WO2022007679A1 - 光源组件和投影设备 - Google Patents

光源组件和投影设备 Download PDF

Info

Publication number
WO2022007679A1
WO2022007679A1 PCT/CN2021/103531 CN2021103531W WO2022007679A1 WO 2022007679 A1 WO2022007679 A1 WO 2022007679A1 CN 2021103531 W CN2021103531 W CN 2021103531W WO 2022007679 A1 WO2022007679 A1 WO 2022007679A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
combining lens
laser
emitting
combining
Prior art date
Application number
PCT/CN2021/103531
Other languages
English (en)
French (fr)
Inventor
李巍
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202180048264.2A priority Critical patent/CN115702385A/zh
Publication of WO2022007679A1 publication Critical patent/WO2022007679A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present application relates to the technical field of projection display, and in particular, to a light source assembly and a projection device.
  • the projection device includes a light source component, the light source component is used to provide light required for forming a projection picture, and the higher the uniformity of the light, the better the display effect of the projection picture formed.
  • An aspect of the embodiments of the present application provides a light source assembly, including:
  • the laser has a first light-emitting region and a second light-emitting region; the first light-emitting region is used for emitting a first laser light, the second light-emitting region is used for emitting a second laser light, and the divergence angle of the first laser light is greater than the the divergence angle of the second laser;
  • a first light-combining lens group located on the light-emitting side of the first light-emitting region, and used for reflecting the first laser light emitted from the first light-emitting region to the light-emitting port of the light source assembly;
  • the second light-combining lens group is located on the light-emitting side of the second light-emitting area; the second light-combining lens group includes m light-combining lenses arranged in sequence along the light-emitting direction of the second light-emitting area, and the m There is a gap between the i-th light-combining lens and the i+1-th light-combining lens among the light-combining lenses, m ⁇ 2, 1 ⁇ i ⁇ m-1; wherein, the i-th light-combining lens includes a reflection area and a transmission area, the reflection area is used to reflect the incident second laser light to the light outlet, and the transmission area is used to transmit the incident second laser light to the i+1th a light-combining lens; the m-th light-combining lens is used to reflect the incident second laser light to the light outlet.
  • a projection device comprising: the above-mentioned light source assembly, an optical machine, and a lens; the light source assembly is used to emit light to the optical machine, and the optical machine is used to The light emitted by the light source assembly is converged to the lens, and the lens is used for projecting the light converged by the optical machine.
  • FIG. 1 is a schematic structural diagram of a projection device provided by the related art
  • FIG. 2 is a schematic structural diagram of a light source assembly provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a second light combining lens group provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an MCL laser provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another light source assembly provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another second light-combining lens group provided by an embodiment of the present application.
  • FIG. 7 is a partial structural schematic diagram of a light source assembly provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of still another light source assembly provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a light source assembly provided by the related art.
  • the light source assembly 00 includes: a laser 001 , a first combining lens J1 , a second combining lens J2 , a third combining lens J3 and a condensing lens 003 .
  • the laser 001 has a light-emitting area Q3, a light-emitting area Q2 and a light-emitting area Q1 sequentially arranged along a target direction (the x-direction in FIG. 1 ), and the target direction is perpendicular to the light-emitting direction of the laser 001 (the y-direction in FIG. 1 ) .
  • the light-emitting region Q1 can emit red laser light
  • the light-emitting region Q2 can emit blue laser light
  • the light-emitting region Q3 can emit green laser light.
  • the first light combining lens J1 is located on the light exit side of the first light emitting area Q1
  • the second light combining lens J2 is located on the light exit side of the light emitting area Q2
  • the third light combining lens J3 is located on the light exit side of the third light emitting area Q3
  • the third combining lens J2 is located on the light exit side of the third light emitting area Q3.
  • the light lens J3, the second light combining lens J2, the first light combining lens J1 and the condensing lens 003 are sequentially arranged along the x direction.
  • the red laser light emitted by the light emitting area Q1 can be directed to the first light-combining lens J1, and then reflected on the first light-combining lens J1 and then directed to the condensing lens 003.
  • the blue laser light emitted from the light emitting area Q2 can be directed to the second light-combining lens J2, and after being reflected on the second light-combining lens J2, it is transmitted to the condensing lens 003 through the first light-combining lens J1.
  • the green laser emitted by the light-emitting area Q3 can be directed to the third light-combining lens J3, and after being reflected on the third light-combining lens J3, it is transmitted to the condensing lens through the second light-combining lens J2 and the first light-combining lens J1 in turn. 003. In this way, the green laser light, the blue laser light and the red laser light emitted by the laser 001 are mixed and converged on the condensing lens 003 . Furthermore, projection of the projection screen can be performed based on the
  • the divergence angle of the red laser emitted by the laser 001 is larger than the divergence angles of the green laser and the blue laser
  • the spot size of the red laser on the converging lens 003 is larger than that of the green laser and the blue laser on the converging lens 003 size
  • the light spot distribution on the condensing lens 003 will show a more obvious phenomenon of color boundary between the inner and outer circles.
  • the light spot is circular, the outermost circle is red, and inwards are purple, blue and other concentric apertures. Therefore, the uniformity of the laser light condensed by the condensing lens 003 is poor, and the display effect of the projection screen formed by the projection of the laser light is also poor.
  • the following embodiments of the present application provide a light source assembly and a projection device.
  • the light source assembly can emit laser light with high uniformity, thereby improving the display effect of a projection image formed according to the laser light.
  • FIG. 2 is a schematic structural diagram of a light source assembly provided by an embodiment of the present application.
  • the light source assembly 10 may include: a laser 101 , a first light-combining lens group 102 and a second light-combining lens group (eg, second light-combining lens groups 103 a and 103 b ).
  • the laser 101 has a first light-emitting region Y1 and a second light-emitting region
  • FIG. 2 takes the laser 101 having two second light-emitting regions Y21 and Y22 as an example for illustration.
  • the first light emitting area Y1 is used for emitting the first laser light
  • the second light emitting area is used for emitting the second laser light
  • the divergence angle of the first laser light is greater than the divergence angle of the second laser light.
  • the second combining lens group is located on the light-emitting side of the second light-emitting area.
  • the second combining-lens group 103a is located on the light-emitting side of the corresponding second light-emitting area Y21
  • the second combining lens group 103b is located at the corresponding second light-emitting area Y22. the light-emitting side.
  • the second light-combining lens group 103a in the embodiment of the present application is described below by taking the second light-combining lens group 103a as an example.
  • the i-th light-combining lens P i may include a reflection area and a transmission area.
  • FIG. 3 is a schematic structural diagram of a second light combining lens group provided by an embodiment of the present application.
