WO2022009270A1 - Motor driving device and air-conditioning apparatus - Google Patents

Motor driving device and air-conditioning apparatus Download PDF

Info

Publication number
WO2022009270A1
WO2022009270A1 PCT/JP2020/026423 JP2020026423W WO2022009270A1 WO 2022009270 A1 WO2022009270 A1 WO 2022009270A1 JP 2020026423 W JP2020026423 W JP 2020026423W WO 2022009270 A1 WO2022009270 A1 WO 2022009270A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
inverters
inverter
switching
temperature
Prior art date
Application number
PCT/JP2020/026423
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 小林
浩一 有澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022534501A priority Critical patent/JP7292516B2/en
Priority to PCT/JP2020/026423 priority patent/WO2022009270A1/en
Publication of WO2022009270A1 publication Critical patent/WO2022009270A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel

Definitions

  • the present disclosure relates to a motor drive device for driving a motor and an air conditioner provided with the motor drive device.
  • Patent Document 1 As a motor driving device for driving one motor by a plurality of inverters, there is one shown in Patent Document 1 below.
  • This Patent Document 1 discloses a technique of controlling the current so as to maintain the balance of the inverter current, which is the output current of each inverter, that is, the output equilibrium so as not to concentrate the load on a specific inverter.
  • the present disclosure has been made in view of the above, and is a motor capable of suppressing fluctuations in inverter output due to differences or changes in the environment in which each inverter is arranged while reducing the number of current detectors.
  • the purpose is to obtain a drive device.
  • the motor drive device includes a plurality of inverters that convert a DC voltage supplied from a power source into a three-phase AC voltage and apply it to the same motor. It is a motor drive device.
  • the motor drive device has first and second switching modes that are selected based on the mode selection information when the motor is driven by a plurality of inverters. In the first switching mode, the switching operation of each inverter is performed by aligning the on and off timings of the switching elements in the same phase of each inverter among the plurality of inverters. In the second switching mode, the switching operation of each inverter is performed by setting the on / off timing of the switching element in the same phase of each inverter to be different among the plurality of inverters.
  • the motor drive device it is possible to reduce the number of current detectors and suppress the fluctuation of the inverter output due to the difference or change in the environment in which each inverter is arranged.
  • the figure which shows the 1st configuration example of the electric power source shown in FIG. The figure which shows the 2nd configuration example of the electric power source shown in FIG.
  • connection without distinguishing between an electrical connection and a physical connection.
  • FIG. 1 is a circuit diagram showing a configuration example of the motor drive device 100 according to the first embodiment.
  • the motor drive device 100 is a drive device that uses the electric power supplied from the power source 2 to apply an AC voltage to the motor 1 connected to the load 6 to drive the load 6 connected to the motor 1.
  • the motor drive device 100 includes inverters 3a and 3b, a control unit 4, and a current detection unit 5a and 5b.
  • the control unit 4 controls the operation of the inverters 3a and 3b.
  • Each of the current detection units 5a and 5b detects the inverter current flowing through each of the inverters 3a and 3b.
  • the inverter current is the output current output from each of the inverters 3a and 3b to the motor 1.
  • a configuration having two inverters 3a and 3b will be described, but the configuration is not limited to this.
  • the motor drive device 100 according to the first embodiment can be similarly applied even if the number of inverters 3 is 3 or more.
  • the motor 1 is a three-phase motor.
  • An example of a three-phase motor is a three-phase permanent magnet synchronous motor.
  • the motor 1 is connected to the load 6 via a motor shaft (not shown).
  • An example of the load 6 is a compressor of an air conditioner. When the load 6 is a compressor, the motor 1 drives the compression element of the compressor.
  • FIG. 2 is a diagram showing a first configuration example of the power source 2 shown in FIG.
  • FIG. 3 is a diagram showing a second configuration example of the power source 2 shown in FIG.
  • FIG. 2 shows a three-phase AC / DC converter 22a provided with a three-phase converter, a reactor and a capacitor for converting AC power supplied from the three-phase AC power supply 21a into DC power.
  • FIG. 3 shows a single-phase AC-DC converter 22b provided with a single-phase converter, a reactor and a capacitor for converting AC power supplied from the single-phase AC power supply 21b into DC power.
  • the power source 2 may be configured by using any of these.
  • a well-known booster circuit such as a DC converter is inserted into the DC bus between the AC / DC converters 22a and 22b and the respective inverters 3a and 3b to direct current. It may be configured to boost the voltage.
  • a DC power source such as a battery or a battery that directly supplies a DC voltage to each of the inverters 3a and 3b may be used.
  • the AC / DC converters 22a and 22b, or the booster circuit described above, may be configured to be incorporated in the motor drive device 100 instead of the power source 2.
  • FIG. 1 shows a configuration in which the inverters 3a and 3b are connected to the same power source 2
  • a configuration in which the respective inverters 3a and 3b are connected to different power sources 2 may be used.
  • the inverters 3a and 3b are connected in parallel to the same motor 1.
  • Each of the inverters 3a and 3b converts the DC voltage supplied from the power source 2 into a three-phase AC voltage, and applies the converted three-phase AC voltage to the same motor 1.
  • the three-phase AC voltage is a drive voltage for driving the motor 1 to rotate at a desired frequency, that is, at a desired rotation speed.
  • the three-phase AC voltage is generated according to a three-phase pulse width modulation (PWM) signal.
  • PWM pulse width modulation
  • the inverter 3a includes six switching elements UP1, UN1, VP1, VN1, WP1, WN1.
  • the switching elements UP1 and UN1 are connected in series to form a U-phase leg.
  • the switching elements VP1 and VN1 are connected in series to form a V-phase leg.
  • the switching elements WP1 and WN1 are connected in series to form a W-phase leg. These three legs are connected in parallel with each other to form a well-known three-phase inverter.
  • Each switching element of the inverter 3a is controlled to be turned on or off according to a switching signal generated based on the above-mentioned PWM signal.
  • the inverter 3b includes six switching elements UP2, UN2, VP2, VN2, WP2, WN2.
  • the inverter 3b is also configured in the same manner as the inverter 3a. Since the contents are duplicated, the explanation here is omitted.
  • a feedback diode is connected in parallel to each of the switching elements.
  • each switching element is a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET)
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • parasitic diode contained in the MOSFET itself may be used as a feedback diode.
  • Parasitic diodes are also called body diodes.
  • the switching element is not limited to the MOSFET, and a switching element other than the MOSFET may be used.
  • Each switching element may be an element made of silicon (Si) or a wide bandgap semiconductor such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3) or diamond (C).
  • a wide band gap (WBG) semiconductor element may be used. If a WBG semiconductor element is used, the effects of low loss, high withstand voltage and high heat resistance can be enjoyed. Further, if a WBG semiconductor element is used, on / off operation can be performed at high speed. As a result, the on / off timing of switching can be finely controlled, so that the effect of the first embodiment, which will be described later, can be further enhanced.
  • FIG. 1 illustrates a configuration in which a current sensor is arranged in the U-phase and W-phase wirings of the three wirings connected from the inverter 3a to the motor 1 as the current detection unit 5a.
  • the two current sensors in the current detection unit 5a may be arranged in any two of the U phase, the V phase and the W phase.
  • the current detection unit 5b can be configured in the same manner as the current detection unit 5a.
  • an AC current transformer As the current sensor, an AC current transformer (Alternating Current Current Transformer: ACCT) is exemplified, but a DC current transformer (Direct Current Current Transformer: DCCT) or a shunt resistor may be used.
  • ACCT Alternating Current Current Transformer
  • DCCT Direct Current Current Transformer
  • the shunt resistor is generally arranged on the negative side DC bus connecting the power source 2 and each of the inverters 3a and 3b, or on the negative side in each phase leg of the inverters 3a and 3b.
  • Each detected value of the inverter current in the inverters 3a and 3b detected by the current detection units 5a and 5b is input to the control unit 4.
  • the control unit 4 calculates the voltage to be output to the motor 1 and generates a three-phase voltage command value based on the calculated voltage.
  • a three-phase voltage command value When generating a three-phase voltage command value by calculation, well-known methods such as two-phase modulation, third-order harmonic superimposition modulation, and space vector modulation can be used.
  • the control unit 4 generates a PWM signal for each of the inverters 3a and 3b based on the three-phase voltage command value and the bus voltage, and outputs the PWM signal to the inverters 3a and 3b.
  • the bus voltage referred to here is equivalent to the DC voltage output from the power source 2.
  • FIG. 4 is a time chart showing an example of a PWM signal which is a switching command when each of the inverters 3a and 3b in the first embodiment is driven in the first switching mode.
  • the first switching mode is a mode in which the switching operation is performed by aligning the on and off timings of the switching elements between the in-phases of the inverters 3a and 3b.
  • FIG. 4 shows a waveform of voltage command values Vu *, Vv *, Vw * which is a three-phase sine wave, and a carrier signal having an amplitude Vdc / 2 which changes in a triangular wave shape.
  • the voltage command values Vu *, Vv *, and Vw * may be waveforms other than the three-phase sine wave, and the carrier signal may be a sawtooth wave instead of the triangular wave.
  • the PWM signals UP1, UN1, VP1, VN1, WP1, WN1 for the inverter 3a in the first switching mode and the PWM signals UP2, UN2 for the inverter 3b in the first switching mode are shown.
  • VP2, VN2, WP2, WN2 are shown alternately for each phase.
  • the identification symbol of the PWM signal is the same as the code of each switching element of the inverters 3a and 3b.
  • the control unit 4 compares the voltage command values Vu *, Vv *, and Vw * with the carrier signal as the reference signal, and generates PWM signals UP1, UN1, VP1, VN1, WP1, WN1 based on the mutual magnitude relationship. ..
  • the PWM signal UP1 when the U-phase voltage command value Vu * is larger than the carrier signal, the PWM signal UP1 is shown at a high level as the voltage for turning on the switching element UP1, and the PWM signal UN1 is the voltage for turning off the switching element UN1. Shown at low level as.
  • This method is called a complementary PWM method.
  • the PWM signal UP1 when the U-phase voltage command value Vu * is smaller than the carrier signal, the PWM signal UP1 is a voltage that turns off the switching element UP1, and the PWM signal UN1 is a voltage that turns on the switching element UN1. May be good.
  • the PWM signals VP1 and VN1 are determined by comparing the V-phase voltage command value Vv * with the carrier signal, and the PWM signals WP1 and WN1 are determined by comparing the W-phase voltage command value Vw * with the carrier signal.
  • the PWM signal UP1 and the PWM signal UN1, the PWM signal VP1 and the PWM signal VN1, and the PWM signal WP1 and the PWM signal WN1 have opposite polar relationships with each other.
  • the on / off switching operation of the switching element of the inverter 3a can be appropriately controlled, and a desired voltage can be output from the inverter 3a to the motor 1.
  • the PWM signals UP2, UN2, VP2, VN2, WP2, WN2 of the inverter 3b are also generated in the same manner as the PWM signals UP1, UN1, VP1, VN1, WP1, WN1 of the inverter 3a.
  • the second switching mode is a mode in which the switching operation is performed with the on and off timings of the switching elements being different between the in-phases of the inverters 3a and 3b.
  • the pulse widths of the PWM signals in the inverters 3a and 3b are the same, the fundamental wave components of the output voltages of the inverters 3a and 3b are kept the same. Therefore, if there is no difference or change in the environment in which the inverters 3a and 3b are arranged, a desired inverter output can be obtained. On the other hand, when there is a difference or change in the environment in which the inverters 3a, 3b are arranged, the difference or change in these environments becomes large with the passage of time, and the wiring temperature between the inverters 3a, 3b and the motor 1 changes. It appears as a variation in wiring resistance or a change in the state of the motor.
  • a difference or change in the environment in which the inverters 3a and 3b are arranged fluctuates the cooling capacity of the inverters 3a and 3b, and appears as a temperature variation of the switching element in the inverters 3a and 3b. Therefore, there is a possibility that the desired inverter output cannot be obtained only by the operation of the first switching mode. Therefore, a second switching mode is prepared.
  • FIG. 5 is a time chart showing an example of a PWM signal which is a switching command when each of the inverters 3a and 3b in the first embodiment is driven in the second switching mode.
  • FIG. 5 shows the waveforms of the voltage command values Vu *, Vv *, Vw * and the carrier signal having the amplitude Vdc / 2.
  • the PWM signals UP1, UN1, VP1, VN1, WP1, WN1 for the inverter 3a in the second switching mode and the PWM signals UP2, UN2, VP2 for the inverter 3b in the second switching mode are shown.
  • VN2, WP2, and WN2 are shown alternately for each phase.
  • the waveforms of the PWM signals UP1, UN1, VP1, VN1, WP1, WN1 and the timing at which the polarity changes are the same as in FIG.
  • the second switching mode is a mode in which the switching operation is performed with the on and off timings of the switching elements different between the in-phases of the inverters 3a and 3b.
  • the on / off timing of each switching element in the inverter 3b is controlled to be delayed by the time difference Te with respect to the on / off timing of each switching element in the inverter 3a.
  • the time difference Te is the amount of shift in the timing of turning on or off of the switching element for each phase in the inverters 3a and 3b.
  • the variation in wiring resistance due to the change in the wiring temperature between the inverters 3a and 3b and the motor 1 and the temperature variation of the switching element in the inverters 3a and 3b act in a direction of becoming smaller. This makes it possible to suppress fluctuations in the inverter output due to differences or changes in the environment in which the inverters 3a and 3b are arranged.
  • the PWM signal in the inverters 3a and 3b It is preferable that the pulse widths are the same. By controlling in this way, it is possible to suppress fluctuations in the inverter output while keeping the fundamental wave components of the output voltages of the inverters 3a and 3b the same.
  • the method of providing a time difference Te for each phase has been described above as a method of controlling the on / off timing of the switching element in the inverter 3b so as to be different when the same phases of the inverter 3a are compared.
  • voltage command values Vu *, Vv *, Vw * are individually generated for each of the inverters 3a, 3b, and phase differences are provided for the voltage command values Vu *, Vv *, Vw * in each of the inverters 3a, 3b. You may.
  • the intended PWM signal can be generated.
  • the voltage command values Vu *, Vv *, Vw * may be common among the inverters 3a and 3b, and the carrier signal may be different among the inverters 3a and 3b.
  • the on and off timings are individually corrected for the pair of switching elements for each phase in the inverters 3a and 3b. May be good.
  • the switching pattern of the inverter 3b is adjusted based on the inverter 3a, but the present invention is not limited to this. On the contrary, the switching pattern of the inverter 3a may be adjusted with reference to the inverter 3b.
  • FIG. 6 is a flowchart for explaining the method of selecting the switching mode in the first embodiment.
  • the mode selection information is the inverter current detected by the current detection units 5a and 5b.
  • the inverter current is the output current output from the respective inverters 3a and 3b to the motor 1.
  • control unit 4 controls the inverters 3a and 3b to drive the motor 1 in the first switching mode (step S11).
  • the control unit 4 controls the inverters 3a and 3b to drive the motor 1 in the first switching mode (step S11).
  • the control unit 4 controls the inverters 3a and 3b to drive the motor 1 in the first switching mode (step S11).
  • the variation in wiring resistance, the variation in the temperature of the switching element, and the like are small, the output balance of the inverter current is maintained.
  • the control unit 4 acquires the detection value of the inverter current in the inverters 3a and 3b from the current detection units 5a and 5b (step S12).
  • the control unit 4 calculates the difference current based on the detected value of the inverter current (step S13).
  • the difference current may be information that shows the difference in the inverter current between the inverters 3a and 3b, and the physical quantity of the information does not have to be the current.
  • the control unit 4 compares the difference current with a predetermined allowable value (step S14). If the difference current is equal to or less than the allowable value (steps S14 and No), the process returns to step S11 and the above process is repeated. On the other hand, when the difference current exceeds the allowable value (step S14, Yes), the control unit 4 controls the inverters 3a and 3b to drive the motor 1 in the second switching mode (step S15).
  • control unit 4 drives the motor 1 in the first switching mode when the difference current is equal to or less than the allowable value, and drives the motor 1 in the second switching mode when the difference current exceeds the allowable value.
  • control unit 4 controls to switch the switching mode for driving the motor 1 between the first switching mode and the second switching mode based on the difference current.
  • the control unit 4 when the control unit 4 is driven in the second switching mode, if the difference current returns to the allowable value or less, the control unit 4 switches the switching mode from the second switching mode to the first switching mode. For example, when the load 6 is switched from the high load operation to the medium or light load operation, the inverter current and the motor current continue to be small, and the temperatures of the inverters 3a, 3b and the motor 1 are less likely to rise. Alternatively, since the temperature of the inverters 3a and 3b and the ambient temperature are lowered by the external cooling mechanism or natural cooling, the variation in the wiring resistance and the temperature variation in the switching element are gradually reduced. In such a state, the output equilibrium of the inverter current is maintained even if the motor 1 is driven in the first switching mode.
  • step S14 the case where the difference current and the allowable value are equal is determined as "No", but it may be determined as "Yes". That is, the control unit 4 may determine the case where the difference current and the permissible value are equal to each other by either "Yes” or "No". In any case, the control unit 4 drives the motor 1 in the first switching mode if the difference current is within the allowable value range, and switches the motor 1 to the second switching if the difference current is outside the allowable value range. Drive in mode.
  • the comparison target of the allowable values is the difference current, but the comparison is not limited to this.
  • the current ratio which is the ratio between the detection value of the current detection unit 5a and the detection value of the current detection unit 5b, may be used.
  • a time difference Te is set for each phase between the timing of turning on or off the switching element in the inverter 3b and the timing of turning on or off the switching element in the inverter 3a.
  • the time difference Te may be a fixed value or a variable value according to the difference current.
  • the value is variable, the relationship between the difference current and the time difference Te may be obtained in advance, and the time difference Te may be changed according to the magnitude of the difference current.
  • This control can be realized by configuring a control system inside the control unit 4 in which the difference current is the control amount and the time difference Te for each phase is the operation amount.
  • the positive and negative values of the time difference Te may be controlled as follows.
  • the detected value of the inverter current detected by the current detection unit 5a is referred to as "current of the inverter 3a”
  • the detected value of the inverter current detected by the current detection unit 5b is referred to as "current of the inverter 3b”.
  • the voltage applied by the inverter 3a to the motor 1 is referred to as "output voltage of the inverter 3c”
  • the voltage applied by the inverter 3b to the motor 1 is referred to as "output voltage of the inverter 3b”.
  • the output voltage of the inverter 3a becomes larger than the output voltage of the inverter 3b. Therefore, in this case, the direction and magnitude of the shift of the time difference Te are controlled so that the output voltage of the inverter 3a becomes relatively small with respect to the output voltage of the inverter 3b. As long as the output voltage of the inverter 3a is relatively small with respect to the output voltage of the inverter 3b, the direction of the shift of the time difference Te, that is, the positive or negative of the value of the time difference Te does not matter.
  • the output voltage of the inverter 3a becomes smaller than the output voltage of the inverter 3b. Therefore, in this case, the direction and magnitude of the shift of the time difference Te are controlled so that the output voltage of the inverter 3a becomes relatively large with respect to the output voltage of the inverter 3b. As long as the output voltage of the inverter 3a is relatively large with respect to the output voltage of the inverter 3b, the direction of the shift of the time difference Te, that is, the positive or negative of the value of the time difference Te does not matter.
  • the value of the time difference Te is generally on the order of several hundred [ns] to several [ ⁇ s] for the purpose of eliminating the imbalance of the inverter current caused by the variation of the wiring resistance, the temperature variation of the switching element, and the like. Become. If the value of the time difference Te is made larger than this, it may affect the voltage that should be output to the motor 1, so it is wise to avoid it.
  • the pulse width of the PWM signal may be controlled to be different between the inverter 3a and the inverter 3b as described above. If this control is used in combination, the time for eliminating the imbalance between the inverters 3a and 3b can be shortened.
  • the difference current generated between the inverters 3a and 3b leads to an increase in the inverter loss and the motor loss. Further, since this difference current is superimposed on the current required by the motor 1 and flows to each inverter, there is a possibility that an overcurrent may occur due to the instantaneous current superposition.
  • the effect of suppressing the inverter loss and the motor loss can be obtained. Further, since the generation of overcurrent can be suppressed by the control based on the difference current, the probability that the switching element is damaged can be reduced. Furthermore, it is possible to reduce the element rating margin for reducing the probability that the switching element will be damaged.
  • the number of inverters connected in parallel to the same motor 1 is 2, but it is not limited to this.
  • the number of inverters may be 3 or more.
  • the difference between the maximum value and the minimum value of the inverter current may be calculated and the calculated value may be used as the difference current in the above flowchart.
  • the time difference Te may be set and driven only for the inverter having the maximum inverter current, or the time difference Te may be set and driven for the inverter other than the inverter having the minimum inverter current. Further, it may be driven by a method other than these.
  • the motor drive device has the first and second switching modes selected based on the inverter current which is the mode selection information when the motor is driven by a plurality of inverters. Have.
  • the switching operation of each inverter is performed by aligning the on and off timings of the switching elements in the same phase of each inverter among the plurality of inverters.
  • the switching operation of each inverter is performed by setting the on / off timing of the switching element in the same phase of each inverter to be different among the plurality of inverters.
  • the motor drive device drives the motor in the second switching mode when the difference current of the inverter current between the respective inverters exceeds the allowable value. This makes it possible to suppress fluctuations in the inverter output due to differences or changes in the environment in which each inverter is arranged.
  • the inverter current which is the mode selection information
  • the inverter current can be realized only by the current detector that detects the inverter current of each inverter, and the current detector that detects the motor current flowing in each phase of the motor is unnecessary. Therefore, according to the motor drive device according to the first embodiment, the effect that the number of current detectors can be reduced can be obtained.
  • FIG. 7 is a block diagram showing an example of a hardware configuration that realizes the function of the control unit 4 in the first embodiment.
  • FIG. 8 is a block diagram showing another example of the hardware configuration that realizes the function of the control unit 4 in the first embodiment.
  • a processor 300 that performs an operation
  • a memory 302 that stores a program read by the processor 300
  • the interface 304 for inputting / outputting signals can be included.
  • the processor 300 may be an arithmetic unit such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Radom Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Project ROM), or an EEPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic discs, flexible discs, optical discs, compact discs, mini discs, and DVDs (Digital Versaille Disc).
  • the memory 302 stores a program that executes the function of the control unit 4 in the first embodiment.
  • the processor 300 sends and receives necessary information via the interface 304, the processor 300 executes a program stored in the memory 302, and the processor 300 refers to a table stored in the memory 302 to perform the above-mentioned processing. It can be carried out.
  • the calculation result by the processor 300 can be stored in the memory 302.
  • the processing circuit 303 shown in FIG. 8 can also be used.
  • the processing circuit 303 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the information input to the processing circuit 303 and the information output from the processing circuit 303 can be obtained via the interface 304.
  • control unit 4 may be performed by the processing circuit 303, and processing not performed by the processing circuit 303 may be performed by the processor 300 and the memory 302.
  • Embodiment 2 In the first embodiment, the case where the inverter current detected by the current detection unit is the motor selection information has been described. In the second embodiment, the case where the temperature information detected by the temperature detector is the motor selection information will be described.
  • FIG. 9 is a circuit diagram showing the configuration of the motor drive device 100a according to the second embodiment.
  • the control unit 4 is replaced with the control unit 4a, and the inverters 3a and 3b are replaced with the inverters 3c and 3d, as compared with the configuration of FIG.
  • the inverter 3c is provided with a temperature detector 7a
  • the inverter 3d is provided with a temperature detector 7b.
  • Other configurations are the same as or equivalent to those in FIG. 1, and the same or equivalent components are indicated by the same reference numerals, and duplicate explanations are omitted.
  • the temperature detectors 7a and 7b may be collectively referred to as "first temperature detector".
  • the temperature detector 7a detects the temperature of the inverter 3c
  • the temperature detector 7b detects the temperature of the inverter 3d.
  • the temperature of the inverters 3c and 3d may be the internal temperature of each or the external ambient temperature of each.
  • the temperature detectors 7a and 7b may be, for example, a temperature sensor built in a power module composed of six switching elements in the respective inverters 3c and 3d.
  • the temperature detectors 7a and 7b may be configured to convert the temperature into an electric signal by attaching a temperature sensor to each of the inverters 3c and 3d.
  • An example of a temperature sensor is a thermistor or thermocouple.
  • FIG. 10 is a flowchart for explaining the method of selecting the switching mode in the second embodiment.
  • the mode selection information is the temperature of the inverters 3c and 3d detected by the temperature detectors 7a and 7b.
  • control unit 4a controls the inverters 3c and 3d to drive the motor 1 in the first switching mode (step S21). If the temperature difference between the inverters 3c and 3d is small in the motor 1 and the inverters 3c and 3d, the variation in wiring resistance and the temperature variation in the switching element are also small, and the output balance of the inverter current is maintained.
  • the control unit 4 acquires the temperature detection values of the inverters 3c and 3d from the temperature detectors 7a and 7b (step S22). The control unit 4 calculates the temperature difference based on the detected value of the temperature (step S23).
  • the control unit 4a compares the temperature difference with a predetermined allowable value (step S24). If the temperature difference is equal to or less than the allowable value (steps S24 and No), the process returns to step S21 and the above processing is repeated. On the other hand, when the temperature difference exceeds the permissible value (step S24, Yes), the control unit 4a controls the inverters 3c and 3d to drive the motor 1 in the second switching mode (step S25).
  • control unit 4a drives the motor 1 in the first switching mode when the temperature difference is equal to or less than the allowable value, and drives the motor 1 in the second switching mode when the temperature difference exceeds the allowable value. Drive. That is, the control unit 4a controls to switch the switching mode for driving the motor 1 between the first switching mode and the second switching mode based on the temperature difference.
  • the control unit 4a when the control unit 4a is driven in the second switching mode, if the temperature difference returns to the allowable value or less, the control unit 4a switches the switching mode from the second switching mode to the first switching mode. For example, when the load 6 is switched from the high load operation to the medium or light load operation, the inverter current and the motor current continue to be small, and the temperatures of the inverters 3c, 3d and the motor 1 are less likely to rise. Alternatively, since the temperature of the inverters 3c and 3d and the ambient temperature are lowered by the external cooling mechanism or natural cooling, the variation in the wiring resistance and the temperature variation of the switching element are gradually reduced. In such a state, the output equilibrium of the inverter current is maintained even if the motor 1 is driven in the first switching mode.
  • step S24 the case where the temperature difference and the permissible value are equal is determined as "No", but it may be determined as "Yes”. That is, the control unit 4a may determine whether the temperature difference and the permissible value are equal to each other by either "Yes” or "No". In any case, the control unit 4a drives the motor 1 in the first switching mode if the temperature difference is within the allowable value range, and switches the motor 1 to the second switching mode if the temperature difference is out of the allowable value range. Drive in mode.
  • the comparison target of the allowable values is the temperature difference, but the comparison is not limited to this.
  • a temperature ratio which is a ratio between the detection value of the temperature detector 7a and the detection value of the temperature detector 7b may be used.
  • a time difference Te is set for each phase between the timing of turning on or off the switching element in the inverter 3d and the timing of turning on or off the switching element in the inverter 3c.
  • the time difference Te may be a fixed value or a variable value according to the temperature difference.
  • the relationship between the temperature difference and the time difference Te may be obtained in advance, and the time difference Te may be changed according to the magnitude of the temperature difference.
  • This control can be realized by configuring a control system inside the control unit 4a in which the temperature difference is used as the control amount and the time difference Te for each phase is used as the operation amount.
  • the positive and negative values of the time difference Te that is, the direction of the time difference Te shift may be controlled or set in the same manner as in the first embodiment. Since the contents are duplicated, the explanation here is omitted.
  • the temperature difference between the inverters 3c and 3d leads to an increase in inverter loss and motor loss. Further, since this temperature difference is superimposed on the current required by the motor 1 and flows to each inverter, there is a possibility that an overcurrent may occur due to the instantaneous current superposition.
  • the effect that the inverter loss and the motor loss can be suppressed can be obtained. Further, since the generation of overcurrent can be suppressed by the control based on the temperature difference, the probability that the switching element is damaged can be reduced. Further, the element rating margin for reducing the probability of the switching element can be reduced.
  • the motor drive device includes a first temperature detector that detects the temperature of each of the plurality of inverters, and each temperature information detected by the first temperature detector. Is used as motor selection information. Then, when the temperature difference between the respective inverters exceeds the allowable value, the motor drive device drives the motor in the second switching mode. This makes it possible to suppress fluctuations in the inverter output due to differences or changes in the environment in which each inverter is arranged.
  • Embodiment 3 In the second embodiment, the case where the temperature information detected by the first temperature detector is the motor selection information has been described. In the third embodiment, the case where the temperature information detected by another temperature detector is the motor selection information will be described.
  • FIG. 11 is a circuit diagram showing the configuration of the motor drive device 100b according to the third embodiment.
  • the control unit 4 is replaced with the control unit 4b as compared with the configuration of FIG.
  • a reactor 8a is provided between the inverter 3a and the motor 1
  • a reactor 8b is provided between the inverter 3b and the motor 1.
  • the reactor 8a is provided with a temperature detector 7c
  • the reactor 8b is provided with a temperature detector 7d.
  • Other configurations are the same as or equivalent to those in FIG. 1, and the same or equivalent components are indicated by the same reference numerals, and duplicate explanations are omitted.
  • the temperature detectors 7c and 7d may be collectively referred to as "second temperature detector".
  • the reactor Since the reactor has an inductance component, it has the effect of suppressing changes in current. Therefore, as shown in FIG. 11, inserting the reactors 8a and 8b has the effect of suppressing the difference current between the inverters 3a and 3b.
  • the reactor since the reactor has a resistance component, it has a temperature dependence. Therefore, the resistance values of the reactors 8a and 8b change depending on the temperature, which causes variation. If the inverters 3a and 3b are driven in consideration of this temperature dependence, it becomes easier to obtain a desired inverter output. Therefore, in the third embodiment, the reactors 8a and 8b are provided with temperature detectors 7c and 7d.
  • a reactor 8a is provided between the inverter 3a and the motor 1, and a reactor 8b is provided between the inverter 3b and the motor 1, but the configuration is not limited to this.
  • the inductance component of the wiring cable itself can be used. Therefore, if the wiring cable is long, the wiring cable may be used instead.
  • the temperature detectors 7c and 7d are provided on the wiring cable. The temperature detectors 7c and 7d may be the same as the temperature detectors 7a and 7b in the second embodiment.
  • FIG. 12 is a flowchart for explaining the method of selecting the switching mode in the third embodiment.
  • the mode selection information is the temperature of the reactors 8a and 8b detected by the temperature detectors 7c and 7d.
  • control unit 4b controls the inverters 3a and 3b to drive the motor 1 in the first switching mode (step S31). If the temperature difference between the reactors 8a and 8b is small in the motor 1 and the inverters 3a and 3b, the variation in wiring resistance and the temperature variation in the switching element are also small, and the output balance of the inverter current is maintained.
  • the control unit 4b acquires the temperature detection values of the reactors 8a and 8b from the temperature detectors 7c and 7d (step S32).
  • the control unit 4b calculates the temperature difference between the reactors 8a and 8b based on the detected temperature value (step S33).
  • the control unit 4b compares the temperature difference with a predetermined allowable value (step S34). If the temperature difference is equal to or less than the allowable value (steps S34 and No), the process returns to step S31 and the above processing is repeated. On the other hand, when the temperature difference exceeds the permissible value (step S34, Yes), the control unit 4b controls the inverters 3a and 3b to drive the motor 1 in the second switching mode (step S35).
  • control unit 4b drives the motor 1 in the first switching mode when the temperature difference is equal to or less than the allowable value, and drives the motor 1 in the second switching mode when the temperature difference exceeds the allowable value.
  • control unit 4b controls to switch the switching mode for driving the motor 1 between the first switching mode and the second switching mode based on the temperature difference.
  • control unit 4b when the control unit 4b is driven in the second switching mode, if the temperature difference returns to the allowable value or less, the control unit 4b switches the switching mode from the second switching mode to the first switching mode. For example, when the load 6 is switched from the high load operation to the medium or light load operation, the inverter current and the motor current continue to be small, and the temperature difference between the reactors 8a and 8b also becomes small. In such a state, the output equilibrium of the inverter current is maintained even if the motor 1 is driven in the first switching mode.
  • step S34 the case where the temperature difference and the allowable value are equal is determined as "No", but it may be determined as "Yes”. That is, the control unit 4b may determine whether the temperature difference and the permissible value are equal to each other by either "Yes” or "No". In any case, the control unit 4b drives the motor 1 in the first switching mode if the temperature difference is within the allowable value range, and switches the motor 1 to the second switching mode if the temperature difference is out of the allowable value range. Drive in mode.
  • the comparison target of the allowable values is the temperature difference, but the comparison is not limited to this.
  • a temperature ratio which is a ratio between the detection value of the temperature detector 7c and the detection value of the temperature detector 7d may be used.
  • a time difference Te is set for each phase between the timing of turning on or off the switching element in the inverter 3b and the timing of turning on or off the switching element in the inverter 3a.
  • the time difference Te may be a fixed value or a variable value according to the temperature difference.
  • the relationship between the temperature difference and the time difference Te may be obtained in advance, and the time difference Te may be changed according to the magnitude of the temperature difference.
  • This control can be realized by configuring a control system inside the control unit 4b in which the temperature difference is used as the control amount and the time difference Te for each phase is used as the operation amount.
  • the positive and negative values of the time difference Te that is, the direction of the time difference Te shift may be controlled or set in the same manner as in the first embodiment. Since the contents are duplicated, the explanation here is omitted.
  • the temperature difference between the reactors 8a and 8b is related to the temperature difference that occurs between the inverters 3a and 3b. If there is a temperature difference between the inverters 3a and 3b, the inverter loss and the motor loss will increase. Further, since this temperature difference is superimposed on the current required by the motor 1 and flows to the respective inverters 3a and 3b, there is a possibility that an overcurrent may occur due to the instantaneous current superposition.
  • the effect that the inverter loss and the motor loss can be suppressed can be obtained. Further, since the generation of overcurrent can be suppressed by the control based on the temperature difference, the probability that the switching element is damaged can be reduced. Further, the element rating margin for reducing the probability of the switching element can be reduced.
  • the motor drive device includes a second temperature detector that detects each temperature in the wiring cable or the reactor inserted in the wiring cable, and is the second temperature detector. Each detected temperature information is used as motor selection information. Then, the motor driving device drives the motor in the second switching mode when the temperature difference between the wiring cables or the reactor exceeds the allowable value. This makes it possible to suppress fluctuations in the inverter output due to differences or changes in the environment in which each inverter is arranged.
  • the temperature information between the wiring cables or the reactors is described as the mode selection information, but the difference current described in the first embodiment and the temperature information between the inverters described in the second embodiment are described. At least one of the temperature differences may be combined and used as mode selection information. By doing so, more accurate inverter control and motor drive can be performed.
  • Embodiment 4 a case where the motor driven by the two inverters is a connection switching motor configured to switch the connection state and the connection state of the motor is the motor selection information will be described.
  • FIG. 13 is a circuit diagram showing the configuration of the motor drive device 100c according to the fourth embodiment.
  • the control unit 4 is replaced with the control unit 4c as compared with the configuration of FIG.
  • the motor 1 is replaced with the motor 1a.
  • the motor 1a is a connection switching motor in which the end of the winding of each phase is pulled out to the outside of the motor 1a.
  • the motor drive device 100c is provided with a connection switching unit 9 for switching the connection state of the motor 1a.
  • Other configurations are the same as or equivalent to those in FIG. 1, and the same or equivalent components are indicated by the same reference numerals, and duplicate explanations are omitted.
  • the connection switching unit 9 includes switches 90u, 90v, 90w and switches 91u, 91v, 91w.
  • These switches 90 and switch 91 are called electromagnetic contactors whose contacts are electromagnetically opened and closed. Examples of these include relays, contactors and the like.
  • the functions of the switch 90 and the switch 91 may be realized by a semiconductor switch. The switch 90 and the switch 91 are controlled to open / close or switch based on a command from the control unit 4c.
  • Each of the switch 91 has a function of switching between two circuits. This function can be configured with a c-contact relay. Of course, if each has a function of switching between two circuits, it may be configured by using something other than the c-contact relay.
  • each switch 91 When the switch 91 is a c-contact relay, each has three terminals, a common terminal COM, a normally open terminal NO, and a normally closed terminal NC.
  • the common terminal COM is connected to the output end of the inverter 3b.
  • the normally open terminal NO of the switch 91 is connected to the output end of the inverter 3a.
  • the normally open terminal NO of the switch 91 is also connected to terminals UA, VA, and WA, which are first terminals from which one end of the winding of the motor 1a is pulled out.
  • the normally closed terminal NC of the switch 91 is connected to terminals UB, VB, WB which are second terminals from which the other end of the winding of each phase of the motor 1a is pulled out.
  • the normally closed terminal NC of the switch 91 is also connected to one terminal of the switch 90.
  • the other terminal of the switch 90 is connected to the neutral point node 92 in order to configure each phase winding of the motor 1a in a Y-connected state.
  • the normally closed terminal NC and the normally open terminal NO may be interchanged.
  • the description will be given based on the connection state of FIG.
  • the first connection state In the first connection state, a larger current than when driving the motor 1a in the Y connection state with one inverter, ideally twice the current, can be supplied to the motor 1a. Therefore, in the first connection state, the motor torque can be increased by the amount of the increased current. Therefore, the first connection state can contribute to high output in the low speed range, which does not require a particularly large motor voltage.
  • the second connection state In the second connection state, a larger voltage than when driving the motor 1a in the Y connection state with one inverter, ideally twice the voltage, can be supplied to the motor 1a. Therefore, the second connection state can contribute to increasing the output in the high-speed range, which requires a particularly large motor voltage, as the voltage is increased.
  • the supply current to the motor 1a can be increased and the motor torque can be increased in the low speed range. Further, in the high speed range, the output of the motor 1a can be increased by increasing the voltage applied to the motor 1a. As a result, the operating range of the motor 1a can be expanded regardless of the speed band.
  • the mode selection information is the connection state of the motor 1a.
  • the first switching mode and the second switching mode should be appropriately selected as in the above-described embodiment. Just do it.
  • the first switching mode is a mode in which the switching operation is performed by aligning the on and off timings of the switching elements between the in-phases of the inverters 3a and 3b. Therefore, when driving the motor 1a in the second connection state, if the first switching mode is selected, the terminals of the same phase of the motor 1a, that is, the terminals UA and the terminal UB, the terminal VA and the terminal VB, and the terminals WA and terminal WB have the same potential.
  • the motor drive device when the motor is an open winding motor in which the end of the winding of each phase is pulled out to the outside of the motor, the motor is connected.
  • the state is set as mode selection information, and the first or second switching mode is selected based on the mode selection information.
  • Embodiment 5 an example in which the motor drive devices 100 to 100c described in the first to fourth embodiments are applied to the air conditioner will be described.
  • the motor drive devices 100 to 100c described in the first to fourth embodiments are motor drive devices for driving one motor with a plurality of inverters. Therefore, by applying any one of the motor drive devices 100 to 100c to the air conditioner, the capacity of the air conditioner can be increased, and an air conditioner having high cooling / heating capacity and low loss can be realized. Can be done.
  • FIG. 14 is a diagram showing a configuration example of the air conditioner 200 according to the fifth embodiment.
  • the air conditioner 200 includes an outdoor unit 67, an indoor unit 68, and an air conditioning control unit 69.
  • the outdoor unit 67 is connected to the power source 2.
  • the outdoor unit 67 includes a motor drive device 100, a compressor 60, a four-way valve 62, a heat source side heat exchanger 63, and a heat source side expansion valve 64.
  • the indoor unit 68 includes a load-side expansion valve 65 and a load-side heat exchanger 66.
  • the compressor 60 includes a compression element 61 whose drive source is the motor 1.
  • the motor drive device 100 is illustrated in FIG. 14, it may be replaced with any one of the motor drive devices 100a to 100c.
  • the compressor 60 In the air conditioner 200, the compressor 60, the four-way valve 62, the heat source side heat exchanger 63, the heat source side expansion valve 64, the load side expansion valve 65, the load side heat exchanger 66, the four-way valve 62, and the compressor 60.
  • a refrigerant circuit connected by a refrigerant pipe 70 is configured in this order.
  • the refrigeration cycle is established by the flow of the refrigerant through the refrigerant circuit.
  • the air conditioner 200 compresses the refrigerant in the refrigeration cycle by the compressor 60.
  • an accumulator for storing excess refrigerant may be provided on the suction side of the compressor 60.
  • the air conditioning control unit 69 controls the four-way valve 62, the heat source side expansion valve 64, and the load side expansion valve 65.
  • the refrigerating cycle configuration shown in FIG. 14 is an example, and may not necessarily be the same refrigerating cycle configuration.
  • the heating operation can also be realized by switching the flow path in the four-way valve 62.
  • the four-way valve 62 flows the refrigerant discharged from the compressor 60 toward the heat source side heat exchanger 63 and the refrigerant flowing out from the load side heat exchanger 66 toward the compressor 60. It is assumed that the road is being switched.
  • the compression element 61 connected to the motor 1 compresses the refrigerant into a high-temperature and high-pressure refrigerant.
  • the compressor 60 discharges a high-temperature and high-pressure refrigerant.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 60 flows into the heat source side heat exchanger 63 via the four-way valve 62, exchanges heat with the external air in the heat source side heat exchanger 63, and dissipates heat.
  • the refrigerant flowing out of the heat source side heat exchanger 63 is expanded and depressurized by the heat source side expansion valve 64 to become a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant is expanded and depressurized by the load-side expansion valve 65, flows into the load-side heat exchanger 66, exchanges heat with the air in the air-conditioned space, and evaporates to a low temperature. It becomes a low-pressure refrigerant and flows out from the load side heat exchanger 66.
  • the refrigerant flowing out of the load side heat exchanger 66 is sucked into the compressor 60 via the four-way valve 62 and compressed again. In the air conditioner 200, the above operation is repeated.
  • the cooling plate may be brought into contact with the power module, which is a component of the inverters 3a, 3b, mainly for the purpose of cooling the inverters 3a, 3b of the motor drive device 100. Further, the refrigerant pipe 70 may be brought into contact with the cooling plate so that the refrigerant flowing through the refrigerant pipe 70 absorbs heat generated by the inverters 3a and 3b. By doing so, it is possible to efficiently suppress the temperature rise of the inverters 3a and 3b.
  • the heat source side expansion valve 64 is provided in the outdoor unit 67, and the load side expansion valve 65 is provided in the indoor unit 68.
  • This is the cooling capacity of the motor drive device 100.
  • This is to enable the two expansion valves, the heat source side expansion valve 64 and the load side expansion valve 65, to be independently controlled.
  • This configuration is suitable for finely controlling the refrigerant, and the refrigerant can be efficiently controlled.
  • the configuration of FIG. 14 is an example, and it is not always necessary to include two expansion valves, and the expansion valve may be provided in either the indoor unit 68 or the outdoor unit 67.
  • the motor drive devices 100 to 100c according to the first to fourth embodiments can be applied to devices having a refrigerating cycle, such as an air conditioner 200, a heat pump device, and a refrigerating device. It can also be applied to products that are not equipped with a compressor, such as dryers, washing machines, and vacuum cleaners, which obtain driving force by the rotational force of the motor, and can also be applied to fan motors and the like.
  • the capacity of the air conditioner can be increased and the air conditioning capacity is high. Moreover, the effect that an air conditioner with a small loss can be realized can be obtained.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This motor driving device (100) has first and second switching modes which are selected on the basis of mode selection information when a motor (1) is driven by inverters (3a, 3b). In the first switching mode, on/off timings of the respective switching elements in identical phases in the inverters (3a, 3b) are matched between the inverters (3a, 3b), and a switching operation is performed for each of the inverters (3a, 3b). In the second switching mode, on/off timings of the respective switching elements in identical phases in the inverters (3a, 3b) are made different between the inverters (3a, 3b), and the switching operation is performed for each of the inverters (3a, 3b).

