WO2022008437A1 - Dispositif volant a decollage vertical - Google Patents

Dispositif volant a decollage vertical Download PDF

Info

Publication number
WO2022008437A1
WO2022008437A1 PCT/EP2021/068504 EP2021068504W WO2022008437A1 WO 2022008437 A1 WO2022008437 A1 WO 2022008437A1 EP 2021068504 W EP2021068504 W EP 2021068504W WO 2022008437 A1 WO2022008437 A1 WO 2022008437A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
magnus effect
wings
propeller
axis
Prior art date
Application number
PCT/EP2021/068504
Other languages
English (en)
Inventor
Jonathan DUMON
Ahmad HABLY
Original Assignee
Centre National De La Recherche Scientifique
Institut Polytechnique De Grenoble
Universite Grenoble Alpes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Institut Polytechnique De Grenoble, Universite Grenoble Alpes filed Critical Centre National De La Recherche Scientifique
Publication of WO2022008437A1 publication Critical patent/WO2022008437A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/08Influencing air flow over aircraft surfaces, not otherwise provided for using Magnus effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • B64U2201/202Remote controls using tethers for connecting to ground station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/201Rotors using the Magnus-effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/917Mounting on supporting structures or systems on a stationary structure attached to cables
    • F05B2240/9176Wing, kites or buoyant bodies with a turbine attached without flying pattern
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/92Mounting on supporting structures or systems on an airbourne structure

