WO2022009315A1 - 端末、無線通信方法及び基地局 - Google Patents

端末、無線通信方法及び基地局 Download PDF

Info

Publication number
WO2022009315A1
WO2022009315A1 PCT/JP2020/026587 JP2020026587W WO2022009315A1 WO 2022009315 A1 WO2022009315 A1 WO 2022009315A1 JP 2020026587 W JP2020026587 W JP 2020026587W WO 2022009315 A1 WO2022009315 A1 WO 2022009315A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
field
dci format
channel access
transmission
Prior art date
Application number
PCT/JP2020/026587
Other languages
English (en)
French (fr)
Inventor
優元 ▲高▼橋
慎也 熊谷
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/026587 priority Critical patent/WO2022009315A1/ja
Priority to JP2022534540A priority patent/JP7508557B2/ja
Priority to CN202080103691.1A priority patent/CN115997441A/zh
Priority to EP20944659.0A priority patent/EP4181593A4/en
Publication of WO2022009315A1 publication Critical patent/WO2022009315A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station capable of appropriately controlling wireless communication in an NR-U system.
  • the terminal determines a receiving unit that receives at least one of a first DCI and a second DCI, and a channel access type to be applied to sensing based on at least the first DCI.
  • at least one of the downlink feedback information (DFI) flag fields is set in common or separately, or for the second DCI, a field for sensing and a downlink feedback information (DFI) flag field are set. It is characterized by not being done.
  • wireless communication in the NR-U system can be appropriately controlled.
  • FIG. 1 is a diagram showing an example of association between a channel access type and a CP extension.
  • FIG. 2 is a diagram showing an example of channel access type, CP extension, and association of CAPC.
  • FIG. 3 is a diagram showing an example of initial transmission and retransmission by CG-DFI.
  • FIG. 4 is a diagram showing an example of the payload of DCI corresponding to the bit length of the channel access-CP extended field.
  • FIG. 5 is a diagram showing an example of the payload of DCI corresponding to the bit length of the channel access-CP extension-CAPC field.
  • FIG. 6 is a diagram showing an example of the payload of DCI corresponding to the bit length of the HARQ-ACK bitmap field.
  • FIG. 1 is a diagram showing an example of association between a channel access type and a CP extension.
  • FIG. 2 is a diagram showing an example of channel access type, CP extension, and association of CAPC.
  • FIG. 3 is a diagram showing an example of initial
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 8 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 9 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the traffic type may be identified at the physical layer based on at least one of the following: -Logical channels with different priorities-Modulation and Coding Scheme (MCS) table (MCS index table) -Channel Quality Indication (CQI) table-DCI format-Used for scramble (mask) of Cyclic Redundancy Check (CRC) bits included (added) in the DCI (DCI format).
  • MCS Modulation and Coding Scheme
  • CQI Channel Quality Indication
  • CRC Cyclic Redundancy Check
  • the HARQ-ACK (or PUCCH) traffic type for the PDSCH may be determined based on at least one of the following: An MCS index table (eg, MCS index table 3) used to determine at least one of the PDSCH modulation order, target code rate, and transport block size (TBS).
  • An MCS index table eg, MCS index table 3
  • TBS transport block size
  • RNTI used for CRC scrambling of DCI used for scheduling the PDSCH (for example, whether CRC scrambled by C-RNTI or MCS-C-RNTI).
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the traffic type may be associated with communication requirements (requirements such as delay and error rate, requirement conditions), data type (voice, data, etc.) and the like.
  • the difference between the URLLC requirement and the eMBB requirement may be that the URLLC latency is smaller than the eMBB delay, or the URLLC requirement may include a reliability requirement.
  • the eMBB user (U) plane delay requirement may include that the downlink U-plane delay is 4 ms and the uplink U-plane delay is 4 ms.
  • the URLLC U-plane delay requirement may include that the downlink U-plane delay is 0.5 ms and the uplink U-plane delay is 0.5 ms.
  • the reliability requirement of URLLC may also include a 32-byte error rate of 10-5 at a U-plane delay of 1 ms.
  • NR Rel.
  • NR after 16 it is considered to set a plurality of levels (for example, 2 levels) of priority for a predetermined signal or channel.
  • communication control for example, transmission control in the event of a collision
  • communication control is performed by setting different priorities for each signal or channel corresponding to different traffic types (also referred to as service, service type, communication type, use case, etc.). It is supposed to be done. This makes it possible to control communication by setting different priorities for the same signal or channel according to the service type and the like.
  • the priority may be set for a signal (for example, UCI such as HARQ-ACK, a reference signal, etc.), a channel (PDSCH, PUSCH, etc.), a HARQ-ACK codebook, or the like.
  • the priority may be defined by a first priority (for example, High) and a second priority (for example, Low) having a lower priority than the first priority.
  • a first priority for example, High
  • a second priority for example, Low
  • three or more types of priorities may be set.
  • Information about the priority may be notified from the base station to the UE using at least one of higher layer signaling and DCI.
  • priorities may be set for the dynamically scheduled HARQ-ACK for PDSCH, HARQ-ACK for semi-persistent PDSCH (SPS PDSCH), and HARQ-ACK for SPS PDSCH release.
  • a priority may be set for the HARQ-ACK codebook corresponding to these HARQ-ACKs.
  • the priority of the PDSCH may be read as the priority of HARQ-ACK for the PDSCH.
  • the UE may control UL transmission based on priority when different UL signals / UL channels collide. For example, UL transmission having a high priority may be performed, and UL transmission having a low priority may not be performed (for example, dropping). Alternatively, the transmission timing of the UL transmission having a low priority may be changed (for example, postponed or shifted).
  • NR Priority setting
  • a plurality of levels for example, 2 levels
  • communication control for example, transmission control in the event of a collision
  • communication control is performed by setting different priorities for each signal or channel corresponding to different traffic types (also referred to as service, service type, communication type, use case, etc.). It is supposed to be done. This makes it possible to control communication by setting different priorities for the same signal or channel according to the service type and the like.
  • priorities may be set for the dynamically scheduled HARQ-ACK for PDSCH, HARQ-ACK for semi-persistent PDSCH (SPS PDSCH), and HARQ-ACK for SPS PDSCH release.
  • a priority may be set for the HARQ-ACK codebook corresponding to these HARQ-ACKs.
  • the priority of the PDSCH may be read as the priority of HARQ-ACK for the PDSCH.
  • the UE may control UL transmission based on priority when different UL signals / UL channels collide. For example, UL transmission having a high priority may be performed, and UL transmission having a low priority may not be performed (for example, dropping). Alternatively, the transmission timing of the UL transmission having a low priority may be changed (for example, postponed or shifted).
  • Collision of different UL signals / UL channels means that the time resources (or time resources and frequency resources) of different UL signals / UL channels overlap, or the transmission timings of different UL signals / UL channels overlap. May be.
  • the shared channels with different priorities may be PDSCHs with different HARQ-ACK priorities or PUSCHs with different priorities.
  • One of the existing DCI formats supported by 15 (eg, DCI format 0_1 / 1-1) or the new DCI format (eg, DCI format 0_2 / 1-1_2) is used to control the schedule of shared channels with different priorities. Is possible. If the UE is configured to monitor either the existing DCI format or the new DCI format, the existing DCI format or the new DCI format has a first priority (or URLLC) and a second priority (or). , EMBB) may support both schedules.
  • DCI downlink control information
  • HPN downlink control information
  • HPN downlink control information
  • the HARQ entity manages multiple (up to 16) HARQ processes in parallel. That is, the HARQ process numbers exist from HPN0 to HPN15.
  • the HARQ process number is also called a HARQ process identifier (HARQ process identifier).
  • a single HARQ process corresponds to one transport block (TB).
  • TB transport block
  • a single HARQ process may correspond to one or more transport blocks (TB).
  • Unlicensed band In the unlicensed band (for example, 2.4 GHz band, 5 GHz band, 6 GHz band, etc.), a plurality of systems such as a Wi-Fi system and a system supporting Licensed-Assisted Access (LAA) (LAA system) coexist. Therefore, it is considered that collision avoidance and / or interference control of transmission between the plurality of systems is required.
  • LAA Licensed-Assisted Access
  • the data transmission device is a device of another device (eg, base station, user terminal, Wi-Fi device, etc.) before transmitting the data in the unlicensed band.
  • the listening includes Listen Before Talk (LBT), Clear Channel Assessment (CCA), carrier sense, channel sensing, sensing, channel access procedure, shared spectrum channel access procedure, and Energy. It may be called Detection (ED) or the like.
  • the transmitting device starts data transmission after a predetermined period (for example, immediately after or during a backoff period) after the LBT detects that there is no transmission of another device (idle state). ..
  • unlicensed bands are also being considered for future wireless communication systems (for example, 5G, 5G +, New Radio (NR), 3GPP Rel.15 or later, etc.).
  • the NR system using the unlicensed band may be called an NR-Unlicensed (U) system, an NR LAA system, or the like.
  • NR-U may also include dual connectivity (DC) between licensed bands and unlicensed bands, and stand-alone (Stand-Alone (SA)) unlicensed bands.
  • DC dual connectivity
  • SA stand-alone
  • the node for example, base station, UE
  • NR-U confirms that the channel is free (idle) by LBT for coexistence with other systems or other operators, and then starts transmission.
  • the base station for example, gNB or the UE acquires a transmission opportunity (Transmission Opportunity (TxOP)) when the LBT result is idle and performs transmission.
  • TxOP Transmission Opportunity
  • the base station or UE does not transmit when the LBT result is busy (LBT-busy).
  • the time of the transmission opportunity may be referred to as channel occupation time (Channel Occupancy Time (COT)).
  • LBT-idle may be read as the success of LBT (LBT success).
  • LBT-busy may be read as LBT failure.
  • LBT Channel access type
  • NR after Rel.16 future wireless communication systems (eg, NR after Rel.16), it is considered that the UE performs LBT based on a plurality of LBT types.
  • the type of LBT may be referred to as a channel access type, a channel access mode, a shared channel access type, or the like.
  • the channel access type may be classified into any one of type 1, type 2A, type 2B, and type 2C.
  • certain higher layer parameters eg ChannelAccessMode-r16
  • the name of the channel access type is not limited to these.
  • the name of the channel access type may be represented by, for example, "channel access type X" X by any number, alphabetic character, or a combination of a number and an alphabetic character, or may be another name.
  • the type 1 channel access may be a channel access having a variable transmission waiting time (contention window size (CWS)) accompanied by a random back-off.
  • CWS channel waiting time
  • the type 1 channel access may be a channel access type used in a coexistence environment with other unlicensed bands (eg, Wi-Fi).
  • terminals including terminals in other wireless communication standards
  • / gNB may perform sensing in a specific period before transmitting a signal.
  • the specific period may be composed of at least an extension period (may be referred to as Defer duration, for example, 43 ⁇ s) and a sensing slot (for example, 9 ⁇ s).
  • the counter may be decremented every time one sensing slot (for example, 9 ⁇ s) elapses.
  • the counter set in the terminal / gNB is set in a specific period (period in which the signal is transmitted) when the transmission of a signal by a terminal / gNB other than the terminal / gNB is detected (LBT busy). You may stop.
  • the counter may be restarted after a specific period (the period during which the signal is transmitted).
  • the CWS of the terminal may be expanded.
  • Type 2A channel access may be channel access without random backoff.
  • the UE is set to a first period (eg, a period of 25 ⁇ s (may be referred to as an interval, a gap, etc.)) that includes a period of sensing, and sensing in that period. May be done.
  • the UE may transmit a signal immediately after the elapse of the period.
  • Type 2B channel access may be channel access without random backoff.
  • the UE may set a second period (for example, a period of 16 ⁇ s) including a period for performing sensing, and perform sensing in the period.
  • the UE may transmit a signal immediately after the elapse of the period.
  • the type 2C channel access may be a channel access in which a period of a first period or a second period (for example, 16 ⁇ s) or less is set for the UE, but sensing is not performed in the period.
  • the UE may transmit a signal in a predetermined period immediately after the lapse of the period (for example, a period of up to 584 ⁇ s).
  • Cyclic prefix (CP) extensions may be configured to control the duration of sensing for each type of channel access.
  • the CP extension may be indicated at a specific time corresponding to the CP extension index.
  • the specific time may be at least one of 25 ⁇ s, 16 + T TA ⁇ s, and 25 + T TA ⁇ s, where T TA is the timing advance.
  • the CP extension shown in FIG. 1 is indicated by an index, and a CP extension value corresponding to the index may be set. Further, the association in FIG. 1 is merely an example, and the association between the channel access type and the CP extension is not limited to this.
  • the UE when certain higher layer parameters (eg, ul-dci-triggered-UL-ChannelAccess-CPext-CAPC-r16) are set, the UE will also indicate the channel access type and CP extension contained in DCI format 0_1. You may receive information about. Information about the channel access type and CP extension instructions is in the Channel Access-CP Extension-Channel Access Priority Classes (CAPC) (ChannelAccess-CPext-CAPC) field contained in DCI format 0_1. You may.
  • CAPC Channel Access-CP Extension-Channel Access Priority Classes
  • the channel access-CP extension-CAPC field may be a field that instructs the UE to CAPC.
  • CAPC divides channel access priorities for a traffic type into a specific number of classes (eg, 4), specified by different Quality of Service (QoS) indicators (5QI). May be.
  • QoS Quality of Service
  • the specific number may be any integer other than 4.
  • FIG. 2 is a diagram showing an example of channel access type, CP extension, and association of CAPC.
  • the channel access type, CP extension, and CAPC correspond to each index.
  • certain higher layer parameters eg, ul-dci-triggered-UL-ChannelAccess-CPext-CAPC-r16
  • the UE will have the value of the Channel Access-CP Extension-CAPC field contained in DCI format 0_1. You will be notified.
  • the UE determines the index value corresponding to the field value and determines the channel access type, CP extension and CAPC corresponding to the index value based on the association as shown in FIG.
