WO2020110244A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2020110244A1
WO2020110244A1 PCT/JP2018/043856 JP2018043856W WO2020110244A1 WO 2020110244 A1 WO2020110244 A1 WO 2020110244A1 JP 2018043856 W JP2018043856 W JP 2018043856W WO 2020110244 A1 WO2020110244 A1 WO 2020110244A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
ack
pusch
uplink shared
transmission
Prior art date
Application number
PCT/JP2018/043856
Other languages
English (en)
French (fr)
Inventor
翔平 吉岡
浩樹 原田
大輔 村山
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201880100644.4A priority Critical patent/CN113330774A/zh
Priority to EP18941593.8A priority patent/EP3890393A1/en
Priority to PCT/JP2018/043856 priority patent/WO2020110244A1/ja
Priority to CN202310963214.8A priority patent/CN117040709A/zh
Publication of WO2020110244A1 publication Critical patent/WO2020110244A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G+(plus), New Radio (NR), 3GPP Rel.15 or later) is also under consideration.
  • 5G 5th generation mobile communication system
  • 5G+(plus) 5th generation mobile communication system
  • NR New Radio
  • 3GPP Rel.15 or later 3th generation mobile communication system
  • the user terminal In the existing LTE system (for example, 3GPP Rel. 8-14), the user terminal (User Equipment (UE)) has a UL data channel (for example, Physical Uplink Shared Channel (PUSCH)) and a UL control channel (for example, Physical Uplink).
  • PUSCH Physical Uplink Shared Channel
  • UL control channel for example, Physical Uplink
  • Control channel PUCCH
  • UCI Uplink Control Information
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a delivery confirmation signal also referred to as HARQ-ACK, ACK/NACK, or A/N
  • a DL signal eg, PDSCH
  • the transmission of the uplink shared channel is designated to the UE by using DCI and the UE transmits the HARQ-ACK on the uplink shared channel.
  • an object of the present disclosure is to provide a user terminal and a wireless communication method that appropriately transmit HARQ-ACK when an uplink shared channel is scheduled.
  • a user terminal in a transmission opportunity based on listening, indicates a resource of a downlink shared channel and a resource of an uplink control channel for Hybrid Automatic Repeat reQuest-ACKnowledgement (HARQ-ACK) for the downlink shared channel.
  • a receiving unit for receiving 1 downlink control information and second downlink control information indicating resources and specific fields of a plurality of uplink shared channels, and at least one specific uplink shared channel among the plurality of uplink shared channels, And a control unit that determines whether or not the HARQ-ACK is multiplexed in the specific uplink shared channel based on the specific field, when overlapping with the uplink control channel.
  • HARQ-ACK is appropriately transmitted when an uplink shared channel is scheduled.
  • FIG. 1 is a diagram illustrating an example of an operation of piggybacking a quasi-static HARQ-ACK codebook to PUSCH.
  • FIG. 2 is a diagram showing an example of multi-TTI scheduling in NR-U.
  • FIG. 3 is a diagram illustrating an example of the operation of aspect 1.
  • FIG. 4 is a diagram showing an example of the operation of aspect 2-1.
  • FIG. 5 is a diagram illustrating an example of the operation according to aspect 3.
  • FIG. 6 is a diagram illustrating an example of the operation according to aspect 4.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 8 is a diagram illustrating an example of the configuration of the base station according to the embodiment.
  • FIG. 9 is a diagram illustrating an example of the configuration of the user terminal according to the embodiment.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • a user terminal (UE: User Equipment) sends delivery confirmation information (Hybrid Automatic Repeat reQuest-ACKnowledge (HARQ-ACK), ACKnowledge/Non-ACK) to a downlink shared channel (also referred to as Physical Downlink Shared Channel (PDSCH)).
  • delivery confirmation information Hybrid Automatic Repeat reQuest-ACKnowledge (HARQ-ACK), ACKnowledge/Non-ACK
  • PDSCH Physical Downlink Shared Channel
  • the value of the predetermined field in the DCI (for example, DCI format 1_0 or 1_1) used for PDSCH scheduling indicates the feedback timing of HARQ-ACK for the PDSCH.
  • the value of the predetermined field may be mapped to the value of k.
  • the predetermined field is called, for example, a PDSCH-HARQ feedback timing indication (PDSCH-to-HARQ_feedback timing indicator) field.
  • the PUCCH resource used for HARQ-ACK feedback for the PDSCH is determined.
  • the predetermined field may be called, for example, a PUCCH resource indication (PUCCH resource indicator (PRI)) field, an ACK/NACK resource indication (ACK/NACK resource indicator (ARI)) field, or the like.
  • the value of the predetermined field may be called PRI, ARI, or the like.
  • the PUCCH resource mapped to each value of the predetermined field may be configured in the UE in advance by an upper layer parameter (for example, ResourceList in PUCCH-ResourceSet). Further, the PUCCH resource may be set in the UE for each set (PUCCH resource set) including one or more PUCCH resources.
  • an upper layer parameter for example, ResourceList in PUCCH-ResourceSet.
  • NR Rel. In 15 it is considered that the UE does not expect to transmit more than one Uplink Control Channel (PUCCH) with HARQ-ACK in a single slot. ..
  • PUCCH Uplink Control Channel
  • the HARQ-ACK codebook includes a time domain (for example, a slot), a frequency domain (for example, a component carrier (Component Carrier (CC))), a spatial domain (for example, a layer), and a transport block (Transport Block (TB). )), and at least one unit of a group of code blocks (code block group (Code Block Group (CBG))) forming the TB may be configured to include bits for HARQ-ACK.
  • the CC is also called a cell, a serving cell, a carrier, or the like.
  • the bit is also called a HARQ-ACK bit, HARQ-ACK information, HARQ-ACK information bit, or the like.
  • HARQ-ACK codebook is also called PDSCH-HARQ-ACK codebook (pdsch-HARQ-ACK-Codebook), codebook, HARQ codebook, HARQ-ACK size, and so on.
  • the number of bits (size) included in the HARQ-ACK codebook may be determined semi-statically or dynamically.
  • the quasi-static HARQ-ACK codebook is also called a type-1 HARQ-ACK codebook, quasi-static codebook, etc.
  • the dynamic HARQ-ACK codebook is also called a type-2 HARQ-ACK codebook, a dynamic codebook, or the like.
  • Type 1 HARQ-ACK codebook or the Type 2 HARQ-ACK codebook may be set in the UE by an upper layer parameter (eg, pdsch-HARQ-ACK-Codebook).
  • an upper layer parameter eg, pdsch-HARQ-ACK-Codebook
  • the UE has a HARQ-ACK bit corresponding to the predetermined range (eg, a range set based on upper layer parameters), regardless of whether PDSCH is scheduled or not. May be fed back.
  • the predetermined range eg, a range set based on upper layer parameters
  • the predetermined range is set or activated in the UE for a predetermined period (for example, a set of a predetermined number of opportunities for receiving PDSCHs that are candidates, or a predetermined number of monitoring opportunities for PDCCH). It may be determined based on at least one of the number of CCs, the number of TBs (the number of layers or ranks), the number of CBGs per TB, the presence or absence of application of spatial bundling.
  • the predetermined range is also called a HARQ-ACK bundling window, a HARQ-ACK feedback window, a bundling window, a feedback window, or the like.
  • the UE feeds back the NACK bit within the predetermined range even if there is no PDSCH scheduling for the UE. For this reason, when using the Type 1 HARQ-ACK codebook, it is expected that the number of HARQ-ACK bits to be fed back will increase.
  • the UE may feed back the HARQ-ACK bit for the scheduled PDSCH within the above-mentioned predetermined range.
  • the UE determines the number of bits of the Type 2 HARQ-ACK codebook based on a predetermined field in the DCI (for example, a DL assignment index (Downlink Assignment Indicator (Index) (DAI)) field).
  • a predetermined field in the DCI for example, a DL assignment index (Downlink Assignment Indicator (Index) (DAI)) field.
  • DAI field may be split into a counter DAI (counter DAI (cDAI)) and a total DAI (total DAI (tDAI)).
  • the counter DAI may indicate a counter value of downlink transmission (PDSCH, data, TB) scheduled within a predetermined period.
  • the counter DAI in the DCI that schedules data in the predetermined period is the number counted in the frequency domain (for example, CC index order) first in the predetermined period and then in the time domain (time index order). May be indicated.
  • the total DAI may indicate the total value (total number) of data scheduled within a predetermined period.
  • the total DAI in the DCI that schedules data at a predetermined time unit within the predetermined period can be calculated by the predetermined time unit (also referred to as points, timing, etc.) within the predetermined period. It may indicate the total number of scheduled data.
  • the UE sets a code block group (CBG) based transmission (CBG-based HARQ-ACK codebook determination) by means of upper layer parameters (PDSCH code block group transmission information element, PDSCH-CodeBlockGroupTransmission). If not, the UE assumes transport block (TB) based (TB-based) transmission (TB based HARQ-ACK codebook decision). That is, the UE generates a HARQ-ACK information bit for each TB.
  • CBG code block group
  • PDSCH-CodeBlockGroupTransmission PDSCH code block group transmission information element
  • the UE receives the PDSCH including multiple CBGs of one TB when the upper layer parameter of the PDSCH code block group transmission information element is provided to the serving cell (Component Carrier: CC).
  • the PDSCH code block group transmission information element includes the maximum number of CBGs in one TB (maxCodeBlockGroupsPerTransportBlock).
  • the UE generates each HARQ-ACK information bit of a plurality of CBGs for TB reception of the serving cell, and generates a HARQ-ACK codebook including the maximum number of CBG HARQ-ACK information bits.
  • the UE sends one or more HARQ-ACK bits determined (generated) based on the above type 1 or type 2 HARQ-ACK codebook to the uplink control channel (Physical Uplink Control Channel (PUCCH)) and the uplink shared channel. At least one of (Physical Uplink Shared Channel (PUSCH)) may be used for transmission.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the DCI format 0_1 (UL grant) used for PUSCH scheduling is a 1 or 2 bit 1st downlink assignment index (1st DAI) field and a 0 or 2 bit 2nd downlink assignment index (2nd DAI) field. And, including.
  • the first DAI for a semi-static HARQ-ACK codebook (Type 1 HARQ-ACK codebook) is 1 bit.
  • the first DAI for a dynamic HARQ-ACK codebook (Type 2 HARQ-ACK codebook) is 2 bits.
  • the second DAI for a dynamic HARQ-ACK codebook with two HARQ-ACK subcodebooks is 2 bits. Otherwise, the second DAI is 0 bit.
  • the UE When a UE configured with a quasi-static HARQ-ACK codebook multiplexes HARQ-ACK information in a PUSCH transmission scheduled by DCI format 0_1, the value V T of the DAI field (first DAI) in DCI format 0_1 is -If DAI,m UL is 1, the UE may generate the HARQ-ACK codebook using the first DAI instead of the total DAI.
  • the UE determines the value of the DAI field (first DAI) in the DCI format 0_1.
  • the HARQ-ACK codebook may be generated based on V T-DAI,m UL using the first DAI instead of the total DAI.
  • the DCI format 0_1 When using the first HARQ-ACK subcodebook and the second HARQ-ACK subcodebook, the DCI format 0_1 has a first DAI corresponding to the first HARQ-ACK subcodebook and a second DAI corresponding to the second HARQ-ACK subcodebook. And, including.
  • the UE receives the 1-bit UL DAI (1st DAI) in the UL grant for PUSCH scheduling. If the UL DAI value is 1 and the PUCCH and the PUSCH for HARQ-ACK reporting collide in at least one symbol, the UE sends a piggyback HARQ-ACK to the PUSCH (UCI on PUSCH, HARQ-). ACK on PUSCH).
  • the value of UL DAI is 1, the base station assumes that HARQ-ACK is piggybacked on PUSCH regardless of whether PUCCH and PUSCH collide, and the UL-SCH carried on the PUSCH is Rate matching may be performed. Even if the UE fails to detect the PDCCH corresponding to HARQ-ACK and the PUCCH does not collide with the PUSCH, the UE may send a NACK on the PUSCH for rate matching.
  • the UE receives the 2-bit UL DAI (first DAI) in the UL grant for PUSCH scheduling.
  • This UL DAI indicates the number of HARQ-ACKs piggybacked on the PUSCH (total DAI).
  • the UE piggybacks the number of HARQ-ACKs indicated by UL DAI to the PUSCH.
