WO2022007820A1 - 一种上行数据分流方法、终端设备以及芯片系统 - Google Patents

一种上行数据分流方法、终端设备以及芯片系统 Download PDF

Info

Publication number
WO2022007820A1
WO2022007820A1 PCT/CN2021/104869 CN2021104869W WO2022007820A1 WO 2022007820 A1 WO2022007820 A1 WO 2022007820A1 CN 2021104869 W CN2021104869 W CN 2021104869W WO 2022007820 A1 WO2022007820 A1 WO 2022007820A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
data packet
data
terminal device
transmission capability
Prior art date
Application number
PCT/CN2021/104869
Other languages
English (en)
French (fr)
Inventor
林贵斌
孙晓军
钱锋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21836815.7A priority Critical patent/EP4164279A4/en
Priority to US18/014,275 priority patent/US20230300675A1/en
Publication of WO2022007820A1 publication Critical patent/WO2022007820A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • H04W28/0861Load balancing or load distribution among access entities between base stations
    • H04W28/0865Load balancing or load distribution among access entities between base stations of different Radio Access Technologies [RATs], e.g. LTE or WiFi
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an uplink data offloading method, a terminal device, and a chip system.
  • the fifth generation mobile communication technology (5th generation mobile networks, 5G) can support terminal equipment in Africa Upstream distribution is performed in a non-standalone (NAS) network, so that the terminal device can obtain a good data transmission rate.
  • NAS non-standalone
  • Upstream splitting involves the primary path, split threshold (ul-datasplit threshold) and duplication (pdcp-duplication) defined by the 3rd generation partnership project (3GPP) protocol. parameters, but the 3GPP protocol does not specify how to perform upstream offloading so that the terminal device can obtain a good data transmission rate.
  • 3GPP protocol does not specify how to perform upstream offloading so that the terminal device can obtain a good data transmission rate.
  • how to perform offload detection in different communication links and when to start uplink offload are key technical problems to be solved by uplink offload.
  • the transmission capability of different communication links is detected by the terminal equipment transmitting service data packets of actual service content in the communication link.
  • This solution does not take into account the situation that the base station needs to reorder the data packets transmitted by different communication links before they can be transmitted to other network devices.
  • the transmission capability of the communication link is greatly different, the data packet is transmitted slowly on the communication link with poor transmission capability, and the time to arrive at the base station is longer. Therefore, when the terminal device sends service data packets to the base station, the data packets wait for each other, and the data packet reordering takes a lot of time, which leads to a large service delay and poor service experience for users.
  • the present application provides an uplink data offload method, a terminal device, and a chip system, so as to improve the user's service experience during uplink data offload and offload detection.
  • an embodiment of the present application provides an uplink data offloading method, in which after determining that a timer expires, a terminal device according to a long term evolution (long term evolution, LTE) link and a new radio (new radio, NR) link
  • the transmission capacity of the channel determines the data volume of the data packets transmitted on the LTE link and the NR link; wherein, the transmission capacity of the LTE link is determined by the terminal device transmitting the first probe data packet through the LTE link before the timer expires.
  • the transmission capability of the NR link is determined by the terminal device transmitting the second probe data packet through the NR link before the timer expires; the second probe data packet is copied according to the first probe data packet.
  • the terminal device detects the transmission capability of the communication link by sending the same data packets to different communication links, which avoids the phenomenon of data packets waiting for each other, and does not affect the normal transmission of data services and user services.
  • data packets with a specified amount of data are transmitted in different communication links according to the transmission capability of the detected communication link, which can improve the efficiency of data transmission, and this method is more suitable for the service of terminal equipment. need.
  • the terminal device receives the first response information of the first probe data packet, and determines the transmission capability of the LTE link according to the first response information; wherein the first response information includes: the wireless communication of the first network device The moment when the link layer control protocol (radio link control, RLC) layer receives the first probe data packet; and, the terminal device receives the second response information of the second probe data packet, and determines the NR link according to the second response information. Transmission capability; wherein the second response information includes: the moment when the RLC layer of the second network receives the second probe data packet.
  • RLC radio link control
  • the terminal device can determine the transmission capability of the communication link through the response information fed back by the RLC layer of the network device, and can better determine the data transmission capability of the communication link.
  • the transmission capability of the LTE link may be indicated by one of the following indication information: the transmission delay of the first probe data packet in the LTE link; or the transmission delay of the first probe data packet in the LTE link transmission rate on the road.
  • the transmission capability of the NR link can be indicated by one of the following indication information: the transmission delay of the second sounding data packet in the NR link; wherein, the transmission capability of the LTE link and the transmission capability of the NR link are the same.
  • the indicator information for the metric is indicated.
  • the transmission capability of the communication link can be fed back more intuitively through the indication information.
  • the first probe data packet is one of the following data packets: a service data packet generated in response to an operation of an application program on a terminal device by a user; or a service request (SR) packet .
  • SR service request
  • the probe data packet can be either a service data packet generated in response to an operation of an application program on a terminal device by a user, or an SR packet (not an actual service data packet).
  • the packet detects the transmission capability of the communication link, so that the detection result of the communication link is more reliable.
  • the terminal device may determine the allocation rule of the data amount of the data packet according to the proportional relationship between the transmission capacity of the LTE link and the transmission capacity of the NR link;
  • the link transmits packets corresponding to the amount of data.
  • the data amount of the data packet is allocated in proportion to perform data transmission in the communication link, which can improve the transmission efficiency of the data.
  • the terminal device activates the data packet replication mechanism before determining that the timer expires; the terminal device disables the data packet replication mechanism after determining that the timer expires.
  • the communication link transmits different data packets.
  • the terminal device determines the value of the offload threshold in the uplink data offload parameter and the number of data buffers in the packet data convergence protocol (PDCP) layer of the terminal device; then, according to the value of the offload threshold The value, the number of buffers, the transmission capacity of the LTE link, and the transmission capacity of the NR link allocate the data volume of the data packet.
  • PDCP packet data convergence protocol
  • this method When this method performs uplink data offloading, considering the value of the offloading threshold, the number of buffers in the PDCP layer of the terminal equipment, and the transmission capability of different communication links, this method can better improve the data transmission efficiency.
  • an embodiment of the present application provides a terminal device, where the terminal device includes: a processor and a computer storage medium, where the computing and storage medium includes instructions, and when the processor executes the instructions, the terminal makes the terminal The device performs the above method.
  • an embodiment of the present application provides a chip system, which is applied to a terminal device, where the chip system includes an application processor and a baseband processor, wherein: the application processor is configured to: in response to a user's operation, generate a data packet
  • the baseband processor is used for: after determining that the timer times out, according to the transmission capability of the LTE link and the NR link, determine the data volume of the data packet transmitted on the LTE link and the NR link;
  • the transmission capability is determined by the terminal device transmitting the first probe data packet through the LTE link before the timer expires;
  • the transmission capability of the NR link is determined by the terminal device transmitting the second probe data packet through the NR link before the timer expires;
  • the second probe packet is copied from the first probe packet.
  • the baseband processor is further configured to: receive first response information of the first probe data packet, and determine the transmission capability of the LTE link according to the first response information; wherein the first response information includes: The moment when the RLC layer of a network device receives the first probe data packet; and, receives the second response information of the second probe data packet, and determines the transmission capability of the NR link according to the second response information; wherein, the second response information Including: the moment when the RLC layer of the second network device receives the second probe data packet.
  • the transmission capability of the LTE link may be indicated by one of the following indication information: the transmission delay of the first probe data packet in the LTE link; or, the first probe data packet in the LTE link The transmission rate in the link.
  • the transmission capability of the NR link may be indicated by one of the following indication information: the transmission delay of the second sounding data packet in the NR link; or, the transmission rate of the second sounding data packet in the NR link; wherein , the transmission capability of the LTE link and the transmission capability of the NR link are indicated by the indication information of the same measurement index.
  • the first probe data packet is one of the following data packets: a service data packet generated in response to an operation of an application program on a terminal device of a user; or an SR packet.
  • the baseband processor is used to: determine the allocation rule of the data amount of the data packet according to the proportional relationship between the transmission capacity of the LTE link and the transmission capacity of the NR link, and perform the allocation rule on the LTE link according to the allocation rule.
  • the NR link transmits data packets corresponding to the amount of data.
  • the baseband processor is further configured to: activate the data packet replication mechanism before determining that the timer expires; and disable the data packet replication mechanism after determining that the timer expires.
  • the baseband processor is also used to: determine the value of the offload threshold in the uplink data offload parameter and the buffer quantity of data in the PDCP layer of the terminal device; and according to the value of the offload threshold, the buffer quantity, The transmission capacity of the LTE link and the transmission capacity of the NR link allocate the data volume of the data packet.
  • a terminal including: modules/units for executing the above-mentioned first aspect or any possible design method of the first aspect; these modules/units can be implemented by hardware, or can be implemented by hardware Execute the corresponding software implementation.
  • a computer program product comprising instructions, which, when the computer program product is run on a computer, causes the computer to perform the method provided in the first aspect above.
  • a computer storage medium comprising computer instructions, which, when the computer instructions are executed on an electronic device, cause the electronic device to perform the method provided in the above-mentioned first aspect.
  • FIG. 1 is a schematic diagram of a dual connection mode provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an SA networking and an NSA networking architecture provided by an embodiment of the present application
  • FIG. 3 is a first schematic diagram of data distribution provided by an embodiment of the present application.
  • FIG. 4 is a second schematic diagram of data distribution provided by an embodiment of the present application.
  • FIG. 5 is a third schematic diagram of data distribution provided by an embodiment of the present application.
  • FIG. 6 is a first schematic diagram of a communication link transmission capability detection provided by an embodiment of the application.
  • FIG. 8 is a second schematic diagram of a communication link transmission capability detection provided by an embodiment of the application.
  • FIG. 9 is a third schematic diagram of detection of the transmission capability of a communication link provided by an embodiment of the application.
  • FIG. 11a is a first schematic diagram of data packet transmission of different communication links provided by the embodiment of the application.
  • FIG. 11b is a second schematic diagram of data packet transmission of different communication links provided by the embodiment of the application.
  • FIG. 12 is a first schematic diagram of a flow of uplink data offloading provided by an embodiment of the application.
  • FIG. 13 is a second schematic diagram of a flow of uplink data offloading provided by the embodiment of the application.
  • FIG. 14 is a schematic diagram of a test result of uplink data offloading provided by the embodiment of the application.
  • 15 is a schematic diagram of a chip system provided by an embodiment of the application.
  • FIG. 16 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • the terminal involved in this application includes a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal may communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • the terminal may include user equipment (UE), wireless terminal, mobile terminal, subscriber unit (SU), subscriber station (SS), mobile station, mobile station, remote station, access point ( access point, AP), remote terminal, access terminal, user terminal, user agent, or user equipment, etc.
  • it may include mobile phones (or “cellular” phones), computers with mobile terminals, portable, pocket-sized, hand-held, computer-built-in mobile devices, smart wearable devices, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing power, etc.
  • information sensing devices such as barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • the terminal may also be a wearable device or the like.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • vehicle-mounted terminals if located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminals, and the vehicle-mounted terminal is also called, for example, an on-board unit (on-board unit, OBU).
  • OBU on-board unit
  • the apparatus for implementing the function of the terminal may be a terminal device, or may be an apparatus capable of supporting the terminal device to implement the function, such as a chip system, and the apparatus may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device involved in this application may be a device for communicating with a terminal.
  • a network device may be referred to as a RAN device, such as an access network (access network, AN) device, a base station (eg, an access point); it may also refer to an access network through one or more air interfaces in the access network.
  • a device that communicates with a wireless terminal in a cell, or, for example, a network device in a vehicle wireless communication technology (vehicle to X, V2X) is a road side unit (RSU).
  • the base station can be used to convert received air frames to and from internet protocol packets, acting as a router between the terminal and the rest of the access network, which can include an internet protocol (IP) network .
  • IP internet protocol
  • the RSU may be a fixed infrastructure entity supporting V2X applications, and may exchange messages with other entities supporting V2X applications.
  • the network device can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolutional Node B (eNB) in the LTE system or long term evolution-advanced (LTE-A), or may also include a next-generation Node B (next generation) in the NR system.
  • generation node B, gNB or may also include a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, Cloud RAN) system, the embodiment of the present application Not limited.
  • the apparatus for implementing the function of the network device may be the network device, or may be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the apparatus for realizing the function of the network device is a network device.
  • system and “network” in the embodiments of this application may be used interchangeably.
  • “Plurality” means two or more, and other quantifiers are similar.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple.
  • the singular expressions "a”, “an”, “the”, “above”, “the” and “the” are intended to also include such expressions as “one or more” unless the context clearly dictates otherwise. to the contrary.
  • references to "one embodiment” or “some embodiments” and the like described in the specification of this application mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • connection in the embodiment of the present application refers to various connection modes such as direct connection or indirect connection, so as to realize the communication between devices, which is not limited in the embodiment of the present application.
  • DC refers to the operation mode of the terminal device in the radio link control layer (radio resource control layer, RRC) connected state, and the terminal device is configured with a master cell group (master cell group, MCG) and a secondary cell group (secondary cell group, SCG), which provides performance solutions under non-ideal transmission conditions between base stations.
  • RRC radio resource control layer
  • MCG master cell group
  • SCG secondary cell group
  • 4G 4th generation mobile networks
  • NR new radio
  • the LTE eNB base station and the NR gNB base station can transmit data to each other, and the UE can transfer data through the LTE link.
  • the data is sent to the eNB base station, and the UE can also send the data to the gNB base station through the NR link.
  • FIG. 2 shows a schematic diagram of SA networking and NSA networking architecture.
  • the SA networking is relatively simple, and the NR base station is directly connected to the core network (for example, the 5G core network).
  • the core network for example, the 5G core network.
  • the terminal sends uplink data to the NR base station, and the NR base station sends the uplink data to the core network.
  • the core network sends the downlink data to the NR base station, and the NR base station sends the downlink data to the terminal.