Description

モータ駆動装置及び空気調和装置Motor drive and air conditioner
 本開示は、モータを駆動するモータ駆動装置、及びこのモータ駆動装置を備えた空気調和装置に関する。 The present disclosure relates to a motor drive device for driving a motor and an air conditioner provided with the motor drive device.
 1台のモータを複数のインバータによって駆動するモータ駆動装置として、下記特許文献1に示されたものがある。この特許文献1には、特定のインバータに負荷を集中させないため、各々のインバータの出力電流であるインバータ電流のバランス、即ち出力平衡性を保つように電流制御する技術が開示されている。 As a motor driving device for driving one motor by a plurality of inverters, there is one shown in Patent Document 1 below. This Patent Document 1 discloses a technique of controlling the current so as to maintain the balance of the inverter current, which is the output current of each inverter, that is, the output equilibrium so as not to concentrate the load on a specific inverter.
特許第5447400号公報Japanese Patent No. 5447400
 しかしながら、特許文献1に記載の技術では、各々のインバータにおけるインバータ電流を検出する電流検出器をインバータごとに備えると共に、モータの各相に流れるモータ電流を検出する電流検出器を備える必要がある。このため、電流検出器の数が多く、製造コストが増加するという課題がある。 However, in the technique described in Patent Document 1, it is necessary to provide a current detector for detecting the inverter current in each inverter for each inverter and a current detector for detecting the motor current flowing in each phase of the motor. Therefore, there is a problem that the number of current detectors is large and the manufacturing cost increases.
 また、特許文献1に記載の技術では、各々のインバータが配置されている環境の差異又は変化が考慮されていない。これらの環境の差異又は変化は時間の経過と共に大きくなり、インバータとモータ間の配線温度の変化による配線抵抗のばらつき、又はモータの状態変化となって表れる。また、各々のインバータが配置されている環境の差異又は変化は、各々のインバータの冷却能力を変動させ、各々のインバータにおけるスイッチング素子の温度ばらつきとなって表れる。このため、複数のインバータにおけるスイッチング素子のオン、オフのタイミングを各々のインバータの同相同士で揃えてインバータのスイッチング動作を行っても、所望のインバータ出力が得られないという課題がある。 Further, in the technique described in Patent Document 1, the difference or change in the environment in which each inverter is arranged is not taken into consideration. These differences or changes in the environment increase with the passage of time, and appear as variations in wiring resistance due to changes in the wiring temperature between the inverter and the motor, or changes in the state of the motor. Further, the difference or change in the environment in which each inverter is arranged fluctuates the cooling capacity of each inverter, and appears as the temperature variation of the switching element in each inverter. Therefore, there is a problem that a desired inverter output cannot be obtained even if the switching operation of the inverters is performed by aligning the on / off timings of the switching elements of the plurality of inverters with each other in the same phase of each inverter.
 本開示は、上記に鑑みてなされたものであって、電流検出器の数を削減しつつ、各々のインバータが配置されている環境の差異又は変化に起因するインバータ出力の変動を抑制可能なモータ駆動装置を得ることを目的とする。 The present disclosure has been made in view of the above, and is a motor capable of suppressing fluctuations in inverter output due to differences or changes in the environment in which each inverter is arranged while reducing the number of current detectors. The purpose is to obtain a drive device.
 上述した課題を解決し、目的を達成するため、本開示に係るモータ駆動装置は、電力源から供給される直流電圧を三相交流電圧に変換して同一のモータに印加する複数のインバータを備えたモータ駆動装置である。モータ駆動装置は、複数のインバータでモータを駆動する際に、モード選択情報に基づいて選択される第1及び第2のスイッチングモードを有する。第1のスイッチングモードは、各々のインバータの同相におけるスイッチング素子のオン及びオフのタイミングを複数のインバータ同士で揃えて各々のインバータのスイッチング動作を行う。第2のスイッチングモードは、各々のインバータの同相におけるスイッチング素子のオン及びオフのタイミングを複数のインバータ同士で異として各々のインバータのスイッチング動作を行う。 In order to solve the above-mentioned problems and achieve the object, the motor drive device according to the present disclosure includes a plurality of inverters that convert a DC voltage supplied from a power source into a three-phase AC voltage and apply it to the same motor. It is a motor drive device. The motor drive device has first and second switching modes that are selected based on the mode selection information when the motor is driven by a plurality of inverters. In the first switching mode, the switching operation of each inverter is performed by aligning the on and off timings of the switching elements in the same phase of each inverter among the plurality of inverters. In the second switching mode, the switching operation of each inverter is performed by setting the on / off timing of the switching element in the same phase of each inverter to be different among the plurality of inverters.
 本開示に係るモータ駆動装置によれば、電流検出器の数を削減しつつ、各々のインバータが配置されている環境の差異又は変化に起因するインバータ出力の変動を抑制できるという効果を奏する。 According to the motor drive device according to the present disclosure, it is possible to reduce the number of current detectors and suppress the fluctuation of the inverter output due to the difference or change in the environment in which each inverter is arranged.
実施の形態1に係るモータ駆動装置の構成例を示す回路図A circuit diagram showing a configuration example of the motor drive device according to the first embodiment. 図1に示す電力源の第1の構成例を示す図The figure which shows the 1st configuration example of the electric power source shown in FIG. 図1に示す電力源の第2の構成例を示す図The figure which shows the 2nd configuration example of the electric power source shown in FIG. 実施の形態1における各々のインバータを第1のスイッチングモードで駆動するときのスイッチング指令であるPWM信号の一例を示すタイムチャートA time chart showing an example of a PWM signal which is a switching command when each inverter in the first embodiment is driven in the first switching mode. 実施の形態1における各々のインバータを第2のスイッチングモードで駆動するときのスイッチング指令であるPWM信号の一例を示すタイムチャートA time chart showing an example of a PWM signal which is a switching command when each inverter in the first embodiment is driven in the second switching mode. 実施の形態1におけるスイッチングモードの選択方法の説明に供するフローチャートA flowchart used to explain the method of selecting the switching mode in the first embodiment. 実施の形態1における制御部の機能を実現するハードウェア構成の一例を示すブロック図A block diagram showing an example of a hardware configuration that realizes the function of the control unit in the first embodiment. 実施の形態1における制御部の機能を実現するハードウェア構成の他の例を示すブロック図A block diagram showing another example of a hardware configuration that realizes the function of the control unit in the first embodiment. 実施の形態2に係るモータ駆動装置の構成を示す回路図A circuit diagram showing the configuration of the motor drive device according to the second embodiment. 実施の形態2におけるスイッチングモードの選択方法の説明に供するフローチャートA flowchart used to explain the method of selecting the switching mode in the second embodiment. 実施の形態3に係るモータ駆動装置の構成を示す回路図A circuit diagram showing the configuration of the motor drive device according to the third embodiment. 実施の形態3におけるスイッチングモードの選択方法の説明に供するフローチャートA flowchart used to explain the method of selecting the switching mode in the third embodiment. 実施の形態4に係るモータ駆動装置の構成例を示す回路図A circuit diagram showing a configuration example of the motor drive device according to the fourth embodiment. 実施の形態5に係る空気調和装置の構成例を示す図The figure which shows the structural example of the air conditioner which concerns on Embodiment 5.
 以下に添付図面を参照し、本開示の実施の形態に係るモータ駆動装置及び空気調和装置について詳細に説明する。なお、以下の記載において、同種の複数の構成要素については、添字付きの符号で示すが、各構成要素の個々を区別しない場合には、添字の表記を適宜省略する。また、以下では、電気的な接続と物理的な接続とを区別せずに、単に「接続」と称して説明する。 The motor drive device and the air conditioner according to the embodiment of the present disclosure will be described in detail with reference to the attached drawings below. In the following description, a plurality of components of the same type are indicated by reference numerals, but if the individual components are not distinguished, the notation of the subscripts will be omitted as appropriate. Further, in the following, the description will be simply referred to as "connection" without distinguishing between an electrical connection and a physical connection.
実施の形態1.
 図1は、実施の形態1に係るモータ駆動装置100の構成例を示す回路図である。モータ駆動装置100は、電力源2から供給される電力を使用して、負荷6に接続されたモータ1に交流電圧を印加してモータ1に接続される負荷6を駆動する駆動装置である。
Embodiment 1.
FIG. 1 is a circuit diagram showing a configuration example of the motor drive device 100 according to the first embodiment. The motor drive device 100 is a drive device that uses the electric power supplied from the power source 2 to apply an AC voltage to the motor 1 connected to the load 6 to drive the load 6 connected to the motor 1.
 実施の形態1に係るモータ駆動装置100は、図1に示すように、インバータ3a,3bと、制御部4と、電流検出部5a,5bとを備えて構成される。制御部4は、インバータ3a,3bの動作を制御する。各々の電流検出部5a,5bは、インバータ3a,3bの各々に流れるインバータ電流を検出する。図1の構成の場合、インバータ電流は、インバータ3a,3bの各々からモータ1に出力される出力電流である。なお、実施の形態1では、図1に示すように、2台のインバータ3a,3bを有する構成について説明するが、この構成に限定されない。実施の形態1に係るモータ駆動装置100は、インバータ3の台数が3以上であっても同様に応用できるものである。 As shown in FIG. 1, the motor drive device 100 according to the first embodiment includes inverters 3a and 3b, a control unit 4, and a current detection unit 5a and 5b. The control unit 4 controls the operation of the inverters 3a and 3b. Each of the current detection units 5a and 5b detects the inverter current flowing through each of the inverters 3a and 3b. In the case of the configuration of FIG. 1, the inverter current is the output current output from each of the inverters 3a and 3b to the motor 1. In the first embodiment, as shown in FIG. 1, a configuration having two inverters 3a and 3b will be described, but the configuration is not limited to this. The motor drive device 100 according to the first embodiment can be similarly applied even if the number of inverters 3 is 3 or more.
 次に、モータ駆動装置100に接続されるモータ1及び電力源2について説明する。まず、モータ1は、三相モータである。三相モータの一例は、三相永久磁石同期モータである。モータ1は、図示しないモータ軸を介して負荷6に接続される。負荷6の一例は、空気調和装置の圧縮機である。負荷6が圧縮機である場合、モータ1は、圧縮機の圧縮要素を駆動する。 Next, the motor 1 and the power source 2 connected to the motor drive device 100 will be described. First, the motor 1 is a three-phase motor. An example of a three-phase motor is a three-phase permanent magnet synchronous motor. The motor 1 is connected to the load 6 via a motor shaft (not shown). An example of the load 6 is a compressor of an air conditioner. When the load 6 is a compressor, the motor 1 drives the compression element of the compressor.
 図2は、図1に示す電力源2の第1の構成例を示す図である。図3は、図1に示す電力源2の第2の構成例を示す図である。図2には、三相交流電源21aから供給される交流電力を直流電力へ変換する三相コンバータ、リアクトル及びコンデンサを備えた三相の交流直流変換器22aが示されている。図3には、単相交流電源21bから供給される交流電力を直流電力へ変換する単相コンバータ、リアクトル及びコンデンサを備えた単相の交流直流変換器22bが示されている。電力源2は、これらの何れを用いて構成されていてもよい。なお、図2及び図3では図示されていないが、交流直流変換器22a,22bと各々のインバータ3a,3bとの間の直流母線に直流変換器のような周知の昇圧回路を挿入し、直流電圧を昇圧するような構成でもよい。 FIG. 2 is a diagram showing a first configuration example of the power source 2 shown in FIG. FIG. 3 is a diagram showing a second configuration example of the power source 2 shown in FIG. FIG. 2 shows a three-phase AC / DC converter 22a provided with a three-phase converter, a reactor and a capacitor for converting AC power supplied from the three-phase AC power supply 21a into DC power. FIG. 3 shows a single-phase AC-DC converter 22b provided with a single-phase converter, a reactor and a capacitor for converting AC power supplied from the single-phase AC power supply 21b into DC power. The power source 2 may be configured by using any of these. Although not shown in FIGS. 2 and 3, a well-known booster circuit such as a DC converter is inserted into the DC bus between the AC / DC converters 22a and 22b and the respective inverters 3a and 3b to direct current. It may be configured to boost the voltage.
 更には、各々のインバータ3a,3bに直流電圧をダイレクトに供給する電池、バッテリといった直流電源でもよい。なお、交流直流変換器22a,22b、又は先述の昇圧回路は、電力源2ではなく、モータ駆動装置100に組み入れられる構成でもよい。また、図1に示した構成では、同一の電力源2にインバータ3a,3bを接続する構成を示しているが、各々のインバータ3a,3bが異なる電力源2に接続される構成でもよい。 Further, a DC power source such as a battery or a battery that directly supplies a DC voltage to each of the inverters 3a and 3b may be used. The AC / DC converters 22a and 22b, or the booster circuit described above, may be configured to be incorporated in the motor drive device 100 instead of the power source 2. Further, although the configuration shown in FIG. 1 shows a configuration in which the inverters 3a and 3b are connected to the same power source 2, a configuration in which the respective inverters 3a and 3b are connected to different power sources 2 may be used.
 次に、インバータ3a,3bについて説明する。インバータ3a,3bは、同一のモータ1に対して、並列に接続されている。各々のインバータ3a,3bは、電力源2から供給される直流電圧を三相交流電圧に変換し、変換した三相交流電圧を同一のモータ1へ印加する。三相交流電圧は、モータ1を所望の周波数、即ち所望の回転速度で回転駆動するための駆動電圧である。三相交流電圧は、三相のパルス幅変調(Pulse Width Modulation:PWM)信号に従って生成される。PWM信号は、制御部4により、各相の電圧指令に基づいて生成される。なお、本明細書では、三相の各相を「U」又は「u」、「V」又は「v」及び「W」又は「w」で表記し、それぞれを「U相」、「V相」及び「W相」と呼ぶ。 Next, the inverters 3a and 3b will be described. The inverters 3a and 3b are connected in parallel to the same motor 1. Each of the inverters 3a and 3b converts the DC voltage supplied from the power source 2 into a three-phase AC voltage, and applies the converted three-phase AC voltage to the same motor 1. The three-phase AC voltage is a drive voltage for driving the motor 1 to rotate at a desired frequency, that is, at a desired rotation speed. The three-phase AC voltage is generated according to a three-phase pulse width modulation (PWM) signal. The PWM signal is generated by the control unit 4 based on the voltage command of each phase. In this specification, each phase of the three phases is represented by "U" or "u", "V" or "v" and "W" or "w", and each phase is represented by "U phase" or "V phase". And "W phase".
 インバータ3aは、6つのスイッチング素子UP1,UN1,VP1,VN1,WP1,WN1を備える。スイッチング素子UP1,UN1は直列に接続されてU相レグを構成する。スイッチング素子VP1,VN1は直列に接続されてV相レグを構成する。スイッチング素子WP1,WN1は直列に接続されてW相レグを構成する。これらの3つのレグは、互いに並列に接続され、周知の三相インバータを構成する。インバータ3aの各スイッチング素子は、前述したPWM信号に基づいて生成されたスイッチング信号に従ってオン又はオフが制御される。 The inverter 3a includes six switching elements UP1, UN1, VP1, VN1, WP1, WN1. The switching elements UP1 and UN1 are connected in series to form a U-phase leg. The switching elements VP1 and VN1 are connected in series to form a V-phase leg. The switching elements WP1 and WN1 are connected in series to form a W-phase leg. These three legs are connected in parallel with each other to form a well-known three-phase inverter. Each switching element of the inverter 3a is controlled to be turned on or off according to a switching signal generated based on the above-mentioned PWM signal.
 インバータ3bは、6つのスイッチング素子UP2,UN2,VP2,VN2,WP2,WN2を備える。インバータ3bもインバータ3aと同様に構成される。内容が重複するので、ここでの説明は割愛する。 The inverter 3b includes six switching elements UP2, UN2, VP2, VN2, WP2, WN2. The inverter 3b is also configured in the same manner as the inverter 3a. Since the contents are duplicated, the explanation here is omitted.
 各スイッチング素子の各々には、並列に帰還ダイオードが接続される。各スイッチング素子が金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)である場合、MOSFET自身が内部に有する寄生ダイオードを帰還ダイオードとして用いてもよい。寄生ダイオードは、ボディダイオードとも呼ばれる。なお、各スイッチング素子は、MOSFETには限定されず、MOSFET以外のスイッチング素子を用いてもよい。 A feedback diode is connected in parallel to each of the switching elements. When each switching element is a metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET), a parasitic diode contained in the MOSFET itself may be used as a feedback diode. Parasitic diodes are also called body diodes. The switching element is not limited to the MOSFET, and a switching element other than the MOSFET may be used.
 各スイッチング素子は、ケイ素(Si)を素材とする素子でもよいし、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)又はダイヤモンド(C)といったワイドバンドギャップ半導体を素材とするワイドバンドギャップ(Wide Band Gap:WBG)半導体素子でもよい。WBG半導体素子を用いれば、低損失、高耐電圧性及び高耐熱性の効果を享受することができる。また、WBG半導体素子を用いれば、高速にオンオフ動作を行うことができる。これにより、スイッチングのオンオフのタイミングを細かく制御できるので、後述する実施の形態1の効果をより高めることが可能となる。 Each switching element may be an element made of silicon (Si) or a wide bandgap semiconductor such as silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3) or diamond (C). A wide band gap (WBG) semiconductor element may be used. If a WBG semiconductor element is used, the effects of low loss, high withstand voltage and high heat resistance can be enjoyed. Further, if a WBG semiconductor element is used, on / off operation can be performed at high speed. As a result, the on / off timing of switching can be finely controlled, so that the effect of the first embodiment, which will be described later, can be further enhanced.
 図1では、電流検出部5aとして、インバータ3aからモータ1に接続される3つの配線のうちのU相及びW相の配線に電流センサが配置される構成を例示しているが、この構成に限定されない。電流検出部5aにおける2つの電流センサは、U相、V相及びW相のうちの何れか2つの相に配置されていればよい。電流検出部5bについても電流検出部5aと同様に構成できる。 FIG. 1 illustrates a configuration in which a current sensor is arranged in the U-phase and W-phase wirings of the three wirings connected from the inverter 3a to the motor 1 as the current detection unit 5a. Not limited. The two current sensors in the current detection unit 5a may be arranged in any two of the U phase, the V phase and the W phase. The current detection unit 5b can be configured in the same manner as the current detection unit 5a.
 電流センサとしては、交流変流器(Alternating Current Current Transformer:ACCT)が例示されるが、直流変流器(Direct Current Current Transformer:DCCT)又はシャント抵抗を用いてもよい。なお、シャント抵抗を用いる場合、シャント抵抗は、一般的に、電力源2とインバータ3a,3bの各々とを結ぶ負側の直流母線、又はインバータ3a,3bの各相レグにおける負側に配置される。電流検出部5a,5bによって検出された、インバータ3a,3bにおけるインバータ電流の各検出値は、制御部4に入力される。 As the current sensor, an AC current transformer (Alternating Current Current Transformer: ACCT) is exemplified, but a DC current transformer (Direct Current Current Transformer: DCCT) or a shunt resistor may be used. When a shunt resistor is used, the shunt resistor is generally arranged on the negative side DC bus connecting the power source 2 and each of the inverters 3a and 3b, or on the negative side in each phase leg of the inverters 3a and 3b. To. Each detected value of the inverter current in the inverters 3a and 3b detected by the current detection units 5a and 5b is input to the control unit 4.
 制御部4は、モータ1に出力する電圧を演算し、演算した電圧に基づいて三相電圧指令値を生成する。三相電圧指令値を演算により生成する際、二相変調、三次高調波重畳変調、空間ベクトル変調といった周知の手法を用いることができる。制御部4は、三相電圧指令値と母線電圧とに基づいて、インバータ3a,3bの各々に対するPWM信号を生成してインバータ3a,3bへ出力する。ここで言う母線電圧は、電力源2から出力される直流電圧と等価である。 The control unit 4 calculates the voltage to be output to the motor 1 and generates a three-phase voltage command value based on the calculated voltage. When generating a three-phase voltage command value by calculation, well-known methods such as two-phase modulation, third-order harmonic superimposition modulation, and space vector modulation can be used. The control unit 4 generates a PWM signal for each of the inverters 3a and 3b based on the three-phase voltage command value and the bus voltage, and outputs the PWM signal to the inverters 3a and 3b. The bus voltage referred to here is equivalent to the DC voltage output from the power source 2.
 次に、実施の形態1に係るモータ駆動装置100が有するスイッチングモードと、スイッチングモードに従って行われるインバータ3a,3bのスイッチング動作について説明する。図4は、実施の形態1における各々のインバータ3a,3bを第1のスイッチングモードで駆動するときのスイッチング指令であるPWM信号の一例を示すタイムチャートである。第1のスイッチングモードは、スイッチング素子のオン及びオフのタイミングをインバータ3a,3bの同相同士で揃えてスイッチング動作を行うモードである。 Next, the switching mode of the motor drive device 100 according to the first embodiment and the switching operation of the inverters 3a and 3b performed according to the switching mode will be described. FIG. 4 is a time chart showing an example of a PWM signal which is a switching command when each of the inverters 3a and 3b in the first embodiment is driven in the first switching mode. The first switching mode is a mode in which the switching operation is performed by aligning the on and off timings of the switching elements between the in-phases of the inverters 3a and 3b.