  • the CP expansion and CAPC shown in FIG. 2 are indicated by indexes, respectively, and the CP expansion value and the 5QI number corresponding to the index may be set. Further, the association in FIG. 2 is merely an example, and the association of the channel access type, CP extension, and CAPC is not limited to this.
  • the UE is a signal / channel (eg, physical uplink shared channel (PUSCH)) contained in a particular DCI format (eg DCI format 0_1).
  • PUSCH physical uplink shared channel
  • Information regarding retransmission of uplink control information (UCI)) may be received.
  • the UE may control signal / channel retransmission based on the information regarding the retransmission.
  • the information regarding signal / channel retransmission may be a downlink feedback information (DFI) flag field.
  • DFI downlink feedback information
  • the DFI flag field may have a bit length of 0 or 1 bit.
  • DCI format 0_1 which is CRC scrambled by a cell-specific Radio Network Temporary Identifier (CS-RNTI), and makes shared spectral channel access in a cell
  • CS-RNTI Cell-specific Radio Network Temporary Identifier
  • the DFI flag field has a bit length of 1 bit. May have. In other cases, the bit length of the DFI flag field may be 0 bits.
  • the UE When the DFI flag field has a bit length of 1 bit, if the value of the DFI flag field is 1, the UE may be instructed to activate the type 2 configured grant (CG) transmission. Further, when the DFI flag field has a bit length of 1 bit and the value of the DFI flag field is 0, CG-DFI may be instructed to the UE.
  • CG type 2 configured grant
  • the remaining bits constituting DCI format 0_1 may be determined. Specifically, when CG-DFI is instructed to the UE, the remaining bits constituting DCI format 0_1 are the HARQ-ACK bitmap field, transmission for the scheduled PUSCH. It may include a Transmission Power Control (TPC) command (TPC command for scheduled PUSCH) field.
  • TPC command field may have a bit length of 2 bits.
  • the HARQ-ACK bitmap field may have a bit length of 16 bits.
  • the HARQ-ACK bitmap may correspond to the HARQ process index (HPN) in ascending order from the most significant bit (MSB) to the least significant bit (LSB). In this disclosure, MSB and LSB may be interchanged. If the value of the HARQ-ACK bitmap field is 1, ACK may be indicated for the corresponding HPN PUSCH / UCI. If the value of the HARQ-ACK bitmap field is 0, NACK may be indicated for the corresponding HPN PUSCH / UCI.
  • the UE may transmit the UCI in the PUSCH (CG-PUSCH) based on the setting grant.
  • the UCI may be referred to as a UCI (CG-UCI) based on a set grant.
  • the CG-UCI may be transmitted in the NR-U system.
  • the HPN field may have a bit length of 4 bits.
  • the RV field may have a bit length of 2 bits.
  • the NDI field may have a bit length of 1 bit.
  • the COT shared information field is set with a specific higher layer parameter (eg ULtoDL-CO-SharingED-Threshold-r16) and other higher layer parameters (eg cg-COT-SharingList-r16) and the other higher layer.
  • a specific higher layer parameter eg ULtoDL-CO-SharingED-Threshold-r16
  • other higher layer parameters eg cg-COT-SharingList-r16
  • the number of set combinations in the layer parameter for example, cg-COT-SharingList-r16
  • Ceil log 2 (C)
  • a specific upper layer parameter for example, ULtoDL-CO-SharingED-Threshold-r16
  • another upper layer parameter for example, cg-COT-SharingList-r16
  • the COT shared information field may be 0 bits.
  • FIG. 3 is a diagram showing an example of initial transmission and retransmission by CG-DFI.
  • the UE transmits CG-UCI # 0 via CG-PUSCH # 0 and CG-UCI # 1 via CG-PUSCH # 1 to gNB, respectively.
  • gNB notifies the UE of at least ACK / NACK indicating the reception processing result for CG-UCI # 0 and CG-UCI # 1 by the HARQ-ACK bitmap field included in the DCI indicating CG-DFI. At this time, gNB notifies the UE of information indicating ACK for CG-UCI # 0 and NACK for CG-UCI # 1, respectively.
  • the UE retransmits the CG-PUSCH based on the value of the HARQ-ACK bitmap field included in the DCI received from the gNB.
  • the UE transmits CG-UCI # 3 to gNB via CG-PUSCH # 3 and retransmits CG-UCI # 1 via CG-PUSCH # 4.
  • the NDI of CG-UCI # 3 is toggled (the value changes to 1), and the NDI of the retransmission CG-UCI # 1 is not toggled (the value remains 0).
  • the RV value (2) set for the retransmission CG-UCI is different from the value (0) of the initial transmission CG-UCI, but the initial transmission CG-UCI and the retransmission CG-
  • the RV values corresponding to each of the UCIs may be the same value or different values.
  • the DCI format may be referred to as DCI format 0_2 or DCI format 1_2.
  • the DCI format 0_2 may be a DCI (UL Grant) for scheduling PUSCH.
  • the DCI format 1_2 may be a DCI (DL assignment) for scheduling PDSCH.
  • the name of the new DCI format is not limited to this.
  • the name of the new DCI format for scheduling PDSCH and PUSCH is a replacement of "2" in DCI format 1_2 and DCI format 0_2 with an arbitrary character string other than "0" and "1". It may be another name.
  • the DCI format 0_2 and the DCI format 1_2 may be DCI formats in which a part of the payload is restricted as compared with the existing DCI formats (for example, DCI formats 0_1 and 1_1).
  • the DCI format 0_2 and the DCI format 1_2 do not have to allow code block group-based transmission / reception.
  • the redundant version (RV) field included in the DCI format 0_2 and the DCI format 1-2 may be set from 0 to 2 bits.
  • the HARQ process number field included in the DCI format 0_2 and the DCI format 1-2 may be set to 0 to 4 bits.
  • the sounding reference signal (SRS) request field included in the DCI format 0_2 and the DCI format 1-2 may be set to 0 to 3 bits.
  • the PUCCH resource indicator field and the transmission setting instruction status (TCI) field included in the DCI format 1-2 may be set to 0 to 3 bits.
  • the carrier indicator field included in the DCI format 0_2 and the DCI format 1_2 may be set to 0 to 3 bits.
  • the number of bits of each field included in the DCI format 0_2 and the DCI format 1_2 can be set smaller than that of the existing DCI format (for example, DCI format 0_1, 0_1, 1_1, 1_1). It is possible to reduce the payload (size) of the DCI format and improve the reliability of communication.
  • the DCI format for URLLC is used as the DCI format used in the NR-U system, which field included in the DCI is supported, or a specific field included in the DCI. There is not enough consideration on how many bits to use. Further, in the case where the DCI format for URLLC is used as the DCI format used in the NR-U system, if the DCI format for URLLC does not include the DFI flag field, the UE is notified of CG-DFI / type 2CG. -There is not enough consideration on how to indicate PUSCH.
  • the present inventors have conceived an appropriate DCI configuration method when operating a traffic type such as URLLC in the NR-U system.
  • a / B may be read as at least one of A and B
  • a / B / C may be read as at least one of A, B and C.
  • indexes, IDs, indicators, resource IDs, etc. may be read as each other.
  • the first DCI format DCI format 0_1, DCI format 0_1, DCI format 1_1, DCI format 1-11, DCI format for eMBB, DCI format for scheduling PDSCH for eMBB, DCI format not including priority indicator field, DCI format not including priority indicator field for PDSCH scheduling, existing DCI format, Rel.
  • the 15 DCI formats may be read interchangeably.
  • a second DCI format DCI format 0_2, DCI format 1-2, DCI format for URLLC, DCI format for scheduling PDSCH for URLLC, DCI format including priority indicator field, priority indicator field for scheduling PDSCH.
  • the DCI format including the new DCI format and the new DCI format may be read as each other.
  • a field for NR-U for at least one of a field for NR-U, a specific field, a channel access-CP extended field, and a channel access-CP extended-CAPC field, a field for sensing, and a channel access type.
  • Fields, fields for channel access type and CP extension, and fields with sizes that depend on the setting of higher layer parameters for sensing may be read interchangeably.
  • a field for NR-U a specific field, a downlink feedback information flag field, a field for a setting grant DFI, a field for PUSCH based on the setting grant, and a setting grant retransmission are used.
  • the field having a size depending on the setting of the upper layer parameter for the setting grant DFI may be read interchangeably.
  • the second DCI format (eg, at least one of DCI format 0_2 and DCI format 1_2) may include a channel access-CP extended field.
  • the UE may receive / monitor the PDCCH assuming that the second DCI format includes a channel access-CP extended field.
  • the channel access-CP extension field may be included in the second DCI format.
  • the channel access-CP extension field may not be included in the second DCI format when no particular higher layer parameter (RRC parameter) is set for the UE.
  • the UE may receive / monitor the PDCCH assuming that the second DCI format includes a channel access-CP extended field when certain higher layer parameters are set.
  • the specific upper layer parameters are the second DCI format (for example, DCI format 0_2) used for the schedule of UL transmission and the like, and the second DCI format (for example, DCI format 1_2) used for the schedule of DL transmission and the like. ) May be set in common. As a result, it is possible to suppress an increase in the overhead of the upper layer parameter.
  • the particular higher layer parameters may be set separately for the DCI format 0_2 and the DCI format 1_2. This makes it possible to flexibly control the number of fields / bits included in the DCI used for controlling UL transmission and the DCI used for controlling DL transmission.
  • the second DCI format does not have to include the channel access-CP extension field.
  • the UE may receive / monitor the PDCCH assuming that the second DCI format does not include the channel access-CP extended field.
  • the second DCI format (eg, DCI format 0_2) may include the Channel Access-CP Extension-CAPC field.
  • the UE may receive / monitor the PDCCH assuming that the second DCI format includes the channel access-CP extension-CAPC field.
  • the channel access-CP extension-CAPC field may be included in the second DCI format.
  • the channel access-CP extension-CAPC field may not be included in the second DCI format when no particular higher layer parameter (RRC parameter) is set for the UE.
  • the UE may receive / monitor the PDCCH assuming that the second DCI format includes the channel access-CP extension-CAPC field when certain higher layer parameters are set.
  • the second DCI format does not have to include the channel access-CP extension-CAPC field.
  • the UE may receive / monitor the PDCCH assuming that the second DCI format does not include the channel access-CP extension-CAPC field.
  • the DFI flag field may be included in the second DCI format (eg, DCI format 0_2).
  • the UE may receive / monitor the PDCCH assuming that the DFI flag field is included in the second DCI format.
  • the DFI flag field may be included in the second DCI format. Also, the DFI flag field may not be included in the second DCI format when no particular higher layer parameter is set for the UE. In other words, the UE may receive / monitor the PDCCH assuming that the second DCI format contains the DFI flag when certain higher layer parameters are set.
  • the DFI flag does not have to be included in the second DCI format.
  • the UE may receive / monitor the PDCCH assuming that the DFI flag field is not included in the second DCI format.
  • the fields included in at least one of the DCI format 0_2 and the DCI format 1_2 can be appropriately configured, and more reliable communication becomes possible.
  • the bit length of the channel access-CP extended field contained in the second DCI format may be a specific length (eg, 0 to 4 bits) depending on the specific upper layer parameter.
  • the bit length of may be configurable.
  • the bit length of the particular length may be the same as the bit length configurable in the channel access-CP extension field contained in the first DCI format (DCI format 0_0 / 0_1 / 1-1).
  • bit length of the channel access-CP extension field included in the second DCI format may be a single fixed value (for example, 1 or 2). According to this, the overhead of RRC signaling to the UE can be reduced.
  • the channel access type indicated to the UE may be limited.
  • the UE is an association (table) in which only one or more specific channel access types are indicated. Therefore, the channel access type may be determined.
  • the channel access type indicated to the UE is a combination of a specific type (eg, type 1). It may be limited to channel access and type 2C channel access).
  • the UE is channeled from the association in which only type 1 channel access and type 2C channel access are indicated.
  • the access type may be determined. According to this, the UE can appropriately communicate even in a coexistence environment with other wireless communication standards (for example, Wi-Fi).
  • the channel access type indicated to the UE is a combination of other specific types (for example, a combination of other specific types. For example, it may be limited to type 2A channel access and type 2C channel access).
  • the UE when the bit length of the channel access-CP extended field contained in the second DCI format is the first fixed value, the UE is channeled from the association in which only type 2A channel access and type 2C channel access are indicated.
  • the access type may be determined. According to this, the UE can determine a channel access type suitable for low-delay communication, and can perform highly reliable communication.
  • the channel access type indicated to the UE is a specific type (for example, type 2C). It may be limited to channel access).
  • the UE when the bit length of the channel access-CP extended field contained in the second DCI format is the first fixed value, the UE is from an association in which only type 2C channel access corresponding to a different CP extended index is indicated. , The channel access type may be determined. According to this, the UE can determine a channel access type suitable for low-delay communication, and can perform highly reliable communication.
  • the UE when the bit length of the channel access-CP extension field included in the second DCI format is a second fixed value (eg, 2), the UE will access the channel from the association (table) for the first DCI format. You may decide the type.
  • a second fixed value eg, 2
  • the UE when the bit length of the channel access-CP extended field included in the second DCI format is a second fixed value, the UE includes a combination of channel access type and CP extended index not included in the first DCI format.
  • the channel access type may be determined from the association. According to this, UE communication in NR-U can be controlled more flexibly.
  • FIG. 4 is a diagram showing an example of the payload of DCI corresponding to the bit length of the channel access-CP extended field.
  • FIG. 4 shows the DCI payload when the channel access-CP extended field contained in the first DCI format (eg, DCI format 0_0 / 0_1 / 1-1) has a bit length of 4 bits.
  • the bottom of FIG. 4 shows the DCI payload when the channel access-CP extended field contained in the second DCI format (eg, DCI format 0_2 / 1-2) has a bit length of 2 bits.
  • the second DCI format As shown in the example of FIG. 4, by setting the bit length of the channel access-CP extended field included in the second DCI format (for example, DCI format 0_2 / 1-2) to a fixed value (here, 2 bits), the second DCI format is used.
  • the payload of the DCI can be made smaller compared to the 1DCI format (eg DCI format 0_0 / 0_1 / 1-1).