  • NSA networking can have various networking modes, for example, including Option3/3a/3x, Option4/4a, Option7/7a/7x and other possible modes.
  • the 4G base station (eNB) is the master base station
  • the 5G base station (gNB) is the slave base station
  • the LTE core network is used.
  • the transmission of data flow corresponds to three ways: eNB can offload data to gNB (ie Option3), or LTE core network (evolved packet core, EPC) can offload data to gNB (ie Option3a), or The gNB can offload the data to the eNB (ie Option3x).
  • the eNB is the main base station, and all control plane signaling is forwarded by the eNB.
  • LTE eNB and NRgNB provide users with high data rate services in the form of dual links.
  • Option 4 introduces both NGC (Next Generation Core) and gNB.
  • the gNB does not directly replace the eNB.
  • the core network adopts the 5G NGC, and both the eNB and the gNB are connected to the NGC. All control plane signaling is forwarded by the gNB, and there are two ways to transmit the data connection: the gNB offloads the data to the eNB, and the NGC offloads the data to the eNB.
  • the DC in the 4G-5G standard indicates that the UE maintains dual connections with the 4G base station and the 5G base station at the same time, and uses the wireless resources of the two base stations for service transmission.
  • a split bearer mode also referred to as a data offload mode
  • the control plane is carried on the master station, and the data can be carried on the master station and the auxiliary station. According to the distribution of data on the master station and the auxiliary station, it can be divided into the following four DC bearer types:
  • the data streams are separated and combined at the PDCP layer, and then the data streams are simultaneously transmitted to the terminal equipment through multiple base stations.
  • one PDCP entity can be associated with two RLC entities.
  • the PDCP layer transmits the data stream to the RLC layer through the RLC1 entity and the RLC2 entity link.
  • the RLC1 link can be understood as an LTE link
  • the RLC2 link can be understood as an NR link
  • each RLC entity corresponds to the LTE air interface and the NR air interface respectively.
  • the PDCP data flow will send PDCP packets over the air interfaces of LTE and NR respectively according to the obtained authorization.
  • This method can be called the MCG Split bearer mode.
  • MCG bearer data is only transmitted on the master station.
  • SCG bearer data is only transmitted on the secondary station.
  • each RLC entity may correspond to at least one bearer link, and in some embodiments, the RLC layer may also have multiple RLC entities.
  • the LTE eNB is the master station
  • the gNB is the secondary station
  • the data is aggregated at the NR PDCP layer.
  • One NR PDCP entity can be associated with two RLC entities, the corresponding NR RLC layer and RLC layer.
  • the data is on the auxiliary bearer Upstream splitting, this method is called SCG Split bearer (data splitting at the secondary station).
  • the LTE-NR dual-connection regulation can also be carried by the SCG separately, that is, the downlink
  • the data stream can be transmitted from the 5G slave station to the 4G master station, and then to the mobile phone.
  • the data flow may be distributed and transmitted according to a certain predefined strategy.
  • the data flow may be evenly distributed to the two links; in some embodiments, the data flow may be transmitted to the two links according to the link quality; in some embodiments, if the data flow transmitted by PDCP If the value of is less than the threshold value of offload transmission, it is transmitted on the primary bearer, such as link 1 shown in FIG. 5 .
  • the link 1 and the link 2 in the figure are for the convenience of description and are not intended to limit the present application.
  • the UE in this application may be any application-type electronic device used by consumers.
  • user devices include, but are not limited to, smartphones, tablets, televisions, projectors, smart watches, smart glasses (eg, Google Glass), wearable gadgets (eg, smart watches, t-shirts, necklaces, or shoes) , media (eg, music and/or video) players, game consoles, game consoles and controllers, e-book readers, cloud terminals, or in-vehicle media systems.
  • the user device may be a wearable device (eg, a smart watch or smart glasses) or a non-wearable device (eg, a TV or tablet).
  • the user equipment may have any suitable operating system (OS), such as Android, iOS, Windows, Linux, Unix, and the like.
  • OS operating system
  • the user equipment can support a variety of mobile communication technologies of different standards, including 2G/3G/4G/5G, and can also support wireless broadband (wireless fidelity, WiFi), Bluetooth, and the like.
  • the RLC layer has an RLC1 entity and an RLC2 entity, wherein the RLC1 entity supports LTE data transmission, the RLC2 entity supports NR data transmission, and the media access control (media access control, MAC ) layer has MAC 1 entity, MAC 2 entity, of which MAC 1 entity supports LTE data transmission, MAC2 entity supports NR data transmission, physical (physical, PHY) layer has PHY1 entity, PHY2 entity, of which PHY1 entity supports LTE data For transmission, the PHY2 entity supports NR data transmission, but this application does not limit it. Take the above line data as an example. When the upper layer data is transmitted to the PDCP layer, the data packet has a serial number (SN).
  • SN serial number
  • the SN number is added when the data is transmitted to the PDCP layer. Under normal circumstances, downlink PDCP data packets will arrive in ascending order of SN numbers. If the PDCP packets received by the receiver are continuous, they will be directly delivered to the upper-layer application.
  • PDCP In the Split mode, when the upper layer data is transmitted to the PDCP layer, PDCP needs to split the data. In some cases, for example, if the quality of a certain link is not good, the transmitted PDCP packets cannot be transmitted to the peer end in time. , at this time, because the receiving end cannot obtain continuous PDCP data packets, there will be a problem that another link waits for PDCP packets. Conversely, if the quality of the other link is not good, the same problem will exist.
  • the signal quality of the communication link, the communication bandwidth of the communication link, and the number of other network users (users transmitting data through the communication link) in the communication link all affect the data transmission capability of the communication link.
  • the terminal device can allocate data packets according to the transmission capability of the communication link to improve data transmission. rate.
  • Case 1 The transmission capability of the communication link is detected through different service data packets.
  • the UE can divide the service data in the PDCP layer into data packets L1 and data packets L2, and transmit them in the LTE link and the NR link respectively , for example, the data packets in the PDCP layer include pictures to be uploaded, video data, audio data, and text data.
  • the data may be divided into 100 sub-data packets, and each sub-data packet is numbered in sequence.
  • the UE sends different sub-data packets on the LTE link and the NR link, thereby realizing the detection of the transmission capability of the communication link.
  • the packet L1 may include: sub-packet 1, sub-packet 3, sub-packet 5, sub-packet 7, and sub-packet 9 ;
  • the data packet L2 may include: sub-data packet 2, sub-data packet 4, sub-data packet 6, sub-data packet 8, and sub-data packet 10.
  • how to allocate the number or size of sub-packets in the data packet L1 and the data packet L2 is not specifically limited here. It can be allocated according to the signal quality and transmission delay of the communication link, or it can be allocated randomly, as long as the data packets are guaranteed The contents of the sub-packets in L1 and the data packet L2 only need to be inconsistent.
  • the sub-packets 1-4 may also be included in the data packet L1, and the sub-packets 5-10 may be included in the data packet L2.
  • the size of the data volume of each sub-packet in the data packet L1 and the data packet L2 is not specifically limited here. Therefore, the data volume of the data packet L1 used to detect the transmission capability of the communication link can be 1M bit.
  • the data volume of the packet L2 may be 3M bits; or, the data volume of the data packet L1 and the data packet L2 are both 2M bits.
  • the data packet L1 is sequentially transmitted on the RLC entity, MAC entity and PHY entity of the LTE link on the UE side, it arrives at the first network device (LTE base station), and in the LTE link of the first network device, the data packet L1
  • the PHY entity, the MAC entity and the RLC entity are parsed in sequence
  • the data packet L2 is transmitted in sequence by the RLC entity, MAC entity and PHY entity of the NR link on the UE side, it arrives at the second network device (NR base station), and in the second In the NR link of the network device, the data packet L2 is parsed in sequence by the PHY entity, the MAC entity and the RLC entity.
  • the UE can easily determine the transmission capability of the LTE link according to the transmission time of the data packet L1 and the time at which the first network device receives the data packet L1, and can also determine the transmission capability of the NR link in the same way.
  • the transmission capability of the LTE link can be represented by the transmission delay T1 or the transmission rate V1 of the RLC layer of the first network device
  • the transmission capability of the NR link can be represented by the transmission capability of the RLC layer of the second network device It is represented by the time delay T2 or the transmission rate V2, and can also be represented by other parameters used to indicate the transmission capability, which is not specifically limited here.
  • the time for the data packet L1 to reach the RLC layer of the first network device is 1S, then the transmission delay of the LTE link is 1S; the time for the data packet L1 to reach the RLC layer of the second network device is 5S, then the NR chain Therefore, it can be seen that the transmission capacity of the LTE link is stronger than that of the NR link, which is about 5 times that of the NR link.
  • the rate test of the data packet L1 at the RLC layer of the first network device is 0.5Mbps, then the transmission rate of the LTE link is 0.5Mbps; the rate test of the data packet L1 at the RLC layer of the second network device is 0.1Mbps, Then, the transmission rate of the NR link is 0.1 Mbps.
  • the transmission capability of the LTE link is higher than that of the NR link, which is about 5 times that of the NR link.
  • the transmission capacity of the LTE link and the transmission capacity of the NR link are indicated by the indication information of the same measurement index, that is, the transmission capacity of the communication link is either measured by the transmission delay, or the communication is measured by the transmission rate.
  • the transmission capacity of the link Specifically, executable:
  • Step 601 The UE sends the data packet L1 to the first network device through the LTE link.
  • Step 602 The UE sends the data packet L2 to the second network device through the NR link.
  • Step 603 The first network device receives the data packet L1.
  • Step 604 The first network device sends first response information after receiving the data packet L1 to the UE, where the first response information may be time information when the data packet L1 arrives at the RLC layer of the first network device.
  • Step 605 The second network device receives the data packet L2.
  • Step 606 The second network device sends second response information after receiving the data packet L2 to the UE, where the second response information may be the time information when the data packet L2 arrives at the RLC layer of the second network device.
  • Step 607 The UE determines the transmission capability of the LTE link according to the first response information.
  • Step 608 The UE determines the transmission capability of the NR link according to the second response information.
  • steps 601 and 602 are executed in no particular order
  • steps 607 and 608 are executed in no particular order
  • the steps executed by the first network device and the steps executed by the second network device are in no particular order. There is no distinction in the order of execution, and can be executed simultaneously, or the steps on the first network device side are executed first and then the steps on the second network device side are executed, or the steps on the second network device side are executed first and then the first network device is executed. steps on the device side.
  • the PDCP entity of the UE includes service data 1, and the service data 1 is divided into sub-packet 1 and sub-packet 2.
  • the UE transmits the 100Kbit data packet L1 through the LTE link (the data packet L1 only includes: sub-data packet 1), and transmits the 200K bit data packet L2 through the NR link (the data packet L2 only includes: the sub-data packet 2), if the LTE The transmission capacity of the link is stronger than that of the NR link.
  • the data packet L1 reaches the eNB base station after 20mS
  • the data packet L2 reaches the gNB base station after 50mS.
  • the gNB base station transmits the data packet L2 to the eNB base station.
  • the data packet L1 and the data packet L2 are rearranged, and the rearranged data is sent up to other network devices, so that the other network devices can obtain the service data 1 .
  • the time for other network devices to finally obtain service data 1 may exceed 50mS, but if the data packets L1 and L2 are exchanged for communication links for transmission, the time for other network devices to obtain service data 1 may be shorter. . Therefore, this method detects the data transmission capability of the communication link by randomly assigning data packets for transmission in the communication link. Although the data transmission capability of different links can be detected, it cannot truly match the transmission capability of the link. Affect the user's business experience.
  • Case 2 The transmission capability of the communication link is detected through the same actual service data packets.
  • the data packet of the actual service is a service data packet generated in response to the user's operation of the application program in the UE, such as: a video data packet generated by the UE in response to a video upload operation clicked by the user in an application program or a UE response
  • the image data package generated when the user clicks on the image upload operation in an application is transmitted by the UE on the LTE link and the NR link, that is, the data packet L1 is transmitted in the LTE link, and the same data packet L1 is also transmitted in the NR link.
  • the same data packet L1 transmitted by the different communication links can be obtained by duplication.
  • data is buffered in the PDCP layer of the UE, and it is assumed that the data is divided into 10 sub-data packets, and the 10 sub-data packets can be regarded as data packets L1 and transmitted respectively on the LTE link and the NR link.
  • the arrival time of the data packet L1 will be fed back.
  • the data packet L1 reaches the RLC layer of the NR link of the second network device, it will also Feedback the arrival time of the data packet L1.
  • the UE can easily determine the transmission capability of the LTE link according to the transmission time of the data packet L1 and the time at which the first network device receives the data packet L1, and can also determine the transmission capability of the NR link in the same way.
  • the UE transmits a 1M bit data packet through the LTE link.
  • L1 the 1M bit data packet L1 is transmitted through the NR link, but the transmission capacity of the LTE link is higher than that of the NR link.
  • the data packet L1 reaches the first network device after 0.6S, and the data packet L1 reaches the first network device after 0.2S.
  • the first network device directly discards the data packet L1. Therefore, the time for the first network device to obtain the service data is about 0.2S. Specifically, refer to the following steps to perform:
  • Step 801 The UE sends the data packet L1 to the first network device through the LTE link.
  • Step 802 The UE sends the data packet L1 to the second network device through the NR link.
  • Step 803 The first network device receives the data packet L1.
  • Step 804 The first network device sends first response information after receiving the data packet L1 to the UE, where the first response information may be time information when the data packet L1 arrives at the RLC layer of the first network device.
  • Step 805 The second network device receives the data packet L1.
  • Step 806 The second network device sends second response information after receiving the data packet L1 to the UE, where the second response information may be time information when the data packet L2 arrives at the RLC layer of the second network device.
  • Step 807 The UE determines the transmission capability of the LTE link according to the first response information.
  • Step 808 The UE determines the transmission capability of the NR link according to the second response information.
  • steps 801 and 802 are executed in no particular order
  • steps 807 and 808 are executed in no particular order
  • the steps executed by the first network device and the steps executed by the second network device are in no particular order. There is no distinction in the order of execution, and can be executed simultaneously, or the steps on the first network device side are executed first and then the steps on the second network device side are executed, or the steps on the second network device side are executed first and then the first network device is executed. steps on the device side.
  • the terminal device can detect the data transmission capability of the two communication links without affecting the normal transmission of the data service and the service experience of the user.
  • Case 3 The transmission capability of the communication link is detected through the SR packet.
  • this application also proposes to use the SR packet to detect the transmission capability of the communication link.
  • the SR packet is not the service that the UE wants to obtain, but only It is a virtual service data packet used to detect the data transmission capability of different communication links.
  • the same SR packet can be transmitted in different communication links, or different SR packets can be transmitted, for example: LTE link transmits SR1, and NR link also transmits SR1; Or SR2 is transmitted in the LTE link, and SR1 is transmitted in the NR link.
  • the types and quantities of SR packets that are specifically transmitted in different communication links are not specifically limited here. Any scheme that uses SR packets to detect the transmission capability of the communication link is not limited. The scope of protection applicable to this application.
  • this application takes the LTE link and the NR link transmitting the same SR packet as an example for description, which can be performed with reference to the steps shown in FIG. 9 :
  • Step 901 The UE sends SR1 to the first network device through the LTE link.
  • Step 902 The UE sends SR1 to the second network device through the NR link.
  • Step 903 The first network device receives SR1.
  • Step 904 The first network device sends the first response information after receiving the SR1 to the UE, where the first response information may be the time information when the SR1 arrives at the RLC layer of the first network device.
  • Step 905 The second network device receives SR1.
  • Step 906 The second network device sends the second response information after receiving the SR1 to the UE, where the second response information may be the time information when the SR1 arrives at the RLC layer of the second network device.
