WO2022007828A1 - 冗余路径的资源预留方法、网络设备和存储介质 - Google Patents

冗余路径的资源预留方法、网络设备和存储介质 Download PDF

Info

Publication number
WO2022007828A1
WO2022007828A1 PCT/CN2021/104917 CN2021104917W WO2022007828A1 WO 2022007828 A1 WO2022007828 A1 WO 2022007828A1 CN 2021104917 W CN2021104917 W CN 2021104917W WO 2022007828 A1 WO2022007828 A1 WO 2022007828A1
Authority
WO
WIPO (PCT)
Prior art keywords
spanning tree
message
resource reservation
attribute declaration
redundant
Prior art date
Application number
PCT/CN2021/104917
Other languages
English (en)
French (fr)
Inventor
朱向阳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2023501186A priority Critical patent/JP2023532374A/ja
Priority to EP21837953.5A priority patent/EP4181432A1/en
Priority to US18/015,062 priority patent/US20230261987A1/en
Publication of WO2022007828A1 publication Critical patent/WO2022007828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/48Routing tree calculation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/726Reserving resources in multiple paths to be used simultaneously
    • H04L47/728Reserving resources in multiple paths to be used simultaneously for backup paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/821Prioritising resource allocation or reservation requests

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method for resource reservation of redundant paths, a network device and a storage medium.
  • the Time Sensitive Networking (TSN) working group of IEEE802.1Q provides services with bounded delay, jitter and extremely low packet loss rate for TSN traffic through the proposed methods and mechanisms.
  • TSN working group standard when the reliability of the network is improved by proposing a packet duplication elimination mechanism, it is necessary to plan redundant service paths that meet the bandwidth and delay requirements for TSN service flows.
  • the Stream Reservation Protocol (SRP) proposed by the IEEE802.1Qat standard is used to reserve resources and establish forwarding between the TSN service source (Talker) and the corresponding destination (Listeners) path.
  • SRP Stream Reservation Protocol
  • the existing SRP standard can only establish a unicast forwarding path that meets service requirements between the source end and the destination end, and cannot provide redundant path resource reservation for TSN service flows.
  • the present application provides a method for resource reservation of redundant paths, a network device and a storage medium.
  • An embodiment of the present application provides a method for resource reservation of redundant paths, which is applied to a bridge device, and includes: obtaining, from a received attribute declaration packet of a source device, a Time Sensitive Network (TSN) targeted by the attribute declaration packet.
  • TSN Time Sensitive Network
  • the embodiment of the present application also provides a method for resource reservation of redundant paths, which is applied to a source device, including: in response to determining that resource reservation of redundant paths is required for TSN services, generating a first attribute declaration for TSN services message, the first attribute declaration packet carries an indication that redundant propagation needs to be provided for the attribute declaration packet; and the first attribute declaration packet is sent to the bridge device connected to the source device, wherein the maintenance in the bridge device There are at least two spanning tree instances, and the at least two spanning tree instances are used to establish a redundant path of the TSN service between the local source end device and the specified destination end device according to the indication of the first attribute declaration message.
  • An embodiment of the present application provides a method for resource reservation of redundant paths, which is applied to a destination device, including: receiving at least two attribute declaration messages for the same TSN service through a bridge device connected to the destination device ; In response to the TSN service being the TSN service that the destination device is interested in, and each received attribute declaration message is a message propagated based on different spanning tree instances, for each received attribute declaration message, generate a TSN services, and correspond to resource reservation request messages of different spanning tree instances, where different spanning tree instances are spanning tree instances among at least two spanning tree instances maintained in the bridge device connected to the destination device , and at least two spanning tree instances are used to establish redundant paths of TSN services between the source end device and the destination end device; and based on the different spanning tree instances corresponding to each resource reservation request message generated, Send each resource reservation request message to the bridge device connected to the destination device.
  • An embodiment of the present application provides a network device, including: one or more processors; and a memory on which one or more programs are stored, when the one or more programs are executed by the one or more processors , so that the one or more processors implement the resource reservation method applied to the redundant path of the bridge device according to the present disclosure.
  • An embodiment of the present application provides a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, the processor implements the method for resource reservation of redundant paths according to the present disclosure.
  • FIG. 1 shows a schematic flowchart of a method for resource reservation of redundant paths provided by the present application.
  • FIG. 2 shows a schematic diagram of an exemplary encoding format of an attribute declaration message based on the SRP protocol.
  • FIG. 3 shows a schematic diagram of the encoding format of the extended SRP protocol-based attribute declaration message provided by the present application.
  • FIG. 4 shows a schematic flowchart of initializing and setting an attribute declaration message by a source device provided by the present application.
  • FIG. 5 shows another schematic flowchart of the method for resource reservation of redundant paths provided by the present application.
  • FIG. 6 is a schematic diagram showing the processing flow of the attribute declaration message by the bridge device provided by the present application.
  • FIG. 7 shows a schematic diagram of the processing flow of the network bridge device provided by the present application receiving the attribute declaration message.
  • FIG. 8 is a schematic diagram showing the processing flow of the network bridge device provided by the present application receiving the resource reservation revocation message.
  • FIG. 9 shows another schematic flowchart of the method for resource reservation of redundant paths provided by the present application.
  • FIG. 10 shows a schematic diagram of the encoding format of the existing destination message based on the SRP protocol.
  • FIG. 11 shows a schematic diagram of the encoding format of the destination message provided by this application.
  • FIG. 12 shows a schematic diagram of the processing flow of the destination device receiving the attribute declaration message provided by the present application.
  • FIG. 13 shows a schematic diagram of the processing flow of the redundant path resource reservation based on the SRP protocol provided by the present application.
  • FIG. 14 shows a schematic flowchart of the process of revoking the reservation of redundant path resources based on the SRP protocol provided by the present application.
  • FIG. 15 shows a schematic structural diagram of the apparatus for resource reservation of redundant paths provided by the present application.
  • FIG. 16 shows a schematic structural diagram of the apparatus for resource reservation of redundant paths provided by the present application.
  • FIG. 17 shows a schematic structural diagram of a resource reservation apparatus for redundant paths provided by the present application.
  • FIG. 18 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing the method and apparatus for resource reservation of redundant paths according to the present application.
  • the two quality of service requirements of bounded delay and jitter are met by 802.1Qbv, 802.1Qch, 802.1Qav and other standards; while the extremely low packet loss rate requires the network to have high reliability and availability , which can cope with the possible single node failure and single link failure in the network as much as possible.
  • IEEE802.1CB improves the reliability of the network by proposing a packet copy elimination mechanism. Specifically, it is to make the packet corresponding to the stream handle (Stream Handle) achieve the packet by performing the copy operation on the designated port.
  • Stream Handle Stream Handle
  • elimination and rearrangement are performed at the traffic aggregation point or receiving point to avoid packet duplication and disorder, which requires the ability to plan redundant service paths for TSN service flows that meet the bandwidth and delay requirements.
  • the Stream Reservation Protocol (SRP) proposed by the IEEE802.1Qat standard is used to reserve resources and establish a forwarding path between the TSN service source (Talker) and the corresponding destination (Listeners). SRP protocol packets can be propagated in the specified spanning tree.
  • the spanning tree may be generated by the Rapid Spanning Tree Protocol, and the spanning tree may also be established by, for example, the Path Control and Reservation (PCR) protocol proposed by IEEE802.1Qca.
  • PCR Path Control and Reservation
  • a spanning tree instance may be specified by a spanning tree identifier.
  • the SRP protocol packet can be run in the basic spanning tree instance specified by the default identifier. Since SRP protocol packets are propagated in a spanning tree instance, only one forwarding path may exist between the source and one destination. Therefore, at most, a unicast forwarding path that meets service requirements can be established between the source and one destination. Therefore, based on the existing SRP standard, redundant path resource reservation cannot be provided for TSN service flows.
  • TSN-related draft standards such as IEEE802.1Qcc
  • IEEE802.1Qcc currently only implements the configuration of traffic shaping, service flow characteristics, and the configuration extension of the basic SRP protocol, for example, supports up to 7 flow reservation categories, but has not yet An extension method for resource collection, calculation and path distribution of redundant paths is proposed.
  • IEEE802.1Qcc IEEE802.1Qcc
  • the present application provides a method for resource reservation of redundant paths, which can carry a redundant field and a spanning tree identifier through an extended attribute declaration message based on the SRP protocol, and indicate through the value of the redundant field that the network needs to establish a redundant path for it.
  • the source-end attribute declaration message is copied and modified, and the message is propagated in two different spanning tree instances, so as to establish redundancy for the TSN service. The remaining business protection path.
  • FIG. 1 shows a schematic flowchart of a method for resource reservation of redundant paths provided by the present application.
  • the method for resource reservation of redundant paths provided by the present application may be applied to a source device, and the method may include the following steps S110 to S120.
  • step S110 in response to determining that the resource reservation of the redundant path needs to be performed for the TSN service, a first attribute declaration message for the TSN service is generated, and the first attribute declaration message carries the need to provide redundancy for the first attribute declaration message Propagation instructions.
  • a first attribute declaration message is sent to the bridge device connected to the source device, wherein at least two spanning tree instances are maintained in the bridge device, and the at least two spanning tree instances are used according to the first An indication of an attribute declaration message to establish a redundant path for TSN services between the source device and the specified destination device.
  • the source device may indicate through the attribute declaration message that redundant propagation is required for the attribute declaration packet, and send the attribute declaration packet to the connected bridge device , so that the bridge device provides redundant propagation for the attribute declaration message according to the maintained at least two spanning tree instances, thereby establishing a redundant path for TSN services between the local source device and the designated destination device.
  • step S110 may include: generating a first attribute declaration message for the TSN service, where the first attribute declaration message carries a flow identifier used to identify the TSN service, and the value is the first redundancy information value redundant information, and a spanning tree identifier whose value is any (any) identifier value, where the first redundant information value is used to indicate that redundant propagation needs to be provided for the first attribute declaration message, and the arbitrary identifier value is used to indicate The first attribute declares the spanning tree instance on which the message is propagated.
  • the method may further include: generating a second attribute declaration message for the TSN service, and carrying the is used to identify the flow identifier of the TSN service, the redundant information valued as the second redundant information value, and the spanning tree identifier valued as the predetermined identifier value, wherein the second redundant information value is used to indicate that the second attribute does not need to be
  • the declaration message provides redundant propagation, and the predetermined identification value is used to indicate the spanning tree instance on which the propagation of the second attribute declaration message is based.
  • the source device can extend the source packet based on the SRP protocol to carry the flow ID, redundancy field and spanning tree ID field, wherein the flow ID is used to uniquely identify the TSN service, and the redundancy field
  • the redundancy information is used to indicate the redundant propagation requirement for the attribute declaration message
  • the spanning tree ID in the spanning tree ID field is used to indicate the spanning tree instance based on which the attribute declaration message is propagated in the bridge device.
  • the spanning tree instance indicated by the tree identifier sends an attribute declaration message for the TSN service to reserve redundant path resources for the TSN service identified by the flow identifier.
  • At least two spanning tree instances may be established in the TSN network in advance, and one spanning tree instance may be used as the primary spanning tree instance, and the spanning tree instances other than the primary spanning tree instance may be used as backup spanning tree instances.
  • the link sets of the active and standby spanning trees corresponding to the active spanning tree instance and the standby spanning tree instance should include as few duplicate links as possible.
  • a spanning tree link set can be established by means of PCR, so as to establish a spanning tree instance that meets the requirements. It should be understood that other methods may also be used to establish the establishment process of the primary spanning tree instance and the backup spanning tree instance, which is not specifically limited in this application.
  • the spanning tree identifier corresponding to the spanning tree instance may be maintained in the bridge through MRP.
  • the spanning tree identification value corresponding to the spanning tree instance is set to 0, it is used to indicate forwarding according to the default or predetermined spanning tree instance.
  • one primary spanning tree instance and at least one backup spanning tree instance may be established.
  • this paper takes a primary spanning tree instance and a standby spanning tree instance established by PCR as an example to illustrate the process of providing redundant propagation of attribute declaration messages and the process of resource reservation for redundant paths.
  • this description should not be construed as limiting the scope or implementation possibility of the technical solutions of the present application.
  • the processing method of one primary spanning tree instance and more than one standby spanning tree instance is the same as that of one primary spanning tree instance and one standby spanning tree instance.
  • the treatment methods are substantially the same.
  • FIG. 2 shows a schematic diagram of an exemplary encoding format of an attribute declaration message based on the SRP protocol.
  • the existing attribute declaration message based on the SRP protocol may include the following fields: physical address (MAC Address), unique identifier (Unique ID), destination address (Destination Address), virtual local area network identifier ( VLAN_ID), Max Frame Size, Max Interval Frame, Data Frame Priority, Rank, Reserved and Accumulated Latency.
  • TSprc traffic specification
  • FIG. 3 shows a schematic diagram of the encoding format of the extended SRP protocol-based attribute declaration message provided by the present application.
  • the extended attribute declaration message based on the SRP protocol carries a redundancy (Redundancy) field and a spanning tree identifier (Identifier) field.
  • Redundancy redundancy
  • Identifier spanning tree identifier
  • the redundancy field may occupy, for example, 1 bit.
  • the value of the redundancy field is 1, it indicates that redundancy protection is required ; On the contrary, when the redundancy field is 0, it means that redundancy protection is not required.
  • the spanning tree identification field for example, occupies 7 bits, and the maximum number of spanning tree instances supported is 128.
  • the method may further include: in response to determining that the attribute declaration message needs to be redundantly propagated, setting the redundant information as the first redundant information value, and setting the spanning tree identifier to any an identification value; in response to determining that the attribute declaration message does not need to be redundantly propagated, the redundant information is set as the second redundant information value, and the spanning tree identification is set as the predetermined identification value, wherein the second redundant information value is different from the The first redundant information value.
  • the first redundancy information value may be TRUE
  • the second redundancy information value may be FALSE
  • the predetermined identification value of the spanning tree identification may be set to 0 by default.