  • the base station assumes that the number of HARQ-ACKs indicated in UL DAI is piggybacked on PUSCH regardless of whether PUCCH and PUSCH collide, and rate matching of UL-SCH carried on the PUSCH is performed. You may go.
  • the UE Even if the UE fails to detect the PDCCH corresponding to HARQ-ACK and the PUCCH does not collide with the PUSCH, the UE transmits the number of NACKs indicated in UL DAI on the PUSCH for rate matching. You may.
  • the UE receives the 2-bit UL DAI (first DAI) and the 2-bit UL DAI (second DAI) in the UL grant for PUSCH scheduling.
  • the first DAI indicates the number of first HARQ-ACK subcodebooks piggybacked on the PUSCH.
  • the second DAI indicates the number of second HARQ-ACK subcodebooks piggybacked on the PUSCH. If the PUCCH and the PUSCH for HARQ-ACK reporting collide with each other in at least one symbol, the UE may include the number of first HARQ-ACK subcodebooks indicated in the first DAI and the number of the first HARQ-ACK subcodebooks indicated in the second DAI.
  • the base station assumes that the number of HARQ-ACKs indicated by the first DAI and the second DAI is piggybacked on the PUSCH regardless of whether the PUCCH and the PUSCH collide, and the UL-SCH carried on the PUSCH. Rate matching may be performed. Even if the UE fails to detect the PDCCH corresponding to the HARQ-ACK and the PUCCH does not collide with the PUSCH, the UE may push the number of NACKs indicated in the first DAI and the second DAI to the PUSCH for rate matching. You may send it above.
  • the UE determines whether to piggyback HARQ-ACK on the PUSCH based on the UL DAI in the UL grant for scheduling the PUSCH.
  • FIG. 1 is a diagram showing an example of an operation of piggybacking a quasi-static HARQ-ACK codebook to PUSCH.
  • the UE receives PDCCH#0 (DL assignment), PDSCH#0, and PDCCH#1 (UL grant).
  • PDCCH#0 indicates the resource of PDSCH#0 and the resource of PUCCH#0 for HARQ-ACK reporting to PDSCH#0.
  • PDCCH#1 indicates the resource of PUSCH#0 assigned to the same slot as PUCCH#0, and includes 1-bit UL DAI (first DAI).
  • the HARQ-ACK report for PDSCH#0 is piggybacked to PUSCH#0.
  • the data transmission device is configured so that before transmitting data in the unlicensed band, another device (for example, a base station, a user terminal, a Wi-Fi device) Listening (also called LBT, CCA, carrier sense, or channel access operation) for confirming the presence or absence of transmission is performed.
  • another device for example, a base station, a user terminal, a Wi-Fi device
  • Listening also called LBT, CCA, carrier sense, or channel access operation
  • the transmission device may be, for example, a base station (for example, gNB:gNodeB) in the downlink (DL) and a user terminal (for example, UE: User Equipment) in the uplink (UL).
  • the receiving device that receives data from the transmitting device may be, for example, a user terminal in DL and a base station in UL.
  • the transmission device starts data transmission after a predetermined period (for example, immediately or a backoff period) after it is detected that there is no transmission (idle state) of another device in the listening. ..
  • a predetermined period for example, immediately or a backoff period
  • the transmitting device transmits data based on the result of the listening, as a result of the presence of the hidden terminal, data collision in the receiving device may not be avoided.
  • a future LAA system (for example, Rel. 15 or later, also referred to as 5G, 5G+, or NR) may support the above-mentioned RTS/CTS in order to improve the avoidance rate of data collision in the receiving device. Is being considered. Future LAA systems may be called NR-U (Unlicensed) systems, NR LAA systems, etc.
  • the node may be either a UE or a base station, or may be a node of another system.
  • COT sharing it may be assumed that DL and UL have a one-to-one correspondence (for example, loopback). It may be possible to share the COT if the DL and UL are one-to-many.
  • the node A When the node A performs LBT in the unlicensed CC, the LBT result is idle, and TxOP having the time length of COT is acquired, the node A performs data transmission in the unlicensed CC.
  • the LBT for acquiring TxOP is called an initial LBT (Initial-LBT: I-LBT).
  • I-LBT Initial-LBT
  • the remaining period of the transmission by the node A may be assigned to other nodes (nodes B, C, etc.) that can receive the signal from the node A.
  • the NR-U system may perform an operation of carrier aggregation (CA) using the unlicensed CC and the license CC, or may perform an operation of dual connectivity (DC) using the unlicensed CC and the license CC, A standalone (SA) operation using only the unlicensed CC may be performed.
  • CA, DC, or SA may be performed by any one system of NR and LTE.
  • DC may be performed by at least two of NR, LTE, and other systems.
  • UL transmission in unlicensed CC may be at least one of PUSCH, PUCCH, and SRS.
  • a node may perform an LBT in LTE LAA or a receiver assisted LBT (receiver assisted LBT) as an I-LBT.
  • the LTE LAA LBT in this case may be category 4.
  • -Category 1 The node transmits without performing LBT.
  • -Category 2 The node performs carrier sensing at a fixed sensing time before transmission, and transmits when the channel is idle.
  • -Category 3 The node randomly generates a value (random backoff) from a predetermined range before transmission, repeatedly performs carrier sensing in a fixed sensing slot time, and the channel is vacant over the slot of the value. If it can be confirmed, send it.
  • the node randomly generates a value (random backoff) from within a predetermined range before transmission, repeatedly performs carrier sensing in a fixed sensing slot time, and the channel is vacant over the slot of the value. If it can be confirmed, send it.
  • the node changes the range of the random backoff value (contention window size) according to the communication failure status due to the collision with the communication of another system.
  • -It is also being considered to perform LBT according to the length of the gap between two transmissions (no-transmission period, period during which received power is below a predetermined threshold, etc.).
  • a plurality of UL transmissions by one UE or a plurality of UL transmissions by multiple UEs may be time division multiplexed (Time Division Multiplex). TDM) or frequency division multiplexing (FDM).
  • TDM Time Division Multiplex
  • FDM frequency division multiplexing
  • Multi-TTI scheduling In multi-TTI (Transmission Time Interval) scheduling (multi-slot scheduling), one UL grant schedules the same TB or a plurality of TBs having different HARQ-ACK process IDs over a plurality of slots. It is under consideration that NR-U supports multi-TTI scheduling.
  • FIG. 2 is a diagram showing an example of multi-TTI scheduling in NR-U.
  • the base station gNB performs an initial LBT (initial-LBT) to acquire a transmission opportunity (TxOP), and when the LBT result is idle, acquires a TxOP having a time length of COT.
  • TxOP the base station transmits PDCCH#0, PDSCH#0, PDCCH#1, and PDSCH#1.
  • PDCCH#0 indicates the resource of PDSCH#0 and the resource of PUCCH#0 for HARQ-ACK reporting to PDSCH#0.
  • PDCCH#1 indicates the resources of PUSCH#0 and #1 over a plurality of slots in TxOP and includes UL DAI.
  • the inventors of the present invention have conceived a method of appropriately determining whether to piggyback HARQ-ACK to at least one PUSCH of a plurality of PUSCHs based on the UL grant.
  • NR-U unlicensed CC
  • NR licensed CC
  • the unlicensed CC is a carrier (cell, CC) of the first frequency band (unlicensed band, unlicensed spectrum), LAA SCell, LAA cell, primary cell (Primary Cell: PCell, Special Cell: SpCell). , Secondary Cell (SCell), etc.
  • the license CC may be read as a carrier (cell, CC), PCell, SCell, etc. in the second frequency band (license band, license spectrum).
  • the unlicensed CC may be NR base (NR unlicensed CC) or LTE base.
  • the license CC may be NR-based or LTE-based.
  • the wireless communication system (NR-U, LAA system, etc.) in the present disclosure may be compliant (support the first wireless communication standard) with the first wireless communication standard (eg, NR, LTE, etc.).
  • the first wireless communication standard eg, NR, LTE, etc.
  • coexistence system coexistence device
  • other wireless communication devices coexistence device
  • wireless LAN Local Area Network
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • -Fi registered trademark
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand
  • Bluetooth registered trademark
  • WiGig registered trademark
  • LPWA Low Power Wide Area
  • the coexistence system may be a system that receives interference from the wireless communication system or a system that gives interference to the wireless communication system.
  • the coexistence system may support RTS and CTS, or equivalent request to send and receivable signals.
  • the device (node A) that performs I-LBT may be a base station (transmission device).
  • the device (node B or C) that receives data from another device in the transmission opportunity acquired by the other device (node A) may be a UE (reception device).
  • the data transmitted by the base station and the UE may include at least one of user data and control information.
  • the specific field may be read as UL DAI, DAI in DCI format 0_1, first DAI, second DAI, and the like.
  • a specific field (eg UL DAI) included in the UL grant for multi-TTI scheduling is information (HARQ-ACK codebook size, total DAI, etc.) indicating whether or not HARQ-ACK is piggybacked on a specific PUSCH. It may be.
  • a specific PUSCH may be specified in the specifications, or may be notified to the UE by higher layer signaling.
  • the specific PUSCH may be the first PUSCH or the last PUSCH in the order of specific parameters in the plurality of scheduled PUSCHs.
  • the specific parameter may be based on the PUSCH time resource (slot, symbol, etc.), the PUSCH HARQ process ID, or the like, or may be based on a combination thereof.
  • the specific parameter may be read as a specific index.
  • the operation for a non-specific PUSCH among a plurality of scheduled PUSCHs may be specified in the specifications, or may be notified to the UE by higher layer signaling.
  • the operation for the non-specific PUSCH may drop the HARQ-ACK corresponding to the non-specific PUSCH and transmit the non-specific PUSCH, or drop the non-specific PUSCH and carry the PUCCH carrying the HARQ-ACK corresponding to the non-specific PUSCH. May be sent.
  • the UE may not expect the HARQ-ACK to be piggybacked on the PUSCH.
  • the UE within the TxOP is PDCCH#0 (first downlink control information), PDSCH#0, PDCCH#1 (first downlink control information), PDCCH#2 (second downlink control information), PDSCH.
  • PDCCH#0 first downlink control information
  • PDSCH#0 second downlink control information
  • PDCCH#1 first downlink control information
  • PDCCH#2 second downlink control information
  • PDCCH#0 indicates a resource (allocation) of PDSCH#0, and indicates a resource of PUCCH#0 for HARQ-ACK transmission to PDSCH#0.
  • PDCCH#1 indicates the resource of PDSCH#1, and indicates the resource of PUCCH#1 for HARQ-ACK transmission to PDSCH#1.
  • the PUCCH#1 slot is different from the PUCCH#0.
  • PDCCH#2 indicates resources of PUSCH#0 in the same slot as PUCCH#0 and PUSCH#1 in the same slot as PUCCH#1, and includes UL DAI.
  • UL DAI indicates whether or not HARQ-ACK is piggybacked on PUSCH #0.
  • UL DAI is 1 and PUCCH#0 and PUSCH#0 collide with at least one symbol, the UE piggybacks HARQ-ACK for PDSCH#0 to PUSCH#0.
  • the UE drops HARQ-ACK for PDSCH#1 and transmits PUSCH#1.
  • the UE may drop PUSCH#1 and send PUCCH#1 carrying HARQ-ACK for PDSCH#1.
  • Multiple PUSCHs may be associated with multiple PDSCHs, respectively.
  • PUSCH #0 and #1 may be associated with PDSCH #0 and #1 respectively.
  • the UE may piggyback the HARQ-ACK on any of the PUSCHs scheduled.
  • UL DAI may comply with either of the following aspects 2-1 and 2-2.
  • a specific field (eg, UL DAI) included in the UL grant for multi-TTI scheduling is information (HARQ-ACK codebook size, total DAI, etc.) indicating whether or not HARQ-ACK is piggybacked on a specific PUSCH. It may be.
  • a specific PUSCH may be specified in the specifications, or may be notified to the UE by higher layer signaling.
  • the specific PUSCH may be the first PUSCH or the last PUSCH in the order of specific parameters in the plurality of scheduled PUSCHs.
  • the specific parameter may be based on a time resource (slot, symbol, etc.) of PUSCH, HARQ process ID of PUSCH, or the like, or may be based on a combination thereof.
  • the operation for a non-specific PUSCH among a plurality of scheduled PUSCHs may be specified in the specifications, or may be notified to the UE by higher layer signaling.