 図4の上段部には、三相正弦波である電圧指令値Vu*,Vv*,Vw*の波形と、三角波状に変化する振幅Vdc/2のキャリア信号とが示されている。なお、電圧指令値Vu*,Vv*,Vw*は、三相正弦波以外の波形でもよく、キャリア信号は三角波に代えてのこぎり波を用いてもよい。また、図4の中下段部には、第1のスイッチングモードにおけるインバータ3aに対するPWM信号UP1,UN1,VP1,VN1,WP1,WN1と、第1のスイッチングモードにおけるインバータ3bに対するPWM信号UP2,UN2,VP2,VN2,WP2,WN2と、が相ごとに交互に示されている。なお、図4及び後述の図5では、PWM信号の識別記号を、インバータ3a,3bの各スイッチング素子の符号と同じ表記としている。 The upper part of FIG. 4 shows a waveform of voltage command values Vu *, Vv *, Vw * which is a three-phase sine wave, and a carrier signal having an amplitude Vdc / 2 which changes in a triangular wave shape. The voltage command values Vu *, Vv *, and Vw * may be waveforms other than the three-phase sine wave, and the carrier signal may be a sawtooth wave instead of the triangular wave. Further, in the middle and lower portions of FIG. 4, the PWM signals UP1, UN1, VP1, VN1, WP1, WN1 for the inverter 3a in the first switching mode and the PWM signals UP2, UN2 for the inverter 3b in the first switching mode are shown. VP2, VN2, WP2, WN2 are shown alternately for each phase. In FIG. 4 and FIG. 5 described later, the identification symbol of the PWM signal is the same as the code of each switching element of the inverters 3a and 3b.
 制御部4は、電圧指令値Vu*,Vv*,Vw*を基準信号であるキャリア信号と比較し、相互の大小関係に基づいてPWM信号UP1,UN1,VP1,VN1,WP1,WN1を生成する。 The control unit 4 compares the voltage command values Vu *, Vv *, and Vw * with the carrier signal as the reference signal, and generates PWM signals UP1, UN1, VP1, VN1, WP1, WN1 based on the mutual magnitude relationship. ..
 図4では、U相電圧指令値Vu*がキャリア信号よりも大きい場合、PWM信号UP1はスイッチング素子UP1をオンにする電圧としてハイレベルで示され、PWM信号UN1はスイッチング素子UN1をオフにする電圧としてローレベルで示されている。この方式は、相補PWM方式と呼ばれる。なお、これとは逆に、U相電圧指令値Vu*がキャリア信号よりも小さい場合、PWM信号UP1はスイッチング素子UP1をオフにする電圧とし、PWM信号UN1はスイッチング素子UN1をオンにする電圧としてもよい。 In FIG. 4, when the U-phase voltage command value Vu * is larger than the carrier signal, the PWM signal UP1 is shown at a high level as the voltage for turning on the switching element UP1, and the PWM signal UN1 is the voltage for turning off the switching element UN1. Shown at low level as. This method is called a complementary PWM method. On the contrary, when the U-phase voltage command value Vu * is smaller than the carrier signal, the PWM signal UP1 is a voltage that turns off the switching element UP1, and the PWM signal UN1 is a voltage that turns on the switching element UN1. May be good.
 他の相であるV相及びW相についても同様である。V相電圧指令値Vv*とキャリア信号との比較によりPWM信号VP1,VN1が決定され、W相電圧指令値Vw*とキャリア信号との比較によりPWM信号WP1,WN1が決定される。 The same applies to the other phases, V phase and W phase. The PWM signals VP1 and VN1 are determined by comparing the V-phase voltage command value Vv * with the carrier signal, and the PWM signals WP1 and WN1 are determined by comparing the W-phase voltage command value Vw * with the carrier signal.
 相補PWM方式の場合、PWM信号UP1とPWM信号UN1、PWM信号VP1とPWM信号VN1、及びPWM信号WP1とPWM信号WN1は、各々が互いに逆極性の関係となる。このスイッチングパターンを組み合わせることで、インバータ3aのスイッチング素子のオンオフのスイッチング動作を適切に制御し、インバータ3aからモータ1に対し、所望の電圧を出力させることができる。 In the case of the complementary PWM method, the PWM signal UP1 and the PWM signal UN1, the PWM signal VP1 and the PWM signal VN1, and the PWM signal WP1 and the PWM signal WN1 have opposite polar relationships with each other. By combining this switching pattern, the on / off switching operation of the switching element of the inverter 3a can be appropriately controlled, and a desired voltage can be output from the inverter 3a to the motor 1.
 但し、同相の2つのスイッチング素子、例えばPWM信号UP1とPWM信号UN1とが同時にオンすると電力源2に大きな短絡電流が流れる。このため、実際には、スイッチング動作の遅れなども考慮し、同相の2つのスイッチング素子同士が同時にオン状態とならないように、PWM信号にデッドタイムと呼ばれる短絡防止時間を設けることが行われる。なお、図4及び後述の図5に関しては、短絡防止時間を含まない記載となっている。 However, when two in-phase switching elements, for example, the PWM signal UP1 and the PWM signal UN1 are turned on at the same time, a large short-circuit current flows in the power source 2. Therefore, in practice, a short-circuit prevention time called a dead time is provided in the PWM signal so that two switching elements having the same phase do not turn on at the same time in consideration of a delay in the switching operation. In addition, about FIG. 4 and FIG. 5 described later, the description does not include the short circuit prevention time.
 インバータ3bのPWM信号UP2,UN2,VP2,VN2,WP2,WN2も、インバータ3aのPWM信号UP1,UN1,VP1,VN1,WP1,WN1と同様に生成される。 The PWM signals UP2, UN2, VP2, VN2, WP2, WN2 of the inverter 3b are also generated in the same manner as the PWM signals UP1, UN1, VP1, VN1, WP1, WN1 of the inverter 3a.
 インバータ3aの各PWM信号と、インバータ3bの各PWM信号とを相ごとに比較すると、各スイッチング素子をオン及びオフさせるタイミングは同じになっている。即ち、第1のスイッチングモードでは、スイッチング素子のスイッチング動作は、インバータ3a,3bの同相同士で揃えられている。 Comparing each PWM signal of the inverter 3a and each PWM signal of the inverter 3b for each phase, the timing of turning on and off each switching element is the same. That is, in the first switching mode, the switching operation of the switching element is aligned with the in-phase of the inverters 3a and 3b.
 スイッチング素子のオン及びオフのタイミングをインバータ3a,3bの同相同士で揃えることにより、インバータ3a,3bから出力される出力電圧の平衡性を保つことが可能となる。これにより、インバータ3a,3bが配置されている環境に差異又は変化がない場合には、所望のインバータ出力が得られるようになる。 By aligning the on and off timings of the switching elements with the in-phase of the inverters 3a and 3b, it is possible to maintain the equilibrium of the output voltage output from the inverters 3a and 3b. As a result, if there is no difference or change in the environment in which the inverters 3a and 3b are arranged, the desired inverter output can be obtained.
 次に、第2のスイッチングモードにおけるインバータ3a,3bのスイッチング動作について説明する。第2のスイッチングモードは、スイッチング素子のオン及びオフのタイミングをインバータ3a,3bの同相同士で異としてスイッチング動作を行うモードである。 Next, the switching operation of the inverters 3a and 3b in the second switching mode will be described. The second switching mode is a mode in which the switching operation is performed with the on and off timings of the switching elements being different between the in-phases of the inverters 3a and 3b.
 インバータ3a,3bにおける各PWM信号のパルス幅が同一である場合、インバータ3a,3bの各々の出力電圧の基本波成分は同じに保たれる。このため、インバータ3a,3bが配置されている環境に差異又は変化がない場合には、所望のインバータ出力が得られる。一方、インバータ3a,3bが配置されている環境に差異又は変化がある場合、これらの環境の差異又は変化が時間の経過と共に大きくなり、インバータ3a,3bとモータ1との間の配線温度の変化による配線抵抗のばらつき、又はモータの状態変化となって表れる。また、インバータ3a,3bが配置されている環境の差異又は変化は、インバータ3a,3bの冷却能力を変動させ、インバータ3a,3bにおけるスイッチング素子の温度ばらつきとなって表れる。従って、第1のスイッチングモードの動作のみでは、所望のインバータ出力が得られない可能性がある。このため、第2のスイッチングモードが用意されている。 When the pulse widths of the PWM signals in the inverters 3a and 3b are the same, the fundamental wave components of the output voltages of the inverters 3a and 3b are kept the same. Therefore, if there is no difference or change in the environment in which the inverters 3a and 3b are arranged, a desired inverter output can be obtained. On the other hand, when there is a difference or change in the environment in which the inverters 3a, 3b are arranged, the difference or change in these environments becomes large with the passage of time, and the wiring temperature between the inverters 3a, 3b and the motor 1 changes. It appears as a variation in wiring resistance or a change in the state of the motor. Further, a difference or change in the environment in which the inverters 3a and 3b are arranged fluctuates the cooling capacity of the inverters 3a and 3b, and appears as a temperature variation of the switching element in the inverters 3a and 3b. Therefore, there is a possibility that the desired inverter output cannot be obtained only by the operation of the first switching mode. Therefore, a second switching mode is prepared.
 図5は、実施の形態1における各々のインバータ3a,3bを第2のスイッチングモードで駆動するときのスイッチング指令であるPWM信号の一例を示すタイムチャートである。 FIG. 5 is a time chart showing an example of a PWM signal which is a switching command when each of the inverters 3a and 3b in the first embodiment is driven in the second switching mode.
 図5の上段部には、図4と同様に、電圧指令値Vu*,Vv*,Vw*の波形と、振幅Vdc/2のキャリア信号とが示されている。図5の中下段部には、第2のスイッチングモードにおけるインバータ3aに対するPWM信号UP1,UN1,VP1,VN1,WP1,WN1と、第2のスイッチングモードにおけるインバータ3bに対するPWM信号UP2,UN2,VP2,VN2,WP2,WN2と、が相ごとに交互に示されている。 図5において、PWM信号UP1,UN1,VP1,VN1,WP1,WN1の波形、及び極性が変化するタイミングは、図4と同じである。 Similar to FIG. 4, the upper part of FIG. 5 shows the waveforms of the voltage command values Vu *, Vv *, Vw * and the carrier signal having the amplitude Vdc / 2. In the lower middle part of FIG. 5, the PWM signals UP1, UN1, VP1, VN1, WP1, WN1 for the inverter 3a in the second switching mode and the PWM signals UP2, UN2, VP2 for the inverter 3b in the second switching mode are shown. VN2, WP2, and WN2 are shown alternately for each phase. In FIG. 5, the waveforms of the PWM signals UP1, UN1, VP1, VN1, WP1, WN1 and the timing at which the polarity changes are the same as in FIG.
 前述したように、第2のスイッチングモードは、第2のスイッチングモードは、スイッチング素子のオン及びオフのタイミングをインバータ3a,3bの同相同士で異としてスイッチング動作を行うモードである。図5の例では、インバータ3aにおける各スイッチング素子のオン又はオフのタイミングに対し、インバータ3bにおける各スイッチング素子のオン又はオフのタイミングがそれぞれ時間差Te分遅れるように制御されている。時間差Teは、インバータ3a,3bにおける相ごとのスイッチング素子のオン又はオフのタイミングのずれ量である。このように制御すれば、インバータ3a,3bとモータ1との間の配線温度の変化による配線抵抗のばらつき、及びインバータ3a,3bにおけるスイッチング素子の温度ばらつきが小さくなる方向に作用する。これにより、インバータ3a,3bが配置されている環境の差異又は変化に起因するインバータ出力の変動を抑制することが可能となる。 As described above, the second switching mode is a mode in which the switching operation is performed with the on and off timings of the switching elements different between the in-phases of the inverters 3a and 3b. In the example of FIG. 5, the on / off timing of each switching element in the inverter 3b is controlled to be delayed by the time difference Te with respect to the on / off timing of each switching element in the inverter 3a. The time difference Te is the amount of shift in the timing of turning on or off of the switching element for each phase in the inverters 3a and 3b. When controlled in this way, the variation in wiring resistance due to the change in the wiring temperature between the inverters 3a and 3b and the motor 1 and the temperature variation of the switching element in the inverters 3a and 3b act in a direction of becoming smaller. This makes it possible to suppress fluctuations in the inverter output due to differences or changes in the environment in which the inverters 3a and 3b are arranged.
 なお、インバータ3a,3bとモータ1との間の配線温度の変化による配線抵抗のばらつき、及びインバータ3a,3bにおけるスイッチング素子の温度ばらつきの影響が小さい場合は、インバータ3a,3bにおける各PWM信号のパルス幅は同一であることが好ましい。このように制御すれば、インバータ3a,3bの各々の出力電圧の基本波成分を同一に保持しつつ、インバータ出力の変動を抑制することが可能となる。 If the influence of the variation in the wiring resistance due to the change in the wiring temperature between the inverters 3a and 3b and the motor 1 and the temperature variation of the switching element in the inverters 3a and 3b is small, the PWM signal in the inverters 3a and 3b It is preferable that the pulse widths are the same. By controlling in this way, it is possible to suppress fluctuations in the inverter output while keeping the fundamental wave components of the output voltages of the inverters 3a and 3b the same.
 一方、前述した配線抵抗のばらつき、及びスイッチング素子の温度ばらつきの影響が瞬時的、又は突発的に大きくなってしまった場合等においては、インバータ3a,3bにおける各PWM信号のパルス幅を異ならせてもよい。このように制御すれば、インバータ3a,3b間のインバータ電流のアンバランスを解消して平衡性を元に戻す制御を迅速に行うことができる。 On the other hand, when the influence of the above-mentioned variation in wiring resistance and the variation in temperature of the switching element becomes large instantaneously or suddenly, the pulse widths of the PWM signals in the inverters 3a and 3b are made different. May be good. By controlling in this way, it is possible to quickly perform control to eliminate the imbalance of the inverter current between the inverters 3a and 3b and restore the equilibrium.
 以上、インバータ3bにおけるスイッチング素子のオン又はオフのタイミングをインバータ3aの同相同士で比較した際に異となるように制御する手法として、相ごとに時間差Teを設ける手法について説明したが、この手法に限定されない。例えば、各々のインバータ3a,3bごとに個別に電圧指令値Vu*,Vv*,Vw*を生成し、各々のインバータ3a,3bにおける電圧指令値Vu*,Vv*,Vw*に位相差を設けてもよい。位相差を設けた電圧指令値Vu*,Vv*,Vw*を同一のキャリア信号と比較すれば、意図するPWM信号を生成することができる。 The method of providing a time difference Te for each phase has been described above as a method of controlling the on / off timing of the switching element in the inverter 3b so as to be different when the same phases of the inverter 3a are compared. Not limited to. For example, voltage command values Vu *, Vv *, Vw * are individually generated for each of the inverters 3a, 3b, and phase differences are provided for the voltage command values Vu *, Vv *, Vw * in each of the inverters 3a, 3b. You may. By comparing the voltage command values Vu *, Vv *, and Vw * with the phase difference with the same carrier signal, the intended PWM signal can be generated.
 或いは、電圧指令値Vu*,Vv*,Vw*をインバータ3a,3b間で共通とし、キャリア信号をインバータ3a,3b間において異とするようにしてもよい。 Alternatively, the voltage command values Vu *, Vv *, Vw * may be common among the inverters 3a and 3b, and the carrier signal may be different among the inverters 3a and 3b.
 或いは、第1のスイッチングモードと同様の方法で生成した各PWM信号に対して、インバータ3a,3bにおける相ごとのスイッチング素子のペアに対して、個別にオン及びオフのタイミングを補正するようにしてもよい。 Alternatively, for each PWM signal generated by the same method as in the first switching mode, the on and off timings are individually corrected for the pair of switching elements for each phase in the inverters 3a and 3b. May be good.
 また、これまでの説明では、インバータ3aを基準にインバータ3bのスイッチングパターンを調整するようにしているが、これに限定されない。これとは逆に、インバータ3bを基準にインバータ3aのスイッチングパターンを調整するようにしてもよい。 Further, in the explanation so far, the switching pattern of the inverter 3b is adjusted based on the inverter 3a, but the present invention is not limited to this. On the contrary, the switching pattern of the inverter 3a may be adjusted with reference to the inverter 3b.
 次に、スイッチングモードの選択方法について、図6を参照して説明する。図6は、実施の形態1におけるスイッチングモードの選択方法の説明に供するフローチャートである。実施の形態1では、モード選択情報が電流検出部5a,5bによって検出されるインバータ電流である場合について説明する。前述したように、インバータ電流は、各々のインバータ3a,3bからモータ1に出力される出力電流である。 Next, the method of selecting the switching mode will be described with reference to FIG. FIG. 6 is a flowchart for explaining the method of selecting the switching mode in the first embodiment. In the first embodiment, the case where the mode selection information is the inverter current detected by the current detection units 5a and 5b will be described. As described above, the inverter current is the output current output from the respective inverters 3a and 3b to the motor 1.
 まず、制御部4は、インバータ3a,3bを制御して、モータ1を第1のスイッチングモードで駆動する(ステップS11)。モータ1及びインバータ3a,3bにおいて、配線抵抗のばらつき、スイッチング素子の温度ばらつき等が小さい状態であれば、インバータ電流の出力平衡性が保たれる。 First, the control unit 4 controls the inverters 3a and 3b to drive the motor 1 in the first switching mode (step S11). In the motor 1 and the inverters 3a and 3b, if the variation in wiring resistance, the variation in the temperature of the switching element, and the like are small, the output balance of the inverter current is maintained.
 制御部4は、インバータ3a,3bにおけるインバータ電流の検出値を電流検出部5a,5bから取得する(ステップS12)。制御部4は、インバータ電流の検出値に基づいて差電流を演算する(ステップS13)。差電流は、インバータ3a,3b間のインバータ電流の差異が分かる情報であればよく、当該情報の物理量が電流である必要はない。 The control unit 4 acquires the detection value of the inverter current in the inverters 3a and 3b from the current detection units 5a and 5b (step S12). The control unit 4 calculates the difference current based on the detected value of the inverter current (step S13). The difference current may be information that shows the difference in the inverter current between the inverters 3a and 3b, and the physical quantity of the information does not have to be the current.
 制御部4は、差電流を予め定められた許容値と比較する(ステップS14)。差電流が許容値以下であれば(ステップS14,No)、ステップS11に戻り、上記の処理を繰り返す。一方、差電流が許容値を超えている場合(ステップS14,Yes)、制御部4は、インバータ3a,3bを制御して、モータ1を第2のスイッチングモードで駆動する(ステップS15)。 The control unit 4 compares the difference current with a predetermined allowable value (step S14). If the difference current is equal to or less than the allowable value (steps S14 and No), the process returns to step S11 and the above process is repeated. On the other hand, when the difference current exceeds the allowable value (step S14, Yes), the control unit 4 controls the inverters 3a and 3b to drive the motor 1 in the second switching mode (step S15).
 以上のように、制御部4は、差電流が許容値以下であればモータ1を第1のスイッチングモードで駆動し、差電流が許容値を超えていればモータ1を第2のスイッチングモードで駆動する。即ち、制御部4は、差電流に基づいて、モータ1を駆動するスイッチングモードを第1のスイッチングモードと第2のスイッチングモードとの間で切り替える制御を行う。 As described above, the control unit 4 drives the motor 1 in the first switching mode when the difference current is equal to or less than the allowable value, and drives the motor 1 in the second switching mode when the difference current exceeds the allowable value. Drive. That is, the control unit 4 controls to switch the switching mode for driving the motor 1 between the first switching mode and the second switching mode based on the difference current.
 また、制御部4は、第2のスイッチングモードで駆動している場合に、差電流が許容値以下に戻れば、スイッチングモードを第2のスイッチングモードから第1のスイッチングモードに切り替える。例えば、負荷6を高負荷運転から中又は軽負荷運転に切り替えた場合、インバータ電流、及びモータ電流が小さい状態が続き、インバータ3a,3b及びモータ1の温度上昇が起こりにくくなる。或いは、外部の冷却機構又は自然冷却によりインバータ3a,3bの温度及び周辺の温度が低下するので、配線抵抗のばらつき、及びスイッチング素子の温度ばらつきが次第に小さくなる。このような状態であれば、モータ1を第1のスイッチングモードで駆動しても、インバータ電流の出力平衡性が保たれる。 Further, when the control unit 4 is driven in the second switching mode, if the difference current returns to the allowable value or less, the control unit 4 switches the switching mode from the second switching mode to the first switching mode. For example, when the load 6 is switched from the high load operation to the medium or light load operation, the inverter current and the motor current continue to be small, and the temperatures of the inverters 3a, 3b and the motor 1 are less likely to rise. Alternatively, since the temperature of the inverters 3a and 3b and the ambient temperature are lowered by the external cooling mechanism or natural cooling, the variation in the wiring resistance and the temperature variation in the switching element are gradually reduced. In such a state, the output equilibrium of the inverter current is maintained even if the motor 1 is driven in the first switching mode.
 なお、上記のステップS14では、差電流と許容値とが等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、制御部4は、差電流と許容値とが等しい場合を“Yes”又は“No”の何れで判定してもよい。何れにせよ、制御部4は、差電流が許容値の範囲内であればモータ1を第1のスイッチングモードで駆動し、差電流が許容値の範囲外であればモータ1を第2のスイッチングモードで駆動する。 In the above step S14, the case where the difference current and the allowable value are equal is determined as "No", but it may be determined as "Yes". That is, the control unit 4 may determine the case where the difference current and the permissible value are equal to each other by either "Yes" or "No". In any case, the control unit 4 drives the motor 1 in the first switching mode if the difference current is within the allowable value range, and switches the motor 1 to the second switching if the difference current is outside the allowable value range. Drive in mode.
 また、上記のステップS14では、許容値の比較対象を差電流としているが、これに限定されない。差電流に代えて、電流検出部5aの検出値と電流検出部5bの検出値との比である電流比を用いてもよい。 Further, in step S14 described above, the comparison target of the allowable values is the difference current, but the comparison is not limited to this. Instead of the difference current, the current ratio, which is the ratio between the detection value of the current detection unit 5a and the detection value of the current detection unit 5b, may be used.
 また、上記のステップS15では、第2のスイッチングモードでモータ1が駆動される。この場合、インバータ3bにおけるスイッチング素子のオン又はオフのタイミングと、インバータ3aにおけるスイッチング素子のオン又はオフのタイミングとの間で、相ごとに時間差Teが設定される。この時間差Teについては、固定値としてもよいし、差電流に応じた可変値としてもよい。可変値とする場合、差電流と時間差Teとの関係を予め求めておき、差電流の大小に応じて時間差Teを変更すればよい。差電流を制御量とし、相ごとの時間差Teを操作量とするような制御系を制御部4の内部に構成すれば、この制御を実現することができる。 Further, in the above step S15, the motor 1 is driven in the second switching mode. In this case, a time difference Te is set for each phase between the timing of turning on or off the switching element in the inverter 3b and the timing of turning on or off the switching element in the inverter 3a. The time difference Te may be a fixed value or a variable value according to the difference current. When the value is variable, the relationship between the difference current and the time difference Te may be obtained in advance, and the time difference Te may be changed according to the magnitude of the difference current. This control can be realized by configuring a control system inside the control unit 4 in which the difference current is the control amount and the time difference Te for each phase is the operation amount.
