WO2022009332A1 - Rotor for rotary electric machine, rotary electric machine, and compressor - Google Patents

Rotor for rotary electric machine, rotary electric machine, and compressor Download PDF

Info

Publication number
WO2022009332A1
WO2022009332A1 PCT/JP2020/026685 JP2020026685W WO2022009332A1 WO 2022009332 A1 WO2022009332 A1 WO 2022009332A1 JP 2020026685 W JP2020026685 W JP 2020026685W WO 2022009332 A1 WO2022009332 A1 WO 2022009332A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial direction
electric machine
rotor
rotary electric
permanent magnets
Prior art date
Application number
PCT/JP2020/026685
Other languages
French (fr)
Japanese (ja)
Inventor
克弥 坂邊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022534554A priority Critical patent/JPWO2022009332A1/ja
Priority to PCT/JP2020/026685 priority patent/WO2022009332A1/en
Publication of WO2022009332A1 publication Critical patent/WO2022009332A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present disclosure relates to a rotor of a rotary electric machine having a rotor core, a rotary electric machine having the rotor, and a compressor having the rotary electric machine.
  • the rotor of this type of conventional rotary electric machine for example, as disclosed in Patent Document 1, eight holes (8 poles) are formed in the circumferential direction of the laminated iron core at predetermined intervals, and one of the holes is formed. In some holes, two permanent magnets are arranged in the axial direction.
  • the laminated iron core is formed by laminating plate-shaped magnetic members and fixing and integrating them by, for example, caulking.
  • the present disclosure has been made to solve the above-mentioned problems, and is a rotor of a rotary electric machine having a structure in which the magnetic member is less likely to peel off, a rotary electric machine having the rotor, and a compressor having the rotary electric machine. Is intended to provide.
  • the rotors of the rotary electric machine are a plurality of rotor cores formed by laminating plate-shaped magnetic members and a plurality of rotor cores arranged along the circumferential direction of the rotor cores and extending in the axial direction of the rotor cores.
  • a hole and a plurality of permanent magnets arranged in series in the hole along the axial direction and fixed to the hole are provided, and permanent magnets adjacent to each other in the axial direction have a tip portion facing each other.
  • the rotary electric machine according to the present disclosure includes a rotor of the rotary electric machine according to the present disclosure, and a stator that applies a rotating magnetic field to the rotor to rotate the rotor.
  • the compressor according to the present disclosure includes the rotary electric machine according to the present disclosure, a compression mechanism unit driven by the rotary electric machine to compress the fluid sucked from the outside, and a closed container accommodating the rotary electric machine and the compression mechanism unit. Be prepared.
  • the rotor, rotary machine, and compressor of the rotary electric machine according to the present disclosure have small cross-sectional areas of at least one of the two permanent magnets adjacent to each other in the axial direction, so that the two permanent magnets can be attached to each other. It is possible to suppress the generation of repulsive magnetic forces that work on each other, and it is possible to suppress the peeling of magnetic members from each other.
  • FIG. The plan view of the rotor used in Embodiment 1.
  • FIG. Sectional drawing of the rotor used in Embodiment 1. The perspective view of the permanent magnet used in Embodiment 1.
  • FIG. The perspective view of the permanent magnet used in Embodiment 1.
  • FIG. The perspective view of the permanent magnet used in Embodiment 1.
  • FIG. Explanatory drawing which shows the magnetic pole of the permanent magnet used in Embodiment 1.
  • FIG. An explanatory diagram showing the relationship between the magnetic forces of the permanent magnets used in the first embodiment.
  • FIG. 6 is a cross-sectional view of a rotor showing the second embodiment.
  • FIG. 2 is a plan view of a modified fastening plate showing the second embodiment. The plan view of the retaining plate before deformation which shows Embodiment 2.
  • a side view of a permanent magnet showing another embodiment. A side view of a permanent magnet showing another embodiment.
  • a side view of a permanent magnet showing another embodiment. A side view of a permanent magnet showing another embodiment.
  • FIG. 1 is a side sectional view showing the structure of the compressor 100.
  • the compressor 100 is a closed-type scroll compressor.
  • the compressor 100 includes a compression mechanism unit 2 that compresses a gas refrigerant, a rotary electric machine 3 that drives the compression mechanism unit 2, a crank shaft 4 that transmits the driving force of the rotary electric machine 3 to the compression mechanism unit 2, and a compression mechanism unit. 2. It is provided with a closed container 5 for accommodating a rotary electric machine 3, a crank shaft 4, and the like, and a power supply terminal 6 for supplying power to the rotary electric machine 3.
  • the gas refrigerant is a fluid.
  • the compression mechanism portion 2 is arranged in the upper part of the closed container 5, and the rotary electric machine 3 is arranged in the lower part.
  • the compression mechanism portion 2 and the rotary electric machine 3 are connected to each other via the crank shaft 4.
  • the crank shaft 4 includes a spindle portion 4a and an eccentric portion 4b provided at the upper end of the spindle portion 4a.
  • the closed container 5 includes a suction pipe 5a and a discharge pipe 5b.
  • the compression mechanism unit 2 is configured to compress the gas refrigerant sucked through the suction pipe 5a of the closed container 5 and send it to the refrigeration cycle (not shown) via the discharge pipe 5b.
  • the compression mechanism unit 2 includes a fixed scroll 7 having a spiral fixed wrap 7a erected at the bottom, a swivel scroll 8 having a spiral swirl wrap 8a erected at the top, and a frame 9 supporting the swirl scroll 8. I have.
  • the swivel scroll 8 is arranged below the fixed scroll 7.
  • the fixed lap 7a of the fixed scroll 7 and the swivel lap 3a of the swivel scroll 8 have basically the same shape, and are arranged so as to be out of phase by 180 °. Then, the swivel scroll 8 revolves to form a suction chamber and a compression chamber between the fixed scroll 7 and the swivel scroll 8.
  • the fixed scroll 7 is formed with a discharge port 7b communicating with the compression chamber.
  • the outer peripheral side of the frame 9 is fixed to the inner wall surface of the closed container 5 by welding.
  • the frame 9 includes a main bearing 11.
  • the compression mechanism unit 2 includes an old dam ring 12.
  • the old dam ring 12 is arranged between the lower surface side of the swivel scroll 8 and the frame 9, and is attached to the groove formed on the lower surface side of the swivel scroll 8 and the groove formed in the frame 9.
  • the old dam ring 12 receives the eccentric rotation of the eccentric portion 4b of the crank shaft 4 and functions to revolve the turning scroll 8 without rotating.
  • the compressor 100 includes a lower bearing 15.
  • the lower bearing 15 is fixed to the closed container 5 at the lower part of the closed container 5.
  • the spindle portion 4a of the frame 4 is rotatably supported by the main bearing 11 on the upper side and rotatably supported by the lower bearing 15 on the lower side.
  • the eccentric portion 4b of the crank shaft 4 is eccentrically and integrally formed with respect to the main shaft portion 4a, and is fitted to a swivel bearing 8b formed on the back surface of the swivel scroll 8.
  • the rotary electric machine 3 includes a rotor 13 and a stator 14.
  • the stator 14 is fixed to the closed container 5 by shrink fitting, welding, or the like.
  • the rotor 13 is rotatably arranged in the stator 14.
  • a crank shaft 4 spindle portion 4a
  • the eccentric portion 4b is configured to rotate eccentrically with respect to the spindle portion 4a and rotate the swivel scroll 8.
  • the stator 14 constituting the rotary electric machine 3 is attached to the stator core 20 via the stator core 20, the insulating member 21 that covers a part of the stator core 20, and the insulating member 21.
  • the armature winding 22 to be wound is provided.
  • the outer periphery of the stator core 20 is fixed to the closed container 5 (see FIG. 1) by shrink fitting or the like.
  • a plurality of teeth are formed on the inner peripheral side of the stator core 20, and an armature winding 22 is wound around the teeth via an insulating member 21.
  • the armature winding 22 for example, a copper wire or an aluminum wire having a small resistivity is used.
  • a resin molded product for example, LCP (liquid crystal polymer), ABS (acrylonitrile, butadiene, styrene), PBT (polybutylene terephthalate)), PET (polyethylene terephthalate) film, or the like is used.
  • the insulating member 21 is configured to insulate the stator core 20 and the armature winding 22 from each other.
  • the magnetic pole surface of the stator 14 alternately generates different magnetic poles in the circumferential direction.
  • the stator 14 applies a rotating magnetic field to the rotor 13 to rotate the rotor 13.
  • FIG. 2 is a top view of the rotor 13.
  • FIG. 3 is a side sectional view of the rotor 13.
  • FIG. 4 is a perspective view of the permanent magnet 32 as viewed from diagonally above.
  • FIG. 5 is a perspective view of the permanent magnet 32 looking up from diagonally below.
  • FIG. 6 is a perspective view of two permanent magnets 32 arranged so as to be aligned in the axial direction.
  • the rotor 13 constituting the rotary electric machine 3 includes a rotor core 31 formed by laminating a thin plate (plate-shaped) magnetic member 30 and a permanent magnet 32.
  • the magnetic member 30 has a disk shape, and a shaft hole 33 for inserting the main shaft portion 4a of the crank shaft 4 is formed in the center, and a rectangular hole is formed in the vicinity of the outer periphery via a predetermined interval in the circumferential direction. It is provided with a magnet arrangement hole 34.
  • the rotor 13 and the crank shaft 4 are fixed by press-fitting the spindle portion 4a of the crank shaft 4 into the shaft hole portion 33 of the magnetic member 30.
  • the magnet arrangement holes 34 are provided with six, but may be four, eight, or the like.
  • the magnetic member 30 is provided with a magnet arrangement hole portion 34 having six rectangular holes, so that a hexagonal hole in which the sides are not connected is formed. Notches 34a extending toward the outer periphery of the magnetic member 30 are formed at both ends of the magnet arrangement hole 34.
  • the magnetic member 30 is formed with convex portions 35 and 36.
  • the convex portions 35 and 36 are formed by projecting a part of the magnetic member 30 by press working.
  • the magnetic member 30 is formed with six convex portions 35 and six convex portions 36.
  • the convex portion 35 is formed at a position between the end portion of the magnet arrangement hole portion 34 in the magnetic member 30 and the shaft hole portion 33.
  • the convex portion 36 is formed between the intermediate portion in the longitudinal direction of the magnet arrangement hole portion 34 in the magnetic member 30 and the outer edge of the magnetic member 30.
  • the magnetic members 30 facing each other are configured so that the front surface of the convex portion 35 of one magnetic member 30 and the back surface of the convex portion 35 of the other magnetic member 30 can be fitted. Therefore, both magnetic members 30 are fixed to each other by fitting the front surface of the convex portion 35 of one magnetic member 30 and the back surface of the convex portion 35 of the other magnetic member 30 between the magnetic members 30 facing each other. (This fixing method is also called dubbing.) Further, the magnetic members 30 facing each other are configured so that the front surface of the convex portion 36 of one magnetic member 30 and the back surface of the convex portion 36 of the other magnetic member 30 can be fitted. Therefore, both magnetic members 30 are fixed to each other by fitting the front surface of the convex portion 36 of one magnetic member 30 and the back surface of the convex portion 36 of the other magnetic member 30 between the magnetic members 30 facing each other. Has been done.
  • Each magnetic member 30 is formed with a shaft hole 33, six magnet placement holes 34, six convex portions 35, and six convex portions 36 at the same positions as the other magnetic members 30. Therefore, by laminating the magnetic members 30, the convex portions 35 are fitted to each other, the convex portions 36 are fitted to each other, and the adjacent magnetic members 30 are fixed to each other. By stacking the magnetic members 30, the positions of the magnet arrangement holes 34 of the magnetic members 30 when viewed from the axial direction of the rotor core 31 (hereinafter, simply referred to as the axial direction) are configured to be the same. ing.
  • the magnet arrangement hole portions 34 in which the magnetic members 30 constituting the rotor core 31 are matched with each other are collectively referred to as a magnet arrangement hole portion group 37 (see FIG. 3).
  • the magnet arrangement hole group 37 is a hole. That is, in the present embodiment, the rotor core 31 is formed with six magnet arrangement hole groups 37.
  • the rotor 13 has two permanent magnets 32 arranged in one magnet arrangement hole group 37.
  • the permanent magnet 32 made of a magnetic material, for example, a rare earth magnet (for example, a magnet containing neodymium, iron, or boron as a main component, or a magnet containing sumalium, iron, or nitrogen as a main component) is used.
  • Two permanent magnets 32 are arranged so as to be aligned in the axial direction in one magnet arrangement hole group 37. That is, two permanent magnets 32 are arranged in series in one magnet arrangement hole group 37.
  • the permanent magnets 32 arranged so as to be aligned in the axial direction are arranged apart from each other. That is, in the present embodiment, the rotor 13 includes 12 permanent magnets 32.
  • the permanent magnet 32 is fixed to the rotor core 31 by press-fitting the permanent magnet 32 into the magnet arrangement hole group 37.
  • the permanent magnets 32 adjacent to each other in the axial direction have a cross-sectional area (in a direction orthogonal to the axial direction) so that both tip portions facing each other toward the tip.
  • the cross-sectional area) is formed to be small. That is, as shown in FIGS. 4 and 5, the permanent magnet 32 has a rectangular cross section in the direction orthogonal to the axial direction.
  • the permanent magnet 32 faces the front end surface PF, which is the front end side surface, the base end surface BF, which is the surface facing the front end surface PF, and the first side surface SF1 and the second side surface SF2, which are side surfaces facing each other.
  • a slope 32a is formed between the front end surface PF and the first side surface SF1 and between the front end surface PF and the second side surface SF2.
  • the cross-sectional area (cross-sectional area in the direction orthogonal to the axial direction) becomes smaller toward the tip end.