  • the redundancy field is used to indicate the redundant propagation requirement for the attribute declaration message, that is, whether redundant propagation needs to be provided for the source-end attribute declaration message. Exemplarily, if the value of the redundancy field is TRUE, it means that redundancy propagation is required, and if the value of the redundancy field is FALSE, it means that redundancy propagation is not required.
  • the spanning tree identification field is used to indicate the spanning tree instance based on which the source attribute declaration message is propagated in the bridge.
  • the trigger mechanism of the resource reservation process of the redundant path of the TSN service flow can be in various ways.
  • the redundant path resource reservation process of the TSN service flow is triggered by sending the SRP protocol message by the source device, wherein the source device has the SRP protocol capability.
  • the bridge can be configured to trigger the sending of SRP protocol packets through configuration; or the bridge port directly connected to the source device can be triggered by a specified service packet to start the resource reservation process, wherein the bridge The port needs to be configured in advance whether it is in redundant mode.
  • FIG. 4 shows a schematic flowchart of initializing and setting an attribute declaration message by a source device provided by the present application.
  • the initial setting of the attribute declaration message by the source device may include the following steps S11 to S13.
  • step S11 the source device determines whether to redundantly propagate the attribute declaration message.
  • step S12 if it is determined that redundant propagation is required, the redundancy field of the source attribute declaration message is set to TRUE, and the spanning tree identification value can be set to any value.
  • step S13 if it is determined that the redundant path does not need to be established, the redundant field is set to FALSE, and the spanning tree identification field is set to 0, indicating that the message is propagated based on a predetermined spanning tree instance.
  • the source device completes the initial setting of the content carried in the attribute declaration packet according to whether the attribute declaration packet is redundantly propagated.
  • the source-end device can extend the source-end packet based on the SRP protocol to carry the redundant field and the spanning tree identification field, and the redundant field indicates whether to declare the attribute
  • the message is redundantly propagated, and according to the spanning tree instance indicated by the spanning tree ID, the attribute declaration message of the TSN service is sent to the bridge port directly connected to the source device to trigger the execution of the TSN service identified by the flow ID. Redundant path resource reservation.
  • FIG. 5 shows another schematic flowchart of the method for resource reservation of redundant paths provided by the present application.
  • the method for resource reservation of redundant paths provided by the present application may be applied to a bridge device, and the method may include the following steps S210 to S240.
  • step S210 from the received attribute declaration packet of the source device, obtain the TSN service targeted by the attribute declaration packet, and an indication of whether redundant propagation needs to be provided for the attribute declaration packet.
  • step S220 in response to the indication that redundant propagation is required for the attribute declaration message, and the number of spanning tree instances maintained in the local bridge device is at least two, the attribute declaration message is copied.
  • step S230 based on the at least two spanning tree instances, the received attribute declaration message and the copied attribute declaration message are propagated to establish a redundant path of the TSN service between the source device and the destination device.
  • step S240 in response to receiving the resource reservation request message for the TSN service from the destination device, perform resource reservation on the redundant path for the TSN service.
  • the bridge device obtains redundancy information and spanning tree instances from the received attribute declaration message based on the SRP protocol. Provide redundant propagation and the number of spanning tree instances corresponding to this bridge device is greater than the predetermined value, copy the attribute declaration message, and modify the attribute declaration message according to the corresponding spanning tree instance, so that the received attribute declaration message The message and the copied attribute declaration message can be propagated in different spanning tree instances, thereby establishing redundant service protection paths for TSN services.
  • the spanning tree identifier can be used to identify the spanning tree instance, and the spanning tree topology information can be determined through the spanning tree instance, thereby determining the bridge forwarding link corresponding to the spanning tree topology information.
  • the received attribute declaration message carries the flow identifier and redundancy information
  • step S210 may include: using the TSN service indicated by the flow identifier carried in the received attribute declaration packet as the attribute declaration packet
  • the second redundant information value is different from the first redundant information value
  • step S230 may include: according to the acquired spanning tree identifiers of the at least two spanning tree instances, The tree ID and the spanning tree ID in the copied attribute declaration message are changed to different spanning tree IDs; the redundant information in the received attribute declaration message and the redundant information in the copied attribute declaration message are changed. , both are modified to the second redundant information value; and the received attribute declaration message and the copied attribute declaration message are propagated in different spanning tree instances according to the modified different spanning tree identifiers to establish a TSN Redundant paths for business.
  • redundant information when the redundant information is the first redundant information value, it is used to indicate that redundant propagation needs to be provided; when the redundant information is the second redundant information value, it is used to indicate that the redundant propagation does not need to be provided.
  • the corresponding spanning tree identification values of the primary spanning tree instance and the backup spanning tree instance established through PCR may be respectively a and b in the bridge device.
  • the spanning tree identifier in the received attribute declaration packet may be set to a
  • the spanning tree identifier in the copied attribute declaration packet may be set to b.
  • the method may further include: The attribute declaration message provided by the bridge device provides an indication of redundant propagation, and propagates the received attribute declaration message based on the predetermined spanning tree instance among the spanning tree instances maintained by the bridge device.
  • the above steps may include: setting the spanning tree identifier carried in the received attribute declaration message to a predetermined identification value, and the predetermined identification value is used to indicate a predetermined spanning tree instance;
  • the redundant information carried in is set as the second redundant information value, and the second redundant information value is used to indicate that there is no need to provide redundant propagation for the attribute declaration message; and based on the predetermined spanning tree instance, the propagation carries the second redundant information value. and attribute declaration messages with predetermined identification values.
  • the redundant information in the attribute declaration message received by the bridge device indicates that redundant propagation of the attribute declaration message needs to be provided, but the number of spanning tree instances corresponding to the bridge device is insufficient to provide redundancy Propagation, the redundant information in the attribute declaration message can be modified to the second redundant information value to indicate that the attribute declaration message does not need to be redundantly propagated, and the spanning tree instance (generated by default tree instance) to forward the attribute declaration message.
  • the method may further include: based on the spanning tree identifier carried in the received attribute declaration packet. Spanning tree instance, forwards the received attribute declaration message.
  • redundant information is the second redundant information value, it means that there is no need to provide redundant propagation for the attribute declaration message, that is, there is no need to copy and modify the attribute declaration message.
  • the method may further include: registering the received attribute declaration on the port at which the attribute declaration packet is received by the local bridge device Attribute information contained in the packet.
  • the packet attributes can be dynamically forwarded and transmitted between bridge devices, thereby reducing the amount of manual configuration by network administrators and ensuring the correct configuration of network attributes.
  • FIG. 6 is a schematic diagram showing the processing flow of the attribute declaration message by the bridge device provided by the present application. As shown in FIG. 6 , the processing of the attribute declaration message by the bridge device may include the following steps S21 to S28.
  • step S21 the bridge device port receives the source end attribute declaration message.
  • step S22 the source end attribute declaration message redundancy field is parsed, and it is judged whether the message redundancy field is TRUE, if it is TRUE, go to step S23, otherwise, go to step S27.
  • step S23 it is judged that the number of spanning tree instances maintained in the current bridge is greater than or equal to 2, then go to step S25, otherwise go to step S24.
  • step S24 the spanning tree flag in the attribute declaration message is set to 0.
  • step S25 copy a source end attribute declaration message, the original message is the main message, the copied message is the backup message, and the spanning tree identifier of the main message and the spanning tree identifier of the backup message are set.
  • step S26 the value of the redundancy field of the source attribute declaration message is set to FALSE.
  • step S27 the source end attribute declaration message attribute is registered on the port.
  • step S28 the attribute declaration message is transmitted in the corresponding spanning tree based on the value of the spanning tree identification field carried in the source end attribute declaration message.
  • a certain port of the bridge device receives the source end attribute declaration message, and implements the registration and propagation flow of the modified attribute declaration message.
  • step S240 may include: receiving a resource reservation request message from the destination device through a first port, where the resource reservation request message carries a flow identifier and a spanning tree identifier, and the first port is the network bridge Any one of the multiple ports of the device; in response to the bandwidth of the first port meeting the predetermined bandwidth requirement and the number of times of the first resource reservation request being zero, the TSN service indicated by the flow identifier carried in the resource reservation request message Reserving bandwidth resources and establishing a forwarding entry, where the first number of resource reservation requests is the number of times of resource reservation requests for the TSN service received through the first port and recorded in the local bridge device in advance.
  • the same port is reserved for the TSN service indicated by the flow ID when the bandwidth meets the predetermined bandwidth requirement and the number of resource reservation requests recorded by the port for the resource reservation request message of a certain flow ID is zero. bandwidth resources and build forwarding entries. That is to say, when the same port receives the resource reservation with the same flow ID, it will not reserve multiple resources, and can perform the function of eliminating duplicate packets here.
  • Table 1 below shows an example of the number of times of resource reservation requests corresponding to the service flow of each port recorded by the bridge device of the present application.
  • Table 1 The number of resource reservation requests corresponding to the service flow in each port of the bridge device
  • the bridge device can maintain the number of resource reservation requests corresponding to each service flow received in each port, thereby updating or revoking the resource reservation of the same flow identifier (S-ID) under the same port. It should be noted that when the same port receives the resource reservation of the same flow ID, the corresponding number of resource reservation requests is recorded, but multiple resources are not reserved, and the duplicate message elimination function is performed here.
  • the method may further include: changing the number of times of the first resource reservation request The record is incremented by 1 to obtain the updated number of times of the first resource reservation request; and based on the spanning tree instance indicated by the spanning tree identifier carried in the resource reservation request message, the resource reservation request message is forwarded.
  • first resource reservation requests If the number of first resource reservation requests is greater than or equal to 1, it indicates that the port has reserved resources and established forwarding entries for the currently received service flow. Therefore, after updating the corresponding number of first resource reservation requests, reservation is no longer performed. Resources and actions to build forwarding entries.
  • the method may further include: forwarding the resource reservation request message based on the spanning tree instance indicated by the spanning tree identifier carried in the resource reservation request message Arts.
  • FIG. 7 shows a schematic diagram of the processing flow of the network bridge device provided by the present application receiving the attribute declaration message.
  • the processing flow of the network bridge device receiving the attribute declaration message may include the following steps S31 to S37.
  • step S31 the bridge device port receives the resource reservation request message of the destination device.
  • step S32 the required bandwidth is calculated according to the source end attribute declaration corresponding to the flow identifier on the port, and it is judged whether the bandwidth resource on the port meets the bandwidth requirement, if so, go to step S33, otherwise go to step S37.
  • step S33 the number of resource reservation requests corresponding to the service flow in each port maintained by the bridge device is searched.
  • step S34 if the search result is not hit or the corresponding number of times is 0, go to step S35, otherwise go to step S36.
  • step S35 bandwidth resources are reserved on the port, and a forwarding entry is established.
  • step S36 the number of times of resource reservation requests corresponding to the service flow in each port is updated, so that the value of the times of times of resource reservation requests corresponding to the flow identifier corresponding to the destination terminal is increased by 1.
  • step S37 the spanning tree identification field carried in the message is parsed, and the destination message is continued to be propagated in the corresponding spanning tree.
  • the port of the bridge device may perform the foregoing processing flow of reserving bandwidth and establishing a forwarding entry on the port.
  • the method for resource reservation of redundant paths further includes: receiving a resource reservation cancellation message from the destination device through the first port, and the resource reservation cancellation message carries the flow identifier and spanning tree of the TSN service. Identify; reduce the number of times of the first resource reservation request by 1 to obtain the number of times of the updated first resource reservation request; in response to the number of times of the updated first resource reservation request being zero, delete the forwarding entry of the TSN service and release it The reserved bandwidth resources of the TSN service, and forward the resource reservation cancellation message according to the spanning tree instance indicated by the spanning tree identifier carried in the resource reservation cancellation message; in response to the updated first resource reservation request times greater than or equal to 1, forward the resource reservation cancellation packet according to the spanning tree instance indicated by the spanning tree identifier carried in the resource reservation cancellation packet.
  • FIG. 8 is a schematic diagram showing the processing flow of the network bridge device provided by the present application receiving the resource reservation revocation message. As shown in FIG. 8 , the processing flow of the network bridge device receiving the resource reservation cancellation message may include the following steps S41 to S46.
  • step S41 the bridge device port receives the resource reservation cancellation message of the destination device.
  • step S42 the number of resource reservation requests corresponding to the service flow in the port maintained by the bridge device is decremented by 1.
  • step S43 it is judged whether the number of times of resource reservation requests corresponding to the service flow in the port in the bridge device is 0, if yes, go to step S44, if not, go to step S45.
  • step S44 the forwarding entry is deleted, and bandwidth resources are released.
  • step S45 the number of resource reservation requests corresponding to the service flow maintained by the bridge device port is updated.
  • step S46 based on the spanning tree instance indicated by the spanning tree identifier in the resource reservation revocation message, the resource reservation revocation message is propagated in the corresponding spanning tree.
  • FIG. 9 shows another schematic flowchart of the method for resource reservation of redundant paths provided by the present application.
  • the method for resource reservation of redundant paths can be applied to a destination device, and the method can include the following steps S510 to S530.
  • step S510 at least two attribute declaration messages for the same TSN service are received through the bridge device connected to the destination device.