 また、時間差Teの正負の値、即ち時間差Teのずらしの方向については、以下のように制御すればよい。なお、ここでは、電流検出部5aによって検出されたインバータ電流の検出値を「インバータ3aの電流」と呼び、電流検出部5bによって検出されたインバータ電流の検出値を「インバータ3bの電流」と呼ぶ。また、インバータ3aがモータ1に印加する電圧を「インバータ3cの出力電圧」と呼び、インバータ3bがモータ1に印加する電圧を「インバータ3bの出力電圧」と呼ぶ。 Further, the positive and negative values of the time difference Te, that is, the direction of the time difference Te shift may be controlled as follows. Here, the detected value of the inverter current detected by the current detection unit 5a is referred to as "current of the inverter 3a", and the detected value of the inverter current detected by the current detection unit 5b is referred to as "current of the inverter 3b". .. Further, the voltage applied by the inverter 3a to the motor 1 is referred to as "output voltage of the inverter 3c", and the voltage applied by the inverter 3b to the motor 1 is referred to as "output voltage of the inverter 3b".
 例えば、「インバータ3aの電流-インバータ3bの電流」の値が予め定められた正の許容値より大きい場合は、インバータ3aの出力電圧がインバータ3bの出力電圧に対して大きくなる。従って、この場合は、インバータ3aの出力電圧がインバータ3bの出力電圧に対して相対的に小さくなるように時間差Teのずらしの方向及び大きさを制御する。インバータ3aの出力電圧がインバータ3bの出力電圧に対して相対的に小さくなるのであれば、時間差Teのずらしの方向、即ち時間差Teの値の正負は問わない。 For example, when the value of "current of inverter 3a-current of inverter 3b" is larger than a predetermined positive allowable value, the output voltage of the inverter 3a becomes larger than the output voltage of the inverter 3b. Therefore, in this case, the direction and magnitude of the shift of the time difference Te are controlled so that the output voltage of the inverter 3a becomes relatively small with respect to the output voltage of the inverter 3b. As long as the output voltage of the inverter 3a is relatively small with respect to the output voltage of the inverter 3b, the direction of the shift of the time difference Te, that is, the positive or negative of the value of the time difference Te does not matter.
 また、「インバータ3aの電流-インバータ3bの電流」の値が予め定められた負の許容値より小さい場合は、インバータ3aの出力電圧がインバータ3bの出力電圧に対して小さくなる。従って、この場合は、インバータ3aの出力電圧がインバータ3bの出力電圧に対して相対的に大きくなるように時間差Teのずらしの方向及び大きさを制御する。インバータ3aの出力電圧がインバータ3bの出力電圧に対して相対的に大きくなるのであれば、時間差Teのずらしの方向、即ち時間差Teの値の正負は問わない。 Further, when the value of "current of inverter 3a-current of inverter 3b" is smaller than a predetermined negative allowable value, the output voltage of the inverter 3a becomes smaller than the output voltage of the inverter 3b. Therefore, in this case, the direction and magnitude of the shift of the time difference Te are controlled so that the output voltage of the inverter 3a becomes relatively large with respect to the output voltage of the inverter 3b. As long as the output voltage of the inverter 3a is relatively large with respect to the output voltage of the inverter 3b, the direction of the shift of the time difference Te, that is, the positive or negative of the value of the time difference Te does not matter.
 なお、時間差Teの値は、配線抵抗のばらつき、スイッチング素子の温度ばらつき等に起因するインバータ電流の不平衡性を解消する目的であれば、概ね数百[ns]~数[μs]のオーダとなる。時間差Teの値をこれ以上に大きくすると、本来、モータ1に出力すべき電圧に対して影響を及ぼす可能性があるので、避けた方が賢明である。 The value of the time difference Te is generally on the order of several hundred [ns] to several [μs] for the purpose of eliminating the imbalance of the inverter current caused by the variation of the wiring resistance, the temperature variation of the switching element, and the like. Become. If the value of the time difference Te is made larger than this, it may affect the voltage that should be output to the motor 1, so it is wise to avoid it.
 なお、「インバータ3aの電流-インバータ3bの電流」の絶対値が大きい場合、前述したように、PWM信号のパルス幅をインバータ3aとインバータ3bとで異なるように制御してもよい。この制御を併用すれば、インバータ3a,3b間のアンバランスを解消する時間の短縮化を図ることができる。 When the absolute value of "current of inverter 3a-current of inverter 3b" is large, the pulse width of the PWM signal may be controlled to be different between the inverter 3a and the inverter 3b as described above. If this control is used in combination, the time for eliminating the imbalance between the inverters 3a and 3b can be shortened.
 インバータ3a,3b間に生じる差電流は、インバータ損失及びモータの損失の増加につながる。また、この差電流は、モータ1が必要とする電流に重畳されて各々のインバータに流れるので、瞬時的な電流重畳により、過電流が発生するおそれがある。 The difference current generated between the inverters 3a and 3b leads to an increase in the inverter loss and the motor loss. Further, since this difference current is superimposed on the current required by the motor 1 and flows to each inverter, there is a possibility that an overcurrent may occur due to the instantaneous current superposition.
 従って、差電流をモード選択情報としてスイッチングモードを選択又は切り替えることにより、上述の効果に加え、インバータ損失及びモータ損失を抑制できるという効果が得られる。また、差電流に基づく制御により、過電流の発生を抑制できるので、スイッチング素子が損傷する確率を低下させることができる。更には、スイッチング素子が損傷する確率を低下させるための素子定格マージンを低減させることができる。 Therefore, by selecting or switching the switching mode using the difference current as the mode selection information, in addition to the above-mentioned effects, the effect of suppressing the inverter loss and the motor loss can be obtained. Further, since the generation of overcurrent can be suppressed by the control based on the difference current, the probability that the switching element is damaged can be reduced. Furthermore, it is possible to reduce the element rating margin for reducing the probability that the switching element will be damaged.
 なお、上記では、第1のスイッチングモードでは、インバータ3a,3bの両方を用いてモータ1を駆動することを前提として説明しているが、これに限定されない。モータ1の出力が小さい領域では、インバータ3a,3bのうちの何れか一方のインバータの動作を停止し、残りの1つのインバータでモータ1を駆動してもよい。この点は、以下の実施の形態においても同様である。 Note that the above description is based on the premise that the motor 1 is driven by using both the inverters 3a and 3b in the first switching mode, but the present invention is not limited to this. In the region where the output of the motor 1 is small, the operation of one of the inverters 3a and 3b may be stopped and the motor 1 may be driven by the remaining one inverter. This point is the same in the following embodiments.
 また、上記では、同一のモータ1に並列に接続されるインバータ数は2としているが、これに限定されない。インバータ数は、3以上でもよい。インバータ数が3以上である場合、インバータ電流の最大値と最小値との間の差分を演算し、その演算値を上記のフローチャートにおける差電流として用いればよい。この場合、インバータ電流が最大であるインバータのみに時間差Teを設定して駆動してもよいし、インバータ電流が最小であるインバータ以外のインバータに時間差Teを設定して駆動してもよい。また、これら以外の手法で駆動してもよい。 Further, in the above, the number of inverters connected in parallel to the same motor 1 is 2, but it is not limited to this. The number of inverters may be 3 or more. When the number of inverters is 3 or more, the difference between the maximum value and the minimum value of the inverter current may be calculated and the calculated value may be used as the difference current in the above flowchart. In this case, the time difference Te may be set and driven only for the inverter having the maximum inverter current, or the time difference Te may be set and driven for the inverter other than the inverter having the minimum inverter current. Further, it may be driven by a method other than these.
 以上説明したように、実施の形態1に係るモータ駆動装置は、複数のインバータでモータを駆動する際に、モード選択情報であるインバータ電流に基づいて選択される第1及び第2のスイッチングモードを有する。第1のスイッチングモードは、各々のインバータの同相におけるスイッチング素子のオン及びオフのタイミングを複数のインバータ同士で揃えて各々のインバータのスイッチング動作を行う。第2のスイッチングモードは、各々のインバータの同相におけるスイッチング素子のオン及びオフのタイミングを複数のインバータ同士で異として各々のインバータのスイッチング動作を行う。モータ駆動装置は、各々のインバータ間のインバータ電流の差電流が許容値を超えている場合には、モータを第2のスイッチングモードで駆動する。これにより、各々のインバータが配置されている環境の差異又は変化に起因するインバータ出力の変動を抑制することが可能となる。 As described above, the motor drive device according to the first embodiment has the first and second switching modes selected based on the inverter current which is the mode selection information when the motor is driven by a plurality of inverters. Have. In the first switching mode, the switching operation of each inverter is performed by aligning the on and off timings of the switching elements in the same phase of each inverter among the plurality of inverters. In the second switching mode, the switching operation of each inverter is performed by setting the on / off timing of the switching element in the same phase of each inverter to be different among the plurality of inverters. The motor drive device drives the motor in the second switching mode when the difference current of the inverter current between the respective inverters exceeds the allowable value. This makes it possible to suppress fluctuations in the inverter output due to differences or changes in the environment in which each inverter is arranged.
 上記の制御において、モード選択情報であるインバータ電流は、各々のインバータのインバータ電流を検出する電流検出器のみで実現でき、モータの各相に流れるモータ電流を検出する電流検出器は不要である。このため、実施の形態1に係るモータ駆動装置によれば、電流検出器の数を削減できるという効果が得られる。 In the above control, the inverter current, which is the mode selection information, can be realized only by the current detector that detects the inverter current of each inverter, and the current detector that detects the motor current flowing in each phase of the motor is unnecessary. Therefore, according to the motor drive device according to the first embodiment, the effect that the number of current detectors can be reduced can be obtained.
 次に、実施の形態1における制御部4の機能を実現するためのハードウェア構成について、図7及び図8の図面を参照して説明する。図7は、実施の形態1における制御部4の機能を実現するハードウェア構成の一例を示すブロック図である。図8は、実施の形態1における制御部4の機能を実現するハードウェア構成の他の例を示すブロック図である。 Next, the hardware configuration for realizing the function of the control unit 4 in the first embodiment will be described with reference to the drawings of FIGS. 7 and 8. FIG. 7 is a block diagram showing an example of a hardware configuration that realizes the function of the control unit 4 in the first embodiment. FIG. 8 is a block diagram showing another example of the hardware configuration that realizes the function of the control unit 4 in the first embodiment.
 実施の形態1における制御部4の機能の一部又は全部を実現する場合には、図7に示されるように、演算を行うプロセッサ300、プロセッサ300によって読みとられるプログラムが保存されるメモリ302、及び信号の入出力を行うインタフェース304を含む構成とすることができる。 When a part or all of the functions of the control unit 4 in the first embodiment are realized, as shown in FIG. 7, a processor 300 that performs an operation, a memory 302 that stores a program read by the processor 300, And the interface 304 for inputting / outputting signals can be included.
 プロセッサ300は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ302には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。 The processor 300 may be an arithmetic unit such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor). Further, the memory 302 includes a non-volatile or volatile semiconductor memory such as a RAM (Radom Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Project ROM), or an EEPROM (registered trademark) (Electrically EPROM). Examples thereof include magnetic discs, flexible discs, optical discs, compact discs, mini discs, and DVDs (Digital Versaille Disc).
 メモリ302には、実施の形態1における制御部4の機能を実行するプログラムが格納されている。プロセッサ300は、インタフェース304を介して必要な情報を授受し、メモリ302に格納されたプログラムをプロセッサ300が実行し、メモリ302に格納されたテーブルをプロセッサ300が参照することにより、上述した処理を行うことができる。プロセッサ300による演算結果は、メモリ302に記憶することができる。 The memory 302 stores a program that executes the function of the control unit 4 in the first embodiment. The processor 300 sends and receives necessary information via the interface 304, the processor 300 executes a program stored in the memory 302, and the processor 300 refers to a table stored in the memory 302 to perform the above-mentioned processing. It can be carried out. The calculation result by the processor 300 can be stored in the memory 302.
 また、実施の形態1における制御部4の機能の一部を実現する場合には、図8に示す処理回路303を用いることもできる。処理回路303は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。処理回路303に入力する情報、及び処理回路303から出力する情報は、インタフェース304を介して入手することができる。 Further, when a part of the function of the control unit 4 in the first embodiment is realized, the processing circuit 303 shown in FIG. 8 can also be used. The processing circuit 303 corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. The information input to the processing circuit 303 and the information output from the processing circuit 303 can be obtained via the interface 304.
 なお、制御部4における一部の処理を処理回路303で実施し、処理回路303で実施しない処理をプロセッサ300及びメモリ302で実施してもよい。 Note that some processing in the control unit 4 may be performed by the processing circuit 303, and processing not performed by the processing circuit 303 may be performed by the processor 300 and the memory 302.
実施の形態2.
 実施の形態1は、電流検出部で検出されるインバータ電流がモータ選択情報である場合について説明した。実施の形態2では、温度検出器で検出される温度情報がモータ選択情報である場合について説明する。
Embodiment 2.
In the first embodiment, the case where the inverter current detected by the current detection unit is the motor selection information has been described. In the second embodiment, the case where the temperature information detected by the temperature detector is the motor selection information will be described.
 図9は、実施の形態2に係るモータ駆動装置100aの構成を示す回路図である。実施の形態2に係るモータ駆動装置100aでは、図1の構成と比較すると、制御部4が制御部4aに置き替えられ、インバータ3a,3bがインバータ3c,3dに置き替えられている。また、インバータ3cには温度検出器7aが設けられ、インバータ3dには温度検出器7bが設けられている。その他の構成は、図1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。なお、以下において、温度検出器7a,7bを総称して「第1の温度検出器」と記載する場合がある。 FIG. 9 is a circuit diagram showing the configuration of the motor drive device 100a according to the second embodiment. In the motor drive device 100a according to the second embodiment, the control unit 4 is replaced with the control unit 4a, and the inverters 3a and 3b are replaced with the inverters 3c and 3d, as compared with the configuration of FIG. Further, the inverter 3c is provided with a temperature detector 7a, and the inverter 3d is provided with a temperature detector 7b. Other configurations are the same as or equivalent to those in FIG. 1, and the same or equivalent components are indicated by the same reference numerals, and duplicate explanations are omitted. In the following, the temperature detectors 7a and 7b may be collectively referred to as "first temperature detector".
 温度検出器7aはインバータ3cの温度を検出し、温度検出器7bはインバータ3dの温度を検出する。インバータ3c,3dの温度は、各々の内部の温度であってもよいし、各々における外部の周辺温度であってもよい。具体的に、温度検出器7a,7bは、例えば、各々のインバータ3c,3d内の6つのスイッチング素子から構成されるパワーモジュールに内蔵された温度センサであってもよい。或いは、温度検出器7a,7bは、各々のインバータ3c,3dに温度センサを取り付けて温度を電気信号に変換するように構成されたものであってもよい。温度センサの例は、サーミスタ又は熱電対である。 The temperature detector 7a detects the temperature of the inverter 3c, and the temperature detector 7b detects the temperature of the inverter 3d. The temperature of the inverters 3c and 3d may be the internal temperature of each or the external ambient temperature of each. Specifically, the temperature detectors 7a and 7b may be, for example, a temperature sensor built in a power module composed of six switching elements in the respective inverters 3c and 3d. Alternatively, the temperature detectors 7a and 7b may be configured to convert the temperature into an electric signal by attaching a temperature sensor to each of the inverters 3c and 3d. An example of a temperature sensor is a thermistor or thermocouple.
 次に、実施の形態2におけるスイッチングモードの選択方法について、図10を参照して説明する。図10は、実施の形態2におけるスイッチングモードの選択方法の説明に供するフローチャートである。実施の形態2では、モード選択情報が温度検出器7a,7bによって検出されるインバータ3c,3dの温度である場合について説明する。 Next, the method of selecting the switching mode in the second embodiment will be described with reference to FIG. FIG. 10 is a flowchart for explaining the method of selecting the switching mode in the second embodiment. In the second embodiment, the case where the mode selection information is the temperature of the inverters 3c and 3d detected by the temperature detectors 7a and 7b will be described.
 まず、制御部4aは、インバータ3c,3dを制御して、モータ1を第1のスイッチングモードで駆動する(ステップS21)。モータ1及びインバータ3c,3dにおいて、インバータ3c,3d間の温度差が小さければ、配線抵抗のばらつき、スイッチング素子の温度ばらつき等も小さく、インバータ電流の出力平衡性が保たれる。 First, the control unit 4a controls the inverters 3c and 3d to drive the motor 1 in the first switching mode (step S21). If the temperature difference between the inverters 3c and 3d is small in the motor 1 and the inverters 3c and 3d, the variation in wiring resistance and the temperature variation in the switching element are also small, and the output balance of the inverter current is maintained.
 制御部4は、インバータ3c,3dにおける温度の検出値を温度検出器7a,7bから取得する(ステップS22)。制御部4は、温度の検出値に基づいて温度差を演算する(ステップS23)。 The control unit 4 acquires the temperature detection values of the inverters 3c and 3d from the temperature detectors 7a and 7b (step S22). The control unit 4 calculates the temperature difference based on the detected value of the temperature (step S23).
 制御部4aは、温度差を予め定められた許容値と比較する(ステップS24)。温度差が許容値以下であれば(ステップS24,No)、ステップS21に戻り、上記の処理を繰り返す。一方、温度差が許容値を超えている場合(ステップS24,Yes)、制御部4aは、インバータ3c,3dを制御して、モータ1を第2のスイッチングモードで駆動する(ステップS25)。 The control unit 4a compares the temperature difference with a predetermined allowable value (step S24). If the temperature difference is equal to or less than the allowable value (steps S24 and No), the process returns to step S21 and the above processing is repeated. On the other hand, when the temperature difference exceeds the permissible value (step S24, Yes), the control unit 4a controls the inverters 3c and 3d to drive the motor 1 in the second switching mode (step S25).
 以上のように、制御部4aは、温度差が許容値以下であればモータ1を第1のスイッチングモードで駆動し、温度差が許容値を超えていればモータ1を第2のスイッチングモードで駆動する。即ち、制御部4aは、温度差に基づいて、モータ1を駆動するスイッチングモードを第1のスイッチングモードと第2のスイッチングモードとの間で切り替える制御を行う。 As described above, the control unit 4a drives the motor 1 in the first switching mode when the temperature difference is equal to or less than the allowable value, and drives the motor 1 in the second switching mode when the temperature difference exceeds the allowable value. Drive. That is, the control unit 4a controls to switch the switching mode for driving the motor 1 between the first switching mode and the second switching mode based on the temperature difference.
 また、制御部4aは、第2のスイッチングモードで駆動している場合に、温度差が許容値以下に戻れば、スイッチングモードを第2のスイッチングモードから第1のスイッチングモードに切り替える。例えば、負荷6を高負荷運転から中又は軽負荷運転に切り替えた場合、インバータ電流、及びモータ電流が小さい状態が続き、インバータ3c,3d及びモータ1の温度上昇が起こりにくくなる。或いは、外部の冷却機構又は自然冷却によりインバータ3c,3dの温度及び周辺の温度が低下するので、配線抵抗のばらつき、及びスイッチング素子の温度ばらつきが次第に小さくなる。このような状態であれば、モータ1を第1のスイッチングモードで駆動しても、インバータ電流の出力平衡性が保たれる。 Further, when the control unit 4a is driven in the second switching mode, if the temperature difference returns to the allowable value or less, the control unit 4a switches the switching mode from the second switching mode to the first switching mode. For example, when the load 6 is switched from the high load operation to the medium or light load operation, the inverter current and the motor current continue to be small, and the temperatures of the inverters 3c, 3d and the motor 1 are less likely to rise. Alternatively, since the temperature of the inverters 3c and 3d and the ambient temperature are lowered by the external cooling mechanism or natural cooling, the variation in the wiring resistance and the temperature variation of the switching element are gradually reduced. In such a state, the output equilibrium of the inverter current is maintained even if the motor 1 is driven in the first switching mode.
 なお、上記のステップS24では、温度差と許容値とが等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、制御部4aは、温度差と許容値とが等しい場合を“Yes”又は“No”の何れで判定してもよい。何れにせよ、制御部4aは、温度差が許容値の範囲内であればモータ1を第1のスイッチングモードで駆動し、温度差が許容値の範囲外であればモータ1を第2のスイッチングモードで駆動する。 In the above step S24, the case where the temperature difference and the permissible value are equal is determined as "No", but it may be determined as "Yes". That is, the control unit 4a may determine whether the temperature difference and the permissible value are equal to each other by either "Yes" or "No". In any case, the control unit 4a drives the motor 1 in the first switching mode if the temperature difference is within the allowable value range, and switches the motor 1 to the second switching mode if the temperature difference is out of the allowable value range. Drive in mode.