  • the second light-combining lens group 103a shown in FIG. 3 may be a left side view of the second light-combining lens group 103a shown in FIG. 2 .
  • Fanshe zone 1 may comprise Fanshe Ou a11, Fanshe Ou a12, a13 Fanshe Ou and reflective regions a14, Di a Geguangjingpian P
  • the transmission area of 1 may include a transmission area b11, a transmission area b12, and a transmission area b13.
  • Each reflection area is used to reflect the incident second laser light to the light outlet K of the light source assembly 10, and each transmission area is used to transmit the incident second laser light to the i+1 th light combining lens P i+1 .
  • the m-th light-combining lens P m in the second light-combining lens group 103 is used to reflect the incident second laser light to the light exit port K.
  • FIG. 2 only schematically shows the transmission paths of several light rays, and does not illustrate the light rays directed to each reflection area and transmission area.
  • each light combining lens group and light outlet can be arranged in a target direction (the x direction in FIG. 2 ).
  • the arrangement direction of the transmission area and the reflection area in the i-th light-combining lens P i of the second light-combining lens group may be perpendicular to the light-emitting direction (y direction) of the laser, and perpendicular to the target direction. Bonding the optical lens in FIG. 3 P 1 in the transmissive region and the reflective region may be arranged in the z-direction, the z direction may be a direction perpendicular to the paper surface in FIG. 2, the z-direction perpendicular to the x and y directions.
  • the light combining lens may have a length direction and a width direction
  • the z direction in FIG. 3 may be the length direction of the light combining lens
  • the transmission area and the reflection area in the light combining lens may be arranged in the length direction.
  • the transmission area and the reflection area in the light combining lens can also be arranged in the width direction.
  • the light combining principle of the light combining lens in this way is the same as that of the light combining lens shown in FIG. 3 . The principle is the same, and details are not repeated in this embodiment of the present application.
  • each component in the light source assembly 10 can be packaged in a housing, the housing of the light source assembly 10 can have a light outlet K, and the light source assembly 10 can transmit the light to the light of the projection device through the light outlet K
  • the light outlet K of the housing is referred to as the light outlet K of the light source assembly 10
  • the laser 101 in the light source assembly 10 can emit various colors of laser light to be transmitted to the light outlet K.
  • the multiple light-emitting regions in the laser 101 may be multiple regions in the light-emitting surface of the laser 101 . In a specific implementation, the colors of laser light emitted by different light-emitting regions may be different.
  • the laser 101 may have only one light-emitting direction (the y direction in FIG. 2 ), and the light-emitting direction of each light-emitting region in the laser 101 is the same as the light-emitting direction of the laser 101 . Since the laser light transmitted to the light outlet K needs to be obtained by mixing the lasers of various colors emitted by the laser 101, and there are certain requirements for the spot size of the laser light transmitted to the light outlet K; therefore, the light outlet K is not directly set In the light-emitting direction of the laser 101, and between the laser 101 and the light-emitting port K, a light-combining lens is further arranged to adjust and mix the laser light emitted by the laser 101 and then transmit it to the light-emitting port K.
  • each light-emitting area of the laser 101 is provided with a light-combining lens group, so as to reflect the laser light emitted by the corresponding light-emitting area to the light-emitting port K, respectively.
  • the embodiment of the present application is illustrated by taking an example that a first light-combining lens group 102 is disposed on the light-emitting side of the first light-emitting area Y1 , and the first light-combining lens group 102 only includes one light-combining lens.
  • the first light-combining lens group 102 may also include a plurality of light-combining lenses.
  • the orthographic projections of the plurality of light-combining lenses on the first light-emitting region have no overlapping region, and for example, the surfaces of the plurality of light-combining lenses for reflecting the first laser light may be coplanar.
  • the second optical lens group together a combined light from the second lens P 1 is the m-th light emitting region comprises bonding the optical lens optical lens closest together, the m-th light combining lenses P m is farthest from the second light-emitting region of combining lenses.
  • the second laser light emitted by the second light-emitting area can be directed to the corresponding second light-combining lens group.
  • the second laser can pass through the former light-combining mirror (that is, the i-th light-combining mirror) among the m light-combining mirrors
  • the transmission area in the lens P i is directed to the next light-combining lens (that is, the i-th light-combining lens P i+1 ), and the second laser can be emitted by the reflective area of any light-combining lens when it is emitted.
  • the reflection area reflects to the light outlet K.
  • the second laser light is directed to the m-th light-combining lens, it can be directly reflected by the m-th light-combining lens to the light outlet K. Please refer to FIG. 2 and FIG.
  • the second laser light emitted by the second light emitting area and directed to the four transmission areas in the first light- combining lens P 1 is transmitted to the second light-combining lens P 2 , and then is transmitted by the light-combining lens.
  • P 2 is reflected to be directed to the light outlet K, and the second laser light directed to the three reflection areas in the first light combining lens P 1 is directly reflected to be directed to the light outlet K.
  • the second laser emitted from the second light-emitting area passes through the i-th light-combining lens, it transmits a certain optical path and then shoots toward the i+1-th light-combining lens, and then at the i+1-th light-combining lens. It is reflected to the light outlet K under the action. Therefore, the second laser light directed to the light exit port K covers the range from the first light combining lens to the mth light combining lens, and the light spot formed by the second laser light at the light output port K is relatively large.
  • the laser beams emitted by the light-emitting area Q2 and the light-emitting area Q3 are directly reflected on a light-combining lens to be directed toward the light exit port.
  • the laser beam is relatively thin and formed at the light exit port.
  • the light spot is smaller and more concentrated in the center of the light outlet.
  • the second laser light can be reflected on a plurality of light-combining mirrors with gaps between each other to be emitted toward the light outlet, so that the thin second laser beam can be divided into multiple beams and then emitted.
  • the multiple second laser beams can occupy a larger area for transmission, and thus the light spot formed by the second laser light at the light exit port can be larger, and the difference in size with the light spot formed by the first laser light can be smaller.
  • the second light-combining lens group is located on the light-emitting side of the second light-emitting area of the laser, and the plurality of light-combining lenses in the second light-combining lens group are along the second The light-emitting directions of the light-emitting areas are arranged and there is a gap between two adjacent light-combining lenses.
  • the light-combining lens before the last light-combining lens in the second light-combining lens group includes a transmission area and a reflection area.
  • the second laser light directed to the reflection area can be directly reflected by the reflection area to the light outlet, and the laser beam directed to the transmission area
  • the second laser light can pass through the transmission area and be directed to the next light-combining lens, and the second laser light directed to the last light-combining lens can be reflected to the light outlet.
  • the second laser emitted by the second light-emitting area of the laser can be emitted from a plurality of light combining lenses with gaps between them to the light outlet, and the second laser emitted to the light outlet can cover a large area, and the second laser
  • the light spot formed by the laser at the light exit port can be larger.
