WO2022007835A1 - Procédé de rapport de faisceau dans un système de communication sans fil avec une formation de faisceau - Google Patents

Procédé de rapport de faisceau dans un système de communication sans fil avec une formation de faisceau Download PDF

Info

Publication number
WO2022007835A1
WO2022007835A1 PCT/CN2021/104941 CN2021104941W WO2022007835A1 WO 2022007835 A1 WO2022007835 A1 WO 2022007835A1 CN 2021104941 W CN2021104941 W CN 2021104941W WO 2022007835 A1 WO2022007835 A1 WO 2022007835A1
Authority
WO
WIPO (PCT)
Prior art keywords
agc
network node
panel
ssbri
cri
Prior art date
Application number
PCT/CN2021/104941
Other languages
English (en)
Inventor
Cheng-Rung Tsai
Original Assignee
Mediatek Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Inc. filed Critical Mediatek Inc.
Priority to CN202180048252.XA priority Critical patent/CN116134743A/zh
Priority to EP21837832.1A priority patent/EP4173166A1/fr
Publication of WO2022007835A1 publication Critical patent/WO2022007835A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06956Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using a selection of antenna panels

Definitions

  • the disclosed embodiments relate generally to wireless communication, and, more particularly, to beam reporting associated with one or more antenna group configurations (AGCs) .
  • AGCs antenna group configurations
  • the bandwidth shortage increasingly experienced by mobile carriers has motivated the exploration of the underutilized Millimeter Wave (mmWave) frequency spectrum between 3G and 300G Hz for the next generation broadband cellular communication networks.
  • the available spectrum of mmWave band is two hundred times greater than the conventional cellular system.
  • the mmWave wireless network uses directional communications with narrow beams and can support multi-gigabit data rate.
  • the underutilized bandwidth of the mmWave spectrum has wavelengths ranging from 1mm to 100mm.
  • the very small wavelengths of the mmWave spectrum enable large number of miniaturized antennas to be placed in a small area.
  • Such miniaturized antenna system can produce high beamforming gains through electrically steerable arrays generating directional transmissions.
  • mmWave wireless system has become a promising solution for real implementation.
  • the heavy reliance on directional transmissions and the vulnerability of the propagation environment present particular challenges for the mmWave network.
  • a cellular network system is designed to achieve the following goals: 1) Serve many users with widely dynamical operation conditions simultaneously; 2) Robust to the dynamics in channel variation, traffic loading and different QoS requirement; and 3) Efficient utilization of resources such as bandwidth and power. Beamforming adds to the difficulty in achieving these goals.
  • UE user equipment
  • UE can report the supported maximum number of ports or layers for uplink (UL) transmission through capability signaling.
  • this number is usually determined according to the panel with the smallest number of antennas since it should be supported by every panel that may be used for UL transmission.
  • network still cannot know if the selected network node (e.g., gNB) beam base on the beam reporting is used for UL transmission, what is the maximum number of ports or layers that can be supported by the UE-selected UL panel.
  • gNB network node
  • a panel configuration still can be changed for power saving of UE.
  • Down link (DL) MIMO layer adaption supported by Bandwidth Part (BWP) switching is for power saving of UE.
  • BWP Bandwidth Part
  • For UL it is also beneficial for power saving of UE if the maximum UL MIMO layers on the UL panel can adapt dynamically. However, it is not possible to let network know the change of UL panel configuration based on current specification.
  • UE even there could be more than one activated panel, UE still can select only one UL panel from them. For example, in order to avoid transmit power back-off due to maximum permissible exposure (MPE) , UE may select a panel for UL transmission alternative to a panel for DL reception. If multiple panels are activated and only one of the panels is selected for UL transmission, network has to know how to schedule UL transmission on the UL panel. However, network cannot differentiate which gNB beam (s) corresponds to the UL panel selected by UE based on beam reporting.