 また、上記のステップS24では、許容値の比較対象を温度差としているが、これに限定されない。温度差に代えて、温度検出器7aの検出値と温度検出器7bの検出値との比である温度比を用いてもよい。 Further, in step S24 described above, the comparison target of the allowable values is the temperature difference, but the comparison is not limited to this. Instead of the temperature difference, a temperature ratio which is a ratio between the detection value of the temperature detector 7a and the detection value of the temperature detector 7b may be used.
 また、上記のステップS25では、第2のスイッチングモードでモータ1が駆動される。この場合、インバータ3dにおけるスイッチング素子のオン又はオフのタイミングと、インバータ3cにおけるスイッチング素子のオン又はオフのタイミングとの間で、相ごとに時間差Teが設定される。この時間差Teについては、固定値としてもよいし、温度差に応じた可変値としてもよい。可変値とする場合、温度差と時間差Teとの関係を予め求めておき、温度差の大小に応じて時間差Teを変更すればよい。温度差を制御量とし、相ごとの時間差Teを操作量とするような制御系を制御部4aの内部に構成すれば、この制御を実現することができる。 Further, in the above step S25, the motor 1 is driven in the second switching mode. In this case, a time difference Te is set for each phase between the timing of turning on or off the switching element in the inverter 3d and the timing of turning on or off the switching element in the inverter 3c. The time difference Te may be a fixed value or a variable value according to the temperature difference. When the value is variable, the relationship between the temperature difference and the time difference Te may be obtained in advance, and the time difference Te may be changed according to the magnitude of the temperature difference. This control can be realized by configuring a control system inside the control unit 4a in which the temperature difference is used as the control amount and the time difference Te for each phase is used as the operation amount.
 なお、時間差Teの正負の値、即ち時間差Teのずらしの方向については、実施の形態1と同様に制御又は設定すればよい。内容が重複するので、ここでの説明は割愛する。 The positive and negative values of the time difference Te, that is, the direction of the time difference Te shift may be controlled or set in the same manner as in the first embodiment. Since the contents are duplicated, the explanation here is omitted.
 インバータ3c,3d間に生じる温度差は、インバータ損失及びモータの損失の増加につながる。また、この温度差は、モータ1が必要とする電流に重畳されて各々のインバータに流れるので、瞬時的な電流重畳により、過電流が発生するおそれがある。 The temperature difference between the inverters 3c and 3d leads to an increase in inverter loss and motor loss. Further, since this temperature difference is superimposed on the current required by the motor 1 and flows to each inverter, there is a possibility that an overcurrent may occur due to the instantaneous current superposition.
 従って、温度差をモード選択情報としてスイッチングモードを選択又は切り替えることにより、インバータ損失及びモータ損失を抑制できるという効果が得られる。また、温度差に基づく制御により、過電流の発生を抑制できるので、スイッチング素子が損傷する確率を低下させることができる。更には、スイッチング素子の確率を低下させるための素子定格マージンを低減させることができる。 Therefore, by selecting or switching the switching mode using the temperature difference as the mode selection information, the effect that the inverter loss and the motor loss can be suppressed can be obtained. Further, since the generation of overcurrent can be suppressed by the control based on the temperature difference, the probability that the switching element is damaged can be reduced. Further, the element rating margin for reducing the probability of the switching element can be reduced.
 以上説明したように、実施の形態2に係るモータ駆動装置は、複数のインバータにおける各々の温度を検出する第1の温度検出器を備え、第1の温度検出器で検出された各々の温度情報をモータ選択情報として用いる。そして、モータ駆動装置は、各々のインバータ間の温度差が許容値を超えている場合には、モータを第2のスイッチングモードで駆動する。これにより、各々のインバータが配置されている環境の差異又は変化に起因するインバータ出力の変動を抑制することが可能となる。 As described above, the motor drive device according to the second embodiment includes a first temperature detector that detects the temperature of each of the plurality of inverters, and each temperature information detected by the first temperature detector. Is used as motor selection information. Then, when the temperature difference between the respective inverters exceeds the allowable value, the motor drive device drives the motor in the second switching mode. This makes it possible to suppress fluctuations in the inverter output due to differences or changes in the environment in which each inverter is arranged.
 なお、上記では、各々のインバータの温度情報のみをモード選択情報として説明しているが、実施の形態1で説明した差電流を組み合わせてモード選択情報として用いてもよい。このようにすれば、より精度の良いインバータ制御及びモータ駆動を行うことができる。 In the above, only the temperature information of each inverter is described as the mode selection information, but the difference current described in the first embodiment may be combined and used as the mode selection information. By doing so, more accurate inverter control and motor drive can be performed.
実施の形態3.
 実施の形態2では、第1の温度検出器で検出される温度情報がモータ選択情報である場合について説明した。実施の形態3では、別の温度検出器で検出される温度情報がモータ選択情報である場合について説明する。
Embodiment 3.
In the second embodiment, the case where the temperature information detected by the first temperature detector is the motor selection information has been described. In the third embodiment, the case where the temperature information detected by another temperature detector is the motor selection information will be described.
 図11は、実施の形態3に係るモータ駆動装置100bの構成を示す回路図である。実施の形態3に係るモータ駆動装置100bでは、図1の構成と比較すると、制御部4が制御部4bに置き替えられている。また、インバータ3aとモータ1との間にはリアクトル8aが設けられ、インバータ3bとモータ1との間にはリアクトル8bが設けられている。更に、リアクトル8aには温度検出器7cが設けられ、リアクトル8bには温度検出器7dが設けられている。その他の構成は、図1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。なお、以下において、温度検出器7c,7dを総称して「第2の温度検出器」と記載する場合がある。 FIG. 11 is a circuit diagram showing the configuration of the motor drive device 100b according to the third embodiment. In the motor drive device 100b according to the third embodiment, the control unit 4 is replaced with the control unit 4b as compared with the configuration of FIG. Further, a reactor 8a is provided between the inverter 3a and the motor 1, and a reactor 8b is provided between the inverter 3b and the motor 1. Further, the reactor 8a is provided with a temperature detector 7c, and the reactor 8b is provided with a temperature detector 7d. Other configurations are the same as or equivalent to those in FIG. 1, and the same or equivalent components are indicated by the same reference numerals, and duplicate explanations are omitted. In the following, the temperature detectors 7c and 7d may be collectively referred to as "second temperature detector".
 リアクトルはインダクタンス成分を有するので、電流の変化を抑制する効果がある。このため、図11のように、リアクトル8a,8bを挿入すると、インバータ3a,3b間の差電流を抑制する効果がある。一方、リアクトルは抵抗成分を有するため、温度依存性を有する。このため、リアクトル8a,8bは、温度により抵抗値が変化し、ばらつきの要因となる。この温度依存性を考慮して、インバータ3a,3bを駆動すれば、所望のインバータ出力をより得られ易くなる。そこで、実施の形態3では、リアクトル8a,8bに温度検出器7c,7dを設けている。 Since the reactor has an inductance component, it has the effect of suppressing changes in current. Therefore, as shown in FIG. 11, inserting the reactors 8a and 8b has the effect of suppressing the difference current between the inverters 3a and 3b. On the other hand, since the reactor has a resistance component, it has a temperature dependence. Therefore, the resistance values of the reactors 8a and 8b change depending on the temperature, which causes variation. If the inverters 3a and 3b are driven in consideration of this temperature dependence, it becomes easier to obtain a desired inverter output. Therefore, in the third embodiment, the reactors 8a and 8b are provided with temperature detectors 7c and 7d.
 なお、図11では、インバータ3aとモータ1との間にリアクトル8aを設け、インバータ3bとモータ1との間にリアクトル8bを設けているが、この構成に限定されない。インバータ3a,3bとモータ1とを接続する配線ケーブルが長い場合には、配線ケーブル自体のインダクタンス成分を利用することができる。従って、配線ケーブルが長い場合には、配線ケーブルで代用してもよい。なお、この場合、配線ケーブルに温度検出器7c,7dを設ける構成となる。なお、温度検出器7c,7dは、実施の形態2における温度検出器7a,7bと同様のものでよい。 Note that, in FIG. 11, a reactor 8a is provided between the inverter 3a and the motor 1, and a reactor 8b is provided between the inverter 3b and the motor 1, but the configuration is not limited to this. When the wiring cable connecting the inverters 3a and 3b and the motor 1 is long, the inductance component of the wiring cable itself can be used. Therefore, if the wiring cable is long, the wiring cable may be used instead. In this case, the temperature detectors 7c and 7d are provided on the wiring cable. The temperature detectors 7c and 7d may be the same as the temperature detectors 7a and 7b in the second embodiment.
 次に、実施の形態3におけるスイッチングモードの選択方法について、図12を参照して説明する。図12は、実施の形態3におけるスイッチングモードの選択方法の説明に供するフローチャートである。実施の形態3では、モード選択情報が温度検出器7c,7dによって検出されるリアクトル8a,8bの温度である場合について説明する。 Next, the method of selecting the switching mode in the third embodiment will be described with reference to FIG. FIG. 12 is a flowchart for explaining the method of selecting the switching mode in the third embodiment. In the third embodiment, the case where the mode selection information is the temperature of the reactors 8a and 8b detected by the temperature detectors 7c and 7d will be described.
 まず、制御部4bは、インバータ3a,3bを制御して、モータ1を第1のスイッチングモードで駆動する(ステップS31)。モータ1及びインバータ3a,3bにおいて、リアクトル8a,8b間の温度差が小さければ、配線抵抗のばらつき、スイッチング素子の温度ばらつき等も小さく、インバータ電流の出力平衡性が保たれる。 First, the control unit 4b controls the inverters 3a and 3b to drive the motor 1 in the first switching mode (step S31). If the temperature difference between the reactors 8a and 8b is small in the motor 1 and the inverters 3a and 3b, the variation in wiring resistance and the temperature variation in the switching element are also small, and the output balance of the inverter current is maintained.
 制御部4bは、リアクトル8a,8bにおける温度の検出値を温度検出器7c,7dから取得する(ステップS32)。制御部4bは、温度の検出値に基づいて、リアクトル8a,8b間の温度差を演算する(ステップS33)。 The control unit 4b acquires the temperature detection values of the reactors 8a and 8b from the temperature detectors 7c and 7d (step S32). The control unit 4b calculates the temperature difference between the reactors 8a and 8b based on the detected temperature value (step S33).
 制御部4bは、温度差を予め定められた許容値と比較する(ステップS34)。温度差が許容値以下であれば(ステップS34,No)、ステップS31に戻り、上記の処理を繰り返す。一方、温度差が許容値を超えている場合(ステップS34,Yes)、制御部4bは、インバータ3a,3bを制御して、モータ1を第2のスイッチングモードで駆動する(ステップS35)。 The control unit 4b compares the temperature difference with a predetermined allowable value (step S34). If the temperature difference is equal to or less than the allowable value (steps S34 and No), the process returns to step S31 and the above processing is repeated. On the other hand, when the temperature difference exceeds the permissible value (step S34, Yes), the control unit 4b controls the inverters 3a and 3b to drive the motor 1 in the second switching mode (step S35).
 以上のように、制御部4bは、温度差が許容値以下であればモータ1を第1のスイッチングモードで駆動し、温度差が許容値を超えていればモータ1を第2のスイッチングモードで駆動する。即ち、制御部4bは、温度差に基づいて、モータ1を駆動するスイッチングモードを第1のスイッチングモードと第2のスイッチングモードとの間で切り替える制御を行う。 As described above, the control unit 4b drives the motor 1 in the first switching mode when the temperature difference is equal to or less than the allowable value, and drives the motor 1 in the second switching mode when the temperature difference exceeds the allowable value. Drive. That is, the control unit 4b controls to switch the switching mode for driving the motor 1 between the first switching mode and the second switching mode based on the temperature difference.
 また、制御部4bは、第2のスイッチングモードで駆動している場合に、温度差が許容値以下に戻れば、スイッチングモードを第2のスイッチングモードから第1のスイッチングモードに切り替える。例えば、負荷6を高負荷運転から中又は軽負荷運転に切り替えた場合、インバータ電流、及びモータ電流が小さい状態が続き、リアクトル8a,8b間の温度差も小さくなる。このような状態であれば、モータ1を第1のスイッチングモードで駆動しても、インバータ電流の出力平衡性が保たれる。 Further, when the control unit 4b is driven in the second switching mode, if the temperature difference returns to the allowable value or less, the control unit 4b switches the switching mode from the second switching mode to the first switching mode. For example, when the load 6 is switched from the high load operation to the medium or light load operation, the inverter current and the motor current continue to be small, and the temperature difference between the reactors 8a and 8b also becomes small. In such a state, the output equilibrium of the inverter current is maintained even if the motor 1 is driven in the first switching mode.
 なお、上記のステップS34では、温度差と許容値とが等しい場合を“No”と判定しているが、“Yes”と判定してもよい。即ち、制御部4bは、温度差と許容値とが等しい場合を“Yes”又は“No”の何れで判定してもよい。何れにせよ、制御部4bは、温度差が許容値の範囲内であればモータ1を第1のスイッチングモードで駆動し、温度差が許容値の範囲外であればモータ1を第2のスイッチングモードで駆動する。 In the above step S34, the case where the temperature difference and the allowable value are equal is determined as "No", but it may be determined as "Yes". That is, the control unit 4b may determine whether the temperature difference and the permissible value are equal to each other by either "Yes" or "No". In any case, the control unit 4b drives the motor 1 in the first switching mode if the temperature difference is within the allowable value range, and switches the motor 1 to the second switching mode if the temperature difference is out of the allowable value range. Drive in mode.
 また、上記のステップS34では、許容値の比較対象を温度差としているが、これに限定されない。温度差に代えて、温度検出器7cの検出値と温度検出器7dの検出値との比である温度比を用いてもよい。 Further, in step S34 above, the comparison target of the allowable values is the temperature difference, but the comparison is not limited to this. Instead of the temperature difference, a temperature ratio which is a ratio between the detection value of the temperature detector 7c and the detection value of the temperature detector 7d may be used.
 また、上記のステップS35では、第2のスイッチングモードでモータ1が駆動される。この場合、インバータ3bにおけるスイッチング素子のオン又はオフのタイミングと、インバータ3aにおけるスイッチング素子のオン又はオフのタイミングとの間で、相ごとに時間差Teが設定される。この時間差Teについては、固定値としてもよいし、温度差に応じた可変値としてもよい。可変値とする場合、温度差と時間差Teとの関係を予め求めておき、温度差の大小に応じて時間差Teを変更すればよい。温度差を制御量とし、相ごとの時間差Teを操作量とするような制御系を制御部4bの内部に構成すれば、この制御を実現することができる。 Further, in the above step S35, the motor 1 is driven in the second switching mode. In this case, a time difference Te is set for each phase between the timing of turning on or off the switching element in the inverter 3b and the timing of turning on or off the switching element in the inverter 3a. The time difference Te may be a fixed value or a variable value according to the temperature difference. When the value is variable, the relationship between the temperature difference and the time difference Te may be obtained in advance, and the time difference Te may be changed according to the magnitude of the temperature difference. This control can be realized by configuring a control system inside the control unit 4b in which the temperature difference is used as the control amount and the time difference Te for each phase is used as the operation amount.
 なお、時間差Teの正負の値、即ち時間差Teのずらしの方向については、実施の形態1と同様に制御又は設定すればよい。内容が重複するので、ここでの説明は割愛する。 The positive and negative values of the time difference Te, that is, the direction of the time difference Te shift may be controlled or set in the same manner as in the first embodiment. Since the contents are duplicated, the explanation here is omitted.
 リアクトル8a,8b間の温度差は、インバータ3a,3b間に生じる温度差と関係がある。インバータ3a,3b間に温度差があれば、インバータ損失及びモータの損失の増加につながる。また、この温度差は、モータ1が必要とする電流に重畳されて各々のインバータ3a,3bに流れるので、瞬時的な電流重畳により、過電流が発生するおそれがある。 The temperature difference between the reactors 8a and 8b is related to the temperature difference that occurs between the inverters 3a and 3b. If there is a temperature difference between the inverters 3a and 3b, the inverter loss and the motor loss will increase. Further, since this temperature difference is superimposed on the current required by the motor 1 and flows to the respective inverters 3a and 3b, there is a possibility that an overcurrent may occur due to the instantaneous current superposition.
 従って、リアクトル8a,8b間の温度差をモード選択情報としてスイッチングモードを選択又は切り替えることにより、インバータ損失及びモータ損失を抑制できるという効果が得られる。また、温度差に基づく制御により、過電流の発生を抑制できるので、スイッチング素子が損傷する確率を低下させることができる。更には、スイッチング素子の確率を低下させるための素子定格マージンを低減させることができる。 Therefore, by selecting or switching the switching mode using the temperature difference between the reactors 8a and 8b as the mode selection information, the effect that the inverter loss and the motor loss can be suppressed can be obtained. Further, since the generation of overcurrent can be suppressed by the control based on the temperature difference, the probability that the switching element is damaged can be reduced. Further, the element rating margin for reducing the probability of the switching element can be reduced.
 以上説明したように、実施の形態3に係るモータ駆動装置は、配線ケーブル又は配線ケーブルに挿入されるリアクトルにおける各々の温度を検出する第2の温度検出器を備え、第2の温度検出器で検出された各々の温度情報をモータ選択情報として用いる。そして、モータ駆動装置は、各々の配線ケーブル間、又はリアクトル間の温度差が許容値を超えている場合には、モータを第2のスイッチングモードで駆動する。これにより、各々のインバータが配置されている環境の差異又は変化に起因するインバータ出力の変動を抑制することが可能となる。 As described above, the motor drive device according to the third embodiment includes a second temperature detector that detects each temperature in the wiring cable or the reactor inserted in the wiring cable, and is the second temperature detector. Each detected temperature information is used as motor selection information. Then, the motor driving device drives the motor in the second switching mode when the temperature difference between the wiring cables or the reactor exceeds the allowable value. This makes it possible to suppress fluctuations in the inverter output due to differences or changes in the environment in which each inverter is arranged.
 なお、上記では、各々の配線ケーブル間、又はリアクトル間の温度情報をモード選択情報として説明しているが、実施の形態1で説明した差電流及び実施の形態2で説明した各々のインバータ間の温度差のうちの少なくとも1つを組み合わせてモード選択情報として用いてもよい。このようにすれば、より精度の良いインバータ制御及びモータ駆動を行うことができる。 In the above, the temperature information between the wiring cables or the reactors is described as the mode selection information, but the difference current described in the first embodiment and the temperature information between the inverters described in the second embodiment are described. At least one of the temperature differences may be combined and used as mode selection information. By doing so, more accurate inverter control and motor drive can be performed.
実施の形態4.
 実施の形態4においては、2つのインバータによって駆動されるモータが結線状態を切り替え可能に構成される結線切替モータであり、モータの結線状態がモータ選択情報である場合について説明する。
Embodiment 4.
In the fourth embodiment, a case where the motor driven by the two inverters is a connection switching motor configured to switch the connection state and the connection state of the motor is the motor selection information will be described.
 図13は、実施の形態4に係るモータ駆動装置100cの構成を示す回路図である。実施の形態4に係るモータ駆動装置100cでは、図1の構成と比較すると、制御部4が制御部4cに置き替えられている。また、図13では、モータ1がモータ1aに置き替えられている。モータ1aは、各相の巻線の端部がモータ1aの外部に引き出された結線切替モータである。更に、モータ駆動装置100cには、モータ1aの結線状態を切り替える結線切替部9が設けられている。その他の構成は、図1と同一又は同等であり、同一又は同等の構成部には同一の符号を付して示すと共に、重複する説明は割愛する。 FIG. 13 is a circuit diagram showing the configuration of the motor drive device 100c according to the fourth embodiment. In the motor drive device 100c according to the fourth embodiment, the control unit 4 is replaced with the control unit 4c as compared with the configuration of FIG. Further, in FIG. 13, the motor 1 is replaced with the motor 1a. The motor 1a is a connection switching motor in which the end of the winding of each phase is pulled out to the outside of the motor 1a. Further, the motor drive device 100c is provided with a connection switching unit 9 for switching the connection state of the motor 1a. Other configurations are the same as or equivalent to those in FIG. 1, and the same or equivalent components are indicated by the same reference numerals, and duplicate explanations are omitted.
