WO2022007981A1 - 一种芯片级谐振式声光耦合固态波动陀螺 - Google Patents

一种芯片级谐振式声光耦合固态波动陀螺 Download PDF

Info

Publication number
WO2022007981A1
WO2022007981A1 PCT/CN2021/116699 CN2021116699W WO2022007981A1 WO 2022007981 A1 WO2022007981 A1 WO 2022007981A1 CN 2021116699 W CN2021116699 W CN 2021116699W WO 2022007981 A1 WO2022007981 A1 WO 2022007981A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
gyroscope
resonant
acousto
optical
Prior art date
Application number
PCT/CN2021/116699
Other languages
English (en)
French (fr)
Inventor
常洪龙
田璐
申强
Original Assignee
西北工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西北工业大学 filed Critical 西北工业大学
Priority to US17/641,490 priority Critical patent/US11927444B2/en
Publication of WO2022007981A1 publication Critical patent/WO2022007981A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5698Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using acoustic waves, e.g. surface acoustic wave gyros
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/725Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers using nxn optical couplers, e.g. 3x3 couplers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Definitions

  • the invention belongs to the field of micro-sensors, and in particular relates to a novel chip-level resonance type acousto-optic coupling solid-state wave gyro based on MEMS technology.
  • the gyroscope As an instrument for measuring the angular velocity information of the carrier, the gyroscope is an important part of the inertial navigation system and has important application requirements in both the military and civilian fields. Among them, gyro accuracy is one of the key parameters affecting the performance of the navigation system, which plays a decisive role in precise positioning and attitude control. Therefore, the development of higher-precision gyroscopes is the core content of the frontier basic research of inertial technology carried out by domestic and foreign researchers.
  • the MEMS solid-state wave gyroscope has become an international research hotspot due to its advantages of small size, wide dynamic range, good shock resistance and stability due to its fully symmetrical topological structure.
  • its accuracy is obviously weaker than that of fiber optic gyroscopes, and its performance improvement will be limited by many technical factors such as existing geometric structure topology, precision machining and adjustment, weak signal measurement and control, etc.
  • the solid-state acousto-optic gyroscope is a kind of solid-state wave gyroscope, which uses the acousto-optic effect to optically detect the signal with the angular velocity information.
  • the on-chip solid-state acousto-optic gyroscope based on MEMS technology is only abroad.
  • the present invention proposes a new chip-level resonant acousto-optic coupled solid-state wave gyroscope based on MEMS technology for the first time. Second, a full-resonant MEMS acousto-optic gyro sensing/detection implementation is used.
  • the present invention provides a new chip-level resonant acousto-optic coupling solid-state wave gyroscope based on MEMS technology.
  • the surface acoustic traveling wave mode sensitive structure and the resonant micro-ring resonator cavity optical detection structure are combined in the gyroscope.
  • the acousto-optic effect converts the mechanical strain of the device crystal caused by the vibration of the primary surface acoustic wave and the secondary surface acoustic wave caused by the Coriolis force into the refractive index change of the optical waveguide etched on the device, so that the optical signal transmitted in the waveguide occurs.
  • the micro-resonator using the resonance principle peels off the frequency change introduced by the primary surface acoustic wave, and obtains an output signal containing external angular velocity information.
  • the proportional relationship between the quality factor of the resonant micro-ring resonator and the detection resolution the magnitude of the interface detection resolution is improved, and the performance indicators of the gyroscope are simultaneously optimized in terms of improving sensitivity and resolution, and improving its accuracy. .
  • the chip-level resonant acousto-optic coupling solid-state wave gyroscope proposed by the present invention includes a base and a gyro structure placed on the upper surface of the base;
  • the substrate realizes piezoelectric, photoelectric and acousto-optic effects, and its common form is: from top to bottom, the order is: lithium niobate crystal layer-silicon dioxide crystal layer-lithium niobate crystal layer, lithium niobate crystal layer-dioxide Silicon crystal layer-quartz crystal layer or lithium niobate crystal layer-silicon dioxide crystal layer-silicon crystal layer, etc.
  • the uppermost thin film layer of the substrate needs to have an acousto-optic effect, which converts the mechanical strain on the substrate material into a change in the refractive index of the material.
  • the gyro structure includes three parts: an acoustic sensitive module, an optical detection module and a phase modulation module, and is characterized in that: the acoustic sensitive module is located in the middle of the gyroscope, the optical detection module is located around the acoustic sensitive module, and the phase modulation module includes two, respectively.
  • the acoustic sensing module is symmetrical and placed on both sides of the two optical waveguide branches in the optical detection module.
  • the optical detection module includes a first grating coupler 4-1 at the input end of the first light source and a second grating coupler 4-2 at the input end of the second light source, which are formed by etching on the surface of the uppermost thin film layer of the substrate.
  • the input optical waveguide 6 at the input end of the first light source adopts a coupler 8-1 to divide the waveguide into two branches with the same structure, namely 6-1 and 6-2;
  • the input optical waveguide 7 at the input end of the second light source adopts a coupler.
  • 8-2 divides the waveguide into two branches with the same structure, namely 7-1 and 7-2;
  • the couplers 8-1 and 8-2 can be a Y-type branch structure or a multi-mode interference coupling structure, and their functions It is to divide the waveguide into two branches with the same structure, so that the intensity of the optical signal transmitted in the two optical waveguide branches is equal.