  • HARQ-ACK may be piggybacked to the non-specific PUSCH, HARQ-ACK corresponding to the non-specific PUSCH may be dropped, and the non-specific PUSCH may be transmitted, or the non-specific PUSCH may be transmitted. May be dropped and PUCCH carrying HARQ-ACK corresponding to the non-specific PUSCH may be transmitted.
  • the UE receives the same PDCCH#0, PDSCH#0, PDCCH#1, PDCCH#2, PDSCH#1 as in FIG. 3 within the TxOP.
  • UL DAI indicates whether or not HARQ-ACK is piggybacked on PUSCH #0.
  • UL DAI is 1 and PUCCH#0 and PUSCH#0 collide with at least one symbol, the UE piggybacks HARQ-ACK for PDSCH#0 to PUSCH#0.
  • the UE piggybacks HARQ-ACK for PDSCH#1 to PUSCH#1.
  • the specific field (for example, UL DAI) included in the UL grant for multi-TTI scheduling may be information (index or the like) indicating which PUSCH among a plurality of PUSCHs is piggybacked.
  • the UL DAI in the UL grant indicating the resources of X or less PUSCH may have log 2 X bits. Thereby, UL DAI may indicate one of the X values.
  • the value of UL DAI may be associated with X or less PUSCHs in the order of specific parameters.
  • the specific parameter may be based on a time resource (slot, symbol, etc.) of PUSCH, HARQ process ID of PUSCH, or the like, or may be based on a combination thereof.
  • the UE may piggyback the HARQ-ACK on the specific PUSCH associated with the received UL DAI value.
  • PUSCH for performing piggyback can be flexibly set.
  • the UE may piggyback the HARQ-ACK on any of the PUSCHs scheduled.
  • the specific field (for example, UL DAI) included in the UL grant for multi-TTI scheduling may be information indicating whether or not the corresponding HARQ-ACK is piggybacked for each of the plurality of PUSCHs.
  • UL DAI in UL grant indicating resources of X or less PUSCH may be a bitmap having X bits. Accordingly, UL DAI may indicate whether or not HARQ-ACK is piggybacked for each of the X PUSCHs. Bit positions in the bitmap may be associated with no more than X PUSCHs in the order of the particular parameter. The specific parameter may be based on a time resource (slot, symbol, etc.) of PUSCH, HARQ process ID of PUSCH, or the like, or may be based on a combination thereof. The UE may piggyback the HARQ-ACK on the particular PUSCH associated with the bit position having the value of 1.
  • the UE receives the same PDCCH#0, PDSCH#0, PDCCH#1, PDCCH#2, PDSCH#1 as in FIG. 3 within the TxOP.
  • UL DAI is a 2-bit bitmap, and 2 bits correspond to PUSCH #0 and #1 respectively.
  • the UE piggybacks HARQ-ACK for PDSCH#0 to PUSCH#0.
  • the UE piggybacks HARQ-ACK for PDSCH#1 to PUSCH#1.
  • whether or not HARQ-ACK is piggybacked can be flexibly set for each of the plurality of PUSCHs scheduled by the multi-TTI scheduling.
  • the UE may piggyback the same HARQ-ACK on multiple scheduled PUSCHs.
  • a specific field (for example, UL DAI) included in the UL grant for multi-TTI scheduling may be information indicating whether or not the same HARQ-ACK is piggybacked on a plurality of PUSCHs.
  • the UE receives the same PDCCH#0, PDSCH#0, PDCCH#2, PDSCH#1 as in FIG. 3 within the TxOP.
  • PDCCH#0 indicates the resources of PDSCH#0, and indicates the resources of PUCCH#0 and #1 for HARQ-ACK transmission for PDSCH#0.
  • UL DAI in UL grant in PDCCH #1 indicates whether or not HARQ-ACK is piggybacked to PUSCH #0 and #1.
  • UL DAI is 1 and PUCCH#0 and PUSCH#0 collide with at least 1 symbol, or PUCCH#1 and PUSCH#1 collide with at least 1 symbol, the UE sends HARQ-ACK to PDSCH#0. Is piggybacked to PUSCH #0 and #1.
  • HARQ-ACK can be piggybacked to PUSCH in multi-TTI scheduling while suppressing the overhead in PDCCH.
  • HARQ-ACK may not be allowed to be piggybacked on PUSCH.
  • ⁇ Mode 5-1>> It may be treated as an error case that the PUSCH scheduled by the multi-TTI scheduling collides with the HARQ-ACK on PUCCH. In other words, the UE may not expect the PUSCH scheduled by multi-TTI scheduling to collide with the HARQ-ACK on PUCCH.
  • ⁇ Mode 5-2>> When the PUSCH scheduled by the multi-TTI scheduling collides with the HARQ-ACK on PUCCH, the UE may drop the PUSCH and send the PUCCH.
  • the UE may drop the PUCCH and send the PUSCH.
  • the UE can appropriately process PUCCH and PUSCH in multi-TTI scheduling.
  • PUCCH and PUSCH may be scheduled on resources after TxOP(COT).
  • the PDCCH (DL assignment) in TxOP may indicate PUCCH resources after TxOP for HARQ-ACK reporting.
  • the PDCCH (UL grant) in TxOP may schedule PUSCH after TxOP.
  • the UE may perform LBT before transmission of each PUSCH after TxOP.
  • the time length of this LBT may be shorter than the time length of the I-LBT before TxOP.
  • the time length of the LBT may be based on the time length of the gap from the last reception or transmission to the transmission of the PUSCH.
  • ⁇ PUSCH FDM>> In the present disclosure, a case has been mainly described where one UL grant schedules a plurality of PUSCHs over a plurality of slots, but one UL grant is a plurality of frequency division multiplexed (FDM) PUSCHs. Each aspect can be applied also when scheduling.
  • the DL assignment may indicate a PUCCH slot for HARQ-ACK reporting, and the UL grant may schedule multiple PUSCHs FDMed in the slot.
  • the specific parameter may be based on the frequency resource of the PUSCH (center frequency, Physical Resource Block (PRB) index (eg, head PRB index)), HARQ process ID of the PUSCH, or the like. It may be based on a combination of these.
  • PRB Physical Resource Block
  • the value of the HARQ timing indication (PUCCH resource indication, PDSCH-to-HARQ-timing-indicator) in the DCI for scheduling the PDSCH is determined later on the timing and resources for HARQ-ACK feedback for the corresponding PDSCH. This may be notified to the UE.
  • the UE may receive the PUCCH resource indication (eg, DCI) for HARQ-ACK reporting for the PDSCH after the DL assignment for PDSCH scheduling.
  • the UE may receive the PUCCH resource indication for HARQ-ACK reporting (eg, DCI) after the UL grant scheduling the PUSCH.
  • ⁇ It may be treated as an error case that the PUCCH resource indicated in the PUCCH resource instruction after the UL grant for PUSCH scheduling overlaps with the PUSCH resource.
  • the UE does not have to expect to receive the PUCCH resource indication indicating the PUCCH resource overlapping the PUSCH resource after the UL grant for PUSCH scheduling.
  • extending UL DAI to log 2 X bits means extending UL DAI (first DAI) to 2 ⁇ log 2 X bits. It may be replaced.
  • extending UL DAI to log 2 X bits may be read as extending UL DAI (second DAI) to 2 ⁇ log 2 X bits.
  • the UL DAI bitmap having X bits can be read as the UL DAI (first DAI) bitmap having 2X bits. May be.
  • the UL DAI bitmap having X bits may be read as the UL DAI (second DAI) bitmap having 2X bits.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above-described embodiments of the present disclosure.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication by using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity (Multi-RAT Dual Connectivity (MR-DC)) between multiple Radio Access Technologies (RATs).
  • MR-DC is a dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) with LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and a dual connectivity (NR-E) with NR and LTE.
  • E-UTRA-NR Dual Connectivity EN-DC
  • NR-E dual connectivity
  • NE-DC Dual Connectivity
  • the base station (eNB) of LTE (E-UTRA) is the master node (Master Node (MN)), and the base station (gNB) of NR is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC)
  • N-DC dual connectivity
  • MN and SN are NR base stations (gNB).
  • the radio communication system 1 includes a base station 11 forming a macro cell C1 having a relatively wide coverage and a base station 12 (12a-12c) arranged in the macro cell C1 and forming a small cell C2 narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement and the number of each cell and user terminal 20 are not limited to those shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) using multiple component carriers (Component Carrier (CC)) and dual connectivity (DC).
  • CA Carrier Aggregation
  • CC Component Carrier
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub-6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate with each CC using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is the Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is the IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one of, for example, Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication methods such as LTE, LTE-A, and 5G.
  • an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing (OFDM)) based wireless access method may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • other wireless access methods such as another single carrier transmission method and another multicarrier transmission method may be used as the UL and DL wireless access methods.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • an uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • an uplink control channel Physical Uplink Control Channel (PUCCH)
  • a random access channel that are shared by each user terminal 20.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH, for example.
  • DCI Downlink Control Information
  • the DCI for scheduling PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI for scheduling PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource for searching DCI.
  • the search space corresponds to a search area and a search method for PDCCH candidates (PDCCH candidates).
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information eg, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • scheduling request Scheduling Request (Scheduling Request ( (SR)
  • uplink control information Uplink Control Information (UCI)
  • a random access preamble for establishing a connection with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding “link”. Further, it may be expressed without adding "Physical" to the head of each channel.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), etc. may be transmitted.
  • a cell-specific reference signal Cell-specific Reference Signal (CRS)
  • a channel state information reference signal Channel State Information Reference Signal (CSI-RS)
  • CSI-RS Channel State Information Reference Signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)), for example.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS/PBCH block, SS Block (SSB), or the like. Note that SS and SSB may also be referred to as reference signals.
  • the wireless communication system even if the measurement reference signal (Sounding Reference Signal (SRS)), the demodulation reference signal (DMRS), etc. are transmitted as the uplink reference signal (Uplink Reference Signal (UL-RS)). Good.
  • the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
  • FIG. 8 is a diagram illustrating an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission/reception unit 120, a transmission/reception antenna 130, and a transmission line interface 140. It should be noted that the control unit 110, the transmission/reception unit 120, the transmission/reception antenna 130, and the transmission path interface 140 may each be provided with one or more.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission/reception using the transmission/reception unit 120, the transmission/reception antenna 130, and the transmission path interface 140, measurement, and the like.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer the generated data to the transmission/reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, radio resource management, and the like.
  • the transmission/reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission/reception unit 120 includes a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission/reception circuit, etc., which are explained based on common knowledge in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured by a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may include a reception processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmission/reception antenna 130 can be configured from an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmitting/receiving unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission/reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), or the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission/reception unit 120 processes the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer, for example, for the data and control information acquired from the control unit 110 (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) on the bit string to be transmitted. Processing (if necessary), inverse fast Fourier transform (Inverse Fast Transform (IFFT)) processing, precoding, digital-analog conversion, and other transmission processing may be performed and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering discrete Fourier transform
  • DFT discrete Fourier Transform
  • IFFT inverse fast Fourier transform
  • precoding coding
  • digital-analog conversion digital-analog conversion
  • the transmitter/receiver 120 may modulate the baseband signal into a radio frequency band, perform filter processing, amplify, and the like, and transmit the radio frequency band signal via the transmission/reception antenna 130. ..
  • the transmission/reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc., on a signal in the radio frequency band received by the transmission/reception antenna 130.
  • the transmitting/receiving unit 120 performs analog-digital conversion, fast Fourier transform (Fast Fourier Transform (FFT)) processing, and inverse discrete Fourier transform (Inverse Discrete Fourier Transform (IDFT) on the acquired baseband signal. )) Apply reception processing such as processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing, User data may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier Transform
  • the transmission/reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 receives power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • channel information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission path interface 140 transmits/receives signals (backhaul signaling) to/from devices included in the core network 30, other base stations 10, and the like, and user data (user plane data) for the user terminal 20 and a control plane. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 may be configured by at least one of the transmission/reception unit 120, the transmission/reception antenna 130, and the transmission path interface 140.
  • the transmission/reception unit 120 performs listening (LBT, I-LBT) before transmission, and when the listening result is idle, downlink control channel (PDCCH, downlink control information), downlink shared channel (PDSCH, data), etc. You may send it.
  • PDCCH downlink control channel
  • PDSCH downlink shared channel
  • FIG. 9 is a diagram illustrating an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission/reception unit 220, and a transmission/reception antenna 230.