  • the portion where the slope 32a is formed in the axial direction of the permanent magnet 32 is defined as the tip portion 32b, and the portion integrally connected to the tip portion 32b is defined as the main body portion 32c. Therefore, the cross-sectional area orthogonal to the axial direction of the tip portion 32b is configured to be smaller than the cross-sectional area orthogonal to the axial direction of the main body portion 32c.
  • FIG. 7 is an explanatory diagram showing magnetic poles of permanent magnets 32 adjacent to each other in the circumferential direction of the rotor core 31.
  • FIG. 8 is an explanatory diagram showing the relationship between the magnetic forces of the permanent magnets 32 adjacent to each other in the circumferential direction of the rotor core 31.
  • FIG. 9 is an explanatory diagram showing the relationship between the magnetic forces of the permanent magnets 32 adjacent to each other in the axial direction of the rotor core 31.
  • FIG. 10 is an explanatory diagram showing the relationship between the magnetic forces of the tips of the permanent magnets 32 adjacent to each other in the circumferential direction of the rotor core 31.
  • FIG. 11 is an explanatory diagram showing the distance relationship between the tips of the permanent magnets.
  • FIG. 12 is an explanatory diagram showing the relationship between the distances between the tips of permanent magnets that do not form a slope on the tip side.
  • the permanent magnet 32 is configured such that the inner half of the rotor core 31 in the radial direction (hereinafter, simply referred to as the radial direction) and the outer half in the radial direction have different magnetic poles. That is, the permanent magnet 32 has different magnetic poles on the first side surface SF1 side and the second side surface SF2 side. Permanent magnets 32 adjacent to each other in the circumferential direction of the rotor core 31 are arranged so that their magnetic poles are opposite to each other. Therefore, the permanent magnets 32 that are adjacent to each other in the circumferential direction of the rotor core 31 exert a magnetic force that attracts each other, and as shown in FIG. 8, a force that causes the positions of the permanent magnets 32 to be in a straight line.
  • the permanent magnets 32 adjacent to each other in the axial direction are arranged so that their magnetic poles are the same as each other. Therefore, the permanent magnets 32 that are adjacent to each other in the axial direction exert a magnetic force that repels each other.
  • the permanent magnet 32 forms a slope 32a on the tip side, as shown in FIG. 10, the width T2 of each tip surface of the permanent magnets 32 adjacent to each other in the axial direction is shown in FIG.
  • the permanent magnet 32 is formed so as to be narrower than the width T1 of the portion other than the tip end portion. That is, as shown in FIG.
  • the cross-sectional area S2 of each tip surface of the permanent magnets 32 adjacent to each other in the axial direction is the cross-sectional area of the portion other than the tip portion 32b of the permanent magnet 32 as shown in FIG. It is formed so as to be smaller than S1. That is, the cross-sectional area orthogonal to the axial direction of the tip portions 32b facing each other is smaller than the cross-sectional area orthogonal to the axial direction of the main body portion 32c.
  • both permanent magnets 32 having a slope 32a formed on the tip side shown in FIG. 11 are both permanent magnets having no slope 32a formed on the tip side shown in FIG.
  • the distance between the tip surfaces of the permanent magnets 40 that do not form the slope 32a shown in FIG. 12 is defined as K1
  • the distance between the tip surfaces PFs of the permanent magnets 32 shown in FIG. 11 is defined as K2.
  • K1 K2
  • K3 the distance between the facing slopes 32a of the permanent magnets 32 shown in FIG.
  • a slope 32a is provided between the front end surface PF and the first side surface SF1 and between the front end surface PF and the second side surface SF2. Since it is formed, for example, the tip portion of the permanent magnet 32 is compared with the permanent magnet in which the slope 32a is formed between the tip surface PF and the third side surface SF3 and between the tip surface PF and the fourth side surface SF4. It is possible to increase the portion where the distance between 32b is large.
  • the width of the first side surface SF1 and the second side surface SF2 (the width in the direction orthogonal to the axial direction) is larger than the width of the third side surface SF3 and the fourth side surface SF4 (the width in the direction orthogonal to the axial direction). This is because the width of the slope 32a can be widened.
  • the compressor 100 configured as described above will be described below.
  • the rotary electric machine 3 when the rotary electric machine 3 is energized from the power supply terminal 6, the rotor 13 rotates together with the crank shaft 4 due to the magnetic field generated in the stator 14.
  • the crank shaft 4 is rotated to rotate the swivel scroll 8
  • the gas refrigerant is guided from the suction pipe 5a to the compression chamber formed by the fixed scroll 7 and the swivel scroll 8.
  • the gas refrigerant in the compression chamber is compressed by reducing its volume as it moves toward the center between the fixed scroll 7 and the swivel scroll 8.
  • the compressed gas refrigerant is sent from the closed container 5 to the refrigeration cycle (not shown) from the discharge port 7b of the fixed scroll 7 via the discharge pipe 5b.
  • the permanent magnets 32 adjacent to each other in the axial direction have a smaller cross-sectional area as their respective tip portions 32b facing each other toward the tip. It is formed. That is, a slope 32a is formed on the respective tip portions 32b of the two permanent magnets 32 that are adjacent to each other in the axial direction.
  • the tip portions 32b of both permanent magnets 32 do not form a slope 32a and have a 90-degree angle portion, but the tip portions 32b have a larger distance from each other. It is possible to suppress the generation of repulsive magnetic forces acting on the two permanent magnets 32, thereby suppressing the peeling of the magnetic members 30 near the tip portion 32b of the two permanent magnets 32.
  • both slopes 32a symmetrically with the tip portion 32b of the permanent magnet 32, when the permanent magnet 32 is inserted into the magnet arrangement hole group 37, the first side surface SF1 and the second side surface SF2 are formed. (Because each permanent magnet 32 is inserted into the magnet arrangement hole group 37 and then magnetized).
  • the tip portions 32b of both permanent magnets 32 adjacent to each other in the circumferential direction of the rotor core 31 do not form a slope 32a and are provided with 90-degree corner portions.
  • the cross-sectional area of the tip is smaller, it is possible to suppress the generation of magnetic force that attracts each other between the two permanent magnets 32, whereby the magnetic member 30 in the vicinity of the tip portion 32b of the two permanent magnets 32. Deformation around the notch 34a can be suppressed.
  • FIG. 13 is a side sectional view of the rotor 43.
  • FIG. 14 is a view of the fastening plate 44 as viewed from above.
  • the configuration of the rotor 43 is different from the configuration of the rotor 13 of the compressor 100 of the first embodiment, and the other configurations are the same parts.
  • the same reference numerals are given, and detailed description thereof will be omitted.
  • the rotor 43 constituting the rotary electric machine 3 includes a plurality of thin magnetic members 30, two fastening plates 44, and a permanent magnet 32.
  • the fastening plate 44 has the same material and substantially the same shape as the magnetic member 30.
  • the difference between the fastening plate 44 and the magnetic member 30 is that the fastening plate 44 is formed with a deformed hole portion 45 near the magnet arrangement hole portion 34.
  • a plurality of thin magnetic members 30 are laminated, and fastening plates 44 are laminated on both sides of the laminated magnetic member 30 in the axial direction.
  • the rotor core 46 is composed of the plurality of magnetic members 30 and the two fastening plates 44.
  • the front surface of one convex portion 35 and the back surface of the other convex portion 35 are fitted by the magnetic member 30 and the fastening plate 44 facing each other, and the magnetic member 30 and the fastening plate 44 are fixed.
  • the magnetic member 30 and the fastening plate 44 facing each other are fitted with the front surface of one convex portion 36 and the back surface of the other convex portion 36, and the magnetic member 30 and the fastening plate 44 are fixed. ..
  • Two permanent magnets 32 are arranged so as to be aligned in the axial direction in the magnet arrangement hole group 37 composed of the laminated magnetic members 30. That is, two permanent magnets 32 are arranged in series in one magnet arrangement hole group 37. The permanent magnets 32 arranged so as to be aligned in the axial direction are arranged apart from each other. The two permanent magnets 32 are arranged with respect to the magnet arrangement hole group 37 via a predetermined gap. That is, in the present embodiment, the permanent magnet 32 is not press-fitted into the magnet arrangement hole group 37.
  • FIG. 14 is an explanatory diagram showing a state after the deformed hole portion 45 of the fastening plate 44 is deformed.
  • FIG. 15 is an explanatory diagram showing a state before the deformation hole portion 45 of the fastening plate 44 is deformed.
  • the convex portions 35 and 36 are formed on the magnetic member 30, and the convex portions 35 and 36 are used to fix the magnetic members 30 facing each other.
  • the magnetic member 30 may omit any one of the convex portions 35 and 36.
  • the convex portions 35 and 36 are formed on the magnetic member 30 and the fastening plate 44, and the convex portions 35 and 36 are used to fix the magnetic members 30 and the fastening plate 44 facing each other. It was composed. Not limited to this, as another embodiment, the magnetic member 30 and the fastening plate 44 may omit any one of the convex portions 35 and 36.
  • the magnetic members 30 facing each other are fitted with the front surface of the convex portions 35 and 36 of one magnetic member 30 and the back surface of the convex portions 35 and 36 of the other magnetic member 30.
  • the magnetic members 30 facing each other were fixed to each other.
  • the magnetic members 30 facing each other may be fixed with an adhesive. Even with this configuration, the same effects as those of the first and second embodiments can be obtained.
  • the magnetic member 30 and the fastening plate 44 facing each other are fitted with the front surface of one convex portion 35 and the back surface of the other convex portions 35, 36, and the magnetic member 30 and the fastening plate are fitted. It was fixed to 44. Not limited to this, as another embodiment, the magnetic member 30 and the fastening plate 44 facing each other may be fixed with an adhesive. Even with this configuration, the same effects as those of the first and second embodiments can be obtained.
  • the permanent magnet 32 is fixed to the rotor core 31 by press-fitting the permanent magnet 32 into the magnet arrangement hole group 37.
  • a permanent magnet 32 is arranged with a gap in the magnet arrangement hole group 37, and a resin melted between the magnet arrangement hole group 37 and the permanent magnet 32.
  • the permanent magnet 32 may be fixed to the rotor core 31 by pouring the magnet into the magnet and solidifying the resin.
  • the permanent magnet 32 forms a slope 32a between the front end surface PF and the first side surface SF1 and between the front end surface PF and the second side surface SF2.
  • the permanent magnet may form a slope 32a between the front end surface PF and the third side surface SF3 and between the front end surface PF and the fourth side surface SF4.
  • slopes 32a are formed on both tip sides of the permanent magnets 32 adjacent to each other in the axial direction.
  • the slope 32a may be formed on the tip end side of either of the permanent magnets 32. Even with such a configuration, almost the same effect as that of the first and second embodiments can be obtained.
  • slopes 32a are formed on both tip sides of the permanent magnets 32 adjacent to each other in the axial direction.
  • the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction may have a semicircular shape as shown in FIG. That is, an arc surface 50 may be formed between the tip of the permanent magnet 32 and the first side surface SF1 and between the tip and the second side surface SF2.
  • the portion where the arc surface 50 is formed in the axial direction of the permanent magnet 32 is defined as the tip portion 32b, and the portion integrally connected to the tip portion 32b is defined as the main body portion 32c.
  • the cross-sectional area orthogonal to the axial direction of the tip portion 32b is configured to be smaller than the cross-sectional area orthogonal to the axial direction of the main body portion 32c.
  • FIG. 12 shows.
  • a semicircular shape may be formed at the tip of either of the permanent magnets 32. Even with such a configuration, almost the same effect as that of the first and second embodiments can be obtained.
  • slopes 32a are formed on both tip sides of the permanent magnets 32 adjacent to each other in the axial direction.
  • the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction may have a V shape as shown in FIG.
  • the portion where the V-shape is formed in the axial direction of the permanent magnet 32 is defined as the tip portion 32b, and the portion integrally connected to the tip portion 32b is defined as the main body portion 32c. Therefore, the cross-sectional area orthogonal to the axial direction of the tip portion 32b is configured to be smaller than the cross-sectional area orthogonal to the axial direction of the main body portion 32c.
  • FIG. 12 shows.
  • a V-shape may be formed at the tip portion 32b of either of the permanent magnets 32.
  • slopes 32a are formed on both tip sides of the permanent magnets 32 adjacent to each other in the axial direction.
  • the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction may be shaped into a step portion 52 as shown in FIG.
  • the portion where the step portion 52 is formed in the axial direction of the permanent magnet 32 is defined as the tip portion 32b, and the portion integrally connected to the tip portion 32b is defined as the main body portion 32c. Therefore, the cross-sectional area orthogonal to the axial direction of the tip portion 32b is configured to be smaller than the cross-sectional area orthogonal to the axial direction of the main body portion 32c.
  • FIG. 12 shows.
  • the stepped portion 52 may be formed at the tip of any one of the permanent magnets 32. Even with such a configuration, almost the same effect as that of the first and second embodiments can be obtained.
  • two permanent magnets 32 are arranged so as to be aligned in the axial direction in the magnet arrangement hole group 37.
  • three or more permanent magnets may be arranged so as to be aligned in the axial direction in the magnet arrangement hole group 37.
  • the cross-sectional area of the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction perpendicular to the axial direction is smaller than the cross-sectional area orthogonal to the axial direction of the main body portion. Even with this configuration, the same effects as those of the first and second embodiments can be obtained.