  • the optical waveguide branches 6-1 and 7-1 are connected together with the first resonant ring 11-1 using a first coupler 9-1; the waveguide branches 6-2 and 7-2 use a second coupler 9-2 connected with the second resonant ring 11-2; the first optical waveguide 12-1 and the second optical waveguide 12-2 at the signal output end are connected together with the first resonant ring 11-1 by using a third coupler 10-1, The third optical waveguide 13-1 and the fourth optical waveguide 13-2 of the optical waveguide at the signal output end are connected together with the second resonant ring 11-2 by the fourth coupler 10-2; here the first coupler 9-1, The second coupler 9-2, the third coupler 10-1 and the fourth coupler 10-2 may be directional couplers, multimode interference couplers or star couplers, etc.
  • the optical signal can be coupled into the resonant ring for transmission, or the optical signal in the resonant ring can be coupled out from the ring to the signal output terminal for subsequent signal detection.
  • the phase modulation module includes sputtering metal on the surface of the uppermost thin film layer of the substrate to form first phase modulation electrodes 14-1 and 14-2 located on both sides of the optical waveguide branch 7-1, and first phase modulation electrodes 14-1 and 14-2 located on both sides of the optical waveguide branch 6-2. side of the second phase modulation electrodes 15-1 and 15-2.
  • the metal lattice By applying an external excitation electrical signal to the metal electrode on the interdigital transducer to generate an alternating electric field, the surface of the uppermost thin film layer of the substrate is excited due to the inverse piezoelectric effect to generate a surface acoustic wave for the driving mode of the gyroscope, and Acting on the first metal mass lattice 3-1 and the optical waveguide branch 6-1 during propagation along the negative direction of the X-axis, the metal lattice will receive the surface acoustic wave component - the surface acoustic wave shear wave along the out-of-plane direction action to vibrate.
  • the first metal mass lattice 3-1 When the gyroscope has an external angular velocity along the Y-axis, the first metal mass lattice 3-1 will be affected by the Coriolis force, so that it will fluctuate along the X-axis direction.
  • the driving modal acoustic wave fluctuations on 1 act together, so that stress is generated inside the crystal of the substrate and periodic strain occurs.
  • the continuous transmission of the mechanical strain causes the optical waveguide branch 6-1 to deform, so that its refractive index changes.
  • the laser light emitted from the laser light source enters the optical waveguide 6 and the optical waveguide 7 respectively through the grating coupler 4-1 at the input end of the first light source and the grating coupler 4-2 at the input end of the second light source, and passes through the Y-shaped connection structure 8-1. and 8-2 are divided into two beams of equal light intensity, wherein a beam of optical signal 1 in the optical waveguide branch 6-1 is modulated by the waveguide refractive index change containing the frequency and angular velocity of the above-mentioned driving mode.
  • the two beams of light are respectively output from the ring through the third directional coupler 10-1, and the optical signal 1 passes through the signal output terminal No.
  • An optical waveguide 12-1 enters the first grating coupler 5-1 at the signal output end, and the optical signal 2 enters the second grating coupler 5-2 at the signal output end through the second optical waveguide 12-2 at the signal output end, and then enters the second grating coupler 5-2 at the signal output end.
  • the two beams of light in the grating couplers 5-1 and 5-2 are respectively input to the first photodetector and the second photodetector for photoelectric signal conversion, wherein the signal output by the first photodetector is related to the first phase modulation.
  • the modulation signal on the electrode 14-1 is fed back to the frequency tuning end of the laser light source after the closed-loop control together, so that the center frequency of the light source is locked at the resonant frequency of the micro-ring resonator, and at the same time, the phase of the feedback signal satisfies the resonant condition of the micro-ring resonator.
  • the signal output by the second photodetector is the driving frequency and angular velocity signal of the gyroscope.
  • the lower half of the structure is symmetrical to the upper half, and its working process is similar to the control method.
  • the signal output by the fourth photodetector is the driving frequency and angular velocity signal of the gyroscope, but the angular velocity signal and the output of the second photodetector are The angular velocity signal in the signal is out of phase, so the frequency discrimination differential circuit is used to eliminate the driving frequency signal of the common mode property, and the double angular velocity signal is obtained to realize the extraction and detection of the angular velocity signal.
  • the present invention derives the specific expression of the accuracy of the gyroscope.
  • B is the bandwidth
  • h Planck's constant
  • f 0 is the laser frequency
  • Q R is the quality factor of the optical resonator formed by the first ring resonator 11-1
  • P is the second grating coupler during subsequent detection.
  • is the photoelectric conversion efficiency
  • R is the radius of the first ring resonator 11-1
  • L is the length of the acousto-optic interaction
  • H is the depth of the surface acoustic wave propagation
  • n is the gyroscope
  • the waveguide material that is, the intrinsic refractive index of the uppermost thin film layer of the substrate
  • M 2 is the acousto-optic figure of merit
  • P a is the total acoustic power
  • p eff is the effective acousto-optic coefficient of the surface acoustic wave propagation direction
  • M p is the first metal
  • is the gyroscope waveguide material, that is, the density of the uppermost thin film layer of the substrate
  • v R is the phase velocity of the surface acoustic wave
  • P m is the electric power
  • Q D is the first in the acoustic sensitive module interdigit
  • the accuracy of the gyroscope ⁇ has a certain relationship with many parameters, and the changes of these parameters will have an impact on the accuracy. Therefore, the influence trend of these parameters on the accuracy of the gyroscope is analyzed, and the subsequent breakthrough of the accuracy limit of the existing MEMS solid-state wave gyroscope have important value. See FIG. 4 is a trend surface acoustic wave resonator quality factor Q D, the optical resonator quality factor Q R ⁇ accuracy of the gyro.
  • the present invention at least has the following beneficial effects:
  • the chip-level resonant acousto-optic coupling solid-state wave gyro design of the present invention is composed of two parts with a symmetrical characteristic structure as a whole, and can realize the structural difference function; the working principle adopts the traveling wave mode, and the required structure and geometric relationship are simple to use. and other features to avoid signal sensitivity attenuation caused by structural/process errors; design a resonant optical detection interface based on the micro-ring topology, that is, use a grating coupler to extract the optical signal in the ring resonator for subsequent signal processing, and use the resonant micro-resonator to extract the optical signal.
  • the ring has a high quality factor characteristic and is proportional to the detection resolution, which greatly improves the interface detection resolution; the acoustic sensitive module and the optical detection module do not have any floating and movable feature structures, which greatly enhances the impact resistance of the device. , which significantly improves the environmental robustness of MEMS gyroscopes. Therefore, the quality factor of the surface acoustic wave resonator has the ability to reach the order of 10 5 or more, and the quality factor of the optical resonator has the ability to reach the order of 10 9 or more. Compared with vacuum packaging The quality factor of the required MEMS solid-state wobble gyroscope is improved by 3 to 4 orders of magnitude, which greatly improves the signal sensitivity of sensitive structures, while avoiding complex and unstable vacuum packaging with an unstable leak rate.
  • the present invention can significantly improve the mechanical sensitivity and interface detection resolution of the gyroscope, and break through the precision limit of the existing MEMS solid-state wave gyroscope.
  • Fig. 1 is the structure top view of the present invention
  • Fig. 2 is the structural front view of the present invention
  • Figure 3 is a three-dimensional schematic diagram of the structure of the present invention.
  • Fig. 4 is the precision limit trend diagram of the present invention.
  • the first grating coupler at the signal output end A grating coupler; 5-2.
  • the second resonant ring; 12-1 The first optical waveguide at the signal output end; 12-2.
  • first phase modulation electrode 1; 14-2. first phase modulation electrode 2; 15-1. second phase modulation electrode 1; 15-2. second phase modulation electrode 2.
  • the substrate material used in the chip-level resonant acousto-optic coupling solid-state wave gyroscope in this embodiment is a lithium niobate crystal-insulator (LNOI), that is, a lithium niobate crystal layer from top to bottom -Silicon dioxide crystal layer-lithium niobate crystal layer, the gyro structure placed on the upper surface of the substrate includes three parts: an acoustic sensitive module, an optical detection module and a phase modulation module, wherein the acoustic sensitive module and the phase modulation module are passed through the LNOI
  • the surface of the uppermost film layer is formed by sputtering metal, and the optical detection module is realized by etching the surface of the uppermost film layer of the LNOI.
  • the thickness of the uppermost thin film layer of LNOI is 500nm; in the acoustic sensitive module, the length, width and thickness of the interdigital transducer composed of the first interdigital finger 1-1 and the second interdigital finger 1-2 are 390 ⁇ m, 380 ⁇ m and 500 nm, respectively. , there is a metal electrode layer structure for sputtering on both sides of the interdigital transducer, its area is 100 ⁇ m ⁇ 100 ⁇ m, on which the first metal electrode layer 2-1 and the second metal electrode layer 2-2 are sputtered.
  • the thickness is 300nm; the first metal mass lattice 3-1 and the second metal mass lattice 3-2 are squares with a side length of 230 ⁇ m, and 49 metal pillars are evenly arranged in each of the two lattices.
  • the metal mass lattice 3-1 is composed of metal columns 3-1-01 to 3-1-49, and the second metal mass lattice 3-2 is composed of metal columns 3-2-01 to 3-2-49.
  • the length, width and thickness of the column are respectively 1 ⁇ m, 1 ⁇ m, and 800 nm; in the optical detection module, the etching depth of the uppermost thin film layer of the LNOI is 300 nm in order to form a grating coupler and an optical waveguide, and a first Y-shaped connection structure 8- 1 and the second Y-shaped connection structure 8-2 respectively divide the input optical waveguide 6 and the input optical waveguide 7 into two branches with the same structure; the waveguide branches 6-1 and 7-1 are connected to the first resonant ring 11-1.
  • the first coupler 9-1 used together is a directional coupler; the same second coupler 9-2, third coupler 10-1 and fourth coupler 10-2 are directional couplers, so as to realize the optical waveguide
  • the optical signal in the resonant ring is coupled into the resonant ring for transmission or from the resonant ring to the signal output end; the diameter of the ring resonator 11-1 and 11-2 is 300 ⁇ m; in the phase modulation module, the first phase modulation electrode 14- 1 and 14-2 are located on both sides of the optical waveguide branch 7-1, and the second phase modulation electrodes 15-1 and 15-2 are located on both sides of the optical waveguide branch 6-2, and their lengths, widths and thicknesses are respectively 50 ⁇ m, 200 ⁇ m, 800nm.
  • FIG. 4 is a trend surface acoustic wave resonator quality factor Q D, the optical resonator quality factor Q R ⁇ accuracy of the gyro.
  • the influence of other parameters on the accuracy ⁇ of the gyroscope is not considered, and only the influence trend of the quality factor Q value on the accuracy ⁇ of the gyroscope is studied, wherein the value range of the quality factor Q D of the surface acoustic wave resonator is 10 3 ⁇ 10 5 , the value range of the quality factor Q R of the optical resonator is 10 8 ⁇ 10 10 .
  • the quality factor Q as the quality factor of the surface acoustic wave resonator and the value D of the optical cavity Q R value is increasing, and the resulting system limiting resolution, the higher the accuracy of the gyroscope. It can be seen from the partial enlarged view in Fig. 4 that when the quality factor Q D of the surface acoustic wave resonator reaches the order of 10 5 and the quality factor Q R of the optical resonator reaches the order of 10 10 , the theoretical accuracy of the invented gyroscope Can reach 0.0187°/h.
  • the accuracy ⁇ of the gyroscope will be affected by many parameters
  • the theoretical accuracy of the chip-level resonant acousto-optic coupling solid-state wave gyroscope designed in the present invention can be achieved when only the influence of the quality factor Q value is considered. It is approximately 0.01°/h, so when other parameters are optimized, the theoretical accuracy of the gyroscope is expected to be higher, indicating that the gyroscope has the potential of high performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)