  • the control unit 210, the transmission/reception unit 220, and the transmission/reception antenna 230 may each be provided with one or more.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 may be assumed to also have other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured by a controller, a control circuit, and the like described based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer the data to the transmission/reception unit 220.
  • the transmitting/receiving unit 220 may include a baseband unit 221, an RF unit 222, and a measuring unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter/receiver 220 may include a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter/receiver circuit, and the like, which are described based on common knowledge in the technical field of the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured by a transmission unit and a reception unit.
  • the transmission unit may include a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may include a reception processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmission/reception antenna 230 can be configured by an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna or the like.
  • the transmitter/receiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 processes the PDCP layer, the RLC layer (for example, RLC retransmission control), and the MAC layer (for example, for the data and control information acquired from the control unit 210). , HARQ retransmission control) may be performed to generate a bit string to be transmitted.
  • the transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filter processing, DFT processing (if necessary), and IFFT processing on the bit string to be transmitted.
  • the baseband signal may be output by performing transmission processing such as precoding, digital-analog conversion, or the like.
  • the transmission/reception unit 220 transmits the channel using a DFT-s-OFDM waveform when transform precoding is enabled for the channel (for example, PUSCH).
  • the DFT process may be performed as the transmission process, or otherwise, the DFT process may not be performed as the transmission process.
  • the transmission/reception unit 220 may perform modulation, filtering, amplification, etc. on the radio frequency band for the baseband signal, and transmit the radio frequency band signal via the transmission/reception antenna 230. ..
  • the transmission/reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc., on the signal in the radio frequency band received by the transmission/reception antenna 230.
  • the transmitting/receiving unit 220 (reception processing unit 2212) performs analog-digital conversion, FFT processing, IDFT processing (if necessary), filter processing, demapping, demodulation, decoding (error correction) on the acquired baseband signal.
  • User data and the like may be acquired by applying reception processing such as MAC layer processing, RLC layer processing, and PDCP layer processing.
  • the transmission/reception unit 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measurement unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 may be configured by at least one of the transmission/reception unit 220, the transmission/reception antenna 230, and the transmission path interface 240.
  • the transmission/reception unit 220 in a transmission opportunity (TxOP, COT, etc.) based on listening, is an uplink control channel for Hybrid Automatic Repeat reQuest-ACKnowledgement (HARQ-ACK) for the resources of the downlink shared channel (PDSCH) and the downlink shared channel.
  • HARQ-ACK Hybrid Automatic Repeat reQuest-ACKnowledgement
  • the first downlink control information indicating resources of (PUCCH) and the second downlink control information indicating resources of a plurality of uplink shared channels (PUSCH) and specific fields (UL DAI, first DAI, second DAI, etc.) are received. May be.
  • the controller 210 may include the HARQ-ACK in the specific uplink shared channel based on the specific field. It may be determined whether or not to multiplex.
  • the plurality of uplink shared channels may span a plurality of slots (multi-TTI scheduling).
  • the control unit 210 includes at least one of time resources of the plurality of uplink shared channels, HARQ process numbers of the plurality of uplink shared channels, and frequency resources of the plurality of uplink shared channels.
  • the specific uplink shared channel may be determined based on (Aspect 1, Aspect 2, Aspect 3).
  • the control unit 210 assumes that the plurality of uplink shared channels do not collide with the uplink control channel indicated by the first downlink control information (aspect 5-1), and the uplink shared channel is the uplink control channel.
  • One of dropping the uplink shared channel or the uplink control channel in the case of collision with a channel may be performed.
  • each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional blocks may be realized by combining the one device or the plurality of devices with software.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and consideration. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the implementation method is not particularly limited.
  • the base station, the user terminal, and the like may function as a computer that performs the process of the wireless communication method of the present disclosure.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the terms such as a device, a circuit, a device, a section, and a unit are interchangeable with each other.
  • the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • the processor 1001 For each function in the base station 10 and the user terminal 20, for example, the processor 1001 performs an arithmetic operation by loading predetermined software (program) on hardware such as the processor 1001, the memory 1002, and the communication via the communication device 1004. Is controlled, and at least one of reading and writing of data in the memory 1002 and the storage 1003 is controlled.
  • predetermined software program
  • the processor 1001 operates an operating system to control the entire computer, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the control unit 110 (210) and the transmission/reception unit 120 (220) described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), software module, data, and the like from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be implemented by a control program stored in the memory 1002 and operating in the processor 1001, and may be implemented similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, and for example, at least Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other appropriate storage media. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 may store an executable program (program code), a software module, etc. for implementing the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, and/or other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, and/or other suitable storage medium May be configured by
  • the communication device 1004 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 for example, realizes at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)), a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like. May be included.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission/reception unit 120 (220) and the transmission/reception antenna 130 (230) described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated from the transmitter 120a (220a) and the receiver 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), etc. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • CMOS complementary metal-oxide-semiconductor
  • CC component carrier
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • the numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and radio frame configuration. , At least one of a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may include multiple minislots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot. Minislots may be composed of fewer symbols than slots.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent the time unit for transmitting signals. Radio frames, subframes, slots, minislots, and symbols may have different names corresponding to them. It should be noted that time units such as a frame, a subframe, a slot, a minislot, and a symbol in the present disclosure may be replaced with each other.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. May be
  • the unit representing the TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI means, for example, the minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), code block, codeword, or the like, or may be a processing unit of scheduling, link adaptation, or the like.
  • the time interval for example, the number of symbols
  • the transport block, code block, codeword, etc. may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • the TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and a short TTI (eg, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may be configured by one or a plurality of resource blocks.
  • one or more RBs are physical resource blocks (Physical RB (PRB)), subcarrier groups (Sub-Carrier Group (SCG)), resource element groups (Resource Element Group (REG)), PRB pairs, RBs. It may be called a pair or the like.
  • PRB Physical RB
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • the resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • Bandwidth Part (may be called partial bandwidth etc.) represents a subset of continuous common RBs (common resource blocks) for a certain neurology in a certain carrier. Good.
  • the common RB may be specified by the index of the RB based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE does not have to assume that it will send and receive predetermined signals/channels outside the active BWP.
  • BWP bitmap
  • the structures of the radio frame, subframe, slot, minislot, symbol, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, and the number included in RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (Cyclic Prefix (CP)) length, and the like can be variously changed.
  • the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
  • radio resources may be indicated by a predetermined index.
  • Information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
  • Information and signals can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, etc. may be input and output via a plurality of network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Information, signals, etc. that are input and output can be overwritten, updated or added. The output information, signal, etc. may be deleted. The input information, signal, etc. may be transmitted to another device.
  • Information notification is not limited to the aspect/embodiment described in the present disclosure, and may be performed using another method.
  • notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (Downlink Control Information (DCI)), uplink control information (Uplink Control Information (UCI))), upper layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling, other signals, or a combination thereof May be implemented by.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of the predetermined information is not limited to the explicit notification, and may be implicitly (for example, by not notifying the predetermined information or another information). May be carried out).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false. , May be performed by comparison of numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • the software uses websites that use at least one of wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.) , Servers, or other remote sources, these wired and/or wireless technologies are included within the definition of transmission media.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding “precoding”, “precoder”, “weight (precoding weight)”, “pseudo-collocation (Quasi-Co-Location (QCL))”, “Transmission Configuration Indication state (TCI state)”, “space” “Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, “antenna port”, “antenna port group”, “layer”, “number of layers”, Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are compatible. Can be used for
  • base station BS
  • wireless base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)", “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • Cell Cell
  • femto cell small cell
  • pico cell femto cell
  • a base station can accommodate one or more (eg, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being defined by a base station subsystem (for example, a small indoor base station (Remote Radio Head (RRH))) to provide communication services.
  • a base station subsystem for example, a small indoor base station (Remote Radio Head (RRH))
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or a base station subsystem providing communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmission device, a reception device, a wireless communication device, or the like.
  • the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned type or unmanned type).
  • At least one of the base station and the mobile station also includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by the user terminal.
  • the communication between the base station and the user terminal is replaced with communication between a plurality of user terminals (eg, may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • the user terminal 20 may have the function of the above-described base station 10.
  • the words such as “up” and “down” may be replaced with the words corresponding to the communication between terminals (for example, “side”).
  • the uplink channel and the downlink channel may be replaced with the side channel.
  • the user terminal in the present disclosure may be replaced by the base station.
  • the base station 10 may have the function of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal include a base station and one or more network nodes other than the base station (for example, Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. are conceivable, but not limited to these) or a combination of these is clear.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, in combination, or may be used by switching according to execution. Further, the order of the processing procedures, sequences, flowcharts, and the like of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps in a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM Global System for Mobile communications
  • CDMA2000 CDMA2000
  • Ultra Mobile Broadband UMB
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.11 WiMAX (registered trademark)
  • IEEE 802.11 WiMAX (registered trademark)
  • IEEE 802.11 WiMAX (registered trademark)
  • Ultra-WideBand (UWB), Bluetooth (registered trademark), a system using any other suitable wireless communication method, and a next-generation system extended based on these may be applied.
  • a plurality of systems may be combined and applied (for example, a combination of LTE or LTE-A and 5G).
  • the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” means both "based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in any way.
  • determining may encompass a wide variety of actions.
  • judgment means “judging", “calculating”, “computing”, “processing”, “deriving”, “investigating”, “searching” (looking up, search, inquiry) ( For example, it may be considered to be a “decision” for a search in a table, database or another data structure), ascertaining, etc.
  • “decision” means receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access (access). Accessing (eg, accessing data in memory), etc., may be considered to be a “decision.”
  • judgment (decision) is considered to be “judgment (decision)” of resolving, selecting, choosing, establishing, establishing, comparing, etc. Good. That is, “determination (decision)” may be regarded as “determination (decision)” of some operation.
  • the “maximum transmission power” described in the present disclosure may mean the maximum value of the transmission power, the nominal maximum transmission power (the nominal UE maximum transmit power), or the rated maximum transmission power (the maximum transmission power). It may mean rated UE maximum transmit power).
  • connection refers to any direct or indirect connection or coupling between two or more elements. And can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the connections or connections between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • radio frequency domain microwave Regions
  • electromagnetic energy having wavelengths in the light (both visible and invisible) region, etc. can be used to be considered “connected” or “coupled” to each other.