  • the bit length of the channel access-CP extension-CAPC field contained in the second DCI format (eg, DCI format 0_2) is set to a bit length of a specific length (eg, 0 to 6 bits) by a specific upper layer parameter. It may be possible.
  • the bit length of the particular length may be the same as the bit length configurable in the channel access-CP extended field contained in the first DCI format.
  • bit length of the channel access-CP extension-CAPC field included in the second DCI format can be set smaller than the bit length of the channel access-CP extension-CAPC field included in the first DCI format by a specific upper layer parameter. There may be.
  • the configurable bit length may be a bit length of a specific length (eg, 0 to 4 bits).
  • the payload size of the DCI format can be reduced by making the bit length of the field smaller than the bit length of the channel access-CP extension-CAPC field included in the first DCI format.
  • bit length of the channel access-CP extension-CAPC field included in the second DCI format may be a single fixed value (for example, 1 or 2). According to this, the overhead of RRC signaling to the UE can be reduced.
  • FIG. 5 is a diagram showing an example of the payload of DCI corresponding to the bit length of the channel access-CP extension-CAPC field.
  • FIG. 5 shows the DCI payload when the channel access-CP extension-CAPC field contained in the first DCI format (eg, DCI format 0_0 / 0_1 / 1-1) has a bit length of 6 bits.
  • the bottom of FIG. 5 shows the DCI payload when the channel access-CP extension field contained in the second DCI format (eg, DCI format 0_2 / 1-2) has a bit length of 2 bits.
  • the bit length of the channel access-CP extension-CAPC field included in the second DCI format for example, DCI format 0_2 / 1-2
  • a fixed value here, 2 bits.
  • the payload of DCI can be made smaller compared to the first DCI format (eg DCI format 0_0 / 0_1 / 1-1).
  • the second DCI format (for example, DCI format 0_1) includes the channel access-CP extension field or the channel access-CP extension-CAPC field included in the first DCI format (DCI format 0_1) is specified. It may be determined based on the setting of the upper layer parameter of.
  • the second DCI format may include a channel access-CP extension-CAPC field.
  • the UE may perform PDCCH reception / monitoring assuming that the second DCI format includes the channel access-CP extension-CAPC field.
  • the second DCI format may not include the channel access-CP extension field.
  • the second DCI format may include a channel access-CP extended field.
  • the second DCI format may include a channel access-CP extension field.
  • the UE may perform PDCCH reception / monitoring assuming that the second DCI format includes a channel access-CP extended field.
  • the second DCI format may not include the channel access-CP extension-CAPC field.
  • the second DCI format may include a channel access-CP extension-CAPC field.
  • the second DCI format may include a channel access-CP extension field.
  • RRC parameter when a specific upper layer parameter (RRC parameter) is set, the second DCI format may include a channel access-CP extension field.
  • the UE may receive / monitor the PDCCH assuming that the second DCI format includes a channel access-CP extended field.
  • the second DCI format may not include the channel access-CP extension-CAPC field.
  • the second DCI format may include a channel access-CP extension-CAPC field.
  • the second DCI format may include the channel access-CP extension-CAPC field.
  • RRC parameter a specific upper layer parameter
  • the UE may receive / monitor the PDCCH assuming that the second DCI format includes the channel access-CP extension-CAPC field.
  • the second DCI format may not include the channel access-CP extension field.
  • the second DCI format may include a channel access-CP extended field.
  • bit length of the channel access-CP extension field or the bit length of the channel access-CP extension-CAPC field included in the second DCI format has the number of bits described in the above-described embodiments 2-1 and 2-2. May be applied.
  • the bit length of the DFI flag field included in the second DCI format may be set to a specific length (for example, 0 or 1 bit) by a specific upper layer parameter. good.
  • the bit length of the particular length may be the same as the bit length configurable in the DFI flag field contained in the first DCI format (DCI format 0_1).
  • the bit length of the HARQ-ACK bitmap field included in the second DCI format may be set to a bit length of a specific length (for example, 0 to 16 bits) by a specific upper layer parameter.
  • the bit length of the particular length may be the same as the bit length configurable in the HARQ-ACK bitmap field contained in the first DCI format.
  • the bit length of the HARQ-ACK bitmap field included in the second DCI format may be set smaller than the bit length of the HARQ-ACK bitmap field included in the first DCI format by a specific upper layer parameter.
  • the configurable bit length may be a bit length of a specific length (eg, 0 to 4 bits).
  • the payload of the second DCI format can be made smaller than the payload of the first DCI format.
  • the payload of the second DCI format can be made smaller than the payload of the first DCI format.
  • the bit length of the HARQ-ACK bitmap field can be reduced by at least one bit or more as compared with the case where the bit length is set to a fixed value.
  • bit length of the HARQ-ACK bitmap field is 0 bits, it may mean that CG-DFI is not instructed to the UE. Specifically, when CG-DFI is not instructed, Rel. It may mean at least one of the case where the CG-PUSCH in 15 is transmitted or the case where the PUSCH is dynamically transmitted.
  • bit length of the HARQ-ACK bitmap field included in the second DCI format may be a single fixed value (for example, 1 or 2). According to this, the overhead of RRC signaling to the UE can be reduced.
  • FIG. 6 is a diagram showing an example of the payload of DCI corresponding to the bit length of the HARQ-ACK bitmap field.
  • FIG. 6 shows the DCI payload when the HARQ-ACK bitmap field contained in the first DCI format (eg, DCI format 0_0 / 0_1 / 1-1) has a bit length of 16 bits.
  • the lower part of FIG. 6 shows the payload of DCI when the HARQ-ACK bitmap field included in the second DCI format (for example, DCI format 0_2 / 1-2) has a bit length of 4 bits.
  • the bit length of the channel access-CP extension-CAPC field included in the second DCI format (for example, DCI format 0_2 / 1-2) can be set smaller than that of the first DCI format.
  • the DCI payload can be made smaller compared to the 1DCI format.
  • the number of bits of the field for the NR-U system is appropriately set to ensure reliability. Communication becomes possible.
  • ⁇ Third embodiment> the UE when the second DCI format is utilized in the NR-U system and the field for CG-DFI is not included in the second DCI format (eg DCI format 0_2). The method of instructing CG-DFI for the above will be described.
  • the UE receives CG-DFI instructions and sends CG-PUSCH / CG-UCI based on the combination of the plurality of fields contained in the first DCI. May be controlled.
  • the UE receives CG-DFI instructions using the DCI used for PDCCH validation of type 2CG-PUSCH activation / deactivation. May be good.
  • the HARQ-ACK bitmap field contained in the DCI has a bit length of 16 bits. You may. Further, the TPC command field included in the DCI may have a bit length of 2 bits. Further, the values of the HPN field and the RV field included in the DCI may be 0. The value of the field other than the field included in the DCI may be 0.
  • the HARQ-ACK bitmap field included in the DCI is a 16-bit bit. May have a length. Further, the TPC command field included in the DCI may have a bit length of 2 bits. Further, the values of the HPN field and the RV field included in the DCI may be 0.
  • the UE receives CG-DFI instructions using the DCI used for PDCCH validation of type 2 CG-PUSCH activation / deactivation, the UE receives type 2 CG-PUSCH activation / deer. Activation and CG-DFI instructions may be received using the same DCI.
  • the UE when the UE receives the CG-DFI instruction using the DCI used for the PDCCH validation of the activation / deactivation of the type 2 CG-PUSCH, the UE receives only the CG-DFI instruction. Assuming, the DCI may be received.
  • the CG-DFI can be appropriately instructed to the UE even when the field for CG-DFI is not included in the second DCI format (for example, DCI format 0_2). ..
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between a plurality of Radio Access Technologies (RATs).
  • MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) between NR and LTE.
  • E-UTRA-NR Dual Connectivity Evolved Universal Terrestrial Radio Access (E-UTRA)
  • NR-E dual connectivity
  • NE-DC -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macrocell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macrocell C1 and forms a small cell C2 that is narrower than the macrocell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of a plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macrocell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR 2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations (for example, RRH) 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • a broadcast channel Physical Broadcast Channel (PBCH)
  • a downlink control channel Physical Downlink Control
  • PDSCH Physical Downlink Control
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, or the like, and the DCI that schedules PUSCH may be called UL grant, UL DCI, or the like.
  • the PDSCH may be read as DL data, and the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request for example.
  • Uplink Control Information (UCI) including at least one of SR) may be transmitted.
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" to the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a reference signal for demodulation (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DMRS positioning reference signal
  • PRS Positioning Reference Signal
  • PTRS phase tracking reference signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 8 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional block of the characteristic portion in the present embodiment is mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, status management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. Processing (if necessary), inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-analog transformation may be performed, and the baseband signal may be output.
  • channel coding may include error correction coding
  • modulation modulation
  • mapping mapping, filtering
  • DFT discrete Fourier Transform
  • IFFT inverse Fast Fourier Transform
  • precoding coding
  • transmission processing such as digital-analog transformation
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) for the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10, etc., and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission path interface 140.
  • the transmission / reception unit 120 may transmit at least one of the first DCI and the second DCI.
  • the control unit 110 receives an uplink signal to which a channel access type determined based on at least the first DCI is applied, and an uplink based on a setting grant transmitted based on at least the first DCI.
  • the reception of the shared channel (CG-PUSCH) may be controlled.
  • At least one of the field for sensing and the downlink feedback information (DFI) flag field may be set in common or separately for the first DCI and the second DCI, or the first DCI.
  • the field for sensing and the downlink feedback information (DFI) flag field may not be set for the DCI of 2 (first embodiment).
  • FIG. 9 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • the functional block of the feature portion in the present embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on the common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitting unit and the receiving unit of the user terminal 20 in the present disclosure may be configured by at least one of the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the transmission / reception unit 220 may receive at least one of the first DCI and the second DCI.
  • the control unit 210 may control the determination of the channel access type to be applied to the sensing and the transmission of the uplink shared channel (CG-PUSCH) based on the setting grant, at least based on the first DCI.
  • At least one of the field for sensing and the downlink feedback information (DFI) flag field may be set in common or separately for the first DCI and the second DCI, or the first DCI.
  • the field for sensing and the downlink feedback information (DFI) flag field may not be set for the DCI of 2 (first embodiment).
  • the bit length of the field for sensing included in the second DCI may be set smaller than the bit length of the field for sensing included in the first DCI when a specific upper layer parameter is set. (Second embodiment).
  • the field for sensing may include a field indicating a channel access type and a cyclic prefix extension, and a field indicating a channel access type, a cyclic prefix extension, and a channel access priority class (first). , Second embodiment).
  • control unit 210 may control the transmission of the CG-PUSCH based on the combination of a plurality of fields included in the first DCI (first). 3 Embodiment).
  • each functional block is realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 10 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy disk (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, etc.). At least one of Blu-ray® discs), removable discs, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers and other suitable storage media. May be configured by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 has, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated by the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier CC may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology is, for example, subcarrier interval (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • the PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI eg, shortened TTI, etc.
  • TTI having the above TTI length may be read as TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots, and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals or combinations thereof. May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether called software, firmware, middleware, microcode, hardware description language, or other names, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • Reception point Reception Point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (eg, 3) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio). Communication services can also be provided by Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a portion or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • the words such as "up” and “down” may be read as words corresponding to the communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are a base station, one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • Ultra-WideBand (UWB), Bluetooth®, other systems utilizing appropriate wireless communication methods, next-generation systems extended based on these, and the like may be applied. Further, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “determining” such as accessing) (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “bonded” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the region, light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、第1のDCI及び第2のDCIの少なくとも一つを受信する受信部と、少なくとも前記第1のDCIに基づいて、センシングに適用するチャネルアクセスタイプの決定と、設定グラントに基づく上りリンク共有チャネル(CG-PUSCH)の送信と、を制御する制御部と、を有し、前記第1のDCIと前記第2のDCIとに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドの少なくとも1つが共通又は別々に設定される、又は、前記第2のDCIに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドが設定されないことを特徴とする。本開示の一態様によれば、NR-Uシステムにおける無線通信を適切に制御することができる。