Abstract

一种基于MEMS技术的芯片级谐振式声光耦合固态波动陀螺。该陀螺将声表面行波模式敏感结构与谐振式微环谐振腔光学检测结构结合在一起应用于陀螺仪中,利用声光效应将一次声表面波与科氏力导致的二次声表面波振动引起器件晶体的机械应变转换成器件上刻蚀的光波导的折射率变化,使得在该波导中传输的光信号发生衍射,从而产生频率调制,同时利用谐振原理的微谐振腔剥离一次声表面波引入的频率变化,得到包含有外部角速度信息的输出信号。利用谐振式微环谐振腔的品质因数与检测分辨率成比例关系,提高接口检测分辨率的量级,在提升灵敏度、改善分辨率等多个方面同时优化陀螺仪的性能指标,实现其精度的提高。

Description

一种芯片级谐振式声光耦合固态波动陀螺 技术领域
本发明属于微传感器领域,具体涉及一种新型基于MEMS技术的芯片级谐振式声光耦合固态波动陀螺。
背景技术
陀螺仪作为测量载体角速度信息的仪器,是惯性导航系统的重要组成部分,在军事领域及民用领域都具有重要的应用需求。其中,陀螺精度是影响导航系统性能的关键参数之一,对精准定位、姿态控制等起着决定性的作用。因此研发更高精度的陀螺仪是国内外研究学者开展惯性技术前沿基础研究的核心内容。
当前,MEMS固态波动陀螺因其全对称拓扑特征结构而使其具有体积小、动态范围宽以及抗冲击性和稳定性良好等优势成为国际研究热点。然而其精度明显弱于光纤陀螺的精度,其性能的提升会受到现有几何结构拓扑、精密加工修调、微弱信号测控等技术因素的诸多限制,因此,探索新型压电/光电/声光效应晶体材料基底、多物理场耦合敏感原理、固态波动敏感拓扑、光相位调制器结构等多种能够显著增强信号灵敏度的创新方法是提升片上固态波动陀螺精度的必然要求。
固态声光陀螺作为固态波动陀螺仪一种,利用声光效应将带有角速度信息的信号用光学方式进行检测。基于MEMS技术的片上固态声光陀螺在国外仅有卡内基梅隆大学于2018年通过驻波模式将声波敏感结构与光检测结构简单集成,初步获得了陀螺效应,但是驻波模式要求的叉指换能器、反射器等结构复杂繁琐、结构拓扑的几何约束关系及其敏感等特征导致微弱的结构/工艺误差会极大的衰减信号灵敏度;而行波模式具有的结构及几何关系简单等特征,适用于误差难以 避免的MEMS器件,目前国内外均未见基于行波模式的芯片级固态声光耦合陀螺片上一体化报道,在国内更是未见公开的基于MEMS技术的固态声光陀螺片上集成一体化实施方案。因此本发明首次提出一种新型基于MEMS技术的芯片级谐振式声光耦合固态波动陀螺实现方案,该方案具有两个显著的特色:第一,采用基于行波模式的MEMS固态声光陀螺片上一体化结构;第二,采用全谐振式MEMS声光陀螺敏感/检测实现方式。这两个方面的创新点使得基于MEMS技术的芯片级谐振式声光耦合固态波动陀螺突破现有MEMS固态波动陀螺的精度极限成为可能。
发明内容
本发明提供了一种新型基于MEMS技术的芯片级谐振式声光耦合固态波动陀螺,首次将声表面行波模式敏感结构与谐振式微环谐振腔光学检测结构结合在一起应用于陀螺仪中,利用声光效应将一次声表面波与科氏力导致的二次声表面波振动引起器件晶体的机械应变转换成器件上刻蚀的光波导的折射率变化,使得在该波导中传输的光信号发生衍射,从而产生频率调制,同时利用谐振原理的微谐振腔剥离一次声表面波引入的频率变化,得到包含有外部角速度信息的输出信号。利用谐振式微环谐振腔的品质因数与检测分辨率成比例关系,提高接口检测分辨率的量级,在提升灵敏度、改善分辨率等多个方面同时优化陀螺仪的性能指标,实现其精度的提高。
参阅图1至图3,本发明提出的芯片级谐振式声光耦合固态波动陀螺包括基底及置于基底上表面的陀螺结构;
所述基底实现压电、光电及声光效应,其常见形式为:从上到下依次为铌酸锂晶体层-二氧化硅晶体层-铌酸锂晶体层、铌酸锂晶体层-二氧化硅晶体层-石英 晶体层或铌酸锂晶体层-二氧化硅晶体层-硅晶体层等。所述基底的最上薄膜层需要具有声光效应,将基底材料受到的机械应变转换为材料折射率的变化。
所述陀螺结构包含有声学敏感模块、光学检测模块及相位调制模块三部分,其特征在于:声学敏感模块位于陀螺仪中间部位,光学检测模块处于声学敏感模块四周,相位调制模块包括两个,分别基于声学敏感模块对称并放置于光学检测模块中两个光波导分支两侧。
具体的,声学敏感模块包括在基底的最上薄膜层表面上溅射金属形成的第一叉指1-1与第二叉指1-2组成的叉指换能器;第一叉指1-1侧面结构与第二叉指1-2侧面结构上分别均匀溅射金属电极层,形成第一金属电极层2-1和第二金属电极层2-2;在基底的最上薄膜层表面二次溅射金属形成的用于敏感角速度的第一金属质量点阵3-1和第二金属质量点阵3-2,其中第一金属质量点阵3-1由金属柱3-1-0n~3-1-nn(n=1、2、3、……)组成,第二金属质量点阵3-2由金属柱3-2-0n~3-2-nn(n=1、2、3、……)组成。
具体的,光学检测模块包括在基底的最上薄膜层表面上刻蚀形成的第一光源输入端的第一光栅耦合器4-1和第二光源输入端的第二光栅耦合器4-2,信号输出端的第一光栅耦合器5-1、第二光栅耦合器5-2、第三光栅耦合器5-3和第四光栅耦合器5-4;在基底的最上薄膜层表面上刻蚀形成的第一光源输入端的输入光波导6、第二光源输入端的输入光波导7、信号输出端第一光波导12-1、第二光波导12-2、第三光波导13-1和第四光波导13-2;及在基底的最上薄膜层表面上刻蚀形成的第一谐振环11-1和第二谐振环11-2。