Definitions

  • the present invention relates to a flying device with vertical take-off, in particular a drone, as well as a method for mounting such a device.
  • the field of the invention is, in a non-limiting manner, that of flying devices with or without a pilot. More particularly, but in a non-limiting manner, the field of the invention is that of aerial drones.
  • unmanned flying devices such as drones is on the rise. They are implemented for a variety of tasks including image acquisition, remote monitoring, observation of the environment or civil protection.
  • hybrid drones comprising conventional propellers and wings
  • the transition between vertical flight and horizontal flight is problematic, in particular in the case of turbulent winds.
  • this type of drone can benefit from the lift of conventional wings to increase its autonomy either from relatively high forward speeds, or by having recourse to large wing sizes.
  • the trajectory is constrained by the stability domain of the wing which stalls beyond a relatively low apparent wind angle, which makes manual piloting of this type of machine difficult.
  • the transport of objects by drone is also very limited in weight and autonomy. To be able to transport the objects over long distances, the lift and autonomy of the drone must be increased, which generally leads to an increase in the size of the thrusters and/or wings, as well as the batteries.
  • drones For regulatory and safety issues, some drones must be equipped with braking devices such as parachutes, which adds on-board load and therefore penalizes the drone's autonomy and payload.
  • braking devices such as parachutes, which adds on-board load and therefore penalizes the drone's autonomy and payload.
  • Flying devices are also used as airborne or flying wind turbines, in which case they are connected to the ground by a cable.
  • the object of the present invention is to provide a flying device with vertical take-off making it possible to remedy at least one of these drawbacks.
  • An object of the present invention is to provide a vertical take-off flying device having improved aerodynamic performance compared to those of the state of the art.
  • Another object of the present invention is to propose a flying device with vertical take-off having reduced energy consumption in order to increase its autonomy.
  • a flying device with vertical take-off in particular a drone, the flying device comprising:
  • each thruster comprising a propeller and a motor configured to drive the propeller in rotation about an axis of rotation of the propeller, the propellers being arranged in a substantially horizontal plane;
  • the flying device further comprising a Magnus effect module comprising at least two Magnus effect wings, in which:
  • Magnus effect wings are arranged in pairs and symmetrically on either side of the center of gravity of the device, so as to have an axis of rotation common substantially horizontal and substantially perpendicular to the axes of rotation of the propeller,
  • Magnus effect wings are configured to be driven in rotation by at least one motor around their axis of rotation; wherein the Magnus effect wings are configured to allow, when rotated, the lift of the flying device by a Magnus effect aerodynamic force and in synergy with an aerodynamic force of the rotating propellers.
  • the flying device according to the invention consists of a multi-rotor flying device further comprising at least two Magnus effect wings.
  • a Magnus effect wing comprises in particular a cylinder, which can be driven in rotation by a motor.
  • This mixed-wing device allows vertical take-offs and landings, as well as cruising flights by taking advantage of the lift of the Magnus-effect wings driven in rotation by the at least one engine.
  • Magnus effect wings are configured to allow the flying device to be lifted by Magnus effect, and synergistically with propellers configured to be driven in rotation in a substantially horizontal plane around an axis perpendicular to the axes of rotation of the Magnus wings. This makes it easier to pilot the aircraft, while reducing the complexity and the cost of the propulsion device.
  • the flying device according to the invention has improved aerodynamic performance compared to the devices of the state of the art, in particular in terms of compactness, robustness and flight agility.
  • - Compactness At equivalent lift, the area of a Magnus effect wing is reduced by approximately 80% compared to the area of a conventional wing. This makes it possible to exploit its gliding capacity at low speed or for small dimensions.
  • - Robustness Thanks to their axes of symmetry, the Magnus effect wings are not sensitive to the direction of the air flow and do not exhibit stall behavior or frontal inversions. The lift depends only on the ratio of the speed of rotation to the norm of the apparent wind. This gives the device good robustness to gusts (sudden variations in wind speed) and allows the device to perform any type of trajectory without unstable behavior.
  • a conventional multi-rotor drone can be equipped with a Magnus effect module according to the invention without the need to modify the piloting algorithm of the drone.
  • the operator of such a flying device according to the invention then does not need additional training to pilot the device.
  • the arrangement of the Magnus effect wings along a common axis of rotation allows the flying device to perform an autorotation, when the wings of the same pair rotate in opposite directions.
  • the rotation in the opposite direction of the Magnus effect cylinders during a vertical fall of the device allows, by causing autorotation of the device and therefore the production of a lift force , to significantly slow down its rate of descent.
  • the rate of descent can furthermore be controlled by controlling the rotational speeds of the Magnus cylinders. This gives the flying device according to the invention a safety functionality without adding additional weight.
  • the thrusters each comprising an engine and a propeller, are fixed on the same body in a fixed position relative to each other.
  • Magnus effect wings can be fitted with one or more Thom discs arranged on their bases and/or along the cylinder, the discs being arranged perpendicular to the axis of rotation of the wing. This notably makes it possible to increase the Magnus effect of the wings.
  • the propeller axes of rotation are substantially perpendicular to the axes of rotation of the Magnus effect wings.
  • the angle between these two axes can be between -30° and 30°.
  • the Magnus effect wings can be non-floating.
  • the operation of the flying device is not based on buoyancy of the Magnus effect wings, induced by a gas lighter than air.
  • the Magnus effect wings can be arranged symmetrically and substantially close to the center of gravity of the device. This configuration has the effect of minimizing the disturbance torques linked to the aerodynamic forces of the wings, making it possible to improve the stability of the flying device.
  • the device according to the invention can also comprise control means configured to independently control the speed and/or the direction of rotation of each Magnus effect wing.
  • the speed and/or the direction of rotation of a Magnus effect wing can be different from another Magnus effect wing.
  • the Magnus effect wing module can be removable from the body of the device.
  • the module can be mounted on and removed from an existing aircraft, manually or by means of tools, the aircraft also having at least two thrusters.
  • the Magnus effect wing module can, for example, be screwed or clipped onto an existing drone.
  • the flying device may further comprise a fin arranged downstream of the propellers and the Magnus effect wings along the yaw axis of the device, the fin comprising a motorized steering member, such as a control surface with a motor, configured to modify the orientation of the device around its roll axis.
  • a motorized steering member such as a control surface with a motor
  • the device can be adapted to transport one or more passengers and/or freight.
  • the device according to the invention can be used to deliver parcels of goods.
  • the device can be connected to a base module on the ground by means of a connection element, in which the connection element is arranged to transfer energy due to the movement of the device to a electric current generator in the basic module.
  • Base ground module means a terrestrial or maritime module, mobile or not.
  • the flying device according to this embodiment is a so-called tethered device. It allows to recover the energy of the wind.
  • the device may belong in particular to the category of flying or airborne wind turbines.
  • the thrusters allow its automatic takeoff and landing even in the absence of wind.
  • the arrangement and synergistic operation of the propellers and Magnus effect wings makes it possible to take off, land and maneuver the captive device to make it follow trajectories that optimize its energy production.
  • the connection element can be connected to a winch-generator on the ground to produce energy. When the connection element reaches its maximum length, it is rewound so that the flying device, called a kite, minimizes its traction force to minimize the energy expended during this operation.
  • the device can embed a turbine to transform the energy of the wind directly before transmitting it to the ground via a conductive cable included by the connection element.
  • traction force directly to tow, for example, a boat.
  • the boat can optionally be equipped with submerged turbines and produce energy on board.
  • connection element can comprise a cable or a strap.
  • connection cable may be conductive in order to be able to supply electricity to the flying device.
  • connection element can be connected to the body of the device at one or more points.
  • connection element can be provided with one or more actuators configured to vary the length of the connection element or of a part of the connection element.
  • the at least one actuator can be arranged at a point of attachment of the connection element to the body of the device, or along the length of the connection element.
  • the tensile force of the cable is related to the gap between the point of attachment of the cable and the center of gravity of the device.
  • the angle of roll is imposed by the angle of the cable. It is then possible to control this angle by means of an additional actuator acting on the relative length of the two additional cables.
  • the altitude of the device can be controlled.
  • At least one of the thrusters can be configured to generate electrical energy.
  • the electrical energy produced can be transmitted to the ground via the connection element, when the device is a captive device, or consumed on board.
  • the device according to the invention may further comprise a fin arranged downstream of the propellers and the Magnus effect wings along the roll axis of the device, the fin comprising a motorized steering member configured to modify the orientation of the device around its yaw axis.
  • a propeller-driven flying device comprising a body and at least two propellers fixed to the body, each propeller comprising a propeller and a motor configured to drive the propeller in rotation about a propeller rotation axis, the propellers being arranged in a substantially horizontal plane;
  • a Magnus effect module comprising at least two Magnus effect wings, comprising the arrangement of the wings in pairs and symmetrically on either side of the center of gravity of the device, so to have a common axis of rotation substantially horizontal and substantially perpendicular to the axes of propeller rotation; wherein the Magnus effect wings are configured to be driven in rotation by at least one motor around their axis of rotation; wherein the Magnus effect wings are configured to allow, when they are rotated, the lift of the vertical take-off flying device by a Magnus effect aerodynamic force alone and in synergy with an aerodynamic force of the rotating propellers.
  • FIG. 1 shows three views schematically representing a flying device according to one embodiment of the invention
  • FIG. 2 shows three views schematically representing a flying device according to another embodiment
  • FIG. 3 shows three views schematically representing a flying device according to another embodiment
  • FIG. 4 shows two schematic representations of a flying device according to yet other embodiments of the invention.
  • FIG. 5 schematically shows a flying device according to embodiments, having a fin
  • FIG. 6 schematically shows a flying device according to other embodiments, having a fin
  • FIG. 7 is a schematic representation of a flying device according to one embodiment, having a removable Magnus effect wing module.
  • variants of the invention comprising only a selection of characteristics described by the isolated from the other characteristics described, if this selection of characteristics is sufficient to confer a technical advantage or to differentiate the invention from the state of the prior art.
  • This selection includes at least one preferably functional feature without structural details, or with only part of the structural details if only this part is sufficient to confer a technical advantage or to differentiate the invention from the state of the prior art.
  • Figures 1 to 3 are schematic representations of non-limiting embodiments of a flying device according to the invention, according to different views (from the front (a), from above (b), from the side (c)).
  • the device 10 as shown in Figure 1, comprises a body 11 on which are mounted two thrusters 12.