  • the term “A and B are different” may mean “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • the terms “remove”, “coupled” and the like may be construed as “different” as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ端末は、リスニングに基づく送信機会において、下り共有チャネルのリソース及び下り共有チャネルに対するHybrid Automatic Repeat reQuest-ACKnowledgement(HARQ-ACK)のための上り制御チャネルのリソースを示す第1下り制御情報と、複数の上り共有チャネルのリソース及び特定フィールドを示す第2下り制御情報と、を受信する受信部と、前記複数の上り共有チャネルの中の少なくとも1つの特定上り共有チャネルが、前記上り制御チャネルと重複する場合、前記特定フィールドに基づいて、前記特定上り共有チャネル内に前記HARQ-ACKを多重するか否かを決定する制御部と、を有する。本開示の一態様によれば、上り共有チャネルをスケジュールされた場合にHARQ-ACKを適切に送信する。

Description

ユーザ端末及び無線通信方法
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(User Equipment(UE))は、ULデータチャネル(例えば、Physical Uplink Shared Channel(PUSCH))及びUL制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))の少なくとも一方を用いて、上りリンク制御情報(Uplink Control Information(UCI))を送信する。
 将来の無線通信システム(例えば、NR、5G、5G+又はRel.15以降)では、DL信号(例えば、PDSCH)に対する送達確認信号(HARQ-ACK、ACK/NACK、又はA/Nとも呼ぶ)の送信タイミングを、DCI等を利用してUEに指定することが想定される。また、UEがHARQ-ACKをコードブックに基づいて(コードブック単位で)フィードバックすることが想定される。
 また、NRでは、DCI等を利用して、上り共有チャネル(PUSCH)の送信をUEに指定すること、UEが上り共有チャネル上でHARQ-ACKを送信することが想定される。
 しかしながら、上り共有チャネルをスケジュールされた場合にHARQ-ACKをどのように送信するかが問題となる。HARQ-ACKを適切に送信できなければ、通信品質の劣化等が生じるおそれがある。
 そこで、本開示は、上り共有チャネルをスケジュールされた場合にHARQ-ACKを適切に送信するユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、リスニングに基づく送信機会において、下り共有チャネルのリソース及び下り共有チャネルに対するHybrid Automatic Repeat reQuest-ACKnowledgement(HARQ-ACK)のための上り制御チャネルのリソースを示す第1下り制御情報と、複数の上り共有チャネルのリソース及び特定フィールドを示す第2下り制御情報と、を受信する受信部と、前記複数の上り共有チャネルの中の少なくとも1つの特定上り共有チャネルが、前記上り制御チャネルと重複する場合、前記特定フィールドに基づいて、前記特定上り共有チャネル内に前記HARQ-ACKを多重するか否かを決定する制御部と、を有することを特徴とする。
 本開示の一態様によれば、上り共有チャネルをスケジュールされた場合にHARQ-ACKを適切に送信する。
図1は、準静的HARQ-ACKコードブックをPUSCHにピギーバックする動作の一例を示す図である。 図2は、NR-UにおけるマルチTTIスケジューリングの一例を示す図である。 図3は、態様1の動作の一例を示す図である。 図4は、態様2-1の動作の一例を示す図である。 図5は、態様3の動作の一例を示す図である。 図6は、態様4の動作の一例を示す図である。 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図8は、一実施形態に係る基地局の構成の一例を示す図である。 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
<HARQ-ACKフィードバック>
 NRでは、ユーザ端末(UE:User Equipment)は、下り共有チャネル(Physical Downlink Shared Channel(PDSCH)等ともいう)に対する送達確認情報(Hybrid Automatic Repeat reQuest-ACKnowledge(HARQ-ACK)、ACKnowledge/Non-ACK(ACK/NACK)、HARQ-ACK情報又は、A/N等ともいう)をフィードバック(報告(report)又は送信等ともいう)するメカニズムが検討されている。
 例えば、NR Rel.15では、PDSCHのスケジューリングに用いられるDCI(例えば、DCIフォーマット1_0又は1_1)内の所定フィールドの値が、当該PDSCHに対するHARQ-ACKのフィードバックタイミングを示す。UEがスロット#nで受信するPDSCHに対するHARQ-ACKをスロット#n+kで送信する場合、当該所定フィールドの値は、kの値にマッピングされてもよい。当該所定フィールドは、例えば、PDSCH-HARQフィードバックタイミング指示(PDSCH-to-HARQ_feedback timing indicator)フィールド等と呼ばれる。
 また、NR Rel.15では、PDSCHのスケジューリングに用いられるDCI(例えば、DCIフォーマット1_0又は1_1)内の所定フィールドの値に基づいて、当該PDSCHに対するHARQ-ACKのフィードバックに用いるPUCCHリソースを決定する。当該所定フィールドは、例えば、PUCCHリソース指示(PUCCH resource indicator(PRI))フィールド、ACK/NACKリソース指示(ACK/NACK resource indicator(ARI))フィールド等と呼ばれてもよい。当該所定フィールドの値は、PRI、ARI等と呼ばれてもよい。
 当該所定フィールドの各値にマッピングされるPUCCHリソースは、上位レイヤパラメータ(例えば、PUCCH-ResourceSet内のResourceList)によって予めUEに設定(configure)されてもよい。また、当該PUCCHリソースは、一以上のPUCCHリソースを含むセット(PUCCHリソースセット)毎にUEに設定されてもよい。
 また、NR Rel.15では、UEは、単一のスロット内で、HARQ-ACKを有する一よりも多い上り制御チャネル(Physical Uplink Control Channel(PUCCH))を送信することを予期(expect)しないことが検討されている。
 具体的には、NR Rel.15では、単一のスロットの一以上のHARQ-ACKは、単一のHARQ-ACKコードブックにマッピングされ、当該HARQ-ACKコードブックが、直近の(last)DCIによって指示されるPUCCHリソースで送信されてもよい。
 ここで、HARQ-ACKコードブックは、時間領域(例えば、スロット)、周波数領域(例えば、コンポーネントキャリア(Component Carrier(CC)))、空間領域(例えば、レイヤ)、トランスポートブロック(Transport Block(TB))、及び、TBを構成するコードブロックのグループ(コードブロックグループ(Code Block Group(CBG)))の少なくとも一つの単位でのHARQ-ACK用のビットを含んで構成されてもよい。なお、CCは、セル、サービングセル(serving cell)、キャリア等とも呼ばれる。また、当該ビットは、HARQ-ACKビット、HARQ-ACK情報又はHARQ-ACK情報ビット等とも呼ばれる。
 HARQ-ACKコードブックは、PDSCH-HARQ-ACKコードブック(pdsch-HARQ-ACK-Codebook)、コードブック、HARQコードブック、HARQ-ACKサイズ等とも呼ばれる。
 HARQ-ACKコードブックに含まれるビット数(サイズ)等は、準静的(semi-static)又は動的に(dynamic)決定されてもよい。準静的なHARQ-ACKコードブックは、タイプ-1 HARQ-ACKコードブック、準静的コードブック等とも呼ばれる。動的なHARQ-ACKコードブックは、タイプ-2 HARQ-ACKコードブック、動的コードブック等とも呼ばれる。
 タイプ1 HARQ-ACKコードブック又はタイプ2 HARQ-ACKコードブックのいずれを用いるかは、上位レイヤパラメータ(例えば、pdsch-HARQ-ACK-Codebook)によりUEに設定されてもよい。
 タイプ1 HARQ-ACKコードブックの場合、UEは、所定範囲(例えば、上位レイヤパラメータに基づいて設定される範囲)において、PDSCHのスケジューリングの有無に関係なく、当該所定範囲に対応するHARQ-ACKビットをフィードバックしてもよい。
 当該所定範囲は、所定期間(例えば、候補となるPDSCH受信用の所定数の機会(occasion)のセット、又は、PDCCHの所定数のモニタリング機会(monitoring occasion))、UEに設定又はアクティブ化されるCCの数、TBの数(レイヤ数又はランク)、1TBあたりのCBG数、空間バンドリングの適用の有無、の少なくとも一つに基づいて定められてもよい。当該所定範囲は、HARQ-ACKバンドリングウィンドウ、HARQ-ACKフィードバックウィンドウ、バンドリングウィンドウ、フィードバックウィンドウなどとも呼ばれる。
 タイプ1 HARQ-ACKコードブックでは、所定範囲内であれば、UEに対するPDSCHのスケジューリングが無い場合でも、UEは、NACKビットをフィードバックする。このため、タイプ1 HARQ-ACKコードブックを用いる場合、フィードバックするHARQ-ACKビット数が増加することも想定される。
 一方、タイプ2 HARQ-ACKコードブックの場合、UEは、上記所定範囲において、スケジューリングされたPDSCHに対するHARQ-ACKビットをフィードバックしてもよい。
 具体的には、UEは、タイプ2 HARQ-ACKコードブックのビット数を、DCI内の所定フィールド(例えば、DL割り当てインデックス(Downlink Assignment Indicator(Index)(DAI))フィールド)に基づいて決定してもよい。DAIフィールドは、カウンタDAI(counter DAI(cDAI))及びトータルDAI(total DAI(tDAI))に分割(split)されてもよい。
 カウンタDAIは、所定期間内でスケジューリングされる下り送信(PDSCH、データ、TB)のカウンタ値を示してもよい。例えば、当該所定期間内にデータをスケジューリングするDCI内のカウンタDAIは、当該所定期間内で最初に周波数領域(例えば、CCインデックス順)で、その後に時間領域(時間インデックス順)でカウントされた数を示してもよい。
 トータルDAIは、所定期間内でスケジューリングされるデータの合計値(総数)を示してもよい。例えば、当該所定期間内の所定の時間ユニット(例えば、PDCCHモニタリング機会)でデータをスケジューリングするDCI内のトータルDAIは、当該所定期間内で当該所定の時間ユニット(ポイント、タイミング等ともいう)までにスケジューリングされたデータの総数を示してもよい。
 また、UEは、上位レイヤパラメータ(PDSCHコードブロックグループ送信情報要素、PDSCH-CodeBlockGroupTransmission)によってコードブロックグループ(CBG)ベース(CBG-based)送信(CBGベースHARQ-ACKコードブック決定(determination))を設定されない場合、UEは、トランスポートブロック(TB)ベース(TB-based)送信(TBベースHARQ-ACKコードブック決定)を想定する。すなわち、UEは、TB毎のHARQ-ACK情報ビットを生成する。
 UEは、サービングセル(Component Carrier:CC)に対してPDSCHコードブロックグループ送信情報要素の上位レイヤパラメータを提供された場合、1つのTBの複数のCBGを含むPDSCHを受信する。PDSCHコードブロックグループ送信情報要素は、1つのTB内のCBG最大数(maxCodeBlockGroupsPerTransportBlock)を含む。UEは、当該サービングセルのTB受信に対し、複数のCBGの各HARQ-ACK情報ビットを生成し、CBG最大数のHARQ-ACK情報ビットを含むHARQ-ACKコードブックを生成する。
 UEは、以上のタイプ1又はタイプ2のHARQ-ACKコードブックに基づいて決定(生成)される一以上のHARQ-ACKビットを、上り制御チャネル(Physical Uplink Control Channel(PUCCH))及び上り共有チャネル(Physical Uplink Shared Channel(PUSCH))の少なくとも一方を用いて送信してもよい。
 Rel.15では、PUSCHのスケジューリングに用いられるDCIフォーマット0_1(ULグラント)は、1又は2ビットの1st downlink assignment index(第1DAI)のフィールドと、0又は2ビットの2nd downlink assignment index(第2DAI)のフィールドと、を含む。
 準静的(semi-static)HARQ-ACKコードブック(タイプ1 HARQ-ACKコードブック)用の第1DAIは1ビットである。動的(dynamic)HARQ-ACKコードブック(タイプ2 HARQ-ACKコードブック)用の第1DAIは2ビットである。
 2つのHARQ-ACKサブコードブックを有する動的HARQ-ACKコードブック用の第2DAIは2ビットである。それ以外において第2DAIは0ビットである。
 準静的HARQ-ACKコードブックを設定されたUEが、DCIフォーマット0_1によってスケジュールされるPUSCH送信内にHARQ-ACK情報を多重する場合、DCIフォーマット0_1内のDAIフィールド(第1DAI)の値VT-DAI,m ULが1であれば、UEは、トータルDAIの代わりに第1DAIを用いて、HARQ-ACKコードブックを生成してもよい。
 動的HARQ-ACKコードブックを設定されたUEが、DCIフォーマット0_1によってスケジュールされるPUSCH送信内にHARQ-ACK情報を多重する場合、UEは、DCIフォーマット0_1内のDAIフィールド(第1DAI)の値VT-DAI,m ULに基づいて、トータルDAIの代わりに第1DAIを用いて、HARQ-ACKコードブックを生成してもよい。
 第1HARQ-ACKサブコードブック及び第2HARQ-ACKサブコードブックを用いる場合、DCIフォーマット0_1は、第1HARQ-ACKサブコードブックに対応する第1DAIと、第2HARQ-ACKサブコードブックに対応する第2DAIと、を含む。