  • the plurality of light combining lenses in the second light combining lens group can ensure that the second light
  • the difference in size between the spot formed by the laser and the spot formed by the first laser is small, thereby ensuring that the laser uniformity obtained by mixing the first laser and the second laser at the light outlet is high.
  • the projection device using the light source assembly can form a projection image with better display effect according to the laser light with high uniformity.
  • the laser 101 may have at least two light-emitting regions.
  • each second light combining lens group corresponds to a second light emitting area
  • different second light combining lens groups correspond to different In the second light-emitting area
  • each second light-combining lens group is located on the light-emitting side of the corresponding second light-emitting area.
  • FIG. 2 takes as an example that the laser 101 has a first light-emitting region Y1 and two second light-emitting regions Y21 and Y22.
  • the laser 101 may also have only one second light-emitting region, or the laser 101 may also have three or more second light-emitting regions, or the laser 101 may also have multiple first light-emitting regions.
  • the embodiment is not limited.
  • the divergence angle of the laser light emitted by any second light emitting region may be smaller than the divergence angle of the laser light emitted by any first light emitting region.
  • the first light-emitting region Y1 in FIG. 2 can emit red laser light
  • the second light-emitting region Y21 can emit green laser light
  • the second light-emitting region Y22 can emit blue laser light.
  • the divergence angles of the blue laser light and the green laser light can both be smaller than The divergence angle of the red laser.
  • the light-emitting regions that emit both the red and blue lasers can also be determined as the first light-emitting regions, and only the The light-emitting area that emits green laser light is determined as the second light-emitting area, and the second light-combining lens group is arranged only on the light-emitting side of the light-emitting area that emits green laser light.
  • the laser 101 in the light source assembly 10 provided in the embodiment of the present application may be a multi-chip Laser Diode (multi_chip Laser Diode, MCL) type laser.
  • FIG. 4 is a schematic structural diagram of an MCL laser provided by an embodiment of the present application, and the laser 101 shown in FIG. 2 may be a schematic diagram of a cross-section d-d' of the laser 101 shown in FIG. 4 after being turned over.
  • the MCL type laser may include a plurality of light-emitting chips (not shown in FIG. 3 ) packaged in the same package G and arranged in an array, each light-emitting chip can emit laser light independently, and each light-emitting chip can emit light independently.
  • the laser light emitted by the chip can be emitted through its corresponding collimating lens T.
  • the laser 101 shown in FIG. 4 may include 24 light-emitting chips arranged in 6 rows and 4 columns, wherein the first light-emitting area Y1 may include the areas where the two rightmost columns of light-emitting chips in FIG. 4 are located, and the second light-emitting area Y21 It may include the area where the light-emitting chips of the leftmost column are located, and the second light-emitting area Y22 may include the area where the light-emitting chips of the second column are located.
  • the light source assembly provided by the embodiment of the present application adopts the laser to reduce the volume of the light source assembly, which is beneficial to realize the miniaturization of the projection device.
  • the laser 101 may include 24 light-emitting chips arranged in 6 rows and 4 columns as an example.
  • the laser 101 may also include 20 light-emitting chips arranged in 4 rows and 5 columns, or 3 There are 15 light-emitting chips in rows and 5 columns, or 14 light-emitting chips in 2 rows and 7 columns, which are not limited in the embodiments of the present application.
  • each light emitting area in the light source assembly 10 can be arranged along the target direction (ie, the x direction in FIG. 2 ), and each light combining lens group can also be arranged along the target direction. Since the light-combining lens group needs to reflect the incoming laser light to the light outlet, each light-combining lens group and the light output port can be arranged in the target direction.
  • the target direction may intersect the light-emitting direction of the laser 101 , for example, the target direction may be perpendicular to the light-emitting direction of the laser 101 , or the target direction may be an acute angle or an obtuse angle with the light-emitting direction of the laser 101 .
  • each light-emitting area may also be scattered or arranged in a circle, or may also be arranged in other manners, which are not limited in the embodiments of the present application.
  • the light source assembly 10 includes at least two light-combining lens groups, and each light-combining lens group and the light outlet can be arranged in the target direction, so there may be a light-combining lens group located at the light-outlet and another light-combining lens group. between the combining lens groups. If the light-combining lens group is to emit the reflected laser light toward the light outlet, it needs to ensure that the laser light passes through the other light-combining lens group. Therefore, the light-combining lens in the light source assembly is located between the light-exit and any light-combining lens group. The group is also used for: transmitting the laser light emitted by any of the light combining lens groups.
  • the second light-combining lens group Y22 is located between the second light-combining lens group Y21 and the light outlet K, so the second light-combining lens group Y22 can also be used to transmit the second light-combining lens group Y21.
  • the emitted laser light eg, green laser light
  • the light combining lens in the second light combining lens group Y22 is used to transmit the green laser light.
  • the first light-combining lens group Y1 is located between the second light-combining lens group Y21 and the light outlet K, and between the second light-combining lens group Y22 and the light outlet K, so the first light-combining lens group Y1 can also be used for Transmits the laser light (such as green laser) emitted by the second light-combining lens group Y21 and the laser light (such as blue laser) emitted by the second light-combining lens group Y22, that is, the light-combining lens in the first light-combining lens group Y1 Also used to transmit the green and blue lasers.
  • the laser light such as green laser
  • the laser light such as blue laser
  • the second light-combining lens group Y21 can reflect green laser light
  • the second light-combining lens group Y22 can reflect blue laser light and transmit green laser light
  • the first light-combining lens group Y1 can reflect red laser light and transmit green laser light and blue laser light .
  • the m light-combining lenses of the second light-combining lens group may intersect with the light emitting direction (the y direction in FIG. 2 ) of the second light-emitting region. If the light-receiving surface of the laser light emitted by the m light-combining lenses to the second light-emitting area intersects the light-emitting direction, the light-receiving surface of the light-combining lens is the surface of the light-combining lens close to the second light-emitting area.
  • the m light-combining lenses of the second light-combining lens group may be parallel, for example, the light-receiving surfaces of the m light-combining lenses for the laser light emitted by the second light-emitting region are parallel.
  • each light-combining lens in the second light-combining lens group may have a plate-like structure, and the plate-like structure has two parallel larger plate surfaces, and a plurality of relatively large plates connecting the two plate surfaces. Small side, the light-receiving surface is one of the two panels that is close to the second light-emitting area. Because the thickness of the light-combining lens is relatively thin, the light-combining lens is regarded as a plane, so it can also be directly called that the light-combining lens intersects the light-emitting direction, and the m light-combining lenses are parallel.