  • Each thruster 12 comprises a motor 13 and a propeller 14, the motor 13 being configured to drive the propeller 14 in rotation.
  • the two thrusters 12 are arranged on either side of the center of gravity of the device 10, symmetrically.
  • the Magnus effect module comprises two Magnus effect wings 15 .
  • Magnus effect wings 15 consist of cylinders 15a.
  • the cylinders 15a can be equipped with a Thom disk 15b at one or both of their ends, as shown in Figure 1.
  • Magnus effect wings can be non-floating. Indeed, the buoyancy of the wings is not necessary for the operation of the flying device. This means that the wings can be made of airtight or non-airtight materials.
  • the wings 15 are arranged on either side of the center of the axis connecting the thrusters 12, corresponding to the center of gravity of the device 10, in a symmetrical manner. The wings 15 are aligned so that they can rotate around a common axis of rotation 16.
  • the axis of rotation 16 is substantially horizontal.
  • the propeller axes of rotation are substantially perpendicular to the axis of rotation 16 of the wings 15, the axis of rotation 16 of the wings 15 being perpendicular to the axis connecting the thrusters 12.
  • the configuration of the device 10 according to the embodiment represented in FIG. 1 is a so-called “+” configuration, due to the arrangement of the propellers and the wings with respect to each other.
  • Figure 2 is a schematic representation of another embodiment of a flying device according to the invention.
  • the device 20 comprises four thrusters 22 each comprising a motor 23 and a propeller 24.
  • the thrusters 22 are mounted on the body 11 and arranged symmetrically around the center of gravity of the device 20.
  • the device 20 also comprises a Magnus effect module, comprising two Magnus effect wings 25 .
  • the wings 25 are arranged on either side of the center of gravity of the device 20, symmetrically.
  • the wings 25 are aligned so that they can rotate around a common axis of rotation 16.
  • the axis of rotation 16 is substantially horizontal.
  • the propeller axes of rotation are substantially perpendicular to the axis of rotation 16 of the wings 25.
  • the configuration of the device 20 according to the embodiment represented in FIG. 2 is a so-called “star” configuration, due to the arrangement of the propellers and the wings with respect to each other.
  • Figure 3 is a schematic representation of another embodiment of a flying device according to the invention.
  • the device 30 comprises four thrusters 32 each comprising a motor 33 and a propeller 34.
  • the thrusters 32 are mounted on the body 11 and arranged symmetrically around the center of gravity of the device 30.
  • the device 30 comprises four wings 35 with Magnus effect.
  • the wings 35 are arranged on either side of the center of gravity of the device 30, in pairs and symmetrically. Each pair of wings 35 is aligned so that the wings can rotate around a common axis of rotation 16.
  • the two common axes of rotation 16 are substantially horizontal and parallel to each other.
  • the propeller axes of rotation are substantially perpendicular to the axes of rotation 16 of the wings 35.
  • the configuration of the device 30 according to the embodiment shown in Figure 3 is a so-called "Xi" configuration, due to the arrangement of the propellers and the wings with respect to each other resembling the Greek character.
  • the device 20, 30 may comprise a greater number of thrusters, in particular six or eight thrusters.
  • the propellers 14, 24, 34 are arranged in a substantially horizontal plane.
  • the axes of the Magnus cylinders can be slightly above the plane of the propellers or slightly below.
  • the flying device may have a different number than those shown of pairs of Magnus effect wings.
  • the propellers can point either downwards or upwards. It is also possible that part of the propellers point up and another part down. This means that in one case the motor is below the propeller and in the other the motor is above the propeller.
  • the device 10, 20, 30 also comprises wing motors 17, each motor 17 being configured to drive a wing 15, 25, 35 in rotation.
  • wing motors 17, each motor 17 being configured to drive a wing 15, 25, 35 in rotation.
  • a single motor can drive all the wings 15, 25, 35 in rotation.
  • the rotation of the wings 15, 25, 35 makes it possible to exploit the lift of the wings via the Magnus effect.
  • the device according to the invention is a tethered flying device, being connected to the ground by a connection element such as a cable, etc.
  • Figure 4 shows embodiments of captive versions of the device.
  • Device 40 shown in Figure 4(a), is in a "+" configuration like that described with reference to Figure 1.
  • device 40 further comprises a connection cable 41 to connect it on the ground.
  • the cable 41 is fixed to the device 40 at a point, substantially close to its center of gravity, or to the geometric center between the thrusters 12.
  • the device 40 is connected to a base module (not shown) on the ground by means of the cable 41.
  • the cable 41 makes it possible to transfer the kinetic energy of the wind due to the movement of the device to an electric current generator in the module of based.
  • connection cable can be connected to the body of the device at several attachment points.
  • Figure 4(b) illustrates an exemplary embodiment of a tethered flying device 50 in a "star" configuration such as that described with reference to Figure 2, in which the connecting cable 51 is attached to the body of the device 50 at the center as well only at the two ends defined by the two Magnus cylinders 25a.
  • two fixing points or pieces 53 can be provided at the ends of the Magnus cylinders.
  • a pivot connection can be ensured between the fixing piece 53 and the cylinder 25a so as not to hinder its rotation.
  • the two additional cables 51a, 51b meet at a point on the main cable 51.
  • the cable 51 is also equipped with an actuator 52, such as a winch, making it possible to vary the relative length of the two additional cables 51a, 51b either at the level of the main cable 51, or at the level of the fixing parts 53.
  • an actuator 52 such as a winch
  • connection cable 41, 51 can be configured to be able to transmit electrical energy from the base module to the flying device, or vice versa.
  • one or more of the thrusters can be configured to generate power, regardless of device configuration, for tethered and non-tethered versions.
  • the device according to the invention can comprise a drift.
  • Figures 5 and 6 illustrate embodiments of the device according to other embodiments.
  • the device further comprises a fin 71.
  • the fin 71 includes a control surface 72 with a motor.
  • Figures 5(a) through 5(c) relate to a nontethered flying device 100, 200 in a "+" configuration ( Figure 5(a)) and a "star” configuration ( Figures 5(b) and 5(c) ).
  • the fin 71 is disposed downstream of the thrusters 12, 22 and the Magnus effect wings 15, 25 along the yaw axis of the device 100, 200.
  • Figure 5(c) shows a side view of the device 200 with the drift 71.
  • the drift 71 makes it possible to apply a roll torque to the device 100, 200 when the apparent wind speed along the yaw axis is non-zero, and thus makes it possible to modify the orientation of the device 100 , 200 around its roll axis.
  • Figures 6(a) through 6(c) relate to a tethered flying device 400, 500 in a "+" configuration ( Figure 6(a)) and a “star” configuration ( Figures 6(b) and 6(c)) .
  • the fin 71 is arranged downstream of the thrusters 12, 22 and the Magnus effect wings 15, 25 along the roll axis of the device.
  • Figure 6(c) shows a side view of device 500 with fin 71. Fin 71 allows yaw torque to be applied to device 400, 500 when the apparent wind speed along the roll axis is non-zero, and thus makes it possible to modify the orientation of the device 400, 500 around its yaw axis.
  • the flying device according to the invention also comprises various sensors. These sensors include those typically used in the field of aerial drones: in particular i nertial units, a GPS, a pressure sensor, radar or ultrasonic distance sensors, vision sensors, speed sensors such as a probe Pitot, etc.
  • the set of sensors provides access to the state variables of the device, its position and its orientation in space and their derivatives with respect to at the time.
  • An estimation algorithm also makes it possible to reconstruct the wind speed from all the measurements taken by the sensors and from a behavior model of the device.
  • the device can include additional sensors. For example, it may be useful to measure the tension force of the cable, measured on the ground or on board the device, or the wind speed at ground level or on board the device. This data makes it possible to improve the precision of the measurements of the state or behavior of the device.
  • the actuators which act on the behavior of the flying device are the thrusters of the multi-rotor (two or more) and the motor or motors driving the Magnus cylinders around substantially aligned axes of rotation.
  • the device In its captive version, the device has an additional actuator located at ground level to control the pulling force on the cable via a winch.
  • the device according to the invention comprises control means (not shown in the figures).
  • the control means are configured to control the actuators, and therefore the thrusters and the motors of the Magnus effect wings.
  • each thruster is controlled, making it possible to control a thrust force oriented substantially in the direction of its axis of rotation, as well as a counter-reaction torque around this same axis of rotation.
  • each cylinder can be controlled independently, making it possible to control the aerodynamic forces of lift and drag of each Magnus effect cylinder. These forces are substantially perpendicular to the axis of rotation of the cylinder.
  • the cylinders also produce a counter-reaction torque around their axis of rotation.
  • Rotating propellers and cylinders also produce gyroscopic torques that depend on their respective masses and rotational speeds.
  • the flying device according to the invention also comprises feet which ensure its stability when it is placed on the ground.
  • Figures 1, 2, 3 and 5 illustrate examples of devices with 18 feet.
  • the feet can be designed to to be able to tighten during flight, or to retract to improve aerodynamic performance during the gliding phases.
  • the flying device can be powered electrically by a battery. Communication with control and supervision units on the ground can be carried out by means of a radio frequency link.
  • the power supply of the device and its communication with the control and supervision units on the ground can be carried out via the connection cable.
  • the Magnus effect wing module can be removable from the body of the flying device.
  • An exemplary embodiment is illustrated in Figure 7.
  • the module comprises two Magnus effect wings 25, at least one motor to drive the wings in rotation, and a control module 70.
  • the wings 25 and the control module 70 can be fixed (for example screwed) on an existing flying device, for example a multi-rotor drone 80 as illustrated in Figure 7.
  • the control module 70 comprises an algorithm for controlling the wings 25 independently or in combination with the control of the propellers 24 present on the device. No intervention on the control algorithm of the multi-rotor drone is necessary.
  • a method of assembling a flying device with vertical take-off thus comprises the following steps: providing a flying device with propellers comprising a body and at least two motors fixed to the body, each of the motors being configured to drive a propeller in rotation about a propeller rotation axis, the propellers being arranged in a substantially horizontal plane; and mounting, on the propeller-driven flying device, of a Magnus effect module comprising at least two Magnus effect wings, comprising the arrangement of the wings in pairs and symmetrically on either side of the center of gravity of the device, so as to have a common axis of rotation substantially horizontal and substantially perpendicular to the axes of rotation of the propeller.
  • the Magnus effect wings are configured to be driven in rotation by at least one motor around their axis of rotation, and to allow, when they are rotated, the lift of the flying device by a Magnus effect aerodynamic force alone and in synergy with an aerodynamic force of the rotating propellers.
  • the stationary phase of the flying device is defined as a phase where the air speed over the device is low (typically ⁇ 15 km/h), which means that the Magnus effect wings do not produce significant lift.
  • the glide phases are defined as the phases where the lift force of the wings is exploited, i.e. when there is an apparent wind speed on the device which is significant (typically > 15 km/ h).
  • the attitude angles of the device are defined according to the Euler angles when the device is in stationary phase, i.e. the pitch around the axis of rotation of the Magnus effect wings, the yaw orthogonal to the pitch axis and substantially aligned with the thrust axis of the thrusters and the roll orthogonal to these two rotations.
  • the piloting of the flying device can be carried out in the following manner.
  • the conventional control algorithms of a flying device such as a multi-rotor drone typically consist of an internal algorithm which controls the roll-pitch-yaw variables and an external algorithm which controls the position-speed of the system.
  • a Magnus effect wing lift model as well as gyroscopic and counter-reaction effects linked to the rotation of the Magnus cylinders is added.