  • Step 907 The UE determines the transmission capability of the LTE link according to the first response information.
  • Step 908 The UE determines the transmission capability of the NR link according to the second response information.
  • any one of the first network device and the second network device receives SR1 and directly demodulates SR1, and directly discards SR1 when it receives SR1 again. .
  • steps 901 and 902 are executed in no particular order
  • steps 907 and 908 are executed in no particular order
  • the steps executed by the first network device and the steps executed by the second network device are in no particular order. There is no distinction in the order of execution, and can be executed simultaneously, or the steps on the first network device side are executed first and then the steps on the second network device side are executed, or the steps on the second network device side are executed first and then the first network device is executed. steps on the device side.
  • the terminal device may refer to FIG. 10 and perform the following steps to perform uplink offloading:
  • Step 1001a Before determining that the timer expires, the terminal device sends the first probe data packet to the first network device through the LTE link.
  • Step 1001b Before determining that the timer expires, the terminal device sends a second probe data packet to the second network device through the NR link. Wherein, the second probe data packet is copied according to the first probe data packet.
  • the timer is used to record the time when the terminal device detects the data transmission capability. Before the timer expires, the data packets sent by the terminal device are used to detect the data transmission capability of the communication link. Usually, the timing of the timer is 10-15S, but because the device performance of different terminal devices is not completely consistent, the duration is not fixed. This application does not limit the specific value of the timer timing duration. The specific timing duration value needs to be determined according to the terminal. device performance. After the timer expires, the terminal device has acquired the data transmission capability of the communication link, and can allocate the data volume of the service data according to the data transmission capability of the communication link, so as to improve the user's communication rate experience.
  • the information contained in the first probe data packet and the second probe data packet is the same. It should be noted that, if a large number of sub-data packets are buffered in the PDCP layer of the terminal device, the first detection data packet is not limited to only one sub-data packet in the sub-data packets of multiple actual services buffered in the PDCP layer, It can also be multiple sub-packets. In addition, the first detection data packet may also be an SR packet, and the above description can be referred to, and details are not repeated here. For example, there are 100 sub-data packets buffered in the PDCP layer of the terminal device, and the first detection data packet can be 1 sub-data packet or 10 of them. The number of packages is limited.
  • the 5 sub-data packets are video data packet 1, image data packet 1, video data packet 2, image data packet 2, and text data packet respectively 1.
  • the first data packet can be a video data packet 1.
  • the terminal device copies a copy of the video data packet 1 to obtain a second data packet, wherein the first data packet (video data packet 1) is transmitted in the LTE link, and the second data packet is transmitted in the LTE link.
  • the packet (Video Packet 1) is transmitted in the NR link.
  • 11b shows that the terminal device sends the first data packet (SR packet) through the LTE link, and simultaneously sends the second data packet (SR packet) through the NR link, wherein the first data packet (SR packet) and the second data packet
  • the package (SR package) is the same.
  • Step 1002a The terminal device determines the transmission capability of the LTE link according to the transmission situation of the first probe data packet on the LTE link.
  • Step 1002b The terminal device determines the transmission capability of the NR link according to the transmission situation of the second probe data packet on the NR link.
  • Step 1003a After determining that the timer expires, the terminal device determines the data volume of the data packet sent in the LTE link according to the transmission capabilities of the LTE link and the NR link.
  • Step 1003b After determining that the timer expires, the terminal device determines the data volume of the data packet sent in the NR link according to the transmission capabilities of the LTE link and the NR link.
  • the terminal device After the terminal device detects the transmission capability of the communication link, it learns that the transmission capability of the LTE link is 5 times that of the NR link, then after the terminal device detects, the service data initiated by the user again is 24M bit, then the 20M bit is transmitted in the LTE link, and 4M bit is transmitted in the NR link, that is, the third data packet is 20M bit, and the fourth data packet is 4M bit.
  • the service data is 24M bit, but there are 100 data packets in the PDCP layer of the terminal device, and the data packets are 150K bit, 100K bit, 200K bit, 300K bit, 60K bit in size.
  • the terminal device When the terminal device obtains the transmission capability of the communication link, it can transmit two 150K bit data packets (a total of 300K bits of data) in the LTE link at the first mS, and one 60K bit in the NR link. bit data packets (a total of 60K bits of data), that is, the 1mS transmits data at a rate of 5:1. After the network device obtains the data, it will feed back the transmission status of the first mS data packet on each communication link, and the terminal device can adjust the transmission strategy in real time. If the transmission delay of the LTE link becomes weaker than before at the 1mS, then the packet allocation strategy can be adjusted according to the transmission situation of the 1mS during the 2mS transmission, and two 200K bit data can be transmitted in the LTE link.
  • Packet (a total of 400K bits of data), and a 100K bit data packet (a total of 100K bits of data) is transmitted on the NR link, that is, the 2mS transmits data at a ratio of 4:1.
  • the terminal After detecting the transmission capability of the communication link, the terminal dynamically adjusts the data volume of the data packet in each communication link according to the transmission status of the data packet in the communication link in the previous period during the actual data transmission process, so as to be more suitable. The demand of terminal equipment, and can improve the data transmission rate.
  • the terminal device may send the same data packet to the network device by activating the data packet duplication (Duplication) mechanism.
  • Duplication duplication
  • the terminal device After any network device receives the data packet for the first time, it demodulates the data packet to obtain the data, and when it receives the data packet with the same content for the second time, it does not demodulate and directly discards it.
  • the terminal device After the first timer expires, the terminal device can turn off the Duplication mechanism, so that when the terminal device sends different content data packets through different communication links, it can be normally demodulated by the network device.
  • the detection the detection is performed by sending data packets with the same content, which can ensure the user's service experience. After the detection is completed, data upstream distribution is realized by transmitting data packets with different content on different communication links. This method can improve the user experience. business experience.
  • the terminal device activates the Duplication mechanism before the timer expires and sends data packets containing the same information to the network device in the LTE link and the NR link respectively, and obtains the The transmission capability of the LTE link and the transmission capability of the NR link.
  • the transmission capability is indicated by the transmission delay, and the implementation is not described in detail here. If the transmission delay of the LTE link is 100mS and the transmission delay of the NR link is 20mS, it can be seen that the transmission capacity of the NR link is about 5 times that of the LTE link.
  • the proportional relationship between the capacity and the transmission capacity of the NR link determines the allocation rule of the data volume of the data packet, that is, the ratio of the data volume transmitted by the NR link to the data volume transmitted by the LTE link is 5:1.
  • the communication link of the communication link performs data transmission according to the data volume of the data packet configured in the allocation rule, so that the user can obtain a good communication rate experience.
  • the service data has a total of 12M bits. Since the transmission capacity of the above NR link is about 5 times that of the LTE link, it is possible to transmit 10Mbit data packets in the NR link and 2Mbit in the LTE link. the data package. In order to facilitate the description of the solution of the present application, after the timer expires, the data amount is allocated proportionally according to the transmission capability of the NR link and the transmission capability of the LTE link to describe the detection of the transmission capability of the communication link by the terminal device. Upstream data offload.
  • One detection timing is the detection of the communication link transmission capability performed by the terminal device during initial network access.
  • the initial network access can be understood as after the mobile phone is turned off. to exit Airplane Mode after restarting or turning Airplane Mode off.
  • Another detection opportunity that is, when the user initiates a service through the terminal device, the service is determined by the terminal device by judging the type of the data packet, and the data packet is transmitted through 4G or 5G.
  • the terminal device performs the transmission capability detection of the communication link in response to the image transmission operation clicked by the user on the instant messaging application installed in the terminal device, that is, the terminal device responds to the user's operation in the terminal device.
  • the transmission capability of the communication link is detected.
  • another detection timing is included, that is, when a certain set time point is reached, the detection needs to be performed. For example, if the set duration is 5 minutes, the terminal device performs a detection every 5 minutes.
  • the terminal device after the terminal device has detected the transmission capability of the communication link after initial network access, the terminal device initiates a service for the first time in response to a user operation, and the terminal device does not need to perform further detection.
  • the terminal device simultaneously initiates multiple services in response to user operations within a preset time period, and the terminal device does not need to perform re-detection. After a certain detection, the terminal device has not sent any business, you need to probe again. For example: when the user is on a plane, the mobile phone is set to the airplane mode. After getting off the plane, the user turns off the airplane mode of the mobile phone.
  • the terminal device needs to re-connect to the data network in response to the user's operation of turning off the flight model. At this time, the terminal device will Detect the transmission capability of the communication link, and after the detection, obtain detection result 1.
  • the terminal device responds to the user's operation of uploading a 5Mbit picture to the instant messaging software application, it starts the uplink data offloading scheme to transmit data according to the detection result 1. .
  • the terminal device responds to the user uploading the short video to the instant messaging software application, and still starts the uplink offloading scheme to transmit data according to the detection result 1 at this time.
  • the data package is sent to the customer through the mobile phone. At this time, the terminal device detects the transmission capability of the communication link again in response to the user's operation, and obtains the detection result 2.
  • the detection may also be a periodic detection, and the period may be set to 5 minutes or 10 minutes, and the specific duration is not specifically limited here. For example: Assuming that the detection period is 5 minutes, the user turns on the mobile phone at 8:00 in the morning. At this time, the transmission capacity of the communication link needs to be detected. At 8:05, the transmission capacity of the communication link is detected again, followed by 8: 10, 8:15, 8:20, 8:25, etc., not listed here.
  • the above three detection timings can also be combined to flexibly determine the detection timing of the communication link of the terminal equipment. 5 minutes, but when the time point of the detection period is reached, the mobile phone has just performed a detection of the transmission capability of the communication link, so there is no need to perform detection at the time point corresponding to the detection period.
  • the terminal device After the terminal device initially accesses the network, it can first obtain the upstream split parameters, primary path, ul-datasplit threshold and pdcp-duplication configured by the base station according to 3GPP protocol 38.331.
  • the base station can be configured in the following ways:
  • primary path represents the transmission main path for uplink data split
  • cellGroup represents the cell parameter used as the main transmission path
  • logicalChannel represents the logical channel supported by the main transmission path
  • ul-datasplitthreshold represents the uplink data packet distribution threshold threshold
  • pdcp-duplication represents Whether to support replication.
  • the duplication mechanism can be activated at this time, and data packets with the same content are sent on the NR link and the LTE link respectively to detect the transmission capability of the communication link, that is, send the initial network access. Then send the data packet of the first service to be executed to the base station, detect the transmission delay or transmission rate of the two communication links, or send an SR request packet to the base station when no service occurs, and detect the transmission time of the two communication links. delay or transmission rate. After the terminal acquires the transmission capabilities of the two communication links, it stores the detection result.
  • upstream offloading can be performed in different ways.
  • the specific implementation can be divided into:
  • Case 1 The ul-datasplitthreshold of the uplink data packet is configured with a specific value.
  • the terminal device may decide whether to start the upstream split according to the buffered quantity of service data in the PDCP layer and the ul-datasplitthreshold. If the amount of PDCP data does not exceed the offloading threshold, the offloading is not performed, that is, the uplink data is transmitted through the primary path; if the amount of PDCP data exceeds the offloading threshold, the offloading is started.
  • service data is simultaneously transmitted according to the proportion. For example, the offload threshold of the uplink data packet is 20M bit, the primarypath is MCG, and the detection result is that the transmission capacity of the LTE link is 4 times that of the NR link.
  • the data can be transmitted directly through the MCG; when the amount of data buffered in the PDCP is 25M bits, and the amount of data exceeds the shunting threshold, the data can be distributed according to the ratio of 4:1, that is, the MCG transmits 20M bits. Bit data volume, SCG transmits 5M bit data volume, and transmits data together. Specifically, it can be performed with reference to the schematic flowchart of uplink data offloading shown in FIG. 12 :
  • Step 1201 The terminal equipment initially accesses the network and obtains the upstream distribution parameters. Wherein, the upstream distribution parameter is sent by the network device.
  • Step 1202 The terminal device activates the Duplication mechanism.
  • Step 1203a The terminal device sends the first probe data packet to the first network device.
  • Step 1203b The terminal device sends the second probe data packet to the second network device.
  • Step 1204a The terminal device receives the first response information of the first probe data packet fed back by the first network device, and determines the transmission capability of the LTE link according to the first response information.
  • Step 1204b The terminal device receives the second response information of the second probe data packet fed back by the second network device, and determines the transmission capability of the NR link according to the second response information.
  • Step 1205 The terminal device closes the Duplication mechanism.
  • Step 1206 The terminal device determines whether the buffered amount of data in the PDCP layer exceeds the offload threshold; if so, executes step 1207; if not, executes step 1208.
  • Step 1207 The terminal device transmits the data according to the transmission capacity of the communication link.
  • Step 1208 The terminal device does not use upstream split to send data.
  • the terminal device can autonomously initiate upstream offloading according to the buffered quantity of service data in the PDCP layer and the service type, wherein the service type is determined by the indication information contained in the data packet, and the The indication information is used to indicate whether the data packet is a data packet generated by some specific services.
  • the terminal device can determine the execution timing of the upstream offloading according to the buffered quantity of the service data in the PDCP layer and the service type displayed according to the indication information.
  • the primary path is MCG
  • the detection result is that the transmission capacity of the LTE link is 4 times that of the NR link, when the amount of data buffered in PDCP is 15M bit, and the service type is instant messaging, the signal coverage is better.
  • the chat data When the chat data is transmitted in the place (such as: the operator's data center, near the signal transmission tower), the traffic data can be directly transmitted through the MCG; when the amount of data buffered in the PDCP is 15M bit, the service type is instant messaging
  • the tool transmits chat data in places with poor signal coverage (such as railway stations, airports, and mountainous areas), it needs to transmit business data through MCG and SCG; when the amount of data buffered in PDCP is 15M bit, the business type is complex business (For example: games, artificial intelligence (AI), virtual reality (VR) rendering), business data needs to be distributed and transmitted through MCG and SCG; when the amount of data cached in PDCP is 25M bit, no matter the business type It is necessary to transmit service data through MCG and SCG offloading. Specifically, it can be performed with reference to the schematic flowchart of the upstream split shown in FIG. 13 :
  • Step 1301 The terminal equipment initially accesses the network and obtains the upstream distribution parameters. Wherein, the upstream distribution parameter is sent by the network device.
  • Step 1302 The terminal device activates the Duplication mechanism.
  • Step 1303a The terminal device sends the first probe data packet to the first network device.
  • Step 1303b The terminal device sends the second probe data packet to the second network device.