  • the method may further include: acquiring the flow ID and spanning tree ID carried in each attribute declaration message, wherein the flow ID is used to identify the TSN service, and the spanning tree ID is used to indicate that the attribute declaration message is on the network The spanning tree instance on which the propagation in the bridge device is based.
  • the attribute declaration packet also carries redundant information, which is used to indicate the redundant propagation requirement of the attribute declaration packet when the attribute declaration packet is propagated in the bridge device.
  • each received attribute declaration message is a message propagated based on different spanning tree instances, for each received attribute declaration message , to generate resource reservation request messages for TSN services and corresponding to different spanning tree instances.
  • the different spanning tree instances are spanning tree instances among at least two spanning tree instances maintained in the bridge device connected to the destination device, and the at least two spanning tree instances are used in the source device A redundant path for TSN services is established with the destination device.
  • the step of generating resource reservation request messages for TSN services and corresponding to different spanning tree instances may include: carrying, in the resource reservation request message, a flow identifier for identifying the TSN service and a flow identifier corresponding to the TSN service. Spanning tree ID for different spanning tree instances.
  • step S530 based on the different spanning tree instances corresponding to each generated resource reservation request message, each resource reservation request message is sent to the bridge device connected to the destination device.
  • the resource reservation request message based on the SRP protocol of the destination device also needs to be extended to carry a spanning tree identifier (Identifier) field, indicating that the destination message is in the bridge.
  • the spanning tree instance based on which to propagate.
  • the destination device receives the attribute declaration packet corresponding to the flow ID, it first extracts the value of the spanning tree ID field carried in the attribute declaration packet, and writes the value of the spanning tree ID field into the spanning tree ID of the destination packet. field, and then make a resource reservation request.
  • FIG. 10 shows a schematic diagram of the encoding format of the existing destination message based on the SRP protocol.
  • the physical address (MAC Address) and the unique identifier (Unique ID) form the stream ID (Stream ID) of the attribute revocation packet, which is used for unique Identifies a TSN service flow.
  • MAC Address physical address
  • Unique ID unique identifier
  • the method may further include: recording the flow identifier and the corresponding spanning tree identifier carried in each received attribute declaration message, where the spanning tree identifier is used to indicate the attribute declaration message The spanning tree instance on which the propagation among the bridge devices is based.
  • FIG. 11 shows a schematic diagram of the encoding format of the destination message provided by this application.
  • the destination packet may carry a spanning tree identifier (Identifier) field. That is to say, a new byte is added to the existing destination message, and the content of the byte includes the spanning tree identification field.
  • the length of the spanning tree ID field in the destination message can be the same as the length of the spanning tree ID field in the attribute declaration message generated by the source end. For example, in a new byte, the length of the spanning tree ID field can be 7 bits. , and another 1 bit can be used as a reserved field.
  • the length of the spanning tree identification field carried in the destination message can be flexibly specified according to the requirements of the actual application scenario.
  • FIG. 12 shows a schematic diagram of the processing flow of the destination device receiving the attribute declaration message provided by the present application.
  • the processing flow of the attribute declaration message may include the following steps S61 to S63.
  • step S61 the destination device receives an attribute declaration message.
  • step S62 a resource reservation request message of the destination end is constructed and sent by using the spanning tree identification information extracted from the attribute declaration message, so as to perform a resource reservation request.
  • step S63 the flow identifier and spanning tree identifier in the resource reservation request are recorded.
  • the message generated by the destination device may be a resource reservation request message or a resource reservation cancellation message.
  • the destination device sends a resource reservation request message carrying a flow identifier and a spanning tree identifier to request resource reservation for a specified TSN service.
  • the resource reservation revocation message that carries the spanning tree identification information can be generated by extending the encoding format of the resource reservation revocation message based on the SRP protocol in the destination device. With a request to revoke resources allocated for redundant paths.
  • Table 2 shows an example of the mapping relationship between the flow identifier and the spanning tree identifier in the destination device according to the present application.
  • Table 2 The mapping relationship between the flow ID and the spanning tree ID in the destination device
  • the method for resource reservation of redundant paths may further include: in response to determining that the TSN service needs to be revoked, obtaining the flow identifier and the corresponding spanning tree identifier of the TSN service from the pre-recorded flow identifier and Corresponding spanning tree identifier; for each spanning tree identifier corresponding to the TSN service, a corresponding resource reservation revocation message is respectively generated, and the resource reservation revocation message carries the flow identifier of the TSN service and a spanning tree identifier corresponding to the TSN service ; Based on the spanning tree instance indicated by the spanning tree identifier carried in each resource reservation revocation message generated, send each resource reservation revocation message; And delete from the pre-recorded flow identifier and the corresponding spanning tree identifier The reservation information, where the reservation information is the flow identifier and the corresponding spanning tree identifier carried in the sent resource reservation revocation message.
  • the destination device when the destination device cancels the reserved resources, it needs to find the mapping relationship between the flow ID and the spanning tree ID, and obtain the spanning tree ID value set corresponding to a service flow at the destination end, and then for each spanning tree ID value Each constructs a resource reservation cancellation message and sends it out.
  • the destination device when receiving the attribute declaration message based on the SRP protocol for the TSN service, the destination device can extract the flow identifier and spanning tree identifier carried in the attribute declaration message, A resource reservation request message is generated, and the resource reservation request message carries a flow identifier and a spanning tree identifier, so as to perform a resource reservation request, thereby realizing the establishment of a redundant service protection path for the TSN service.
  • FIG. 13 shows a schematic diagram of the processing flow of the SRP protocol-based redundant path resource reservation provided by the present application
  • FIG. 14 shows a schematic processing flow diagram of the SRP protocol-based redundant path resource reservation cancellation provided by the present application.
  • an exemplary TSN network may include five bridge devices (hereinafter referred to as bridges), for example, TSN bridge 1, TSN bridge 2, TSN bridge 3, TSN bridge 4 and TSN network Bridge 5. It is assumed that the spanning tree corresponding to the main spanning tree and the spanning tree corresponding to the standby spanning tree have been established in the TSN network, which are represented by lines 1 and 2 respectively, and the corresponding spanning tree identifiers are 1 and 2 respectively.
  • bridges five bridge devices
  • Table 1 on the upper side of the source end (Talker) device shows the main fields of the source end attribute declaration message, wherein the flow ID is 1, indicating that resources are reserved for the service flow with the service flow ID 1.
  • the TSN service flow ID is ⁇ 01:00:5e:01:01:01,2 ⁇
  • the redundancy field value is TRUE, indicating that the network needs to provide redundant propagation for it
  • the spanning tree identification field takes any value (any).
  • TSN bridge 1 receives the source-end attribute declaration packet, extracts the packet redundancy field as TRUE, copies a packet, and converts the spanning tree of the original packet.
  • the ID field is set to 1
  • the ID field of the duplicated message spanning tree is set to 2
  • the redundant fields of the two packets are set to FALSE, and the attribute information carried in the source attribute packet is registered on the port, and then the original packet is sent along the line.
  • the spanning tree propagation represented by line 1 propagates the replicated message along the spanning tree represented by line 2.
  • TSN bridges 2, 3, 4 and 5 When TSN bridges 2, 3, 4 and 5 receive the extended source attribute declaration message, they parse the content of the message field and find that the value of the redundant field is FALSE, then continue to extract the spanning tree identification field, and according to the spanning tree identification field Look up the spanning tree instance table shown in Table 2, and then propagate the message in the corresponding spanning tree.
  • the destination device (Listener) is interested in the service flow with the flow ID of 1, and successively receives two source-end attribute declaration messages with the flow ID of 1, extracts the message spanning tree ID field, and constructs the corresponding destination-end resource reservation request respectively. message, the contents of the two destination resource reservation request messages are shown in Table 3 and Table 4, and then sent out.
  • the destination device needs to store the received value of the spanning tree ID corresponding to the flow ID in the table it maintains, as shown in Table 5 next to the destination device, to obtain the generated corresponding flow ID that is maintained. Tree logotype collection.
  • each port of the bridge device After each port of the bridge device receives the destination resource reservation request message, it starts to reserve bandwidth and establish a forwarding table. If the same port receives more than or equal to two destination resource reservation request messages, it is necessary to avoid Repeat the reservation of resources and the establishment of forwarding tables.
  • both TSN bridge 4 and TSN bridge 5 receive two destination resource reservation request packets, which carry spanning tree identifier 1 and spanning tree identifier 2 respectively.
  • port 2 of TSN bridge 4 as an example, when the first destination packet is received, the flow identifier in the packet is extracted and table 2 is searched.
  • the source-end device when the source-end device performs the resource reservation revocation operation, it needs to carry the redundant field and the spanning tree identification field in the attribute revocation message.
  • the processing flow for the redundant field and the spanning tree identification field is similar, and will not be repeated here.
  • the value corresponding to the spanning tree identifier with the flow identifier of 1 is maintained; in each bridge of the TSN, the resource reservation corresponding to the flow identifier received on each bridge port is maintained. number of requests.
  • the destination device When the destination device initiates the revocation of the resource reservation corresponding to the flow ID 1, the destination device queries the mapping relationship table between the flow ID and the spanning tree ID, and obtains that there are spanning tree ID 1 and spanning tree ID 2 in the spanning tree ID value set (see Figure 13). The destination device constructs a destination resource reservation revocation message according to spanning tree identifier 1 and spanning tree identifier 2 in turn. The contents of the two destination resource reservation revocation messages are shown in Table 1 and Table 2 in FIG. 14 .
  • each bridge port When each bridge port receives the destination resource reservation cancellation message, it releases bandwidth resources and deletes the corresponding forwarding entry. The reserved resources are released only when a resource reservation cancellation message is sent.
  • port 2 of TSN bridge 4 receives the value of the spanning tree identifier field in the destination resource reservation revocation message is 1, only Table 3 in the figure is updated, and the number of destination resource reservation requests corresponding to the flow identifier is decremented. 1;
  • the value of the spanning tree ID field in the destination packet is 2, update Table 3 in the figure, and decrease the number of destination resource reservation requests corresponding to the flow ID by 1.
  • the corresponding flow ID S-ID
  • the number of resource reservation requests at the destination end is 0, the resources are released and the forwarding entry is deleted.
  • the stream identifier maintained in the destination device is 1 and the spanning tree identifier value set stream is NULL.
  • the source end attribute declaration message is extended, and the extended attribute declaration message carries the redundant field and the spanning tree identification field, and the bridge port connecting the source end is carried out.
  • the analysis of redundant fields is added.
  • the source-end attribute declaration message is copied and modified, and the spanning tree carried by each is used. The identifier enables the message to be propagated in two different spanning tree instances, thereby establishing redundant service protection paths for TSN services.
  • FIG. 15 shows a schematic structural diagram of the apparatus for resource reservation of redundant paths provided by the present application.
  • the redundant path resource reservation apparatus can be applied to the source device, and can include an attribute declaration message generating module 610 and an attribute declaration message sending module 620 .
  • the attribute declaration message generation module 610 is configured to generate a first attribute declaration packet for the TSN service in response to determining that the resource reservation of the redundant path needs to be performed for the TSN service, and the first attribute declaration packet carries the need to be an attribute declaration packet. Provides an indication of redundancy propagation.
  • the attribute declaration message sending module 620 is configured to send the first attribute declaration message to the bridge device connected to the source device, wherein at least two spanning tree instances are maintained in the bridge device, and at least two spanning tree instances are It is used to establish a redundant path of the TSN service between the local source end device and the specified destination end device according to the indication of the first attribute declaration message.
  • the attribute declaration message generating module 610 is further configured to: generate a first attribute declaration packet for the TSN service, and the first attribute declaration packet carries a flow identifier used to identify the TSN service, and the value is The redundant information of the first redundant information value, and the spanning tree identifier whose value is any (any) identifier value, wherein the first redundant information value is used to indicate that redundant propagation needs to be provided for the first attribute declaration message, An arbitrary identification value is used to indicate the spanning tree instance on which the first attribute declaration message is propagated.
  • the attribute declaration message generating module 610 in response to determining that it is not necessary to perform resource reservation of redundant paths for the TSN service, is further configured to: generate a second attribute declaration packet for the TSN service, and in the second attribute declaration The message carries a flow identifier used to identify the TSN service, redundant information whose value is the second redundant information value, and a spanning tree identifier whose value is a predetermined identifier value, wherein the second redundant information value is used to indicate Without providing redundant propagation for the second attribute declaration message, the predetermined identification value is used to indicate the spanning tree instance on which the propagation of the second attribute declaration message is based.
  • the source device can extend the source message based on the SRP protocol to carry the redundant field and the spanning tree identification field, and the redundant field indicates whether to declare the attribute
  • the message is redundantly propagated, and according to the spanning tree instance indicated by the spanning tree ID, the attribute declaration message of the TSN service is sent to the bridge port directly connected to the source device to trigger the execution of the TSN service identified by the flow ID. Redundant path resource reservation.
  • FIG. 16 shows a schematic structural diagram of the apparatus for resource reservation of redundant paths provided by the present application.
  • the redundant path resource reservation device can be applied to a bridge device, and can include an attribute declaration message receiving module 710, an attribute declaration message copying module 720, an attribute declaration message dissemination module 730, and a redundant attribute declaration message receiving module 710.
  • the remaining path resource reservation module 740 can include an attribute declaration message receiving module 710, an attribute declaration message copying module 720, an attribute declaration message dissemination module 730, and a redundant attribute declaration message receiving module 710.
  • the attribute declaration packet receiving module 710 is configured to obtain, from the received attribute declaration packet of the source device, the TSN service targeted by the attribute declaration packet, and an indication of whether redundant propagation needs to be provided for the attribute declaration packet.