Abstract

The present invention is provided with: a rotor iron core 31 formed by stacking plate-shaped magnetic members 30; a plurality of magnet disposition hole groups 37 that are multiply disposed along a circumferential direction of the rotor iron core 31 and that extend along an axial direction of the rotor iron core 31; and two permanent magnets 32 that are disposed in series in the axial direction in a magnet disposition hole group 37 and that are fixed in the magnet disposition hole group 37. Since the cross-section area, orthogonal to the axial direction, of tip parts 32b of both the permanent magnets 32 is configured to be smaller than the cross-sectional area, orthogonal to the axial direction, of a base part 32c, generation of a repulsive magnetic force applied to the permanent magnets 32 can be suppressed and separation of the magnetic members 30 is unlikely to occur.

Description

回転電機の回転子、回転電機、及び圧縮機Rotor of rotary electric machine, rotary electric machine, and compressor
 本開示は、回転子鉄心を有する回転電機の回転子、その回転子を有する回転電機、及びその回転電機を有する圧縮機に関するものである。 The present disclosure relates to a rotor of a rotary electric machine having a rotor core, a rotary electric machine having the rotor, and a compressor having the rotary electric machine.
 この種の従来の回転電機の回転子は、例えば特許文献1で開示されているように、積層鉄心の周方向に所定間隔を介して8個(8極)の穴部が形成され、その1つの穴部において軸方向に2つの永久磁石が配置されているものがある。積層鉄心は、板状磁性部材を積層し、例えば抜きかしめ等により固着一体化して形成されている。 In the rotor of this type of conventional rotary electric machine, for example, as disclosed in Patent Document 1, eight holes (8 poles) are formed in the circumferential direction of the laminated iron core at predetermined intervals, and one of the holes is formed. In some holes, two permanent magnets are arranged in the axial direction. The laminated iron core is formed by laminating plate-shaped magnetic members and fixing and integrating them by, for example, caulking.
特開2001-157395号公報Japanese Unexamined Patent Publication No. 2001-157395
 近年、モータの高効率化のため、積層鉄心により薄板の板状磁性部材を使用するのが一般的となっているが、薄板化することで板状磁性部材の1枚1枚の強度は低下する。そのため、1つの極において、軸方向に磁石を2つ配置する構成となっていることで、その両磁石間に磁気的反発が生じる。その反発が発生する付近で、その磁気的反発力が積層方向で隣り合う薄板の板状磁性部材に加わり、積層方向で隣り合う薄板の板状磁性部材同士の剥がれを生じてしまうという問題があった。 In recent years, in order to improve the efficiency of motors, it has become common to use a thin plate-shaped magnetic member with a laminated iron core, but by making the plate thinner, the strength of each plate-shaped magnetic member decreases. do. Therefore, by arranging two magnets in the axial direction at one pole, magnetic repulsion occurs between the two magnets. In the vicinity of the repulsion, the magnetic repulsive force is applied to the thin plate-shaped magnetic members adjacent to each other in the stacking direction, and there is a problem that the thin plate-shaped magnetic members adjacent to each other in the stacking direction are peeled off. rice field.
 本開示は上記した問題点を解決するためになされたものであり、磁性部材の剥がれを生じにくい構造とした回転電機の回転子、その回転子を有する回転電機、及びその回転電機を有する圧縮機を提供することを目的とするものである。 The present disclosure has been made to solve the above-mentioned problems, and is a rotor of a rotary electric machine having a structure in which the magnetic member is less likely to peel off, a rotary electric machine having the rotor, and a compressor having the rotary electric machine. Is intended to provide.
本開示に係る回転電機の回転子は、板状の磁性部材を積層して構成した回転子鉄心と、回転子鉄心の周方向に沿って複数配置され、回転子鉄心の軸方向に延びる複数の孔部と、孔部内に軸方向に沿って直列に配置され、孔部に固定された複数の永久磁石と、を備え、軸方向において互いに隣り合う永久磁石同士は、互いに対向する先端部と、先端部に一体に連結された本体部とをそれぞれ備え、互いに対向する先端部のうち少なくとも一方の軸方向に直交する断面積が本体部の軸方向に直交する断面積よりも小さく構成されているものである。
本開示に係る回転電機は、上記本開示に係る回転電機の回転子と、回転子へ回転磁界を印加し、回転子を回転させる固定子と、を備えたものである。
本開示に係る圧縮機は、上記本開示に係る回転電機と、回転電機により駆動し、外部から吸入した流体を圧縮する圧縮機構部と、回転電機及び圧縮機構部を収容する密閉容器と、を備える。
The rotors of the rotary electric machine according to the present disclosure are a plurality of rotor cores formed by laminating plate-shaped magnetic members and a plurality of rotor cores arranged along the circumferential direction of the rotor cores and extending in the axial direction of the rotor cores. A hole and a plurality of permanent magnets arranged in series in the hole along the axial direction and fixed to the hole are provided, and permanent magnets adjacent to each other in the axial direction have a tip portion facing each other. Each of the main body portions is integrally connected to the tip portion, and the cross-sectional area of at least one of the tip portions facing each other perpendicular to the axial direction is smaller than the cross-sectional area orthogonal to the axial direction of the main body portion. It is a thing.
The rotary electric machine according to the present disclosure includes a rotor of the rotary electric machine according to the present disclosure, and a stator that applies a rotating magnetic field to the rotor to rotate the rotor.
The compressor according to the present disclosure includes the rotary electric machine according to the present disclosure, a compression mechanism unit driven by the rotary electric machine to compress the fluid sucked from the outside, and a closed container accommodating the rotary electric machine and the compression mechanism unit. Be prepared.
本開示に係る回転電機の回転子、回転電機、及び圧縮機は、軸方向において互いに隣り合う両永久磁石のうち少なくとも一方の先端部の断面積を小さくしていることで、両永久磁石同士に働く反発しあう磁力の発生を抑制でき、磁性部材同士の剥がれを抑制することができる。 The rotor, rotary machine, and compressor of the rotary electric machine according to the present disclosure have small cross-sectional areas of at least one of the two permanent magnets adjacent to each other in the axial direction, so that the two permanent magnets can be attached to each other. It is possible to suppress the generation of repulsive magnetic forces that work on each other, and it is possible to suppress the peeling of magnetic members from each other.
実施の形態1を示す圧縮機の断面図。Sectional drawing of the compressor which shows Embodiment 1. FIG. 実施の形態1に用いられる回転子の平面図。The plan view of the rotor used in Embodiment 1. FIG. 実施の形態1に用いられる回転子の断面図。Sectional drawing of the rotor used in Embodiment 1. FIG. 実施の形態1に用いられる永久磁石の斜視図。The perspective view of the permanent magnet used in Embodiment 1. FIG. 実施の形態1に用いられる永久磁石の斜視図。The perspective view of the permanent magnet used in Embodiment 1. FIG. 実施の形態1に用いられる永久磁石の斜視図。The perspective view of the permanent magnet used in Embodiment 1. FIG. 実施の形態1に用いられる永久磁石の磁極を示す説明図。Explanatory drawing which shows the magnetic pole of the permanent magnet used in Embodiment 1. FIG. 実施の形態1に用いられる永久磁石の磁力の関係を示す説明図。An explanatory diagram showing the relationship between the magnetic forces of the permanent magnets used in the first embodiment. 実施の形態1に用いられる永久磁石の磁力の関係を示す説明図。An explanatory diagram showing the relationship between the magnetic forces of the permanent magnets used in the first embodiment. 実施の形態1に用いられる永久磁石の磁力の関係を示す説明図。An explanatory diagram showing the relationship between the magnetic forces of the permanent magnets used in the first embodiment. 実施の形態1に用いられる永久磁石の先端部同士の関係を示す説明図。An explanatory diagram showing the relationship between the tips of the permanent magnets used in the first embodiment. 先端部に斜面がない永久磁石の先端部同士の関係を示す説明図。An explanatory diagram showing the relationship between the tips of permanent magnets having no slope at the tips. 実施の形態2を示す回転子の断面図。FIG. 6 is a cross-sectional view of a rotor showing the second embodiment. 実施の形態2を示す変形後の留め板の平面図。FIG. 2 is a plan view of a modified fastening plate showing the second embodiment. 実施の形態2を示す変形前の留め板の平面図。The plan view of the retaining plate before deformation which shows Embodiment 2. 他の実施の形態を示す永久磁石の側面図。A side view of a permanent magnet showing another embodiment. 他の実施の形態を示す永久磁石の側面図。A side view of a permanent magnet showing another embodiment. 他の実施の形態を示す永久磁石の側面図。A side view of a permanent magnet showing another embodiment.
実施の形態1.
 圧縮機100について説明する。図1は、圧縮機100の構造を示す側断面図である。
 図1に示すように、圧縮機100は、密閉型のスクロール圧縮機である。圧縮機100は、ガス冷媒を圧縮する圧縮機構部2と、圧縮機構部2を駆動させる回転電機3と、回転電機3の駆動力を圧縮機構部2へ伝達するクランク軸4と、圧縮機構部2、回転電機3、クランク軸4等を収納する密閉容器5と、回転電機3へ電力を供給する電源端子6を備えている。ガス冷媒は流体である。
密閉容器5内の上部には圧縮機構部2が配置され、下部には回転電機3が配置されている。圧縮機構部2と回転電機3とがクランク軸4を介して接続されている。クランク軸4は、主軸部4aと、その主軸部4aの上端に設けられた偏心部4bとを備えている。
Embodiment 1.
The compressor 100 will be described. FIG. 1 is a side sectional view showing the structure of the compressor 100.
As shown in FIG. 1, the compressor 100 is a closed-type scroll compressor. The compressor 100 includes a compression mechanism unit 2 that compresses a gas refrigerant, a rotary electric machine 3 that drives the compression mechanism unit 2, a crank shaft 4 that transmits the driving force of the rotary electric machine 3 to the compression mechanism unit 2, and a compression mechanism unit. 2. It is provided with a closed container 5 for accommodating a rotary electric machine 3, a crank shaft 4, and the like, and a power supply terminal 6 for supplying power to the rotary electric machine 3. The gas refrigerant is a fluid.
The compression mechanism portion 2 is arranged in the upper part of the closed container 5, and the rotary electric machine 3 is arranged in the lower part. The compression mechanism portion 2 and the rotary electric machine 3 are connected to each other via the crank shaft 4. The crank shaft 4 includes a spindle portion 4a and an eccentric portion 4b provided at the upper end of the spindle portion 4a.
 密閉容器5は、吸入管5a及び吐出管5bを備えている。圧縮機構部2は、密閉容器5の吸入管5aを介して吸入したガス冷媒を圧縮し、吐出管5bを介して冷凍サイクル(図示せず)へ送られるように構成されている。圧縮機構部2は、渦巻状の固定ラップ7aを下部に立設した固定スクロール7と、渦巻状の旋回ラップ8aを上部に立設した旋回スクロール8と、旋回スクロール8を支持するフレーム9とを備えている。旋回スクロール8は、固定スクロール7の下方に配置される。 The closed container 5 includes a suction pipe 5a and a discharge pipe 5b. The compression mechanism unit 2 is configured to compress the gas refrigerant sucked through the suction pipe 5a of the closed container 5 and send it to the refrigeration cycle (not shown) via the discharge pipe 5b. The compression mechanism unit 2 includes a fixed scroll 7 having a spiral fixed wrap 7a erected at the bottom, a swivel scroll 8 having a spiral swirl wrap 8a erected at the top, and a frame 9 supporting the swirl scroll 8. I have. The swivel scroll 8 is arranged below the fixed scroll 7.
 固定スクロール7の固定ラップ7aと旋回スクロール8の旋回ラップ3aとは、基本的に同一形状であり、180°位相をずらすように配置されている。そして、旋回スクロール8が公転運動することにより、固定スクロール7と旋回スクロール8との間に吸込室と圧縮室が形成されるように構成されている。固定スクロール7には、圧縮室に連通する吐出ポート7bが形成されている。
フレーム9は、その外周側が溶接によって密閉容器5の内壁面に固定されている。フレーム9は、主軸受11を備えている。
The fixed lap 7a of the fixed scroll 7 and the swivel lap 3a of the swivel scroll 8 have basically the same shape, and are arranged so as to be out of phase by 180 °. Then, the swivel scroll 8 revolves to form a suction chamber and a compression chamber between the fixed scroll 7 and the swivel scroll 8. The fixed scroll 7 is formed with a discharge port 7b communicating with the compression chamber.
The outer peripheral side of the frame 9 is fixed to the inner wall surface of the closed container 5 by welding. The frame 9 includes a main bearing 11.
圧縮機構部2は、オルダムリング12を備えている。オルダムリング12は、旋回スクロール8の下面側とフレーム9の間に配置されており、旋回スクロール8の下面側に形成された溝とフレーム9に形成された溝に装着されている。オルダムリング12は、クランク軸4の偏心部4bの偏芯回転を受けて、旋回スクロール8を自転することなく公転運動させる働きをする。
 圧縮機100は、下軸受15を備えている。下軸受15は、密閉容器5内の下部において、密閉容器5に固定されている。
フレーム4の主軸部4aは、上側が主軸受11に回転可能に支持され、下側が下軸受15に回転可能に支持されている。クランク軸4の偏心部4bは、主軸部4aに対して偏心して一体に形成されており、旋回スクロール8の背面に形成された旋回軸受8bに嵌合されている。
The compression mechanism unit 2 includes an old dam ring 12. The old dam ring 12 is arranged between the lower surface side of the swivel scroll 8 and the frame 9, and is attached to the groove formed on the lower surface side of the swivel scroll 8 and the groove formed in the frame 9. The old dam ring 12 receives the eccentric rotation of the eccentric portion 4b of the crank shaft 4 and functions to revolve the turning scroll 8 without rotating.
The compressor 100 includes a lower bearing 15. The lower bearing 15 is fixed to the closed container 5 at the lower part of the closed container 5.
The spindle portion 4a of the frame 4 is rotatably supported by the main bearing 11 on the upper side and rotatably supported by the lower bearing 15 on the lower side. The eccentric portion 4b of the crank shaft 4 is eccentrically and integrally formed with respect to the main shaft portion 4a, and is fitted to a swivel bearing 8b formed on the back surface of the swivel scroll 8.
 回転電機3は、回転子13及び固定子14を備えている。固定子14は、密閉容器5に焼嵌、溶接等により固定されている。回転子13は、固定子14内に回転可能に配置されている。また、回転子13にはクランク軸4(主軸部4a)が固定されている。
回転電機3を駆動して主軸部4aを回転させると、偏心部4bは主軸部4aに対して偏心回転運動し、旋回スクロール8を旋回運動させるように構成されている。
The rotary electric machine 3 includes a rotor 13 and a stator 14. The stator 14 is fixed to the closed container 5 by shrink fitting, welding, or the like. The rotor 13 is rotatably arranged in the stator 14. Further, a crank shaft 4 (spindle portion 4a) is fixed to the rotor 13.
When the rotary electric machine 3 is driven to rotate the spindle portion 4a, the eccentric portion 4b is configured to rotate eccentrically with respect to the spindle portion 4a and rotate the swivel scroll 8.
 次に、圧縮機100が備える回転電機3について説明する。
 図1に示すように、回転電機3を構成する固定子14は、固定子鉄心20と、固定子鉄心20の一部を被覆する絶縁部材21と、絶縁部材21を介して固定子鉄心20に巻回される電機子巻線22と、を備えている。
固定子鉄心20は、その外周が密閉容器5(図1参照)に焼嵌等により固定される。固定子鉄心20の内周側には、複数のティースが形成されており、絶縁部材21を介してそのティースに電機子巻線22が巻回されている。
Next, the rotary electric machine 3 included in the compressor 100 will be described.