  • MPE maximum permissible exposure
  • Beam reporting for activated panel is thus an essential part needs to be determined.
  • a method for beam report associated with one or more antenna group configurations is proposed.
  • the network node configures one or more AGCs.
  • Each AGC may comprise at least one of an AGC index.
  • Each AGC may further comprise the number of ports or layers that can be supported by the UE.
  • each AGC may further comprise an active panel state.
  • the active panel state may indicate whether the UE can perform uplink (UL) transmission to the network node and/or whether the UE can perform downlink (DL) reception from the network node.
  • the UE may determine one of the AGCs for each channel-state-information reference-signal (CSI-RS) resource index (CRI) or synchronization signal block (SSB) resource index (SSBRI) in a beam report.
  • CSI-RS channel-state-information reference-signal
  • CRI channel-state-information reference-signal
  • SSB synchronization signal block
  • the UE may activate and select one or more panels for DL reception and UL transmission and the UE may receive and measure the reference signal (RS) corresponding to the CRI or SSBRI in the beam report on the activated panel (s) .
  • the UE may perform the UL transmission to the network node according to the RS and/or perform the DL reception from the network node according to the RS.
  • RS reference signal
  • a UE receives one more antenna group configurations (AGCs) configured by a network node in a beamforming wireless communication network, wherein each AGC comprises at least one of an AGC index.
  • AGCs antenna group configurations
  • the UE reports at least one of the AGC index in a beam report to the network node.
  • Figure 1 is a simplified block diagram of a network node and a user equipment that carry out certain embodiments of the present invention.
  • Figure 2 illustrates an example of AGCs configured by the network node.
  • Figure 3 illustrates a first embodiment of a panel-aware beam report of a UE having multiple panels.
  • Figure 4 illustrates a second embodiment of a panel-aware beam report of a UE having multiple panels.
  • Figure 5 illustrates a third embodiment of a panel-aware beam report of a UE having multiple panels.
  • Figure 6 is a flow chart of a method for beam report from UE perspective in a beamforming wireless communication system in accordance with one novel aspect.
  • FIG. 1 is a simplified block diagram of a network node and a user equipment (UE) that carry out certain embodiments of the present invention.
  • the network node 101 may be a base station (BS) or a gNB, but the present invention should not be limited thereto.
  • the UE 102 may be a smart phone, a wearable device, an Internet of Things (IoT) device, and a tablet, etc.
  • UE 110 may be a Notebook (NB) or Personal Computer (PC) inserted or installed with a data card which includes a modem and RF transceiver (s) to provide the functionality of wireless communication.
  • NB notebook
  • PC Personal Computer
  • Network node 101 has an antenna array 111 having multiple antenna elements that transmits and receives radio signals, one or more RF transceiver modules 112, coupled with the antenna array, receives RF signals from antenna 111, converts them to baseband signal, and sends them to processor 113.
  • RF transceiver 112 also converts received baseband signals from processor 113, converts them to RF signals, and sends out to antenna 111.
  • Processor 113 processes the received baseband signals and invokes different functional modules to perform features in network node 101.
  • Memory 114 stores program instructions and data 115 to control the operations of network node 101.
  • Network node 101 also includes multiple function modules that carry out different tasks in accordance with embodiments of the current invention.
  • UE 102 has an antenna 131, which transmits and receives radio signals.
  • a RF transceiver module 132 coupled with the antenna, receives RF signals from antenna 131, converts them to baseband signals and sends them to processor 133.