进一步的,第一光源输入端的输入光波导6采用耦合器8-1将波导分成结构相同的两个分支,分别为6-1和6-2;第二光源输入端的输入光波导7采用耦合 器8-2将波导分成结构相同的两个分支,分别为7-1和7-2;此处耦合器8-1与8-2可以是Y型分支结构或多模干涉耦合结构,它们的作用是将波导分成结构相同的两个分支,使得在两个光波导分支中传输的光信号强度相等。
进一步的,光波导分支6-1和7-1采用第一耦合器9-1与第一谐振环11-1连接到一起;波导分支6-2和7-2采用第二耦合器9-2与第二谐振环11-2连接到一起;信号输出端第一光波导12-1和第二光波导12-2采用第三耦合器10-1与第一谐振环11-1连接到一起,信号输出端光波导第三光波导13-1和第四光波导13-2采用第四耦合器10-2与第二谐振环11-2连接到一起;此处第一耦合器9-1、第二耦合器9-2、第三耦合器10-1及第四耦合器10-2可以是定向耦合器、多模干涉耦合器或星型耦合器等,它们的作用是使得光波导中的光信号可以耦合进入谐振环进行传输,或让谐振环中的光信号从环中耦合出到信号输出端以便后续信号检测。
所述相位调制模块包括在基底的最上薄膜层表面上溅射金属形成位于光波导分支7-1两侧的第一相位调制电极14-1和14-2,及位于光波导分支6-2两侧的第二相位调制电极15-1和15-2。
由于本发明所设计的整体结构由具有对称特征的两部分组成,因此在说明其基本工作原理时以上半部分为例,具体的工作过程如下:
通过在叉指换能器上的金属电极上施加外部激励电信号从而产生交变电场,由于逆压电效应使得基底的最上薄膜层表面激发生成用于陀螺仪驱动模态的声表面波,并沿着X轴负方向传播过程中作用于第一金属质量点阵3-1及光波导分支6-1,其中金属点阵会受到声表面波分量——沿着面外方向的声表面波横波作用进行振动。当陀螺仪沿着Y轴有外部角速度作用时,第一金属质量点阵3-1 会受到科氏力作用,从而沿着X轴方向进行波动,此波动方向与之前作用在光波导分支6-1上的驱动模态声波波动共同作用,从而使得基底的晶体内部产生应力而发生周期性的应变,该机械应变不断传递导致光波导分支6-1发生形变,使得其折射率发生变化。从激光光源发出的激光通过第一光源输入端的光栅耦合器4-1与第二光源输入端的光栅耦合器4-2分别进入到光波导6与光波导7中,通过Y型连接结构8-1与8-2分成了光强相等的两束光,其中在光波导分支6-1中的一束光信号1被含有上述驱动模态的频率及角速度共两项信号的波导折射率变化所调制,并和在光波导分支7-1中没有被调制的一束光信号2分别通过第一定向耦合器9-1进入到第一环形谐振腔11-1中,两束光在该环形谐振腔中分别沿着顺时针和逆时针方向传输,经过在环形谐振腔多圈传输后,两束光再分别经由第三定向耦合器10-1从环中输出,光信号1经过信号输出端第一光波导12-1进入到信号输出端的第一光栅耦合器5-1,光信号2经过信号输出端第二光波导12-2进入到信号输出端的第二光栅耦合器5-2,之后在光栅耦合器5-1与5-2中的两束光各自输入到第一光电探测器和第二光电探测器进行光电信号转换,其中第一光电探测器输出的信号与作用在第一相位调制电极14-1上的调制信号共同经过闭环控制后反馈到激光光源频率调谐端,使得光源的中心频率锁定在微环谐振腔的谐振频率,同时使得反馈信号的相位满足微环谐振腔的谐振条件,第二光电探测器输出的信号为陀螺仪的驱动频率与角速度信号。同理,结构下半部分对称于上半部分,其工作过程与控制方式类似,第四光电探测器输出的信号为陀螺仪的驱动频率与角速度信号,但是该角速度信号与第二光电探测器输出的信号中的角速度信号反相,因此后续采用鉴频差分电路消除共模性质的驱动频率信号,得到两倍角速度信号从而实现角速度信号的提取与检测。
为了提升陀螺仪的机械灵敏度与接口检测分辨率,突破现有MEMS固态波动陀螺的精度极限,本发明理论推导了陀螺仪精度的具体表达式,以上半部分为例,陀螺仪的机械灵敏度和接口检测分辨率与陀螺仪精度之间存在以下关系:
Figure PCTCN2021116699-appb-000001
其中,B为带宽,h为普朗克常数;f 0为激光频率;Q R为第一环形谐振腔11-1形成的光学谐振腔的品质因数;P为后续检测时从第二光栅耦合器5-2接收到的光功率;η为光电转换效率;R为第一环形谐振腔11-1的半径;L为声光相互作用的长度;H为声表面波传播的深度;n为陀螺仪波导材料,即基底的最上薄膜层的本征折射率;M 2为声光优值;P a为总声功率;p eff为声表面波传播方向的有效声光系数;M p为第一金属质量点阵3-1的总质量;ρ为陀螺仪波导材料,即基底的最上薄膜层的密度;v R为声表面波的相速;P m为电功率;Q D为声学敏感模块中第一叉指1-1与第二叉指1-2组成的叉指换能器与第一金属质量点阵3-1组成的声表面波谐振器的品质因数;M r为第一叉指1-1与第二叉指1-2组成的叉指换能器的质量;ε为横波相对于纵波的系数;f 1为声表面波谐振频率。
由公式可知,陀螺仪精度δΩ与许多参数都具有一定关系,这些参数的变化对精度都会产生影响,因此分析这些参数对陀螺仪精度的影响趋势,对于后续突破现有MEMS固态波动陀螺的精度极限具有重要价值。参阅图4为声表面波谐振器的品质因数Q D、光学谐振腔的品质因数Q R与陀螺仪精度δΩ的趋势图。
与现有技术相比,本发明至少具有以下有益效果:
本发明的一种芯片级谐振式声光耦合固态波动陀螺设计整体由具有对称特征结构的两部分组成,可以实现结构差分功能;其工作原理采用行波模式,利用 其所要求结构及几何关系简单等特征避免结构/工艺误差带来信号灵敏度衰减;设计基于微环拓扑结构的谐振式光检测接口,即采用光栅耦合器将环形谐振腔中的光信号提取出进行后续的信号处理,利用谐振式微环具有的高品质因数特征且与检测分辨率成比例关系,极大提高了接口检测分辨率;声学敏感模块与光学检测模块没有任何悬浮可动的特征结构,极大增强了器件的抗冲击能力,显著提升MEMS陀螺环境鲁棒性,因此声表面波谐振器的品质因数具有达到10 5量级以上的能力,光学谐振腔的品质因数具有达到10 9量级以上的能力,相比于真空封装要求的MEMS固态波动陀螺,品质因数提升了3~4个数量级,极大提升了敏感结构信号灵敏度,同时避免了复杂且不稳定漏率的真空封装。
综上所述,本发明可显著提升陀螺仪的机械灵敏度与接口检测分辨率,突破现有MEMS固态波动陀螺的精度极限。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明的结构俯视图;
图2为本发明的结构主视图;
图3为本发明的结构三维示意图;
图4为本发明的精度极限趋势图;
其中:1-1.第一叉指;1-2.第二叉指;2-1.第一金属电极层;2-2.第二金属电极层;3-1.第一金属质量点振;3-2.第二金属质量点阵;4-1.第一光源输入端的第一光栅耦合器;4-2.第二光源输入端的第二光栅耦合器;5-1.信号输出端的第一光栅耦合器;5-2.信号输出端的第二光栅耦合器;5-3.信号输出端的第三光栅耦合器;5-4.信号输出端的第四光栅耦合器;6.第一光源输入端的输入光波导;7.第二光源 输入端的输入光波导;8-1.第一Y型连接结构;8-2.第二Y型连接结构;9-1.第一定向耦合器;9-2.第二定向耦合器;10-1.第三定向耦合器;10-2.第四定向耦合器;11-1.第一谐振环;11-2.第二谐振环;12-1.信号输出端第一光波导;12-2.信号输出端第二光波导;13-1.输出端光波导第三光波导;13-2.输出端光波导第四光波导;14-1.第一相位调制电极1;14-2.第一相位调制电极2;15-1.第二相位调制电极1;15-2.第二相位调制电极2。
具体实施方式
参阅图1至图3,本实施例中的芯片级谐振式声光耦合固态波动陀螺所采用的基底材料为铌酸锂晶体—绝缘体(LNOI),即从上到下依次为铌酸锂晶体层-二氧化硅晶体层-铌酸锂晶体层,置于基底上表面的陀螺结构结构包含有声学敏感模块、光学检测模块及相位调制模块三部分,其中声学敏感模块与相位调制模块是通过在LNOI最上薄膜层表面上溅射金属形成,光学检测模块是通过在LNOI最上薄膜层表面刻蚀实现的。
LNOI最上薄膜层厚度为500nm;所述声学敏感模块中,由第一叉指1-1与第二叉指1-2组成的叉指换能器长度、宽度与厚度分别为390μm、380μm、500nm,叉指换能器两侧各有一个用于溅射金属电极层结构,其面积为100μm×100μm,上面溅射有第一金属电极层2-1和第二金属电极层2-2,它们的厚度为300nm;第一金属质量点阵3-1和第二金属质量点阵3-2为边长是230μm的正方形,两个点阵中各均匀排布有49个金属柱,其中第一金属质量点阵3-1由金属柱3-1-01~3-1-49组成,第二金属质量点阵3-2由金属柱3-2-01~3-2-49组成,各金属柱的长度、宽度与厚度分别为1μm、1μm、800nm;所述光学检测模块中,在LNOI最上薄膜层刻蚀深度为300nm以便形成光栅耦合器与光波导,采用第一Y型连 接结构8-1与第二Y型连接结构8-2分别将输入光波导6与输入光波导7各分成结构相同的两个分支;波导分支6-1与7-1与第一谐振环11-1连接到一起时采用的第一耦合器9-1为定向耦合器;同样的第二耦合器9-2、第三耦合器10-1及第四耦合器10-2为定向耦合器,从而实现光波导中的光信号耦合进谐振环进行传输或从谐振环耦合出到信号输出端;环形谐振腔11-1与11-2的直径为300μm;所述相位调制模块中,第一相位调制电极14-1和14-2位于光波导分支7-1两侧,第二相位调制电极15-1和15-2位于光波导分支6-2两侧,它们的长度、宽度与厚度分别为50μm、200μm、800nm。
参阅图4为声表面波谐振器的品质因数Q D、光学谐振腔的品质因数Q R与陀螺仪精度δΩ的趋势图。在本实施例中不考虑其他参数对陀螺仪精度δΩ的影响,仅研究品质因数Q值对陀螺仪精度δΩ的影响趋势,其中声表面波谐振器的品质因数Q D的取值范围为10 3~10 5,光学谐振腔的品质因数Q R的取值范围为10 8~10 10。从图中可以看出,随着声表面波谐振器的品质因数Q D值与光谐振腔的品质因数Q R值不断增大,系统所得极限分辨率越小,陀螺仪精度越高。从图4中的局部放大图可以看出,当声表面波谐振器的品质因数Q D达到10 5量级,光谐振腔的品质因数Q R达到10 10量级时所发明的陀螺仪理论精度可以达到0.0187°/h。通过分析可以知道,虽然陀螺仪精度δΩ会受到很多参数的影响,但是本发明所设计的芯片级谐振式声光耦合固态波动陀螺在仅考虑品质因数Q值对其的影响时理论精度就已可以近似达到0.01°/h,因此当对其他参数进行优化时有望使得陀螺仪理论精度更高,说明该陀螺仪具有高性能的潜力。
以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发 明权利要求书的保护范围之内。