Abstract

L'invention concerne un dispositif volant (10, 20, 30, 40, 50, 100, 200, 400, 500) à décollage vertical, notamment un drone, le dispositif volant comprenant : - un corps (11); - au moins deux propulseurs (12, 22, 32) fixés sur le corps (11), chaque propulseur (12, 22, 32) comprenant une hélice (14, 24, 34) et un moteur (13, 23, 33) configuré pour entraîner en rotation l'hélice (14, 24, 34) autour d'un axe de rotation d'hélice, les hélices (14, 24, 34) étant agencées dans un plan sensiblement horizontal; - un module à effet Magnus comprenant au moins deux ailes à effet Magnus (15, 25, 35), dans lequel : - les ailes à effet Magnus (15, 25, 35) sont disposées par paire et symétriquement de part et d'autre du centre de gravité du dispositif, de sorte à avoir un axe de rotation commun (16) sensiblement horizontal et sensiblement perpendiculaire aux axes de rotation d'hélice, - les ailes à effet Magnus (15, 25, 35) sont configurées pour être entraînées en rotation par au moins un moteur (17) autour de leur axe de rotation (16); les ailes à effet Magnus (15, 25, 35) étant configurées pour permettre, lorsqu'elles sont mises en rotation, la sustentation du dispositif volant par une force aérodynamique à effet Magnus seul et en synergie avec une force aérodynamique des hélices (14, 24, 34) mises en rotation. L'invention concerne également un procédé de montage d'un tel dispositif.