As shown in FIG. 1, the stator 14 constituting the rotary electric machine 3 is attached to the stator core 20 via the stator core 20, the insulating member 21 that covers a part of the stator core 20, and the insulating member 21. The armature winding 22 to be wound is provided.
The outer periphery of the stator core 20 is fixed to the closed container 5 (see FIG. 1) by shrink fitting or the like. A plurality of teeth are formed on the inner peripheral side of the stator core 20, and an armature winding 22 is wound around the teeth via an insulating member 21.
 電機子巻線22は、例えば比抵抗の小さい銅線やアルミ線などが用いられる。絶縁部材21は、例えば樹脂成型品(例えば、LCP(液晶ポリマー)やABS(アクリロニトリル・ブタジエン・スチレン)、PBT(ポリブチレンテレフタレート))やPET(ポリエチレンテレフタレート)フィルム等が用いられている。絶縁部材21によって、固定子鉄心20と電機子巻線22とが絶縁されるように構成されている。
 固定子14の磁極面は、例えば、回転子13が周方向において多極の磁極を有する(本実施の形態では6つの磁極を有する)構成の場合には、周方向において交互に異なる磁極を発生するように配置されており、電機子巻線22に駆動電流を流すことで、固定子14は回転子13へと回転磁界を印加し、回転子13を回転させる。
For the armature winding 22, for example, a copper wire or an aluminum wire having a small resistivity is used. As the insulating member 21, for example, a resin molded product (for example, LCP (liquid crystal polymer), ABS (acrylonitrile, butadiene, styrene), PBT (polybutylene terephthalate)), PET (polyethylene terephthalate) film, or the like is used. The insulating member 21 is configured to insulate the stator core 20 and the armature winding 22 from each other.
For example, when the rotor 13 has a multi-pole magnetic pole in the circumferential direction (in the present embodiment, it has six magnetic poles), the magnetic pole surface of the stator 14 alternately generates different magnetic poles in the circumferential direction. By passing a drive current through the armature winding 22, the stator 14 applies a rotating magnetic field to the rotor 13 to rotate the rotor 13.
 次に、回転子13について図2~図6を用いて説明する。
図2は、回転子13を上からみた図である。図3は、回転子13の側断面図である。図4は、永久磁石32を斜め上から見下ろした斜視図である。図5は、永久磁石32を斜め下から見上げた斜視図である。図6は、軸方向で並ぶように対向配置された2つの永久磁石32の斜視図である。
 図2に示すように、回転電機3を構成する回転子13は、薄板(板状)の磁性部材30を積層して構成した回転子鉄心31と、永久磁石32と、を備えている。
Next, the rotor 13 will be described with reference to FIGS. 2 to 6.
FIG. 2 is a top view of the rotor 13. FIG. 3 is a side sectional view of the rotor 13. FIG. 4 is a perspective view of the permanent magnet 32 as viewed from diagonally above. FIG. 5 is a perspective view of the permanent magnet 32 looking up from diagonally below. FIG. 6 is a perspective view of two permanent magnets 32 arranged so as to be aligned in the axial direction.
As shown in FIG. 2, the rotor 13 constituting the rotary electric machine 3 includes a rotor core 31 formed by laminating a thin plate (plate-shaped) magnetic member 30 and a permanent magnet 32.
磁性部材30は、円盤状をなしており、中央にクランク軸4の主軸部4aを挿入するための軸用孔部33と、外周近傍に周方向に所定間隔を介して長方形状の孔が形成された磁石配置孔部34とを備えている。磁性部材30の軸用孔部33には、クランク軸4の主軸部4aが圧入されることにより、回転子13とクランク軸4とが固定されている。
本実施の形態では、磁石配置孔部34は、6つ備えているが、4つ、8つ等もよい。
磁性部材30は、6つの長方形状の孔が開けられた磁石配置孔部34を備えていることにより、辺同士がつながっていない六角形の孔が形成されている状態となっている。磁石配置孔部34の両端には、磁性部材30の外周へ向けて延びる切欠部34aが形成されている。
The magnetic member 30 has a disk shape, and a shaft hole 33 for inserting the main shaft portion 4a of the crank shaft 4 is formed in the center, and a rectangular hole is formed in the vicinity of the outer periphery via a predetermined interval in the circumferential direction. It is provided with a magnet arrangement hole 34. The rotor 13 and the crank shaft 4 are fixed by press-fitting the spindle portion 4a of the crank shaft 4 into the shaft hole portion 33 of the magnetic member 30.
In the present embodiment, the magnet arrangement holes 34 are provided with six, but may be four, eight, or the like.
The magnetic member 30 is provided with a magnet arrangement hole portion 34 having six rectangular holes, so that a hexagonal hole in which the sides are not connected is formed. Notches 34a extending toward the outer periphery of the magnetic member 30 are formed at both ends of the magnet arrangement hole 34.
磁性部材30には、凸部35、36が形成されている。凸部35、36は、プレス加工により磁性部材30の一部を突出させて形成されている。本実施の形態では、磁性部材30には、6つの凸部35と、6つの凸部36とが形成されている。凸部35は、磁性部材30における磁石配置孔部34の端部と、軸用孔部33との間の位置に形成されている。凸部36は、磁性部材30における磁石配置孔部34の長手方向中間部と磁性部材30の外縁との間に形成されている。 The magnetic member 30 is formed with convex portions 35 and 36. The convex portions 35 and 36 are formed by projecting a part of the magnetic member 30 by press working. In the present embodiment, the magnetic member 30 is formed with six convex portions 35 and six convex portions 36. The convex portion 35 is formed at a position between the end portion of the magnet arrangement hole portion 34 in the magnetic member 30 and the shaft hole portion 33. The convex portion 36 is formed between the intermediate portion in the longitudinal direction of the magnet arrangement hole portion 34 in the magnetic member 30 and the outer edge of the magnetic member 30.
互いに対向する磁性部材30同士は、一方の磁性部材30の凸部35の表面と、他方の磁性部材30の凸部35の裏面とを嵌合できるように構成されている。そのため、互いに対向する磁性部材30同士で、一方の磁性部材30の凸部35の表面と、他方の磁性部材30の凸部35の裏面とを嵌合することで、両磁性部材30が互いに固定されている(この固定方法は、ダボカシメとも言われている。)。
また、互いに対向する磁性部材30同士は、一方の磁性部材30の凸部36の表面と、他方の磁性部材30の凸部36の裏面とを嵌合できるように構成されている。そのため、互いに対向する磁性部材30同士で、一方の磁性部材30の凸部36の表面と、他方の磁性部材30の凸部36の裏面とを嵌合することで、両磁性部材30が互いに固定されている。
The magnetic members 30 facing each other are configured so that the front surface of the convex portion 35 of one magnetic member 30 and the back surface of the convex portion 35 of the other magnetic member 30 can be fitted. Therefore, both magnetic members 30 are fixed to each other by fitting the front surface of the convex portion 35 of one magnetic member 30 and the back surface of the convex portion 35 of the other magnetic member 30 between the magnetic members 30 facing each other. (This fixing method is also called dubbing.)
Further, the magnetic members 30 facing each other are configured so that the front surface of the convex portion 36 of one magnetic member 30 and the back surface of the convex portion 36 of the other magnetic member 30 can be fitted. Therefore, both magnetic members 30 are fixed to each other by fitting the front surface of the convex portion 36 of one magnetic member 30 and the back surface of the convex portion 36 of the other magnetic member 30 between the magnetic members 30 facing each other. Has been done.
 各磁性部材30には、他の磁性部材30と同じ位置に軸用孔部33、6つの磁石配置孔部34、6つの凸部35、及び6つの凸部36が形成されている。そのため、磁性部材30を積層することにより、上記した凸部35同士が嵌合し、かつ凸部36同士が嵌合し、隣り合う磁性部材30同士が固定されている。磁性部材30を積層することにより、回転子鉄心31の軸方向(以下、単に軸方向という。)から見た際の各磁性部材30同士の磁石配置孔部34の位置が一致するように構成されている。
以下、この回転子鉄心31を構成する磁性部材30同士で一致した磁石配置孔部34を総称して、磁石配置孔部群37(図3参照)という。磁石配置孔部群37は孔部である。すなわち、本実施の形態では、回転子鉄心31には6つの磁石配置孔部群37が形成されている。
Each magnetic member 30 is formed with a shaft hole 33, six magnet placement holes 34, six convex portions 35, and six convex portions 36 at the same positions as the other magnetic members 30. Therefore, by laminating the magnetic members 30, the convex portions 35 are fitted to each other, the convex portions 36 are fitted to each other, and the adjacent magnetic members 30 are fixed to each other. By stacking the magnetic members 30, the positions of the magnet arrangement holes 34 of the magnetic members 30 when viewed from the axial direction of the rotor core 31 (hereinafter, simply referred to as the axial direction) are configured to be the same. ing.
Hereinafter, the magnet arrangement hole portions 34 in which the magnetic members 30 constituting the rotor core 31 are matched with each other are collectively referred to as a magnet arrangement hole portion group 37 (see FIG. 3). The magnet arrangement hole group 37 is a hole. That is, in the present embodiment, the rotor core 31 is formed with six magnet arrangement hole groups 37.
図2及び図3に示すように、本実施の形態では、回転子13は、1つの磁石配置孔部群37内に2つの永久磁石32が配置されている。磁性体材料からなる永久磁石32は、例えば、希土類磁石(例えば、ネオジム、鉄、ホウ素を主成分とした磁石や、サマリウム、鉄、窒素を主成分とした磁石)を用いる。
1つの磁石配置孔部群37内には、軸方向に並ぶように2つの永久磁石32が配置されている。すなわち、1つの磁石配置孔部群37内には、2つの永久磁石32が直列に配置されている。軸方向に並ぶように配置された永久磁石32は互いに離間して配置されている。すなわち、本実施の形態では、回転子13は12個の永久磁石32を備えている。本実施の形態では、磁石配置孔部群37に対して永久磁石32が圧入されることにより、回転子鉄心31に対して永久磁石32が固定されている。
As shown in FIGS. 2 and 3, in the present embodiment, the rotor 13 has two permanent magnets 32 arranged in one magnet arrangement hole group 37. As the permanent magnet 32 made of a magnetic material, for example, a rare earth magnet (for example, a magnet containing neodymium, iron, or boron as a main component, or a magnet containing sumalium, iron, or nitrogen as a main component) is used.
Two permanent magnets 32 are arranged so as to be aligned in the axial direction in one magnet arrangement hole group 37. That is, two permanent magnets 32 are arranged in series in one magnet arrangement hole group 37. The permanent magnets 32 arranged so as to be aligned in the axial direction are arranged apart from each other. That is, in the present embodiment, the rotor 13 includes 12 permanent magnets 32. In the present embodiment, the permanent magnet 32 is fixed to the rotor core 31 by press-fitting the permanent magnet 32 into the magnet arrangement hole group 37.
 図3及び図6に示すように、本実施の形態では、軸方向において互いに隣り合う永久磁石32同士は、互いに対向する両先端部が先端に向かうほど断面積(軸方向に直交する方向での断面積)が小さくなるように形成されている。
 すなわち、図4及び図5に示すように、永久磁石32は、軸方向に直交する方向での断面が長方形をなしている。永久磁石32は、先端側の面である先端面PFと、先端面PFと対向する面である基端面BFと、互いに対向する側面である第1側面SF1及び第2側面SF2と、互いに対向しかつ第1側面SF1及び第2側面SF2よりも面積が小さい側面である第3側面SF3及び第4側面SF4とを備えている。先端面PFと第1側面SF1との間、及び先端面PFと第2側面SF2との間は斜面32aが形成されている。
As shown in FIGS. 3 and 6, in the present embodiment, the permanent magnets 32 adjacent to each other in the axial direction have a cross-sectional area (in a direction orthogonal to the axial direction) so that both tip portions facing each other toward the tip. The cross-sectional area) is formed to be small.
That is, as shown in FIGS. 4 and 5, the permanent magnet 32 has a rectangular cross section in the direction orthogonal to the axial direction. The permanent magnet 32 faces the front end surface PF, which is the front end side surface, the base end surface BF, which is the surface facing the front end surface PF, and the first side surface SF1 and the second side surface SF2, which are side surfaces facing each other. Moreover, it is provided with a third side surface SF3 and a fourth side surface SF4, which are side surfaces having a smaller area than the first side surface SF1 and the second side surface SF2. A slope 32a is formed between the front end surface PF and the first side surface SF1 and between the front end surface PF and the second side surface SF2.
 永久磁石32は、この斜面32aが形成されていることにより、先端に向かうほど断面積(軸方向に直交する方向での断面積)が小さくなっている。
 なお、永久磁石32の軸方向において斜面32aが形成されている部分を、先端部32bと定義し、その先端部32bに一体に連結された部分を本体部32cと定義する。したがって、先端部32bの軸方向に直交する断面積が本体部32cの軸方向に直交する断面積よりも小さく構成されている。
Since the slope 32a is formed in the permanent magnet 32, the cross-sectional area (cross-sectional area in the direction orthogonal to the axial direction) becomes smaller toward the tip end.
The portion where the slope 32a is formed in the axial direction of the permanent magnet 32 is defined as the tip portion 32b, and the portion integrally connected to the tip portion 32b is defined as the main body portion 32c. Therefore, the cross-sectional area orthogonal to the axial direction of the tip portion 32b is configured to be smaller than the cross-sectional area orthogonal to the axial direction of the main body portion 32c.
 次に、永久磁石32の形状と、永久磁石32に働く磁力について説明する。
図7は、回転子鉄心31の周方向において互いに隣り合う永久磁石32の磁極を示す説明図である。図8は、回転子鉄心31の周方向において互いに隣り合う永久磁石32の磁力の関係を示す説明図である。図9は、回転子鉄心31の軸方向において互いに隣り合う永久磁石32の磁力の関係を示す説明図である。図10は、回転子鉄心31の周方向において互いに隣り合う永久磁石32の先端の磁力の関係を示す説明図である。図11は、永久磁石の先端部同士の距離関係を示す説明図である。図12は、先端側に斜面を形成していない永久磁石の先端部同士の距離の関係を示す説明図である。
Next, the shape of the permanent magnet 32 and the magnetic force acting on the permanent magnet 32 will be described.
FIG. 7 is an explanatory diagram showing magnetic poles of permanent magnets 32 adjacent to each other in the circumferential direction of the rotor core 31. FIG. 8 is an explanatory diagram showing the relationship between the magnetic forces of the permanent magnets 32 adjacent to each other in the circumferential direction of the rotor core 31. FIG. 9 is an explanatory diagram showing the relationship between the magnetic forces of the permanent magnets 32 adjacent to each other in the axial direction of the rotor core 31. FIG. 10 is an explanatory diagram showing the relationship between the magnetic forces of the tips of the permanent magnets 32 adjacent to each other in the circumferential direction of the rotor core 31. FIG. 11 is an explanatory diagram showing the distance relationship between the tips of the permanent magnets. FIG. 12 is an explanatory diagram showing the relationship between the distances between the tips of permanent magnets that do not form a slope on the tip side.
図7に示すように、永久磁石32は、回転子鉄心31の径方向(以下、単に径方向という。)の内側半分と、径方向の外側半分とで磁極が異なるように構成されている。すなわち、永久磁石32は、第1側面SF1側と、第2側面SF2側とで磁極が異なる。
回転子鉄心31の周方向において互いに隣り合う永久磁石32同士は互いに磁極が反対となるように配置されている。そのため、回転子鉄心31の周方向において互いに隣り合う永久磁石32同士は、互いに引き付け合うような磁力が働き、図8に示すように、互いの位置が一直線になるような力が働く。