 準静的HARQ-ACKコードブックを設定された場合、UEは、PUSCHのスケジューリングのためのULグラント内で1ビットUL DAI(第1DAI)を受信する。UEは、UL DAIの値が1であり、且つHARQ-ACK報告用のPUCCHとPUSCHとが少なくとも1シンボルで衝突している場合、HARQ-ACKを当該PUSCHにピギーバック(UCI on PUSCH、HARQ-ACK on PUSCH)する。UL DAIの値が1である場合、基地局は、PUCCH及びPUSCHが衝突するか否かに関わらず、HARQ-ACKがPUSCHにピギーバックされると想定し、当該PUSCHで運ばれるUL-SCHのレートマッチングを行ってもよい。UEは、HARQ-ACKに対応するPDCCHの検出に失敗し、PUCCHがPUSCHと衝突しない場合であっても、UEは、レートマッチングのためにNACKをPUSCH上で送信してもよい。
 動的HARQ-ACKコードブックを設定された場合、UEは、PUSCHのスケジューリングのためのULグラント内で2ビットUL DAI(第1DAI)を受信する。このUL DAIは、当該PUSCHにピギーバックされるHARQ-ACKの数(トータルDAI)を示す。UEは、HARQ-ACK報告用のPUCCHとPUSCHとが少なくとも1シンボルで衝突している場合、UL DAIに示された数のHARQ-ACKを当該PUSCHにピギーバックする。基地局は、PUCCH及びPUSCHが衝突するか否かに関わらず、UL DAIに示された数のHARQ-ACKがPUSCHにピギーバックされると想定し、当該PUSCHで運ばれるUL-SCHのレートマッチングを行ってもよい。UEは、HARQ-ACKに対応するPDCCHの検出に失敗し、PUCCHがPUSCHと衝突しない場合であっても、UEは、レートマッチングのためにUL DAIに示された数のNACKをPUSCH上で送信してもよい。
 CBGベースHARQ-ACKコードブックを設定された場合、UEは、PUSCHのスケジューリングのためのULグラント内で2ビットUL DAI(第1DAI)及び2ビットUL DAI(第2DAI)を受信する。第1DAIは、当該PUSCHにピギーバックされる第1HARQ-ACKサブコードブックの数を示す。第2DAIは、当該PUSCHにピギーバックされる第2HARQ-ACKサブコードブックの数を示す。UEは、HARQ-ACK報告用のPUCCHとPUSCHとが少なくとも1シンボルで衝突している場合、第1DAIに示された数の第1HARQ-ACKサブコードブックと、第2DAIに示された数の第2HARQ-ACKサブコードブックと、を当該PUSCHにピギーバックする。基地局は、PUCCH及びPUSCHが衝突するか否かに関わらず、第1DAI及び第2DAIに示された数のHARQ-ACKがPUSCHにピギーバックされると想定し、当該PUSCHで運ばれるUL-SCHのレートマッチングを行ってもよい。UEは、HARQ-ACKに対応するPDCCHの検出に失敗し、PUCCHがPUSCHと衝突しない場合であっても、UEは、レートマッチングのために第1DAI及び第2DAIに示された数のNACKをPUSCH上で送信してもよい。
 このように、UEは、PUSCHのスケジューリングのためのULグラント内のUL DAIに基づいて当該PUSCHにHARQ-ACKをピギーバックするか否かを決定する。
 図1は、準静的HARQ-ACKコードブックをPUSCHにピギーバックする動作の一例を示す図である。UEは、PDCCH#0(DLアサインメント)、PDSCH#0、PDCCH#1(ULグラント)を受信する。PDCCH#0は、PDSCH#0のリソースと、PDSCH#0に対するHARQ-ACK報告のためのPUCCH#0のリソースと、を示す。PDCCH#1は、PUCCH#0と同じスロットに割り当てられたPUSCH#0のリソースを示し、1ビットUL DAI(第1DAI)を含む。
 UL DAIの値が1であり、且つPUCCH#0及びPUSCH#0が少なくとも1シンボルで衝突する場合、PDSCH#0に対するHARQ-ACK報告をPUSCH#0にピギーバックする。
<NR-U>
 既存のLTEシステム(例えば、Rel.13)のLAAでは、データの送信装置は、アンライセンスバンドにおけるデータの送信前に、他の装置(例えば、基地局、ユーザ端末、Wi-Fi装置など)の送信の有無を確認するリスニング(LBT、CCA、キャリアセンス又はチャネルアクセス動作等とも呼ばれる)を行う。
 当該送信装置は、例えば、下りリンク(DL)では基地局(例えば、gNB:gNodeB)、上りリンク(UL)ではユーザ端末(例えば、UE:User Equipment)であってもよい。また、送信装置からのデータを受信する受信装置は、例えば、DLではユーザ端末、ULでは基地局であってもよい。
 既存のLTEシステムのLAAでは、当該送信装置は、リスニングにおいて他の装置の送信がないこと(アイドル状態)が検出されてから所定期間(例えば、直後又はバックオフの期間)後にデータ送信を開始する。しかしながら、当該リスニングの結果に基づいて送信装置がデータを送信する場合であっても、上記隠れ端末が存在する結果、受信装置におけるデータの衝突を回避できないおそれがある。
 このため、将来のLAAシステム(例えば、Rel.15以降、5G、5G+又はNR等ともいう)では、受信装置におけるデータの衝突の回避率を向上させるため、上述のRTS/CTSをサポートすることが検討されている。将来のLAAシステムは、NR-U(Unlicensed)システム、NR LAAシステムなどと呼ばれてもよい。
 NR-Uシステムにおいて、基地局(gNB)又はUEが獲得した送信機会(Transmission Opportunity:TxOP)の時間(Channel Occupancy Time:COT)を複数ノードにおいて分配(share)することが検討されている。ノードは、UE、基地局のいずれかであってもよいし、他システムのノードであってもよい。
 COTシェアリングの基本の形態として、DL及びULが1対1に対応すること(例えば、ループバック)を想定してもよい。DL及びULが1対多である場合に、COTをシェアすることが可能であってもよい。
 ノードAがアンライセンスCCにおいてLBTを行い、LBT結果がアイドルであり、COTの時間長を有するTxOPを獲得した場合、ノードAは、アンライセンスCCにおいてデータ送信を行う。以下、TxOPを獲得するためのLBTを初期LBT(Initial-LBT:I-LBT)と呼ぶ。TxOPのうち、ノードAによる送信の残りの期間は、ノードAからの信号を受信できる他のノード(ノードB、Cなど)に割り当てられてもよい。
 NR-Uシステムは、アンライセンスCC及びライセンスCCを用いるキャリアアグリゲーション(CA)の動作を行ってもよいし、アンライセンスCC及びライセンスCCを用いるデュアルコネクティビティ(DC)の動作を行ってもよいし、アンライセンスCCのみを用いるスタンドアローン(SA)の動作を行ってもよい。CA、DC、又はSAは、NR及びLTEのいずれか1つのシステムによって行われてもよい。DCは、NR、LTE、及び他のシステムの少なくとも2つによって行われてもよい。
 アンライセンスCCにおけるUL送信は、PUSCH、PUCCH、SRSの少なくとも一つであってもよい。
 ノードは、I-LBTとして、LTE LAAにおけるLBT、又は受信機補助LBT(receiver assisted LBT)を行ってもよい。この場合のLTE LAAのLBTはカテゴリ4であってもよい。
 LTE LAAにおけるチャネルアクセス方法として、次の4つのカテゴリが規定されている。
・カテゴリ1:ノードは、LBTを行わずに送信する。
・カテゴリ2:ノードは、送信前に固定のセンシング時間においてキャリアセンスを行い、チャネルが空いている場合に送信する。
・カテゴリ3:ノードは、送信前に所定の範囲内からランダムに値(ランダムバックオフ)を生成し、固定のセンシングスロット時間におけるキャリアセンスを繰り返し行い、当該値のスロットにわたってチャネルが空いていることが確認できた場合に送信する。
・カテゴリ4:ノードは、送信前に所定の範囲内からランダムに値(ランダムバックオフ)を生成し、固定のセンシングスロット時間におけるキャリアセンスを繰り返し行い、当該値のスロットにわたってチャネルが空いていることが確認できた場合に送信する。ノードは、他システムの通信との衝突による通信失敗状況に応じて、ランダムバックオフ値の範囲(contention window size)を変化させる。
 また、2つの送信の間のギャップ(無送信期間、受信電力が所定の閾値以下である期間など)の長さに応じたLBTを行うことが検討されている。
 TxOP内のスケジューリングの柔軟性のため、又は無線リソースの利用効率の向上のために、一つのUEによる複数のUL送信、又は複数のUEによる複数のUL送信が、時間分割多重(Time Division Multiplex:TDM)されてもよいし、周波数分割多重(Frequency Division Multiplex:FDM)されてもよい。
<マルチTTIスケジューリング>
 マルチTTI(Transmission Time Interval)スケジューリング(マルチスロットスケジューリング)は、1つのULグラントで、同一のTB又は異なるHARQ-ACKプロセスIDを有する複数のTBを複数スロットにわたってスケジュールする。NR-UがマルチTTIスケジューリングをサポートすることが検討されている。
 図2は、NR-UにおけるマルチTTIスケジューリングの一例を示す図である。基地局(gNB)は、送信機会(TxOP)を獲得するための初期LBT(initial-LBT)を行い、LBT結果がアイドルである場合、COTの時間長を有するTxOPを獲得する。TxOP内において、基地局は、PDCCH#0、PDSCH#0、PDCCH#1、PDSCH#1を送信する。
 PDCCH#0は、PDSCH#0のリソースと、PDSCH#0に対するHARQ-ACK報告用のPUCCH#0のリソースと、を示す。PDCCH#1は、TxOP内の複数のスロットにわたるPUSCH#0、#1のリソースを示し、UL DAIを含む。
 このように、1つのULグラントが複数のPUSCHをスケジュールする場合、UEは、ULグラント内のUL DAIに基づいてどのように動作するかが明らかでない。例えば、UL DAIが、どのPUSCHのピギーバックを示すかが明らかでない。UL DAIに基づく動作が明らかでなければ、PUSCHにおいてHARQ-ACKを適切に送信できず、システムの性能が低下するおそれがある。
 そこで、本発明者らは、ULグラントに基づいて、複数のPUSCHの少なくとも1つのPUSCHにHARQ-ACKをピギーバックするか否かを適切に決定する方法を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 以下、本発明をNR-U(アンライセンスCC)の例について説明するが、他のシステム(例えば、NR、ライセンスCC)にも適用することができる。
 本開示において、アンライセンスCCは、第1の周波数帯(アンライセンスバンド、アンライセンススペクトラム)のキャリア(セル、CC)、LAA SCell、LAAセル、プライマリセル(Primary Cell:PCell、Special Cell:SpCell)、セカンダリセル(Secondary Cell:SCell)等と読み替えられてもよい。また、ライセンスCCは、第2の周波数帯(ライセンスバンド、ライセンススペクトラム)のキャリア(セル、CC)、PCell、SCell等と読み替えられてもよい。
 また、本開示において、アンライセンスCCは、NRベース(NR unlicensed CC)であってもよいし、LTEベースであってもよい。同様に、ライセンスCCも、NRベースであってもよいし、LTEベースであってもよい。
 本開示における無線通信システム(NR-U、LAAシステムなど)は、第1無線通信規格(例えば、NR、LTEなど)に準拠(第1無線通信規格をサポート)してもよい。
 この無線通信システムと共存する他のシステム(共存システム、共存装置)、他の無線通信装置(共存装置)は、無線LAN(Local Area Network)、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、WiGig(登録商標)、LPWA(Low Power Wide Area)など、第1無線通信規格と異なる第2無線通信規格に準拠(第2無線通信規格をサポート)していてもよい。共存システムは、無線通信システムからの干渉を受けるシステムであってもよいし、無線通信システムへ干渉を与えるシステムであってもよい。共存システムは、RTS及びCTS、又は同等の送信要求信号及び受信可能信号をサポートしてもよい。
 本開示において、I-LBTを行う装置(ノードA)は基地局(送信装置)であってもよい。また、他の装置(ノードA)が獲得した送信機会において、他の装置からのデータを受信する装置(ノードB又はC)は、UE(受信装置)であってもよい。基地局及びUEによって送信されるデータは、ユーザデータ及び制御情報の少なくとも1つを含んでもよい。
 本開示において、特定フィールドは、UL DAI、DCIフォーマット0_1内のDAI、第1DAI、第2DAIなどと読み替えられてもよい。
(無線通信方法)
<態様1>
 マルチTTIスケジューリング(1つのULグラントが複数のスロットにおける複数のPUSCHをスケジュールする場合)において、UEは、スケジュールされた複数のPUSCHの中の、1つの特定PUSCHのみにHARQ-ACKをピギーバック(多重)してもよい。
 マルチTTIスケジューリングのためのULグラントに含まれる特定フィールド(例えば、UL DAI)は、特定PUSCHにHARQ-ACKをピギーバックするか否かを示す情報(HARQ-ACKコードブックサイズ、トータルDAIなど)であってもよい。
 複数のPUSCHの中のどれが特定PUSCHであるかは、仕様に規定されてもよいし、上位レイヤシグナリングによってUEに通知されてもよい。特定PUSCHは、スケジュールされた複数のPUSCHにおける特定パラメータの順に、先頭のPUSCHであってもよいし、最後のPUSCHであってもよい。特定パラメータは、PUSCHの時間リソース(スロット、シンボルなど)、PUSCHのHARQプロセスIDなどに基づいてもよいし、これらの組み合わせに基づいてもよい。特定パラメータは、特定インデックスと読み替えられてもよい。
 スケジュールされた複数のPUSCHの中の非特定PUSCHに対する動作は、仕様に規定されてもよいし、上位レイヤシグナリングによってUEに通知されてもよい。非特定PUSCHに対する動作は、非特定PUSCHに対応するHARQ-ACKをドロップし、非特定PUSCHを送信してもよいし、非特定PUSCHをドロップし、非特定PUSCHに対応するHARQ-ACKを運ぶPUCCHを送信してもよい。又は、HARQ-ACKを運ぶPUCCHと非特定PUSCHとが少なくとも1シンボルで衝突する場合、UEは、上記HARQ-ACKが上記PUSCHにピギーバックされることを期待しなくてもよい。
 図3の例において、UEはTxOP内で、PDCCH#0(第1下り制御情報)、PDSCH#0、PDCCH#1(第1下り制御情報)、PDCCH#2(第2下り制御情報)、PDSCH#1を受信する。