  • Step 1304a The terminal device receives the first response information of the first probe data packet fed back by the first network device, and determines the transmission capability of the LTE link according to the first response information.
  • Step 1304b The terminal device receives the second response information of the second probe data packet fed back by the second network device, and determines the transmission capability of the NR link according to the second response information.
  • Step 1305 The terminal device closes the Duplication mechanism.
  • Step 1306 The terminal device determines the buffered quantity of data in the PDCP layer and/or whether the service type of the data packet meets the offload requirement; if yes, executes step 1307; if not, executes step 1308.
  • Step 1307 The terminal device transmits the data according to the transmission capacity of the communication link.
  • Step 1308 The terminal device does not use upstream offload to send data.
  • the terminal device in the uplink offloading manner provided in FIG. 13 can independently determine the offloading timing, thereby increasing the data communication transmission rate and improving the user experience.
  • the test results obtained are shown in Figure 14, in which curve 1 represents the transmission of service data on the NR link when the upstream splitting solution is not used. rate, curve 2 represents the transmission rate of service data on the LTE link when the uplink offload scheme is not used, and curve 3 represents the service data transmission rate when the uplink offload scheme is used.
  • curve 1 represents the transmission of service data on the NR link when the upstream splitting solution is not used.
  • curve 2 represents the transmission rate of service data on the LTE link when the uplink offload scheme is not used
  • curve 3 represents the service data transmission rate when the uplink offload scheme is used.
  • An embodiment of the present application further provides a chip system.
  • the chip system 1000 shown in FIG. 15 includes an application processor 1002 (application processor, AP) and a baseband processor 1004 (baseband processor, BP).
  • MAP multimedia application processor
  • Application processors are mainly divided into three categories, which can include comprehensive processors, multimedia processors and single media processors.
  • a full-scale processor not only has the functions of a multimedia application processor, but also can run a complex operating system like linux. Graphics and other media.
  • a single multimedia processor refers to a processor that handles one medium, usually only for image or sound.
  • the baseband processor is an important part of the system chip, equivalent to a protocol processor, responsible for data processing and storage, mainly composed of digital signal processor (digital signal processor, DSP), microcontroller (micro controller unit, MCU) It is composed of units such as memory (such as flash, flash memory), and its corresponding main functions are responsible for baseband coding or decoding, voice coding and speech coding.
  • DSP digital signal processor
  • MCU microcontroller unit
  • baseband processors not only support multiple communication standards (eg, GSM, LTE, CDMA, etc.), but also provide multimedia functions and provide communication interfaces for multimedia displays, image sensors, and audio equipment.
  • the software usually supported by the application processor AP to run includes an operating system, a user interface, and an application program.
  • the baseband processor BP can be regarded as a wireless modem module, which is responsible for coordinating and controlling the communication between the BP, the base station and the AP.
  • the software it supports includes the communication control software for the baseband modem.
  • the application processor AP and the baseband processor BP support mutual communication by using a preset interface technology, and the interface technology can be customized for the system, for example, it includes but is not limited to serial peripheral interface (SPI, SPI). ), universal asynchronous receiver/transmitter (UART), universal serial bus (USB), general purpose input/output (GPIO) and other interface technologies.
  • the application processor and the baseband processor can implement mutual communication transmission in the form of messages through control commands, so as to complete functions such as calls, short messages, and mobile Internet access.
  • the control command may include a traditional AT (attention) command, a mobile broadband interface model (mobile broadband interface model, MBIM) command, or other protocol commands that support mutual transmission between the AP and the BP.
  • the baseband processor BP supports running protocol software related to the non-access NAS layer and the radio resource control RRC layer.
  • the application processor AP supports communication with the NAS layer and the RRC layer in the baseband processor BP.
  • the application processor AP may use traditional AT commands to send corresponding signaling messages to the NAS layer, so as to notify the NAS layer of information such as application status or device screen status that the current AP knows.
  • a system-on-chip usually refers to a highly complex system-on-chip, such as an SOC chip. In actual deployment, it can be deployed inside the device or outside the device, and the device can be controlled through wired or wireless connections.
  • the device includes but is not limited to user equipment UE or terminal device, for example, it may specifically include a smart phone, mobile internet devices (mobile internet devices, MID), wearable smart devices or other devices that support network communication, etc.
  • the system-on-a-chip 1000 is deployed inside the user equipment, the system-on-a-chip 1000 is directly used to implement the method described in any of the above method embodiments.
  • the SoC 1000 When the SoC 1000 is deployed outside the user equipment and supports the establishment of communication between the SoC 1000 and the user equipment through wired or wireless connection, the user equipment can call or control the SoC 1000 to implement the method described in any of the above method embodiments. method described.
  • the application processor is configured to, in response to the user's operation, run the application program to generate the first data packet, and send the first data packet to the baseband processor, and the baseband processor receives the first data packet and determines the first data packet. Whether it is sent through the NR link or the LTE link; if it is sent through the NR link, determine whether the first data packet is a preset data packet, and if so, increase the transmission power of the NR link to use the increased The transmit power transmits the first data packet through the NR link.
  • FIG. 16 shows a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 100 shown in FIG. 16 is only an example, and the terminal 100 may have more or less components than those shown in FIG. 16 , may combine two or more components, or may have Different part configurations.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software, including one or more signal processing and/or application specific integrated circuits.
  • the terminal 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (subscriber identification module, SIM) card interface 195 and so on.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structures illustrated in the embodiments of the present invention do not constitute a specific limitation on the terminal 100 .
  • the terminal 100 may include more or less components than shown, or some components may be combined, or some components may be separated, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU) Wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • graphics processor graphics processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the controller may be the nerve center and command center of the terminal 100 .
  • the controller can generate operation control signals according to the instruction opcode and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may contain multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flash, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate with each other through the I2C bus interface, so as to realize the touch function of the terminal 100 .
  • the I2S interface can be used for audio communication.
  • the processor 110 may contain multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communications, sampling, quantizing and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus may be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect the processor 110 with the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 110 communicates with the camera 193 through the CSI interface, so as to realize the shooting function of the terminal 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to implement the display function of the terminal 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and the like.
  • the GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the terminal 100, and can also be used to transmit data between the terminal 100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones. This interface can also be used to connect other terminals, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the terminal 100 .
  • the terminal 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the terminal 100 . While the charging management module 140 charges the battery 142 , it can also supply power to the terminal through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140 and supplies power to the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the terminal 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G, etc. applied on the terminal 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to the speaker 170A, the receiver 170B, etc.), or displays images or videos through the display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110, and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the terminal 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for
  • the antenna 1 of the terminal 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (GLONASS), a Beidou navigation satellite system (BDS), a quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the terminal 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the terminal 100 may include one or N display screens 194 , where N is a positive integer greater than one.
  • the terminal 100 can realize the shooting function through the ISP, the camera 193, the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used to process the data fed back by the camera 193 .
  • the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the terminal 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • the digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the terminal 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy and so on.
  • Video codecs are used to compress or decompress digital video.
  • Terminal 100 may support one or more video codecs.
  • the terminal 100 can play or record videos in various encoding formats, for example, moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the terminal 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the terminal 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the processor 110 executes various functional applications and data processing of the terminal 100 by executing the instructions stored in the internal memory 121 .
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the terminal 100 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the terminal 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
  • the terminal 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also referred to as "earpiece" is used to convert audio electrical signals into sound signals.
  • the voice can be answered by placing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through a human mouth, and input the sound signal into the microphone 170C.
  • the terminal 100 may be provided with at least one microphone 170C.
  • the terminal 100 may be provided with two microphones 170C, which can implement a noise reduction function in addition to collecting sound signals.
  • the terminal 100 may further be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the earphone jack 170D is used to connect wired earphones.
  • the earphone interface 170D may be a USB interface 130, or a 3.5mm open mobile terminal platform (open mobile terminal platform, OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense pressure signals, and can convert the pressure signals into electrical signals.
  • the pressure sensor 180A may be provided on the display screen 194 .
  • the capacitive pressure sensor may be comprised of at least two parallel plates of conductive material. When a force is applied to the pressure sensor 180A, the capacitance between the electrodes changes.
  • the terminal 100 determines the intensity of the pressure according to the change in capacitance. When a touch operation acts on the display screen 194, the terminal 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the terminal 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example, when a touch operation whose intensity is less than the first pressure threshold acts on the short message application icon, the instruction for viewing the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, the instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the motion attitude of the terminal 100 .
  • the angular velocity of terminal 100 about three axes ie, x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyroscope sensor 180B detects the angle at which the terminal 100 shakes, calculates the distance to be compensated by the lens module according to the angle, and allows the lens to counteract the shake of the terminal 100 through reverse motion to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenarios.
  • the air pressure sensor 180C is used to measure air pressure.
  • the terminal 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist in positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the terminal 100 can detect the opening and closing of the flip holster using the magnetic sensor 180D.
  • the terminal 100 can detect the opening and closing of the flip according to the magnetic sensor 180D. Further, according to the detected opening and closing state of the leather case or the opening and closing state of the flip cover, characteristics such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the terminal 100 in various directions (generally three axes). When the terminal 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the terminal posture, and can be used in horizontal and vertical screen switching, pedometer and other applications.
  • the terminal 100 can measure the distance through infrared or laser. In some embodiments, when shooting a scene, the terminal 100 can use the distance sensor 180F to measure the distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the terminal 100 emits infrared light to the outside through light emitting diodes.
  • the terminal 100 detects infrared reflected light from nearby objects using a photodiode. When sufficient reflected light is detected, it can be determined that there is an object near the terminal 100 . When insufficient reflected light is detected, the terminal 100 may determine that there is no object near the terminal 100 .
  • the terminal 100 can use the proximity light sensor 180G to detect that the user holds the terminal 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • Proximity light sensor 180G can also be used in holster mode, pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the terminal 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the terminal 100 is in a pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the terminal 100 can use the collected fingerprint characteristics to unlock the fingerprint, access the application lock, take a picture with the fingerprint, answer the incoming call with the fingerprint, and the like.
  • the temperature sensor 180J is used to detect the temperature.
  • the terminal 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the terminal 100 reduces the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the terminal 100 when the temperature is lower than another threshold, the terminal 100 heats the battery 142 to avoid abnormal shutdown of the terminal 100 due to low temperature.
  • the terminal 100 when the temperature is lower than another threshold, the terminal 100 performs boosting on the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch panel”.
  • the touch sensor 180K may be disposed on the display screen 194 , and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the terminal 100 , which is different from the position where the display screen 194 is located.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the pulse of the human body and receive the blood pressure beating signal.
  • the bone conduction sensor 180M can also be disposed in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibration bone block obtained by the bone conduction sensor 180M, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 180M, and realize the function of heart rate detection.
  • the keys 190 include a power-on key, a volume key, and the like. Keys 190 may be mechanical keys. It can also be a touch key.
  • the terminal 100 may receive key input and generate key signal input related to user settings and function control of the terminal 100 .
  • Motor 191 can generate vibrating cues.
  • the motor 191 can be used for vibrating alerts for incoming calls, and can also be used for touch vibration feedback.
  • touch operations acting on different applications can correspond to different vibration feedback effects.
  • the motor 191 can also correspond to different vibration feedback effects for touch operations on different areas of the display screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging state, the change of the power, and can also be used to indicate a message, a missed call, a notification, and the like.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the terminal 100 by inserting into the SIM card interface 195 or pulling out from the SIM card interface 195 .
  • the terminal 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card and so on. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the terminal 100 interacts with the network through the SIM card to realize functions such as calls and data communication.
  • the terminal 100 employs an eSIM, ie an embedded SIM card.
  • the eSIM card can be embedded in the terminal 100 and cannot be separated from the terminal 100 .
  • the terminal 100 may also include a magnetometer (not shown in the figure), which may also be called an electronic compass and a compass, which may be used to detect the strength and direction of the magnetic field.
  • a magnetometer not shown in the figure
  • a compass which may be used to detect the strength and direction of the magnetic field.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that a computer can access.
  • computer readable media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or be capable of carrying or storing instructions or data structures in the form of desired program code and any other medium that can be accessed by a computer. also.
  • any connection can be appropriately made into a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fusing of the pertinent medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and blu-ray disc, where disks generally reproduce data magnetically, and discs Lasers are used to optically copy data. Combinations of the above should also be included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种上行数据分流方法、终端设备以及芯片系统,涉及通信技术领域。该方法包括:终端设备在确定定时器超时后,根据LTE链路以及NR链路的传输能力,确定在LTE链路以及NR链路传输的数据包的数据量;其中,LTE链路的传输能力是定时器超时之前,终端设备通过LTE链路传输第一探测数据包确定的;NR链路的传输能力是定时器超时之前,终端设备通过NR链路传输第二探测数据包确定的;第二探测数据包是根据第一探测数据包复制的。终端设备通过向不同的通信链路发送相同的数据包来探测通信链路的传输能力,避免了数据包相互等待现象,且不会影响数据业务的正常传输和用户的业务体验。