As shown in FIG. 7, the permanent magnet 32 is configured such that the inner half of the rotor core 31 in the radial direction (hereinafter, simply referred to as the radial direction) and the outer half in the radial direction have different magnetic poles. That is, the permanent magnet 32 has different magnetic poles on the first side surface SF1 side and the second side surface SF2 side.
Permanent magnets 32 adjacent to each other in the circumferential direction of the rotor core 31 are arranged so that their magnetic poles are opposite to each other. Therefore, the permanent magnets 32 that are adjacent to each other in the circumferential direction of the rotor core 31 exert a magnetic force that attracts each other, and as shown in FIG. 8, a force that causes the positions of the permanent magnets 32 to be in a straight line.
 また、図9に示すように、軸方向において互いに隣り合う永久磁石32同士は互いに磁極が同じとなるように配置されている。そのため、軸方向において互いに隣り合う永久磁石32同士は、互いに反発しあうような磁力が働く。
 また、永久磁石32は、先端側に斜面32aを形成しているため、図10に示すように、軸方向において互いに隣り合う永久磁石32同士のそれぞれの先端面の幅T2は、図8に示すように、永久磁石32の先端部以外の部分の幅T1よりも狭くなるように形成されている。すなわち、図10に示すように、軸方向において互いに隣り合う永久磁石32同士のそれぞれの先端面の断面積S2は、図8に示すように、永久磁石32の先端部32b以外の部分の断面積S1よりも小さくなるように形成されている。すなわち、互いに対向する先端部32bの軸方向に直交する断面積が、本体部32cの軸方向に直交する断面積よりも小さく構成されている。
Further, as shown in FIG. 9, the permanent magnets 32 adjacent to each other in the axial direction are arranged so that their magnetic poles are the same as each other. Therefore, the permanent magnets 32 that are adjacent to each other in the axial direction exert a magnetic force that repels each other.
Further, since the permanent magnet 32 forms a slope 32a on the tip side, as shown in FIG. 10, the width T2 of each tip surface of the permanent magnets 32 adjacent to each other in the axial direction is shown in FIG. As described above, the permanent magnet 32 is formed so as to be narrower than the width T1 of the portion other than the tip end portion. That is, as shown in FIG. 10, the cross-sectional area S2 of each tip surface of the permanent magnets 32 adjacent to each other in the axial direction is the cross-sectional area of the portion other than the tip portion 32b of the permanent magnet 32 as shown in FIG. It is formed so as to be smaller than S1. That is, the cross-sectional area orthogonal to the axial direction of the tip portions 32b facing each other is smaller than the cross-sectional area orthogonal to the axial direction of the main body portion 32c.
 これについて、図11及び図12を用いて詳しく説明すると、図11に示す先端側に斜面32aを形成した両永久磁石32は、図12に示す先端側に斜面32aを形成していない両永久磁石40に比して、その先端部32b同士の距離が離れた部分が多い。すなわち、図12に示す斜面32aを形成していない永久磁石40の先端面同士の距離をK1と定義し、図11に示す永久磁石32の先端面PF同士の距離をK2と定義し、距離K1と距離K2を同じと定義(K1=K2)した場合、図11に示す永久磁石32の対向する斜面32a同士の距離K3は、距離K1,K2よりも大きくなる(K1=K2<K3)。
 一般的に磁石は、二つの磁極間に働く力の大きさが、距離の二乗に反比例することから、図11の両永久磁石32間の反発力は、図12の両永久磁石40間の反発力よりも弱くなる。
Explaining this in detail with reference to FIGS. 11 and 12, both permanent magnets 32 having a slope 32a formed on the tip side shown in FIG. 11 are both permanent magnets having no slope 32a formed on the tip side shown in FIG. Compared to 40, there are many portions where the tip portions 32b are separated from each other. That is, the distance between the tip surfaces of the permanent magnets 40 that do not form the slope 32a shown in FIG. 12 is defined as K1, and the distance between the tip surfaces PFs of the permanent magnets 32 shown in FIG. 11 is defined as K2. When the distance K2 is defined as the same (K1 = K2), the distance K3 between the facing slopes 32a of the permanent magnets 32 shown in FIG. 11 is larger than the distances K1 and K2 (K1 = K2 <K3).
In general, since the magnitude of the force acting between two magnetic poles of a magnet is inversely proportional to the square of the distance, the repulsive force between the two permanent magnets 32 in FIG. 11 is the repulsion between the two permanent magnets 40 in FIG. It becomes weaker than power.
 また、図4及び図5に示すように、実施の形態1の永久磁石32では、先端面PFと第1側面SF1との間、及び先端面PFと第2側面SF2との間に斜面32aを形成しているため、例えば、先端面PFと第3側面SF3との間、及び先端面PFと第4側面SF4との間に斜面32aを形成した永久磁石に比べて、永久磁石32の先端部32b間の距離が大きい部分を多くすることができる。これは、第1側面SF1および第2側面SF2の幅(軸方向に直交する方向での幅)が、第3側面SF3および第4側面SF4の幅(軸方向に直交する方向での幅)よりも広いため、斜面32aを形成する幅を広く取ることができるからである。 Further, as shown in FIGS. 4 and 5, in the permanent magnet 32 of the first embodiment, a slope 32a is provided between the front end surface PF and the first side surface SF1 and between the front end surface PF and the second side surface SF2. Since it is formed, for example, the tip portion of the permanent magnet 32 is compared with the permanent magnet in which the slope 32a is formed between the tip surface PF and the third side surface SF3 and between the tip surface PF and the fourth side surface SF4. It is possible to increase the portion where the distance between 32b is large. This is because the width of the first side surface SF1 and the second side surface SF2 (the width in the direction orthogonal to the axial direction) is larger than the width of the third side surface SF3 and the fourth side surface SF4 (the width in the direction orthogonal to the axial direction). This is because the width of the slope 32a can be widened.
 以上のように構成された圧縮機100について、以下に動作、作用を説明する。
 図1に示すように、電源端子6より回転電機3に通電されると、固定子14に発生する磁界により、回転子13はクランク軸4とともに回転する。クランク軸4を回転させ旋回スクロール8を旋回運動させると、ガス冷媒は、吸込管5aから固定スクロール7及び旋回スクロール8により形成される圧縮室に導かれる。そして、圧縮室のガス冷媒は、固定スクロール7及び旋回スクロール8との間で中心方向に移動するにしたがって容積を縮小して圧縮される。圧縮されたガス冷媒は、固定スクロール7の吐出ポート7bから吐出管5bを経由して、密閉容器5から冷凍サイクル(図示せず)へ送られる。
The operation and operation of the compressor 100 configured as described above will be described below.
As shown in FIG. 1, when the rotary electric machine 3 is energized from the power supply terminal 6, the rotor 13 rotates together with the crank shaft 4 due to the magnetic field generated in the stator 14. When the crank shaft 4 is rotated to rotate the swivel scroll 8, the gas refrigerant is guided from the suction pipe 5a to the compression chamber formed by the fixed scroll 7 and the swivel scroll 8. Then, the gas refrigerant in the compression chamber is compressed by reducing its volume as it moves toward the center between the fixed scroll 7 and the swivel scroll 8. The compressed gas refrigerant is sent from the closed container 5 to the refrigeration cycle (not shown) from the discharge port 7b of the fixed scroll 7 via the discharge pipe 5b.
また、図3に示すように、回転電機3の回転子13において、軸方向において互いに隣り合う永久磁石32同士は、互いに対向するそれぞれの先端部32bが先端に向かうほど断面積が小さくなるように形成されている。すなわち、軸方向において互いに隣り合う両永久磁石32のそれぞれの先端部32bには、斜面32aが形成されている。この両永久磁石32の先端部32b同士は、斜面32aを形成せず90度の角部を設けたものに比して、先端部32b同士の距離が離れた部分が多くなっていることで、その両永久磁石32同士に働く反発しあう磁力の発生を抑制でき、これにより、その両永久磁石32の先端部32b付近の磁性部材30同士の剥がれを抑制することができる。
 また、永久磁石32の先端部32bに対称となるように両斜面32aを形成することにより、永久磁石32を磁石配置孔部群37内に挿入する際に、第1側面SF1と第2側面SF2とが反対になるように挿入することも可能となる(各永久磁石32は、磁石配置孔部群37内にそれぞれ挿入後、着磁処理を行うため。)。
Further, as shown in FIG. 3, in the rotor 13 of the rotary electric machine 3, the permanent magnets 32 adjacent to each other in the axial direction have a smaller cross-sectional area as their respective tip portions 32b facing each other toward the tip. It is formed. That is, a slope 32a is formed on the respective tip portions 32b of the two permanent magnets 32 that are adjacent to each other in the axial direction. The tip portions 32b of both permanent magnets 32 do not form a slope 32a and have a 90-degree angle portion, but the tip portions 32b have a larger distance from each other. It is possible to suppress the generation of repulsive magnetic forces acting on the two permanent magnets 32, thereby suppressing the peeling of the magnetic members 30 near the tip portion 32b of the two permanent magnets 32.
Further, by forming both slopes 32a symmetrically with the tip portion 32b of the permanent magnet 32, when the permanent magnet 32 is inserted into the magnet arrangement hole group 37, the first side surface SF1 and the second side surface SF2 are formed. (Because each permanent magnet 32 is inserted into the magnet arrangement hole group 37 and then magnetized).
また、図7~図10に示すように、回転子鉄心31の周方向において互いに隣り合う両永久磁石32の先端部32b同士は、斜面32aを形成せず90度の角部を設けたものに比して、先端の断面積が小さくなっていることで、その両永久磁石32同士で互いに引き付け合う磁力の発生を抑制でき、これによりその両永久磁石32の先端部32b付近の磁性部材30における切欠部34a周辺の変形を抑制することができる。 Further, as shown in FIGS. 7 to 10, the tip portions 32b of both permanent magnets 32 adjacent to each other in the circumferential direction of the rotor core 31 do not form a slope 32a and are provided with 90-degree corner portions. In comparison, since the cross-sectional area of the tip is smaller, it is possible to suppress the generation of magnetic force that attracts each other between the two permanent magnets 32, whereby the magnetic member 30 in the vicinity of the tip portion 32b of the two permanent magnets 32. Deformation around the notch 34a can be suppressed.
実施の形態2.
 実施の形態2の圧縮機200について説明する。
図13は、回転子43の側断面図である。図14は、留め板44を上からみた図である。
 この実施の形態2の圧縮機200は、回転子43の構成が実施の形態1の圧縮機100の回転子13の構成と相違しているものであり、それ以外の構成については、同一部品に同一符号を付して、詳細な説明は省略する。
図13に示すように、回転電機3を構成する回転子43は、複数の薄板の磁性部材30と、2つの留め板44と、永久磁石32とを備えている。
Embodiment 2.
The compressor 200 of the second embodiment will be described.
FIG. 13 is a side sectional view of the rotor 43. FIG. 14 is a view of the fastening plate 44 as viewed from above.
In the compressor 200 of the second embodiment, the configuration of the rotor 43 is different from the configuration of the rotor 13 of the compressor 100 of the first embodiment, and the other configurations are the same parts. The same reference numerals are given, and detailed description thereof will be omitted.
As shown in FIG. 13, the rotor 43 constituting the rotary electric machine 3 includes a plurality of thin magnetic members 30, two fastening plates 44, and a permanent magnet 32.
図14に示すように、留め板44は、磁性部材30と同材料及びほぼ同形状となっている。留め板44と磁性部材30との違いは、留め板44には、磁石配置孔部34の近くに変形孔部45が形成されていることである。
図13に示すように、複数の薄板の磁性部材30が積層され、その積層された磁性部材30における軸方向両側に留め板44が積層されている。この複数の磁性部材30及び2つの留め板44により回転子鉄心46が構成されている。互いに対向する磁性部材30と留め板44とで、一方の凸部35の表面と、他方の凸部35の裏面とが嵌合され、磁性部材30と留め板44とが固定されている。また、互いに対向する磁性部材30と留め板44とで、一方の凸部36の表面と、他方の凸部36の裏面とが嵌合され、磁性部材30と留め板44とが固定されている。
As shown in FIG. 14, the fastening plate 44 has the same material and substantially the same shape as the magnetic member 30. The difference between the fastening plate 44 and the magnetic member 30 is that the fastening plate 44 is formed with a deformed hole portion 45 near the magnet arrangement hole portion 34.
As shown in FIG. 13, a plurality of thin magnetic members 30 are laminated, and fastening plates 44 are laminated on both sides of the laminated magnetic member 30 in the axial direction. The rotor core 46 is composed of the plurality of magnetic members 30 and the two fastening plates 44. The front surface of one convex portion 35 and the back surface of the other convex portion 35 are fitted by the magnetic member 30 and the fastening plate 44 facing each other, and the magnetic member 30 and the fastening plate 44 are fixed. Further, the magnetic member 30 and the fastening plate 44 facing each other are fitted with the front surface of one convex portion 36 and the back surface of the other convex portion 36, and the magnetic member 30 and the fastening plate 44 are fixed. ..
そして、積層された磁性部材30で構成された磁石配置孔部群37内には、軸方向に並ぶように2つの永久磁石32が配置されている。すなわち、1つの磁石配置孔部群37内には、2つの永久磁石32が直列に配置されている。軸方向に並ぶように配置された永久磁石32は互いに離間して配置されている。
2つの永久磁石32は、磁石配置孔部群37に対して所定の空隙を介して配置されている。すなわち、本実施の形態では、永久磁石32は、磁石配置孔部群37に対して圧入されていない。
Two permanent magnets 32 are arranged so as to be aligned in the axial direction in the magnet arrangement hole group 37 composed of the laminated magnetic members 30. That is, two permanent magnets 32 are arranged in series in one magnet arrangement hole group 37. The permanent magnets 32 arranged so as to be aligned in the axial direction are arranged apart from each other.
The two permanent magnets 32 are arranged with respect to the magnet arrangement hole group 37 via a predetermined gap. That is, in the present embodiment, the permanent magnet 32 is not press-fitted into the magnet arrangement hole group 37.
図14は、留め板44の変形孔部45を変形した後の状態を示す説明図である。図15は、留め板44の変形孔部45を変形する前の状態を示す説明図である。
磁石配置孔部群37内に2つの永久磁石32が配置された状態で、図15の状態から図14の状態のように、留め板44の変形孔部45を変形することで、磁石配置孔部群37内から永久磁石32が抜け出さないように、変形孔部45が永久磁石32の移動を規制するように構成されている。
 以上のように構成された圧縮機200及び回転子43においても、圧縮機100及び回転子13と同様の動作、作用、効果を得ることができる。
FIG. 14 is an explanatory diagram showing a state after the deformed hole portion 45 of the fastening plate 44 is deformed. FIG. 15 is an explanatory diagram showing a state before the deformation hole portion 45 of the fastening plate 44 is deformed.
With two permanent magnets 32 arranged in the magnet placement hole group 37, the magnet placement hole is formed by deforming the deformation hole portion 45 of the retaining plate 44 from the state of FIG. 15 to the state of FIG. The deformed hole portion 45 is configured to restrict the movement of the permanent magnet 32 so that the permanent magnet 32 does not come out of the group 37.
Even in the compressor 200 and the rotor 43 configured as described above, the same operations, actions, and effects as those of the compressor 100 and the rotor 13 can be obtained.
 実施の形態1、2においては、磁性部材30に凸部35、36を形成し、その凸部35、36を用いて互いに対向する磁性部材30同士で固定するように構成していた。これに限らず、他の実施の形態として、磁性部材30は、凸部35、36のうちいずれか一方を省略してもよい。 In the first and second embodiments, the convex portions 35 and 36 are formed on the magnetic member 30, and the convex portions 35 and 36 are used to fix the magnetic members 30 facing each other. Not limited to this, as another embodiment, the magnetic member 30 may omit any one of the convex portions 35 and 36.