Claims (6)

  1. 一种芯片级谐振式声光耦合固态波动陀螺,其特征在于,包括基底及置于基底上表面的陀螺结构;
    所述基底实现压电、光电及声光效应,所述基底的最上薄膜层具有声光效应,将基底材料受到的机械应变转换为材料折射率的变化;
    所述陀螺结构包含有声学敏感模块、光学检测模块及相位调制模块三部分,声学敏感模块位于陀螺仪中间部位,光学检测模块处于声学敏感模块四周,相位调制模块包括两个,分别基于声学敏感模块对称并放置于光学检测模块中两个光波导分支两侧。
  2. 一种如权利要求1所述的芯片级谐振式声光耦合固态波动陀螺,其特征在于,声学敏感模块包括在基底的最上薄膜层表面上溅射金属形成的第一叉指1-1与第二叉指1-2组成的叉指换能器;第一叉指1-1侧面结构与第二叉指1-2侧面结构上分别均匀溅射金属电极层,形成第一金属电极层2-1和第二金属电极层2-2;在基底的最上薄膜层表面二次溅射金属形成的用于敏感角速度的第一金属质量点阵3-1和第二金属质量点阵3-2,其中第一金属质量点阵3-1由金属柱3-1-0n~3-1-nn(n=1、2、3、……)组成,第二金属质量点阵3-2由金属柱3-2-0n~3-2-nn(n=1、2、3、……)组成。
  3. 一种如权利要求1所述的芯片级谐振式声光耦合固态波动陀螺,其特征在于,所述的光学检测模块包括在基底的最上薄膜层表面上刻蚀形成的第一光源输入端的第一光栅耦合器4-1和第二光源输入端的第二光栅耦合器4-2,信号输出端的第一光栅耦合器5-1、第二光栅耦合器5-2、第三光栅耦合器5-3和第四光栅耦合器5-4;在基底的最上薄膜层表面上刻蚀形成的第一光源输入端的输入光波导6、第二光源输入端的输入光波导7、信号输出端第一光波导12-1、第二光 波导12-2、第三光波导13-1和第四光波导13-2;及在基底的最上薄膜层表面上刻蚀形成的第一谐振环11-1和第二谐振环11-2。
  4. 一种如权利要求3所述的芯片级谐振式声光耦合固态波动陀螺,其特征在于,所述的第一光源输入端的输入光波导6采用耦合器8-1将波导分成结构相同的两个分支,分别为6-1和6-2;第二光源输入端的输入光波导7采用耦合器8-2将波导分成结构相同的两个分支,分别为7-1和7-2;此处耦合器8-1与8-2可以是Y型分支结构或多模干涉耦合结构,它们的作用是将波导分成结构相同的两个分支,使得在两个光波导分支中传输的光信号强度相等;
    所述的光波导分支6-1和7-1采用第一耦合器9-1与第一谐振环11-1连接到一起;波导分支6-2和7-2采用第二耦合器9-2与第二谐振环11-2连接到一起;信号输出端第一光波导12-1和第二光波导12-2采用第三耦合器10-1与第一谐振环11-1连接到一起,信号输出端光波导第三光波导13-1和第四光波导13-2采用第四耦合器10-2与第二谐振环11-2连接到一起。
  5. 一种如权利要求1所述的芯片级谐振式声光耦合固态波动陀螺,其特征在于,所述相位调制模块包括在基底的最上薄膜层表面上溅射金属形成位于光波导分支7-1两侧的第一相位调制电极14-1和14-2,及位于光波导分支6-2两侧的第二相位调制电极15-1和15-2。
  6. 一种如权利要求1所述的芯片级谐振式声光耦合固态波动陀螺,其特征在于,所述基底其从上到下依次为铌酸锂晶体层-二氧化硅晶体层-铌酸锂晶体层、铌酸锂晶体层-二氧化硅晶体层-石英晶体层或铌酸锂晶体层-二氧化硅晶体层-硅晶体层。
PCT/CN2021/116699 2020-07-07 2021-09-06 一种芯片级谐振式声光耦合固态波动陀螺 WO2022007981A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/641,490 US11927444B2 (en) 2020-07-07 2021-09-06 Chip-level resonant acousto-optic coupled solid state wave gyroscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010648228.7 2020-07-07
CN202010648228.7A CN112066967B (zh) 2020-07-07 2020-07-07 一种芯片级谐振式声光耦合固态波动陀螺

Publications (1)

Publication Number Publication Date
WO2022007981A1 true WO2022007981A1 (zh) 2022-01-13

Family

ID=73656393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116699 WO2022007981A1 (zh) 2020-07-07 2021-09-06 一种芯片级谐振式声光耦合固态波动陀螺

Country Status (3)