Description

端末、無線通信方法及び基地局
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、5G、5G+、New Radio(NR)、3GPP Rel.16以降などともいう)において、既存の無線通信システム(例えば、3GPP Rel.15以前)と同じくアンライセンスバンド(NR-Unlicensed(U)システムと呼ばれてもよい)の利用が検討されている。
 また、将来の無線通信システム(例えば、5G、5G+、New Radio(NR)、3GPP Rel.16以降などともいう)において、高信頼かつ低遅延通信(例えば、Ultra-Reliable and Low-Latency Communications(URLLC))などのトラフィックタイプのための下りリンク制御情報(Downlink Control Information(DCI))フォーマット(例えば、DCIフォーマット0_2、1_2)が導入されることが検討されている。
 しかし、NR-Uシステム向けの指示を、URLLCなどのトラフィックタイプのためのDCIフォーマットによってサポートするか否かについて、検討が十分でない。
 そこで、本開示は、NR-Uシステムにおける無線通信を適切に制御することができる端末、無線通信方法及び基地局を提供することを目的の1つとする。
 本開示の一態様に係る端末は、第1のDCI及び第2のDCIの少なくとも一つを受信する受信部と、少なくとも前記第1のDCIに基づいて、センシングに適用するチャネルアクセスタイプの決定と、設定グラントに基づく上りリンク共有チャネル(CG-PUSCH)の送信と、を制御する制御部と、を有し、前記第1のDCIと前記第2のDCIとに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドの少なくとも1つが共通又は別々に設定される、又は、前記第2のDCIに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドが設定されないことを特徴とする。
 本開示の一態様によれば、NR-Uシステムにおける無線通信を適切に制御することができる。
図1は、チャネルアクセスタイプ及びCP拡張の関連付けの一例を示す図である。 図2は、チャネルアクセスタイプ、CP拡張及びCAPCの関連付けの一例を示す図である。 図3は、CG-DFIによる初送及び再送の一例を示す図である。 図4は、チャネルアクセス-CP拡張フィールドのビット長に対応する、DCIのペイロードの一例を示す図である。 図5は、チャネルアクセス-CP拡張-CAPCフィールドのビット長に対応する、DCIのペイロードの一例を示す図である。 図6は、HARQ-ACKビットマップフィールドのビット長に対応する、DCIのペイロードの一例を示す図である。 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図8は、一実施形態に係る基地局の構成の一例を示す図である。 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(サービス(トラフィックタイプ))
 将来の無線通信システム(例えば、NR)では、モバイルブロードバンドのさらなる高度化(例えば、enhanced Mobile Broadband(eMBB))、多数同時接続を実現するマシンタイプ通信(例えば、massive Machine Type Communications(mMTC)、Internet of Things(IoT))、高信頼かつ低遅延通信(例えば、Ultra-Reliable and Low-Latency Communications(URLLC))などのトラフィックタイプ(タイプ、サービス、サービスタイプ、通信タイプ、ユースケース、等ともいう)が想定される。例えば、URLLCでは、eMBBより小さい遅延及びより高い信頼性が要求される。
 トラフィックタイプは、物理レイヤにおいては、以下の少なくとも一つに基づいて識別されてもよい。
・異なる優先度(priority)を有する論理チャネル
・変調及び符号化方式(Modulation and Coding Scheme(MCS))テーブル(MCSインデックステーブル)
・チャネル品質指示(Channel Quality Indication(CQI))テーブル
・DCIフォーマット
・当該DCI(DCIフォーマット)に含まれる(付加される)巡回冗長検査(CRC:Cyclic Redundancy Check)ビットのスクランブル(マスク)に用いられる(無線ネットワーク一時識別子(RNTI:System Information-Radio Network Temporary Identifier))
・RRC(Radio Resource Control)パラメータ
・特定のRNTI(例えば、URLLC用のRNTI、MCS-C-RNTI等)
・サーチスペース
・DCI内の所定フィールド(例えば、新たに追加されるフィールド又は既存のフィールドの再利用)
 具体的には、PDSCHに対するHARQ-ACK(又は、PUCCH)のトラフィックタイプは、以下の少なくとも一つに基づいて決定されてもよい。
・当該PDSCHの変調次数(modulation order)、ターゲット符号化率(target code rate)、トランスポートブロックサイズ(TBS:Transport Block size)の少なくとも一つの決定に用いられるMCSインデックステーブル(例えば、MCSインデックステーブル3を利用するか否か)
・当該PDSCHのスケジューリングに用いられるDCIのCRCスクランブルに用いられるRNTI(例えば、C-RNTI又はMCS-C-RNTIのどちらでCRCスクランブルされるか)
・上位レイヤシグナリングで設定される優先度
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
 トラフィックタイプは、通信要件(遅延、誤り率などの要件、要求条件)、データ種別(音声、データなど)などに関連付けられてもよい。
 URLLCの要件とeMBBの要件の違いは、URLLCの遅延(latency)がeMBBの遅延よりも小さいことであってもよいし、URLLCの要件が信頼性の要件を含むことであってもよい。
 例えば、eMBBのuser(U)プレーン遅延の要件は、下りリンクのUプレーン遅延が4msであり、上りリンクのUプレーン遅延が4msであること、を含んでもよい。一方、URLLCのUプレーン遅延の要件は、下りリンクのUプレーン遅延が0.5msであり、上りリンクのUプレーン遅延が0.5msであること、を含んでもよい。また、URLLCの信頼性の要件は、1msのUプレーン遅延において、32バイトの誤り率が10-5であることを含んでもよい。
 また、enhanced Ultra Reliable and Low Latency Communications(eURLLC)として、主にユニキャストデータ用のトラフィックの信頼性(reliability)の高度化が検討されている。以下において、URLLC及びeURLLCを区別しない場合、単にURLLCと呼ぶ。
 Rel.16以降のNRでは、所定の信号又はチャネルに対して複数レベル(例えば、2レベル)の優先度を設定することが検討されている。例えば、異なるトラフィックタイプ(サービス、サービスタイプ、通信タイプ、ユースケース等ともいう)にそれぞれ対応する信号又はチャネル毎に別々の優先度を設定して通信制御(例えば、衝突時の送信制御等)を行うことが想定される。これにより、同じ信号又はチャネルに対して、サービスタイプ等に応じて異なる優先度を設定して通信を制御することが可能となる。
 優先度は、信号(例えば、HARQ-ACK等のUCI、参照信号等)、チャネル(PDSCH、PUSCH等)、又はHARQ-ACKコードブック等に対して設定されてもよい。優先度は、第1の優先度(例えば、High)と、当該第1の優先度より優先度が低い第2の優先度(例えば、Low)で定義されてもよい。あるいは、3種類以上の優先度が設定されてもよい。優先度に関する情報は、上位レイヤシグナリング及びDCIの少なくとも一つを利用して基地局からUEに通知されてもよい。
 例えば、動的にスケジュールされるPDSCH用のHARQ-ACK、セミパーシステントPDSCH(SPS PDSCH)用のHARQ-ACK、SPS PDSCHリリース用のHARQ-ACKに対して優先度が設定されてもよい。あるいは、これらのHARQ-ACKに対応するHARQ-ACKコードブックに対して優先度が設定されてもよい。なお、PDSCHに優先度を設定する場合、PDSCHの優先度を当該PDSCHに対するHARQ-ACKの優先度と読み替えてもよい。
 UEは、異なるUL信号/ULチャネルが衝突する場合、優先度に基づいてUL送信を制御してもよい。例えば、優先度が高いUL送信を行い、優先度が低いUL送信を行わない(例えば、ドロップする)ように制御してもよい。あるいは、優先度が低いUL送信の送信タイミングを変更(例えば、延期又はシフト)してもよい。
 異なるUL信号/ULチャネルが衝突するとは、異なるUL信号/ULチャネルの時間リソース(又は、時間リソースと周波数リソース)がオーバーラップする場合、又は異なるUL信号/ULチャネルの送信タイミングがオーバーラップする場合であってもよい。
 DCIを利用して優先度を通知する場合、当該DCIに優先度を通知するためのビットフィールド(例えば、Priority indicator)が設定されるか否かについて上位レイヤシグナリングを利用して基地局からUEに通知又は設定してもよい。また、UEは、DCIに優先度を通知するビットフィールドが含まれない場合、当該DCIでスケジュールされるPDSCH(又は、PDSCHに対応するHARQ-ACK)の優先度は、特定の優先度(例えば、low)と判断してもよい。
(優先度の設定)
 さらに、Rel.16以降のNRでは、所定の信号又はチャネルに対して複数レベル(例えば、2レベル)の優先度を設定することが検討されている。例えば、異なるトラフィックタイプ(サービス、サービスタイプ、通信タイプ、ユースケース等ともいう)にそれぞれ対応する信号又はチャネル毎に別々の優先度を設定して通信制御(例えば、衝突時の送信制御等)を行うことが想定される。これにより、同じ信号又はチャネルに対して、サービスタイプ等に応じて異なる優先度を設定して通信を制御することが可能となる。
 優先度は、信号(例えば、HARQ-ACK等のUCI、参照信号等)、チャネル(PDSCH、PUSCH等)、又はHARQ-ACKコードブック等に対して設定されてもよい。優先度は、第1の優先度(例えば、High)と、当該第1の優先度より優先度が低い第2の優先度(例えば、Low)で定義されてもよい。あるいは、3種類以上の優先度が設定されてもよい。優先度に関する情報は、上位レイヤシグナリング及びDCIの少なくとも一つを利用して基地局からUEに通知されてもよい。
 例えば、動的にスケジュールされるPDSCH用のHARQ-ACK、セミパーシステントPDSCH(SPS PDSCH)用のHARQ-ACK、SPS PDSCHリリース用のHARQ-ACKに対して優先度が設定されてもよい。あるいは、これらのHARQ-ACKに対応するHARQ-ACKコードブックに対して優先度が設定されてもよい。なお、PDSCHに優先度を設定する場合、PDSCHの優先度を当該PDSCHに対するHARQ-ACKの優先度と読み替えてもよい。
 また、動的グラントベースのPUSCH、設定グラントベースのPUSCH等に対して優先度が設定されてもよい。
 UEは、異なるUL信号/ULチャネルが衝突する場合、優先度に基づいてUL送信を制御してもよい。例えば、優先度が高いUL送信を行い、優先度が低いUL送信を行わない(例えば、ドロップする)ように制御してもよい。あるいは、優先度が低いUL送信の送信タイミングを変更(例えば、延期又はシフト)してもよい。
 異なるUL信号/ULチャネルが衝突するとは、異なるUL信号/ULチャネルの時間リソース(又は、時間リソースと周波数リソース)がオーバーラップする場合、又は異なるUL信号/ULチャネルの送信タイミングがオーバーラップする場合であってもよい。
 DCIを用いて優先度が異なる共有チャネルのスケジューリングを行う場合、当該共有チャネルのスケジューリングに利用される複数のDCIフォーマットと、当該DCIでスケジュールされる共有チャネルの優先度をどのように制御するかが問題となる。優先度が異なる共有チャネルは、異なるHARQ-ACK優先度を有するPDSCH、又は異なる優先度を有するPUSCHであってもよい。
 例えば、Rel.15でサポートされている既存DCIフォーマット(例えば、DCIフォーマット0_1/1_1)、又は新規DCIフォーマット(例えば、DCIフォーマット0_2/1_2)の一方を利用して、優先度が異なる共有チャネルのスケジュールを制御することが考えられる。UEが既存DCIフォーマット、又は新規DCIフォーマットの一方をモニタするように設定される場合、既存DCIフォーマット、又は新規DCIフォーマットが、第1の優先度(又は、URLLC)と第2の優先度(又は、eMBB)の両方のスケジュールをサポートしてもよい。
(HARQプロセス)
 キャリアアグリゲーション(CA)またはデュアルコネクティビティ(DC)が設定されたUEに対し、セル(CC)またはセルグループ(CG)ごとに1つの独立したHARQエンティティ(entity)が存在してもよい。HARQエンティティは、複数のHARQプロセスを並行して管理してもよい。
 無線通信システムでは、データ送信はスケジューリングに基づき、Downlink(DL)データ送信のスケジューリング情報は下り制御情報(DCI)で搬送される。HARQプロセスに対しHARQプロセス番号(HARQ Process Number(HPN))が与えられる。DCIは、現在のデータ送信に使用されるHARQプロセス番号を示す4ビットのHARQプロセス番号フィールドを含む。HARQエンティティは、複数(最大16個)のHARQプロセスを並行して管理する。すなわち、HARQプロセス番号は、HPN0からHPN15まで存在する。HARQプロセス番号は、HARQプロセスID(HARQ process identifier)とも呼ばれる。
 Uplink(UL)データをPhysical Uplink Shared Channel(PUSCH)で送信する単位、および、DLデータをPhysical Downlink Shared Channel(PDSCH)で送信する単位は、トランスポートブロック(Transport Block(TB))と呼ばれてもよい。TBは、Media Access Control(MAC)層によって扱われる単位である。HARQ(再送信)の制御は、TBごとに行われてもよいし、TB内の1つ以上のコードブロック(Code Block(CB))を含むコードブロックグループ(Code Block Group(CBG))ごとに行われてもよい。
 ユーザ端末は、PDSCHを使用して受信したDLトランスポートブロックの復号に成功したか否かを示すHARQの肯定応答(Positive Acknowledgement(ACK))/否定応答(Negative Acknowledgement(NACK))を示す情報を、PUCCH(Physical Uplink Control Channel)またはPUSCHなどを使用して基地局へ送信する。
 物理層で複数のULデータまたは複数のDLデータが空間多重(spatial multiplexing)されない場合、単一のHARQプロセスは、1つのトランスポートブロック(TB)に対応する。物理層で複数のULデータまたは複数のDLデータが空間多重される場合、単一のHARQプロセスは、1または複数のトランスポートブロック(TB)に対応してもよい。
(アンライセンスバンド)
 アンライセンスバンド(例えば、2.4GHz帯、5GHz帯、6GHz帯など)では、例えば、Wi-Fiシステム、Licensed-Assisted Access(LAA)をサポートするシステム(LAAシステム)等の複数のシステムが共存することが想定されるため、当該複数のシステム間での送信の衝突回避及び/又は干渉制御が必要となると考えられる。
 既存のLTEシステム(例えば、Rel.13)のLAAでは、データの送信装置は、アンライセンスバンドにおけるデータの送信前に、他の装置(例えば、基地局、ユーザ端末、Wi-Fi装置など)の送信の有無を確認するリスニングを行う。当該リスニングは、Listen Before Talk(LBT)、Clear Channel Assessment(CCA)、キャリアセンス、チャネルのセンシング、センシング、チャネルアクセス動作(channel access procedure)、共有スペクトルチャネルアクセス動作(shared spectrum channel access procedure)、Energy Detection(ED)などと呼ばれてもよい。