 結線切替部9は、図13に示すように、開閉器90u,90v,90wと、切替器91u,91v,91wと、を備える。これらの開閉器90及び切替器91は、電磁的に接点が開閉する電磁接触器と呼ばれるものである。これらの例としては、リレー、コンタクターなどが挙げられる。また、これらの開閉器90及び切替器91の機能を、半導体スイッチで実現してもよい。これらの開閉器90及び切替器91は、制御部4cからの指令に基づいて開閉又は切替制御される。 As shown in FIG. 13, the connection switching unit 9 includes switches 90u, 90v, 90w and switches 91u, 91v, 91w. These switches 90 and switch 91 are called electromagnetic contactors whose contacts are electromagnetically opened and closed. Examples of these include relays, contactors and the like. Further, the functions of the switch 90 and the switch 91 may be realized by a semiconductor switch. The switch 90 and the switch 91 are controlled to open / close or switch based on a command from the control unit 4c.
 切替器91は、各々が2つの回路を切り替える機能を有する。この機能は、c接点リレーで構成することができる。勿論、各々が2つの回路を切り替える機能を有していれば、c接点リレー以外のものを用いて構成してもよい。 Each of the switch 91 has a function of switching between two circuits. This function can be configured with a c-contact relay. Of course, if each has a function of switching between two circuits, it may be configured by using something other than the c-contact relay.
 切替器91がc接点リレーの場合、各々は共通端子COM、常開端子NO、常閉端子NCの3つの端子を有する。共通端子COMはインバータ3bの出力端に接続される。切替器91の常開端子NOは、インバータ3aの出力端に接続される。切替器91の常開端子NOは、モータ1aの巻線の片方の端部が引き出された第1の端子である端子UA,VA,WAにも接続される。切替器91の常閉端子NCは、モータ1aの各相の巻線のもう片方の端部が引き出された第2の端子である端子UB,VB,WBに接続される。切替器91の常閉端子NCは、開閉器90の片方の端子にも接続される。開閉器90のもう片方の端子は、モータ1aの各相巻線をY結線状態に構成するため、中性点ノード92に接続されている。なお、常閉端子NCと常開端子NOとを入れ替えた構成でもよい。以下では、図13の結線状態を基に説明する。 When the switch 91 is a c-contact relay, each has three terminals, a common terminal COM, a normally open terminal NO, and a normally closed terminal NC. The common terminal COM is connected to the output end of the inverter 3b. The normally open terminal NO of the switch 91 is connected to the output end of the inverter 3a. The normally open terminal NO of the switch 91 is also connected to terminals UA, VA, and WA, which are first terminals from which one end of the winding of the motor 1a is pulled out. The normally closed terminal NC of the switch 91 is connected to terminals UB, VB, WB which are second terminals from which the other end of the winding of each phase of the motor 1a is pulled out. The normally closed terminal NC of the switch 91 is also connected to one terminal of the switch 90. The other terminal of the switch 90 is connected to the neutral point node 92 in order to configure each phase winding of the motor 1a in a Y-connected state. It should be noted that the normally closed terminal NC and the normally open terminal NO may be interchanged. Hereinafter, the description will be given based on the connection state of FIG.
 図13の構成において、開閉器90を全てオン状態とし、切替器91を常開端子NO側に切り替える。この場合、インバータ3aの出力端側と、インバータ3bの出力端側とが、モータ1aの端子UA,VA,WAに接続され、モータ1aの端子UB,VB,WBが中性点ノード92に接続される。即ち、モータ1aの端子UA,VA,WAは、インバータ3a,3bの両方の出力端に接続される。これは、2つのインバータ3a,3bでY結線状態のモータ1aを駆動する形態、即ち、上述の実施の形態と同様の結線状態となる。以下、この結線状態を「第1の結線状態」と呼ぶ。 In the configuration of FIG. 13, all the switches 90 are turned on, and the switch 91 is switched to the normally open terminal NO side. In this case, the output end side of the inverter 3a and the output end side of the inverter 3b are connected to the terminals UA, VA, WA of the motor 1a, and the terminals UB, VB, WB of the motor 1a are connected to the neutral point node 92. Will be done. That is, the terminals UA, VA, and WA of the motor 1a are connected to both output ends of the inverters 3a and 3b. This is a mode in which the motor 1a in the Y-connected state is driven by the two inverters 3a and 3b, that is, the same connection state as in the above-described embodiment. Hereinafter, this connection state is referred to as a "first connection state".
 第1の結線状態においては、1つのインバータでY結線状態のモータ1aを駆動するときよりも大きい電流、理想的には2倍の電流をモータ1aに供給できる。従って、第1の結線状態では、電流を大きくした分、モータトルクを大きくできる。このため、第1の結線状態は、特に大きなモータ電圧を必要としない、低速域での高出力化に寄与可能である。 In the first connection state, a larger current than when driving the motor 1a in the Y connection state with one inverter, ideally twice the current, can be supplied to the motor 1a. Therefore, in the first connection state, the motor torque can be increased by the amount of the increased current. Therefore, the first connection state can contribute to high output in the low speed range, which does not require a particularly large motor voltage.
 また、開閉器90を全てオフ状態とし、切替器91を常閉端子NC側に切り替える。この場合、モータ1aの端子UA,VA,WAがインバータ3aの出力端側に、モータ1aの端子UB,VB,WBがインバータ3bの出力端側に接続される。これは、2つのインバータ3a,3bで開放型巻線のモータ1aを駆動する形態となる。以下、この結線状態を「第2の結線状態」と呼ぶ。 Also, all the switches 90 are turned off, and the switch 91 is switched to the normally closed terminal NC side. In this case, the terminals UA, VA, WA of the motor 1a are connected to the output end side of the inverter 3a, and the terminals UB, VB, WB of the motor 1a are connected to the output end side of the inverter 3b. This is a form in which the motor 1a of the open winding type is driven by the two inverters 3a and 3b. Hereinafter, this connection state is referred to as a "second connection state".
 第2の結線状態においては、1つのインバータでY結線状態のモータ1aを駆動するときよりも大きい電圧、理想的には2倍の電圧をモータ1aに供給できる。従って、第2の結線状態は、電圧を大きくした分、特に大きなモータ電圧を必要とする高速域での高出力化に寄与可能である。 In the second connection state, a larger voltage than when driving the motor 1a in the Y connection state with one inverter, ideally twice the voltage, can be supplied to the motor 1a. Therefore, the second connection state can contribute to increasing the output in the high-speed range, which requires a particularly large motor voltage, as the voltage is increased.
 第1の結線状態と第2の結線状態とを適切に切り替えることにより、低速域ではモータ1aへの供給電流を大きくし、モータトルクを大きくできる。また、高速域ではモータ1aへの印加電圧を大きくすることで、モータ1aの出力を増大することができる。これらにより、速度帯域に関係なくモータ1aの運転領域を拡大することができる。 By appropriately switching between the first connection state and the second connection state, the supply current to the motor 1a can be increased and the motor torque can be increased in the low speed range. Further, in the high speed range, the output of the motor 1a can be increased by increasing the voltage applied to the motor 1a. As a result, the operating range of the motor 1a can be expanded regardless of the speed band.
 次に、モード選択情報に基づいて、第1のスイッチングモード及び第2のスイッチングモードのうちの何れか1つを選択する方法について説明する。実施の形態4では、モード選択情報が、モータ1aの結線状態であるケースである。 Next, a method of selecting either one of the first switching mode and the second switching mode based on the mode selection information will be described. In the fourth embodiment, the mode selection information is the connection state of the motor 1a.
 まず、第1の結線状態のモータ1aを駆動する場合について説明する。2つのインバータ3a,3bを用いて、第1の結線状態のモータ1aを駆動する場合は、上述の実施の形態と同様に、第1のスイッチングモードと第2のスイッチングモードとを適宜に選択すればよい。 First, a case of driving the motor 1a in the first connection state will be described. When driving the motor 1a in the first connection state by using the two inverters 3a and 3b, the first switching mode and the second switching mode should be appropriately selected as in the above-described embodiment. Just do it.
 次に、第2の結線状態のモータ1aを駆動する場合について説明する。前述の通り、第1のスイッチングモードは、スイッチング素子のオン及びオフのタイミングをインバータ3a,3bの同相同士で揃えてスイッチング動作を行うモードである。従って、第2の結線状態のモータ1aを駆動する場合、第1のスイッチングモードを選択してしまうと、モータ1aの各同相の端子同士、即ち端子UAと端子UB、端子VAと端子VB及び端子WAと端子WBとが同電位となる。従って、インバータ3aがモータ1aに印加する電圧と、インバータ3bがモータ1aに印加する電圧とが打ち消しあい、モータ1aに印加される合成電圧がほぼ零となってモータ1aを駆動することができない。このため、第2の結線状態のモータ1aを駆動する場合は、第2のスイッチングモードのみでモータ1aを駆動する必要がある。 Next, a case of driving the motor 1a in the second connection state will be described. As described above, the first switching mode is a mode in which the switching operation is performed by aligning the on and off timings of the switching elements between the in-phases of the inverters 3a and 3b. Therefore, when driving the motor 1a in the second connection state, if the first switching mode is selected, the terminals of the same phase of the motor 1a, that is, the terminals UA and the terminal UB, the terminal VA and the terminal VB, and the terminals WA and terminal WB have the same potential. Therefore, the voltage applied to the motor 1a by the inverter 3a and the voltage applied to the motor 1a by the inverter 3b cancel each other out, and the combined voltage applied to the motor 1a becomes almost zero, so that the motor 1a cannot be driven. Therefore, when driving the motor 1a in the second connection state, it is necessary to drive the motor 1a only in the second switching mode.
 従って、モータ1aが開放型巻線である場合、モータ1aの結線状態を考慮して第1のスイッチングモード及び第2のスイッチングモードのうちの何れかを選択すれば、モータ1aを駆動できなくなるモードを回避することが可能となる。 Therefore, when the motor 1a is an open winding, if either the first switching mode or the second switching mode is selected in consideration of the connection state of the motor 1a, the motor 1a cannot be driven. Can be avoided.
 以上説明したように、実施の形態4に係るモータ駆動装置によれば、モータが各相の巻線の端部がモータの外部に引き出された開放型巻線のモータである場合、モータの結線状態をモード選択情報とし、モード選択情報に基づいて第1又は第2のスイッチングモードを選択する。これにより、モータの結線状態が第1の結線状態である場合には、実施の形態1から実施の形態3で説明した効果を得ることができる。また、モータの結線状態が第2の結線状態である場合には、モータを駆動できなくなるモードを回避できるという効果が得られる。 As described above, according to the motor drive device according to the fourth embodiment, when the motor is an open winding motor in which the end of the winding of each phase is pulled out to the outside of the motor, the motor is connected. The state is set as mode selection information, and the first or second switching mode is selected based on the mode selection information. Thereby, when the connection state of the motor is the first connection state, the effects described in the first to third embodiments can be obtained. Further, when the connection state of the motor is the second connection state, the effect that the mode in which the motor cannot be driven can be avoided can be obtained.
実施の形態5.
 実施の形態5では、実施の形態1から4で説明したモータ駆動装置100から100cを、空気調和装置に適用した例について説明する。実施の形態1から4で説明したモータ駆動装置100から100cは、複数のインバータで1台のモータを駆動するモータ駆動装置である。このため、モータ駆動装置100から100cのうちの何れかを空気調和装置に適用することで、空気調和装置を大容量化でき、冷暖房能力が高く、且つ、損失の小さい空気調和装置を実現することができる。
Embodiment 5.
In the fifth embodiment, an example in which the motor drive devices 100 to 100c described in the first to fourth embodiments are applied to the air conditioner will be described. The motor drive devices 100 to 100c described in the first to fourth embodiments are motor drive devices for driving one motor with a plurality of inverters. Therefore, by applying any one of the motor drive devices 100 to 100c to the air conditioner, the capacity of the air conditioner can be increased, and an air conditioner having high cooling / heating capacity and low loss can be realized. Can be done.
 図14は、実施の形態5に係る空気調和装置200の構成例を示す図である。空気調和装置200は、室外機67と、室内機68と、空調制御部69と、を備える。室外機67は、電力源2に接続されている。室外機67は、モータ駆動装置100と、圧縮機60と、四方弁62と、熱源側熱交換器63と、熱源側膨張弁64と、を備える。室内機68は、負荷側膨張弁65と、負荷側熱交換器66と、を備える。圧縮機60は、モータ1を駆動源とする圧縮要素61を備える。図14では、モータ駆動装置100を例示しているが、モータ駆動装置100aから100cのうちの何れかに置き替えてもよい。 FIG. 14 is a diagram showing a configuration example of the air conditioner 200 according to the fifth embodiment. The air conditioner 200 includes an outdoor unit 67, an indoor unit 68, and an air conditioning control unit 69. The outdoor unit 67 is connected to the power source 2. The outdoor unit 67 includes a motor drive device 100, a compressor 60, a four-way valve 62, a heat source side heat exchanger 63, and a heat source side expansion valve 64. The indoor unit 68 includes a load-side expansion valve 65 and a load-side heat exchanger 66. The compressor 60 includes a compression element 61 whose drive source is the motor 1. Although the motor drive device 100 is illustrated in FIG. 14, it may be replaced with any one of the motor drive devices 100a to 100c.
 空気調和装置200では、圧縮機60、四方弁62、熱源側熱交換器63、熱源側膨張弁64、負荷側膨張弁65、負荷側熱交換器66、四方弁62、そして、圧縮機60の順に冷媒配管70によって接続された冷媒回路が構成されている。空気調和装置200では、冷媒回路に冷媒が流れることによって冷凍サイクルが成立する。空気調和装置200は、圧縮機60によって冷凍サイクルの冷媒を圧縮する。図14では図示していないが、圧縮機60の吸入側に過剰な冷媒を貯留するアキュームレータを設けてもよい。冷媒回路を制御するにあたり、空調制御部69は、四方弁62、熱源側膨張弁64、および負荷側膨張弁65を制御する。なお、図14に示す冷凍サイクルの構成は一例であり、必ずしも同じ冷凍サイクルの構成でなくてもよい。 In the air conditioner 200, the compressor 60, the four-way valve 62, the heat source side heat exchanger 63, the heat source side expansion valve 64, the load side expansion valve 65, the load side heat exchanger 66, the four-way valve 62, and the compressor 60. A refrigerant circuit connected by a refrigerant pipe 70 is configured in this order. In the air conditioner 200, the refrigeration cycle is established by the flow of the refrigerant through the refrigerant circuit. The air conditioner 200 compresses the refrigerant in the refrigeration cycle by the compressor 60. Although not shown in FIG. 14, an accumulator for storing excess refrigerant may be provided on the suction side of the compressor 60. In controlling the refrigerant circuit, the air conditioning control unit 69 controls the four-way valve 62, the heat source side expansion valve 64, and the load side expansion valve 65. The refrigerating cycle configuration shown in FIG. 14 is an example, and may not necessarily be the same refrigerating cycle configuration.
 次に、図14で示される空気調和装置の動作について、冷房運転を例に説明する。暖房運転については詳細を省略するが、四方弁62における流路の切り替えによって暖房運転も実現できる。冷房運転に際し、四方弁62は予め圧縮機60から吐出された冷媒が熱源側熱交換器63へ向かうように、且つ、負荷側熱交換器66から流出した冷媒が圧縮機60へ向かうように流路を切り替えているものとする。 Next, the operation of the air conditioner shown in FIG. 14 will be described by taking a cooling operation as an example. Although details of the heating operation are omitted, the heating operation can also be realized by switching the flow path in the four-way valve 62. During the cooling operation, the four-way valve 62 flows the refrigerant discharged from the compressor 60 toward the heat source side heat exchanger 63 and the refrigerant flowing out from the load side heat exchanger 66 toward the compressor 60. It is assumed that the road is being switched.
 モータ駆動装置100によってモータ1を駆動することで、モータ1に連結した圧縮要素61が冷媒を高温高圧の冷媒に圧縮する。圧縮機60は、高温高圧の冷媒を吐出する。圧縮機60から吐出した高温高圧の冷媒は、四方弁62を経由して、熱源側熱交換器63へ流入し、熱源側熱交換器63において外部の空気と熱交換して放熱される。熱源側熱交換器63から流出した冷媒は、熱源側膨張弁64において膨張及び減圧され、低温低圧の気液二相冷媒となる。低温低圧の気液二相冷媒となった冷媒は、負荷側膨張弁65において膨張及び減圧されて、負荷側熱交換器66へ流入し、空調対象空間の空気と熱交換して蒸発し、低温低圧の冷媒となって、負荷側熱交換器66から流出する。負荷側熱交換器66から流出した冷媒は、四方弁62を経由して、圧縮機60に吸入され、再び圧縮される。空気調和装置200では、以上の動作が繰り返される。 By driving the motor 1 with the motor drive device 100, the compression element 61 connected to the motor 1 compresses the refrigerant into a high-temperature and high-pressure refrigerant. The compressor 60 discharges a high-temperature and high-pressure refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 60 flows into the heat source side heat exchanger 63 via the four-way valve 62, exchanges heat with the external air in the heat source side heat exchanger 63, and dissipates heat. The refrigerant flowing out of the heat source side heat exchanger 63 is expanded and depressurized by the heat source side expansion valve 64 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. The low-temperature low-pressure gas-liquid two-phase refrigerant is expanded and depressurized by the load-side expansion valve 65, flows into the load-side heat exchanger 66, exchanges heat with the air in the air-conditioned space, and evaporates to a low temperature. It becomes a low-pressure refrigerant and flows out from the load side heat exchanger 66. The refrigerant flowing out of the load side heat exchanger 66 is sucked into the compressor 60 via the four-way valve 62 and compressed again. In the air conditioner 200, the above operation is repeated.
 なお、モータ駆動装置100の主にインバータ3a,3bを冷却する目的で、インバータ3a,3bの構成要素であるパワーモジュールに冷却プレートを接触させてもよい。更に、この冷却プレートに冷媒配管70を接触させて、冷媒配管70に流れる冷媒にインバータ3a,3bにおける発熱を吸熱させるようにしてもよい。このようにすれば、インバータ3a,3bの温度上昇を効率的に抑制できる。 The cooling plate may be brought into contact with the power module, which is a component of the inverters 3a, 3b, mainly for the purpose of cooling the inverters 3a, 3b of the motor drive device 100. Further, the refrigerant pipe 70 may be brought into contact with the cooling plate so that the refrigerant flowing through the refrigerant pipe 70 absorbs heat generated by the inverters 3a and 3b. By doing so, it is possible to efficiently suppress the temperature rise of the inverters 3a and 3b.
 なお、図14に示す空気調和装置200では、熱源側膨張弁64を室外機67に備え、負荷側膨張弁65を室内機68に備える構成としているが、これは、モータ駆動装置100の冷却能力を2つの膨張弁である熱源側膨張弁64及び負荷側膨張弁65のそれぞれで独立に制御可能なようにするためである。この構成は、冷媒を細やかに制御するのに適しており、冷媒を効率よく制御できる。なお、図14の構成は一例であり、必ずしも2つの膨張弁を備える構成にしなくてもよく、膨張弁を室内機68又は室外機67のうちの何れか一方に備える構成としてもよい。 In the air conditioner 200 shown in FIG. 14, the heat source side expansion valve 64 is provided in the outdoor unit 67, and the load side expansion valve 65 is provided in the indoor unit 68. This is the cooling capacity of the motor drive device 100. This is to enable the two expansion valves, the heat source side expansion valve 64 and the load side expansion valve 65, to be independently controlled. This configuration is suitable for finely controlling the refrigerant, and the refrigerant can be efficiently controlled. The configuration of FIG. 14 is an example, and it is not always necessary to include two expansion valves, and the expansion valve may be provided in either the indoor unit 68 or the outdoor unit 67.
 実施の形態5では、実施の形態1から4に係るモータ駆動装置100から100cを、空気調和装置200に適用した例を示したが、これに限定されるものではない。実施の形態1から4に係るモータ駆動装置100から100cを、空気調和装置200の他、ヒートポンプ装置、冷凍装置などの冷凍サイクルを有する機器に適用することができる。また、モータの回転力によって駆動力を得る乾燥機、洗濯機、掃除機などの圧縮機を搭載していない製品への適用も可能であり、ファンモータなどへの適用も可能である。 In the fifth embodiment, an example in which the motor drive devices 100 to 100c according to the first to fourth embodiments are applied to the air conditioner 200 is shown, but the present invention is not limited thereto. The motor drive devices 100 to 100c according to the first to fourth embodiments can be applied to devices having a refrigerating cycle, such as an air conditioner 200, a heat pump device, and a refrigerating device. It can also be applied to products that are not equipped with a compressor, such as dryers, washing machines, and vacuum cleaners, which obtain driving force by the rotational force of the motor, and can also be applied to fan motors and the like.
 以上説明したように、実施の形態5に係る空気調和装置によれば、実施の形態1から4に係るモータ駆動装置を適用することで、空気調和装置を大容量化でき、空調能力が高く、且つ、損失の小さい空気調和装置を実現することができるという効果が得られる。 As described above, according to the air conditioner according to the fifth embodiment, by applying the motor drive device according to the first to fourth embodiments, the capacity of the air conditioner can be increased and the air conditioning capacity is high. Moreover, the effect that an air conditioner with a small loss can be realized can be obtained.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 1,1a モータ、2 電力源、3a,3b,3c,3d インバータ、4,4a,4b,4c 制御部、5a,5b 電流検出部、6 負荷、7a,7b,7c,7d 温度検出器、8a,8b リアクトル、9 結線切替部、21a 三相交流電源、21b 単相交流電源、22a,22b 交流直流変換器、60 圧縮機、61 圧縮要素、62 四方弁、63 熱源側熱交換器、64 熱源側膨張弁、65 負荷側膨張弁、66 負荷側熱交換器、67 室外機、68 室内機、69 空調制御部、70 冷媒配管、90u,90v,90w 開閉器、91u,91v,91w 切替器、92 中性点ノード、100,100a,100b,100c モータ駆動装置、200 空気調和装置、300 プロセッサ、302 メモリ、303 処理回路、304 インタフェース。 1,1a motor, 2 power source, 3a, 3b, 3c, 3d inverter, 4,4a, 4b, 4c control unit, 5a, 5b current detector, 6 load, 7a, 7b, 7c, 7d temperature detector, 8a , 8b reactor, 9 connection switching part, 21a three-phase AC power supply, 21b single-phase AC power supply, 22a, 22b AC / DC converter, 60 compressor, 61 compression element, 62 four-way valve, 63 heat source side heat exchanger, 64 heat source Side expansion valve, 65 load side expansion valve, 66 load side heat exchanger, 67 outdoor unit, 68 indoor unit, 69 air conditioning control unit, 70 refrigerant piping, 90u, 90v, 90w switch, 91u, 91v, 91w switch, 92 Neutral point node, 100, 100a, 100b, 100c motor drive device, 200 air conditioner, 300 processor, 302 memory, 303 processing circuit, 304 interface.