Description

一种上行数据分流方法、终端设备以及芯片系统
相关申请的交叉引用
本申请要求在2020年07月08日提交中国专利局、申请号为202010652195.3、申请名称为“一种上行数据分流方法、终端设备以及芯片系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种上行数据分流方法、终端设备以及芯片系统。
背景技术
随着科技的发展进步,用户对终端设备的数据传输速率要求越来越高,为了满足用户对通信速率的需求,第五代移动通信技术(5th generation mobile networks,5G)可支持终端设备在非独立组网(non stand alone,NAS)中进行上行分流,以便终端设备获取良好的数据传输速率。
上行分流涉及第三代合作伙伴计划(3rd generation partnership project,3GPP)协议定义的上行分流的传输主路径(primary path)、分流阈值门限(ul-datasplit threshold)和重复包复制(pdcp-duplication)等参数,但3GPP协议并未规定具体如何进行上行分流才能使得终端设备获取良好的数据传输速率。此外,需要说明的是,如何在不同的通信链路中进行分流探测以及何时启动上行分流,均是上行分流要解决的关键技术问题。
但是现有技术提供的分流探测方案,通过终端设备在通信链路中传输实际业务内容的业务数据包,来对不同通信链路的传输能力进行探测。该方案并未考虑到基站需要对不同通信链路传输的数据包进行重排序,才能传递给其它网络设备的情况。当通信链路传输能力相差较大时,数据包在传输能力较差的通信链路传输较慢,到达基站的时间较长。故而使得终端设备发送业务数据包到达基站时,存在数据包相互等待的现象,且数据包重排序耗费大量时间,进而导致业务时延较大,用户的业务体验度差。
发明内容
基于此,本申请提供一种上行数据分流方法、终端设备以及芯片系统,用以提高上行数据分流时,分流探测时的用户的业务体验。
第一方面,本申请实施例提供一种上行数据分流方法,该方法中终端设备在确定定时器超时后,根据长期演进(long term evolution,LTE)链路以及新空口(new radio,NR)链路的传输能力,确定在LTE链路以及NR链路传输的数据包的数据量;其中,LTE链路的传输能力是定时器超时之前,终端设备通过LTE链路传输第一探测数据包确定的;NR链路的传输能力是定时器超时之前,终端设备通过NR链路传输第二探测数据包确定的;第二探测数据包是根据第一探测数据包复制的。
本申请实施例中,终端设备通过向不同的通信链路发送相同的数据包来探测通信链路的传输能力,避免了数据包相互等待现象,且不会影响数据业务的正常传输和用户的业务 体验,另外,在数据分流时,依据探测的通信链路的传输能力在不同的通信链路中传输指定数据量的数据包,可提高了数据传输的效率,该方式更加适配终端设备的业务需求。
在一种可能的设计中,终端设备接收第一探测数据包的第一响应信息,并根据第一响应信息确定LTE链路的传输能力;其中,第一响应信息包括:第一网络设备的无线链路层控制协议(radio link control,RLC)层接收到第一探测数据包的时刻;以及,终端设备接收第二探测数据包的第二响应信息,并根据第二响应信息确定NR链路的传输能力;其中,第二响应信息包括:第二网络的RLC层接收到第二探测数据包的时刻。
终端设备可通过网络设备的RLC层反馈的响应信息,确定通信链路的传输能力,可以更好地确定通信链路数据的传输能力。
在一种可能的设计中,LTE链路的传输能力可通过以下指示信息中的一种进行指示:第一探测数据包在LTE链路中的传输时延;或第一探测数据包在LTE链路中的传输速率。
NR链路的传输能力可通过以下指示信息中的一种进行指示:第二探测数据包在NR链路中的传输时延;其中,LTE链路的传输能力与NR链路的传输能力采用同一衡量指标的指示信息进行指示。
通过指示信息可以更加直观地反馈通信链路的传输能力。
在一种可能的设计中,第一探测数据包为以下数据包中的一种:响应于用户的在终端设备的应用程序的操作产生的业务数据包;或请求数据(service request,SR)包。
本申请实施例中探测数据包既可以为响应于用户的在终端设备的应用程序的操作产生的业务数据包,还可以为SR包(并非实际业务数据包),通过采用本申请提供的探测数据包进行通信链路传输能力的探测,使得通信链路的探测结果更加可靠。
在一种可能的设计中,终端设备可根据LTE链路的传输能力与NR链路的传输能力间的比例关系,确定数据包的数据量的分配规则;之后按照分配规则在LTE链路以及NR链路传输对应数据量的数据包。
本申请中在通信链路传输能力探测之后,按比例分配数据包的数据量在通信链路中进行数据传输,可以提高数据的传输效率。
在一种可能的设计中,终端设备在确定定时器超时之前,激活数据包复制机制;终端设备在确定定时器超时之后,关闭数据包复制机制。
通过数据包复制机制的激活,可以保证终端设备发送的第一探测数据包以及第二探测数据为同一类型且包含相同信息的数据包,通过数据包复制机制的关闭,可以保证终端设备在不同的通信链路传输不同的数据包。
在一种可能的设计中,终端设备确定上行数据分流参数中的分流阈值的取值以及终端设备在分组数据汇聚(packet data convergence protocol,PDCP)层中数据的缓存数量;之后根据分流阈值的取值、缓存数量、LTE链路的传输能力以及NR链路的传输能力对数据包的数据量进行分配。
该方式在进行上行数据分流时,考虑到分流阈值的取值、终端设备PDCP层的缓存数量以及不同通信链路的传输能力,通过该方式可更好地提高数据传输效率。
第二方面,本申请实施例提供一种终端设备,所述终端设备包括:处理器,计算机存储介质,所述计算及存储介质包括指令,所述处理器执行所述指令时,使得所述终端设备执行上述方法。
第三方面,本申请实施例提供一种芯片系统,应用于终端设备,所述芯片系统包括应 用处理器和基带处理器,其中:所述应用处理器用于:响应于用户的操作,产生数据包;所述基带处理器用于:在确定定时器超时后,根据LTE链路以及NR链路的传输能力,确定在LTE链路以及NR链路传输的数据包的数据量;其中,LTE链路的传输能力是定时器超时之前,终端设备通过LTE链路传输第一探测数据包确定的;NR链路的传输能力是定时器超时之前,终端设备通过NR链路传输第二探测数据包确定的;第二探测数据包是根据第一探测数据包复制的。
在一种可能的设计中,基带处理器还用于:接收第一探测数据包的第一响应信息,并根据第一响应信息确定LTE链路的传输能力;其中,第一响应信息包括:第一网络设备的RLC层接收到第一探测数据包的时刻;以及,接收第二探测数据包的第二响应信息,并根据第二响应信息确定NR链路的传输能力;其中,第二响应信息包括:第二网络设备的RLC层接收到第二探测数据包的时刻。
在一种可能的设计中,LTE链路的传输能力可通过以下指示信息中的一种进行指示:第一探测数据包在LTE链路中的传输时延;或,第一探测数据包在LTE链路中的传输速率。
NR链路的传输能力可通过以下指示信息中的一种进行指示:第二探测数据包在NR链路中的传输时延;或,第二探测数据包在NR链路中的传输速率;其中,LTE链路的传输能力与NR链路的传输能力采用同一衡量指标的指示信息进行指示。
在一种可能的设计中,第一探测数据包为以下数据包中的一种:响应于用户的在终端设备的应用程序的操作产生的业务数据包;或,SR包。
在一种可能的设计中,基带处理器用于:根据LTE链路的传输能力与NR链路的传输能力间的比例关系,确定数据包的数据量的分配规则,并按照分配规则在LTE链路以及NR链路传输对应数据量的数据包。
在一种可能的设计中,基带处理器还用于:在确定定时器超时之前,激活数据包复制机制;在确定定时器超时之后,关闭数据包复制机制。
在一种可能的设计中,基带处理器还用于:确定上行数据分流参数中的分流阈值的取值以及终端设备在PDCP层中数据的缓存数量;以及根据分流阈值的取值、缓存数量、LTE链路的传输能力以及NR链路的传输能力对数据包的数据量进行分配。
第四方面,还提供一种终端,包括:用于执行上述第一方面或第一方面的任意一种可能的设计的方法的模块/单元;这些模块/单元可以通过硬件实现,也可以通过硬件执行相应的软件实现。
第五方面,还提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如上述第一方面提供的方法。
第六方面,还提供一种计算机存储介质,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如上述第一方面提供的方法。
以上第二方面到第六方面的有益效果,请参考第一方面的有益效果,不再赘述。
附图说明
图1为本申请实施例提供的一种双连接模式的示意图;
图2为本申请实施例提供的SA组网和NSA组网架构的示意图;
图3为本申请实施例提供的数据分流的第一示意图;
图4为本申请实施例提供的数据分流的第二示意图;
图5为本申请实施例提供的数据分流的第三示意图;
图6为申请实施例提供的通信链路传输能力探测的第一示意图;
图7为申请实施例提供的数据传输的流程示意图;
图8为申请实施例提供的通信链路传输能力探测的第二示意图;
图9为申请实施例提供的通信链路传输能力探测的第三示意图;
图10为申请实施例提供的上行数据分流的流程示意图;
图11a为申请实施例提供的不同的通信链路数据包传输的第一示意图;
图11b为申请实施例提供的不同的通信链路数据包传输的第二示意图;
图12为申请实施例提供的上行数据分流的流程的第一示意图;
图13为申请实施例提供的上行数据分流的流程的第二示意图;
图14为申请实施例提供的上行数据分流的测试结果示意图;
图15为申请实施例提供的一种芯片系统的示意图;
图16为申请实施例提供的终端设备的结构示意图。
具体实施方式
在介绍本申请提供的方案之前,先对本申请实施例提供的部分用语进行解释说明,以便本领域技术人可以理解。
1)本申请涉及的终端,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端可以包括用户设备(user equipment,UE)、无线终端、移动终端、用户单元(subscriber unit,SU)、用户站(subscriber station,SS),移动站、移动台、远程站、接入点(access point,AP)、远程终端、接入终端、用户终端、用户代理、或用户装备等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端还可以是可穿戴设备等。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端,如果位于车辆上(例如放置在车辆内或安装在车辆内),都 可以认为是车载终端,车载终端例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,用于实现终端的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其它分立器件。下文中,以用于实现终端功能的装置是终端设备为例进行说明。
2)本申请所涉及的网络设备,可以为用于与终端进行通信的设备。本申请实施例中,网络设备可以称为RAN设备,如:接入网(access network,AN)设备、基站(如,接入点);也可以是指接入网中在空口通过一个或多个小区与无线终端通信的设备,或者例如,一种车用无线通信技术(vehicle to X,V2X)中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与网际协议分组进行相互转换,作为终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际互联协议(internet protocol,IP)网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其它实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolutional Node B,eNB),或者也可以包括NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。下文中,以用于实现网络设备的功能的装置是网络设备为例进行说明。
3)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
需要说明的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。例如,“第一指示”和“第二指示”仅表示两种不同的指示,无先后顺序和相对重要性。
另外,在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其它一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其它方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其它方式另外特别强调。
4)本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不作任何限定。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图, 对本申请实施例中的技术方案进行详尽描述。
在无线系统中,不同制式、同一制式、不同系统的基站或接入点协同组网时,由于单个基站的带宽资源和覆盖范围有限,因此,集中多个小区或者基站的无线资源来为用户提供服务,更易于满足用户的容量需求和覆盖要求,这种方式通常称之为多连接。
以LTE系统为例,常用的多连接方式包括载波聚合、多点协作传输(coordinated multipoint transmission/reception,CoMP)以及双连接(dual connectivity,DC)等。具体地,DC是指终端设备在无线链路控制层(radio resource control layer,RRC)连接态下的操作模式,对终端设备配置了一个主小区组(master cell group,MCG)和一个辅小区组(secondary cell group,SCG),提供基站间非理想传输条件下的性能解决方案。值得说明的是,本申请以第四代移动通信技术(4th generation mobile networks,4G)LTE和5G新空口(new radio,NR)的DC为例,但不局限LTE与NR之间,也可是多种不同的通信制式之间,例如3G与4G、5G和6G之间等等,如图1所示,LTE的eNB基站与NR的gNB基站之间可以互相传输数据,UE可通过LTE链路将数据发送至eNB基站,UE还可通过NR链路将数据发送至gNB基站。
现有5G标准定义了多种组网方式,包括独立组网(standalone,SA)和非独立组网(non-standalone,NSA)方式。图2示出SA组网和NSA组网架构的示意图。SA组网较为简单,NR基站直接连接到核心网(例如,5G核心网)。在上行方向,终端向NR基站发送上行数据,NR基站将上行数据发送给核心网。在下行方向,核心网将下行数据发送给NR基站,NR基站将下行数据发送给终端。NSA组网可以有多种组网方式,例如包括Option3/3a/3x、Option4/4a、Option7/7a/7x等多种可能的方式。图2中以Option3/3a/3x为例,在4G基站(eNB)为主基站,5G基站(gNB)为从基站,并沿用LTE核心网,不需要新的5G核心网,所有的控制面信令都经由eNB转发,数据流的传输对应三种方式:可以是eNB将数据分流给gNB(即Option3),或者LTE核心网(evolved packet core,EPC)将数据分流至gNB(即Option3a),或者gNB可将数据分流至eNB(即Option3x)。此场景以eNB为主基站,所有的控制面信令都经由eNB转发。LTE eNB与NRgNB采用双链接的形式为用户提供高数据速率服务。以Option 4/4a为例,Option4同时引入了NGC(Next Generation Core)和gNB。但是gNB没有直接替代eNB,在此场景中,核心网采用5G的NGC,eNB和gNB都连接至NGC。所有的控制面信令都经由gNB转发,数据连的传输对应有两种方式:gNB将数据分流给eNB,NGC将数据分流至eNB。
上述只是示例性的提供了几种常见的DC的连接方式,本申请并不对此作出限定。
值得说明的是,4G-5G制式内的DC表示UE同时与4G基站和5G基站保持双连接,同时利用两个基站的无线资源进行业务传输。DC中可以采用分离(split)承载方式(也可以称之为数据分流方式)进行数据传输。控制面承载在主站上,数据可承载在主站和辅站,根据数据在主站和辅站上的分布情况,可以分为以下4种DC承载类型:
a.MCG承载(数据只在主站上);
b.SCG承载(数据只在辅站上);
c.MCG Split承载(数据在主站分流);
d.SCG Split承载(数据在辅站分流)。
如图3所示,在双连接下,以下行数据传输为例,数据流在PDCP层上分离和合并,随后将数据流通过多个基站同时传送给终端设备。在这种情况下,一个PDCP实体可以关联两个RLC实体,可以理解为PDCP层将数据流通过RLC1实体、RLC2实体链路传输至RLC层, 具体地,RLC1链路可以理解为LTE链路,RLC2链路可以理解为NR链路,每个RLC实体分别对应LTE空口和NR的空口。在这种场景下,PDCP的数据流会根据获取的授权,将PDCP报文分别在LTE和NR的空口上进行发送。此种方式可以称之为MCG Split承载模式。同样,如果PDCP层只有关联一个RLC实体,此时PDCP层的数据直接传输至RLC层,此种方式称之为MCG承载(数据只在主站上传输)。同样,如果此时数据在NR PDCP层的数据上传输,即数据在辅站上传输,此时也只关联一个NR RLC实体,即NR PDCP层的数据直接传输至NR RLC层,此种方式称之为SCG承载(数据只在辅站上传输)。
在一些实施例中,每一个RLC实体可以至少对应一条承载链路,在一些实施例,RLC层也可以有多个RLC实体。如图4所示,LTE eNB为主站,gNB为辅站,数据在NR PDCP层汇聚,一个NR PDCP实体可以关联两个RLC实体,对应的NR RLC层与RLC层,此时数据在辅承载上分流,此种方式称之为SCG Split承载(数据在辅站分流)。在此种情况下,为了避免4G基站处理能力的瓶颈,最大限度地减少原来的4G基站升级,尽可能地降低设备研发和建网成本,LTE-NR双连接规定也可由SCG分离承载,即下行数据流即可由5G从站传送到4G主站,再传送到手机。
如图5所示,在上行数据传输中,数据流在PDCP汇聚后,可以按照一定的预定义策略进行分流传输。在一些实施例中,可以是平均分配数据流至两条链路上;在一些实施例中,可以是按照链路质量传输至两条链路上;在一些实施例,如果PDCP传输的数据流的值小于分流传输的阈值,则在主承载上传输,例如图5中所示的链路1。值得说明的是,图中的链路1,链路2是为了便于描述,并非对本申请的限定。
在一些实施中,一个层中可以有多个实体,例如,RLC中可以有两个RLC实体,对应两条承载链路,本申请对此不作限定。
本申请中的UE可以是供消费者使用的任意应用型的电子设备。用户设备的示例包括但不限于,智能手机、平板电脑、电视、投影仪、智能手表、智能眼镜(例如,谷歌眼镜)、穿戴式小配件(例如,智能腕表、T恤、项链或鞋)、媒体(例如,音乐和/或视频)播放器、游戏机、游戏控制台和控制器、电子书阅读器、云终端或车载媒体系统。用户设备可以是穿戴式设备(例如,智能手表或智能眼镜)或非穿戴式设备(例如,电视或平板电脑)。此外,用户设备可具有任意合适的操作系统(OS),例如Android、iOS、Windows、Linux、Unix等。进一步地,用户设备可以支持多种不同制式的移动通信技术,包括2G/3G/4G/5G,还可以支持无线宽带(wireless fidelity,WiFi)、蓝牙等。