 当該送信装置は、例えば、下りリンク(DL)では基地局(例えば、gNB:gNodeB)、上りリンク(UL)ではユーザ端末(例えば、User Equipment(UE))であってもよい。また、送信装置からのデータを受信する受信装置は、例えば、DLではユーザ端末、ULでは基地局であってもよい。
 既存のLTEシステムのLAAでは、当該送信装置は、LBTにおいて他の装置の送信がないこと(アイドル状態)が検出されてから所定期間(例えば、直後又はバックオフの期間)後にデータ送信を開始する。
 将来の無線通信システム(例えば、5G、5G+、New Radio(NR)、3GPP Rel.15以降などともいう)でもアンライセンスバンドの利用が検討されている。アンライセンスバンドを用いるNRシステムは、NR-Unlicensed(U)システム、NR LAAシステムなどと呼ばれてもよい。
 ライセンスバンドとアンライセンスバンドとのデュアルコネクティビティ(Dual Connectivity(DC))、アンライセンスバンドのスタンドアローン(Stand-Alone(SA))なども、NR-Uに含まれてもよい。
 NR-Uにおけるノード(例えば、基地局、UE)は、他システム又は他オペレータとの共存のため、LBTによりチャネルが空いていること(idle)を確認してから、送信を開始する。
 NR-Uにおいて、基地局(例えば、gNB)又はUEは、LBT結果がアイドルである場合に送信機会(Transmission Opportunity(TxOP))を獲得し、送信を行う。基地局又はUEは、LBT結果がビジーである場合(LBT-busy)に、送信を行わない。送信機会の時間は、チャネル占有時間(Channel Occupancy Time(COT))と呼ばれてもよい。
 なお、LBT-idleは、LBTの成功(LBT success)で読み替えられてもよい。LBT-busyは、LBTの失敗(LBT failure)で読み替えられてもよい。
(チャネルアクセスタイプ)
 将来の無線通信システム(例えば、Rel.16以降のNR)において、UEは、複数のLBTタイプに基づいて、LBTを行うことが検討されている。当該LBTのタイプは、チャネルアクセスタイプ、チャネルアクセスモード、共有チャネルアクセスタイプなどと呼ばれてもよい。
 Rel.16以降のNRにおいて、チャネルアクセスタイプは、タイプ1、タイプ2A、タイプ2B、タイプ2C、のいずれかのタイプに区別されてもよい。UEは、特定の上位レイヤパラメータ(例えば、ChannelAccessMode-r16)が提供され、特定の上位レイヤパラメータが特定の条件(例えば、ChannelAccessMode-r16=semistatic)に設定されないとき、上記いずれかのチャネルアクセスタイプに基づいて、上りリンクチャネルアクセス動作を行ってもよい。
 チャネルアクセスタイプの名称は、これらに限られない。チャネルアクセスタイプの名称は、例えば、「チャネルアクセスタイプX」Xを、任意の数字、英字、又は数字及び英字の組み合わせで表されてもよいし、他の名称であってもよい。
 タイプ1チャネルアクセスは、ランダムバックオフ(random back-off)を伴う、可変の送信待機時間(衝突ウインドウサイズ(Contention Window Size(CWS)))をもつチャネルアクセスであってもよい。タイプ1チャネルアクセスは、他のアンライセンスバンド(例えば、Wi-Fi)との共存環境において用いられるチャネルアクセスタイプであってもよい。
 タイプ1チャネルアクセスにおいて、端末(他の無線通信規格における端末を含む)/gNBは、信号の送信前の、特定の期間においてセンシングを行ってもよい。当該特定の期間は、少なくとも延長期間(Defer durationと呼ばれてもよい、例えば、43μs)とセンシングスロット(例えば、9μs)とから構成されてもよい。
 タイプ1チャネルアクセスにおいて、端末/gNBに対し、特定のカウンタ(タイマ)が設定され、そのカウンタが満了した(カウンタの値=0になった)とき、信号の送信が許容されてもよい。
 当該カウンタは、1つのセンシングスロット(例えば、9μs)経過毎に減少していってもよい。端末/gNBに設定される当該カウンタは、当該端末/gNB以外の端末/gNBによる信号の送信が検出される(LBT busyである)場合、特定の期間(当該信号が送信される期間)において、停止してもよい。当該カウンタは、特定の期間(当該信号が送信される期間)経過後、再度開始されてもよい。
 ある瞬間において複数の端末/gNBに設定されるカウンタの値が0になり、当該複数の端末/gNBの信号の送信が重複する場合、当該端末のCWSが拡張されてもよい。
 タイプ2Aチャネルアクセスは、ランダムバックオフを伴わないチャネルアクセスであってもよい。タイプ2Aチャネルアクセスにおいて、UEは、センシングを行う期間を含む第1の期間(例えば、25μsの期間(センシング期間(interval)、ギャップなどと呼ばれてもよい))が設定され、当該期間においてセンシングを行ってもよい。UEは、当該センシングにおいてLBT idleである場合、当該期間の経過直後に信号の送信を行ってもよい。
 タイプ2Bチャネルアクセスは、ランダムバックオフを伴わないチャネルアクセスであってもよい。タイプ2Bチャネルアクセスにおいて、UEは、センシングを行う期間を含む第2の期間(例えば、16μsの期間)が設定され、当該期間においてセンシングを行ってもよい。UEは、当該センシングにおいてLBT idleである場合、当該期間の経過直後に信号の送信を行ってもよい。
 タイプ2Cチャネルアクセスは、UEに対して、第1の期間又は第2の期間(例えば、16μs)以下の期間が設定されるが、当該期間においてセンシングを行わないチャネルアクセスであってもよい。UEは、当該期間経過直後の所定期間(例えば、最大584μsの期間)において、信号の送信を行ってもよい。
 各タイプのチャネルアクセスにおけるセンシングを行う期間を制御するために、サイクリックプレフィックス(cyclic prefix(CP))拡張(extension)が設定されてもよい。CP拡張は、CP拡張インデックスに対応する、特定の時間で示されてもよい。当該特定の時間は、TTAをタイミングアドバンスとするとき、25μs、16+TTAμs、25+TTAμsの少なくとも1つであってもよい。
 UEは、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方に基づいて、上記チャネルアクセスタイプ及びCP extensionの指示に関する情報を受信してもよい。
 UEは、特定のDCIフォーマット(例えば、DCIフォーマット0_0/1_0/1_1)に含まれる、チャネルアクセスタイプ及びCP extensionの指示に関する情報を受信してもよい。当該チャネルアクセスタイプ及びCP extensionの指示に関する情報は、DCIフォーマット0_0に含まれる、チャネルアクセス-CP拡張(ChannelAccess-CPext)フィールドであってもよい。DCIフォーマット0_0/1_0に含まれる、チャネルアクセス-CP拡張フィールドは、2ビットのビット長を有してもよい。DCIフォーマット1_1に含まれる、チャネルアクセス-CP拡張フィールドは、0から4ビットのビット長が設定可能であってもよい。
 図1は、チャネルアクセスタイプ及びCP拡張の関連付けの一例を示す図である。図1に示す例において、インデックス0から3のそれぞれに、チャネルアクセスタイプ及びCP拡張が対応している。UEは、DCIフォーマット0_0/1_0に含まれるチャネルアクセス-CP拡張フィールドの値が通知される。UEは、当該フィールド値に対応するインデックス値を決定し、当該インデックス値に対応するチャネルアクセスタイプ及びCP拡張を、図1に示すような関連付けに基づいて決定する。
 なお、図1に示すCP拡張はインデックスで示され、当該インデックスに対応するCP拡張値が設定されてもよい。また、図1の関連付けはあくまで一例であり、チャネルアクセスタイプ及びCP拡張の関連付けはこれに限られない。
 また、特定の上位レイヤパラメータ(例えば、ul-dci-triggered-UL-ChannelAccess-CPext-CAPC-r16)が設定されるとき、UEは、DCIフォーマット0_1に含まれる、チャネルアクセスタイプ及びCP拡張の指示に関する情報を受信してもよい。当該チャネルアクセスタイプ及びCP拡張の指示に関する情報は、DCIフォーマット0_1に含まれる、チャネルアクセス-CP拡張-チャネルアクセス優先度クラス(Channel Access Priority Classes(CAPC))(ChannelAccess-CPext-CAPC)フィールドであってもよい。
 チャネルアクセス-CP拡張-CAPCフィールドは、UEに対し、CAPCを指示するフィールドであってもよい。CAPCは、異なる5G サービス品質(Quality of Servise(QoS))インジケータ(5QI)によって仕様化された、あるトラフィックタイプにおけるチャネルアクセス優先度を、特定の数(例えば、4)のクラスに分けるものであってもよい。当該特定の数は、4以外の任意の整数であってもよい。
 チャネルアクセス-CP拡張-CAPC(ChannelAccess-CPext-CAPC)フィールドは、0から6ビットのビット長が設定可能であってもよい。特定の上位レイヤパラメータ(例えば、ULDCI-triggered-UL-ChannelAccess-CPext-CAPC-List-r16)内のエントリ数をIとするとき、当該ビット長は、Ceil(log(I))ビットであってもよい。なお、本開示における、Ceil(X)は、Xの天井関数を意味してもよい。
 図2は、チャネルアクセスタイプ、CP拡張及びCAPCの関連付けの一例を示す図である。図2の例において、それぞれのインデックスに対し、チャネルアクセスタイプ、CP拡張及びCAPCが対応している。特定の上位レイヤパラメータ(例えば、ul-dci-triggered-UL-ChannelAccess-CPext-CAPC-r16)が設定されるとき、UEは、DCIフォーマット0_1に含まれるチャネルアクセス-CP拡張-CAPCフィールドの値が通知される。UEは、当該フィールド値に対応するインデックス値を決定し、当該インデックス値に対応するチャネルアクセスタイプ、CP拡張及びCAPCを、図2に示すような関連付けに基づいて決定する。
 なお、図2に示すCP拡張及びCAPCは、それぞれインデックスで示され、当該インデックスに対応するCP拡張値及び5QI数が設定されてもよい。また、図2の関連付けはあくまで一例であり、チャネルアクセスタイプ、CP拡張及びCAPCの関連付けはこれに限られない。
(DFIフラグフィールド)
 将来の無線通信システム(例えば、Rel.16以降のNR)において、UEは、特定のDCIフォーマット(例えば、DCIフォーマット0_1)に含まれる、信号/チャネル(例えば、物理上りリンク共有チャネル(PUSCH)、上りリンク制御情報(UCI))の再送に関する情報を受信してもよい。UEは、当該再送に関する情報に基づいて、信号/チャネルの再送を制御してもよい。
 信号/チャネルの再送に関する情報は、下りリンクフィードバック情報(Downlink Feedback Information(DFI))フラグフィールドであってもよい。
 DFIフラグフィールドは、0又は1ビットのビット長を有してもよい。UEが、セル固有の無線ネットワーク一時識別子(CS-RNTI)によってCRCスクランブルされるDCIフォーマット0_1をモニタするよう設定され、あるセルにおける共有スペクトルチャネルアクセスを行うとき、DFIフラグフィールドは1ビットのビット長を有してもよい。その他の場合、DFIフラグフィールドのビット長は0ビットであってもよい。
 DFIフラグフィールドが1ビットのビット長を有するとき、DFIフラグフィールドの値が1である場合、UEに対し、タイプ2設定グラント(Configured Grant(CG))送信のアクティベーションが指示されてもよい。また、DFIフラグフィールドが1ビットのビット長を有するとき、DFIフラグフィールドの値が0である場合、UEに対し、CG-DFIが指示されてもよい。
 UEに対し、CG-DFIが指示されるとき、DCIフォーマット0_1を構成する残りのビットが決定されてもよい。具体的には、UEに対し、CG-DFIが指示されるとき、DCIフォーマット0_1を構成する残りのビットは、HARQ-ACKビットマップ(HARQ-ACK bitmap)フィールド、スケジュールされたPUSCHのための送信電力制御(Transmission Power Control(TPC))コマンド(TPC command for scheduled PUSCH)フィールド、を含んでもよい。TPCコマンドフィールドは、2ビットのビット長を有してもよい。
 HARQ-ACKビットマップフィールドは、16ビットのビット長を有してもよい。HARQ-ACKビットマップの最上位ビット(MSB)から最下位ビット(LSB)に昇順に、HARQプロセスインデックス(HPN)と対応していてもよい。なお、本開示において、MSBとLSBは入れ替えてもよい。HARQ-ACKビットマップフィールドの値が1である場合、対応するHPNのPUSCH/UCIについて、ACKが示されてもよい。HARQ-ACKビットマップフィールドの値が0である場合、対応するHPNのPUSCH/UCIについて、NACKが示されてもよい。
 UEは、設定グラントに基づくPUSCH(CG-PUSCH)において、UCIを送信してもよい。当該UCIは、設定グラントに基づくUCI(CG-UCI)と呼ばれてもよい。当該CG-UCIは、NR-Uシステムにおいて送信されてもよい。
 CG-UCIは、特定のフィールドを含んでもよい。当該特定のフィールドは、HARQプロセス番号(HPN)フィールド、冗長バージョン(RV)フィールド、新規データインジケータ(NDI)フィールド、チャネル占有時間(COT)共有情報フィールド、の少なくとも1つであってもよい。
 当該HPNフィールドは、4ビットのビット長を有してもよい。当該RVフィールドは、2ビットのビット長を有してもよい。当該NDIフィールドは、1ビットのビット長を有してもよい。
 当該COT共有情報フィールドは、特定の上位レイヤパラメータ(例えば、ULtoDL-CO-SharingED-Threshold-r16)及び他の上位レイヤパラメータ(例えば、cg-COT-SharingList-r16)が設定され、当該他の上位レイヤパラメータ(例えば、cg-COT-SharingList-r16)内の設定組み合わせ数をCとするとき、Ceil(log(C))ビットのビット長を有してもよい。
 また、当該COT共有情報フィールドは、特定の上位レイヤパラメータ(例えば、ULtoDL-CO-SharingED-Threshold-r16)が設定されず、かつ他の上位レイヤパラメータ(例えば、cg-COT-SharingList-r16)が設定されるとき、1ビットのビット長を有してもよい。上記2つの場合以外のとき、当該COT共有情報フィールドは0ビットであってもよい。
 図3は、CG-DFIによる初送及び再送の一例を示す図である。図3の例において、UEは、gNBに対し、CG-PUSCH#0を介してCG-UCI#0を、CG-PUSCH#1を介してCG-UCI#1を、それぞれ送信する。
 次いで、gNBは、少なくともCG-UCI#0及びCG-UCI#1に対する受信処理結果を示すACK/NACKについて、CG-DFIを示すDCIに含まれるHARQ-ACKビットマップフィールドによって、UEに通知する。このとき、gNBは、CG-UCI#0に対してはACKを、CG-UCI#1に対してはNACKを、それぞれ示す情報をUEに通知する。
 次いで、UEは、gNBから受信したDCIに含まれるHARQ-ACKビットマップフィールドの値に基づいて、CG-PUSCHの再送を行う。図3の例において、UEは、gNBに対し、CG-PUSCH#3を介してCG-UCI#3を送信し、CG-PUSCH#4を介してCG-UCI#1を再送する。このとき、CG-UCI#3のNDIはトグルされ(値が1に変化し)、再送CG-UCI#1のNDIはトグルされない(値が0のままである)。なお、図3の例において、再送CG-UCIに対して設定されるRV値(2)は、初送CG-UCIの値(0)と異なっているが、初送CG-UCIと再送CG-UCIとのそれぞれに対応するRV値は、同じ値であってもよいし、異なる値であってもよい。
(URLLC向けDCIフォーマット)
 Rel.16以降では、高信頼かつ低遅延通信(例えば、Ultra-Reliable and Low-Latency Communications(URLLC))などのトラフィックタイプのためのDCIフォーマットが導入されることが検討されている。当該DCIフォーマットは、DCIフォーマット0_2、DCIフォーマット1_2と呼ばれてもよい。DCIフォーマット0_2は、PUSCHのスケジューリングのためのDCI(ULグラント)であってもよい。DCIフォーマット1_2は、PDSCHのスケジューリングのためのDCI(DLアサインメント)であってもよい。