Claims (10)

  1.  電力源から供給される直流電圧を三相交流電圧に変換して同一のモータに印加する複数のインバータを備えたモータ駆動装置であって、
     複数の前記インバータで前記モータを駆動する際に、
     各々の前記インバータの同相におけるスイッチング素子のオン及びオフのタイミングを複数の前記インバータ同士で揃えて各々の前記インバータのスイッチング動作を行う第1のスイッチングモードと、
     各々の前記インバータの同相における前記スイッチング素子のオン及びオフのタイミングを複数の前記インバータ同士で異として各々の前記インバータのスイッチング動作を行う第2のスイッチングモードと、
     を有し、
     モード選択情報に基づいて前記第1又は第2のスイッチングモードを選択する
     モータ駆動装置。
    A motor drive device equipped with multiple inverters that convert a DC voltage supplied from a power source into a three-phase AC voltage and apply it to the same motor.
    When driving the motor with a plurality of the inverters
    A first switching mode in which the on / off timing of the switching element in the same phase of each of the inverters is aligned between the plurality of inverters to perform the switching operation of each of the inverters.
    A second switching mode in which the switching operation of each of the inverters is performed with the on / off timing of the switching element in the same phase of each of the inverters being different between the plurality of inverters.
    Have,
    A motor drive device that selects the first or second switching mode based on the mode selection information.
  2.  複数の前記インバータの各々に流れる電流を検出する電流検出部を備え、
     前記モード選択情報は、前記電流検出部で検出された各々の電流検出値である
     請求項1に記載のモータ駆動装置。
    A current detection unit that detects the current flowing through each of the plurality of inverters is provided.
    The motor drive device according to claim 1, wherein the mode selection information is each current detection value detected by the current detection unit.
  3.  複数の前記インバータにおける各々の温度を検出する第1の温度検出器を備え、
     前記モード選択情報は、前記第1の温度検出器で検出された各々の温度情報である
     請求項1又は2に記載のモータ駆動装置。
    A first temperature detector for detecting the temperature of each of the plurality of inverters is provided.
    The motor drive device according to claim 1 or 2, wherein the mode selection information is the respective temperature information detected by the first temperature detector.
  4.  複数の前記インバータと前記モータとは、配線ケーブルを介して接続され、
     前記配線ケーブルの各々には前記配線ケーブルの各々の温度を検出する第2の温度検出器を備え、
     前記モード選択情報は、前記第2の温度検出器で検出された各々の温度情報である
     請求項1から3の何れか1項に記載のモータ駆動装置。
    The plurality of inverters and the motor are connected via a wiring cable.
    Each of the wiring cables is provided with a second temperature detector that detects the temperature of each of the wiring cables.
    The motor drive device according to any one of claims 1 to 3, wherein the mode selection information is each temperature information detected by the second temperature detector.
  5.  複数の前記インバータと前記モータとは配線ケーブルを介して接続され、前記配線ケーブルにはリアクトルが挿入され、
     前記リアクトルの各々には前記リアクトルの各々の温度を検出する第2の温度検出器を備え、
     前記モード選択情報は、前記第2の温度検出器で検出された各々の温度情報である
     請求項1から3の何れか1項に記載のモータ駆動装置。
    The plurality of inverters and the motor are connected via a wiring cable, and a reactor is inserted into the wiring cable.
    Each of the reactors is equipped with a second temperature detector that detects the temperature of each of the reactors.
    The motor drive device according to any one of claims 1 to 3, wherein the mode selection information is each temperature information detected by the second temperature detector.
  6.  前記モード選択情報が許容値の範囲内であれば前記モータを前記第1のスイッチングモードで駆動し、
     前記モード選択情報が許容値の範囲外であれば前記モータを前記第2のスイッチングモードで駆動する
     請求項2から5の何れか1項に記載のモータ駆動装置。
    If the mode selection information is within the allowable value range, the motor is driven in the first switching mode.
    The motor driving device according to any one of claims 2 to 5, wherein if the mode selection information is out of the allowable range, the motor is driven in the second switching mode.
  7.  前記モータは各相の巻線の端部が前記モータの外部に引き出された開放型巻線のモータであり、
     前記モータの結線状態を切り替える結線切替部を備え、
     前記モード選択情報は前記モータの結線状態である
     請求項1に記載のモータ駆動装置。
    The motor is an open winding motor in which the end of the winding of each phase is pulled out to the outside of the motor.
    A connection switching unit for switching the connection state of the motor is provided.
    The motor drive device according to claim 1, wherein the mode selection information is a wiring state of the motor.
  8.  複数の前記インバータは、第1及び第2のインバータから成り、
     前記モータの各相の巻線の片方の端部が引き出された第1の端子を前記第1のインバータに接続し、且つ、前記結線切替部を介して前記第1の端子を前記第2のインバータに接続し、且つ、前記結線切替部を動作させて前記モータの各相の巻線のもう片方の端部が引き出された第2の端子を短絡する第1の結線状態と、
     前記結線切替部を動作させて前記第1の端子との接続を前記第1のインバータのみとし、前記第2の端子を前記第2のインバータに接続する第2の結線状態と、
     を有する請求項7に記載のモータ駆動装置。
    The plurality of the inverters consist of a first and a second inverter.
    The first terminal from which one end of the winding of each phase of the motor is pulled out is connected to the first inverter, and the first terminal is connected to the second terminal via the connection switching portion. A first connection state in which the second terminal is short-circuited by connecting to an inverter and operating the connection switching unit so that the other end of the winding of each phase of the motor is pulled out.
    A second connection state in which the connection switching unit is operated so that the connection with the first terminal is limited to the first inverter and the second terminal is connected to the second inverter.
    7. The motor drive device according to claim 7.
  9.  前記第2の結線状態においては、前記第2のスイッチングモードのみで前記モータを駆動する
     請求項8に記載のモータ駆動装置。
    The motor drive device according to claim 8, wherein the motor is driven only in the second switching mode in the second connection state.
  10.  請求項1から9の何れか1項に記載のモータ駆動装置と、
     前記モータを駆動源とする圧縮機と、
     を備え、
     前記圧縮機によって冷凍サイクルの冷媒が圧縮される
     空気調和装置。
    The motor drive device according to any one of claims 1 to 9,
    A compressor using the motor as a drive source and
    Equipped with
    An air conditioner in which the refrigerant in the refrigeration cycle is compressed by the compressor.
PCT/JP2020/026423 2020-07-06 2020-07-06 Motor driving device and air-conditioning apparatus WO2022009270A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022534501A JP7292516B2 (en) 2020-07-06 2020-07-06 Motor drive device and air conditioner
PCT/JP2020/026423 WO2022009270A1 (en) 2020-07-06 2020-07-06 Motor driving device and air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026423 WO2022009270A1 (en) 2020-07-06 2020-07-06 Motor driving device and air-conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2022009270A1 true WO2022009270A1 (en) 2022-01-13