  • RF transceiver 132 also converts received baseband signals from processor 133, converts them to RF signals, and sends out to antenna 131.
  • Processor 133 processes the received baseband signals and invokes different functional modules to perform features in UE 102.
  • Memory 134 stores program instructions and data 135 to control the operations of UE 102.
  • UE 102 also includes multiple function modules and circuits that carry out different tasks in accordance with embodiments of the current invention.
  • network node 101 comprises a beam management module 120, which further comprises a beamforming circuit 121, a beam monitor 122, a resource allocation circuit 123, and a beam reporting circuit 124.
  • Beamforming circuit 121 may belong to part of the RF chain, which applies various beamforming weights to multiple antenna elements of antenna 111 and thereby forming various beams.
  • Beam monitor 122 monitors received radio signals and performs measurements of the radio signals over the various UE beams.
  • Resource allocation circuit 123 allocates one or more antenna group configurations (AGCs) .
  • Beam reporting circuit 124 reports the beam monitoring results for each received UE beam.
  • UE 102 comprises a beam management module 140, which further comprises a beamforming circuit 141, a beam monitor 142, a beam grouping circuit 143, and a beam report circuit 144.
  • Beamforming circuit 141 may belong to part of the RF chain, which applies various beamforming weights to multiple antenna elements of antenna 131 and thereby forming various beams.
  • Beam monitor 142 monitors received radio signals and performs measurements of the radio signals over the various beams.
  • Beam grouping circuit 143 groups different BS beams into beam groups based on RS resource configuration.
  • Beam report circuit 144 provide beam quality metric and send report to network node 101 in beam groups based on the beam monitoring results for each BS beam.
  • a beamforming wireless communication network or a beamforming wireless communication network system comprises the network node 101 and the UE 102.
  • the beamforming wireless communication network uses directional communication with narrow beams and can support multi-gigabit data rate.
  • Directional communication is achieved via digital and/or analog beamforming, wherein multiple antenna elements are applied with multiple sets of beamforming weights to form multiple beams.
  • the network node 101 configures one or more antenna group configurations (AGCs) .
  • Each AGC may comprise at least one of an AGC index.
  • Each AGC may further comprise the number of ports or layers that can be supported by the UE 102.
  • each AGC may further comprise an active panel state.
  • Each panel may comprise one or more antennas and/or ports (e.g., a group of antennas) .
  • the active panel state may indicate whether the UE 102 can perform uplink (UL) transmission to the network node 101 and/or whether the UE 102 can perform downlink (DL) reception from the network node 101.
  • the UE 102 may determine one of the AGCs for each channel-state-information reference-signal (CSI-RS) resource index (CRI) or synchronization signal block (SSB) resource index (SSBRI) in a beam report.
  • CSI-RS channel-state-information reference-signal
  • SSB synchronization signal block resource index
  • each CRI or SSBRI may correspond to an AGC index of the AGCs and a reporting quantity (e.g. L1-reference symbol received power (RSRP) or L1-signal to interference plus noise ratio (SINR) ) .
  • RSRP L1-reference symbol received power
  • SINR L1-signal to interference plus noise ratio
  • the CRI or the SSBRI may be associated with the active panel state of the AGC that indicates the UE 102 can perform UL transmission to the network node 101 and/or the UE 102 can perform downlink (DL) reception from the network node 101.
  • the UE 102 may activate and select one or more panels for DL reception and UL transmission and the UE 102 may receive and measure the reference signal (RS) corresponding to the CRI or SSBRI in the beam report on the activated panel (s) .
  • the processor 233 of the UE 102 may perform the UL transmission to the network node 101 according to the RS and/or perform the DL reception from the network node 101 according to the RS.