 PDCCH#0は、PDSCH#0のリソース(割り当て)を示し、PDSCH#0に対するHARQ-ACK送信のためのPUCCH#0のリソースを示す。PDCCH#1は、PDSCH#1のリソースを示し、PDSCH#1に対するHARQ-ACK送信のためのPUCCH#1のリソースを示す。PUCCH#1のスロットは、PUCCH#0と異なる。PDCCH#2は、PUCCH#0と同じスロットにおけるPUSCH#0と、PUCCH#1と同じスロットにおけるPUSCH#1と、のリソースを示し、UL DAIを含む。
 この例において、特定PUSCHが時間リソース順に先頭のPUSCHであることが仕様に規定されるとすると、特定PUSCHはPUSCH#0である。したがって、UL DAIは、HARQ-ACKをPUSCH#0にピギーバックするか否かを示す。UL DAIが1であり、且つPUCCH#0及びPUSCH#0が少なくとも1シンボルで衝突する場合、UEは、PDSCH#0に対するHARQ-ACKをPUSCH#0にピギーバックする。
 この例では、UEは、PDSCH#1に対するHARQ-ACKをドロップし、PUSCH#1を送信する。UEは、PUSCH#1をドロップし、PDSCH#1に対するHARQ-ACKを運ぶPUCCH#1を送信してもよい。
 複数のPUSCHが複数のPDSCHにそれぞれ関連付けられてもよい。この例では、PUSCH#0、#1がPDSCH#0、#1にそれぞれ関連付けられてもよい。
 態様1によれば、PDCCHにおけるオーバヘッドを抑えつつ、マルチTTIスケジューリングを行うことができる。
<態様2>
 マルチTTIスケジューリングにおいて、UEは、スケジュールされた複数のPUSCHの中の、いずれのPUSCHにHARQ-ACKをピギーバックしてもよい。
 UL DAIは、次の態様2-1、2-2のいずれかに従ってもよい。
《態様2-1》
 マルチTTIスケジューリングのためのULグラントに含まれる特定フィールド(例えば、UL DAI)は、特定PUSCHにHARQ-ACKをピギーバックするか否かを示す情報(HARQ-ACKコードブックサイズ、トータルDAIなど)であってもよい。
 複数のPUSCHの中のどれが特定PUSCHであるかは、仕様に規定されてもよいし、上位レイヤシグナリングによってUEに通知されてもよい。特定PUSCHは、スケジュールされた複数のPUSCHにおける特定パラメータの順に、先頭のPUSCHであってもよいし、最後のPUSCHであってもよい。特定パラメータは、PUSCHの時間リソース(スロット、シンボルなど)、PUSCHのHARQプロセスIDなどに基づいてもよいし、これらの組み合わせに基づいてもよい。
 スケジュールされた複数のPUSCHの中の非特定PUSCHに対する動作は、仕様に規定されてもよいし、上位レイヤシグナリングによってUEに通知されてもよい。非特定PUSCHに対する動作は、非特定PUSCHにHARQ-ACKをピギーバックしてもよいし、非特定PUSCHに対応するHARQ-ACKをドロップし、非特定PUSCHを送信してもよいし、非特定PUSCHをドロップし、非特定PUSCHに対応するHARQ-ACKを運ぶPUCCHを送信してもよい。
 図4の例において、UEはTxOP内で、図3と同様の、PDCCH#0、PDSCH#0、PDCCH#1、PDCCH#2、PDSCH#1を受信する。
 この例において、特定PUSCHが時間リソース順に先頭のPUSCHであることが仕様に規定されるとすると、特定PUSCHはPUSCH#0である。したがって、UL DAIは、HARQ-ACKをPUSCH#0にピギーバックするか否かを示す。UL DAIが1であり、且つPUCCH#0及びPUSCH#0が少なくとも1シンボルで衝突する場合、UEは、PDSCH#0に対するHARQ-ACKをPUSCH#0にピギーバックする。
 この例における非特定PUSCHに対する動作として、UEは、PDSCH#1に対するHARQ-ACKをPUSCH#1にピギーバックする。
 UEがPDCCH#1及びPDCCH#2の受信に成功すれば、基地局とUEの間において、HARQ-ACKをPUSCH#1へピギーバックすることについて齟齬が生じない。
 態様2-1によれば、PDCCHにおけるオーバヘッドを抑えつつ、マルチTTIスケジューリングを行うことができる。
《態様2-2》
 マルチTTIスケジューリングのためのULグラントに含まれる特定フィールド(例えば、UL DAI)は、複数のPUSCHの中のどのPUSCHにピギーバックするかを示す情報(インデックスなど)であってもよい。
 X個以下のPUSCHのリソースを示すULグラントにおけるUL DAIが、logXビットを有してもよい。これによって、UL DAIは、X個の値の1つを示してもよい。UL DAIの値は、特定パラメータの順に、X個以下のPUSCHに関連付けられてもよい。特定パラメータは、PUSCHの時間リソース(スロット、シンボルなど)、PUSCHのHARQプロセスIDなどに基づいてもよいし、これらの組み合わせに基づいてもよい。UEは、受信したUL DAIの値に関連付けられた特定PUSCHに、HARQ-ACKをピギーバックしてもよい。
 態様2-2によれば、ピギーバックを行うPUSCHを柔軟に設定できる。
<態様3>
 マルチTTIスケジューリングにおいて、UEは、スケジュールされた複数のPUSCHの中の、いずれのPUSCHにHARQ-ACKをピギーバックしてもよい。
 マルチTTIスケジューリングのためのULグラントに含まれる特定フィールド(例えば、UL DAI)は、複数のPUSCHのそれぞれに、対応するHARQ-ACKをピギーバックするか否かを示す情報であってもよい。
 X個以下のPUSCHのリソースを示すULグラントにおけるUL DAIが、Xビットを有するビットマップであってもよい。これによって、UL DAIは、X個のPUSCHのそれぞれについて、HARQ-ACKをピギーバックするか否かを示してもよい。ビットマップ内のビット位置は、特定パラメータの順に、X個以下のPUSCHに関連付けられてもよい。特定パラメータは、PUSCHの時間リソース(スロット、シンボルなど)、PUSCHのHARQプロセスIDなどに基づいてもよいし、これらの組み合わせに基づいてもよい。UEは、1の値を有するビット位置に関連付けられた特定PUSCHに、HARQ-ACKをピギーバックしてもよい。
 図5の例において、UEはTxOP内で、図3と同様の、PDCCH#0、PDSCH#0、PDCCH#1、PDCCH#2、PDSCH#1を受信する。
 この例において、UL DAIが2ビットのビットマップであり、2ビットがPUSCH#0、#1にそれぞれ対応する。UL DAIの第1ビットの値が1であり、且つPUCCH#0及びPUSCH#0が少なくとも1シンボルで衝突する場合、UEは、PDSCH#0に対するHARQ-ACKをPUSCH#0にピギーバックする。UL DAIの第2ビットの値が1であり、且つPUCCH#1及びPUSCH#1が少なくとも1シンボルで衝突する場合、UEは、PDSCH#1に対するHARQ-ACKをPUSCH#1にピギーバックする。
 態様3によれば、マルチTTIスケジューリングによってスケジュールされる複数のPUSCHのそれぞれに、HARQ-ACKをピギーバックするか否かを柔軟に設定できる。
<態様4>
 マルチTTIスケジューリングにおいて、UEは、スケジュールされた複数のPUSCHに同じHARQ-ACKをピギーバックしてもよい。
 マルチTTIスケジューリングのためのULグラントに含まれる特定フィールド(例えば、UL DAI)は、複数のPUSCHに同じHARQ-ACKをピギーバックするか否かを示す情報であってもよい。
 図6の例において、UEはTxOP内で、図3と同様の、PDCCH#0、PDSCH#0、PDCCH#2、PDSCH#1を受信する。
 この例において、PDCCH#0は、PDSCH#0のリソースを示し、PDSCH#0に対するHARQ-ACK送信のためのPUCCH#0、#1のリソースを示す。
 PDCCH#1内のULグラント内のUL DAIは、PUSCH#0、#1にHARQ-ACKをピギーバックするか否かを示す。UL DAIが1であり、且つPUCCH#0及びPUSCH#0が少なくとも1シンボルで衝突する、又はPUCCH#1及びPUSCH#1が少なくとも1シンボルで衝突する場合、UEは、PDSCH#0に対するHARQ-ACKをPUSCH#0、#1にピギーバックする。
 態様4によれば、PDCCHにおけるオーバヘッドを抑えつつ、マルチTTIスケジューリングにおいてHARQ-ACKをPUSCHにピギーバックできる。
<態様5>
 マルチTTIスケジューリングにおいて、HARQ-ACKをPUSCHにピギーバックすることが許容されなくてもよい。
《態様5-1》
 マルチTTIスケジューリングによってスケジュールされたPUSCHが、HARQ-ACK on PUCCHと衝突することがエラーケースとして扱われてもよい。言い換えれば、UEは、マルチTTIスケジューリングによってスケジュールされたPUSCHが、HARQ-ACK on PUCCHと衝突することを期待しなくてもよい。
《態様5-2》
 マルチTTIスケジューリングによってスケジュールされたPUSCHが、HARQ-ACK on PUCCHと衝突した場合、UEは、PUSCHをドロップし、PUCCHを送信してもよい。
《態様5-3》
 マルチTTIスケジューリングによってスケジュールされたPUSCHが、HARQ-ACK on PUCCHと衝突した場合、UEは、PUCCHをドロップし、PUSCHを送信してもよい。
 態様5によれば、UEは、マルチTTIスケジューリングにおけるPUCCH及びPUSCHを適切に処理できる。
<他の態様>
《TxOP外の送信》
 PUCCH及びPUSCHがTxOP(COT)の後のリソースにスケジュールされてもよい。TxOP内のPDCCH(DLアサインメント)は、HARQ-ACK報告用にTxOPより後のPUCCHリソースを指示してもよい。TxOP内のPDCCH(ULグラント)は、TxOPより後のPUSCHをスケジュールしてもよい。
 UEは、TxOPより後の各PUSCHの送信前にLBTを行ってもよい。このLBTの時間長は、TxOP前のI-LBTの時間長より短くてもよい。LBTの時間長は、直前の受信又は送信からPUSCHの送信までのギャップの時間長に基づいてもよい。
《PUSCHのFDM》
 本開示では、1つのULグラントが、複数のスロットにわたる複数のPUSCHをスケジュールする場合について主に説明したが、1つのULグラントが、周波数分割多重(Frequency Division Multiplex(FDM))された複数のPUSCHをスケジュールする場合にも、各態様を適用することができる。DLアサインメントは、HARQ-ACK報告用のPUCCHのスロットを指示し、ULグラントは、当該スロットにおいてFDMされた複数のPUSCHをスケジュールしてもよい。
 複数のPUSCHがFDMされる場合、特定パラメータは、PUSCHの周波数リソース(中心周波数、Physical Resource Block(PRB)インデックス(例えば、先頭PRBインデックス))、PUSCHのHARQプロセスIDなどに基づいてもよいし、これらの組み合わせに基づいてもよい。
《PUCCHリソース指示のタイミング》
 PDSCHをスケジューリングのためのDCI内のHARQタイミング指示(PUCCHリソース指示、PDSCH-to-HARQ-timing-indicator)の値が、対応するPDSCHに対するHARQ-ACKフィードバック用のタイミング及びリソースが後で決定されることをUEに通知してもよい。UEは、PDSCHのスケジューリングのためのDLアサインメントより後に、当該PDSCHに対するHARQ-ACK報告用のPUCCHリソース指示(例えば、DCI)を受信してもよい。UEは、PUSCHをスケジュールするULグラントより後に、HARQ-ACK報告用のPUCCHリソース指示(例えば、DCI)を受信してもよい。
 PUSCHのスケジューリングのためのULグラントより後のPUCCHリソース指示に示されるPUCCHのリソースが、当該PUSCHのリソースと重複することが、エラーケースとして扱われてもよい。言い換えれば、UEは、PUSCHのスケジューリングのためのULグラントより後に、当該PUSCHのリソースに重複するPUCCHのリソースを示すPUCCHリソース指示を受信すると期待しなくてもよい。
《他のHARQ-ACKコードブック》
 本開示では、準静的(タイプ1)HARQ-ACKコードブックを用いる場合について主に説明したが、動的(タイプ2)HARQ-ACKコードブック、CBGベースHARQ-ACKコードブックを用いる場合にも、各態様を適用することができる。
 態様2-2において、動的HARQ-ACKコードブックを設定された場合、UL DAIをlogXビットに拡張することは、UL DAI(第1DAI)を2×logXビットに拡張することと読み替えられてもよい。CBGベースHARQ-ACKコードブックを設定された場合、UL DAIをlogXビットに拡張することは、UL DAI(第2DAI)を2×logXビットに拡張することと読み替えられてもよい。
 態様3において、動的HARQ-ACKコードブックを設定された場合、UL DAIがXビットを有するビットマップであることは、UL DAI(第1DAI)が2Xビットを有するビットマップであることと読み替えられてもよい。CBGベースHARQ-ACKコードブックを設定された場合、UL DAIがXビットを有するビットマップであることは、UL DAI(第2DAI)が2Xビットを有するビットマップであることと読み替えられてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図8は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、送受信部120は、送信前にリスニング(LBT、I-LBT)を行い、リスニング結果がアイドルである場合に下り制御チャネル(PDCCH、下り制御情報)、下り共有チャネル(PDSCH、データ)などを送信してもよい。
(ユーザ端末)
 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、リスニングに基づく送信機会(TxOP、COTなど)において、下り共有チャネル(PDSCH)のリソース及び下り共有チャネルに対するHybrid Automatic Repeat reQuest-ACKnowledgement(HARQ-ACK)のための上り制御チャネル(PUCCH)のリソースを示す第1下り制御情報と、複数の上り共有チャネル(PUSCH)のリソース及び特定フィールド(UL DAI、第1DAI、第2DAIなど)を示す第2下り制御情報と、を受信してもよい。制御部210は、前記複数の上り共有チャネルの中の少なくとも1つの特定上り共有チャネルが、前記上り制御チャネルと重複する場合、前記特定フィールドに基づいて、前記特定上り共有チャネル内に前記HARQ-ACKを多重するか否かを決定してもよい。
 前記複数の上り共有チャネルは、複数のスロットにわたってもよい(マルチTTIスケジューリング)。