Family

ID=79553073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026423 WO2022009270A1 (en) 2020-07-06 2020-07-06 Motor driving device and air-conditioning apparatus

Country Status (2)

Country Link
JP (1) JP7292516B2 (en)
WO (1) WO2022009270A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199637A1 (en) * 2022-04-11 2023-10-19 日立Astemo株式会社 Power supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530661A (en) * 1991-07-23 1993-02-05 Meidensha Corp Parallel operation apparatus for power converting equipment
JP2019054627A (en) * 2017-09-14 2019-04-04 株式会社日立製作所 Power converter, and method for regulating power converter
JP2019176554A (en) * 2018-03-27 2019-10-10 東芝キヤリア株式会社 Motor drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530661A (en) * 1991-07-23 1993-02-05 Meidensha Corp Parallel operation apparatus for power converting equipment
JP2019054627A (en) * 2017-09-14 2019-04-04 株式会社日立製作所 Power converter, and method for regulating power converter
JP2019176554A (en) * 2018-03-27 2019-10-10 東芝キヤリア株式会社 Motor drive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199637A1 (en) * 2022-04-11 2023-10-19 日立Astemo株式会社 Power supply system

Also Published As

Publication number Publication date
JPWO2022009270A1 (en) 2022-01-13
JP7292516B2 (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US9998049B2 (en) Inverter control device and air conditioner
CN109560744B (en) Motor driving system and wiring switching method of open winding structure motor
US10756666B2 (en) Electric-motor driving apparatus, electric motor system and refrigeration cycle apparatus
JP6755845B2 (en) Motor drive system
JP6991336B2 (en) Motor drive device and refrigeration cycle applicable equipment
WO2018073875A1 (en) Power conversion device, motor drive device, and air conditioner
JP2019062726A (en) Motor drive system and wire connection changeover method for open winding structure motor
JP7414923B2 (en) Open winding motor drive device and refrigeration cycle device
US10686397B2 (en) Motor system, motor drive device, refrigeration cycle device, and air conditioner
US11431271B2 (en) Electric motor drive device
WO2022009270A1 (en) Motor driving device and air-conditioning apparatus
US11601076B2 (en) Motor driving apparatus and refrigeration cycle equipment
JP7034373B2 (en) DC power supply, power conversion device and refrigeration cycle device
JP6929434B2 (en) Motor drive device and refrigeration cycle applicable equipment
WO2017009907A1 (en) Motor control device, compressor, and air conditioner
US20230412107A1 (en) Electric motor drive device and refrigeration cycle application device
JP7361798B2 (en) heat pump equipment
CN114204868B (en) Open winding motor driving device and refrigeration cycle device
JP7301229B2 (en) Electric motor drive and heat pump device
US20240022182A1 (en) Power conversion apparatus and air conditioner
WO2021144885A1 (en) Power conversion device and motor system
WO2020170302A1 (en) Electric motor drive device and air conditioning device
KR101628506B1 (en) Motor controlor device
CN115485967A (en) Motor drive device, refrigeration cycle device, air conditioner, water heater, and refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944586

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022534501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944586

Country of ref document: EP

Kind code of ref document: A1