 新たなDCIフォーマットの名称は、これに限られない。例えば、PDSCH及びPUSCHのスケジューリング用の新たなDCIフォーマットの名称は、上記DCIフォーマット1_2及びDCIフォーマット0_2の「2」を「0」、「1」以外の任意の文字列に置換したものであってもよいし、他の名称であってもよい。
 DCIフォーマット0_2及びDCIフォーマット1_2は、既存のDCIフォーマット(例えばDCIフォーマット0_1、1_1)と比較してペイロードの一部が制限されるDCIフォーマットであってもよい。
 具体的には、DCIフォーマット0_2及びDCIフォーマット1_2は、コードブロックグループベースの送受信を許容しなくてもよい。また、DCIフォーマット0_2及びDCIフォーマット1_2に含まれる冗長バージョン(RV)フィールドは、0から2ビットに設定可能であってもよい。また、DCIフォーマット0_2及びDCIフォーマット1_2に含まれるHARQプロセス番号フィールドは、0から4ビットに設定可能であってもよい。また、DCIフォーマット0_2及びDCIフォーマット1_2に含まれるサウンディング参照信号(SRS)要求フィールドは、0から3ビットに設定可能であってもよい。
 また、DCIフォーマット1_2に含まれるPUCCHリソースインジケータフィールド及び送信設定指示状態(TCI)フィールドは、0から3ビットに設定可能であってもよい。また、DCIフォーマット0_2及びDCIフォーマット1_2に含まれるキャリアインジケータフィールドは、0から3ビットに設定可能であってもよい。
 このように、DCIフォーマット0_2及びDCIフォーマット1_2に含まれる各フィールドのビット数を、既存のDCIフォーマット(例えば、DCIフォーマット0_0、0_1、1_0、1_1)と比較して小さく設定可能にすることで、DCIフォーマットのペイロード(サイズ)を小さくし、通信の信頼性の向上を図ることが可能になる。
 ところで、NR-Uシステムにおいて利用されるDCIフォーマットを、URLLC用のDCIフォーマットによってサポートするか否かについて、検討が十分でない。
 具体的には、NR-Uシステムにおいて利用されるDCIフォーマットに、URLLC用のDCIフォーマットを利用するケースにおいて、DCIに含まれるどのフィールドがサポートされるか、又は、DCIに含まれる特定のフィールドのビット数を何ビットにするか、について検討が十分でない。また、NR-Uシステムにおいて利用されるDCIフォーマットに、URLLC用のDCIフォーマットを利用するケースにおいて、URLLC用のDCIフォーマットにDFIフラグフィールドが含まれない場合、UEに対し、CG-DFI/タイプ2CG-PUSCHをどのように指示するか、についても検討が十分でない。
 このような検討が十分でない場合、NR-UシステムにおいてURLLCなどのトラフィックタイプを運用する際に、スループットの低下又は通信品質が劣化するおそれがある。
 そこで、本発明者らは、NR-UシステムにおいてURLLCなどのトラフィックタイプを運用する場合の、適切なDCIの構成方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 本開示において、「A/B」は、A及びBの少なくとも一つ、「A/B/C」は、A、B及びCの少なくとも一つ、と互いに読み替えられてもよい。
 本開示において、インデックス、ID、インジケータ、リソースIDなどは、互いに読み替えられてもよい。
 本開示において、第1DCIフォーマット、DCIフォーマット0_0、DCIフォーマット0_1、DCIフォーマット1_0、DCIフォーマット1_1、eMBB用DCIフォーマット、eMBB用のPDSCHのスケジューリング用のDCIフォーマット、優先度インジケータフィールドを含まないDCIフォーマット、PDSCHのスケジューリング用の優先度インジケータフィールドを含まないDCIフォーマット、既存DCIフォーマット、Rel.15のDCIフォーマット、は、互いに読み替えられてもよい。
 本開示において、第2DCIフォーマット、DCIフォーマット0_2、DCIフォーマット1_2、URLLC用DCIフォーマット、URLLC用のPDSCHのスケジューリング用のDCIフォーマット、優先度インジケータフィールドを含むDCIフォーマット、PDSCHのスケジューリング用の優先度インジケータフィールドを含むDCIフォーマット、新規DCIフォーマット、は、互いに読み替えられてもよい。
 本開示において、NR-U用フィールドと、特定フィールドと、チャネルアクセス-CP拡張フィールド、および、チャネルアクセス-CP拡張-CAPCフィールド、の少なくとも1つと、センシングのためのフィールドと、チャネルアクセスタイプのためのフィールドと、チャネルアクセスタイプ及びCP拡張のためのフィールドと、センシングのための上位レイヤパラメータの設定に依存するサイズを有するフィールドと、は互いに読み替えられてもよい。
 また、本開示において、NR-U用フィールドと、特定フィールドと、下りリンクフィードバック情報フラグフィールドと、設定グラントDFIのためのフィールドと、設定グラントに基づくPUSCHのためのフィールドと、設定グラント再送のためのフィールドと、設定グラントDFIのための上位レイヤパラメータの設定に依存するサイズを有するフィールドと、は互いに読み替えられてもよい。
(無線通信方法)
<第1の実施形態>
 第1の実施形態において、第2DCIフォーマット(例えば、DCIフォーマット0_2、DCIフォーマット1_2の少なくとも一方)に含まれるNR-U用フィールドについて説明する。
[チャネルアクセス-CP拡張フィールド]
 第2DCIフォーマット(例えば、DCIフォーマット0_2、DCIフォーマット1_2の少なくとも一方)にチャネルアクセス-CP拡張フィールドが含まれてもよい。言い換えれば、UEは、第2DCIフォーマットにチャネルアクセス-CP拡張フィールドが含まれると想定して、PDCCHの受信/モニタリングを行ってもよい。
 また、UEに対して、特定の上位レイヤパラメータ(RRCパラメータ)が設定されるとき、第2DCIフォーマットにチャネルアクセス-CP拡張フィールドが含まれてもよい。UEに対して、特定の上位レイヤパラメータ(RRCパラメータ)が設定されないとき、第2DCIフォーマットにチャネルアクセス-CP拡張フィールドが含まれなくてもよい。言い換えれば、UEは、特定の上位レイヤパラメータが設定されるとき、第2DCIフォーマットにチャネルアクセス-CP拡張フィールドが含まれると想定して、PDCCHの受信/モニタリングを行ってもよい。
 本開示において、特定の上位レイヤパラメータは、UL送信のスケジュール等に利用される第2DCIフォーマット(例えば、DCIフォーマット0_2)と、DL送信のスケジュール等に利用される第2DCIフォーマット(例えば、DCIフォーマット1_2)に対して共通に設定されてもよい。これにより、上位レイヤパラメータのオーバヘッドの増加を抑制できる。あるいは、特定の上位レイヤパラメータは、DCIフォーマット0_2と、DCIフォーマット1_2に対して別々に設定されてもよい。これにより、UL送信の制御に利用するDCIとDL送信の制御に利用するDCIに含まれるフィールド/ビット数を柔軟に制御することができる。
 また、第2DCIフォーマットにチャネルアクセス-CP拡張フィールドが含まれなくてもよい。言い換えれば、UEは、第2DCIフォーマットにチャネルアクセス-CP拡張フィールドが含まれないと想定して、PDCCHの受信/モニタリングを行ってもよい。
[チャネルアクセス-CP拡張-CAPCフィールド]
 第2DCIフォーマット(例えば、DCIフォーマット0_2)にチャネルアクセス-CP拡張-CAPCフィールドが含まれてもよい。言い換えれば、UEは、第2DCIフォーマットにチャネルアクセス-CP拡張-CAPCフィールドが含まれると想定して、PDCCHの受信/モニタリングを行ってもよい。
 また、UEに対して、特定の上位レイヤパラメータ(RRCパラメータ)が設定されるとき、第2DCIフォーマットにチャネルアクセス-CP拡張-CAPCフィールドが含まれてもよい。UEに対して、特定の上位レイヤパラメータ(RRCパラメータ)が設定されないとき、第2DCIフォーマットにチャネルアクセス-CP拡張-CAPCフィールドが含まれなくてもよい。言い換えれば、UEは、特定の上位レイヤパラメータが設定されるとき、第2DCIフォーマットにチャネルアクセス-CP拡張-CAPCフィールドが含まれると想定して、PDCCHの受信/モニタリングを行ってもよい。
 また、第2DCIフォーマットにチャネルアクセス-CP拡張-CAPCフィールドが含まれなくてもよい。言い換えれば、UEは、第2DCIフォーマットにチャネルアクセス-CP拡張-CAPCフィールドが含まれないと想定して、PDCCHの受信/モニタリングを行ってもよい。
[DFIフラグフィールド]
 第2DCIフォーマット(例えば、DCIフォーマット0_2)にDFIフラグフィールドが含まれてもよい。言い換えれば、UEは、第2DCIフォーマットにDFIフラグフィールドが含まれると想定して、PDCCHの受信/モニタリングを行ってもよい。
 また、UEに対して、特定の上位レイヤパラメータ(RRCパラメータ)が設定されるとき、第2DCIフォーマットにDFIフラグフィールドが含まれてもよい。また、UEに対して、特定の上位レイヤパラメータが設定されないとき、第2DCIフォーマットにDFIフラグフィールドが含まれなくてもよい。言い換えれば、UEは、特定の上位レイヤパラメータが設定される場合、第2DCIフォーマットにDFIフラグが含まれると想定して、PDCCHの受信/モニタリングを行ってもよい。
 また、第2DCIフォーマットにDFIフラグが含まれなくてもよい。言い換えれば、UEは、第2DCIフォーマットにDFIフラグフィールドが含まれないと想定して、PDCCHの受信/モニタリングを行ってもよい。
 上記第1の実施形態によれば、DCIフォーマット0_2、DCIフォーマット1_2の少なくとも一方に含まれるフィールドを適切に構成でき、より信頼性の高い通信が可能になる。
<第2の実施形態>
 第2の実施形態において、NR-Uシステムにおいて第2DCIフォーマットが利用される場合、NR-U用フィールドが、当該第2DCIフォーマットに含まれるとき、当該フィールドのビット数について説明する。当該第2DCIフォーマットに含まれるNR-U用フィールドのビット数は、以下の実施形態2-1から2-4の少なくとも1つに従ってもよい。
[実施形態2-1]
 第2DCIフォーマット(例えば、DCIフォーマット0_2、DCIフォーマット1_2の少なくとも一方)に含まれるチャネルアクセス-CP拡張フィールドのビット長は、特定の上位レイヤパラメータによって、特定の長さ(例えば、0から4ビット)のビット長が設定可能であってもよい。当該特定の長さのビット長は、第1DCIフォーマット(DCIフォーマット0_0/0_1/1_1)に含まれるチャネルアクセス-CP拡張フィールドに設定可能であるビット長と同じビット長がサポートされてもよい。
 また、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長は、単一の固定値(例えば、1又は2)であってもよい。これによれば、UEに対するRRCシグナリングのオーバヘッドを削減することができる。
 第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長が、第1の固定値(例えば、1)であるとき、UEに対して指示されるチャネルアクセスタイプが限定されてもよい。言い換えれば、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長が、第1の固定値であるとき、UEは、1又は複数の特定のチャネルアクセスタイプのみが指示される関連付け(テーブル)から、チャネルアクセスタイプを決定してもよい。
 例えば、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長が、第1の固定値であるとき、UEに対して指示されるチャネルアクセスタイプが、特定のタイプの組み合わせ(例えば、タイプ1チャネルアクセスと、タイプ2Cチャネルアクセス)と、に限定されてもよい。言い換えれば、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長が、第1の固定値であるとき、UEは、タイプ1チャネルアクセス及びタイプ2Cチャネルアクセスのみが指示される関連付けから、チャネルアクセスタイプを決定してもよい。これによれば、UEは、他の無線通信規格(例えば、Wi-Fi)との共存環境下においても、適切に通信を行うことができる。
 また、例えば、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長が、第1の固定値であるとき、UEに対して指示されるチャネルアクセスタイプが、他の特定のタイプの組み合わせ(例えば、タイプ2Aチャネルアクセスと、タイプ2Cチャネルアクセス)と、に限定されてもよい。言い換えれば、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長が、第1の固定値であるとき、UEは、タイプ2Aチャネルアクセス及びタイプ2Cチャネルアクセスのみが指示される関連付けから、チャネルアクセスタイプを決定してもよい。これによれば、UEは、低遅延通信に適したチャネルアクセスタイプを決定可能になり、信頼性の高い通信を行うことができる。
 また、例えば、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長が、第1の固定値であるとき、UEに対して指示されるチャネルアクセスタイプが、特定のタイプ(例えば、タイプ2Cチャネルアクセス)に限定されてもよい。言い換えれば、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長が、第1の固定値であるとき、UEは、異なるCP拡張インデックスに対応するタイプ2Cチャネルアクセスのみが指示される関連付けから、チャネルアクセスタイプを決定してもよい。これによれば、UEは、低遅延通信に適したチャネルアクセスタイプを決定可能になり、信頼性の高い通信を行うことができる。
 また、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長が、第2の固定値(例えば、2)であるとき、UEは、第1DCIフォーマットのための関連付け(テーブル)から、チャネルアクセスタイプを決定してもよい。
 また、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドのビット長が、第2の固定値であるとき、UEは、第1DCIフォーマットに含まれない、チャネルアクセスタイプとCP拡張インデックスの組み合わせを含む関連付けから、チャネルアクセスタイプを決定してもよい。これによれば、NR-UにおけるUE通信を、より柔軟に制御することができる。
 図4は、チャネルアクセス-CP拡張フィールドのビット長に対応する、DCIのペイロードの一例を示す図である。図4上は、第1DCIフォーマット(例えば、DCIフォーマット0_0/0_1/1_1)に含まれるチャネルアクセス-CP拡張フィールドが、4ビットのビット長を有する場合のDCIのペイロードを示している。図4下は、第2DCIフォーマット(例えば、DCIフォーマット0_2/1_2)に含まれるチャネルアクセス-CP拡張フィールドが、2ビットのビット長を有する場合のDCIのペイロードを示している。
 図4の例に示すように、第2DCIフォーマット(例えば、DCIフォーマット0_2/1_2)に含まれる、チャネルアクセス-CP拡張フィールドのビット長を固定値(ここでは、2ビット)にすることで、第1DCIフォーマット(例えば、DCIフォーマット0_0/0_1/1_1)と比較してDCIのペイロードを小さくすることができる。
[実施形態2-2]
 第2DCIフォーマット(例えば、DCIフォーマット0_2)に含まれるチャネルアクセス-CP拡張-CAPCフィールドのビット長は、特定の上位レイヤパラメータによって、特定の長さ(例えば、0から6ビット)のビット長が設定可能であってもよい。当該特定の長さのビット長は、第1DCIフォーマットに含まれるチャネルアクセス-CP拡張フィールドに設定可能であるビット長と同じビット長がサポートされてもよい。
 また、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張-CAPCフィールドのビット長は、特定の上位レイヤパラメータによって、第1DCIフォーマットに含まれるチャネルアクセス-CP拡張-CAPCフィールドのビット長より小さく設定可能であってもよい。当該設定可能なビット長は、特定の長さ(例えば、0から4ビット)のビット長であってもよい。