  • Each panel activated by the processor 233 of the UE 102 is associated with an AGC.
  • the UE 102 may transmit the beam report associated with the AGCs to the network node 101.
  • the UE 102 may report at least one of the AGC index in the beam report to the network node 101.
  • the receiver of UE 102 can receive the CRIs or SSBRIs associated with different AGCs simultaneously but cannot receive the CRIs or SSBRIs associated with the same AGC simultaneously.
  • each AGC may comprise an AGC index (i.e. AGC index #0, AGC index #1, AGC index #2, and AGC index #3) , the number of ports of an active panel, and an active panel state.
  • AGC index #0 the number of ports of an active panel is 1 and an active panel state is that the active panel selected and activated by the UE is for DL reception and UL transmission.
  • AGC index #1 the number of ports of an active panel is 2 and an active panel state is that the active panel selected and activated by the UE is for DL reception and UL transmission.
  • the number of ports of an active panel is 1 and an active panel state is that the active panel selected and activated by the UE is only for DL reception, i.e., the active panel cannot be used for UL transmission.
  • the number of ports of an active panel is 2 and an active panel state is that the active panel selected and activated by the UE is only for DL reception, i.e., the active panel cannot be used for UL transmission.
  • FIG. 3 illustrates a first embodiment of a panel-aware beam report of a UE having multiple panels.
  • UE 310 has three panels, Panel#1, Panel#2 and Panel#3.
  • the Panel#1 supports two ports
  • the Panel#2 supports one port
  • the Panel#3 supports two ports.
  • the panel-aware beam report 320 may be associated with AGC index#1 as depicted by table 210 of Figure. 2.
  • the CRIs or SSBRIs corresponding to the reference signals RS#2 and RS#4 may in the panel-aware beam report 320 may be associated with AGC index#1.
  • the panel-aware beam report 320 may be associated with AGC index#0 as depicted by table 210 of Figure. 2. Therefore, in the first embodiment of Figure 3, the network node will know the maximum number of the ports supported by the current activated panel based on the panel-aware beam report 320 even if the activated panel of UE 310 is changed.
  • FIG. 4 illustrates a second embodiment of a panel-aware beam report of a UE having multiple panels.
  • UE 410 has three panels, Panel#1, Panel#2 and Panel#3.
  • the Panel#1 supports two ports
  • the Panel#2 supports two ports
  • the Panel#3 supports two ports.
  • the panel-aware beam report 420 may be associated with AGC index#1 as depicted by table 210 of Figure. 2.
  • the panel-aware beam report 420 may be associated with AGC index#0 as depicted by table 210 of Figure. 2. Therefore, in the second embodiment of Figure 4, the network node will know the maximum number of the ports supported by the current activated panel based on the panel-aware beam report 420 even if the number of the ports supported by the current activated panel of UE 410 is changed.
  • FIG. 5 illustrates a third embodiment of a panel-aware beam report of a UE having multiple panels.
  • UE 510 has three panels, Panel#1, Panel#2 and Panel#3.
  • the Panel#1 supports two ports
  • the Panel#2 supports two ports
  • the Panel#3 supports two ports.
  • the panel-aware beam report 520 may be associated with AGC index#1 as depicted by table 210 of Figure. 2.
  • the panel-aware beam report 520 may be associated with AGC index#0 and AGC index#3 as depicted by table 210 of Figure. 2. Therefore, in the third embodiment of Figure 5, the network node will know how to schedule DL reception and UL transmission based on the panel-aware beam report 520 even if multiple panels are activated by the UE 510.
  • the network node may configure only one AGC.
  • the UE selects and activates a panel according to the AGC configured by the network node and reports a beam report associated with the AGC.
  • the network node configures an AGC with AGC index#0 and the active panel state of this AGC indicates that an active panel is selected for UL transmission and DL reception.