  • the attribute declaration message copying module 720 is configured to copy the attribute declaration message in response to the indication that redundant propagation is required for the attribute declaration message, and the number of spanning tree instances maintained in the local bridge device is at least two.
  • the attribute declaration message dissemination module 730 is configured to propagate the received attribute declaration packet and the copied attribute declaration packet based on at least two spanning tree instances, so as to establish the redundancy of the TSN service between the source end device and the destination end device. remaining path.
  • the redundant path resource reservation module 740 is configured to perform resource reservation on the redundant path for the TSN service in response to receiving the resource reservation request message for the TSN service from the destination device.
  • the received attribute declaration packet carries the flow identifier and redundant information
  • the attribute declaration packet receiving module 710 may be configured to: receive the TSN indicated by the flow identifier carried in the received attribute declaration packet Service, as the TSN service targeted by the attribute declaration message; in response to the value of the redundant information being the first redundant information value, it is determined that redundant propagation needs to be provided for the attribute declaration message; in response to the value of the redundant information being the second redundant information value; It is determined that there is no need to provide redundant propagation for the attribute declaration message, and the second redundant information value is different from the first redundant information value.
  • the attribute declaration message propagation module 730 may be configured to: according to the acquired spanning tree identifiers of the at least two spanning tree instances, The spanning tree ID in the declaration message and the spanning tree ID in the copied attribute declaration message are modified to different spanning tree IDs; the redundant information in the received attribute declaration message and the copied attribute declaration message are changed.
  • the redundant information in the text is all modified into the second redundant information value; transmission in order to establish redundant paths for TSN services.
  • the attribute declaration message sending module 740 can be used to: The setting does not need to provide an indication of redundant propagation for the received attribute declaration message, and propagates the received attribute declaration message based on the predetermined spanning tree instance in the spanning tree instance maintained by the local bridge device.
  • the attribute declaration message sending module 740 may also be configured to: set the spanning tree identifier carried in the received attribute declaration message to a predetermined identifier value, and the predetermined identifier value is used to indicate a predetermined spanning tree instance;
  • the redundant information carried in the received attribute declaration message is set as a second redundant information value, and the second redundant information value is used to indicate that it is not necessary to provide redundant propagation for the attribute declaration message; and based on the predetermined spanning tree instance, the propagation The attribute declaration message carrying the second redundant information value and the predetermined identification value.
  • the attribute declaration packet sending module 740 may be configured to: based on the spanning tree carried in the received attribute declaration packet Identifies the indicated spanning tree instance and forwards the received attribute declaration message.
  • the apparatus for reserving resources for redundant paths may further include: an attribute registration module, configured to register the attributes included in the received attribute declaration packet at the port of the local bridge device that receives the attribute declaration packet information.
  • the redundant path resource reservation module 740 may be configured to: receive a resource reservation request message from the destination device through the first port, where the resource reservation request message carries a flow identifier and a spanning tree identifier,
  • the first port is any one of the multiple ports of the network bridge device; in response to the bandwidth of the first port meeting the predetermined bandwidth requirement and the number of times of the first resource reservation request being zero, it is the resource reservation request message carried in the resource reservation request message.
  • the TSN service indicated by the flow identifier reserves bandwidth resources and establishes a forwarding entry, where the first number of resource reservation requests is the resource reservation for the TSN service that is pre-recorded in the bridge device and received through the first port number of requests.
  • the apparatus for reserving resources for redundant paths may further include: a module for updating the number of times of resource reservation requests, configured to reserve bandwidth resources for the TSN service indicated by the flow identifier and establish a forwarding entry, or, When the bandwidth of the first port meets the predetermined bandwidth requirement and the number of times of the first resource reservation requests is greater than or equal to 1, adding 1 to the record of the number of times of the first resource reservation requests to obtain the updated number of times of the first resource reservation requests; and
  • the resource reservation request message forwarding module is configured to forward the resource reservation request message based on the spanning tree instance indicated by the spanning tree identifier carried in the resource reservation request message.
  • the resource reservation request message forwarding module may also be configured to: based on the spanning tree indicated by the spanning tree identifier carried in the resource reservation request message Example, forwarding a resource reservation request message.
  • the apparatus for resource reservation of the redundant path may further include a resource reservation cancellation message receiving module and a resource reservation cancellation message forwarding module.
  • the resource reservation cancellation message receiving module is configured to receive the resource reservation cancellation message from the destination device through the first port, and the resource reservation cancellation message carries the flow identifier and spanning tree identifier of the TSN service.
  • the module for updating the number of resource reservation requests may also be configured to subtract 1 from the number of times of the first resource reservation request to obtain the updated number of times of the first resource reservation request.
  • the resource reservation cancellation message forwarding module is used for: in response to the updated first resource reservation request times being zero, delete the forwarding entry of the TSN service and release the reserved bandwidth resources of the TSN service, and report the cancellation according to the resource reservation.
  • the spanning tree instance indicated by the spanning tree identifier carried in the text forwards the resource reservation revocation message; in response to the updated first resource reservation request times greater than or equal to 1, according to the resource reservation revocation message carried in the The spanning tree instance indicated by the tree ID forwards the resource reservation revocation message.
  • the bridge device can parse the redundancy information carried in the received attribute declaration message based on the SRP protocol. If the redundancy information indicates that the attribute declaration message needs to be Provide redundant propagation and the number of spanning tree instances corresponding to this bridge device is greater than the predetermined value, copy the attribute declaration message, and modify the attribute declaration message according to the corresponding spanning tree instance, so that the received attribute declaration message The message and the copied attribute declaration message are propagated in the spanning tree instance indicated by the spanning tree identifier carried by each, thereby establishing a redundant service protection path for the TSN service.
  • FIG. 17 shows a schematic structural diagram of a resource reservation apparatus for redundant paths provided by the present application.
  • the redundant path resource reservation apparatus can be applied to the destination device, and may include an attribute declaration message receiving module 810 , a resource reservation request generating module 820 and a resource reservation request sending module 830 .
  • the attribute declaration message receiving module 810 is configured to receive at least two attribute declaration messages for the same TSN service through the bridge device connected to the destination device.
  • the resource reservation request generation module 820 is configured to respond that the TSN service is the TSN service that the destination device is interested in, and each received attribute declaration message is a message propagated based on different spanning tree instances, and for each received TSN service.
  • An attribute declaration message is generated to generate resource reservation request messages for TSN services and corresponding to different spanning tree instances.
  • Different spanning tree instances are spanning tree instances among at least two spanning tree instances maintained in the bridge device connected to the destination device, and the at least two spanning tree instances are used between the source device and the destination device. A redundant path for TSN services is established between them.
  • the resource reservation request sending module 830 is configured to send each resource reservation request message to the bridge device connected to the destination device based on the different spanning tree instances corresponding to each generated resource reservation request message.
  • the device for resource reservation of redundant paths may further include an identification information acquisition module, configured to acquire, after receiving at least two attribute declaration packets for the same TSN service, the information carried in each attribute declaration packet.
  • the flow ID and spanning tree ID are used to identify the TSN service, and the spanning tree ID is used to indicate the spanning tree instance on which the attribute declaration message is propagated in the bridge device.
  • the apparatus for resource reservation of redundant paths may further include: an identification information adding module, for generating resource reservation request messages for TSN services and corresponding to different spanning tree instances, in the resource reservation
  • the stay request message carries the flow identifier used to identify the TSN service and the spanning tree identifier corresponding to different spanning tree instances.
  • the resource reservation device of the redundant path may further include an identification information recording module for recording the flow identification carried in each received attribute declaration message and the corresponding spanning tree identification, the spanning tree identification Used to indicate the spanning tree instance on which the attribute declaration message is propagated in the bridge device.
  • the identification information adding module may also be used to obtain the flow identification and corresponding spanning tree of the TSN service from the pre-recorded flow identification and the corresponding spanning tree identification in response to determining that the TSN service needs to be revoked. logo.
  • the resource reservation device of the redundant path may further include a resource reservation revocation message generating module, a resource reservation revocation message sending module, and an information record updating module.
  • the resource reservation revocation message generation module is used to generate corresponding resource reservation revocation messages for each spanning tree identifier corresponding to the TSN service, and the resource reservation revocation message carries the flow identifier of the TSN service and the corresponding TSN service.
  • a spanning tree identifier is used to obtain the flow identification and corresponding spanning tree of the TSN service from the pre-recorded flow identification and the corresponding spanning tree identification in response to determining that the TSN service needs to be revoked. logo.
  • the resource reservation device of the redundant path may further include a resource
  • the resource reservation revocation message sending module is configured to send each resource reservation revocation message based on the spanning tree instance indicated by the spanning tree identifier carried in each generated resource reservation revocation message.
  • the information recording and updating module is used to delete the predetermined information from the pre-recorded flow identifier and the corresponding spanning tree identifier, where the predetermined information is the flow identifier and the corresponding spanning tree identifier carried in the sent resource reservation revocation message.
  • the destination device when receiving the attribute declaration message based on the SRP protocol for the TSN service, the destination device can extract the flow identifier and spanning tree identifier carried in the attribute declaration message, A resource reservation request message is generated, and the resource reservation request message carries a flow identifier and a spanning tree identifier, so as to perform a resource reservation request, thereby realizing the establishment of a redundant service protection path for the TSN service.
  • FIG. 18 shows a structural diagram of an exemplary hardware architecture of a computing device capable of implementing the method and apparatus for resource reservation of redundant paths according to the present application.
  • the computing device 900 includes an input device 901 , an input interface 902 , a central processing unit 903 , a memory 904 , an output interface 905 , and an output device 906 .
  • the input interface 902, the central processing unit 903, the memory 904, and the output interface 905 are connected to each other through the bus 910, and the input device 901 and the output device 906 are respectively connected to the bus 910 through the input interface 902 and the output interface 905, and then to other parts of the computing device 900. Component connection.
  • the input device 901 can receive input information from the outside, and transmit the input information to the central processing unit 903 through the input interface 902 .
  • the central processing unit 903 processes the input information based on the computer-executable instructions stored in the memory 904 to generate output information, stores the output information in the memory 904 temporarily or permanently, and then transmits the output information to the output device 906 through the output interface 905 .
  • Output device 906 outputs output information to the outside of computing device 900 for use by a user.
  • the computing device shown in FIG. 18 may be implemented as a source device, and the source device may include: a memory configured to store a program; and a processor configured to execute a program stored in the memory to execute a program according to the present application Resource reservation method applied to redundant paths of source devices.
  • the computing device shown in FIG. 18 may be implemented as a bridge device, and the bridge device may include: a memory configured to store a program; and a processor configured to execute a program stored in the memory to execute a program according to the present application Resource reservation method applied to redundant paths of bridge devices.
  • the computing device shown in FIG. 18 may be implemented as a destination device, and the destination device may include: a memory configured to store a program; and a processor configured to execute a program stored in the memory to execute a program according to the present application Resource reservation method applied to redundant paths of destination devices.
  • the bridge device can provide the attribute declaration message of the source device with the information between the source device and the destination device according to the at least two spanning tree instances maintained by itself. Redundant propagation, so as to establish redundant amateur paths for TSN services, and reserve resources for redundant paths for TSN services according to the resource reservation request message of the destination device.
  • the source device can indicate through the attribute declaration message that it needs to provide redundant propagation for the attribute declaration packet, and send the attribute declaration packet to the connected bridge device , so that the bridge device provides redundant propagation for the attribute declaration message according to the maintained at least two spanning tree instances, thereby establishing a redundant path for TSN services between the local source device and the designated destination device.
  • the destination device when the destination device receives at least two attribute declaration messages for TSN services and propagated based on different spanning tree instances, if the destination device senses the TSN service If you are interested, a resource reservation request message may be constructed for each received attribute declaration message, so as to initiate a resource reservation request for the redundant path of the TSN service.
  • Different spanning tree instances are spanning tree instances among at least two spanning tree instances maintained in the bridge device connected to the destination device, and the at least two spanning tree instances are used between the source device and the destination device. Establish redundant paths for TSN services between devices.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • the computer program instructions may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or object code.
  • ISA instruction set architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Discs). DVD or CD disc) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, special purpose computer, microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (FGPA) and processors based on multi-core processor architectures.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FGPA programmable logic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提出一种冗余路径的资源预留方法、网络设备和存储介质,该方法包括:从接收到的源端设备的属性声明报文中,获取属性声明报文针对的TSN业务,以及是否需要为属性声明报文提供冗余传播的指示;响应于指示为需要为属性声明报文提供冗余传播,且在网桥设备中维护的生成树实例的数量为至少两个,复制属性声明报文;基于至少两个生成树实例,传播所接收的属性声明报文和所复制的属性声明报文,以在源端设备和目的端设备之间建立TSN业务的冗余路径;以及响应于接收到来自目的端设备的针对TSN业务的资源预留请求报文,对TSN业务进行冗余路径的资源预留。