 前記特定フィールドは、前記特定上り共有チャネル内に前記HARQ-ACKを多重するか否か(態様1、態様2-1、態様3、態様4)と、前記特定上り共有チャネル(態様2-2、態様3)と、の少なくとも1つを示してもよい。
 前記制御部210は、前記複数の上り共有チャネルのそれぞれの時間リソースと、前記複数の上り共有チャネルのそれぞれのHARQプロセス番号と、前記複数の上り共有チャネルのそれぞれの周波数リソースと、の少なくとも1つに基づいて、前記特定上り共有チャネルを決定してもよい(態様1、態様2、態様3)。
 前記制御部210は、前記複数の上り共有チャネルが、前記第1下り制御情報によって指示される上り制御チャネルと衝突しないと想定すること(態様5-1)と、前記上り共有チャネルが前記上り制御チャネルと衝突する場合に前記上り共有チャネル又は前記上り制御チャネルをドロップすること(態様5-2、5-3)と、の1つを行ってもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  リスニングに基づく送信機会において、下り共有チャネルのリソース及び下り共有チャネルに対するHybrid Automatic Repeat reQuest-ACKnowledgement(HARQ-ACK)のための上り制御チャネルのリソースを示す第1下り制御情報と、複数の上り共有チャネルのリソース及び特定フィールドを示す第2下り制御情報と、を受信する受信部と、
     前記複数の上り共有チャネルの中の少なくとも1つの特定上り共有チャネルが、前記上り制御チャネルと重複する場合、前記特定フィールドに基づいて、前記特定上り共有チャネル内に前記HARQ-ACKを多重するか否かを決定する制御部と、を有することを特徴とするユーザ端末。
  2.  前記複数の上り共有チャネルは、複数のスロットにわたることを特徴とする請求項1に記載のユーザ端末。
  3.  前記特定フィールドは、前記特定上り共有チャネル内に前記HARQ-ACKを多重するか否かと、前記特定上り共有チャネルと、の少なくとも1つを示すことを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記複数の上り共有チャネルのそれぞれの時間リソースと、前記複数の上り共有チャネルのそれぞれのHARQプロセス番号と、前記複数の上り共有チャネルのそれぞれの周波数リソースと、の少なくとも1つに基づいて、前記特定上り共有チャネルを決定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、前記複数の上り共有チャネルが、前記第1下り制御情報によって指示される上り制御チャネルと衝突しないと想定することと、前記上り共有チャネルが前記上り制御チャネルと衝突する場合に前記上り共有チャネル又は前記上り制御チャネルをドロップすることと、の1つを行うことを特徴とする請求項1又は請求項2に記載のユーザ端末。
  6.  リスニングに基づく送信機会において、下り共有チャネルのリソース及び下り共有チャネルに対するHybrid Automatic Repeat reQuest-ACKnowledgement(HARQ-ACK)のための上り制御チャネルのリソースを示す第1下り制御情報と、複数の上り共有チャネルのリソース及び特定フィールドを示す第2下り制御情報と、を受信する工程と、
     前記複数の上り共有チャネルの中の少なくとも1つの特定上り共有チャネルが、前記上り制御チャネルと重複する場合、前記特定フィールドに基づいて、前記特定上り共有チャネル内に前記HARQ-ACKを多重するか否かを決定する工程と、を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2018/043856 2018-11-28 2018-11-28 ユーザ端末及び無線通信方法 WO2020110244A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880100644.4A CN113330774A (zh) 2018-11-28 2018-11-28 用户终端以及无线通信方法
EP18941593.8A EP3890393A1 (en) 2018-11-28 2018-11-28 User terminal and wireless communication method
PCT/JP2018/043856 WO2020110244A1 (ja) 2018-11-28 2018-11-28 ユーザ端末及び無線通信方法
CN202310963214.8A CN117040709A (zh) 2018-11-28 2018-11-28 终端、终端的无线通信方法、基站以及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043856 WO2020110244A1 (ja) 2018-11-28 2018-11-28 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2020110244A1 true WO2020110244A1 (ja) 2020-06-04

Family

ID=70853220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043856 WO2020110244A1 (ja) 2018-11-28 2018-11-28 ユーザ端末及び無線通信方法

Country Status (3)

Country Link
EP (1) EP3890393A1 (ja)
CN (2) CN117040709A (ja)
WO (1) WO2020110244A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113939023A (zh) * 2020-07-13 2022-01-14 维沃移动通信有限公司 一种冲突处理方法及装置
CN113965997A (zh) * 2020-07-20 2022-01-21 维沃移动通信有限公司 上行传输方法、装置及设备
US20220132535A1 (en) * 2020-10-22 2022-04-28 Acer Incorporated Device of Handling a HARQ Retransmission
WO2023001297A1 (zh) * 2021-07-23 2023-01-26 维沃移动通信有限公司 反馈harq-ack信息的方法、装置及终端
WO2023152934A1 (ja) * 2022-02-10 2023-08-17 株式会社Nttドコモ 端末、基地局及び通信方法
WO2023152933A1 (ja) * 2022-02-10 2023-08-17 株式会社Nttドコモ 端末、基地局及び通信方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020947A1 (en) * 2022-07-28 2024-02-01 Zte Corporation Control information multiplexing for wireless communications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017539182A (ja) * 2015-01-20 2017-12-28 エルジー エレクトロニクス インコーポレイティド 上りリンク制御情報を送信するための方法及びそのための装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301792B (zh) * 2009-01-30 2015-02-18 三星电子株式会社 在数据信道或控制信道上发送上行链路控制信息
JP2013150231A (ja) * 2012-01-23 2013-08-01 Sharp Corp 通信システム、移動局装置、基地局装置、通信方法および集積回路
CN109412775B (zh) * 2012-06-27 2021-08-03 北京三星通信技术研究有限公司 一种发送harq-ack反馈信息的方法
JP2014011540A (ja) * 2012-06-28 2014-01-20 Sharp Corp 通信システム、移動局装置、基地局装置、通信方法および集積回路
JP6081531B2 (ja) * 2015-06-26 2017-02-15 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP6125590B2 (ja) * 2015-09-24 2017-05-10 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
KR102511925B1 (ko) * 2015-11-06 2023-03-20 주식회사 아이티엘 반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017539182A (ja) * 2015-01-20 2017-12-28 エルジー エレクトロニクス インコーポレイティド 上りリンク制御情報を送信するための方法及びそのための装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for control (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.213, no. V15.3.0, 1 September 2018 (2018-09-01), pages 1 - 101, XP051487512 *
HUAWEI, HISILICON: "Feature lead summary of HARQ enhancement in NR-U", 3GPP DRAFT; R1-1814146, vol. RAN WG1, 16 November 2018 (2018-11-16), pages 1 - 15, XP051494603 *
NTT DOCOMO, INC: "Maintenance for physical uplink control channel", 3GPP DRAFT; R1-1813302_MAINTENANCE FOR PHYSICAL UPLINK CONTROL CHANNEL, vol. RAN WG1, 3 November 2018 (2018-11-03), Spokane, United States, pages 1 - 4, XP051479610 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113939023A (zh) * 2020-07-13 2022-01-14 维沃移动通信有限公司 一种冲突处理方法及装置
CN113965997A (zh) * 2020-07-20 2022-01-21 维沃移动通信有限公司 上行传输方法、装置及设备
US20220132535A1 (en) * 2020-10-22 2022-04-28 Acer Incorporated Device of Handling a HARQ Retransmission
US11902967B2 (en) * 2020-10-22 2024-02-13 Acer Incorporated Device of handling a HARQ retransmission
WO2023001297A1 (zh) * 2021-07-23 2023-01-26 维沃移动通信有限公司 反馈harq-ack信息的方法、装置及终端
WO2023152934A1 (ja) * 2022-02-10 2023-08-17 株式会社Nttドコモ 端末、基地局及び通信方法
WO2023152933A1 (ja) * 2022-02-10 2023-08-17 株式会社Nttドコモ 端末、基地局及び通信方法

Also Published As

Publication number Publication date
EP3890393A1 (en) 2021-10-06
CN113330774A (zh) 2021-08-31
CN117040709A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
JP7216201B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7269333B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020144833A1 (ja) ユーザ端末及び無線通信方法
WO2020110244A1 (ja) ユーザ端末及び無線通信方法
JP7269264B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7121136B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7264919B2 (ja) 端末、無線通信方法及びシステム
WO2021152805A1 (ja) 端末、無線通信方法及び基地局
JP7490641B2 (ja) 端末、無線通信方法及びシステム
JP7227360B2 (ja) 端末、無線通信方法、基地局及びシステム
EP3944699A1 (en) User terminal and wireless communication method
JP7337837B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7273140B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020148841A1 (ja) ユーザ端末及び無線通信方法
WO2021255936A1 (ja) 端末、無線通信方法及び基地局
JP7351921B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022163559A1 (ja) 端末、無線通信方法及び基地局
JP7197678B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020144832A1 (ja) ユーザ端末及び無線通信方法
WO2020166034A1 (ja) ユーザ端末及び無線通信方法
JP7508557B2 (ja) 端末、無線通信方法及び基地局
WO2021075524A1 (ja) 端末及び無線通信方法
EP4192066A1 (en) Terminal, wireless communication method, and base station
WO2021152804A1 (ja) 端末、無線通信方法及び基地局
JP7216221B2 (ja) 端末、無線通信方法、基地局及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018941593

Country of ref document: EP

Effective date: 20210628

NENP Non-entry into the national phase

Ref country code: JP