Description

Dispositif volant à décollage vertical
Domaine technique
La présente invention concerne un dispositif volant à décollage vertical, notamment un drone, ainsi qu'un procédé de montage d'un tel dispositif.
Le domaine de l'invention est, de manière non limitative, celui des dispositifs volants avec ou sans pilote. Plus particulièrement, mais de manière non limitative, le domaine de l'invention est celui des drones aériens.
État de la technique
L'utilisation d'appareils volants sans pilote tels que des drones est en pleine progression. Ils sont mis en œuvre pour une diversité de tâches incluant l'acquisition d'images, la télésurveillance, l'observation de l'environnement ou la protection civile.
Pour des drones hybrides, comprenant des hélices et des ailes classiques, la transition entre le vol vertical et le vol horizontal est problématique, notamment dans le cas de vents turbulents. En particulier, ce type de drone peut bénéficier de la portance des ailes classiques pour augmenter son autonomie soit à partir de vitesses d'avances relativement élevées, soit en ayant recours à des tailles d'ailes importantes. Cependant, la trajectoire est contrainte par le domaine de stabilité de l'aile qui décroche au-delà d'un angle de vent apparent relativement faible, ce qui rend difficile le pilotage manuel de ce type d'engin.
Le transport d'objets par drone est par ailleurs très limité en poids et en autonomie. Pour pouvoir transporter les objets sur des grandes distances, la portance et l'autonomie du drone doivent être augmentées, ce qui entraîne généralement une augmentation de la taille des propulseurs et/ou des ailes, ainsi que des batteries.
Pour des questions réglementaires et de sécurité, certains drones doivent être équipés de dispositifs de freinage tels que des parachutes, ce qui ajoute de la charge embarquée et donc pénalise l'autonomie et la charge utile du drone. Des appareils volants sont également utilisés en tant qu'éoliennes aéroportées ou volantes, auquel cas ils sont reliés au sol par un câble.
Un tel dispositif captif a été proposé avec un ballon flottable rempli d'hélium pour le faire décoller et atterrir. Cependant, l'hélium coûte cher, et il est par ailleurs impossible pour l'instant de faire des ballons totalement étanches, nécessitant un rechargement régulier.
Le but de la présente invention est de disposer d'un dispositif volant à décollage vertical permettant de remédier à au moins un de ces inconvénients.
Exposé de l'invention
Un objet de la présente invention est de proposer un dispositif volant à décollage vertical ayant des performances aérodynamiques améliorées par rapport à ceux de l'état de l'art.
Un autre objet de la présente invention est de proposer un dispositif volant à décollage vertical ayant une consommation énergétique réduite pour en augmenter l'autonomie.
Cet objectif est atteint avec un dispositif volant à décollage vertical, notamment un drone, le dispositif volant comprenant :
- un corps ;
-au moins deux propulseurs fixés sur le corps, chaque propulseur comprenant une hélice et un moteur configuré pour entraîner en rotation l'hélice autour d'un axe de rotation d'hélice, les hélices étant agencées dans un plan sensiblement horizontal ; le dispositif volant comprenant en outre un module à effet Magnus comprenant au moins deux ailes à effet Magnus, dans lequel :
- les ailes à effet Magnus sont disposées par paire et symétriquement de part et d'autre du centre de gravité du dispositif, de sorte à avoir un axe de rotation commun sensiblement horizontal et sensiblement perpendiculaire aux axes de rotation d'hélice,
- les ailes à effet Magnus sont configurées pour être entraînées en rotation par au moins un moteur autour de leur axe de rotation ; dans lequel les ailes à effet Magnus sont configurées pour permettre, lorsqu'elles sont mises en rotation, la sustentation du dispositif volant par une force aérodynamique à effet Magnus et en synergie avec une force aérodynamique des hélices mises en rotation.
Le dispositif volant selon l'invention se compose d'un dispositif volant multi- rotors comprenant en outre au moins deux ailes à effet Magnus. Une aile à effet Magnus comprend notamment un cylindre, pouvant être entraîné en rotation par un moteur.
Ce dispositif à voilure mixte permet des décollages et atterrissages verticaux, ainsi que des vols de croisière en tirant partie de la portance des ailes à effet Magnus entraînées en rotation par l'au moins un moteur.
Les ailes à effet Magnus sont configurées pour permettre la sustentation du dispositif volant par effet Magnus, et synergiquement avec des hélices configurées pour être entraînées en rotation dans un plan sensiblement horizontal autour d'un axe perpendiculaire aux axes de rotation des ailes Magnus. Ceci permet de faciliter le pilotage de l'aéronef, tout en diminuant la complexité et le coût du dispositif de propulsion.
Le dispositif volant selon l'invention présente des performances aérodynamiques améliorées par rapport aux dispositifs de l'état de l'art, notamment en termes de compacité, robustesse et d'agilité de vol.
En particulier :
- Compacité : A portance équivalente, la surface d'une aile à effet Magnus est réduite d'environ 80% par rapport à la surface d'une aile classique. Ceci permet d'exploiter sa capacité de planée à faible vitesse ou pour des faibles dimensions. - Robustesse : Grâce à leurs axes de symétrie, les ailes à effet Magnus ne sont pas sensibles à l'orientation du flux d'air et ne présentent pas de comportement de décrochage ou inversions frontales. La portance dépend uniquement du rapport entre la vitesse de rotation et la norme du vent apparent. Ceci confère au dispositif une bonne robustesse aux rafales (variations brusques de la vitesse du vent) et permet au dispositif d'effectuer n'importe quel type de trajectoire sans comportement instable. En l'absence de contrainte de trajectoire, un drone multi-rotors conventionnel peut être équipé d'un module à effet Magnus selon l'invention sans la nécessité de modifier l'algorithme de pilotage du drone. L'opérateur d'un tel dispositif volant selon l'invention n'a alors pas besoin de formation supplémentaire pour piloter le dispositif.
- Agilité de vol : Comme il n'y a pas de situation de décrochage, le dispositif volant est plus maniable et facile à piloter par un opérateur.
De manière avantageuse, l'agencement des ailes à effet Magnus selon un axe de rotation commun permet au dispositif volant d'effectuer une autorotation, lorsque les ailes d'une même paire tournent dans des sens opposés. Ainsi, en cas de défaillance des propulseurs du dispositif, la mise en rotation dans le sens opposé des cylindres à effet Magnus lors d'une chute verticale du dispositif permet, en entraînant une autorotation du dispositif et donc la production d'une force de portance, de ralentir significativement sa vitesse de descente. La vitesse de descente peut par ailleurs être contrôlée en contrôlant les vitesses de rotation des cylindres Magnus. Cela confère au dispositif volant selon l'invention une fonctionnalité de sécurité sans ajout de poids supplémentaire.
Les propulseurs, comprenant chacun un moteur et une hélice, sont fixés sur le même corps dans une position fixe les uns par rapport aux autres.
Les ailes à effet Magnus peuvent être équipées d'un ou plusieurs disques Thom disposés sur leurs bases et/ou le long du cylindre, les disques étant agencés perpendiculairement à l'axe de rotation de l'aile. Ceci permet notamment d'augmenter l'effet Magnus des ailes.
Les axes de rotation d'hélice sont sensiblement perpendiculaires aux axes de rotation des ailes à effet Magnus. Par exemple, l'angle entre ces deux axes peut se situer entre -30° et 30°.
Selon un mode de réalisation préféré, les ailes à effet Magnus peuvent être non-flottantes.
En effet, le fonctionnement du dispositif volant n'est pas basé sur une flottabilité des ailes à effet Magnus, induite par un gaz plus léger que l'air.
Avantageusement, les ailes à effet Magnus peuvent être agencées symétriquement et sensiblement proche du centre de gravité du dispositif. Cette configuration a pour effet de minimiser les couples de perturbations liées aux forces aérodynamiques des ailes, permettant d'améliorer la stabilité du dispositif volant.
De manière avantageuse, le dispositif selon l'invention peut également comprendre des moyens de commande configurés pour commander indépendamment la vitesse et/ou le sens de la rotation de chaque aile à effet Magnus.
La commande indépendante de la vitesse et/ou du sens de la rotation de chaque aile permet de contrôler les forces aérodynamiques de portance et traînée de chaque aile à effet Magnus.
Ainsi, lors du fonctionnement du dispositif, la vitesse et/ou le sens de rotation d'une aile à effet Magnus peut être différent(e) d'une autre aile à effet Magnus.
Selon un mode de réalisation particulièrement avantageux, le module d'ailes à effet Magnus peut être amovible du corps du dispositif. Ainsi, le module peut être monté sur et démonté d'un aéronef existant, manuellement ou au moyen d'outils, l'aéronef ayant par ailleurs au moins deux propulseurs.
Le module d'ailes à effet Magnus peut, par exemple, être vissé ou clipsé sur un drone existant.
Selon un mode de réalisation avantageux, le dispositif volant peut comprendre en outre une dérive disposée en aval des hélices et des ailes à effet Magnus le long de l'axe de lacet du dispositif, la dérive comprenant un organe de direction motorisé, tel qu'une gouverne avec un moteur, configuré pour modifier l'orientation du dispositif autour de son axe de roulis.
Avantageusement, le dispositif peut être adapté pour transporter un ou plusieurs passagers et/ou du fret.
Par exemple, le dispositif selon l'invention peut être utilisé pour effectuer des livraisons de colis de marchandises.
Selon un autre mode de réalisation, le dispositif peut être connecté à un module de base au sol au moyen d'un élément de connexion, dans lequel l'élément de connexion est agencé pour transférer de l'énergie due au mouvement du dispositif à un générateur de courant électrique dans le module de base.
On entend par « module de base au sol » un module terrestre ou maritime, mobile ou non.
Le dispositif volant selon ce mode de réalisation est un dispositif dit captif. Il permet de récupérer l'énergie du vent.
Le dispositif peut appartenir notamment à la catégorie des éoliennes volantes ou aéroportées. Les propulseurs permettent son décollage et atterrissage automatique même en l'absence de vent. La disposition et le fonctionnement synergique des hélices et des ailes à effet Magnus permet de faire décoller, atterrir et manœuvrer le dispositif captif pour lui faire faire des trajectoires optimisant sa production d'énergie. Selon un exemple, l'élément de connexion peut être connecté à un treuil- générateur au sol pour produire de l'énergie. Lorsque l'élément de connexion atteint sa longueur maximum, il est rembobiné en faisant en sorte que le dispositif volant, dit cerf-volant, minimise sa force de traction pour minimiser l'énergie dépensée lors de cette opération.
Selon un autre exemple, le dispositif peut embarquer une turbine pour transformer l'énergie du vent directement avant de la transmettre au sol via un câble conducteur compris par l'élément de connexion.
Il est également possible d'exploiter la force de traction directement pour tracter, par exemple, un bateau. Le bateau peut éventuellement être équipé de turbines immergées et produire de l'énergie à bord.
Selon un exemple, l'élément de connexion peut comprendre un câble ou une courroie.
Le câble de connexion peut être conducteur pour pouvoir alimenter en électricité le dispositif volant.
L'élément de connexion peut être connecté au corps du dispositif en un ou plusieurs points.
L'élément de connexion peut être pourvu d'un ou plusieurs actionneurs configurés pour varier la longueur de l'élément de connexion ou d'une partie de l'élément de connexion.
L'au moins un actionneur peut être agencé au niveau d'un point de fixation de l'élément de connexion au corps du dispositif, ou sur la longueur de l'élément de connexion.
De manière avantageuse, pour un dispositif captif, il est possible de contrôler la force de traction du câble de connexion au niveau du sol et les couples induits par cette force sur le dispositif.
La force de traction du câble est liée à l'écart entre le point de fixation du câble et le centre de gravité du dispositif. Lorsque le câble est fixé en trois points au dispositif et à condition que le câble soit tendu, l'angle de roulis est imposé par l'angle du câble. Il est alors possible de contrôler cet angle par l'intermédiaire d'un actionneur supplémentaire agissant sur la longueur relative des deux câbles supplémentaires.