Description

冗余路径的资源预留方法、网络设备和存储介质 技术领域
本申请涉及通信技术领域,具体涉及一种冗余路径的资源预留方法、网络设备和存储介质。
背景技术
IEEE802.1Q的时间敏感网络(Time Sensitive Networking,TSN)工作组通过提出的方法和机制为TSN业务流提供有界时延、抖动和极低丢包率的服务。在TSN工作组标准中,通过提出包复制消除机制来提高网络的可靠性时,需要为TSN业务流规划符合带宽和时延需求的冗余业务路径。
在目前提出的TSN标准草案中,IEEE802.1Qat标准提出的流预留协议(Stream Reservation Protocol,SRP)用于为TSN业务源端(Talker)和对应目的端(Listeners)间预留资源和建立转发路径。但现有的SRP标准,只能够在源端和目的端间建立符合业务需求的单播转发路径,无法为TSN业务流提供冗余路径资源预留。
发明内容
本申请提供一种冗余路径的资源预留方法、网络设备和存储介质。
本申请实施例提供一种冗余路径的资源预留方法,应用于网桥设备,包括:从接收到的源端设备的属性声明报文中,获取属性声明报文针对的时间敏感网络(TSN)业务,以及是否需要为属性声明报文提供冗余传播的指示;响应于指示为需要为属性声明报文提供冗余传播,且在本网桥设备中维护的生成树实例的数量为至少两个,复制属性声明报文;基于至少两个生成树实例,传播所接收的属性声明报文和所复制的属性声明报文,以在源端设备和目的端设备之间建立TSN业务的冗余路径;以及响应于接收到来自目的端设备的针对TSN业务的资源预留请求报文,对TSN业务进行冗余路径的资源预留。
本申请实施例还提供一种冗余路径的资源预留方法,应用于源端设备,包括:响应于确定需要对TSN业务进行冗余路径的资源预留,生成针对TSN业务的第一属性声明报文,第一属性声明报文携带需要为属性声明报文提供冗余传播的指示;以及发送第一属性声明报文至连接于本源端设备的网桥设备,其中,在网桥设备中维护有至少两个生成树实例,且至少两个生成树实例被用于根据第一属性声明报文的指示,在本源端设备与指定的目的端设备之间建立TSN业务的冗余路径。
本申请实施例提供一种冗余路径的资源预留方法,应用于目的端设备,包括:通过连接于本目的端设备的网桥设备,接收到至少两条针对同一TSN业务的属性声明报文;响应于TSN业务是本目的端设备感兴趣的TSN业务,且接收到的每条属性声明报文是基于不同生成树实例传播的报文,针对接收到的每条属性声明报文,生成针对TSN业务,并对应于不同生成树实例的资源预留请求报文,其中,不同生成树实例是在连接于本目的端设备的网桥设备中维护的至少两个生成树实例中的生成树实例,且至少两个生成树实例被用于在源端设备与本目的端设备之间建立TSN业务的冗余路径;以及基于生成的每条资源预留请求报文所对应的不同生成树实例,发送每条资源预留请求报文至连接于本目的端设备的网桥设备。
本申请实施例提供一种网络设备,包括:一个或多个处理器;以及存储器,其上存储有一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现根据本公开的应用于网桥设备的冗余路径的资源预留方法。
本申请实施例提供了一种存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时,处理器实现根据本公开的冗余路径的资源预留方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1示出本申请提供的冗余路径的资源预留方法的流程示意图。
图2示出示例性的基于SRP协议的属性声明报文的编码格式示意图。
图3示出本申请提供的扩展后的基于SRP协议的属性声明报文的编码格式示意图。
图4示出本申请提供的源端设备对属性声明报文进行初始化设置的流程示意图。
图5示出本申请提供的冗余路径的资源预留方法的另一流程示意图。
图6示出本申请提供的网桥设备对属性声明报文的处理流程示意图。
图7示出本申请提供的网桥设备接收到属性声明报文的处理流程示意图。
图8示出本申请提供的网桥设备接收到资源预留撤销报文的处理流程示意图。
图9示出本申请提供的冗余路径的资源预留方法的另一流程示意图。
图10示出已有的基于SRP协议的目的端报文的编码格式示意图。
图11示出本申请提供的目的端报文的编码格式示意图。
图12示出本申请提供的目的端设备收到属性声明报文的处理流程示意图。
图13示出本申请提供的基于SRP协议的冗余路径资源预留的处理流程示意图。
图14示出本申请提供的基于SRP协议的冗余路径资源预留撤销的处理流程示意图。
图15示出本申请提供的冗余路径的资源预留装置的结构示意图。
图16示出本申请提供的冗余路径的资源预留装置的结构示意图。
图17示出本申请提供的冗余路径的资源预留装置的结构示意图。
图18示出能够实现根据本申请的冗余路径的资源预留方法和装置的计算设备的示例性硬件架构的结构图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在TSN工作组标准中,有界时延、抖动两个服务质量需求通过802.1Qbv、802.1Qch、802.1Qav等标准得到满足;而极低的丢包率则要求网络具备较高的可靠性和可用性,能够尽可能的应对网络中可能出现的单节点故障和单链路故障。
在TSN工作组标准中,IEEE802.1CB通过提出包复制消除机制来提高网络的可靠性,具体来说,就是使对应流句柄(Stream Handle)的报文,通过在指定端口执行复制操作达到报文冗余传输,在流量汇聚点或接收点执行消除、重排操作来避免报文重复和乱序,这要求能够为TSN业务流规划符合带宽和时延需求的冗余业务路径。
在目前提出的TSN标准草案中,IEEE802.1Qat标准提出的流预留协议(SRP)用于为TSN业务源端(Talker)和对应目的端(Listeners)间预留资源和建立转发路径。SRP协议报文可以在指定的生成树中传播。
作为示例,可以由快速生成树协议生成该生成树,也可由例如IEEE802.1Qca提出的路径控制预留(Path Control and Reservation,PCR)协议建立该生成树。当采用PCR协议时,可以显示指定生成树中包含的所有链路。
作为示例,在多注册协议(Multiple Registration Protocol,MRP)中,可以通过生成树标识指定生成树实例。具体地,SRP协议报文可以在默认标识指定的基本生成树实例中运行。由于SRP协议报文在生成树实例中传播,在源端和一个目的端间仅可能存在一条转发路径,因此最多能够在源端和一个目的端间建立符合业务需求的单播转发路径。因此,基于现有的SRP标准,无法为TSN业务流提供冗余路径资源预留。
此外,其它与TSN相关的标准草案,例如IEEE802.1Qcc中目前 仅实现对流量整形、业务流特征的配置,以及对基本SRP协议的配置扩展,例如,最多支持7个流预留类别,但尚未提出针对冗余路径的资源收集、计算及路径下发的扩展方法。在其它的标准草案和方案中,也没有提出明确的解决方案。
本申请提供一种冗余路径的资源预留方法,可以通过扩展的基于SRP协议的属性声明报文,携带冗余字段和生成树标识,通过冗余字段的取值指示需要网络为其建立冗余路径,通过生成树标识指示属性声明报文在网桥设备中传输所基于的生成树实例,并将源端连接的网桥端口作为冗余路径功能的代理,增加对冗余字段的解析,在确定冗余字段的取值指示需要网络为其建立冗余路径时,复制、修改源端属性声明报文,并使报文在两棵不同的生成树实例中传播,从而为TSN业务建立冗余业务保护路径。
图1示出本申请提供的冗余路径的资源预留方法的流程示意图。如图1所示,本申请提供的冗余路径的资源预留方法可以应用于源端设备,该方法可以包括如下步骤S110至S120。
在步骤S110,响应于确定需要对TSN业务进行冗余路径的资源预留,生成针对TSN业务的第一属性声明报文,第一属性声明报文携带需要为第一属性声明报文提供冗余传播的指示。
在步骤S120,发送第一属性声明报文至连接于本源端设备的网桥设备,其中,在网桥设备中维护有至少两个生成树实例,且至少两个生成树实例被用于根据第一属性声明报文的指示,在本源端设备与指定的目的端设备之间建立TSN业务的冗余路径。
在本申请中,源端设备(即,TSN业务源端Talker)可以通过属性声明报文指示需要为该属性声明报文提供冗余传播,并发送该属性声明报文至所连接的网桥设备,以使网桥设备根据所维护的至少两个生成树实例,为该属性声明报文提供冗余传播,从而在本源端设备与指定的目的端设备之间建立TSN业务的冗余路径。
在一个实现方式中,步骤S110可以包括:生成针对TSN业务的第一属性声明报文,在第一属性声明报文中携带用于标识TSN业务的流标识、取值为第一冗余信息值的冗余信息,以及取值为任意(any) 标识值的生成树标识,其中,第一冗余信息值用于指示需要为第一属性声明报文提供冗余传播,任意标识值用于指示第一属性声明报文的传播所基于的生成树实例。
在一个实现方式中,响应于确定无需对TSN业务进行冗余路径的资源预留,该方法还可以包括:生成针对TSN业务的第二属性声明报文,在第二属性声明报文中携带用于标识TSN业务的流标识、取值为第二冗余信息值的冗余信息、以及取值为预定标识值的生成树标识,其中,第二冗余信息值用于指示无需为第二属性声明报文提供冗余传播,预定标识值用于指示第二属性声明报文的传播所基于的生成树实例。
在本申请中,源端设备可以对基于SRP协议的源端报文进行扩展,使携带流标识、冗余字段和生成树标识字段,其中,流标识用于唯一识别TSN业务,冗余字段中的冗余信息用于指示对属性声明报文的冗余传播需求,生成树标识字段中的生成树标识用于指示属性声明报文在网桥设备中的传播所基于的生成树实例,根据生成树标识所指示的生成树实例,发送对TSN业务的属性声明报文,以对流标识所标识的TSN业务进行冗余路径资源预留。
在本申请中,可以预先在TSN网络中建立至少两个生成树实例,并将其中一个生成树实例作为主生成树实例,将主生成树实例之外的生成树实例作为备生成树实例。为了建立冗余路径,主生成树实例和备生成树实例所对应的主、备生成树的链路集合中应当包含尽量少的重复链路。示例性地,可以通过PCR的方法建立生成树链路集合,从而建立符合要求的生成树实例。应理解,也可以使用其他方法建立主生成实例和备生成树实例的建立过程,本申请不做具体限定。
在一个实现方式中,对于已经建立的主生成树实例和备生成树实例,可以通过MRP在网桥中维护对应于生成树实例的生成树标识。作为示例,如果将生成树实例对应的生成树标识值设置为0,则用于指示按照默认或预定的生成树实例转发。
在本申请中,可以建立一个主生成树实例和至少一个备生成树实例。为了简化描述起见,本文以通过PCR建立的一个主生成树实例 和一个备生成树实例为例,来阐述对属性声明报文提供冗余传播的过程以及对冗余路径进行资源预留过程。但该描述并不能被解读为限制本申请的技术方案的范围或实施可能性,一个主生成树实例和大于一个的备生成树实例的处理方法与对一个主生成树实例和一个备生成树实例的处理方法实质上一致。
图2示出示例性的基于SRP协议的属性声明报文的编码格式示意图。如图2所示,已有的基于SRP协议的属性声明报文中,可以包括如下字段:物理地址(MAC Address)、唯一标识符(Unique ID)、目标地址(Destination Address)、虚拟局域网标识(VLAN_ID)、最大帧大小(Max Frame Size)、最大间隔帧(Max Interval Frame)、数据帧的优先级(Data Frame Priority)、等级(Rank)、保留字段(Reserved)和累积延迟(Accumulated Latency)。
可以将MAC Address和Unique ID作为属性声明报文的流标识(Stream ID),将Destination Address和VLAN_ID作为属性声明报文的数据帧参数(Data Frame Parameters),将Max Frame Size和Max Interval Frame作为属性声明报文的流量规格(TSprc)、将Data Frame Priority、Rank和Reserved作为属性声明报文的优先级和排名。
图3示出本申请提供的扩展后的基于SRP协议的属性声明报文的编码格式示意图。如图3所示,经扩展的基于SRP协议的属性声明报文中携带冗余(Redundancy)字段和生成树标识(Identifier)字段。
如图3所示,在源端设备生成的基于SRP协议属性声明报文的格式示例中,冗余字段例如可以占1位(bit),当冗余字段值为1时,表示需要冗余保护;反之冗余字段为0时,表示不需要冗余保护。生成树标识字段,例如,占7位,且支持的最大生成树实例数量为128个。
应理解,本申请可以根据实际应用场景需求,灵活指定冗余字段和生成树标识字段的长度,本实施例中所示示例仅作解释说明,不作为对本申请内容的限定。
在一个实现方式中,在步骤S120之前,该方法还可以包括:响应于确定需要对属性声明报文进行冗余传播,设置冗余信息为第一冗余信息值,以及设置生成树标识为任意标识值;响应于确定无需对属性声明报文进行冗余传播,则设置冗余信息为第二冗余信息值,且设置生成树标识为预定标识值,其中,第二冗余信息值不同于第一冗余信息值。
作为示例,第一冗余信息值可以为TRUE,第二冗余信息值可以为FALSE,生成树标识的预定标识值可以默认设置为0。
在本申请中,源端设备生成的属性声明报文经扩展后,增加了两个字段,分别称为冗余字段和生成树标识字段。冗余字段用于指示对属性声明报文的冗余传播需求,即,是否需要为该源端属性声明报文提供冗余传播。示例性地,若冗余字段值为TRUE,则表示需要冗余传播,若冗余字段值为FALSE,则表示不需要冗余传播。生成树标识字段用于指明该源端属性声明报文在网桥中基于哪个生成树实例进行传播。
在本申请中,TSN业务流的冗余路径的资源预留过程的触发机制,可以有多种方式。例如,上述描述的,通过源端设备发送SRP协议报文触发TSN业务流的冗余路径资源预留过程,其中,源端设备具有SRP协议能力。在另一些实现方式例中,可以通过配置方式配置网桥触发发送SRP协议报文;或者可以由指定的业务报文触发源端设备直连的网桥端口开启资源预留过程,其中,网桥端口需要事先配置是否处于冗余模式。
图4示出本申请提供的源端设备对属性声明报文进行初始化设置的流程示意图。如图4所示,源端设备对属性声明报文进行初始化设置可以包括如下步骤S11至S13。
在步骤S11,源端设备判断是否对属性声明报文进行冗余传播。
在步骤S12,若判定需要进行冗余传播,则将源端属性声明报文冗余字段置TRUE,生成树标识值可被设置为任意值。
在步骤S13,若判定不需要建立冗余路径,则将冗余字段置FALSE,生成树标识字段置0,表示基于预定的生成树实例传播报文。
通过上述步骤S11至S13,源端设备根据是否对属性声明报文进行冗余传播,完成对属性声明报文所携带内容的初始化设置。
根据本申请提供的冗余路径的资源预留方法,源端设备可以对基于SRP协议的源端报文进行扩展,以携带冗余字段和生成树标识字段,通过冗余字段指示是否对属性声明报文进行冗余传播,并根据生成树标识所指示的生成树实例,向与源端设备直连的网桥端口发送该TSN业务的属性声明报文,以触发对流标识所标识的TSN业务进行冗余路径资源预留。
图5示出本申请提供的冗余路径的资源预留方法的另一流程示意图。如图5所示,本申请提供的冗余路径的资源预留方法可以应用于网桥设备,该方法可以包括如下步骤S210至S240。
在步骤S210,从接收到的源端设备的属性声明报文中,获取属性声明报文针对的TSN业务,以及是否需要为属性声明报文提供冗余传播的指示。
在步骤S220,响应于指示为需要为属性声明报文提供冗余传播,且在本网桥设备中维护的生成树实例的数量为至少两个,复制属性声明报文。
在步骤S230,基于至少两个生成树实例,传播所接收的属性声明报文和所复制的属性声明报文,以在源端设备和目的端设备之间建立TSN业务的冗余路径。
在步骤S240,响应于接收到来自目的端设备的针对TSN业务的资源预留请求报文,对TSN业务进行冗余路径的资源预留。
根据本申请提供的冗余路径的资源预留方法,网桥设备从接收到的基于SRP协议的属性声明报文中获取冗余信息和生成树实例,若冗余信息指示需要对属性声明报文提供冗余传播且本网桥设备中所对应的生成树实例的数量大于预定数值,则复制属性声明报文,并根据所对应的生成树实例修改属性声明报文,使所接收的属性声明报文和所复制的属性声明报文可以在不同的生成树实例中传播,从而为TSN业务建立冗余业务保护路径。