  • the included angle between the light combining lens of the second light combining lens group and the light emitting direction of the second light emitting area may range from 43 degrees to 45 degrees. In a specific implementation, the included angle between the light-combining lens in the first light-combining lens group and the light-emitting direction of the laser may also range from 43 degrees to 45 degrees.
  • a second optical lens assembly 103a bonded together in the optical lens comprises a z-direction P 1 sequentially arranged reflective region a1, the transmissive region b1, the reflective region a2, the transmissive region b2, Reflection area a3, transmission area b3 and reflection area a4.
  • the laser beam emitted by the second light-emitting area can be divided into multiple beams and take up more areas to be emitted, and the alternate arrangement of the transmission area and the reflection area can ensure that the areas where the laser light is reflected from each light-combining lens is evenly distributed, thereby ensuring that the laser beams are reflected from each combination lens.
  • the distribution of the laser light emitted by the optical lens is relatively uniform.
  • the area of each transmission area and the reflection area may be the same, so as to further ensure that the distribution of laser light emitted by each light combining lens is relatively uniform.
  • FIG. 3 only uses the first light-combining lens to include four reflection areas and three
  • the transmission area is taken as an example, and both ends of the first light-combining lens are both reflection areas.
  • the second light-combining lens group may also include three, four or even more light-combining lenses, and the number of reflective areas in the first light-combining lens may also be three, five or other
  • the number of transmission areas can also be two, three or other numbers; both ends of the first light-combining lens can also be transmission areas.
  • the number of transmission areas in the first light-combining lens is more than The number of reflection areas; or the first light-combining lens can also be a transmission area at one end and a reflection area at the other end. At this time, the number of transmission areas and reflection areas in the first light-combining lens is the same; the areas of each transmission area and reflection area can also be different. , the embodiments of the present application are not limited.
  • the number of the transmission areas and the reflection areas in the second light-combining lens group may be related to the number and arrangement of the light-emitting chips in the second light-emitting area.
  • the number of transmission areas and reflection areas in the first combination lens of the second combination lens group is equal to the number of light-emitting chips arranged in a certain direction in the second light-emitting area, and the arrangement directions of the transmission area and the reflection area are parallel The arrangement direction of the light-emitting chips in the second light-emitting area.
  • the laser may include light-emitting chips arranged in 4 rows and 7 columns, and the second laser light emitted by the second light-emitting region may be emitted by 7 light-emitting chips in one column of the laser, then the second light-emitting region may emit light.
  • the laser beam is divided into 7 beams.
  • the sum of the number of transmission areas and reflection areas in the first combination lens of the second combination lens group is 7, and it can ensure that the laser light emitted by each light-emitting chip is directed to one transmission area or reflection area.
  • the transmission area and the reflection area of the light combining lens of the second light combining lens group can also be arranged in the z direction.
  • the number of light-combining lenses in the second light-combining lens group is more than 2, that is, m ⁇ 3.
  • the jth light-combining lens among the m light-combining lenses may have a first transmission area
  • the j+1th light-combining lens may have a second transmission area corresponding to the first transmission area, 1 ⁇ j ⁇ m -1.
  • the orthographic projection of the first transmissive area and the orthographic projection of the second transmissive area corresponding to the first transmissive area at least partially overlap, thereby ensuring that the first transmissive area can transmit at least part of the incident second laser light
  • the laser light is directed to the second transmission area corresponding to the first transmission area.
  • the laser 101 has a first light-emitting area Y1 and a second light-emitting area Y2, and the second light-combining lens group 103 includes three light-combining lenses P 1 , P 2 and P 3 .
  • FIG. 6 is a schematic structural diagram of another second light combining lens group provided by an embodiment of the present application. The second light combining lens group 103 shown in FIG.
  • a first light combining lens including P 1 arranged in the z-direction transmission region b1, the reflective region a1, the transmissive region b2, a2 reflective region and the transmissive region B3; second engagement optical lenses comprising P 2 along the target direction arranged Reflection area a3, transmission area b4 and reflection area a4.
  • the transmission area b2 may be a first transmission area
  • the transmission area b4 may be a second transmission area corresponding to the transmission area b2.
  • the orthographic projection of the transmission area b2 on the second light-emitting area Y2 at least partially overlaps with the orthographic projection of the transmission area b4 on the second light-emitting area Y2, such as the orthographic projection of the transmission area b2 on the second light-emitting area Y2, covering the transmission area Part of the area in the orthographic projection of b4 on the second light-emitting area Y2.
  • the light-emitting area of the laser includes a light-emitting surface perpendicular to its light-emitting direction (ie, the y-direction), so the orthographic projection of the transmission area on the second light-emitting area and the transmission area are on a plane perpendicular to the y-direction is the same orthographic projection.
  • the second laser light emitted from the second light emitting area Y2 can be directed to the first light combining lens P1, and the second laser light that is directed to the transmission area b1 in the light combining lens P1 passes through the transmission area b1 and is directed to the second light combining lens lens reflection region P 2 a3, a3 and further reflected by the reflective region to the light exit K; toward the second laser light passes through the transmissive area of the transmissive region b3 b3 combined light toward the second reflective region P a4 lens 2 , which is then reflected to the light outlet K by the reflection area a4.
  • the light spot at the light outlet K is larger.
  • Fig. 4 takes the size of the transmission area b2 smaller than the size of the transmission area b4, and the orthographic projection area of the transmission area b2 on the second light-emitting area Y2 is smaller than the orthographic projection area of the transmission area b4 on the second light-emitting area Y2 as an example;
  • the size relationship between the transmission area b2 and the transmission area b4 is not limited.
  • the transmissive area b2 and the transmissive area b4 may have the same size, and the orthographic projection of the transmissive area b2 on the second light emitting area Y2 and the orthographic projection of the transmissive area b4 on the second light emitting area Y2 may completely coincide.
  • the size of the transmission area b2 may be larger than the size of the transmission area b4, and the orthographic projection area of the transmission area b4 on the second light-emitting area Y2 may be larger than the orthographic projection area of the transmission area b2 on the second light-emitting area Y2 area.
  • the transmissive region toward the second engagement b2 light transmission through the lens portion P 2 in the second laser region b4 of the optical lens toward a third engagement P 3 can be directed to another portion of the second light combiner
  • the reflection area a3 or a4 of the lens P 2 is further reflected on the reflection area a3 or a4 of the second light combining lens P 2 .
  • the setting mode of the transmission area and the reflection area in each light combining lens can be set flexibly according to the needs, it only needs to ensure that the second laser passing through the transmission area in the front light combining lens can be reflected on the rear light combining lens.
  • the application examples are not limited.
  • the number of reflective areas in the latter light-combining lens among the m light-combining lenses may be less than or equal to the number of transmission areas in the previous light-combining lens.