如图5所示,在一些实施例中,可以理解为RLC层有RLC1实体,RLC2实体,其中RLC1实体为支持LTE数据传输,RLC2实体为支持NR数据传输,媒体介入控制(media access control,MAC)层有MAC 1实体,MAC 2实体,其中MAC 1实体为支持LTE数据传输,MAC2实体为支持NR数据传输,物理(physical,PHY)层有PHY1实体,PHY2实体,其中PHY1实体为支持LTE数据传输,PHY2实体为支持NR数据传输,但本申请对此并不作出限定。以上行数据为例,当上层数据传输到PDCP层时,其数据报文具有序列号(serial number,SN),可以理解为,数据传输到PDCP层时,被添加了SN编号。正常的情况下,下行的PDCP数据报文会按SN的编号升序到达,接收端接收到PDCP的报文如果是连续的,则直接递交给上层应用。
而在针对Split模式,上层数据传到PDCP层时,PDCP需要将数据进行分流,在一些情况下,例如,如果某一链路的质量不好,则传递的PDCP报文无法及时传递到对端,这时 因为接收端无法获取到连续的PDCP数据包,就会出现另一链路等待PDCP报文的问题。反之,如果另一链路质量不好,也会存在同样的问题。
需要说明的是,通信链路的信号质量、通信链路的通信带宽以及通信链路中其它网络用户(通过通信链路传输数据的用户)的数量均会影响通信链路的数据传输能力。为了使得终端设备在NSA的网络中获取良好的数据传输速率,终端设备可在探测了LTE链路和NR链路的传输能力后,依据通信链路的传输能力分配数据包,以便提高数据的传输速率。
接下来通过以下三种情况来介绍通信链路的探测流程。
情况一、通过不同的业务数据包探测通信链路的传输能力。
参阅图6来示出的一种UE探测通信链路的传输能力的流程,UE可将PDCP层中的业务数据分成数据包L1和数据包L2,并分别在LTE链路和NR链路中传输,例如:PDCP层中的数据包包括待上传的图片、视频数据、音频数据以及文字资料。在UE将数据包发送至网络设备之前,可将数据分成100个子数据包,并对各子数据包依序标号。UE在数据传输时,在LTE链路和NR链路发送不同的子数据包,从而实现通信链路传输能力的探测。在此以标号为1-10的子数据包为例说明如何进行探测,数据包L1中可包括:子数据包1、子数据包3、子数据包5、子数据包7、子数据包9;数据包L2中可包括:子数据包2、子数据包4、子数据包6、子数据包8、子数据包10。此外,具体如何分配数据包L1和数据包L2中子数据包的数量或者大小在此不作具体限定,可根据通信链路的信号质量、传输时延分配,也可随机分配,只需保证数据包L1和数据包L2中子数据包的内容不一致即可,如:数据包L1中也可包括子数据包1-4,数据包L2中包括子数据包5-10。另外关于数据包L1和数据包L2中各子数据包的数据量的大小,在此也不作具体限定,故而,用于探测通信链路传输能力的数据包L1的数据量可以为1M bit,数据包L2的数据量可以为3M bit;亦或者,数据包L1和数据包L2的数据量均为2M bit。
进而,数据包L1依序在UE侧的LTE链路的RLC实体、MAC实体以及PHY实体传输后,到达第一网络设备(LTE基站),在第一网络设备的LTE链路中,数据包L1在PHY实体、MAC实体以及RLC实体依序解析;数据包L2依序在UE侧的NR链路的RLC实体、MAC实体以及PHY实体传输后,到达第二网络设备(NR基站),在第二网络设备的NR链路中,数据包L2在PHY实体、MAC实体以及RLC实体依序解析。数据包L1在到达第一网络设备侧的LTE链路的RLC层时,会反馈数据包L1的到达时刻,同理数据包L2在到达第二网络设备的NR链路的RLC层时,也会反馈数据包L2的到达时刻。UE根据数据包L1的发送时刻以及第一网络设备接收到数据包L1的时刻,很易确定LTE链路的传输能力,同理也可确定NR链路的传输能力。如图7所示,LTE链路的传输能力可通过第一网络设备的RLC层的传输时延T1或传输速率V1来表示,NR链路的传输能力可通过第二网络设备的RLC层的传输时延T2或传输速率V2来表示,也可通过其它用于指示传输能力的参数表示,在此不作具体限定。如:数据包L1到达第一网络设备的RLC层的时间为1S,那么,LTE链路的传输时延为1S;数据包L1到达第二网络设备的RLC层的时间为5S,那么,NR链路的传输时延为5S,故此,可知LTE链路的传输能力比NR链路的传输能力要强,约为NR链路的传输能力的5倍。亦或者,数据包L1在第一网络设备的RLC层的速率测试为0.5Mbps,那么LTE链路的传输速率为0.5Mbps;数据包L1在第二网络设备的RLC层的速率测试为0.1Mbps,那么NR链路的传输速率为0.1Mbps,故此, 可知LTE链路的传输能力比NR链路的传输能力要高,约为NR链路的传输能力的5倍。其中,LTE链路的传输能力与NR链路的传输能力采用同一衡量指标的指示信息进行指示,也即要么均通过传输时延来衡量通信链路的传输能力,要么均通过传输速率来衡量通信链路的传输能力。具体地,可执行:
步骤601:UE通过LTE链路发送数据包L1至第一网络设备。
步骤602:UE通过NR链路发送数据包L2至第二网络设备。
步骤603:第一网络设备接收数据包L1。
步骤604:第一网络设备发送接收数据包L1后的第一响应信息至UE,该第一响应信息可以为数据包L1到达第一网络设备RLC层的时刻信息。
步骤605:第二网络设备接收数据包L2。
步骤606:第二网络设备发送接收数据包L2后的第二响应信息至UE,该第二响应信息可以为数据包L2到达第二网络设备RLC层的时刻信息。
步骤607:UE根据第一响应信息确定LTE链路的传输能力。
步骤608:UE根据第二响应信息确定NR链路的传输能力。
此外需要说明的是,步骤601和步骤602在执行顺序上不分先后,且步骤607和步骤608在执行顺序上不分先后,另外,第一网络设备执行的步骤与第二网络设备执行的步骤在执行顺序上也不区分先后,可同时执行,也可先执行第一网络设备侧的步骤再执行第二网络设备侧的步骤,亦或者先执行第二网络设备侧的步骤再执行第一网络设备侧的步骤。
需要说明的是,在LTE链路和NR链路的数据传输能力(如:传输时延)不一致的情况下,传输时延较大的链路的数据包传输较慢,数据包到达网络设备的时间也较长。故而UE发送业务数据包到达网络设备时,存在数据包相互等待的现象,且数据包重排序耗费大量时间,进而导致业务时延较大,用户的业务体验度差。故而在数据包分配规则无法真实匹配链路的传输能力,可能降低用户的业务体验。下面通过具体示例说明:
例如,UE的PDCP实体中包括业务数据1,业务数据1被分成子数据包1以及子数据包2。UE通过LTE链路传输100Kbit的数据包L1(数据包L1仅包括:子数据包1),通过NR链路传输200K bit的数据包L2(数据包L2仅包括:子数据包2),若LTE链路的传输能力比NR链路的传输能力要强,数据包L1经过20mS到达eNB基站,数据包L2经过50mS到达gNB基站,gNB基站将数据包L2传输给eNB基站,并在eNB基站的PDCP层对数据包L1和数据包L2进行重排,将重排后的数据向上递交至其它网络设备以使其它网络设备获取业务数据1。该方式中,其它网络设备最终获取业务数据1的时间可能会超过50mS,但是若将数据包L1和数据包L2调换通信链路来传输,其它网络设备得到业务数据1的时间可能会更短一些。故此,该方式通过随机分配数据包在通信链路中进行传输,来探测通信链路的数据传输能力,虽然可以探测出不同链路的数据传输能力,但无法真实匹配链路的传输能力,会影响用户的业务体验。
情况二、通过相同的实际业务数据包探测通信链路的传输能力。
考虑到上述探测通信链路的传输能力时出现的问题,本申请的UE在探测数据传输能力时,可参阅图8基于包含相同信息的实际业务的数据包探测通信链路的传输能力。该实际业务的数据包为响应于用户的在所述UE的应用程序的操作产生的业务数据包,如:UE响应于用户在某应用程序中点击的视频上传操作产生的视频数据包或UE响应于用户在某应用程序中点击的图片上传操作时产生的图片数据包。通过UE在LTE链路和NR链路传 输相同的数据包,也即在LTE链路中传输数据包L1,在NR链路中也传输同样的数据包L1。需要说明的是,该不同的通信链路传输的同样的数据包L1可通过复制得到。如:UE的PDCP层中缓存有数据,假定该数据被分成了10个子数据包,可将这10个子数据包作为数据包L1,在LTE链路和NR链路分别传输。
进而,第一网络设备的LTE链路中数据包L1到达RLC层后,会反馈数据包L1的到达时刻,同理数据包L1在到达第二网络设备的NR链路的RLC层时,也会反馈数据包L1的到达时刻。UE根据数据包L1的发送时刻以及第一网络设备接收到数据包L1的时刻,很易确定LTE链路的传输能力,同理也可确定NR链路的传输能力。
另外,无论哪个网络设备优先接收到数据包L1,在接收到数据包L1后即进行解调,再次收到数据包L1时,则直接丢弃,如:UE通过LTE链路传输1M bit的数据包L1,通过NR链路传输1M bit的数据包L1,但是LTE链路的传输能力比NR链路传输能力要高,数据包L1经过0.6S到达第一网络设备,数据包L1经过0.2S到达第二网络设备,第一网络设备则直接将数据包L1丢弃,故而,第一网络设备得到业务数据的时间在0.2S左右。具体地,可参照下述步骤来执行:
步骤801:UE通过LTE链路发送数据包L1至第一网络设备。
步骤802:UE通过NR链路发送数据包L1至第二网络设备。
步骤803:第一网络设备接收数据包L1。
步骤804:第一网络设备发送接收数据包L1后的第一响应信息至UE,该第一响应信息可以为数据包L1到达第一网络设备RLC层的时刻信息。
步骤805:第二网络设备接收数据包L1。
步骤806:第二网络设备发送接收数据包L1后的第二响应信息至UE,该第二响应信息可以为数据包L2到达第二网络设备RLC层的时刻信息。
步骤807:UE根据第一响应信息确定LTE链路的传输能力。
步骤808:UE根据第二响应信息确定NR链路的传输能力。
由于第一网络设备和第二网络设备之间可以进行数据传输,第一网络设备以及第二网路设备中任一网络设备接收到数据包L1则直接对数据包L1进行解调,再次接收到数据包L1则直接丢弃。
此外需要说明的是,步骤801和步骤802在执行顺序上不分先后,且步骤807和步骤808在执行顺序上不分先后,另外,第一网络设备执行的步骤与第二网络设备执行的步骤在执行顺序上也不区分先后,可同时执行,也可先执行第一网络设备侧的步骤再执行第二网络设备侧的步骤,亦或者先执行第二网络设备侧的步骤再执行第一网络设备侧的步骤。
通过该方式终端设备既可探测出两条通信链路的数据传输能力,还不影响数据业务的正常传输和用户的业务体验。
情况三、通过SR包探测通信链路的传输能力。
考虑到通过实际业务的数据包进行探测,探测时可能会影响用户的业务体验,本申请还提出了通过SR包来探测通信链路的传输能力,该SR包并非UE想要获取的业务,仅仅是用于探测不同通信链路的数据传输能力的虚拟业务数据包。在进行通信链路的传输能力探测时,可在不同的通信链路中传输相同的SR包,也可传输不同的SR包,如:LTE链路传输SR1,NR链路中也传输SR1;亦或者LTE链路中传输SR2,NR链路中传输SR1,在此不具体限定不同的通信链路中具体传输的SR包的类型以及数量,凡是采用SR包探测通 信链路的传输能力的方案均适用于本申请的保护范围。
为了示例性说明,本申请以LTE链路和NR链路传输相同的SR包为例进行说明,可参照图9所示的步骤来执行:
步骤901:UE通过LTE链路发送SR1至第一网络设备。
步骤902:UE通过NR链路发送SR1至第二网络设备。
步骤903:第一网络设备接收SR1。
步骤904:第一网络设备发送接收SR1后的第一响应信息至UE,该第一响应信息可以为SR1到达第一网络设备RLC层的时刻信息。
步骤905:第二网络设备接收SR1。
步骤906:第二网络设备发送接收SR1后的第二响应信息至UE,该第二响应信息可以为SR1到达第二网络设备RLC层的时刻信息。
步骤907:UE根据第一响应信息确定LTE链路的传输能力。
步骤908:UE根据第二响应信息确定NR链路的传输能力。
由于第一网络设备和第二网络设备之间可以进行数据传输,第一网络设备以及第二网路设备中任一网络设备接收到SR1则直接对SR1进行解调,再次接收到SR1则直接丢弃。
此外需要说明的是,步骤901和步骤902在执行顺序上不分先后,且步骤907和步骤908在执行顺序上不分先后,另外,第一网络设备执行的步骤与第二网络设备执行的步骤在执行顺序上也不区分先后,可同时执行,也可先执行第一网络设备侧的步骤再执行第二网络设备侧的步骤,亦或者先执行第二网络设备侧的步骤再执行第一网络设备侧的步骤。
通过虚拟业务数据包SR探测通信链路的传输能力并不会影响终端设备执行实际业务的数据传输体验。
在上述图8或图9示出UE探测数据传输能力的方案的基础上,终端设备可参阅图10执行以下步骤来进行上行分流:
步骤1001a:终端设备在确定定时器超时之前,通过LTE链路发送第一探测数据包至第一网络设备。
步骤1001b:终端设备在确定定时器超时之前,通过NR链路发送第二探测数据包至第二网络设备。其中,第二探测数据包是根据所述第一探测数据包复制的。
需要说明的是,定时器用于记录终端设备进行数据传输能力探测的时间,定时器超时之前,终端设备发送的数据包均用于探测通信链路的数据传输能力,通常该定时器的定时时长为10-15S,但由于不同的终端设备的设备性能是不完全一致的,故而该时长并不固定,本申请在此并不限定定时器定时时长的具体数值,具体定时时长的取值需要根据终端设备的性能来确定。在定时器超时之后,终端设备已经获取了通信链路的数据传输能力,可依据该通信链路的数据传输能力对业务数据的数据量进行分配,以便提高用户的通信速率体验。
另外,第一探测数据包和第二探测数据包包含的信息是相同的。需要说明的是,若终端设备的PDCP层中缓存有大量的子数据包,第一探测数据包不仅仅限定为该PDCP层中缓存的多个实际业务的子数据包中的一个子数据包,也可以为多个子数据包。另外,该第一探测数据包还可以为SR包,可参照上文的描述,在此不再赘述。如:终端设备的PDCP层中缓存有100个子数据包,第一探测数据包可以为其中的1个子数据包,也可以为其中 的10个数据包,在此不对第一探测数据包中子数据包的数量进行限定。
如图11a示出了终端设备的PDCP层中缓存有5个子数据包,假定该5个子数据包分别为视频数据包1、图像数据包1、视频数据包2、图像数据包2、文字资料包1,第一数据包可以为视频数据包1,终端设备将视频数据包1复制一份得到第二数据包,其中第一数据包(视频数据包1)在LTE链路中传输,第二数据包(视频数据包1)在NR链路中传输。图11b示出了终端设备通过LTE链路发送第一数据包(SR包),同时通过NR链路发送第二数据包(SR包),其中,第一数据包(SR包)与第二数据包(SR包)相同。
步骤1002a:终端设备根据第一探测数据包在LTE链路的传输情况,确定LTE链路的传输能力。
步骤1002b:终端设备根据第二探测数据包在NR链路传输情况,确定NR链路的传输能力。
步骤1003a:终端设备在确定定时器超时之后,根据LTE链路以及NR链路的传输能力,确定在LTE链路中发送的数据包的数据量。
步骤1003b:终端设备在确定定时器超时之后,根据LTE链路以及NR链路的传输能力,确定在NR链路中发送的数据包的数据量。
需要说明的是,在用户发起业务后,根据两条通信链路的能力分配不同数据量的数据包,可提高数据的传输速率,进而可提高用户的体验度。
例如:终端设备在进行通信链路传输能力探测后,获悉LTE链路的传输能力为NR链路的传输能力的5倍,那么终端设备探测后,用户再次发起的业务数据为24M bit,则可在LTE链路中传输20M bit,在NR链路中传输4M bit,也即第三数据包为20M bit,第四数据包为4M bit。但是在实际应用时,如业务数据为24M bit,但是终端设备的PDCP层中缓存有100个数据包,有大小为数据包150K bit、100K bit、200K bit、300K bit、60K bit。终端设备在获取了通信链路的传输能力的情况下,可在第1mS时在LTE链路中先传输2个150K bit的数据包(数据量总计300K bit),在NR链路传输1个60K bit的数据包(数据量总计60K bit),也即第1mS按照5:1传输数据。在网络设备获取数据后,会反馈第1mS数据包在各通信链路的传输情况,终端设备可实时调整传输策略。若第1mS时,LTE链路的传输时延相比之前变弱,那么第2mS传输时根据第1mS的传输情况,调整数据包的分配策略,可在LTE链路中传输2个200K bit的数据包(数据量总计400K bit),在NR链路传输1个100K bit的数据包(数据量总计100K bit),也即第2mS按照4:1传输数据。终端在探测了通信链路的传输能力后,在实际传输数据的过程中,根据上一时间段数据包在通信链路的传输状况动态调整各通信链路中数据包的数据量,更加适配终端设备的需求,且可以提高数据的传输速率。
为了使得终端设备在通信链路探测阶段可以获取良好的探测结果,终端设备可通过激活数据包复制(Duplication)机制,向网络设备发送相同的数据包。任一网络设备在第一次接收到数据包后,即对数据包进行解调,获取数据,在第二次接收到相同内容的数据包则不解调,直接丢弃。在第一定时器超时之后,终端设备可关闭Duplication机制,以便终端设备通过不同的通信链路发送不同内容数据包时,可被网络设备正常解调。在探测阶段通过发送相同内容的数据包进行探测,可保证用户的业务体验,在探测结束后,通过在不同的通信链路传输不同内容的数据包实现数据的上行分流,通过该方式可提高用户的业务体验。
接下来通过具体实例来对上行数据分流进行说明,假定终端设备在定时器超时之前,激活Duplication机制并在LTE链路和NR链路中分别发送包含相同信息的数据包至网络设备,分别获取了LTE链路的传输能力和NR链路的传输能力。在此通过传输时延来指示传输能力,该实施在此不具体说明。若LTE链路的传输时延为100mS,NR链路的传输时延为20mS,可知NR链路的传输能力约为LTE链路的传输能力的5倍,故而终端设备可根据LTE链路的传输能力与NR链路的传输能力间的比例关系,确定数据包的数据量的分配规则,也即NR链路传输的数据量与LTE链路传输的数据量的比例为5:1,之后在不同的通信链路按照分配规则中配置数据包的数据量进行数据传输,以便用户获取良好的通信速率体验。
例如:业务数据共有12M bit,由于上述NR链路的传输能力约为LTE链路的传输能力的5倍,故而可在NR链路中传输10M bit的数据包,在LTE链路中传输2M bit的数据包。为了便于描述本申请的方案,在定时器超时之后,接下来均依据NR链路的传输能力和LTE链路的传输能力按比例分配数据量,来描述终端设备进行通信链路传输能力探测后的上行数据分流。
下面结合具体的应用场景来介绍本申请通信链路传输能力的探测时机,其中,一种探测时机为终端设备在初始入网时执行通信链路传输能力的探测,该初始入网可以理解为手机关机后的重新启动或关闭飞行模式后退出飞行模式。另一探测时机,也即用户通过终端设备发起业务时,该业务是终端设备通过判断数据包的类型确定的,该数据包是通过4G或5G传输。如:在5G下,终端设备响应于用户在其安装的即时通讯应用程序点击的图片传输操作,执行通信链路的传输能力探测等,也即终端设备响应于用户在终端设备中的操作,要在4G或5G下传输数据的业务时,进行通信链路传输能力的探测。此外还包括另一探测时机,也即到达某一设定时间点,则需要执行探测,如设定时长为5分钟,每间隔5分钟终端设备则执行一次探测。
另外,需要说明的是,在终端设备初始入网后已经探测通信链路的传输能力后,终端设备响应于用户操作初次发起业务则无需终端设备进行再次的探测。此外,在一次探测后在预设的时间段终端设备响应于用户操作同时发起了多个业务,终端设备也无需进行再次探测,在某次探测结束后,预设时间内终端设备一直未发送任何业务,则需再次探测。如:用户坐飞机的时候,将手机调成飞行模式,下飞机后,用户关闭手机的飞行模式,终端设备响应于用户关闭飞行模型的操作,则需要重新接入数据网络,此时终端设备会探测通信链路的传输能力,在探测结束后,获取探测结果1,终端设备响应于用户上传5M bit的图片到即时通讯软件应用的操作时,则根据探测结果1启动上行数据分流方案来传输数据。在上传完图片后,终端设备响应于用户上传短视频到即时通信软件应用中,此时依然根据探测结果1启动上行分流方案来传输数据。之后用户休息了5个小时后,通过手机发送资料包给客户,此时终端设备响应于用户的操作再次探测通信链路的传输能力,获取探测结果2。
此外,为了保证用户良好的速率体验,该探测也可为周期性地探测,该周期可设置为5分钟,10分钟,具体时长在此不作具体限定。如:假定探测周期为5分钟,用户早上8:00将手机开机,此时,需要探测通信链路的传输能力,在8:05时,则再次探测通信链路的传输能力,之后是8:10、8:15、8:20、8:25等,在此不一一列举。
