受部
 741…ヨー軸モータ、742…ケーブル減速機入力キャプスタン
 743…ケーブル減速機出力キャプスタン、750…術具
 2201…ケーブル
 2301…術具ユニット、2302…術具駆動用アクチュエータ
 2303…術具シャフト、2304…リードスクリュー
 2311…ロール軸モータ、2312…タイミングベルト
 2321…軸受、2330…伝達ロッド
 2331、2332…ジョー部材、2333…開閉軸
 2334、2335…カムスロット、2336…ピン
 2340…力センサ
DESCRIPTION OF SYMBOLS 100... Arm apparatus 101... Driving link 102... Base part 103... 1st drive part 104... 2nd drive part 105... Slider 106... Rod 111, 112, 113, 114... Passive joint part 400... Arm device 401 Drive link 402 Base part 403 First drive part 404 Second drive part 405 Slider 406 Rod 407 First driven link 408 Second driven link 409... First intermediate link 410... Second intermediate link 411, 412, 413, 414... Passive joint part 417, 418, 419, 420, 421... Passive joint part 422... Fixed link 700... Arm device, 701... Driving force Links 702 RCM base portion 705 Slider 706 Rod 707 First driven link 708 Second driven link 709 First intermediate link 710 Second intermediate link 711, 712, 713 Passive joint 731 Ball screw shaft 732 Pitch axis motor 733 Spline nut 734 Ball spline rod 735 Bearing 741 Yaw axis motor 742 Cable reduction gear input capstan 743 Cable reduction gear output cap Stun 750...Surgical tool 2201...Cable 2301...Surgical tool unit 2302...Surgical tool drive actuator 2303...Surgical tool shaft 2304...Lead screw 2311...Roll shaft motor 2312...Timing belt 2321...Bearing 2330... Transmission rod 2331, 2332 Jaw member 2333 Open/ close shaft 2334, 2335 Cam slot 2336 Pin 2340 Force sensor

Claims (16)