  • the light source assembly includes a plurality of second light emitting regions and a plurality of second light combining lens groups.
  • the orthographic projection of the target reflection area and the orthographic projection of the target transmission area at least partially coincide.
  • the target reflection area belongs to the light combining lens of the second light combining lens group far from the light outlet, and the target transmission area belongs to the light combining lens of the second light combining lens group close to the light outlet.
  • the target reflection area can reflect the incident second laser light to the target transmission area, so that the second laser light passes through the target transmission area and is emitted to the light exit port.
  • the transmissive area and the reflective area in the two light-combining lens groups are set to be inserted into the space.
  • the number of transmission areas of one light-combining lens group in the two light-combining lens groups is equal to the number of reflection areas of the other light-combining lens group.
  • FIG. 7 is a partial structural schematic diagram of a light source assembly provided by an embodiment of the present application.
  • Fig. 7 is a bottom view of the first light combining lens, the first light combining lens group 102 and the light outlet K in the second light combining lens groups 103a and 103b in the light source assembly of Fig. 2 . Please refer to FIG. 2 and FIG.
  • the second light-combining lens group 103a is far away from the light outlet K
  • the second light-combining lens group 103b is close to the light output port K
  • the second The reflection area in the light-combining lens group 103a is the target reflection area
  • the transmission area in the second light-combining lens group 103b is the target transmission area.
  • the orthographic projection of the reflective area in the light-combining lens of the second light-combining lens group 103a and the orthographic projection of the transmission area in the light-combining lens of the second light-combining lens group 103b coincide.
  • the first light-combining lens in the second light-combining lens group 103a includes four reflective areas and three transmission areas
  • the first light-combining lens in the second light-combining lens group 10b includes three reflective areas and four transmission areas Area.
  • the first light-combining lens in the second light-combining lens group 103a includes a reflection area a11, a transmission area b11, a reflection area a12, a transmission area b12, a reflection area a13, and a transmission area b13 arranged along the z-direction and reflection area a14
  • the first combination lens in the second combination lens group 10b includes transmission area b21, reflection area a21, transmission area b22, reflection area a22, transmission area b23, reflection area a23 and Transmissive area b24.
  • the reflection area a11 can reflect the second laser light emitted by the second light-emitting area Y21 to the transmission area b21, and then pass through the transmission area b21 to the light outlet K;
  • the reflection area a12 can reflect the second laser light emitted by the second light-emitting area Y21 to The transmission area b22, and then pass through the transmission area b22 to the light outlet K;
  • the reflection area a13 can reflect the second laser light emitted by the second light-emitting area Y21 to the transmission area b23, and then pass through the transmission area b23 to the light outlet K;
  • reflect The area a14 can reflect the second laser light emitted from the second light emitting area Y21 to the transmission area b24, and then pass through the transmission area b24 to be emitted to the light exit port K.
  • the number of light combining lenses in each second light combining lens group may be the same or different, and the light combining lenses in each second light combining lens group
  • the areas of the lenses may be the same or different, which are not limited in the embodiments of the present application.
  • the function of the second light combining lens group can be realized in the following ways:
  • the i-th light-combining lens in the second light-combining lens group includes: a light-transmitting substrate and a dichroic film attached to the light-transmitting substrate, and the i-th light-combining lens
  • the dichroic film in the transmission area of the i-th light-combining lens is used to transmit the second laser light emitted by the second light-emitting area corresponding to the second light-combining lens group.
  • the dichroic film is used for: reflecting the second laser light emitted by the second light emitting area corresponding to the second light combining lens group in the incident laser light.
  • the dichroic films in the transmission area and the reflection area can also transmit the laser light emitted by other light combining lenses located on the side of the i-th light combining lens away from the light outlet.
  • the dichroic film in the reflection area of the first light-combining lens in the second light-combining lens group 103a in FIG. 2 can reflect green light, and the dichroic film in the transmission area can transmit green light;
  • the dichroic film in the reflection area of the first light-combining lens in the optical lens set 103b can transmit green light and reflect blue light, and the dichroic film in the transmission area can transmit green light and blue light.
  • the i-th light-combining lens in the second light-combining lens group includes a light-transmitting substrate and a light-reflecting coating on the light-transmitting substrate.
  • the reflective area in the i-th light-combining lens includes the area in the i-th light-combining lens where a reflective coating is provided, and the reflective coating is used to reflect the second laser light emitted by the corresponding second light-emitting area.
  • the transmissive area in includes the area of the i-th light-combining lens that is not provided with a reflective coating. In this way, the reflection area of the i-th light combining lens reflects the incident second laser light, and the transmission area transmits the incident second laser light.
  • the reflective coating when the reflective area in the i-th light-combining lens does not need to transmit laser light of any wavelength band, the reflective coating can reflect light of all wavelength bands. When the reflective area in the i-th light-combining lens still needs to transmit a certain wavelength band of laser light, the reflective coating can have the function of transmitting the laser light of this wavelength band. At this time, the function of the reflective coating is the same as that of the dichroic film. Function is similar.
  • the i-th light-combining lens in the second light-combining lens group includes a plurality of sub-mirrors, each reflection area of the i-th light-combining lens includes a sub-mirror, and the i-th light-combining lens
  • the transmission area of the lens may not be provided with any material.
  • the formation manner of the sub-lens reference may be made to the formation manner of the reflection area in the first optional implementation manner and the second optional implementation manner described above.
  • the transmission region can transmit light in all wavelength bands, and the reflection region can reflect light in all wavelength bands.
  • the transmission area and the reflection area in the plurality of second light-combining lens groups may adopt the above-mentioned intervening settings. way to design. In this way, the light reflected by the reflection area in a certain second light combining lens group can be emitted to the light outlet through the transmission area in the other second light combining lens group, so there is no need to set a dichroic film in the transmission area, which can avoid the need to install a dichroic film in the other second light combining lens group.
  • the dichroic film needs to be installed at each position of the light-combining lens of the second light-combining lens group, which leads to the increase of the manufacturing cost and the problems that the manufacturing process is relatively complicated. And for the above-mentioned third optional implementation manner, it is not necessary to set any material in the transmission area, so the fabrication cost of the light source assembly can be further saved.
  • an implementation manner of the function of the m-th light-combining lens may refer to the above-mentioned first type of the i-th light-combining lens Optional implementation.
  • the mth light combining lens in the second light combining lens group may be a reflective lens
  • the reflective sheet can reflect light of all wavelength bands, for example, the reflective sheet can be a metal sheet (such as an aluminum sheet or a copper sheet) and the like.
  • the dichroic film of the light-combining lens in the first light-combining lens group as shown in FIG. 2 can be used to transmit green light and blue light and reflect red light.