実施の形態2においては、磁性部材30及び留め板44に凸部35、36を形成し、その凸部35、36を用いて互いに対向する磁性部材30と留め板44とで固定をするように構成していた。これに限らず、他の実施の形態として、磁性部材30及び留め板44は、凸部35、36のうちいずれか一方を省略してもよい。 In the second embodiment, the convex portions 35 and 36 are formed on the magnetic member 30 and the fastening plate 44, and the convex portions 35 and 36 are used to fix the magnetic members 30 and the fastening plate 44 facing each other. It was composed. Not limited to this, as another embodiment, the magnetic member 30 and the fastening plate 44 may omit any one of the convex portions 35 and 36.
 実施の形態1、2においては、互いに対向する磁性部材30同士で、一方の磁性部材30の凸部35、36の表面と、他方の磁性部材30の凸部35、36の裏面とを嵌合し、互いに対向する磁性部材30同士を固定していた。これに限らず、他の実施の形態として、互いに対向する磁性部材30同士で接着剤により固定してもよい。このように構成しても、実施の形態1、2と同様の効果を奏する。 In the first and second embodiments, the magnetic members 30 facing each other are fitted with the front surface of the convex portions 35 and 36 of one magnetic member 30 and the back surface of the convex portions 35 and 36 of the other magnetic member 30. However, the magnetic members 30 facing each other were fixed to each other. Not limited to this, as another embodiment, the magnetic members 30 facing each other may be fixed with an adhesive. Even with this configuration, the same effects as those of the first and second embodiments can be obtained.
実施の形態2においては、互いに対向する磁性部材30と留め板44とで、一方の凸部35の表面と、他方の凸部35、36の裏面とを嵌合し、磁性部材30と留め板44とを固定していた。これに限らず、他の実施の形態として、互いに対向する磁性部材30と留め板44とで接着剤で固定してもよい。このように構成しても、実施の形態1、2と同様の効果を奏する。 In the second embodiment, the magnetic member 30 and the fastening plate 44 facing each other are fitted with the front surface of one convex portion 35 and the back surface of the other convex portions 35, 36, and the magnetic member 30 and the fastening plate are fitted. It was fixed to 44. Not limited to this, as another embodiment, the magnetic member 30 and the fastening plate 44 facing each other may be fixed with an adhesive. Even with this configuration, the same effects as those of the first and second embodiments can be obtained.
 実施の形態1においては、磁石配置孔部群37に対して永久磁石32を圧入することにより、回転子鉄心31に対して永久磁石32を固定していた。これに限らず、他の実施の形態として、磁石配置孔部群37に対して永久磁石32を隙間がある状態で配置し、磁石配置孔部群37と永久磁石32との間に溶けた樹脂を流し込み、その樹脂が固まることにより回転子鉄心31に対して永久磁石32を固定するように構成してもよい。 In the first embodiment, the permanent magnet 32 is fixed to the rotor core 31 by press-fitting the permanent magnet 32 into the magnet arrangement hole group 37. Not limited to this, as another embodiment, a permanent magnet 32 is arranged with a gap in the magnet arrangement hole group 37, and a resin melted between the magnet arrangement hole group 37 and the permanent magnet 32. The permanent magnet 32 may be fixed to the rotor core 31 by pouring the magnet into the magnet and solidifying the resin.
 実施の形態1、2においては、永久磁石32は、先端面PFと第1側面SF1との間、及び先端面PFと第2側面SF2との間に斜面32aを形成していた。これに限らず、永久磁石は、先端面PFと第3側面SF3との間、及び先端面PFと第4側面SF4との間に斜面32aを形成してもよい。このように構成した永久磁石の先端部同士を対向させた場合においても、図12に示す斜面32aを形成していない永久磁石40の先端部同士を対向させた場合に比して、先端部同士の距離が離れた部分を多くすることができ、この結果、実施の形態1、2とほぼ同様の効果を奏する。 In the first and second embodiments, the permanent magnet 32 forms a slope 32a between the front end surface PF and the first side surface SF1 and between the front end surface PF and the second side surface SF2. Not limited to this, the permanent magnet may form a slope 32a between the front end surface PF and the third side surface SF3 and between the front end surface PF and the fourth side surface SF4. Even when the tips of the permanent magnets configured in this way face each other, the tips of the permanent magnets 40 that do not form the slope 32a shown in FIG. 12 face each other, as compared with the case where the tips of the permanent magnets 40 face each other. As a result, the same effect as that of the first and second embodiments can be obtained.
 実施の形態1、2及び上記他の実施形態においては、軸方向において互いに隣り合う永久磁石32同士の両先端側に斜面32aを形成していた。これに限らず、他の実施の形態として、永久磁石32同士いずれか一方の先端側に斜面32aを形成してもよい。このように構成しても、実施の形態1、2とほぼ同様の効果を奏する。 In the first and second embodiments and the other embodiments described above, slopes 32a are formed on both tip sides of the permanent magnets 32 adjacent to each other in the axial direction. Not limited to this, as another embodiment, the slope 32a may be formed on the tip end side of either of the permanent magnets 32. Even with such a configuration, almost the same effect as that of the first and second embodiments can be obtained.
実施の形態1、2及び上記他の実施形態においては、軸方向において互いに隣り合う永久磁石32同士の両先端側に斜面32aを形成していた。これに限らず、他の実施の形態として、軸方向において互いに隣り合う永久磁石32同士のそれぞれの先端部32bを、図16に示すような半円形状にしてもよい。すなわち、永久磁石32の先端と第1側面SF1との間、及び先端と第2側面SF2との間に円弧面50を形成してもよい。なお、永久磁石32の軸方向において円弧面50が形成されている部分を、先端部32bと定義し、その先端部32bに一体に連結された部分を本体部32cと定義する。したがって、先端部32bの軸方向に直交する断面積が本体部32cの軸方向に直交する断面積よりも小さく構成されている。このように、軸方向において互いに隣り合う永久磁石32同士のそれぞれの先端部32bを、半円形状に形成することにより、永久磁石32の先端部32b同士を対向させた場合においても、図12に示す永久磁石40の先端部同士を対向させた場合に比して、先端部同士の距離が離れた部分を多くすることができ、この結果、実施の形態1、2とほぼ同様の効果を奏する。また、永久磁石32同士いずれか一方の先端部に半円形状を形成してもよい。このように構成しても、実施の形態1、2とほぼ同様の効果を奏する。 In the first and second embodiments and the other embodiments described above, slopes 32a are formed on both tip sides of the permanent magnets 32 adjacent to each other in the axial direction. Not limited to this, as another embodiment, the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction may have a semicircular shape as shown in FIG. That is, an arc surface 50 may be formed between the tip of the permanent magnet 32 and the first side surface SF1 and between the tip and the second side surface SF2. The portion where the arc surface 50 is formed in the axial direction of the permanent magnet 32 is defined as the tip portion 32b, and the portion integrally connected to the tip portion 32b is defined as the main body portion 32c. Therefore, the cross-sectional area orthogonal to the axial direction of the tip portion 32b is configured to be smaller than the cross-sectional area orthogonal to the axial direction of the main body portion 32c. In this way, even when the tip portions 32b of the permanent magnets 32 are opposed to each other by forming the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction in a semicircular shape, FIG. 12 shows. Compared with the case where the tips of the permanent magnets 40 shown are opposed to each other, it is possible to increase the number of portions where the tips are separated from each other, and as a result, the same effect as that of the first and second embodiments is obtained. .. Further, a semicircular shape may be formed at the tip of either of the permanent magnets 32. Even with such a configuration, almost the same effect as that of the first and second embodiments can be obtained.
実施の形態1、2及び上記他の実施形態においては、軸方向において互いに隣り合う永久磁石32同士の両先端側に斜面32aを形成していた。これに限らず、他の実施の形態として、軸方向において互いに隣り合う永久磁石32同士のそれぞれの先端部32bを、図17に示すようなV字形状にしてもよい。なお、永久磁石32の軸方向においてV字形状が形成されている部分を、先端部32bと定義し、その先端部32bに一体に連結された部分を本体部32cと定義する。したがって、先端部32bの軸方向に直交する断面積が本体部32cの軸方向に直交する断面積よりも小さく構成されている。このように、軸方向において互いに隣り合う永久磁石32同士のそれぞれの先端部32bを、V字形状に形成することにより、永久磁石32の先端部32b同士を対向させた場合においても、図12に示す永久磁石40の先端部同士を対向させた場合に比して、先端部32b同士の距離が離れた部分を多くすることができ、この結果、実施の形態1、2とほぼ同様の効果を奏する。また、永久磁石32同士いずれか一方の先端部32bにV字形状を形成してもよい。このように構成しても、実施の形態1、2とほぼ同様の効果を奏する。 In the first and second embodiments and the other embodiments described above, slopes 32a are formed on both tip sides of the permanent magnets 32 adjacent to each other in the axial direction. Not limited to this, as another embodiment, the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction may have a V shape as shown in FIG. The portion where the V-shape is formed in the axial direction of the permanent magnet 32 is defined as the tip portion 32b, and the portion integrally connected to the tip portion 32b is defined as the main body portion 32c. Therefore, the cross-sectional area orthogonal to the axial direction of the tip portion 32b is configured to be smaller than the cross-sectional area orthogonal to the axial direction of the main body portion 32c. In this way, even when the tip portions 32b of the permanent magnets 32 are opposed to each other by forming the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction in a V shape, FIG. 12 shows. Compared with the case where the tips of the permanent magnets 40 shown are opposed to each other, it is possible to increase the number of portions where the tips 32b are separated from each other, and as a result, the same effect as that of the first and second embodiments can be obtained. Play. Further, a V-shape may be formed at the tip portion 32b of either of the permanent magnets 32. Even with such a configuration, almost the same effect as that of the first and second embodiments can be obtained.
実施の形態1、2及び上記他の実施形態においては、軸方向において互いに隣り合う永久磁石32同士の両先端側に斜面32aを形成していた。これに限らず、他の実施の形態として、軸方向において互いに隣り合う永久磁石32同士のそれぞれの先端部32bを、図18に示すような段部52を形状にしてもよい。なお、永久磁石32の軸方向において段部52が形成されている部分を、先端部32bと定義し、その先端部32bに一体に連結された部分を本体部32cと定義する。したがって、先端部32bの軸方向に直交する断面積が本体部32cの軸方向に直交する断面積よりも小さく構成されている。このように、軸方向において互いに隣り合う永久磁石32同士のそれぞれの先端部32bに段部52を形成することにより、永久磁石32の先端部32b同士を対向させた場合においても、図12に示す永久磁石40の先端部同士を対向させた場合に比して、先端部同士の距離が離れた部分を多くすることができ、この結果、実施の形態1、2とほぼ同様の効果を奏する。また、永久磁石32同士いずれか一方の先端部に段部52を形成してもよい。このように構成しても、実施の形態1、2とほぼ同様の効果を奏する。 In the first and second embodiments and the other embodiments described above, slopes 32a are formed on both tip sides of the permanent magnets 32 adjacent to each other in the axial direction. Not limited to this, as another embodiment, the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction may be shaped into a step portion 52 as shown in FIG. The portion where the step portion 52 is formed in the axial direction of the permanent magnet 32 is defined as the tip portion 32b, and the portion integrally connected to the tip portion 32b is defined as the main body portion 32c. Therefore, the cross-sectional area orthogonal to the axial direction of the tip portion 32b is configured to be smaller than the cross-sectional area orthogonal to the axial direction of the main body portion 32c. In this way, even when the tip portions 32b of the permanent magnets 32 are opposed to each other by forming the step portions 52 at the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction, FIG. 12 shows. Compared with the case where the tips of the permanent magnets 40 are opposed to each other, it is possible to increase the number of portions where the tips are separated from each other, and as a result, the same effect as that of the first and second embodiments is obtained. Further, the stepped portion 52 may be formed at the tip of any one of the permanent magnets 32. Even with such a configuration, almost the same effect as that of the first and second embodiments can be obtained.
 実施の形態1、2及び上記他の実施形態においては、磁石配置孔部群37内には、軸方向に並ぶように2つの永久磁石32を配置していた。これに限らず、他の実施の形態として、磁石配置孔部群37内には、軸方向に並ぶように3つ以上の永久磁石を配置してもよい。この場合においても、軸方向において互いに隣り合う永久磁石32同士のそれぞれの先端部32bの軸方向に直交する断面積が本体部の軸方向に直交する断面積よりも小さく構成されている。このように構成しても、実施の形態1、2と同様の効果を奏する。 In the first and second embodiments and the other embodiments described above, two permanent magnets 32 are arranged so as to be aligned in the axial direction in the magnet arrangement hole group 37. Not limited to this, as another embodiment, three or more permanent magnets may be arranged so as to be aligned in the axial direction in the magnet arrangement hole group 37. Also in this case, the cross-sectional area of the tip portions 32b of the permanent magnets 32 adjacent to each other in the axial direction perpendicular to the axial direction is smaller than the cross-sectional area orthogonal to the axial direction of the main body portion. Even with this configuration, the same effects as those of the first and second embodiments can be obtained.
2 圧縮機構部
3 回転電機
4 クランク軸
4a 主軸部
4b 偏心部
5 密閉容器
5a 吸入管
5b 吐出管
6 電源端子
7 固定スクロール
7a 固定ラップ
7b 吐出ポート
8 旋回スクロール
8a 旋回ラップ
8b 旋回軸受
9 フレーム
11 主軸受
12 オルダムリング
13 回転子
14 固定子
15 下軸受
20 固定子鉄心
21 絶縁部材
22 電機子巻線
30 磁性部材
31 回転子鉄心
32 永久磁石
32a 斜面
32b 先端部
32c 本体部
33 軸用孔部
34 磁石配置孔部
34a 切欠部
35 凸部
36 凸部
37 磁石配置孔部群
43 回転子
44 留め板
45 変形孔部
46 回転子鉄心
50 円弧面
51 斜面
52 段部
100、200 圧縮機
BF 基端面
PF 先端面
S1 断面積
S2 断面積
SF1 第1側面
SF2 第2側面
SF3 第3側面
SF4 第4側面
2 Compression mechanism 3 Rotating electric machine 4 Crank shaft 4a Main shaft 4b Eccentric part 5 Sealed container 5a Suction pipe 5b Discharge pipe 6 Power supply terminal 7 Fixed scroll 7a Fixed lap 7b Discharge port 8 Swivel scroll 8a Swivel lap 8b Swivel bearing 9 Frame 11 Main Bearing 12 Oldham ring 13 Rotor 14 Stator 15 Lower bearing 20 Stator core 21 Insulation member 22 Armor winding 30 Magnetic member 31 Rotor core 32 Permanent magnet 32a Slope 32b Tip 32c Main body 33 Shaft hole 34 Magnet Placement hole 34a Notch 35 Convex part 36 Convex part 37 Magnet placement hole part group 43 Rotor 44 Fastening plate 45 Deformed hole part 46 Rotor core 50 Arc surface 51 Slope 52 Step part 100, 200 Compressor BF Base end surface PF tip Surface S1 Cross-sectional area S2 Cross-sectional area SF1 First side surface SF2 Second side surface SF3 Third side surface SF4 Fourth side surface