在步骤S210中,生成树标识可以用于标识生成树实例,通过生 成树实例可以确定生成树拓扑信息,从而确定与该生成树拓扑信息对应的网桥转发链路。
在一个实现方式中,接收到的属性声明报文携带有流标识和冗余信息,步骤S210可以包括:将接收到的属性声明报文中携带的流标识所指示的TSN业务,作为属性声明报文针对的TSN业务;响应于冗余信息取值为第一冗余信息值,确定需要为属性声明报文提供冗余传播;响应于冗余信息取值为第二冗余信息值,确定无需为属性声明报文提供冗余传播,第二冗余信息值与第一冗余信息值不同。
在一个实现方式中,响应于确定需要为属性声明报文提供冗余传播,步骤S230可以包括:根据获取的至少两个生成树实例的生成树标识,将所接收的属性声明报文中的生成树标识和所复制的属性声明报文中的生成树标识,修改为不同的生成树标识;将所接收的属性声明报文中的冗余信息和所复制的属性声明报文中的冗余信息,均修改为第二冗余信息值;以及将所接收的属性声明报文和复制的属性声明报文,按照修改后的不同的生成树标识,在不同的生成树实例中传播,以建立TSN业务的冗余路径。
在一个实现方式中,冗余信息为第一冗余信息值时,用于指示需要提供冗余传播;冗余信息为第二冗余信息值时,用于指示无需提供该冗余传播。
示例性地,可以在网桥设备中将通过PCR建立的主生成树实例、备生成树实例的对应生成树标识值分别为a和b。例如,可以将所接收的属性声明报文中的生成树标识设置为a,将所复制的属性声明报文中的生成树标识设置为b。
在一个实现方式中,若指示为需要为属性声明报文提供冗余传播,而在本网桥设备中维护的生成树实例的数量小于两个,则该方法还可以包括:设置无需为接收到的属性声明报文提供冗余传播的指示,并基于本网桥设备维护的生成树实例中的预定生成树实例,传播接收到的属性声明报文。
在一个实现方式中,上述步骤可以包括:将接收到的属性声明报文中携带的生成树标识设置为预定标识值,预定标识值用于指示预 定生成树实例;将接收到的属性声明报文中携带的冗余信息设置为第二冗余信息值,第二冗余信息值用于指示无需为属性声明报文提供冗余传播;以及基于预定生成树实例,传播携带第二冗余信息值和预定标识值的属性声明报文。
通过上述步骤,若网桥设备所接收的属性声明报文中冗余信息指示需要对属性声明报文提供冗余传播,但本网桥设备中所对应的生成树实例的数量不足以提供冗余传播,则可以将属性声明报文中的冗余信息修改为第二冗余信息值,以指示无需对属性声明报文进行冗余传播,并按照预定标识值所指示的生成树实例(默认生成树实例),对属性声明报文进行转发。
在一个实现方式中,若接收到的属性声明报文指示无需对属性声明报文提供冗余传播,则该方法还可以包括:基于所接收的属性声明报文中携带的生成树标识所指示的生成树实例,转发所接收的属性声明报文。
若冗余信息为第二冗余信息值,表示无需对属性声明报文提供冗余传播,即,无需对属性声明报文进行复制和修改。
在一个实现方式中,在获取属性声明报文中携带的冗余信息和生成树标识之后,该方法还可以包括:在本网桥设备接收到属性声明报文的端口,注册所接收的属性声明报文中包含的属性信息。
通过注册属性声明报文的报文属性,使报文属性在网桥设备之间进行动态转发和属性传递,从而达到减少网络管理员的手工配置量及保证网络属性配置正确的目的。
图6示出本申请提供的网桥设备对属性声明报文的处理流程示意图。如图6所示,网桥设备对属性声明报文的处理可以包括如下步骤S21至S28。
在步骤S21,网桥设备端口接收源端属性声明报文。
在步骤S22,解析源端属性声明报文冗余字段,判断报文冗余字段是否为TRUE,若为TRUE,转步骤S23,否则转步骤S27。
在步骤S23,判断当前网桥中维护的生成树实例数量,若大于或等于2,则转步骤S25,否则转步骤S24。
在步骤S24,将属性声明报文中的生成树标识置0。
在步骤S25,复制一份源端属性声明报文,原报文为主报文,复制报文为备报文,设置主报文的生成树标识和备报文的生成树标识。
例如,将主报文的生成树标识字段设为a;将备报文的生成树标识设为b。
在步骤S26,将源端属性声明报文的冗余字段值置FALSE。
在步骤S27,将源端属性声明报文属性在该端口注册。
在步骤S28,基于源端属性声明报文中携带的生成树标识字段值,在相应生成树中传送属性声明报文。
通过上述步骤S21至S28,网桥设备的某个端口收到源端属性声明报文,并实现修改属性声明报文的注册和传播流程。
在一个实现方式中,步骤S240可以包括:通过第一端口接收来自目的端设备的资源预留请求报文,资源预留请求报文中携带流标识和生成树标识,第一端口为本网桥设备的多个端口中的任一端口;响应于第一端口的带宽满足预定带宽需求且第一资源预留请求次数为零,为资源预留请求报文中携带的流标识所指示的TSN业务预留带宽资源并建立转发表项,其中,第一资源预留请求次数是预先在本网桥设备中记录的通过第一端口接收到的针对TSN业务的资源预留请求次数。
通过上述步骤,同一端口在带宽满足预定带宽需求,且记录的该端口对某一流标识的资源预留请求报文的资源预留请求次数为零时,为该流标识所指示的TSN业务预留带宽资源并建立转发表项。也就是说,同一端口收到相同流标识的资源预留时,并不会预留多份资源,并可以在此执行重复报文消除功能。
下表1示出根据本申请的网桥设备记录的各端口的业务流对应的资源预留请求次数的示例。
表1 网桥设备各端口中业务流对应资源预留请求次数
端口号 流标识 资源预留请求次数
fei-0/1/0/1 1 4
spi-0/2/0/2 2 2
fei-0/1/0/2 1 4
fei-0/1/0/3 4 1
通过表1可知,网桥设备可以维护各端口中接收到的针对各业务流对应的资源预留请求次数,从而更新或者撤销同一个端口下相同流标识(S-ID)的资源预留。需要注意的是,相同端口收到相同流标识的资源预留时,记录对应的资源预留请求次数,但并不会预留多份资源,并会在此执行重复报文消除功能。
在一个实现方式中,在步骤S240之后,或者,当第一端口的带宽满足预定带宽需求且第一资源预留请求次数大于或等于1时,方法还可以包括:将第一资源预留请求次数的记录加1,得到更新后的第一资源预留请求次数;以及基于资源预留请求报文中携带的生成树标识所指示的生成树实例,转发资源预留请求报文。
第一资源预留请求次数大于或等于1,表示该端口已经为当前接收到的业务流预留资源和建立转发表项,因此更新对应的第一资源预留请求次数后,不再进行预留资源和建立转发表项的操作。
在一个实现方式中,若第一端口的带宽不满足预定带宽需求,则方法还可以包括:基于资源预留请求报文中携带的生成树标识所指示的生成树实例,转发资源预留请求报文。
图7示出本申请提供的网桥设备接收到属性声明报文的处理流程示意图。如图7所示,网桥设备接收到属性声明报文的处理流程可以包括如下步骤S31至S37。
在步骤S31,网桥设备端口接收目的端设备的资源预留请求报文。
在步骤S32,根据端口上对应流标识的源端属性声明,计算所需的带宽,判断该端口上带宽资源是否满足带宽需求,若满足转步骤S33,否则转步骤S37。
在步骤S33,查找网桥设备维护的各端口中业务流对应资源预留请求次数。
在步骤S34,未命中查找结果或对应次数为0,则转步骤S35,否则转步骤S36。
在步骤S35,在该端口预留带宽资源,并建立转发表项。
在步骤S36,更新各端口中业务流对应资源预留请求次数,使流 标识对应目的端资源预留请求次数值加1。
在步骤S37,解析报文中携带的生成树标识字段,在对应生成树中继续传播目的端报文。
通过上述步骤S31至S37,网桥设备的端口在接收到目的端资源预留请求报文时,可以在该端口上执行上述预留带宽和建立转发表项的处理流程。
在一个实现方式中,冗余路径的资源预留方法还包括:通过第一端口接收来自目的端设备的资源预留撤销报文,资源预留撤销报文中携带TSN业务的流标识和生成树标识;将第一资源预留请求的次数减1,得到更新后的第一资源预留请求次数;响应于更新后的第一资源预留请求次数为零,删除TSN业务的转发表项并释放TSN业务的预留带宽资源,并根据资源预留撤销报文中携带的生成树标识所指示的生成树实例,转发资源预留撤销报文;响应于更新后的第一资源预留请求次数大于或等于1,根据资源预留撤销报文中携带的生成树标识所指示的生成树实例,转发资源预留撤销报文。
图8示出本申请提供的网桥设备接收到资源预留撤销报文的处理流程示意图。如图8所示,网桥设备接收到资源预留撤销报文的处理流程可以包括如下步骤S41至S46。
在步骤S41,网桥设备端口接收目的端设备的资源预留撤销报文。
在步骤S42,将网桥设备维护的该端口中业务流对应资源预留请求次数减1。
在步骤S43,判断网桥设备中该端口中业务流对应资源预留请求次数是否为0,若是,转步骤S44,若否,转步骤S45。
在步骤S44,删除转发表项,并释放带宽资源。
在步骤S45,更新网桥设备端口维护的该业务流对应资源预留请求次数。
在步骤S46,基于资源预留撤销报文中的生成树标识所指示的生成树实例,在对应生成树中传播该资源预留撤销报文。
通过上述步骤S41至S46,网桥设备的某端口在收到目的端发送的资源预留撤销报文时,需要查找各端口中业务流对应资源预留请求 次数,将表项中对应于报文携带的流标识的目的端资源预留请求次数减1,当且仅当该表中对应于该流标识的目的端属性注册次数为0时,删除转发表项,并释放对应的带宽资源。
图9示出本申请提供的冗余路径的资源预留方法的另一流程示意图。如图9所示,该冗余路径的资源预留方法可以应用于目的端设备,该方法可以包括如下步骤S510至S530。
在步骤S510,通过连接于本目的端设备的网桥设备,接收到至少两条针对同一TSN业务的属性声明报文。
在步骤S510之后,该方法还可以包括:获取每条属性声明报文中携带的流标识和生成树标识,其中,流标识用于标识TSN业务,生成树标识用于指示属性声明报文在网桥设备中的传播所基于的生成树实例。
属性声明报文中还携带有冗余信息,用于指示在网桥设备中传播该属性声明报文时,对该属性声明报文的冗余传播需求。
在步骤S520,响应于TSN业务是本目的端设备感兴趣的TSN业务,且接收到的每条属性声明报文是基于不同生成树实例传播的报文,针对接收到的每条属性声明报文,生成针对TSN业务,并对应于不同生成树实例的资源预留请求报文。在该步骤中,不同生成树实例是在连接于本目的端设备的网桥设备中维护的至少两个生成树实例中的生成树实例,且至少两个生成树实例被用于在源端设备与本目的端设备之间建立TSN业务的冗余路径。
在一个实现方式中,生成针对TSN业务,并对应于不同生成树实例的资源预留请求报文的步骤可以包括:在资源预留请求报文中携带用于标识TSN业务的流标识和对应于不同生成树实例的生成树标识。
在步骤S530,基于生成的每条资源预留请求报文所对应的不同生成树实例,发送每条资源预留请求报文至连接于本目的端设备的网桥设备。
根据本申请提供的冗余路径的资源预留方法,目的端设备的基于SRP协议的资源预留请求报文,也需要扩展以携带生成树标识 (Identifier)字段,表明目的端报文在网桥中基于哪个生成树实例进行传播。目的端设备在收到对应流标识的属性声明报文时,首先提取属性声明报文中携带的生成树标识字段的值,并将生成树标识字段的值写入目的端报文的生成树标识字段中,然后进行资源预留请求。
图10示出已有的基于SRP协议的目的端报文的编码格式示意图。如图10所示,已有的基于SRP协议的目的端报文中,物理地址(MAC Address)和唯一标识符(Unique ID)形成属性撤销报文的流标识(Stream ID),以用于唯一标识一条TSN业务流。
在一个实现方式中,在步骤S530之后,该方法还可以包括:记录接收到的每条属性声明报文中所携带的流标识和对应的生成树标识,生成树标识用于指示属性声明报文在网桥设备中的传播所基于的生成树实例。
图11示出本申请提供的目的端报文的编码格式示意图。如图11所示,目的端报文中可以携带生成树标识(Identifier)字段。也就是说,在已有的目的端报文中新增加一个字节,字节内容包含生成树标识字段。目的端报文中的生成树标识字段长度可以与源端生成的属性声明报文中的生成树标识字段长度一致,例如,在新增加的一个字节中,生成树标识字段长度可以为7位,另外1位可以作为预留字段。
应理解,可以根据实际应用场景需求灵活指定目的端报文中携带的生成树标识字段的长度,本申请所示示例仅作解释说明,不作为对本申请的限定。
图12示出本申请提供的目的端设备收到属性声明报文的处理流程示意图。如图12所示,属性声明报文的处理流程可以包括如下步骤S61至S63。
在步骤S61,目的端设备收属性声明报文。
在步骤S62,利用从属性声明报文中提取的生成树标识信息,构造并发送目的端的资源预留请求报文,以进行资源预留请求。
在步骤S63,记录资源预留请求中的流标识和生成树标识。
通过上述步骤S61至S63,目的端设备生成的报文可以是资源预留请求报文或资源预留撤销报文。目的端设备发送携带流标识和生成 树标识的资源预留请求报文,以请求对指定的TSN业务配置资源预留。
当目的端报文为资源预留撤销报文时,可以通过扩展目的端设备中基于SRP协议的资源预留撤销报文的编码格式,生成的携带生成树标识信息的资源预留撤销报文,以请求撤销为冗余路径分配的资源。
下表2示出根据本申请的目的端设备中流标识和生成树标识的映射关系的示例。
表2 目的端设备中流标识和生成树标识的映射关系
流标识 资源预留请求次数
1 {0}
2 {1,2}
1 {0}
4 {2,3}
通过表2可知,可以在目的端设备中维护流标识和对应的生成树标识信息表,以便于目的端在主动撤销预留资源时释放冗余路径资源。
在一个实现方式中,冗余路径的资源预留方法还可以包括:响应于确定需要对TSN业务进行资源撤销,从预先记录的流标识和对应的生成树标识中,获取TSN业务的流标识和对应的生成树标识;针对TSN业务对应的每个生成树标识,分别生成对应的资源预留撤销报文,资源预留撤销报文中携带TSN业务的流标识和TSN业务对应的一个生成树标识;基于生成的每条资源预留撤销报文中携带的生成树标识所指示的生成树实例,发送每条资源预留撤销报文;以及从预先记录的流标识和对应的生成树标识中删除预定信息,预定信息为已发送的资源预留撤销报文中所携带的流标识和对应的生成树标识。
通过上述步骤,目的端设备进行预留资源的撤销时,需查找流标识和生成树标识的映射关系,得到目的端对应于某业务流的生成树标识值集合,然后针对每个生成树标识值均构造一份资源预留撤销报文,并发送出去。
根据本申请提供的冗余路径的资源预留方法,目的端设备可以在接收到对TSN业务的基于SRP协议的属性声明报文时,提取属性声明报文中携带的流标识和生成树标识,并生成资源预留请求报文,该 资源预留请求报文携带流标识和生成树标识,以进行资源预留请求,从而实现为TSN业务建立冗余业务保护路径。
为了更好地理解本申请,下面通过图13和图14,描述根据本申请的冗余路径的资源预留方法的详细流程图。图13示出本申请提供的基于SRP协议的冗余路径资源预留的处理流程示意图;图14示出本申请提供的基于SRP协议的冗余路径资源预留撤销的处理流程示意图。
在图13中,TSN网络中示例性的可以包含五个网桥设备(如下可以简称网桥),例如,TSN网桥1、TSN网桥2、TSN网桥3、TSN网桥4和TSN网桥5。假设已在TSN网络中建立主生成树对应的生成树和备生成树对应的生成树,分别用线条1和线条2表示,对应生成树标识分别为1和2。
在图13中,源端(Talker)设备上侧表1示出源端属性声明报文的主要字段,其中流标识为1,表明为业务流标识为1的业务流预留资源,作为示例,TSN业务流ID为{01:00:5e:01:01:01,2},冗余字段值为TRUE,表明需要网络为其提供冗余传播,生成树标识字段取任意(any)值。
Talker发出源端属性声明报文至TSN网桥1,TSN网桥1收到该源端属性声明报文,提取报文冗余字段为TRUE,复制一份报文,将原报文的生成树标识字段置1,将复制报文生成树标识字段置2,将两份报文的冗余字段置FALSE,并将源端属性报文中携带的属性信息在端口注册,然后将原报文沿线条1表示的生成树传播,将复制报文沿线条2表示的生成树传播。
TSN网桥2、3、4和5收到扩展的源端属性声明报文时,解析报文字段内容,发现冗余字段值为FALSE,则继续提取生成树标识字段,并根据生成树标识字段查找表2所示的生成树实例表,然后在相应的生成树中传播报文。
目的端设备(Listener)对流标识为1的业务流感兴趣,并相继收到两份流标识为1的源端属性声明报文,提取报文生成树标识字段,分别构造对应目的端资源预留请求报文,两份目的端资源预留请 求报文内容如表3和表4所示,然后发送出去。
在该示例中,目的端设备需要将收到的对应流标识的生成树标识的值存入其维护的表格中,如目的端设备旁的表5所示,得到所维护的对应流标识的生成树标识集合。