  • the UE may select and activate one panel for DL reception and UL transmission and the UE may receive and measure the reference signal (RS) corresponding to the CRI or SSBRI in the beam report associated with the AGC on the activated panel (s) .
  • RS reference signal
  • the network node configures another AGC with AGC index#2 and the active panel state of this AGC indicates that an active panel is selected only for DL reception.
  • the UE may select and activate another panel for DL reception and the UE may receive and measure the reference signal (RS) corresponding to the CRI or SSBRI in the beam report associated with the AGC on the activated panel (s) .
  • the receiver of the UE can receive CRIs or SSBRIs in different beam reports associated with different AGCs simultaneously; the receiver of the UE cannot receive the CRIs or SSBRIs in different beam reports associated with the same AGC simultaneously; and the receiver of the UE cannot receive the CRIs or SSBRIs in the same beam report simultaneously.
  • the receiver of the UE receives a set of Transmission Configuration Indicator (TCI) states configured by the network node via a radio resource control (RRC) signaling.
  • the network node activates one or more TCI states through an MAC control element (MAC-CE) . If more than one TCI state is activated by the network node, the network node may indicate one of the activated TCI states for determining spatial Tx filter for UL transmission. If only one TCI state is activated by the network node, the network node may use this activated TCI states for determining spatial Tx filter for UL transmission.
  • each TCI state associates with an AGC. In another embodiment, each TCI state can be configured with an AGC.
  • the transmitter of the UE reports a panel-related capability to the network node.
  • the panel-related capability comprises at least one of the maximum number of active panels, the maximum number of panels, the maximum number of configured AGCs, the maximum number of ports or layers of a panel and the supported active panel state of a panel.
  • FIG. 6 is a flow chart of a method for beam report from UE perspective in a beamforming wireless communication system in accordance with one novel aspect.
  • a UE receives one or more AGCs configured by a network node in the beamforming wireless communication network, wherein each AGC comprises at least one of an AGC index.
  • the UE reports at least one of the AGC index in a beam report to the network node.
  • each AGC comprises at least one of an AGC index, the number of ports of an active panel, and an active panel state.
  • the active panel state indicates that an active panel is selected for an uplink (UL) transmission, a downlink (DL) reception or both of UL transmission and DL reception.
  • the beam report comprises at least one CRI or SSBRI, and each CRI or SSBRI corresponds to a reporting quantity and the AGC index in the beam report.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne un procédé de rapport de faisceau associé à une ou plusieurs configurations de groupe d'antennes (AGC). Le nœud de réseau configure un ou plusieurs AGC. Chaque AGC peut comprendre au moins l'un des indices AGC. Chaque AGC peut comprendre le nombre de ports ou de couches qui peuvent être pris en charge par l'UE. De plus, chaque AGC peut comprendre un état de panneau actif. L'état de panneau actif peut indiquer si l'UE peut effectuer une transmission UL vers le nœud de réseau et/ou si l'UE peut effectuer une réception DL à partir du nœud de réseau. L'UE peut déterminer l'un des AGC pour chaque CRI ou SSBRI dans un rapport de faisceau. L'UE peut activer et sélectionner un ou plusieurs panneaux pour une réception DL et une transmission UL, et l'UE peut recevoir et mesurer le signal de référence correspondant au CRI ou SSBRI dans le rapport de faisceau.
PCT/CN2021/104941 2020-07-07 2021-07-07 Procédé de rapport de faisceau dans un système de communication sans fil avec une formation de faisceau WO2022007835A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180048252.XA CN116134743A (zh) 2020-07-07 2021-07-07 具有波束成形的无线通信系统中的波束报告方法
EP21837832.1A EP4173166A1 (fr) 2020-07-07 2021-07-07 Procédé de rapport de faisceau dans un système de communication sans fil avec une formation de faisceau