Claims (6)

  1. 板状の磁性部材を積層して構成した回転子鉄心と、
    前記回転子鉄心の周方向に沿って複数配置され、回転子鉄心の軸方向に延びる複数の孔部と、
    前記孔部内に前記軸方向に沿って直列に配置され、前記孔部に固定された複数の永久磁石と、を備え、
    前記軸方向において互いに隣り合う前記永久磁石同士は、互いに対向する先端部と、前記先端部に一体に連結された本体部とをそれぞれ備え、
    互いに対向する前記先端部のうち少なくとも一方の軸方向に直交する断面積が前記本体部の軸方向に直交する断面積よりも小さく構成されている回転電機の回転子。
    A rotor core composed of laminated plate-shaped magnetic members and
    A plurality of holes arranged along the circumferential direction of the rotor core and extending in the axial direction of the rotor core, and a plurality of holes.
    A plurality of permanent magnets arranged in series along the axial direction in the hole and fixed to the hole are provided.
    The permanent magnets adjacent to each other in the axial direction are provided with a tip portion facing each other and a main body portion integrally connected to the tip portion.
    A rotor of a rotary electric machine having a cross-sectional area orthogonal to the axial direction of at least one of the tip portions facing each other smaller than the cross-sectional area orthogonal to the axial direction of the main body portion.
  2. 前記軸方向において互いに隣り合う前記永久磁石同士は、互いに対向する前記先端部のうち少なくとも一方が先端に向かうほど断面積が小さく構成されている請求項1に記載の回転電機の回転子。 The rotor of the rotary electric machine according to claim 1, wherein the permanent magnets adjacent to each other in the axial direction have a smaller cross-sectional area so that at least one of the tip portions facing each other is directed toward the tip.
  3.  前記永久磁石は、前記軸方向に直交する方向での断面が長方形をなし、
     前記永久磁石は、先端側の面である先端面と、前記先端面と対向する面である基端面と、互いに対向する側面である第1側面及び第2側面と、互いに対向しかつ前記第1側面及び前記第2側面よりも面積が小さい側面である第3側面及び第4側面とを備え、
     前記先端面と前記第1側面との間、又は前記先端面と前記第2側面との間のうち少なくとも一方には斜面が形成されている請求項1又は請求項2に記載の回転電機の回転子。
    The permanent magnet has a rectangular cross section in a direction orthogonal to the axial direction.
    The permanent magnet has a front end surface which is a front end side surface, a base end surface which is a surface facing the front end surface, and a first side surface and a second side surface which are side surfaces facing each other, and the first side surface thereof is opposed to each other. It has a side surface and a third side surface and a fourth side surface, which are smaller areas than the second side surface.
    The rotation of the rotary electric machine according to claim 1 or 2, wherein a slope is formed between the tip surface and the first side surface, or between the tip surface and the second side surface. Child.
  4. 前記永久磁石は、前記第1側面側と、前記第2側面側とで磁極が異なるように構成されている請求項3に記載の回転電機の回転子。 The rotor of the rotary electric machine according to claim 3, wherein the permanent magnet is configured so that the magnetic poles of the first side surface side and the second side surface side are different.
  5.  請求項1から請求項4のうちいずれか一項に記載の回転電機の回転子と、
     前記回転子へ回転磁界を印加し、前記回転子を回転させる固定子と、
    を備えた回転電機。
    The rotor of the rotary electric machine according to any one of claims 1 to 4,
    A stator that applies a rotating magnetic field to the rotor to rotate the rotor, and
    Rotating electric machine equipped with.
  6.  請求項5に記載の回転電機と、
     前記回転電機により駆動し、外部から吸入した流体を圧縮する圧縮機構部と、
    前記回転電機及び前記圧縮機構部を収容する密閉容器と、
    を備えた圧縮機。
    The rotary electric machine according to claim 5 and
    A compression mechanism that is driven by the rotary electric machine and compresses the fluid sucked from the outside,
    A closed container for accommodating the rotary electric machine and the compression mechanism portion,
    Compressor equipped with.
PCT/JP2020/026685 2020-07-08 2020-07-08 Rotor for rotary electric machine, rotary electric machine, and compressor WO2022009332A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022534554A JPWO2022009332A1 (en) 2020-07-08 2020-07-08
PCT/JP2020/026685 WO2022009332A1 (en) 2020-07-08 2020-07-08 Rotor for rotary electric machine, rotary electric machine, and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026685 WO2022009332A1 (en) 2020-07-08 2020-07-08 Rotor for rotary electric machine, rotary electric machine, and compressor