  1.  ベース部に対し少なくともピッチ軸及びヨー軸回りに回転自由度を持つ原動リンクと、
     前期ベース部に固定され、前記原動リンクの前記ピッチ軸回りの動作を生成する第1の駆動部と、
     前記ベース部に固定され、前記原動リンクの前記ヨー軸回りの動作を生成する第2の駆動部と、
    を具備するアーム装置。
    a driving link having rotational degrees of freedom about at least the pitch and yaw axes with respect to the base;
    a first drive section fixed to the base section for generating motion of the driving link about the pitch axis;
    a second drive section fixed to the base section for generating motion of the driving link about the yaw axis;
    An arm device comprising
  2.  前記第1の駆動部は、スライダクランク機構によって前記原動リンクの前記ピッチ軸回りの動作を生成する、
    請求項1に記載のアーム装置。
    The first driving section generates motion of the driving link about the pitch axis by a slider crank mechanism.
    The arm device according to claim 1.
  3.  前記スライダクランク機構は、前記ヨー軸方向に往復運動するスライダと、前記原動リンクと前記スライダ間を接続するロッドで構成され、前記スライダの前記往復運動が前記ロッドを介して伝達されて、前記原動リンクが前記ピッチ軸回りに回転運動する、
    請求項2に記載のアーム装置。
    The slider-crank mechanism includes a slider that reciprocates in the yaw axis direction and a rod that connects the driving link and the slider. the link rotates around the pitch axis;
    The arm device according to claim 2.
  4.  前記ロッドは、前記スライダに対し前記ヨー軸回りに回転可能である、
    請求項3に記載のアーム装置。
    the rod is rotatable about the yaw axis with respect to the slider;
    The arm device according to claim 3.
  5.  前記ロッドは、前記ヨー軸回りに回転可能な軸受を介して前記スライダに接続される、
    請求項4に記載のアーム装置。
    the rod is connected to the slider via a bearing rotatable about the yaw axis;
    The arm device according to claim 4.
  6.  前記第1の駆動部は、回転モータと、前記回転モータの回転動作を前記スライダの前記ヨー軸方向の直動動作に変換するボールねじ機構を備える、
    請求項3に記載のアーム装置。
    The first drive unit includes a rotary motor and a ball screw mechanism that converts rotary motion of the rotary motor into linear motion of the slider in the yaw axis direction.
    The arm device according to claim 3.
  7.  前記第2の駆動部は、回転モータと、前記回転モータの回転を減速して前記ヨー軸に伝達する減速機構を備える、
    請求項1に記載のアーム装置。
    The second drive unit includes a rotary motor and a speed reduction mechanism that reduces the speed of rotation of the rotary motor and transmits the speed to the yaw axis.
    The arm device according to claim 1.
  8.  前記減速機構は、前記回転モータの出力軸に取り付けられた入力キャプスタンと、前記ヨー軸に取り付けられた出力キャプスタンと、前記入力キャプスタンと前記出力キャプスタンに巻き付けられて回転力を伝達するケーブルからなるケーブル減速機である、
    請求項7に記載のアーム装置。
    The reduction mechanism includes an input capstan attached to the output shaft of the rotary motor, an output capstan attached to the yaw shaft, and is wound around the input capstan and the output capstan to transmit rotational force. A cable speed reducer consisting of a cable,
    The arm device according to claim 7.
  9.  前記原動リンクの前記ピッチ軸回り及び前記ヨー軸回りの回転運動に従動する平行リンク機構をさらに備える、
    請求項1に記載のアーム装置。
    further comprising a parallel link mechanism that follows the rotational movement of the driving link about the pitch axis and about the yaw axis;
    The arm device according to claim 1.
  10.  前記平行リンク機構の遠位端のリンクに搭載された医療用術具をさらに備える、
    請求項9に記載のアーム装置。
    further comprising a medical surgical instrument mounted on a distal end link of the parallel linkage mechanism;
    The arm device according to claim 9.
  11.  前記医療用術具をロール軸回りに駆動する第3の駆動部をさらに備える、
    請求項10に記載のアーム装置。
    further comprising a third drive unit that drives the medical surgical instrument around a roll axis,
    The arm device according to claim 10.
  12.  前記第3の駆動部は、回転モータと、前記回転モータの回転を前記医療用術具に伝達する伝達部を備える、
    請求項11に記載のアーム装置。
    The third drive unit includes a rotary motor and a transmission unit that transmits rotation of the rotary motor to the medical surgical instrument.
    The arm device according to claim 11.
  13.  前記医療用術具は、鉗子、はさみ、攝子、バイポーラ鑷子、クリップ鉗子、カメラのうちいずれかである、
    請求項10に記載のアーム装置。
    The medical surgical instrument is forceps, scissors, forceps, bipolar forceps, clip forceps, or a camera,
    The arm device according to claim 10.
  14.  前記医療用術具は、開閉操作可能な鉗子又はその他の術具であり、
     前記医療用術具を駆動する第4の駆動部をさらに備える、
    請求項10に記載のアーム装置。
    The medical surgical instrument is forceps or other surgical instruments that can be opened and closed,
    Further comprising a fourth driving unit for driving the medical surgical instrument,
    The arm device according to claim 10.
  15.  前記第4の駆動部は、回転モータと、前記回転モータの回転動作を前記ロール軸方向の直動動作に変換するリードスクリューを備え、
     前記リードスクリューのナットに結合された伝達ロッドの直動動作によって前記医療用術具を駆動する、
    請求項14に記載のアーム装置。
    The fourth drive unit includes a rotary motor and a lead screw that converts rotary motion of the rotary motor into linear motion in the roll axial direction,
    driving the medical surgical instrument by linear motion of a transmission rod coupled to a nut of the lead screw;
    The arm device according to claim 14.
  16.  前記平行リンク機構の遠位端の前記リンクに搭載され、前記医療用術具に作用する外力を検出する力センサをさらに備える、
    請求項10に記載のアーム装置。
    further comprising a force sensor mounted on the link at the distal end of the parallel link mechanism and detecting an external force acting on the medical surgical instrument;
    The arm device according to claim 10.
PCT/JP2021/048774 2021-05-28 2021-12-28 Arm device WO2022249524A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-090129 2021-05-28
JP2021090129 2021-05-28

Publications (1)

Publication Number Publication Date
WO2022249524A1 true WO2022249524A1 (en) 2022-12-01