 このように、当該フィールドのビット長を、第1DCIフォーマットに含まれるチャネルアクセス-CP拡張-CAPCフィールドのビット長より小さく設定可能とすることで、DCIフォーマットのペイロードサイズを小さくすることができる。
 また、第2DCIフォーマットに含まれるチャネルアクセス-CP拡張-CAPCフィールドのビット長は、単一の固定値(例えば、1又は2)であってもよい。これによれば、UEに対するRRCシグナリングのオーバヘッドを削減することができる。
 図5は、チャネルアクセス-CP拡張-CAPCフィールドのビット長に対応する、DCIのペイロードの一例を示す図である。図5上は、第1DCIフォーマット(例えば、DCIフォーマット0_0/0_1/1_1)に含まれるチャネルアクセス-CP拡張-CAPCフィールドが、6ビットのビット長を有する場合のDCIのペイロードを示している。図5下は、第2DCIフォーマット(例えば、DCIフォーマット0_2/1_2)に含まれるチャネルアクセス-CP拡張フィールドが、2ビットのビット長を有する場合のDCIのペイロードを示している。
 図5の例に示すように、第2DCIフォーマット(例えば、DCIフォーマット0_2/1_2)に含まれる、チャネルアクセス-CP拡張-CAPCフィールドのビット長を固定値(ここでは、2ビット)にすることで、第1DCIフォーマット(例えば、DCIフォーマット0_0/0_1/1_1)と比較してDCIのペイロードを小さくすることができる。
[実施形態2-3]
 第2DCIフォーマット(例えば、DCIフォーマット0_2)について、第1DCIフォーマット(DCIフォーマット0_1)に含まれるチャネルアクセス-CP拡張フィールド、または、チャネルアクセス-CP拡張-CAPCフィールド、が含まれるか否かが、特定の上位レイヤパラメータの設定に基づいて決定されてもよい。
 例えば、特定の上位レイヤパラメータ(RRCパラメータ)が設定されるとき、第2DCIフォーマットに、チャネルアクセス-CP拡張-CAPCフィールドが含まれてもよい。言い換えれば、特定の上位レイヤパラメータが設定されるとき、UEは、第2DCIフォーマットに、チャネルアクセス-CP拡張-CAPCフィールドが含まれると想定して、PDCCHの受信/モニタリングを行ってもよい。この場合、第2DCIフォーマットに、チャネルアクセス-CP拡張フィールドが含まれなくてもよい。あるいは、この場合、第2DCIフォーマットに、チャネルアクセス-CP拡張フィールドが含まれてもよい。
 一方、特定の上位レイヤパラメータが設定されないとき、第2DCIフォーマットに、チャネルアクセス-CP拡張フィールドが含まれてもよい。言い換えれば、特定の上位レイヤパラメータが設定されないとき、UEは、第2DCIフォーマットに、チャネルアクセス-CP拡張フィールドが含まれると想定して、PDCCHの受信/モニタリングを行ってもよい。この場合、第2DCIフォーマットに、チャネルアクセス-CP拡張-CAPCフィールドが含まれなくてもよい。あるいは、この場合、第2DCIフォーマットに、チャネルアクセス-CP拡張-CAPCフィールドが含まれてもよい。
 また、例えば、特定の上位レイヤパラメータ(RRCパラメータ)が設定されるとき、第2DCIフォーマットに、チャネルアクセス-CP拡張フィールドが含まれてもよい。言い換えれば、特定の上位レイヤパラメータが設定されるとき、UEは、第2DCIフォーマットに、チャネルアクセス-CP拡張フィールドが含まれると想定して、PDCCHの受信/モニタリングを行ってもよい。この場合、第2DCIフォーマットに、チャネルアクセス-CP拡張-CAPCフィールドが含まれなくてもよい。あるいは、この場合、第2DCIフォーマットに、チャネルアクセス-CP拡張-CAPCフィールドが含まれてもよい。
 一方、特定の上位レイヤパラメータ(RRCパラメータ)が設定されないとき、第2DCIフォーマットに、チャネルアクセス-CP拡張-CAPCフィールドが含まれてもよい。言い換えれば、特定の上位レイヤパラメータが設定されないとき、UEは、第2DCIフォーマットに、チャネルアクセス-CP拡張-CAPCフィールドが含まれると想定して、PDCCHの受信/モニタリングを行ってもよい。この場合、第2DCIフォーマットに、チャネルアクセス-CP拡張フィールドが含まれなくてもよい。あるいは、この場合、第2DCIフォーマットに、チャネルアクセス-CP拡張フィールドが含まれてもよい。
 また、第2DCIフォーマットに含まれる、チャネルアクセス-CP拡張フィールドのビット長、または、チャネルアクセス-CP拡張-CAPCフィールドのビット長は、上記実施形態2-1及び2-2で記載したビット数が適用されてもよい。
[実施形態2-4]
 第2DCIフォーマット(例えば、DCIフォーマット0_2)に含まれるDFIフラグフィールドのビット長は、特定の上位レイヤパラメータによって、特定の長さ(例えば、0又は1ビット)のビット長が設定可能であってもよい。当該特定の長さのビット長は、第1DCIフォーマット(DCIフォーマット0_1)に含まれるDFIフラグフィールドに設定可能であるビット長と同じビット長がサポートされてもよい。
 第2DCIフォーマットに含まれるHARQ-ACKビットマップフィールドのビット長は、特定の上位レイヤパラメータによって、特定の長さ(例えば、0から16ビット)のビット長が設定可能であってもよい。当該特定の長さのビット長は、第1DCIフォーマットに含まれるHARQ-ACKビットマップフィールドに設定可能であるビット長と同じビット長がサポートされてもよい。
 第2DCIフォーマットに含まれるHARQ-ACKビットマップフィールドのビット長は、特定の上位レイヤパラメータによって、第1DCIフォーマットに含まれるHARQ-ACKビットマップフィールドのビット長より小さく設定可能であってもよい。当該設定可能なビット長は、特定の長さ(例えば、0から4ビット)のビット長であってもよい。
 この場合、第2DCIフォーマットのペイロードを第1DCIフォーマットのペイロードより小さくすることができる。具体的には、UEに対して第2DCIフォーマットによってCG-DFIが指示されるとき、当該第2DCIフォーマットのペイロードを第1DCIフォーマットのペイロードより小さくすることができる。また、UEに対して第2DCIフォーマットによってCG-DFIが指示されないとき、HARQ-ACKビットマップフィールドのビット長を固定値にするときと比べ、少なくとも1ビット以上小さくすることができる。
 なお、HARQ-ACKビットマップフィールドのビット長が0ビットである場合は、UEに対して、CG-DFIが指示されない場合を意味してもよい。具体的には、CG-DFIが指示されない場合は、Rel.15におけるCG-PUSCHが送信される場合、または、動的にPUSCHが送信される場合の少なくとも一方を意味してもよい。
 また、第2DCIフォーマットに含まれるHARQ-ACKビットマップフィールドのビット長は、単一の固定値(例えば、1又は2)であってもよい。これによれば、UEに対するRRCシグナリングのオーバヘッドを削減することができる。
 図6は、HARQ-ACKビットマップフィールドのビット長に対応する、DCIのペイロードの一例を示す図である。図6上は、第1DCIフォーマット(例えば、DCIフォーマット0_0/0_1/1_1)に含まれるHARQ-ACKビットマップフィールドが、16ビットのビット長を有する場合のDCIのペイロードを示している。図6下は、第2DCIフォーマット(例えば、DCIフォーマット0_2/1_2)に含まれるHARQ-ACKビットマップフィールドが、4ビットのビット長を有する場合のDCIのペイロードを示している。
 図6の例に示すように、第2DCIフォーマット(例えば、DCIフォーマット0_2/1_2)に含まれるチャネルアクセス-CP拡張-CAPCフィールドのビット長を、第1DCIフォーマットより小さく設定可能とすることで、第1DCIフォーマットと比較してDCIのペイロードを小さくすることができる。
 以上第2の実施形態によれば、NR-UシステムにおいてURLLC用のDCIフォーマットが利用される場合、NR-Uシステムのためのフィールドのビット数を適切に設定し、信頼性を確保した好適な通信が可能になる。
<第3の実施形態>
 第3の実施形態において、NR-Uシステムにおいて第2DCIフォーマットが利用されるときであって、CG-DFIのためのフィールドが当該第2DCIフォーマット(例えばDCIフォーマット0_2)に含まれない場合の、UEに対するCG-DFIの指示方法について説明する。
 DFIフラグフィールドが第2DCIフォーマットに含まれない場合、UEは、第1のDCIに含まれる複数のフィールドの組み合わせに基づいて、CG-DFIの指示を受信し、CG-PUSCH/CG-UCIの送信を制御してもよい。
 DFIフラグフィールドが第2DCIフォーマットに含まれない場合、UEは、タイプ2CG-PUSCHのアクティベーション/ディアクティベーションのPDCCH検証(validation)に用いられるDCIを用いて、CG-DFIの指示を受信してもよい。
 タイプ2CG-PUSCHのアクティベーションのPDCCH検証に用いられるDCIを用いて、CG-DFIの指示をUEが受信する場合、当該DCIに含まれるHARQ-ACKビットマップフィールドは、16ビットのビット長を有してもよい。また、当該DCIに含まれるTPCコマンドフィールドは、2ビットのビット長を有してもよい。また、当該DCIに含まれるHPNフィールド及びRVフィールドの値は、0であってもよい。上記DCIに含まれるフィールド以外のフィールドの値は、0であってもよい。
 また、タイプ2CG-PUSCHのディアクティベーションのPDCCH検証に用いられるDCIを用いて、CG-DFIの指示をUEが受信する場合、当該DCIに含まれるHARQ-ACKビットマップフィールドは、16ビットのビット長を有してもよい。また、当該DCIに含まれるTPCコマンドフィールドは、2ビットのビット長を有してもよい。また、当該DCIに含まれるHPNフィールド及びRVフィールドの値は、0であってもよい。
 UEは、タイプ2CG-PUSCHのアクティベーション/ディアクティベーションのPDCCH検証(validation)に用いられるDCIを用いて、CG-DFIの指示を受信する場合、UEは、タイプ2CG-PUSCHのアクティベーション/ディアクティベーション及びCG-DFIの指示を、同一の当該DCIを用いて受信してもよい。
 また、UEは、タイプ2CG-PUSCHのアクティベーション/ディアクティベーションのPDCCH検証(validation)に用いられるDCIを用いて、CG-DFIの指示を受信する場合、UEは、CG-DFIの指示のみと想定して、当該DCIを受信してもよい。
 以上第3の実施形態によれば、CG-DFIのためのフィールドが当該第2DCIフォーマット(例えば、DCIフォーマット0_2)に含まれない場合であっても、UEに対しCG-DFIを適切に指示できる。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局(例えば、RRH)10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図8は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 送受信部120は、第1のDCI及び第2のDCIの少なくとも1つを送信してもよい。制御部110は、少なくとも前記第1のDCIに基づいて決定されるチャネルアクセスタイプが適用される上りリンク信号の受信と、少なくとも前記第1のDCIに基づいて送信される、設定グラントに基づく上りリンク共有チャネル(CG-PUSCH)の受信と、を制御してもよい。前記第1のDCIと前記第2のDCIとに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドの少なくとも1つが共通又は別々に設定されてもよいし、又は、前記第2のDCIに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドが設定されなくてもよい(第1の実施形態)。
(ユーザ端末)
 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、第1のDCI及び第2のDCIの少なくとも一つを受信してもよい。制御部210は、少なくとも前記第1のDCIに基づいて、センシングに適用するチャネルアクセスタイプの決定と、設定グラントに基づく上りリンク共有チャネル(CG-PUSCH)の送信と、を制御してもよい。前記第1のDCIと前記第2のDCIとに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドの少なくとも1つが共通又は別々に設定されてもよいし、又は、前記第2のDCIに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドが設定されなくてもよい(第1の実施形態)。
 前記第2のDCIに含まれるセンシングのためフィールドのビット長は、特定の上位レイヤパラメータが設定される場合、前記第1のDCIに含まれるセンシングのためフィールドのビット長より小さく設定されてもよい(第2の実施形態)。
 前記センシングのためのフィールドは、チャネルアクセスタイプとサイクリックプレフィックス拡張とを指示するフィールド、および、チャネルアクセスタイプとサイクリックプレフィックス拡張とチャネルアクセス優先度クラスとを指示するフィールドを含んでもよい(第1、第2の実施形態)。
 前記第2のDCIに前記DFIフラグフィールドが設定されない場合、制御部210は、前記第1のDCIに含まれる複数のフィールドの組み合わせに基づいて、CG-PUSCHの送信を制御してもよい(第3の実施形態)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  第1のDCI及び第2のDCIの少なくとも一つを受信する受信部と、
     少なくとも前記第1のDCIに基づいて、センシングに適用するチャネルアクセスタイプの決定と、設定グラントに基づく上りリンク共有チャネル(CG-PUSCH)の送信と、を制御する制御部と、を有し、
     前記第1のDCIと前記第2のDCIとに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドの少なくとも1つが共通又は別々に設定される、又は、前記第2のDCIに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドが設定されない、端末。
  2.  前記第2のDCIに含まれるセンシングのためフィールドのビット長は、特定の上位レイヤパラメータが設定される場合、前記第1のDCIに含まれるセンシングのためフィールドのビット長より小さく設定される、請求項1に記載の端末。
  3.  前記センシングのためのフィールドは、チャネルアクセスタイプとサイクリックプレフィックス拡張とを指示するフィールド、および、チャネルアクセスタイプとサイクリックプレフィックス拡張とチャネルアクセス優先度クラスとを指示するフィールドを含む、請求項1に記載の端末。
  4.  前記第2のDCIに前記DFIフラグフィールドが設定されない場合、前記制御部は、前記第1のDCIに含まれる複数のフィールドの組み合わせに基づいて、CG-PUSCHの送信を制御する、請求項1に記載の端末。
  5.  第1のDCI及び第2のDCIの少なくとも一つを受信するステップと、
     少なくとも前記第1のDCIに基づいて、センシングに適用するチャネルアクセスタイプの決定と、設定グラントに基づく上りリンク共有チャネル(CG-PUSCH)の送信と、を制御するステップと、を有し、
     前記第1のDCIと前記第2のDCIとに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドの少なくとも1つが共通又は別々に設定される、又は、前記第2のDCIに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドが設定されない、端末の無線通信方法。
  6.  第1のDCI及び第2のDCIの少なくとも1つを送信する送信部と、
     少なくとも前記第1のDCIに基づいて決定されるチャネルアクセスタイプが適用される上りリンク信号の受信と、少なくとも前記第1のDCIに基づいて送信される、設定グラントに基づく上りリンク共有チャネル(CG-PUSCH)の受信と、を制御する制御部と、を有し、
     前記第1のDCIと前記第2のDCIとに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドの少なくとも1つが共通又は別々に設定される、又は、前記第2のDCIに対して、センシングのためのフィールド及び下りリンクフィードバック情報(DFI)フラグフィールドが設定されない、基地局。
     