Publications (1)

Publication Number Publication Date
WO2022009332A1 true WO2022009332A1 (en) 2022-01-13

Family

ID=79552452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026685 WO2022009332A1 (en) 2020-07-08 2020-07-08 Rotor for rotary electric machine, rotary electric machine, and compressor

Country Status (2)

Country Link
JP (1) JPWO2022009332A1 (en)
WO (1) WO2022009332A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029095A (en) * 2006-07-20 2008-02-07 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type dynamo-electric machine and compressor using the same
WO2008117501A1 (en) * 2007-03-23 2008-10-02 Kabushiki Kaisha Toshiba Rotor and permanent magnet rotating electric machine
JP2014138510A (en) * 2013-01-17 2014-07-28 Nissan Motor Co Ltd Magnet body for field pole, and manufacturing method and manufacturing apparatus thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029095A (en) * 2006-07-20 2008-02-07 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type dynamo-electric machine and compressor using the same
WO2008117501A1 (en) * 2007-03-23 2008-10-02 Kabushiki Kaisha Toshiba Rotor and permanent magnet rotating electric machine
JP2014138510A (en) * 2013-01-17 2014-07-28 Nissan Motor Co Ltd Magnet body for field pole, and manufacturing method and manufacturing apparatus thereof

Also Published As

Publication number Publication date
JPWO2022009332A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
US6147428A (en) Rotor of electric motor
EP1734638B1 (en) Permanent-magnet motor
JP5897110B2 (en) Motor and electric compressor using the same
JP3631583B2 (en) Permanent magnet motor
WO2012141085A1 (en) Electric motor and electric compressor using same
JP2003061283A (en) Rotor and stator of dynamo-electric machine, and motor, compressor, and freezing cycle, and method of manufacturing rotor of dynamo-electric machine
JP2002064949A (en) Motor
JP2005210826A (en) Electric motor
JPH11341719A (en) Rotor of motor
JP2011015499A (en) Rotor of electric motor
JP2001128395A (en) Dynamo-electric machinery, compressor and manufacture of the dynamo-electric machinery
JP4091933B2 (en) Permanent magnet motor
WO2022009332A1 (en) Rotor for rotary electric machine, rotary electric machine, and compressor
JP2003088019A (en) Permanent-magnet motor
JP2010051075A (en) Axial gap rotating electric machine and compressor using the same
US10840757B2 (en) Electric motor with permanent magnet and compressor having the same
JP2015042009A (en) Permanent magnet type motor, compressor employing the same, and refrigeration cycle device
JPH1127883A (en) Rotor of motor
JPH10136594A (en) Brushless dc motor and compressor using it
JP2011015500A (en) Rotor of electric motor
JP3485877B2 (en) Rotor of motor for compressor
JP3485909B2 (en) Hermetic compressor
JP3306343B2 (en) Motor rotor
JP2001169484A (en) Rotor of motor for compressor
JP3485910B2 (en) Hermetic compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534554

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944661

Country of ref document: EP

Kind code of ref document: A1