Country Link
US (1) US11927444B2 (zh)
CN (1) CN112066967B (zh)
WO (1) WO2022007981A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114839397A (zh) * 2022-03-31 2022-08-02 武汉大学 基于微环谐振腔的moems三轴加速度传感器及其制备方法
CN116592864A (zh) * 2023-05-25 2023-08-15 东南大学 一种基于声子晶体的全固态声表面波陀螺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112066967B (zh) * 2020-07-07 2023-02-14 西北工业大学 一种芯片级谐振式声光耦合固态波动陀螺
CN113086940B (zh) * 2021-03-25 2024-01-26 武汉敏声新技术有限公司 纳米光机械陀螺仪及其制备方法
CN113340289B (zh) * 2021-06-04 2023-01-24 西北工业大学 一种芯片级圆盘式声光驻波陀螺
CN115855011B (zh) * 2023-03-03 2023-05-30 西北工业大学 一种芯片级高动态mems环形声表面驻波陀螺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030167841A1 (en) * 1999-06-17 2003-09-11 The Penn State Research Foundation Micro-electro-mechanical gyroscope
CN101738183A (zh) * 2009-12-29 2010-06-16 中国人民解放军国防科学技术大学 基于复合膜的频率可调声表面波陀螺
CN103196438A (zh) * 2013-03-04 2013-07-10 中国科学院声学研究所 一种基于行波模式的声表面波陀螺仪
CN109407208A (zh) * 2018-12-13 2019-03-01 中国科学院半导体研究所 光耦合结构、系统及光耦合结构的制备方法
CN109781087A (zh) * 2018-12-05 2019-05-21 中北大学 一种基于驻波模式的saw陀螺仪
US20200173780A1 (en) * 2017-08-24 2020-06-04 Agency For Science, Technology And Research Gyroscope, methods of forming and operating the same
CN112066967A (zh) * 2020-07-07 2020-12-11 西北工业大学 一种芯片级谐振式声光耦合固态波动陀螺
CN113340289A (zh) * 2021-06-04 2021-09-03 西北工业大学 一种芯片级圆盘式声光驻波陀螺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060238078A1 (en) * 2005-04-21 2006-10-26 Honeywell International, Inc. Wireless and passive acoustic wave rotation rate sensor
CN1884972B (zh) * 2006-07-12 2011-04-27 北京理工大学 微光机电陀螺
US7900512B2 (en) * 2006-07-25 2011-03-08 Denso Corporation Angular rate sensor
US8463081B1 (en) * 2011-12-09 2013-06-11 Jds Uniphase Corporation Optical phase modulator
US9441969B2 (en) * 2013-12-02 2016-09-13 Honeywell International Inc. Resonant fiber optic gyroscopes with multi-core transport fiber
US10281277B1 (en) * 2016-01-15 2019-05-07 Hrl Laboratories, Llc Phononic travelling wave gyroscope
CN207123291U (zh) * 2017-07-26 2018-03-20 中国科学院声学研究所 一种基于多路径声光波导结构的微光机电陀螺
CN109307506A (zh) * 2017-07-26 2019-02-05 中国科学院声学研究所 一种基于多模式光纤结构的微光机电陀螺
US11112245B2 (en) * 2017-10-03 2021-09-07 Carnegie Mellon University Acousto-optic gyroscopes
CN107796383B (zh) * 2017-10-17 2021-03-23 西北工业大学 芯片级旋转调制式mems硅微机械陀螺
CN110531513B (zh) * 2019-09-03 2022-02-15 山东大学 一种mems换能结构及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030167841A1 (en) * 1999-06-17 2003-09-11 The Penn State Research Foundation Micro-electro-mechanical gyroscope
CN101738183A (zh) * 2009-12-29 2010-06-16 中国人民解放军国防科学技术大学 基于复合膜的频率可调声表面波陀螺
CN103196438A (zh) * 2013-03-04 2013-07-10 中国科学院声学研究所 一种基于行波模式的声表面波陀螺仪
US20200173780A1 (en) * 2017-08-24 2020-06-04 Agency For Science, Technology And Research Gyroscope, methods of forming and operating the same
CN109781087A (zh) * 2018-12-05 2019-05-21 中北大学 一种基于驻波模式的saw陀螺仪
CN109407208A (zh) * 2018-12-13 2019-03-01 中国科学院半导体研究所 光耦合结构、系统及光耦合结构的制备方法
CN112066967A (zh) * 2020-07-07 2020-12-11 西北工业大学 一种芯片级谐振式声光耦合固态波动陀螺
CN113340289A (zh) * 2021-06-04 2021-09-03 西北工业大学 一种芯片级圆盘式声光驻波陀螺

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114839397A (zh) * 2022-03-31 2022-08-02 武汉大学 基于微环谐振腔的moems三轴加速度传感器及其制备方法
CN114839397B (zh) * 2022-03-31 2023-05-05 武汉大学 基于微环谐振腔的moems三轴加速度传感器及其制备方法
CN116592864A (zh) * 2023-05-25 2023-08-15 东南大学 一种基于声子晶体的全固态声表面波陀螺
CN116592864B (zh) * 2023-05-25 2024-05-03 东南大学 一种基于声子晶体的全固态声表面波陀螺

Also Published As

Publication number Publication date
CN112066967B (zh) 2023-02-14
CN112066967A (zh) 2020-12-11
US20220307836A1 (en) 2022-09-29
US11927444B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2022007981A1 (zh) 一种芯片级谐振式声光耦合固态波动陀螺
CN101067555B (zh) 力平衡式谐振微机械陀螺
Mahmoud et al. Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes
WO2021120768A1 (zh) 一种腔光机械振动陀螺
US20240053148A1 (en) A chip-level disc-type acousto-optic standing wave gyroscope
CN101566475B (zh) 二轴光学陀螺
CN100590383C (zh) 一种谐振式微机械陀螺
US11112245B2 (en) Acousto-optic gyroscopes
CN109781087B (zh) 一种基于驻波模式的saw陀螺仪
US20200173780A1 (en) Gyroscope, methods of forming and operating the same
CN111736369A (zh) 一种相位调制器及谐振腔异质集成芯片
CN101793520B (zh) 基于光学微腔的集成光波导陀螺
CN116009294A (zh) 一种与氮化硅异质集成的铌酸锂薄膜相位调制器
CN113865578A (zh) 基于SiON起偏器的光纤陀螺用SiN基集成光学芯片
CN107101629B (zh) 一种硅微机械石墨烯梁谐振式陀螺仪
CN1228609C (zh) 无源谐振型光纤陀螺拍频检测方法
Mahmoud et al. Acousto-optic gyroscope
CN110260851B (zh) 一种基于双亚波长光栅腔检测的光力学微机械陀螺
CN103234535A (zh) 一种石英音叉式双轴微陀螺仪
CN100354604C (zh) 用有机聚合物材料实现的波导结构光学陀螺及其制备方法
CN111521203B (zh) 一种光子灵敏传感芯片
CN114690453A (zh) 压电-弹光相移器及光学陀螺SiN集成芯片
CN102426268A (zh) 基于声光效应的mems微型加速度传感器
CN103411596B (zh) 光子自旋角速率传感器及系统
Mahmoud et al. Acousto-optic gyroscope with improved sensitivity and 100 second stability in a small form factor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21837112

Country of ref document: EP

Kind code of ref document: A1