  • FIG. 8 is a schematic structural diagram of still another light source assembly provided by an embodiment of the present application.
  • the light source assembly 10 may further include: a housing 104 .
  • the above-mentioned laser 101 , the first light-combining lens group 102 and the second light-combining lens group 103 can all be arranged in the accommodating cavity inside the casing 104 .
  • the light source assembly 10 may further include a phase retardation plate 105 , and the phase retardation plate 105 may be located on the light-emitting side of the second light-emitting area of the laser, and between the second light-emitting area and the second light combining lens group 103 between.
  • the second laser eg, green laser or blue laser
  • the second laser emitted from the second light-emitting region can be directed to the second light combining lens group 103 after the polarization direction is adjusted by the phase retarder 105 .
  • a phase retarder 105 can be provided on the light-emitting side of the second light-emitting region, so that the polarization direction of the second laser light passing through the phase retarder 105 The same as the polarization direction of the first laser (eg, red laser).
  • the phase retardation plate 105 can be fixed inside the housing 104 by clamping the holding member, so that the fixing device of the phase retardation plate 105 can avoid blocking the optical path.
  • the phase retardation plate 105 can be a half-wave plate.
  • the light-emitting region emitting green laser is adjacent to the light-emitting region emitting blue laser, so only one half-wave plate can be arranged in the light source assembly 10 to adjust the phases of the green laser and the blue laser.
  • an integrated base may also be provided in the accommodating cavity of the housing 104, and each light-combining lens group may be fixed by the integrated base, so as to reduce the cumulative tolerance of the assembly of multiple structures, It is convenient to maintain the same setting angle and relative positional relationship between the light-combining lenses.
  • the phase retarder 105 can also be fixed by an integrated base.
  • the light source assembly 10 may further include a condensing lens 106 .
  • the condensing lens 106 may be located at the light outlet K of the light source assembly 10 .
  • the laser light emitted from each light-emitting area of the laser 101 can be reflected on the corresponding light combining lens group, and then mixed into a beam of laser light, which is emitted to the condensing lens 106 at the light outlet K of the light source assembly 10 .
  • the condensing lens 106 can condense the received light to reduce the spot and then send it to the optical machine, for example, to the optical path shaping component in the optical machine, for example, the optical path shaping component includes a light pipe for homogenizing the light.
  • the laser light of different colors emitted by each light-emitting region of the laser 10 can be mixed to obtain white light, and a white light spot can be formed at the condensing lens 106 .
  • the difference in the spot size of the laser light of each color on the condensing lens 106 is relatively small, so the uniformity of the white spot formed on the condensing lens 106 is high.
  • the light source assembly 10 may further include a diffusing part (not shown in FIG. 8 ), the diffusing part may be located on the light exit path of the condensing lens 106 , and the laser light emitted from the light exit port is diffused by the diffusing part and then incident on the light beam Integer part.
  • the diffusing part may be a diffusing wheel structure, including a rotating diffusing sheet. By rotating and diffusing the light by the diffusing sheet, the speckle of the light can be dissipated, so as to improve the quality of the light emitted by the light source component and reduce the speckle effect of the projected image.
  • the second light-combining lens group is located on the light-emitting side of the second light-emitting area of the laser, and the plurality of light-combining lenses in the second light-combining lens group are along the second The light-emitting directions of the light-emitting areas are arranged and there is a gap between two adjacent light-combining lenses.
  • the light-combining lens before the last light-combining lens in the second light-combining lens group includes a transmission area and a reflection area.
  • the second laser light directed to the reflection area can be directly reflected by the reflection area to the light outlet, and the laser beam directed to the transmission area
  • the second laser light can pass through the transmission area and be directed to the next light-combining lens, and the second laser light directed to the last light-combining lens can be reflected to the light outlet.
  • the second laser emitted by the second light-emitting area of the laser can be emitted from a plurality of light combining lenses with gaps between them to the light outlet, and the second laser emitted to the light outlet can cover a large area, and the second laser
  • the light spot formed by the laser at the light exit port can be larger.
  • the plurality of light combining lenses in the second light combining lens group can ensure that the second light
  • the difference in size between the spot formed by the laser and the spot formed by the first laser is small, thereby ensuring that the laser uniformity obtained by mixing the first laser and the second laser at the light outlet is high.
  • FIG. 9 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
  • the projection apparatus may include: a light source assembly 10 , an optical machine 20 and a lens 30 .
  • the light source assembly 10 is used for emitting light to the optical machine 20, and the optical machine 20 is used for modulating the incoming light and then sending it to the lens 30, and the lens 30 is used for projecting the incoming light.
  • the light source assembly can be any of the above-mentioned light source assemblies 10 . Since the uniformity of the laser light emitted by the light source assembly 10 is relatively high, a projection device using the light source assembly can form a projection image with better display effect according to the laser light with relatively high uniformity.
  • the optomechanical may include a light homogenization component, a lens group, a total internal reflection (TIR) prism group, and a light modulation component.
  • the light emitted from the light source assembly is followed by a light homogenization component, a lens group, a total internal reflection (TIR) prism group and a light modulation component and then exits to the lens.
  • the light-emitting surface of the light homogenizing component and the light-incident surface of the light modulation device have a conjugate object-image relationship with each other.