Aussi, en régulant la longueur de l'élément de connexion, l'altitude du dispositif peut être contrôlée.
Avantageusement, au moins l'un des propulseurs peut être configuré pour générer de l'énergie électrique.
L'énergie électrique produite peut être transmise au sol via l'élément de connexion, lorsque le dispositif est un dispositif captif, ou consommée en embarqué.
Dans sa version captive, le dispositif selon l'invention peut comprendre en outre une dérive disposée en aval des hélices et des ailes à effet Magnus le long de l'axe de roulis du dispositif, la dérive comprenant un organe de direction motorisé configuré pour modifier l'orientation du dispositif autour de son axe de lacet.
Selon un autre aspect de la même invention, il est proposé un procédé de montage d'un dispositif volant à décollage vertical, notamment un drone, le procédé comprenant les étapes suivantes :
-fourniture d'un dispositif volant à hélices comprenant un corps et au moins deux propulseurs fixés sur le corps, chaque propulseur comprenant une hélice et un moteur configuré pour entraîner en rotation l'hélice autour d'un axe de rotation d'hélice, les hélices étant agencées dans un plan sensiblement horizontal ;
- montage, sur le dispositif volant à hélices, d'un module à effet Magnus comprenant au moins deux ailes à effet Magnus, comprenant la disposition des ailes par paire et symétriquement de part et d'autre du centre de gravité du dispositif, de sorte à avoir un axe de rotation commun sensiblement horizontal et sensiblement perpendiculaire aux axes de rotation d'hélice ; dans lequel les ailes à effet Magnus sont configurées pour être entraînées en rotation par au moins un moteur autour de leur axe de rotation ; dans lequel les ailes à effet Magnus sont configurées pour permettre, lorsqu'elles sont mises en rotation, la sustentation du dispositif volant à décollage vertical par une force aérodynamique à effet Magnus seule et en synergie avec une force aérodynamique des hélices mises en rotation.
Description des figures et modes de réalisation
D'autres avantages et caractéristiques apparaîtront à l'examen de la description détaillée d'exemples nullement limitatifs, et des dessins annexés sur lesquels :
- la Figure 1 montre trois vues représentant schématiquement un dispositif volant selon un mode de réalisation de l'invention ;
- la Figure 2 montre trois vues représentant schématiquement un dispositif volant selon un autre mode de réalisation ;
- la Figure 3 montre trois vues représentant schématiquement un dispositif volant selon un autre mode de réalisation ;
- la Figure 4 montre deux représentations schématiques d'un dispositif volant selon encore d'autres modes de réalisation de l'invention ;
- la Figure 5 montre schématiquement un dispositif volant selon des modes de réalisation, ayant une dérive ;
- la Figure 6 montre schématiquement un dispositif volant selon d'autres modes de réalisation, ayant une dérive ; et
- la Figure 7 est une représentation schématique d'un dispositif volant selon un mode de réalisation, ayant un module d'ailes à effet Magnus amovible.
Il est bien entendu que les modes de réalisation qui seront décrits dans la suite ne sont nullement limitatifs. On pourra notamment imaginer des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites par la suite isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieure. Cette sélection comprend au moins une caractéristique de préférence fonctionnelle sans détails structurels, ou avec seulement une partie des détails structurels si cette partie uniquement est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état de la technique antérieure.
En particulier toutes les variantes et tous les modes de réalisation décrits sont combinables entre eux si rien ne s'oppose à cette combinaison sur le plan technique.
Sur les figures, les éléments communs à plusieurs figures peuvent conserver la même référence.
Les Figures 1 à 3 sont des représentations schématiques d'exemples de réalisation non-limitatif d'un dispositif volant selon l'invention, selon différentes vues (de face (a), du dessus (b), de côté (c)).
Le dispositif 10, tel que représenté sur la Figure 1, comprend un corps 11 sur lequel sont montés deux propulseurs 12. Chaque propulseur 12 comprend un moteur 13 et une hélice 14, le moteur 13 étant configuré pour entraîner l'hélice 14 en rotation. Les deux propulseurs 12 sont agencés de part et d'autre du centre de gravité du dispositif 10, de manière symétrique.
Le dispositif 10, qui peut notamment être de type drone, comprend également un module à effet Magnus. Dans le mode de réalisation représenté sur la Figure 1, le module à effet Magnus comprend deux ailes 15 à effet Magnus.
Les ailes à effet Magnus 15 consistent en des cylindres 15a. Les cylindres 15a peuvent être équipés d'un disque Thom 15b à l'une ou deux de leurs extrémités, comme illustré sur la Figure 1.
Les ailes à effet Magnus peuvent être non-flottantes. En effet, la flottabilité des ailes n'est pas nécessaire pour le fonctionnement du dispositif volant. Ceci signifie que les ailes peuvent être en matériaux étanches à l'air ou non. Les ailes 15 sont disposées de part et d'autre du centre de l'axe connectant les propulseurs 12, correspondant au centre de gravité du dispositif 10, de manière symétrique. Les ailes 15 sont alignées de sorte à pouvoir tourner autour d'un axe de rotation commun 16. L'axe de rotation 16 est sensiblement horizontal. Les axes de rotation d'hélice sont sensiblement perpendiculaires à l'axe de rotation 16 des ailes 15, l'axe de rotation 16 des ailes 15 étant perpendiculaire à l'axe connectant les propulseurs 12.
La configuration du dispositif 10 selon le mode de réalisation représenté sur la Figure 1 est une configuration dite « + », en raison de l'agencement des hélices et des ailes les unes par rapport aux autres.
La Figure 2 est une représentation schématique d'un autre mode de réalisation d'un dispositif volant selon l'invention.
Dans cette configuration, le dispositif 20 comprend quatre propulseurs 22 comprenant chacun un moteur 23 et une hélice 24. Les propulseurs 22 sont montés sur le corps 11 et agencés de manière symétrique autour du centre de gravité du dispositif 20.
Le dispositif 20 comprend également un module à effet Magnus, comprenant deux ailes 25 à effet Magnus. Les ailes 25 sont disposées de part et d'autre du centre de gravité du dispositif 20, de manière symétrique. Les ailes 25 sont alignées de sorte à pouvoir tourner autour d'un axe de rotation commun 16. L'axe de rotation 16 est sensiblement horizontal. Les axes de rotation d'hélice sont sensiblement perpendiculaires à l'axe de rotation 16 des ailes 25.
La configuration du dispositif 20 selon le mode de réalisation représenté sur la Figure 2 est une configuration dite « étoile », en raison de l'agencement des hélices et des ailes les unes par rapport aux autres.
La Figure 3 est une représentation schématique d'un autre mode de réalisation d'un dispositif volant selon l'invention.
Dans cette configuration, le dispositif 30 comprend quatre propulseurs 32 comprenant chacun un moteur 33 et une hélice 34. Les propulseurs 32 sont montés sur le corps 11 et agencés de manière symétrique autour du centre de gravité du dispositif 30. Le dispositif 30 comprend quatre ailes 35 à effet Magnus. Les ailes 35 sont disposées de part et d'autre du centre de gravité du dispositif 30, par paires et de manière symétrique. Chaque paire d'ailes 35 est alignée de sorte à ce que les ailes peuvent tourner autour d'un axe de rotation commun 16. Les deux axes de rotation 16 communs sont sensiblement horizontaux et parallèles l'un par rapport à l'autre. Les axes de rotation d'hélice sont sensiblement perpendiculaires aux axes de rotation 16 des ailes 35.
La configuration du dispositif 30 selon le mode de réalisation représenté sur la Figure 3 est une configuration dite « Xi », en raison de l'agencement des hélices et des ailes les unes par rapport aux autres ressemblant au caractère grec.
Selon d'autres exemples de réalisation, le dispositif 20, 30 peut comprendre un nombre supérieur de propulseurs, notamment six ou huit propulseurs.
Dans les exemples représentés sur les Figures 1, 2 et 3, les hélices 14, 24, 34 sont agencées dans un plan sensiblement horizontal. Les axes des cylindres Magnus peuvent se trouver légèrement au-dessus du plan des hélices ou légèrement en dessous.
Bien sûr, le dispositif volant peut comporter un nombre différent que ceux représentés de paires d'ailes à effet Magnus.
Dans la mesure où l'axe de rotation des cylindres Magnus est proche du centre de gravité du dispositif, les hélices peuvent pointer soit vers le bas, soit vers le haut. Il est également possible qu'une partie des hélices pointe vers le haut et une autre partie vers le bas. Cela signifie que dans un cas, le moteur se trouve en dessous de l'hélice et dans l'autre, le moteur se trouve au-dessus de l'hélice.
Le dispositif 10, 20, 30 selon les modes de réalisation des Figures 1 à 3, respectivement, comprend également des moteurs 17 d'ailes, chaque moteur 17 étant configuré pour entraîner une aile 15, 25, 35 en rotation. Bien sûr, il est également envisageable qu'un seul moteur puisse entraîner toutes les ailes 15, 25, 35 en rotation. La rotation des ailes 15, 25, 35 permet d'exploiter la portance des ailes via l'effet Magnus. Selon des modes de réalisation alternatifs, le dispositif selon l'invention est un dispositif volant captif, étant relié au sol par un élément de connexion tel qu'un câble, etc.
La Figure 4 montre des exemples de réalisation de versions captives du dispositif.
Le dispositif 40, représenté sur la Figure 4(a), est dans une configuration « + » comme celui décrit en référence à la Figure 1. Outre les éléments déjà mentionnés, le dispositif 40 comprend en outre un câble de connexion 41 pour le relier au sol. Le câble 41 est fixé au dispositif 40 en un point, sensiblement proche de son centre de gravité, ou du centre géométrique entre les propulseurs 12.
Le dispositif 40 est connecté à un module de base (non représenté) au sol au moyen du câble 41. Le câble 41 permet de transférer de l'énergie cinétique du vent due au mouvement du dispositif à un générateur de courant électrique dans le module de base.
Le câble de connexion peut être connecté au corps du dispositif en plusieurs points de fixation. La Figure 4(b) illustre un exemple de réalisation d'un dispositif volant captif 50 en configuration « étoile » comme celui décrit en référence à la Figure 2, dans lequel le câble de connexion 51 est attaché au corps du dispositif 50 au centre ainsi qu'aux deux extrémités définies par les deux cylindres Magnus 25a. Pour cela, deux points ou pièces de fixation 53 peuvent être prévus aux extrémités des cylindres Magnus. Par exemple, une liaison pivot peut être assurée entre la pièce de fixation 53 et le cylindre 25a pour ne pas gêner sa rotation. Les deux câbles supplémentaires 51a, 51b se rejoignent en un point sur le câble principal 51.
Le câble 51 est en outre équipé d'un actionneur 52, tel qu'un treuil, permettant de varier la longueur relative des deux câbles supplémentaires 51a, 51b soit au niveau du câble principal 51, soit au niveau des pièces de fixation 53.
Le câble 41, 51 de connexion peut être configuré pour pouvoir transmettre de l'énergie électrique, du module de base vers le dispositif volant, ou inversement. De manière avantageuse, un ou plusieurs des propulseurs peuvent être configurés pour générer de l'énergie, quelle que soit la configuration du dispositif, pour les versions captives et non captives.
De manière avantageuse, le dispositif selon l'invention peut comprendre une dérive. Les Figures 5 et 6 illustrent des modes de réalisation du dispositif selon d'autres modes de réalisation. Ici, le dispositif comprend en outre une dérive 71. La dérive 71 comprend une gouverne 72 avec un moteur.
Les Figures 5(a) à 5(c) concernent un dispositif volant 100, 200 non captif selon une configuration « + » (Figure 5(a)) et une configuration « étoile » (Figures 5(b) et 5(c)). La dérive 71 est disposée en aval des propulseurs 12, 22 et des ailes 15, 25 à effet Magnus le long de l'axe de lacet du dispositif 100, 200. La Figure 5(c) montre une vue de côté du dispositif 200 avec la dérive 71. La dérive 71 permet d'appliquer un couple en roulis sur le dispositif 100, 200 lorsque la vitesse de vent apparent le long de l'axe de lacet est non nulle, et ainsi permet de modifier l'orientation du dispositif 100, 200 autour de son axe de roulis.