PCT/JP2020/026587 2020-07-07 2020-07-07 端末、無線通信方法及び基地局 WO2022009315A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/026587 WO2022009315A1 (ja) 2020-07-07 2020-07-07 端末、無線通信方法及び基地局
JP2022534540A JP7508557B2 (ja) 2020-07-07 端末、無線通信方法及び基地局
CN202080103691.1A CN115997441A (zh) 2020-07-07 2020-07-07 终端、无线通信方法以及基站
EP20944659.0A EP4181593A4 (en) 2020-07-07 2020-07-07 TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026587 WO2022009315A1 (ja) 2020-07-07 2020-07-07 端末、無線通信方法及び基地局

Publications (1)

Publication Number Publication Date
WO2022009315A1 true WO2022009315A1 (ja) 2022-01-13

Family

ID=79552407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026587 WO2022009315A1 (ja) 2020-07-07 2020-07-07 端末、無線通信方法及び基地局

Country Status (3)

Country Link
EP (1) EP4181593A4 (ja)
CN (1) CN115997441A (ja)
WO (1) WO2022009315A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203655A1 (ja) * 2022-04-19 2023-10-26 株式会社Nttドコモ 端末及び通信方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955465B2 (en) * 2014-10-03 2018-04-24 Intel IP Corporation Downlink control information (DCI) design for LTE devices
SG11201810954XA (en) * 2016-07-15 2019-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Wireless-network-based communication method, terminal device, and network device
KR20190029536A (ko) * 2016-08-08 2019-03-20 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 상향링크 채널 송수신 방법 및 이를 지원하는 장치

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
HUAWEI, HISILICON: "Other Maintenance for NR-U", 3GPP DRAFT; R1-2003517, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200525 - 20200605, 16 May 2020 (2020-05-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051885301 *
LG ELECTRONICS: "Remaining issues of configured grant for NR-U", 3GPP DRAFT; R1-2000666, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200224 - 20200306, 14 February 2020 (2020-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 6, XP051852997 *
QUALCOMM INCORPORATED: "Qualcomm Incorporated", 3GPP DRAFT; R1-1912938, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823701 *
See also references of EP4181593A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023203655A1 (ja) * 2022-04-19 2023-10-26 株式会社Nttドコモ 端末及び通信方法

Also Published As

Publication number Publication date
CN115997441A (zh) 2023-04-21
EP4181593A1 (en) 2023-05-17
EP4181593A4 (en) 2024-03-27
JPWO2022009315A1 (ja) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2021152805A1 (ja) 端末、無線通信方法及び基地局
WO2020217408A1 (ja) ユーザ端末及び無線通信方法
JPWO2020065870A1 (ja) 端末、無線通信方法、基地局及びシステム
WO2020255263A1 (ja) 端末及び無線通信方法
WO2020110244A1 (ja) ユーザ端末及び無線通信方法
WO2022130629A1 (ja) 端末、無線通信方法及び基地局
WO2022039164A1 (ja) 端末、無線通信方法及び基地局
WO2020222273A1 (ja) ユーザ端末及び無線通信方法
WO2020188666A1 (ja) ユーザ端末及び無線通信方法
WO2020188644A1 (ja) ユーザ端末及び無線通信方法
JP7351921B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7335349B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2021166036A1 (ja) 端末、無線通信方法及び基地局
WO2020255270A1 (ja) 端末及び無線通信方法
WO2020202448A1 (ja) ユーザ端末及び無線通信方法
WO2022009315A1 (ja) 端末、無線通信方法及び基地局
WO2022024224A1 (ja) 端末、無線通信方法及び基地局
WO2021255936A1 (ja) 端末、無線通信方法及び基地局
WO2021152804A1 (ja) 端末、無線通信方法及び基地局
WO2020202477A1 (ja) ユーザ端末及び無線通信方法
WO2020202429A1 (ja) ユーザ端末及び無線通信方法
JP7508557B2 (ja) 端末、無線通信方法及び基地局
WO2022039155A1 (ja) 端末、無線通信方法及び基地局
WO2022024225A1 (ja) 端末、無線通信方法及び基地局
WO2022024380A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020944659

Country of ref document: EP

Effective date: 20230207