网桥设备的各端口收到目的端资源预留请求报文后,开始沿路预留带宽和建立转发表,若同一端口收到大于或等于两份目的端资源预留请求报文时,需要避免重复预留资源和建立转发表。
例如,TSN网桥4和TSN网桥5都收到两份目的端资源预留请求报文,分别携带生成树标识1和生成树标识2。以TSN网桥4端口2为例,当收到第一份目的端报文时,提取报文中的流标识并查找表2,若未命中表项,则建立{01:00:5e:01:01:01,2}为键值的转发表项和预留资源,然后在表2中建立对应端口2和流标识的表项,目的端资源预留请求次数为1;当收到第二份目的端资源预留请求报文,提取报文中的流标识,发现对应端口2和该流标识的目的端属性注册次数大于0,则不重复预留资源和建立转发表项,而仅将对应目的端资源预留请求次数加1,得到资源预留请求次数为2。
在本申请中,源端设备进行资源预留撤销操作时,需要在属性撤销报文中携带冗余字段和生成树标识字段,网桥在接收到源端属性撤销报文时的处理流程与接收到源端属性声明报文时,对冗余字段和生成树标识字段的处理流程类似,对此不再赘述。
在图14中,在目的端设备中,例如,维护对应于流标识为1的生成树标识的值;在TSN各网桥中维护每个网桥端口上接收到对应于流标识的资源预留请求次数。
由目的端设备发起对应流标识为1的资源预留撤销时,目的端设备查询流标识和生成树标识映射关系表格,得到生成树标识值集合中有生成树标识1和生成树标识2(参见图13)。目的端设备依次根据生成树标识1和生成树标识2构造目的端资源预留撤销报文,两份目的端资源预留撤销报文内容图14中表1和表2所示。
各网桥端口收到目的端资源预留撤销报文时,释放带宽资源和删除对应转发表项,特别地,当端口的目的端资源预留请求次数大于 或等于2时,仅当收到最后一次资源预留撤销报文时,才释放预留资源。
例如,当TSN网桥4端口2收到目的端资源预留撤销报文中生成树标识字段值为1时,仅更新图中表3,并将对应流标识的目的端资源预留请求次数减1;当收到目的端报文中生成树标识字段值为2时,更新图中表3,并将对应流标识的目的端资源预留请求次数减1,此时对应流标识(S-ID)的目的端资源预留请求次数为0,释放资源并删除转发表项。
在预留的资源成功撤销以后,如图14中目的端设备旁的表1所示,目的端设备中维护的流标识为1和生成树标识值集合流为NULL。
根据本申请提供的冗余路径的资源预留方法,对源端属性声明报文进行扩展,在扩展的属性声明报文中携带冗余字段和生成树标识字段,将源端连接的网桥端口作为冗余路径功能的代理,增加对冗余字段的解析,在确定冗余字段的取值指示需要网络建立冗余路径时,复制、修改源端属性声明报文,并根据各自携带的生成树标识使报文在两棵不同的生成树实例中传播,从而为TSN业务建立冗余业务保护路径。
下面结合附图15,详细介绍根据本申请的冗余路径的资源预留装置。图15示出本申请提供的冗余路径的资源预留装置的结构示意图。如图15所示,该冗余路径的资源预留装置可以应用于源端设备,并可以包括属性声明报文生成模块610和属性声明报文发送模块620。
属性声明报文生成模块610用于响应于确定需要对TSN业务进行冗余路径的资源预留,生成针对TSN业务的第一属性声明报文,第一属性声明报文携带需要为属性声明报文提供冗余传播的指示。
属性声明报文发送模块620用于发送第一属性声明报文至连接于本源端设备的网桥设备,其中,在网桥设备中维护有至少两个生成树实例,且至少两个生成树实例被用于根据第一属性声明报文的指示,在本源端设备与指定的目的端设备之间建立TSN业务的冗余路径。
在一个实现方式中,属性声明报文生成模块610还用于:生成针对TSN业务的第一属性声明报文,在第一属性声明报文中携带用于 标识TSN业务的流标识、取值为第一冗余信息值的冗余信息,以及取值为任意(any)标识值的生成树标识,其中,第一冗余信息值用于指示需要为第一属性声明报文提供冗余传播,任意标识值用于指示第一属性声明报文的传播所基于的生成树实例。
在一个实现方式中,响应于确定无需对TSN业务进行冗余路径的资源预留,属性声明报文生成模块610还用于:生成针对TSN业务的第二属性声明报文,在第二属性声明报文中携带用于标识TSN业务的流标识、取值为第二冗余信息值的冗余信息、以及取值为预定标识值的生成树标识,其中,第二冗余信息值用于指示无需为第二属性声明报文提供冗余传播,预定标识值用于指示第二属性声明报文的传播所基于的生成树实例。
根据本申请提供的冗余路径的资源预留装置,源端设备可以对基于SRP协议的源端报文进行扩展,以携带冗余字段和生成树标识字段,通过冗余字段指示是否对属性声明报文进行冗余传播,并根据生成树标识所指示的生成树实例,向与源端设备直连的网桥端口发送该TSN业务的属性声明报文,以触发对流标识所标识的TSN业务进行冗余路径资源预留。
图16示出本申请提供的冗余路径的资源预留装置的结构示意图。如图16所示,该冗余路径的资源预留装置可以应用于网桥设备,并可以包括属性声明报文接收模块710、属性声明报文复制模块720、属性声明报文传播模块730和冗余路径资源预留模块740。
属性声明报文接收模块710用于从接收到的源端设备的属性声明报文中,获取属性声明报文针对的TSN业务,以及是否需要为属性声明报文提供冗余传播的指示。
属性声明报文复制模块720用于响应于指示为需要为属性声明报文提供冗余传播,且在本网桥设备中维护的生成树实例的数量为至少两个,复制属性声明报文。
属性声明报文传播模块730用于基于至少两个生成树实例,传播所接收的属性声明报文和所复制的属性声明报文,以在源端设备和目的端设备之间建立TSN业务的冗余路径。
冗余路径资源预留模块740用于响应于接收到来自目的端设备的针对TSN业务的资源预留请求报文,对TSN业务进行冗余路径的资源预留。
在一个实现方式中,接收到的属性声明报文携带有流标识和冗余信息,属性声明报文接收模块710可以用于:将接收到的属性声明报文中携带的流标识所指示的TSN业务,作为属性声明报文针对的TSN业务;响应于冗余信息取值为第一冗余信息值,确定需要为属性声明报文提供冗余传播;响应于冗余信息取值为第二冗余信息值,确定无需为属性声明报文提供冗余传播,第二冗余信息值与第一冗余信息值不同。
在一个实现方式中,响应于确定需要为属性声明报文提供冗余传播,属性声明报文传播模块730可以用于:根据获取的至少两个生成树实例的生成树标识,将所接收的属性声明报文中的生成树标识和所复制的属性声明报文中的生成树标识,修改为不同的生成树标识;将所接收的属性声明报文中的冗余信息和所复制的属性声明报文中的冗余信息,均修改为第二冗余信息值;以及将所接收的属性声明报文和复制的属性声明报文,按照修改后的不同的生成树标识,在不同的生成树实例中传播,以建立TSN业务的冗余路径。
在一个实现方式中,若指示为需要为属性声明报文提供冗余传播,而在本网桥设备中维护的生成树实例的数量小于两个,则属性声明报文发送模块740可以用于:设置无需为接收到的属性声明报文提供冗余传播的指示,并基于本网桥设备维护的生成树实例中的预定生成树实例,传播接收到的属性声明报文。
在一个实现方式中,属性声明报文发送模块740还可以用于:将接收到的属性声明报文中携带的生成树标识设置为预定标识值,预定标识值用于指示预定生成树实例;将接收到的属性声明报文中携带的冗余信息设置为第二冗余信息值,第二冗余信息值用于指示无需为属性声明报文提供冗余传播;以及基于预定生成树实例,传播携带第二冗余信息值和预定标识值的属性声明报文。
在一个实现方式中,若接收到的属性声明报文指示无需对属性 声明报文提供冗余传播,属性声明报文发送模块740可以用于:基于所接收的属性声明报文中携带的生成树标识所指示的生成树实例,转发所接收的属性声明报文。
在一个实现方式中,冗余路径的资源预留装置还可以包括:属性注册模块,用于在本网桥设备接收到属性声明报文的端口,注册所接收的属性声明报文中包含的属性信息。
在一个实现方式中,冗余路径资源预留模块740可以用于:通过第一端口接收来自目的端设备的资源预留请求报文,资源预留请求报文中携带流标识和生成树标识,第一端口为本网桥设备的多个端口中的任一端口;响应于第一端口的带宽满足预定带宽需求且第一资源预留请求次数为零,为资源预留请求报文中携带的流标识所指示的TSN业务预留带宽资源并建立转发表项,其中,第一资源预留请求次数是预先在本网桥设备中记录的通过第一端口接收到的针对TSN业务的资源预留请求次数。
在一个实现方式中,冗余路径的资源预留装置还可以包括:资源预留请求次数更新模块,用于在为流标识所指示的TSN业务预留带宽资源并建立转发表项之后,或者,当第一端口的带宽满足预定带宽需求且第一资源预留请求次数大于或等于1时,将第一资源预留请求次数的记录加1,得到更新后的第一资源预留请求次数;以及资源预留请求报文转发模块,用于基于资源预留请求报文中携带的生成树标识所指示的生成树实例,转发资源预留请求报文。
在一个实现方式中,若第一端口的带宽不满足预定带宽需求,则资源预留请求报文转发模块还可以用于:基于资源预留请求报文中携带的生成树标识所指示的生成树实例,转发资源预留请求报文。
在一个实现方式中,冗余路径的资源预留装置还可以包括资源预留撤销报文接收模块和资源预留撤销报文转发模块。资源预留撤销报文接收模块用于通过第一端口接收来自目的端设备的资源预留撤销报文,资源预留撤销报文中携带TSN业务的流标识和生成树标识。资源预留请求次数更新模块还可以用于将第一资源预留请求的次数减1,得到更新后的第一资源预留请求次数。资源预留撤销报文转发 模块用于:响应于更新后的第一资源预留请求次数为零,删除TSN业务的转发表项并释放TSN业务的预留带宽资源,并根据资源预留撤销报文中携带的生成树标识所指示的生成树实例,转发资源预留撤销报文;响应于更新后的第一资源预留请求次数大于或等于1,根据资源预留撤销报文中携带的生成树标识所指示的生成树实例,转发资源预留撤销报文。
根据本申请提供的冗余路径的资源预留装置,网桥设备可以对接收到的基于SRP协议的属性声明报文所携带的冗余信息进行解析,若冗余信息指示需要对属性声明报文提供冗余传播且本网桥设备中所对应的生成树实例的数量大于预定数值,则复制属性声明报文,并根据所对应的生成树实例修改属性声明报文,使所接收的属性声明报文和所复制的属性声明报文在各自携带的生成树标识所指示的生成树实例中传播,从而为TSN业务建立冗余业务保护路径。
图17示出本申请提供的冗余路径的资源预留装置的结构示意图。如图17所示,该冗余路径的资源预留装置可以应用于目的端设备,并可以包括属性声明报文接收模块810、资源预留请求生成模块820和资源预留请求发送模块830。
属性声明报文接收模块810用于通过连接于本目的端设备的网桥设备,接收到至少两条针对同一TSN业务的属性声明报文。
资源预留请求生成模块820用于响应于TSN业务是本目的端设备感兴趣的TSN业务,且接收到的每条属性声明报文是基于不同生成树实例传播的报文,针对接收到的每条属性声明报文,生成针对TSN业务,并对应于不同生成树实例的资源预留请求报文。
不同生成树实例是在连接于本目的端设备的网桥设备中维护的至少两个生成树实例中的生成树实例,且至少两个生成树实例被用于在源端设备与本目的端设备之间建立TSN业务的冗余路径。
资源预留请求发送模块830用于基于生成的每条资源预留请求报文所对应的不同生成树实例,发送每条资源预留请求报文至连接于本目的端设备的网桥设备。
在一个实现方式中,冗余路径的资源预留装置还可以包括标识 信息获取模块,用于在接收到至少两条针对同一TSN业务的属性声明报文之后,获取每条属性声明报文中携带的流标识和生成树标识,其中,流标识用于标识TSN业务,生成树标识用于指示属性声明报文在网桥设备中的传播所基于的生成树实例。
在一个实现方式中,冗余路径的资源预留装置还可以包括:标识信息添加模块,用于在生成针对TSN业务,并对应于不同生成树实例的资源预留请求报文时,在资源预留请求报文中携带用于标识TSN业务的流标识和对应于不同生成树实例的生成树标识。
在一个实现方式中,冗余路径的资源预留装置还可以包括标识信息记录模块,用于记录接收到的每条属性声明报文中所携带的流标识和对应的生成树标识,生成树标识用于指示属性声明报文在网桥设备中的传播所基于的生成树实例。
在一个实现方式中,标识信息添加模块还可以用于响应于确定需要对TSN业务进行资源撤销,从预先记录的流标识和对应的生成树标识中,获取TSN业务的流标识和对应的生成树标识。冗余路径的资源预留装置还可以包括资源预留撤销报文生成模块、资源预留撤销报文发送模块以及信息记录更新模块。资源预留撤销报文生成模块用于针对TSN业务对应的每个生成树标识,分别生成对应的资源预留撤销报文,资源预留撤销报文中携带TSN业务的流标识和TSN业务对应的一个生成树标识。资源预留撤销报文发送模块用于基于生成的每条资源预留撤销报文中携带的生成树标识所指示的生成树实例,发送每条资源预留撤销报文。信息记录更新模块用于从预先记录的流标识和对应的生成树标识中删除预定信息,预定信息为已发送的资源预留撤销报文中所携带的流标识和对应的生成树标识。
根据本申请提供的冗余路径的资源预留装置,目的端设备可以在接收到对TSN业务的基于SRP协议的属性声明报文时,提取属性声明报文中携带的流标识和生成树标识,并生成资源预留请求报文,该资源预留请求报文携带流标识和生成树标识,以进行资源预留请求,从而实现为TSN业务建立冗余业务保护路径。
需要明确的是,本申请并不局限于上文实施例中所描述并在图 中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图18示出能够实现根据本申请的冗余路径的资源预留方法和装置的计算设备的示例性硬件架构的结构图。
如图18所示,计算设备900包括输入设备901、输入接口902、中央处理器903、存储器904、输出接口905、以及输出设备906。输入接口902、中央处理器903、存储器904、以及输出接口905通过总线910相互连接,输入设备901和输出设备906分别通过输入接口902和输出接口905与总线910连接,进而与计算设备900的其他组件连接。
输入设备901可以接收来自外部的输入信息,并通过输入接口902将输入信息传送到中央处理器903。中央处理器903基于存储器904中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器904中,然后通过输出接口905将输出信息传送到输出设备906。输出设备906将输出信息输出到计算设备900的外部供用户使用。
图18所示的计算设备可以被实现为源端设备,该源端设备可以包括:存储器,被配置为存储程序;以及处理器,被配置为运行存储器中存储的程序,以执行根据本申请的应用于源端设备的冗余路径的资源预留方法。
图18所示的计算设备可以被实现为网桥设备,该网桥设备可以包括:存储器,被配置为存储程序;以及处理器,被配置为运行存储器中存储的程序,以执行根据本申请的应用于网桥设备的冗余路径的资源预留方法。
图18所示的计算设备可以被实现为目的端设备,该目的端设备可以包括:存储器,被配置为存储程序;以及处理器,被配置为运行存储器中存储的程序,以执行根据本申请的应用于目的端设备的冗余路径的资源预留方法。
根据本申请提供的冗余路径的资源预留方法,网桥设备可以根 据自身维护的至少两个生成树实例,为源端设备的属性声明报文提供在源端设备和目的端设备之间的冗余传播,从而为TSN业务建立冗余业余路径,并根据目的端设备的资源预留请求报文,为TSN业务进行冗余路径的资源预留。
根据本申请提供的冗余路径的资源预留方法,源端设备可以通过属性声明报文指示需要为该属性声明报文提供冗余传播,并发送该属性声明报文至所连接的网桥设备,以使网桥设备根据所维护的至少两个生成树实例,为该属性声明报文提供冗余传播,从而在本源端设备与指定的目的端设备之间建立TSN业务的冗余路径。
根据本申请提供的冗余路径的资源预留方法,目的端设备在接收到至少两条针对TSN业务,并基于不同生成树实例传播的属性声明报文时,若目的端设备对该TSN业务感兴趣,则可以针对接收到的每条属性声明报文构造资源预留请求报文,以发起对该TSN业务的冗余路径进行资源预留请求。不同生成树实例是在连接于本目的端设备的网桥设备中维护的至少两个生成树实例中的生成树实例,且该至少两个生成树实例被用于在源端设备与本目的端设备之间建立TSN业务的冗余路径。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。 存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本申请的范围。因此,本申请的恰当范围将根据权利要求确定。