Les Figures 6(a) à 6(c) concernent un dispositif volant captif 400, 500 selon une configuration « + » (Figure 6(a)) et une configuration « étoile » (Figures 6(b) et 6(c)). La dérive 71 est disposée en aval des propulseurs 12, 22 et des ailes 15, 25 à effet Magnus le long de l'axe de roulis du dispositif. La Figure 6(c) montre une vue de côté du dispositif 500 avec la dérive 71. La dérive 71 permet d'appliquer un couple en lacet sur le dispositif 400, 500 lorsque la vitesse de vent apparent le long de l'axe de roulis est non nulle, et ainsi permet de modifier l'orientation du dispositif 400, 500 autour de son axe de lacet.
Le dispositif volant selon l'invention comprend également différents capteurs. Ces capteurs incluent ceux typiquement utilisés dans le domaine des drones aériens: notamment des centrales i nertiel les, un GPS, un capteur de pression, des capteurs de distances radar ou ultrasoniques, des capteurs de vision, des capteurs de vitesse telle qu'une sonde Pitot, etc.
L'ensemble des capteurs permet d'avoir accès aux variables d'état du dispositif, sa position et son orientation dans l'espace et leurs dérivées par rapport au temps. Un algorithme d'estimation permet également de reconstruire la vitesse du vent à partir de l'ensemble des mesures effectuées par les capteurs et d'un modèle de comportement du dispositif.
Dans sa version captive, le dispositif peut comprendre des capteurs supplémentaires. Par exemple, il peut être utile de mesurer la force de tension du câble, mesurée au sol ou en embarqué sur le dispositif, ou la vitesse du vent au niveau du sol ou en embarqué sur le dispositif. Ces données permettent d'améliorer la précision des mesures de l'état ou comportement du dispositif.
Les actionneurs qui agissent sur le comportement du dispositif volant sont les propulseurs du multi-rotor (deux ou plus) et le ou les moteurs entraînant les cylindres Magnus autour d'axes de rotation sensiblement alignés. Dans sa version captive, le dispositif comporte un actionneur supplémentaire situé au niveau du sol permettant de contrôler la force de traction sur le câble via un treuil.
Le dispositif selon l'invention comprend des moyens de commande (non représentés sur les Figures). Les moyens de commande sont configurés pour commander les actionneurs, et donc les propulseurs et les moteurs des ailes à effet Magnus.
D'une part, la vitesse de rotation de chaque propulseur est contrôlée, permettant de contrôler une force de poussée orientée sensiblement dans la direction de son axe de rotation, ainsi qu'un couple de contre-réaction autour de ce même axe de rotation.
D'autre part, la vitesse de rotation de chaque cylindre peut être contrôlée indépendamment, permettant de contrôler les forces aérodynamiques de portance et traînée de chaque cylindre à effet Magnus. Ces forces sont sensiblement perpendiculaires à l'axe de rotation du cylindre. Les cylindres produisent également un couple de contre-réaction autour de leur axe de rotation.
Les hélices et les cylindres en rotation produisent aussi des couples gyroscopiques qui dépendent de leurs masses et de leurs vitesses de rotation respectives.
Le dispositif volant selon l'invention comprend également des pieds qui assurent sa stabilité lorsqu'il est posé au sol. Les Figures 1, 2, 3 et 5 illustrent des exemples de dispositifs avec des pieds 18. Les pieds peuvent être conçus pour pouvoir se resserrer lors du vol, ou encore se rétracter pour améliorer les performances aérodynamiques lors des phases de plané.
Le dispositif volant peut être alimenté électriquement par une batterie. La communication avec des unités de pilotage et de supervision au sol peut être réalisée par l'intermédiaire d'une liaison radiofréquence.
Dans le cas de la version captive, l'alimentation électrique du dispositif et sa communication avec les unités de pilotage et de supervision au sol peuvent être réalisées via le câble de connexion.
De manière particulièrement avantageuse, le module d'ailes à effet Magnus peut être amovible du corps du dispositif volant. Un exemple de réalisation est illustré sur la Figure 7. Dans cet exemple, le module comprend deux ailes à effet Magnus 25, au moins un moteur pour entraîner les ailes en rotation, et un module de contrôle 70.
Les ailes 25 et le module de contrôle 70 peuvent être fixés (par exemple vissés) sur un dispositif volant existant, par exemple un drone multi-rotor 80 tel qu'illustré sur la Figure 7.
Le module de contrôle 70 comprend un algorithme de contrôle des ailes 25 indépendamment ou en combinaison avec le contrôle des hélices 24 présentes sur le dispositif. Aucune intervention sur l'algorithme de contrôle du drone multi-rotor n'est nécessaire.
Un procédé de montage d'un dispositif volant à décollage vertical selon l'invention comprend ainsi les étapes suivantes : fourniture d'un dispositif volant à hélices comprenant un corps et d'au moins deux moteurs fixés sur le corps, chacun des moteurs étant configuré pour entraîner en rotation une hélice autour d'un axe de rotation d'hélice, les hélices étant agencées dans un plan sensiblement horizontal ; et montage, sur le dispositif volant à hélices, d'un module à effet Magnus comprenant au moins deux ailes à effet Magnus, comprenant la disposition des ailes par paire et symétriquement de part et d'autre du centre de gravité du dispositif, de sorte à avoir un axe de rotation commun sensiblement horizontal et sensiblement perpendiculaire aux axes de rotation d'hélice.
Les ailes à effet Magnus sont configurées pour être entraînées en rotation par au moins un moteur autour de leur axe de rotation, et pour permettre, lorsqu'elles sont mises en rotation, la sustentation du dispositif volant par une force aérodynamique à effet Magnus seule et en synergie avec une force aérodynamique des hélices mises en rotation.
Le fonctionnement du dispositif volant selon des modes de réalisation de l'invention est le suivant.
La phase stationnaire du dispositif volant est définie comme une phase où la vitesse de l'air sur le dispositif est faible (typiquement < 15 km/h), ce qui signifie que les ailes à effet Magnus ne produisent pas de portance significative. Symétriquement, les phases de plané sont définies comme les phases où la force de portance des ailes est exploitée, c'est-à-dire lorsqu'il y a une vitesse de vent apparent sur le dispositif qui est significative (typiquement > 15 km/h).
Les angles d'attitude du dispositif sont définis selon les angles d'Euler lorsque le dispositif est en phase stationnaire, c'est-à-dire le tangage autour de l'axe de rotation des ailes à effet Magnus, le lacet orthogonal à l'axe de tangage et sensiblement aligné avec l'axe de poussée des propulseurs et le roulis orthogonal à ces deux rotations.
Le pilotage du dispositif volant peut être réalisé de la manière suivante.
Les algorithmes de commande classique d'un dispositif volant tel qu'un drone multi-rotors consistent typiquement en un algorithme interne qui contrôle les variables roulis-tangage-lacet et un algorithme externe qui contrôle la position- vitesse du système. A ces algorithmes classiques, un modèle de portance des ailes à effet Magnus ainsi que des effets gyroscopiques et de contre-réactions liés à la rotation des cylindres Magnus est ajouté.
Dans le cas de la présence d'une gouverne, le couple généré par la gouverne de direction doit également prise en compte. Ces forces et couples sont pris en compte dans le calcul de la commande des actionneurs. Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1. Dispositif volant (10, 20, 30, 40, 50, 100, 200, 400, 500) à décollage vertical, notamment un drone, le dispositif volant comprenant : un corps (11) ; au moins deux propulseurs (12, 22, 32) fixés sur le corps (11), chaque propulseur (12, 22, 32) comprenant une hélice (14, 24, 34) et un moteur (13, 23, 33) configuré pour entraîner en rotation l'hélice (14, 24, 34) autour d'un axe de rotation d'hélice, les hélices (14, 24, 34) étant agencées dans un plan sensiblement horizontal ; caractérisé en ce que le dispositif volant comprend en outre un module à effet Magnus comprenant au moins deux ailes à effet Magnus (15, 25, 35), dans lequel :
- les ailes à effet Magnus (15, 25, 35) sont disposées par paire et symétriquement de part et d'autre du centre de gravité du dispositif, de sorte à avoir un axe de rotation commun (16) sensiblement horizontal et sensiblement perpendiculaire aux axes de rotation d'hélice,
- les ailes à effet Magnus (15, 25, 35) sont configurées pour être entraînées en rotation par au moins un moteur (17) autour de leur axe de rotation (16) ; les ailes à effet Magnus (15, 25, 35) étant configurées pour permettre, lorsqu'elles sont mises en rotation, la sustentation du dispositif volant par une force aérodynamique à effet Magnus seul et en synergie avec une force aérodynamique des hélices (14, 24, 34) mises en rotation.
2. Dispositif selon la revendication 1, caractérisé en ce que les ailes à effet Magnus (15, 25, 35) sont non-flottantes.
3. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre des moyens de commande configurés pour commander indépendamment la vitesse et/ou le sens de la rotation de chaque aile à effet Magnus (15, 25, 35).
4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que lors de son fonctionnement, la vitesse et/ou le sens de rotation d'une aile à effet Magnus (15, 25, 35) est différent(e) d'une autre aile à effet Magnus (15, 25, 35).
5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le module d'ailes à effet Magnus est amovible du corps (11) du dispositif.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en qu'il comprend en outre une dérive (71) disposée en aval des hélices (14, 24, 34) et des ailes à effet Magnus (15, 25, 35) le long de l'axe de lacet du dispositif, la gouverne (71) comprenant un organe de direction (72) motorisé configuré pour modifier l'orientation du dispositif autour de son axe de roulis.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif est adapté pour transporter un ou plusieurs passagers et/ou du fret.
8. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en que le dispositif est connecté à un module de base au sol au moyen d'un élément de connexion (41, 51), dans lequel l'élément de connexion (41, 51) est agencé pour transférer de l'énergie due au mouvement du dispositif à un générateur de courant électrique dans le module de base.
9. Dispositif selon la revendication 8, caractérisé en ce que l'élément de connexion comprend un câble (41, 51) ou une courroie, l'élément de connexion étant connecté au corps (11) du dispositif en un ou plusieurs points.
10. Dispositif selon la revendication 8 ou 9, caractérisé en ce que l'élément de connexion (41, 51) est pourvu d'un ou plusieurs actionneurs (52) configurés pour varier la longueur de l'élément de connexion ou d'une partie (51a, 51b) de l'élément de connexion (41, 51).
11. Dispositif selon l'une quelconque des revendications 8 à 10, caractérisé en qu'il comprend en outre une dérive (71) disposée en aval des hélices (14, 24, 34) et des ailes à effet Magnus (15, 25, 35) le long de l'axe de roulis du dispositif, la dérive (71) comprenant un organe de direction (72) motorisé configuré pour modifier l'orientation du dispositif autour de son axe de lacet.
12. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins l'un des propulseurs (12, 22, 32) est configuré pour générer de l'énergie électrique.
13. Procédé de montage d'un dispositif volant à décollage vertical, notamment un drone, le procédé comprenant les étapes suivantes : fourniture d'un dispositif volant (80) à hélices comprenant un corps et au moins deux propulseurs fixés sur le corps, chaque propulseur comprenant une hélice et un moteur configuré pour entraîner en rotation l'hélice autour d'un axe de rotation d'hélice, les hélices étant agencées dans un plan sensiblement horizontal ; montage, sur le dispositif volant (80) à hélices, d'un module à effet Magnus comprenant au moins deux ailes à effet Magnus (15, 25, 35), comprenant la disposition des ailes par paire et symétriquement de part et d'autre du centre de gravité du dispositif, de sorte à avoir un axe de rotation commun (16) sensiblement horizontal et sensiblement perpendiculaire aux axes de rotation d'hélice ; dans lequel les ailes à effet Magnus (15, 25, 35) sont configurées pour être entraînées en rotation par au moins un moteur autour de leur axe de rotation (16) ; dans lequel les ailes à effet Magnus (15, 25, 35) sont configurées pour permettre, lorsqu'elles sont mises en rotation, la sustentation du dispositif volant à décollage vertical par une force aérodynamique à effet Magnus seule et en synergie avec une force aérodynamique des hélices mises en rotation.
PCT/EP2021/068504 2020-07-09 2021-07-05 Dispositif volant a decollage vertical WO2022008437A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2007304 2020-07-09
FR2007304A FR3112329B1 (fr) 2020-07-09 2020-07-09 Dispositif volant à décollage vertical