  • the light modulation component can be a liquid crystal on silicon (Liquid Crystal on Silicon, LCOS), a liquid crystal display (Liquid Crystal Display, LCD) or a digital micromirror device (Digital Micromirror Device, DMD).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光源组件和投影设备,光源组件(10)包括:激光器(101),其中第一发光区域(Y1)出射第一激光,第二发光区域(Y2,Y21,Y22)出射发散角度小于第一激光的第二激光;第一合光镜片组(102),将第一激光反射至光源组件(10)的出光口;第二合光镜片组(103),包括沿第二发光区域(Y2,Y21,Y22)的出光方向依次排布的m个合光镜片,m个合光镜片中第i个合光镜片与第i+1个合光镜片之间具有间隙,m≥2,1≤i≤m-1;其中,第i个合光镜片包括反射区(a1, a2, a3)和透射区(b1, b2, b3),反射区(a1, a2, a3)将射入的第二激光反射至出光口,透射区(b1, b2, b3)将射入的第二激光透射至第i+1个合光镜片;第m个合光镜片将射入的第二激光反射至出光口。

Description

光源组件和投影设备
相关申请的交叉引用
本申请要求在2020年7月6日提交中国专利局、申请号为202010641579.5,发明名称为“光源组件和投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影显示技术领域,特别涉及一种光源组件和投影设备。
背景技术
随着显示技术的发展,对于投影设备的投影画面的显示效果的要求越来越高。投影设备包括光源组件,该光源组件用于提供形成投影画面所需的光线,且均匀性越高的光线形成的投影画面的显示效果越好。
发明内容
本申请实施例一方面提供了一种光源组件,包括:
激光器,具有第一发光区域和第二发光区域;所述第一发光区域用于出射第一激光,所述第二发光区域用于出射第二激光,所述第一激光的发散角度大于所述第二激光的发散角度;
第一合光镜片组,位于所述第一发光区域的出光侧,用于将所述第一发光区域出射的所述第一激光反射至所述光源组件的出光口;
第二合光镜片组,位于所述第二发光区域的出光侧;所述第二合光镜片组包括沿所述第二发光区域的出光方向依次排布的m个合光镜片,所述m个合光镜片中第i个合光镜片与第i+1个合光镜片之间具有间隙,m≥2,1≤i≤m-1;其中,所述第i个合光镜片包括反射区和透射区,所述反射区用于将射入的所述第二激光反射至所述出光口,所述透射区用于将射入的所述第二激光透射至所述第i+1个合光镜片;第m个合光镜片用于将射入的所述第二激光反射至所述出光口。
本申请实施例另一方面,提供了一种投影设备,包括:上述的光源组件、光机以及镜头;所述光源组件用于向所述光机发出光线,所述光机用于将所述光源组件发出的光线汇聚至所述镜头,所述镜头用于将所述光机汇聚后的光线进行投射。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的 附图。
图1是相关技术提供的一种投影设备的结构示意图;
图2是本申请实施例提供的一种光源组件的结构示意图;
图3是本申请实施例提供的一种第二合光镜片组的结构示意图;
图4是本申请实施例提供的一种MCL型激光器的结构示意图;
图5是本申请实施例提供的另一种光源组件的结构示意图;
图6是本申请实施例提供的另一种第二合光镜片组的结构示意图;
图7是本申请实施例提供的一种光源组件的部分结构示意图;
图8是本申请实施例提供的再一种光源组件的结构示意图;
图9是本申请实施例提供的一种投影设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
图1是相关技术提供的一种光源组件的结构示意图。如图1所示,光源组件00包括:激光器001、第一合光镜片J1、第二合光镜片J2、第三合光镜片J3和会聚透镜003,会聚透镜003位于光源组件00的出光口。激光器001具有沿目标方向(如图1中的x方向)依次排布的发光区域Q3、发光区域Q2和发光区域Q1,该目标方向垂直于激光器001的出光方向(如图1中的y方向)。发光区域Q1可以发出红色激光,发光区域Q2可以发出蓝色激光,发光区域Q3可以发出绿色激光。第一合光镜片J1位于第一发光区域Q1的出光侧,第二合光镜片J2位于发光区域Q2的出光侧,第三合光镜片J3位于第三发光区域Q3的出光侧,且第三合光镜片J3、第二合光镜片J2、第一合光镜片J1和会聚透镜003沿x方向依次排布。发光区域Q1发出的红色激光可以射向第一合光镜片J1,并在第一合光镜片J1上发生反射后射向会聚透镜003。发光区域Q2发出的蓝色激光可以射向第二合光镜片J2,并在第二合光镜片J2上发生反射后,透过第一合光镜片J1射向会聚透镜003。发光区域Q3发出的绿色激光可以射向第三合光镜片J3,并在第三合光镜片J3上发生反射后,依次透过第二合光镜片J2和第一合光镜片J1射向会聚透镜003。如此实现激光器001发出的绿色激光、蓝色激光和红色激光在会聚透镜003混合会聚。进而,可以根据该混合后的激光进行投影画面的投射。
但是,由于激光器001发出的红色激光的发散角度大于绿色激光和蓝色激光的发散角度,故红色激光在会聚透镜003上形成的光斑尺寸大于绿色激光和蓝色激光在会聚透镜003上形成的光斑尺寸,会聚透镜003上的光斑分布会呈现较为明显的内外圈颜色分界现象。比如光斑呈圆形,最外圈呈红色,依次向内为紫,蓝等不同同心圆的光圈。因此会聚透镜003会聚的激光均匀性较差,根据该激光进行投射形成的投影画面的显示效果也较差。
本申请以下实施例提供了一种光源组件和投影设备,该光源组件可以发出均匀性较高的激光,进而可以提高根据该激光形成的投影画面的显示效果。
图2是本申请实施例提供的一种光源组件的结构示意图。如图2所示,该光源组件10可以包括:激光器101、第一合光镜片组102和第二合光镜片组(如第二合光镜片组103a和103b)。
其中,激光器101具有第一发光区域Y1和第二发光区域,图2以激光器101具有两个第二发光区域Y21和Y22为例进行示意。第一发光区域Y1用于出射第一激光,第二发光区域用于出射第二激光,第一激光的发散角度大于第二激光的发散角度。
第一合光镜片组102位于第一发光区域Y1的出光侧。第一合光镜片组102用于将第一发光区域Y1出射的第一激光反射至光源组件00的出光口K。