Family

ID=84229719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048774 WO2022249524A1 (en) 2021-05-28 2021-12-28 Arm device

Country Status (1)

Country Link
WO (1) WO2022249524A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080314181A1 (en) * 2007-06-19 2008-12-25 Bruce Schena Robotic Manipulator with Remote Center of Motion and Compact Drive
US20160375587A1 (en) * 2015-06-26 2016-12-29 Haption Secured motor-driven articulated arm with cable capstan
CN109602500A (en) * 2018-12-06 2019-04-12 哈尔滨工业大学 A kind of Ophthalimic microsurgery robotic system
CN112716606A (en) * 2020-12-24 2021-04-30 西安交通大学 Three-degree-of-freedom minimally invasive surgery mechanical arm far-end motion center mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080314181A1 (en) * 2007-06-19 2008-12-25 Bruce Schena Robotic Manipulator with Remote Center of Motion and Compact Drive
US20160375587A1 (en) * 2015-06-26 2016-12-29 Haption Secured motor-driven articulated arm with cable capstan
CN109602500A (en) * 2018-12-06 2019-04-12 哈尔滨工业大学 A kind of Ophthalimic microsurgery robotic system
CN112716606A (en) * 2020-12-24 2021-04-30 西安交通大学 Three-degree-of-freedom minimally invasive surgery mechanical arm far-end motion center mechanism

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAYASHI HIROYUKI, TAKASHI YAMAMOTO, TOSHIKAZU KAWAI, ATSUSHI NISHIKAWA, YUJI NISHIZAWA, TATSUO NAKAMURA: "Development of Forceps Manipulator with Clank-slider and Parallel Linkage Mechanism for laparoscopic Surgery", PROCEEDINGS OF THE 2014 JSME CONFERENCE ON ROBOTICS AND MECHATRONICS, 25 May 2014 (2014-05-25), XP093008806 *
KAWAI TOSHIKAZU; SHIN MYONGYU; NISHIZAWA YUJI; HORISE YUKI; NISHIKAWA ATSUSHI; NAKAMURA TATSUO: "Mobile locally operated detachable end-effector manipulator for endoscopic surgery", INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, SPRINGER, DE, vol. 10, no. 2, 6 May 2014 (2014-05-06), DE , pages 161 - 169, XP035434664, ISSN: 1861-6410, DOI: 10.1007/s11548-014-1062-4 *

Similar Documents

Publication Publication Date Title
US10660713B2 (en) Wrist and jaw assemblies for robotic surgical systems
CN111888012B (en) Surgical instrument platform
US10220522B2 (en) Gear train assemblies for robotic surgical systems
CN110719761B (en) Instrument interface for robotic surgical instruments
CN107530134B (en) Electromechanical surgical system
US7717904B2 (en) Manipulator
KR101801297B1 (en) Passive preload and capstan drive for surgical instruments
US8920433B2 (en) Ergonomic and semi-automatic manipulator, and applications to instruments for minimally invasive surgery
WO2021184791A1 (en) Serpentine surgical robot applied to minimally invasive surgery
US20120132018A1 (en) Remote centre of motion positioner
US20210093311A1 (en) Electromechanical surgical system
WO2013158974A1 (en) Dexterous wrists for surgical intervention
JP6836649B2 (en) Medical treatment tools and surgical systems
CN108066010B (en) Surgical robot with flexibility and multiple degrees of freedom
US11324560B2 (en) Surgical instrument
WO2022001188A1 (en) Continuum instrument and surgical robot
US20230355261A1 (en) Medical devices having compact end effector drive mechanisms with high grip force
JP3679440B2 (en) Medical manipulator
CN116098713A (en) Main wrist, main operation equipment and surgical robot
WO2021049286A1 (en) Surgical instrument, surgery assistance system, and operating unit for surgery
WO2022249524A1 (en) Arm device
CN114340519A (en) Surgical tool, surgical support system, and surgical operation unit
US11627977B2 (en) Wristed instrument with shared pitch and yaw axes existing at the jaw pivot
WO2022001185A1 (en) Continuum instrument and surgical robot
CN116322535A (en) Arrangement of end effector elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943157

Country of ref document: EP

Kind code of ref document: A1