Publications (1)

Publication Number Publication Date
WO2022008437A1 true WO2022008437A1 (fr) 2022-01-13

Family

ID=74125260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/068504 WO2022008437A1 (fr) 2020-07-09 2021-07-05 Dispositif volant a decollage vertical

Country Status (2)

Country Link
FR (1) FR3112329B1 (fr)
WO (1) WO2022008437A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116215852A (zh) * 2023-05-08 2023-06-06 成都沃飞天驭科技有限公司 一种垂直起降飞行器和垂直起降飞行器的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630470A (en) * 1970-02-13 1971-12-28 Frederick Thomas Elliott Vertical takeoff and landing vehicle
DE2503918A1 (de) * 1975-01-31 1976-08-05 Christian Klepsch Flugmaschine, insbesondere fuer den nahverkehr
CN2487653Y (zh) * 2001-03-08 2002-04-24 刘锡芳 新型多功能旋柱拉力器
DE102013215414A1 (de) * 2013-08-06 2015-02-12 Bernd Lau Sende- und Empfangsanlage
US20160052618A1 (en) * 2013-04-15 2016-02-25 Christian Emmanuel Norden A transition arrangement for an aircraft
FR3043386A1 (fr) * 2015-11-09 2017-05-12 Wind Fisher Aeronef mis en œuvre dans un systeme de production d’energie electrique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630470A (en) * 1970-02-13 1971-12-28 Frederick Thomas Elliott Vertical takeoff and landing vehicle
DE2503918A1 (de) * 1975-01-31 1976-08-05 Christian Klepsch Flugmaschine, insbesondere fuer den nahverkehr
CN2487653Y (zh) * 2001-03-08 2002-04-24 刘锡芳 新型多功能旋柱拉力器
US20160052618A1 (en) * 2013-04-15 2016-02-25 Christian Emmanuel Norden A transition arrangement for an aircraft
DE102013215414A1 (de) * 2013-08-06 2015-02-12 Bernd Lau Sende- und Empfangsanlage
FR3043386A1 (fr) * 2015-11-09 2017-05-12 Wind Fisher Aeronef mis en œuvre dans un systeme de production d’energie electrique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116215852A (zh) * 2023-05-08 2023-06-06 成都沃飞天驭科技有限公司 一种垂直起降飞行器和垂直起降飞行器的控制方法

Also Published As

Publication number Publication date
FR3112329B1 (fr) 2022-08-12
FR3112329A1 (fr) 2022-01-14

Similar Documents

Publication Publication Date Title
EP3294624B1 (fr) Avion convertible a rotors découvrables
EP2146895B1 (fr) Helicoptere hybride rapide a grande distance franchissable et rotor de sustentation optimise
EP2691299B1 (fr) Micro/nano véhicule aérien commande à distance comportant un système de roulage au sol, de décollage vertical et d&#39;atterrissage
US8002216B2 (en) Solar powered wing vehicle using flywheels for energy storage
EP2148814B1 (fr) Hélicoptère hybride rapide à grande distance franchissable et avec contrôle de l&#39;assiette longitudinale
EP2146896B1 (fr) Helicoptere hybride rapide a grande distance franchissable
US20200010182A1 (en) Pivoting wing system for vtol aircraft
US20150183514A1 (en) Long endurance vertical takeoff and landing aircraft
FR2547272A1 (fr) Systeme aerien de soulevement de charges
CA2975209A1 (fr) Aerodyne vtol a soufflante(s) axiale(s) porteuse(s)
EP3260370A1 (fr) Drone comportant des ailes portantes
WO2008142258A2 (fr) Système de commande d&#39;un giravion
FR2929243A1 (fr) Helicoptere hybride rapide a grande distance franchissable
EP3264214A1 (fr) Procédé de conversion dynamique d&#39;attitude d&#39;un drone à voilure tournante
NL2017971A (en) Unmanned aerial vehicle
FR3048956B1 (fr) Aeronef a voilure tournante
EP3260945A1 (fr) Drone comprenant des ailes portantes
WO2022008437A1 (fr) Dispositif volant a decollage vertical
EP1165369A1 (fr) Helicoptere a pilotage pendulaire a haute stabilite et a grande manoeuvrabilite
WO2014076403A1 (fr) Véhicule aérien à décollage vertical et vol horizontal
FR2964946A1 (fr) Petit engin volant sans pilote
FR3051440A1 (fr) Drone endurant a decollage et atterrissage verticaux optimise pour des missions en environnement complexe
FR3020622A1 (fr) Aerodyne sans pilote embarque
EP3752419B1 (fr) Dispositif de remorquage d&#39;un aéronef sans moteur par un aéronef sans pilote embarqué; aéronef muni d&#39;un tel dispositif de remorquage et procédé de remorquage d&#39;un aéronef sans moteur par un aéronef sans pilote embarqué
WO2012022845A2 (fr) Aeronef pilote motorise sur deux axes avec pilotage lateral specifique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21745926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21745926

Country of ref document: EP

Kind code of ref document: A1