另外,还要说明的是,也可将上述三种探测时机进行结合,从而灵活确定终端设备通信链路的探测时机,如:手机开机入网后,探测通信链路的传输能力,探测周期设置为5分钟,但是在到达探测周期的时间点时,手机刚刚进行一次通信链路传输能力的探测,则无需在探测周期对应的时间点进行探测。
接下来以终端设备初始入网作为探测时机为例,进行说明:
终端设备在初始入网后,可先根据3GPP协议38.331,获取基站配置的上行分流参数,primary path、ul-datasplit threshold以及pdcp-duplication。基站可通过如下方式进行配置:
Figure PCTCN2021104869-appb-000001
其中,primary path表示上行数据分流的传输主路径;cellGroup表示作为传输主路径的小区参数;logicalChannel表示传输主路径所支持的逻辑信道;ul-datasplitthreshold表示上行数据包的分流阈值门限;pdcp-duplication表示是否支持复制。
另外,在终端设备初始入网还未产生任何业务,此时可激活duplication机制,在NR链路的和LTE链路分别发送相同内容的数据包进行通信链路传输能力的探测,也即发送初始入网后要执行的第一个业务的数据包到基站,探测两条通信链路的传输时延或传输速率,或在未发生业务时发送SR请求包到基站,探测两条通信链路的传输时延或传输速率。终端获取两条通信链路的传输能力后,存储该探测结果。
针对不同的分流阈值门限,可通过不同方式来进行上行分流,具体执行时,可分为:
情况一、上行数据包的ul-datasplitthreshold配置有具体的数值。
需要说明的是,终端设备可根据PDCP层中业务数据的缓存数量和ul-datasplitthreshold决定是否启动上行分流。若PDCP数据量未超过分流阈值门限,则不分流,即通过primarypath传输上行数据;若PDCP数据量超过分流阈值门限,则启动分流,根据探测结果在LTE链路对应的MCG和NR链路对应的SCG中按照比例同时传输业务数据。如:上行数据包的分流阈值门限为20M bit,primarypath为MCG,探测结果为LTE链路的传输能力是NR链路的传输能力的4倍,当PDCP中缓存的数据量为15M bit,该数据量并未超过分流阈值门限,可直接通过MCG传输数据;当PDCP中缓存的数据量为25M bit,该数据量超过分流阈值门限,可按照4:1的比例来分配数据,也即MCG传输20M bit的数据量,SCG传输5M bit的数据量,共同传输数据。具体地,可参照图12示意的上行数据分流的流程示意图来执行:
步骤1201:终端设备初始入网,获取的上行分流参数。其中,该上行分流参数是网络设备发送的。
步骤1202:终端设备激活Duplication机制。
步骤1203a:终端设备发送第一探测数据包至第一网络设备。
步骤1203b:终端设备发送第二探测数据包至第二网络设备。
步骤1204a:终端设备接收第一网络设备反馈的第一探测数据包的第一响应信息,并根据第一响应信息确定LTE链路的传输能力。
步骤1204b:终端设备接收第二网络设备反馈的第二探测数据包的第二响应信息,并根据第二响应信息确定NR链路的传输能力。
步骤1205:终端设备关闭Duplication机制。
步骤1206:终端设备确定PDCP层中数据的缓存数量是否超过分流阈值;若是,则执行步骤1207;若否,则执行步骤1208。
步骤1207:终端设备根据通信链路的传输能力分流传输数据。
步骤1208:终端设备不采用上行分流发送数据。
情况二、上行数据包的ul-datasplitthreshold配置为无穷大。
需要说明的是,由于分流阈值门限为无穷大,终端设备可根据PDCP层中业务数据的缓存数量以及业务类型自主启动上行分流,其中,该业务类型是通过数据包所包含的指示信息确定的,该指示信息用于指示该数据包是否为某些特定业务产生的数据包。终端设备可根据PDCP层中业务数据的缓存数量以及根据指示信息显示的业务类型,确定上行分流的执行时机。
例如:主路径primarypath为MCG,探测结果为LTE链路的传输能力是NR链路的传输能力的4倍,当PDCP中缓存的数据量为15M bit,业务类型为即时通讯工具在信号覆盖较好的场所(如:运营商的数据中心、信号发射塔附近)传输聊天数据时,则不进行分流,可直接通过MCG传输业务数据;当PDCP中缓存的数据量为15M bit,业务类型为即时通讯工具在信号覆盖较差的场所(如:火车站、飞机场、山区)传输聊天数据时,要通过MCG和SCG分流传输业务数据;当PDCP中缓存的数据量为15M bit,业务类型为复杂业务(如:游戏、人工智能(artificial intelligence,AI)、虚拟现实技术(virtual reality,VR)渲染)则要通过MCG和SCG分流传输业务数据;当PDCP中缓存的数据量为25M bit,无论业务类型是什么,均要通过MCG和SCG分流传输业务数据。具体地,可参照图13示意的上行分流的流程示意图来执行:
步骤1301:终端设备初始入网,获取的上行分流参数。其中,该上行分流参数是网络设备发送的。
步骤1302:终端设备激活Duplication机制。
步骤1303a:终端设备发送第一探测数据包至第一网络设备。
步骤1303b:终端设备发送第二探测数据包至第二网络设备。
步骤1304a:终端设备接收第一网络设备反馈的第一探测数据包的第一响应信息,并根据第一响应信息确定LTE链路的传输能力。
步骤1304b:终端设备接收第二网络设备反馈的第二探测数据包的第二响应信息,并根据第二响应信息确定NR链路的传输能力。
步骤1305:终端设备关闭Duplication机制。
步骤1306:终端设备确定PDCP层中数据的缓存数量,和/或,数据包的业务类型是否满足分流需求;若是,则执行步骤1307;若否,则执行步骤1308。
步骤1307:终端设备根据通信链路的传输能力分流传输数据。
步骤1308:终端设备不采用上行分流发送数据。
故此,可知通过图13提供的上行分流方式终端设备可自主确定分流时机,从而提高数据的通信传输速率,提升用户的体验。另外应用本申请方案在Speedtest测试和即时通信应用上传图片等进行实际测试时,得到的测试结果如图14所示,其中曲线1表示在未使用上行分流方案时,业务数据在NR链路的传输速率,曲线2表示在未使用上行分流方案时,业务数据在LTE链路的传输速率,曲线3表示在使用上行分流方案时,业务数据传输速率。根据图14所示的示意图可以很明显的看出使用本申请的上行分流的方案后,数据传输速率明显提高。
本申请实施例还提供一种芯片系统,如图15所示的芯片系统1000包括应用处理器1002(application processor,AP)和基带处理器1004(baseband processor,BP)。其中,应用处理器的全称为多媒体应用处理器(multimedia application processor,MAP),指在低功耗中央处理器CPU的基础上拓展了音视频功能和专用接口的超大规模集成电路。应用处理器主要分为三类,可以包括全面型处理器、多媒体型处理器和单一媒体型处理器。全面型处理器既要有多媒体应用处理器的功能,同时也能运行复杂的类似linux之类的操作系统,多媒体型处理器指处理媒介超过两种的处理器,例如图像、声音、视频以及3D图形等媒介。单一多媒体型处理器是指处理一种媒介的处理器,通常仅用于处理图像或声音。
基带处理器是系统芯片中的一个重要部件,相当于一个协议处理器,负责数据的处理和存储,主要由数字信号处理器(digital signal processor,DSP)、微控制器(micro controller unit,MCU)和内存(如flash、闪存)等单元组成,其对应主要功能为负责基带编码或译码、声音编码和语音编码等。目前,基带处理器不仅支持多种通信标准(例如GSM、LTE、CDMA等),还提供多媒体功能以及提供用于多媒体显示器、图像传感器和音频设备相关的通信接口。
在实际应用中,通常应用处理器AP支持运行的软件包括操作系统、用户界面以及应用程序等。基带处理器BP可以视为一个无线调制解调modem模块,负责协调控制BP与基站和AP之间的通信,其支持运行的软件包括基带调制解调baseband modem的通信控制软件等。
应用处理器AP和基带处理器BP之间支持采用预设的接口技术实现相互通信,该接口技术可为系统自定义设置的,例如其包括但不限于串行外围设备接口(serial peripheral interface,SPI)、通用异步接收/发送装置(universal asynchronous receiver/transmitter,UART)、通用串行总线(universal serial bus,USB)、通用输入输出控制线(general purpose input/output,GPIO)等接口技术。具体地,应用处理器和基带处理器之间可通过控制命令以消息的格式实现相互间的通信传输,以完成通话、短消息、移动上网等功能。该控制命令可以包括传统AT(attention)命令、移动宽带接口模式(mobile broadband interface model,MBIM)命令或其它支持AP和BP相互传输的协议命令等。
可选地,如图15所示基带处理器BP支持运行非接入NAS层和无线资源控制RRC层相关的协议软件。在实际应用中,应用处理器AP支持与基带处理器BP中NAS层和RRC层的通信。例如,本申请中应用处理器AP可采用传统AT命令向NAS层发送相应地信令消息,以通知NAS层当前AP所获知的应用状态或设备屏幕状态等信息。
在实际应用中,芯片系统通常指一种高度复杂系统芯片,例如SOC芯片等。在实际部 署时,其可部署在设备内部,也可部署在设备外部,通过有线连接或无线连接实现设备的控制。所述设备包括但不限于用户设备UE或终端设备,例如其具体可包括智能手机、移动互联网设备(mobile internet devices,MID)、穿戴式智能设备或其它支持网络通信的设备等。具体地,当芯片系统1000部署在用户设备内部时,芯片系统1000直接用于实现如上任一所述方法实施例中所描述的方法。当系统芯片1000部署在用户设备外部,支持通过有线或无线连接的方式建立芯片系统1000与用户设备之间的通信,则用户设备通过调用或控制芯片系统1000实现如上任一所述方法实施例所描述的方法。
示例性的,应用处理器用于响应于用户的操作,运行应用程序产生第一数据包,并将第一数据包发送给基带处理器,基带处理器接收到第一数据包,确定第一数据包是通过NR链路发送还是LTE链路发送;如果是通过NR链路发送,判断该第一数据包是否是预设数据包,如果是,增大NR链路的发送功率,以增大后的发送功率通过所述NR链路发送所述第一数据包。假设应用处理器产生第二数据包,将第二数据包发送给基带处理器,基带处理器确定第二数据包通过LTE链路发送;确定LTE链路的发送功率为第三发送功率,第三发送功率和NR链路增大后的发送功率之和小于或等于所述终端总发送功率;基带处理器以所述第三发送功率通过所述LTE链路发送所述第二数据包。
图16示出了本申请一实施例提供的终端的结构示意图。
下面以终端100为例对实施例进行具体说明。应该理解的是,图16所示终端100仅是一个范例,并且终端100可以具有比图16中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
终端100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端100的具体限定。在本申请另一些实施例中,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端100的神经中枢和指挥中心。控制器可以根据指令操作码和 时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现终端100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现终端100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现终端100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB 接口,USB Type C接口等。USB接口130可以用于连接充电器为终端100充电,也可以用于终端100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其它终端,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端100的结构限定。在本申请另一些实施例中,终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过终端100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为终端供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其它一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其它功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM), 近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其它设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端100可以包括1个或N个显示屏194,N为大于1的正整数。
终端100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其它数字信号。例如,当终端100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变 换等。
视频编解码器用于对数字视频压缩或解压缩。终端100可以支持一种或多种视频编解码器。这样,终端100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行终端100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储终端100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
终端100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。终端100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当终端100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。终端100可以设置至少一个麦克风170C。在另一些实施例中,终端100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动终端平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少 两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。终端100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,终端100根据压力传感器180A检测所述触摸操作强度。终端100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定终端100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定终端100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测终端100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消终端100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,终端100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。终端100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当终端100是翻盖机时,终端100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测终端100在各个方向上(一般为三轴)加速度的大小。当终端100静止时可检测出重力的大小及方向。还可以用于识别终端姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。终端100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,终端100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。终端100通过发光二极管向外发射红外光。终端100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定终端100附近有物体。当检测到不充分的反射光时,终端100可以确定终端100附近没有物体。终端100可以利用接近光传感器180G检测用户手持终端100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。终端100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测终端100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。终端100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,终端100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,终端100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,终端100对电池142加热,以避免低温导致终端100异常关机。在其它一些实施例中,当温度低于又一阈值时,终端100对电池142的输出电 压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于终端100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。终端100可以接收按键输入,产生与终端100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和终端100的接触和分离。终端100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。终端100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,终端100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在终端100中,不能和终端100分离。
终端100还可以包括有磁力计(图中未示出),又可称为电子罗盘、指南针,可用于检测磁场强度以及方向。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储介质或者其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线 (DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其它远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的实施例而已,并非用于限定本申请的保护范围。凡根据本申请的揭露,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围。