Claims (20)

  1. 一种冗余路径的资源预留方法,应用于网桥设备,所述方法包括:
    从接收到的源端设备的属性声明报文中,获取所述属性声明报文针对的时间敏感网络TSN业务,以及是否需要为所述属性声明报文提供冗余传播的指示;
    响应于所述指示为需要为所述属性声明报文提供冗余传播,且在所述网桥设备中维护的生成树实例的数量为至少两个,复制所述属性声明报文;
    基于所述至少两个生成树实例,传播所接收的属性声明报文和所复制的属性声明报文,以在所述源端设备和目的端设备之间建立所述TSN业务的冗余路径;
    响应于接收到来自所述目的端设备的针对所述TSN业务的资源预留请求报文,对所述TSN业务进行冗余路径的资源预留。
  2. 根据权利要求1所述的方法,其中,接收到的属性声明报文携带有流标识和冗余信息,并且从接收到的源端设备的属性声明报文中,获取所述属性声明报文针对的TSN业务,以及是否需要为所述属性声明报文提供冗余传播的指示的步骤包括:
    将接收到的属性声明报文中携带的流标识所指示的TSN业务,作为所述属性声明报文针对的TSN业务;
    响应于所述冗余信息取值为第一冗余信息值,确定需要为所述属性声明报文提供冗余传播;
    响应于所述冗余信息取值为第二冗余信息值,确定无需为所述属性声明报文提供冗余传播,
    其中,所述第二冗余信息值与所述第一冗余信息值不同。
  3. 根据权利要求2所述的方法,其中,响应于确定需要为所述属性声明报文提供冗余传播,基于所述至少两个生成树实例,传播所 接收的属性声明报文和所复制的属性声明报文,以在所述源端设备和目的端设备之间建立所述TSN业务的冗余路径的步骤包括:
    根据获取的所述至少两个生成树实例的生成树标识,将所接收的属性声明报文中的生成树标识和所复制的属性声明报文中的生成树标识,修改为不同的生成树标识;
    将所接收的属性声明报文中的冗余信息和所复制的属性声明报文中的冗余信息,均修改为所述第二冗余信息值;以及
    将所接收的属性声明报文和所述复制的属性声明报文,按照修改后的不同的生成树标识,在不同的生成树实例中传播,以建立所述TSN业务的冗余路径。
  4. 根据权利要求1所述的方法,其中,所述指示为需要为所述属性声明报文提供冗余传播,而在所述网桥设备中维护的生成树实例的数量小于两个,所述方法还包括:
    设置无需为接收到的属性声明报文提供冗余传播的指示,并基于所述网桥设备维护的生成树实例中的预定生成树实例,传播接收到的属性声明报文。
  5. 根据权利要求4所述的方法,其中,设置无需为接收到的属性声明报文提供冗余传播的指示,并基于所述网桥设备维护的生成树实例中的预定生成树实例,传播接收到的属性声明报文的步骤包括:
    将接收到的属性声明报文中携带的生成树标识设置为预定标识值,所述预定标识值用于指示所述预定生成树实例;
    将接收到的属性声明报文中携带的冗余信息设置为第二冗余信息值,所述第二冗余信息值用于指示无需为所述属性声明报文提供冗余传播;以及
    基于所述预定生成树实例,传播携带所述第二冗余信息值和所述预定标识值的属性声明报文。
  6. 根据权利要求1所述的方法,其中,所述指示为无需对所述 属性声明报文提供冗余传播,所述方法还包括:
    基于所接收的属性声明报文中携带的生成树标识所指示的生成树实例,转发所接收的属性声明报文。
  7. 根据权利要求1-6中任一项所述的方法,其中,在传播所接收的属性声明报文和所复制的属性声明报文的步骤之前,所述方法还包括:
    在所述网桥设备接收到所述属性声明报文的端口,注册所接收的属性声明报文中包含的属性信息。
  8. 根据权利要求1所述的方法,其中,响应于接收到来自所述目的端设备的针对所述TSN业务的资源预留请求报文,对所述TSN业务进行冗余路径的资源预留的步骤包括:
    通过第一端口接收来自所述目的端设备的资源预留请求报文,所述资源预留请求报文中携带流标识和生成树标识,所述第一端口为所述网桥设备的多个端口中的任一端口;以及
    响应于所述第一端口的带宽满足预定带宽需求且第一资源预留请求次数为零,为所述资源预留请求报文中携带的流标识所指示的TSN业务预留带宽资源并建立转发表项,
    其中,所述第一资源预留请求次数是预先在所述网桥设备中记录的通过所述第一端口接收到的针对所述TSN业务的资源预留请求次数。
  9. 根据权利要求8所述的方法,其中,在为所述资源预留请求报文中携带的流标识所指示的TSN业务预留带宽资源并建立转发表项的步骤之后,或者,当所述第一端口的带宽满足预定带宽需求且所述第一资源预留请求次数大于或等于1时,所述方法还包括:
    将所述第一资源预留请求次数的记录加1,得到更新后的第一资源预留请求次数;以及
    基于所述资源预留请求报文中携带的生成树标识所指示的生成 树实例,转发所述资源预留请求报文。
    基于资源预留请求报文中携带的生成树标识所指示的生成树实例,转发资源预留请求报文。
  10. 根据权利要求8所述的方法,其中,所述第一端口的带宽不满足预定带宽需求,所述方法还包括:
    基于所述资源预留请求报文中携带的生成树标识所指示的生成树实例,转发所述资源预留请求报文。
  11. 根据权利要求8至10中任一项所述的方法,还包括:
    通过所述第一端口接收来自所述目的端设备的资源预留撤销报文,所述资源预留撤销报文中携带所述TSN业务的流标识和生成树标识;
    将所述第一资源预留请求的次数减1,得到更新后的第一资源预留请求次数;
    响应于更新后的第一资源预留请求次数为零,删除所述TSN业务的转发表项并释放所述TSN业务的预留带宽资源,并根据所述资源预留撤销报文中携带的生成树标识所指示的生成树实例,转发所述资源预留撤销报文;
    响应于更新后的第一资源预留请求次数大于或等于1,根据所述资源预留撤销报文中携带的生成树标识所指示的生成树实例,转发所述资源预留撤销报文。
  12. 一种冗余路径的资源预留方法,应用于源端设备,所述方法包括:
    响应于确定需要对时间敏感网络TSN业务进行冗余路径的资源预留,生成针对所述TSN业务的第一属性声明报文,所述第一属性声明报文携带需要为所述属性声明报文提供冗余传播的指示;以及
    发送所述第一属性声明报文至连接于所述源端设备的网桥设备,
    其中,在所述网桥设备中维护有至少两个生成树实例,且所述 至少两个生成树实例被用于根据所述第一属性声明报文的指示,在所述源端设备与指定的目的端设备之间建立所述TSN业务的冗余路径。
  13. 根据权利要求12所述的方法,其中,生成针对所述TSN业务的第一属性声明报文,所述第一属性声明报文携带需要为所述属性声明报文提供冗余传播的指示的步骤包括:
    生成针对所述TSN业务的第一属性声明报文,在所述第一属性声明报文中携带用于标识所述TSN业务的流标识、取值为第一冗余信息值的冗余信息,以及取值为任意标识值的生成树标识,
    其中,所述第一冗余信息值用于指示需要为所述第一属性声明报文提供冗余传播,所述任意标识值用于指示所述第一属性声明报文的传播所基于的生成树实例。
  14. 根据权利要求12所述的方法,其中,响应于确定无需对所述TSN业务进行冗余路径的资源预留,所述方法还包括:
    生成针对所述TSN业务的第二属性声明报文,在所述第二属性声明报文中携带用于标识所述TSN业务的流标识、取值为第二冗余信息值的冗余信息、以及取值为预定标识值的生成树标识,
    其中,所述第二冗余信息值用于指示无需为所述第二属性声明报文提供冗余传播,所述预定标识值用于指示所述第二属性声明报文的传播所基于的生成树实例。
  15. 一种冗余路径的资源预留方法,应用于目的端设备,所述方法包括:
    通过连接于所述目的端设备的网桥设备,接收到至少两条针对同一时间敏感网络TSN业务的属性声明报文;
    响应于所述TSN业务是所述目的端设备感兴趣的TSN业务,且接收到的每条属性声明报文是基于不同生成树实例传播的报文,针对接收到的每条属性声明报文,生成针对所述TSN业务,并对应于所述不同生成树实例的资源预留请求报文,其中,所述不同生成树实例是 在连接于所述目的端设备的网桥设备中维护的至少两个生成树实例中的生成树实例,且所述至少两个生成树实例被用于在源端设备与所述目的端设备之间建立所述TSN业务的冗余路径;以及
    基于生成的每条资源预留请求报文所对应的不同生成树实例,发送每条资源预留请求报文至连接于所述目的端设备的网桥设备。
  16. 根据权利要求15所述的方法,其中,在接收到所述至少两条针对同一TSN业务的属性声明报文的步骤之后,所述方法还包括:
    获取每条属性声明报文中携带的流标识和生成树标识,其中,所述流标识用于标识所述TSN业务,所述生成树标识用于指示所述属性声明报文在所述网桥设备中的传播所基于的生成树实例;
    并且其中,生成针对所述TSN业务,并对应于所述不同生成树实例的资源预留请求报文的步骤包括:
    在所述资源预留请求报文中携带用于标识所述TSN业务的流标识和对应于所述不同生成树实例的生成树标识。
  17. 根据权利要求15所述的方法,其中,在发送每条资源预留请求报文至连接于所述目的端设备的网桥设备的步骤之后,所述方法还包括:
    记录接收到的每条属性声明报文中所携带的流标识和对应的生成树标识,所述生成树标识用于指示所述属性声明报文在所述网桥设备中的传播所基于的生成树实例。
  18. 根据权利要求15至17中任一项所述的方法,还包括:
    响应于确定需要对所述TSN业务进行资源撤销,从预先记录的流标识和对应的生成树标识中,获取所述TSN业务的流标识和对应的生成树标识;
    针对所述TSN业务对应的每个生成树标识,分别生成对应的资源预留撤销报文,所述资源预留撤销报文中携带所述TSN业务的流标识和所述TSN业务对应的一个生成树标识;
    基于生成的每条资源预留撤销报文中携带的生成树标识所指示的生成树实例,发送每条资源预留撤销报文;以及
    从预先记录的流标识和对应的生成树标识中删除预定信息,所述预定信息为已发送的资源预留撤销报文中所携带的流标识和对应的生成树标识。
  19. 一种网络设备,包括:
    一个或多个处理器;以及
    存储器,其上存储有一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现根据权利要求1至18中任一项所述的方法。
  20. 一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器实现根据权利要求1至18中任一项所述的方法。
PCT/CN2021/104917 2020-07-08 2021-07-07 冗余路径的资源预留方法、网络设备和存储介质 WO2022007828A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023501186A JP2023532374A (ja) 2020-07-08 2021-07-07 冗長パスのリソース予約方法、ネットワークデバイスおよび記憶媒体
EP21837953.5A EP4181432A1 (en) 2020-07-08 2021-07-07 Redundant path resource reservation method, network device, and storage medium
US18/015,062 US20230261987A1 (en) 2020-07-08 2021-07-07 Redundant path resource reservation method, network device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010651247.5 2020-07-08
CN202010651247.5A CN113992603A (zh) 2020-07-08 2020-07-08 冗余路径的资源预留方法、网络设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022007828A1 true WO2022007828A1 (zh) 2022-01-13

Family

ID=79552761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104917 WO2022007828A1 (zh) 2020-07-08 2021-07-07 冗余路径的资源预留方法、网络设备和存储介质

Country Status (5)

Country Link
US (1) US20230261987A1 (zh)
EP (1) EP4181432A1 (zh)
JP (1) JP2023532374A (zh)
CN (1) CN113992603A (zh)
WO (1) WO2022007828A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598422A (zh) * 2022-02-28 2022-06-07 展讯半导体(南京)有限公司 以太网数据发送、接收方法、装置、设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915386B (zh) * 2022-04-29 2023-10-13 中国航空无线电电子研究所 面向差异化业务场景的确定性通信的冗余传输管理方法
CN117858159A (zh) * 2022-09-30 2024-04-09 中兴通讯股份有限公司 信息传输方法及装置
CN117478615B (zh) * 2023-12-28 2024-02-27 贵州大学 一种确定性网络中可靠传输的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597778A (zh) * 2011-06-08 2014-02-19 三星电子株式会社 用于音频视频网络的增强流预留协议
CN108156023A (zh) * 2017-12-11 2018-06-12 西安电子科技大学 一种基于冗余机制的时间敏感性网络分析系统及方法
CN108173755A (zh) * 2017-12-08 2018-06-15 同济大学 一种时间敏感网络的帧的复制和消除方法
CN108366023A (zh) * 2018-03-20 2018-08-03 西安电子科技大学 用于时延敏感网络的防碰撞流预留带宽系统及其方法
US10044524B1 (en) * 2015-09-18 2018-08-07 Aquantia Corp. Ethernet controller with integrated TSN/AVB control point and time slave
WO2020086256A1 (en) * 2018-10-24 2020-04-30 Ge Global Sourcing Llc System and method for establishing reliable time-sensitive networks
CN111278049A (zh) * 2019-01-11 2020-06-12 维沃移动通信有限公司 支持时间敏感通信服务质量的方法及通信设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597778A (zh) * 2011-06-08 2014-02-19 三星电子株式会社 用于音频视频网络的增强流预留协议
US10044524B1 (en) * 2015-09-18 2018-08-07 Aquantia Corp. Ethernet controller with integrated TSN/AVB control point and time slave
CN108173755A (zh) * 2017-12-08 2018-06-15 同济大学 一种时间敏感网络的帧的复制和消除方法
CN108156023A (zh) * 2017-12-11 2018-06-12 西安电子科技大学 一种基于冗余机制的时间敏感性网络分析系统及方法
CN108366023A (zh) * 2018-03-20 2018-08-03 西安电子科技大学 用于时延敏感网络的防碰撞流预留带宽系统及其方法
WO2020086256A1 (en) * 2018-10-24 2020-04-30 Ge Global Sourcing Llc System and method for establishing reliable time-sensitive networks
CN111278049A (zh) * 2019-01-11 2020-06-12 维沃移动通信有限公司 支持时间敏感通信服务质量的方法及通信设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEJERANO YIGAL; KOPPOL PRAMOD V.: "Resource reservation comparison of fault resilient routing schemes", 39TH ANNUAL IEEE CONFERENCE ON LOCAL COMPUTER NETWORKS, IEEE, 8 September 2014 (2014-09-08), pages 81 - 89, XP032661313, DOI: 10.1109/LCN.2014.6925759 *
TI, FANG: "The Research of Stream Reservation Protocol for In-vehicular Time-sensitive Network", CHINESE MASTER'S THESES FULL-TEXT DATABASE, 1 June 2018 (2018-06-01), XP093017719 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598422A (zh) * 2022-02-28 2022-06-07 展讯半导体(南京)有限公司 以太网数据发送、接收方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113992603A (zh) 2022-01-28
EP4181432A1 (en) 2023-05-17
US20230261987A1 (en) 2023-08-17
JP2023532374A (ja) 2023-07-27

Similar Documents

Publication Publication Date Title
WO2022007828A1 (zh) 冗余路径的资源预留方法、网络设备和存储介质
WO2020001393A1 (zh) 发送网络性能参数、计算网络性能的方法和网络节点
WO2019192518A1 (zh) 订阅处理方法、网络节点及用户数据库
JP2008079175A (ja) フレーム転送システム
WO2021233327A1 (zh) 报文处理方法及装置、通告方法及装置、网桥节点、源设备、存储介质及报文处理系统
JP2011525313A (ja) マルチキャスト・グループ管理のための方法及び装置
WO2022001152A1 (zh) 信息通告、报文转发、报文消除方法、装置、设备和介质
WO2016173403A1 (zh) 路由设备、负载均衡设备、消息分发方法及系统
WO2019196653A1 (zh) 转发报文方法和装置
WO2021174958A1 (zh) 报文转发方法、设备、系统、网络设备和存储介质
CN112866435B (zh) Mac地址老化处理方法及设备
WO2009082905A1 (fr) Procédé système et dispositif commutateur permettant l'établissement dynamique de réseau local virtuel de multidiffusion
WO2021197141A1 (zh) 业务处理方法、装置、设备及存储介质
CN111711941A (zh) 数据传输方法以及相关设备、装置
WO2015006970A1 (zh) 交换设备、控制器、交换设备配置、报文处理方法及系统
CN109802879B (zh) 一种数据流路由方法及装置
CN107483628B (zh) 基于dpdk的单向代理方法及系统
WO2014029287A1 (zh) 隧道负荷分担方法及装置
WO2014169856A1 (zh) 一种组播通信方法和汇聚交换机
WO2014183657A1 (zh) 一种确定下一跳、发布路由信息的方法和装置
CN108900422B (zh) 组播转发方法、装置及电子设备
US10193941B2 (en) Interworking between first protocol entity of stream reservation protocol and second protocol entity of routing protocol
WO2021169254A1 (zh) 一种路由匹配方法、信息发送方法及装置
JP2017503440A (ja) インターフェースパラメーター同期方法及び装置
WO2009094933A1 (fr) Procédé de traitement du tunnel d'un réseau par paquets, système de communication, et appareil associé

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023501186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021837953

Country of ref document: EP

Effective date: 20230208