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202063048738P 2020-07-07 2020-07-07
US63/048,738 2020-07-07
US202063070351P 2020-08-26 2020-08-26
US63/070,351 2020-08-26
US202163150158P 2021-02-17 2021-02-17
US63/150,158 2021-02-17

Publications (1)

Publication Number Publication Date
WO2022007835A1 true WO2022007835A1 (fr) 2022-01-13

Family

ID=79552778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104941 WO2022007835A1 (fr) 2020-07-07 2021-07-07 Procédé de rapport de faisceau dans un système de communication sans fil avec une formation de faisceau

Country Status (3)

Country Link
EP (1) EP4173166A1 (fr)
CN (1) CN116134743A (fr)
WO (1) WO2022007835A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206587A1 (fr) * 2022-04-30 2023-11-02 Qualcomm Incorporated Adaptation de port d'antenne dynamique
WO2023226899A1 (fr) * 2022-05-27 2023-11-30 华为技术有限公司 Procédé et dispositif d'obtention de csi

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109525293A (zh) * 2017-09-19 2019-03-26 华为技术有限公司 一种波束成形训练的方法和装置
US20190222274A1 (en) * 2016-09-30 2019-07-18 Huawei Technologies Co., Ltd. Method and apparatus used for data transmission
CN110731057A (zh) * 2017-06-15 2020-01-24 瑞典爱立信有限公司 用于传送信号的波束选择
US20200169995A1 (en) * 2018-11-28 2020-05-28 Qualcomm Incorporated Management of multiple antenna panels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190222274A1 (en) * 2016-09-30 2019-07-18 Huawei Technologies Co., Ltd. Method and apparatus used for data transmission
CN110731057A (zh) * 2017-06-15 2020-01-24 瑞典爱立信有限公司 用于传送信号的波束选择
CN109525293A (zh) * 2017-09-19 2019-03-26 华为技术有限公司 一种波束成形训练的方法和装置
US20200169995A1 (en) * 2018-11-28 2020-05-28 Qualcomm Incorporated Management of multiple antenna panels

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "Remaining Issues on Multi-beam Operation Enhancement", 3GPP DRAFT; R1-2001727, vol. RAN WG1, 10 April 2020 (2020-04-10), pages 1 - 11, XP051873301 *
SAMSUNG: "Discussion on Tx beam grouping", 3GPP DRAFT; R1-1707957, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 6 May 2017 (2017-05-06), Hangzhou, China, pages 1 - 5, XP051262856 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206587A1 (fr) * 2022-04-30 2023-11-02 Qualcomm Incorporated Adaptation de port d'antenne dynamique
WO2023226899A1 (fr) * 2022-05-27 2023-11-30 华为技术有限公司 Procédé et dispositif d'obtention de csi

Also Published As

Publication number Publication date
EP4173166A1 (fr) 2023-05-03
CN116134743A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US11165472B2 (en) Method and apparatus for saving user equipment power with MIMO operation
US11330457B2 (en) Method for beam management with beam indication in wireless communication systems with beamforming
US10511370B2 (en) Method for beam management for wireless communication system with beamforming
KR102193357B1 (ko) 무선 통신 시스템의 하이브리드 프리코딩 제공 방법 및 그 전자 장치
US20190068262A1 (en) Method for Uplink Beam Training and Determination for Wireless Communication System with Beamforming
WO2019068255A1 (fr) Procédé d'indication de faisceau de liaison montante pour un système de communication sans fil avec formation de faisceau
KR20190027757A (ko) 무선 통신 시스템에서 코드북에 기초하여 상향링크 신호를 전송하는 방법 및 이를 위한 장치
CN115119292A (zh) 多输入多输出无线系统的探测参考信号功率控制
KR100737964B1 (ko) 적응성 어레이 통신 시스템의 모드 스위칭
CN112005503B (zh) 用于提供mimo天线阵列内的个体天线配置选择的方法、系统和装置
WO2022007835A1 (fr) Procédé de rapport de faisceau dans un système de communication sans fil avec une formation de faisceau
EP4040702A1 (fr) Procédés et appareil pour recevoir et émettre des signaux de référence
US20230143724A1 (en) Method for beam report in wireless communication system with beamforming
Udoh et al. Analytical Modeling of Radio Network Performance for 5G (Non-Standalone) and It's Network Connectivity.
WO2022086778A1 (fr) Procédé de signalement de défaillance de faisceau
WO2022031450A1 (fr) Procédé et appareil pour un équipement utilisateur ayant de multiples panneaux
US20200229003A1 (en) Access Point Device and Communication Method
US20190335483A1 (en) Millimeter Wave Wireless Broadband Connectivity
WO2023044742A1 (fr) Gestion de collision de srs
WO2024060192A1 (fr) Prise en charge de déclaration de puissance de sortie maximale d'ue et de rapport de capacité
WO2023044771A1 (fr) Reprise sur défaillance de faisceau avec sélection de panneau d'antenne de liaison montante
WO2023187618A1 (fr) Procédé et appareil comprenant un support pour un rapport d'interférence de liaison croisée amélioré
WO2023187619A1 (fr) Procédé et appareil comprenant un support pour un rapport d'interférence de liaison croisée basé sur un déclencheur d'événement
CN115550954A (zh) 资源测量方法和通信装置
WO2023126668A1 (fr) Livre de codes conique en amplitude pour formation de faisceau dans le domaine temporel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021837832

Country of ref document: EP

Effective date: 20230126

NENP Non-entry into the national phase

Ref country code: DE