Claims (22)

  1. 一种上行数据分流方法,其特征在于,包括:
    终端设备在确定定时器超时后,根据长期演进LTE链路以及新空口NR链路的传输能力,确定在所述LTE链路以及所述NR链路传输的数据包的数据量;
    其中,所述LTE链路的传输能力是所述定时器超时之前,所述终端设备通过所述LTE链路传输第一探测数据包确定的;所述NR链路的传输能力是所述定时器超时之前,所述终端设备通过所述NR链路传输第二探测数据包确定的;所述第二探测数据包是根据所述第一探测数据包复制的。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述第一探测数据包的第一响应信息,并根据所述第一响应信息确定所述LTE链路的传输能力;其中,所述第一响应信息包括:第一网络设备无线链路层控制协议的RLC层接收到所述第一探测数据包的时刻;以及,
    所述终端设备接收所述第二探测数据包的第二响应信息,并根据所述第二响应信息确定所述NR链路的传输能力;其中,所述第二响应信息包括:第二网络设备的RLC层接收到所述第二探测数据包的时刻。
  3. 根据权利要求1或2所述的方法,其特征在于,所述LTE链路的传输能力通过以下指示信息中的一种进行指示:
    所述第一探测数据包在所述LTE链路中的传输时延;或,
    所述第一探测数据包在所述LTE链路中的传输速率;
    所述NR链路的传输能力通过以下指示信息中的一种进行指示:
    所述第二探测数据包在所述NR链路中的传输时延;或,
    所述第二探测数据包在所述NR链路中的传输速率;
    其中,所述LTE链路的传输能力与所述NR链路的传输能力采用同一衡量指标的指示信息进行指示。
  4. 根据权利要求1-3任一所述的方法,其特征在于,所述第一探测数据包为以下数据包中的一种:
    响应于用户的在所述终端设备的应用程序的操作产生的业务数据包;或,
    请求数据SR包。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述根据LTE链路以及NR链路的传输能力,确定在所述LTE链路以及所述NR链路传输的数据包的数据量,包括:
    所述终端设备根据所述LTE链路的传输能力与所述NR链路的传输能力间的比例关系,确定数据包的数据量的分配规则;
    所述终端设备按照所述分配规则在所述LTE链路以及所述NR链路传输对应数据量的数据包。
  6. 根据权利要求1-5任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备在确定所述定时器超时之前,激活数据包复制机制;
    所述终端设备在确定所述定时器超时之后,关闭所述数据包复制机制。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述确定在所述LTE链路以及所述NR链路传输的数据包的数据量之前,所述方法还包括:
    所述终端设备确定上行数据分流参数中的分流阈值的取值以及所述终端设备在分组数据汇聚PDCP层中数据的缓存数量;
    所述确定在所述LTE链路以及所述NR链路传输的数据包的数据量,包括:
    所述终端设备根据所述分流阈值的取值、所述缓存数量、所述LTE链路的传输能力以及所述NR链路的传输能力对数据包的数据量进行分配。
  8. 一种终端设备,其特征在于,包括:
    处理器;
    计算机存储介质,所述计算及存储介质包括指令,所述处理器执行所述指令时,使得所述终端执行以下动作:
    在确定定时器超时后,根据长期演进LTE链路以及新空口NR链路的传输能力,确定在所述LTE链路以及所述NR链路传输的数据包的数据量;
    其中,所述LTE链路的传输能力是所述定时器超时之前,所述终端设备通过所述LTE链路传输第一探测数据包确定的;所述NR链路的传输能力是所述定时器超时之前,所述终端设备通过所述NR链路传输第二探测数据包确定的;所述第二探测数据包是根据所述第一探测数据包复制的。
  9. 根据权利要求8所述的终端设备,其特征在于,所述终端设备还执行:
    接收所述第一探测数据包的第一响应信息,并根据所述第一响应信息确定所述LTE链路的传输能力;其中,所述第一响应信息包括:第一网络设备的无线链路层控制协议RLC层接收到所述第一探测数据包的时刻;以及,
    接收所述第二探测数据包的第二响应信息,并根据所述第二响应信息确定所述NR链路的传输能力;其中,所述第二响应信息包括:第二网络设备的RLC层接收到所述第二探测数据包的时刻。
  10. 根据权利要求8或9所述的终端设备,其特征在于,所述LTE链路的传输能力通过以下指示信息中的一种进行指示:
    所述第一探测数据包在所述LTE链路中的传输时延;或,
    所述第一探测数据包在所述LTE链路中的传输速率;
    所述NR链路的传输能力通过以下指示信息中的一种进行指示:
    所述第二探测数据包在所述NR链路中的传输时延;或,
    所述第二探测数据包在所述NR链路中的传输速率;
    其中,所述LTE链路的传输能力与所述NR链路的传输能力采用同一衡量指标的指示信息进行指示。
  11. 根据权利要求8-10任一所述的终端设备,其特征在于,所述第一探测数据包为以下数据包中的一种:
    响应于用户的在所述终端设备的应用程序的操作产生的业务数据包;或,
    请求数据SR包。
  12. 根据权利要求8-11任一所述的终端设备,其特征在于,所述终端设备执行:
    根据所述LTE链路的传输能力与所述NR链路的传输能力间的比例关系,确定数据包的数据量的分配规则;
    按照所述分配规则在所述LTE链路以及所述NR链路传输对应数据量的数据包。
  13. 根据权利要求8-12任一所述的终端设备,其特征在于,所述终端设备还执行:
    在确定所述定时器超时之前,激活数据包复制机制;
    在确定所述定时器超时之后,关闭所述数据包复制机制。
  14. 根据权利要求8-13任一所述的终端设备,其特征在于,所述终端设备还执行:
    确定上行数据分流参数中的分流阈值的取值以及所述终端设备在分组数据汇聚PDCP层中数据的缓存数量;
    所述终端设备确定在所述LTE链路以及所述NR链路传输的数据包的数据量,执行:
    根据所述分流阈值的取值、所述缓存数量、所述LTE链路的传输能力以及所述NR链路的传输能力对数据包的数据量进行分配。
  15. 一种芯片系统,应用于终端设备,其特征在于,所述芯片系统包括应用处理器和基带处理器,其中:
    所述应用处理器用于:
    响应于用户的操作,产生数据包;
    所述基带处理器用于:
    在确定定时器超时后,根据长期演进LTE链路以及新空口NR链路的传输能力,确定在所述LTE链路以及所述NR链路传输的数据包的数据量;
    其中,所述LTE链路的传输能力是所述定时器超时之前,所述终端设备通过所述LTE链路传输第一探测数据包确定的;所述NR链路的传输能力是所述定时器超时之前,所述终端设备通过所述NR链路传输第二探测数据包确定的;所述第二探测数据包是根据所述第一探测数据包复制的。
  16. 根据权利要求15所述的芯片系统,其特征在于,所述基带处理器还用于:
    接收所述第一探测数据包的第一响应信息,并根据所述第一响应信息确定所述LTE链路的传输能力;其中,所述第一响应信息包括:第一网络设备的无线链路层控制协议RLC层接收到所述第一探测数据包的时刻;以及,
    接收所述第二探测数据包的第二响应信息,并根据所述第二响应信息确定所述NR链路的传输能力;其中,所述第二响应信息包括:第二网络设备的RLC层接收到所述第二探测数据包的时刻。
  17. 根据权利要求15或16所述的芯片系统,其特征在于,所述LTE链路的传输能力通过以下指示信息中的一种进行指示:
    所述第一探测数据包在所述LTE链路中的传输时延;或,
    所述第一探测数据包在所述LTE链路中的传输速率;
    所述NR链路的传输能力通过以下指示信息中的一种进行指示:
    所述第二探测数据包在所述NR链路中的传输时延;或,
    所述第二探测数据包在所述NR链路中的传输速率;
    其中,所述LTE链路的传输能力与所述NR链路的传输能力采用同一衡量指标的指示信息进行指示。
  18. 根据权利要求15-17任一所述的芯片系统,其特征在于,所述第一探测数据包为以下数据包中的一种:
    响应于用户的在所述终端设备的应用程序的操作产生的业务数据包;或,
    请求数据SR包。
  19. 根据权利要求15-18任一所述的芯片系统,其特征在于,所述基带处理器用于:
    根据所述LTE链路的传输能力与所述NR链路的传输能力间的比例关系,确定数据包的数据量的分配规则;
    按照所述分配规则在所述LTE链路以及所述NR链路传输对应数据量的数据包。
  20. 根据权利要求15-19任一所述的芯片系统,其特征在于,所述基带处理器还用于:
    在确定所述定时器超时之前,激活数据包复制机制;
    在确定所述定时器超时之后,关闭所述数据包复制机制。
  21. 根据权利要求15-20任一所述的芯片系统,其特征在于,所述基带处理器还用于:
    确定上行数据分流参数中的分流阈值的取值以及所述终端设备在分组数据汇聚PDCP层中数据的缓存数量;
    所述确定在所述LTE链路以及所述NR链路传输的数据包的数据量时,所述基带处理器用于:
    根据所述分流阈值的取值、所述缓存数量、所述LTE链路的传输能力以及所述NR链路的传输能力对数据包的数据量进行分配。
  22. 一种计算机可读存储介质,其特征在于,存储有计算机程序,所述计算机程序被计算机执行时,使得所述计算机执行如权利要求1至7任一项所述的方法。
PCT/CN2021/104869 2020-07-08 2021-07-07 一种上行数据分流方法、终端设备以及芯片系统 WO2022007820A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21836815.7A EP4164279A4 (en) 2020-07-08 2021-07-07 UPLINK DATA SHARING METHOD, TERMINAL DEVICE AND CHIP SYSTEM
US18/014,275 US20230300675A1 (en) 2020-07-08 2021-07-07 Uplink Data Splitting Method, Terminal Device, and Chip System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010652195.3A CN113923684A (zh) 2020-07-08 2020-07-08 一种上行数据分流方法、终端设备以及芯片系统
CN202010652195.3 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022007820A1 true WO2022007820A1 (zh) 2022-01-13

Family

ID=79231748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104869 WO2022007820A1 (zh) 2020-07-08 2021-07-07 一种上行数据分流方法、终端设备以及芯片系统

Country Status (4)

Country Link
US (1) US20230300675A1 (zh)
EP (1) EP4164279A4 (zh)
CN (1) CN113923684A (zh)
WO (1) WO2022007820A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109673023A (zh) * 2018-11-12 2019-04-23 中国科学院上海高等研究院 链路通信模式的操作方法、系统、计算机存储介质、设备
CN110431809A (zh) * 2017-04-21 2019-11-08 三星电子株式会社 用于在移动通信网络中在多链路上分配分组的方法和装置
CN110933712A (zh) * 2019-11-19 2020-03-27 RealMe重庆移动通信有限公司 一种数据传输方法、终端及存储介质
US20200196211A1 (en) * 2018-12-14 2020-06-18 T-Mobile Usa, Inc. Bearer selection for dual connectivity cellular systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852610A (zh) * 2016-06-29 2018-03-27 北京小米移动软件有限公司 数据传输方法、装置和终端
US10405231B2 (en) * 2017-04-24 2019-09-03 Motorola Mobility Llc Switching between packet duplication operating modes
US11246178B2 (en) * 2018-07-06 2022-02-08 Apple Inc. Balancing uplink transmissions for dual connectivity
CN110072245B (zh) * 2019-03-22 2021-04-09 华为技术有限公司 一种数据传输方法和装置
CN111050360B (zh) * 2019-11-21 2022-12-30 京信网络系统股份有限公司 上行数据分流方法、装置、基站和计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431809A (zh) * 2017-04-21 2019-11-08 三星电子株式会社 用于在移动通信网络中在多链路上分配分组的方法和装置
CN109673023A (zh) * 2018-11-12 2019-04-23 中国科学院上海高等研究院 链路通信模式的操作方法、系统、计算机存储介质、设备
US20200196211A1 (en) * 2018-12-14 2020-06-18 T-Mobile Usa, Inc. Bearer selection for dual connectivity cellular systems
CN110933712A (zh) * 2019-11-19 2020-03-27 RealMe重庆移动通信有限公司 一种数据传输方法、终端及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP PROTOCOL 38.331
NOKIA, NOKIA SHANGHAI BELL: "UE category for EN-DC", 3GPP DRAFT; R2-1707824 UE CATEGORIES FOR EN-DC AND NR, vol. RAN WG2, 20 August 2017 (2017-08-20), Berlin, Germany, pages 1 - 8, XP051317773 *
See also references of EP4164279A4

Also Published As

Publication number Publication date
EP4164279A4 (en) 2023-11-22
EP4164279A1 (en) 2023-04-12
CN113923684A (zh) 2022-01-11
US20230300675A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2020182016A1 (zh) 网络连接的处理方法、相关设备及计算机存储介质
WO2020124610A1 (zh) 一种传输速率的控制方法及设备
EP3893475B1 (en) Method for automatically switching bluetooth audio encoding method and electronic apparatus
WO2020124611A1 (zh) 一种速率控制方法及设备
WO2022083386A1 (zh) 投屏方法、系统及电子设备
WO2021175300A1 (zh) 数据传输方法、装置、电子设备和可读存储介质
WO2021185300A1 (zh) 基于业务类型调整数据传输策略的芯片、设备以及方法
WO2022033320A1 (zh) 蓝牙通信方法、终端设备及计算机可读存储介质
WO2022042265A1 (zh) 通信方法、终端设备及存储介质
WO2022012444A1 (zh) 多设备协作的方法、电子设备及多设备协作系统
WO2020118532A1 (zh) 一种蓝牙通信方法及电子设备
US11412437B2 (en) Data transmission method and electronic device
WO2022068539A1 (zh) 通信连接建立方法、系统、电子设备及存储介质
WO2022262492A1 (zh) 数据下载方法、装置和终端设备
WO2022199613A1 (zh) 同步播放方法及装置
WO2020134868A1 (zh) 一种连接建立方法及终端设备
WO2022135143A1 (zh) 设备配网方法、移动终端及存储介质
WO2022105674A1 (zh) 来电接听方法、电子设备及存储介质
WO2021043250A1 (zh) 一种蓝牙通信方法及相关装置
WO2022068486A1 (zh) 数据发送方法、电子设备、芯片系统及存储介质
WO2022007820A1 (zh) 一种上行数据分流方法、终端设备以及芯片系统
WO2022199491A1 (zh) 一种立体声组网方法、系统及相关装置
WO2021197163A1 (zh) 一种发送功率控制方法、终端、芯片系统与系统
WO2024055881A1 (zh) 时钟同步方法、电子设备、系统及存储介质
WO2022028341A1 (zh) 一种随机接入增强的方法、网络设备和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021836815

Country of ref document: EP

Effective date: 20230109

NENP Non-entry into the national phase

Ref country code: DE