第二合光镜片组位于第二发光区域的出光侧,如第二合光镜片组103a位于对应的第二发光区域Y21的出光侧,第二合光镜片组103b位于对应的第二发光区域Y22的出光侧。下面以第二合光镜片组103a为例对本申请实施例中的第二合光镜片组进行介绍,第二合光镜片组103a可以包括沿第二发光区域的出光方向(如图2中的y方向)依次排布的m个合光镜片,该m个合光镜片中第i个合光镜片P i与第i+1个合光镜片P i+1之间具有间隙,m≥2,1≤i≤m-1。图2以m=2为例进行示意。其中,第i个合光镜片P i可以包括反射区和透射区。图3是本申请实施例提供的一种第二合光镜片组的结构示意图。图3所示的第二合光镜片组103a可以为图2所示的第二合光镜片组103a的左视图。如图3所示,第二合光镜片组103a中第一个合光镜片P 1的反射区可以包括反射区a11、反射区a12、反射区a13和反射区a14,第一个合光镜片P 1的透射区可以包括透射区b11、透射区b12和透射区b13。每个反射区用于将射入的第二激光反射至光源组件10的出光口K,每个透射区用于将射入的第二激光透射至第i+1个合光镜片P i+1。第二合光镜片组103中的第m个合光镜片P m用于将射入的第二激光反射至出光口K。需要说明的是,为了便于示意,图2仅示意性地示出了几条光线的传输路径,并未对射向每个反射区和透射区的光线均进行示意。
在一种具体实施中,各个合光镜片组与出光口可以排布在目标方向(如图2中的x方向)上。第二合光镜片组的第i个合光镜片P i中的透射区和反射区的排布方向可以垂直于激光器的出光方向(y方向),且垂直于该目标方向。如图3中合光镜片P 1中的透射区和反射区可以排布在z方向上,该z方向可以为图2中垂直纸面的方向,该z方向垂直于x方向和y方向。示例地,合光镜片可以具有长度方向和宽度方向,图3中的该z方向可以为该合光镜片的长度方向,合光镜片中的透射区和反射区可以排布在该长度方向上。在一种具体实施中,合光镜片中的透射区和反射区也可以排布在该宽度方向上,此种方式的合光镜片的合光原理与图3所示的合光镜片的合光原理相同,本申请实施例不再赘述。
在投影设备中,光源组件10中的各个部件可以封装在一壳体中,该光源组件10的壳体可以具有出光口K,光源组件10可以将光线通过该出光口K传输至投影设备的光机中,本申请实施例中将该壳体的出光口K称为光源组件10的出光口K。光源组件10中的激光器101可以发出待传输至出光口K的多种颜色的激光。激光器101中的多个发光区域可以为激光器101的出光面中的多个区域。在一种具体实施中,不同发光区域发出的激光的颜 色可以不同。激光器101可以仅有一个出光方向(如图2中的y方向),激光器101中的各个发光区域的出光方向均与激光器101的出光方向相同。由于传输至出光口K的激光需要为激光器101发出的多种颜色的激光混合后得到的激光,且对于传输至出光口K的激光的光斑大小也有一定的要求;故出光口K并未直接设置在激光器101的出光方向上,且激光器101与出光口K之间还设置有合光镜片,以对激光器101发出的激光进行调整混合后再传输至出光口K。如激光器101的每个发光区域的出光侧均设置有合光镜片组,以分别将对应的发光区域发出的激光反射至出光口K。
如图2所示,本申请实施例以第一发光区域Y1的出光侧设置有第一合光镜片组102,且第一合光镜片组102仅包括一个合光镜片为例进行示意。在一种具体实施中,第一合光镜片组102也可以包括多个合光镜片。如该多个合光镜片在第一发光区域上的正投影均无重合区域,又如该多个合光镜片中用于反射第一激光的表面可以共面。
本申请实施例以第二发光区域的出光侧设置有第二合光镜片组,且第二合光镜片组包括沿y方向依次排布的两个合光镜片(分别为合光镜片P 1和合光镜片P 2),也即m=2为例。第二合光镜片组包括的m个合光镜片中第一个合光镜片P 1为距第二发光区域最近的合光镜片,第m个合光镜片P m为距第二发光区域最远的合光镜片。第二发光区域发出的第二激光可以射向对应的第二合光镜片组。由于该m个合光镜片中前m-1个合光镜片具有透射区和反射区,故第二激光可以透过该m个合光镜片中前一个合光镜片(也即第i个合光镜片P i)中的透射区射向后一个合光镜片(也即第i个合光镜片P i+1),且第二激光可以在射向任一合光镜片中的反射区时被该反射区反射至出光口K。第二激光射向第m个合光镜片时,可以直接被该第m个合光镜片反射至出光口K。请结合图2和图3,第二发光区域发出的射向第一个合光镜片P 1中的四个透射区的第二激光透射至第二个合光镜片P 2,进而被合光镜片P 2反射以射向出光口K,射向第一个合光镜片P 1中的三个反射区的第二激光被直接反射以射向出光口K。
第二合光镜片组中的该m个合光镜片中第i个合光镜片与第i+1个合光镜片之间具有间隙,也即是该m个合光镜片中在y方向上的任意两个相邻的合光镜片之间具有间隙。故第二发光区域发出的第二激光在透过第i个合光镜片后,再传输一定的光程再射向第i+1个合光镜片,进而在第i+1个合光镜片的作用下反射至出光口K。故射向出光口K的第二激光覆盖从第一个合光镜片至第m个合光镜片的范围,该第二激光在出光口K处形成的光斑较大。
对比图1与图2的光源组件可知,相关技术中发光区域Q2和发光区域Q3发出的激光光束直接在一个合光镜片上反射以射向出光口,该激光光束较细,在出光口处形成的光斑较小,且较多地聚集于出光口的中心处。而本申请实施例提供的光源组件中,第二激光可以在相互之间具有间隙的多个合光镜片上反射以射向出光口,如此可以将较细的第二激光光束分成多束后射向出光口,该多束第二激光可以占用较大的区域传输,进而第二激光在出光口形成的光斑可以较大,与第一激光形成的光斑的尺寸差异可以较小。
综上所述,本申请实施例提供的光源组件中,第二合光镜片组位于激光器的第二发光 区域的出光侧,且该第二合光镜片组中的多个合光镜片沿第二发光区域的出光方向排布且相邻两个合光镜片之间具有间隙。第二合光镜片组中最后一个合光镜片之前的合光镜片包括透射区和反射区,射向该反射区的第二激光可以直接被该反射区反射至出光口,射向该透射区的第二激光可以穿过该透射区射向下一个合光镜片,且射向最后一个合光镜片的第二激光可以被反射至出光口。如此一来,激光器的第二发光区域发出的第二激光可以从相互之间存在间隙的多个合光镜片射向出光口,射向出光口的第二激光可以覆盖较大的范围,第二激光在出光口处形成的光斑可以较大。即使第一发光区域发出的第一激光的发散角度较大使第一激光在出光口形成的光斑较大,本申请中通过该第二合光镜片组中的多个合光镜片也可以保证第二激光形成的光斑与第一激光形成的光斑尺寸差异较小,进而保证出光口处第一激光和第二激光混合得到的激光均匀性较高。
另外,由于该光源组件发出的激光的均匀性较高,采用该光源组件的投影设备可以根据该均匀性较高的激光形成显示效果较好的投影画面。
本申请实施例中,激光器101可以具有至少两个发光区域。当激光器具有多个第二发光区域且光源组件包括多个第二合光镜片组时,每个第二合光镜片组对应一个第二发光区域,且不同的第二合光镜片组对应不同的第二发光区域,每个第二合光镜片组位于对应的第二发光区域的出光侧。图2以该激光器101具有一个第一发光区域Y1和两个第二发光区域Y21和Y22为例进行示意。在一种具体实施中,激光器101也可以仅具有一个第二发光区域,或者激光器101也可以具有三个甚至更多第二发光区域,或者激光器101也可以具有多个第一发光区域,本申请实施例不做限定。
本申请实施例中,任一第二发光区域发出的激光的发散角度可以小于任一第一发光区域发出的激光的发散角度。示例地,图2中的第一发光区域Y1可以发出红色激光,第二发光区域Y21可以发出绿色激光,第二发光区域Y22可以发出蓝色激光,蓝色激光和绿色激光的发散角度可以均小于红色激光的发散角度。又示例地,假设激光器发出的红色激光和蓝色激光的发散角度均大于绿色激光的发散角度,则也可以将发出红色激光和蓝色激光的发光区域均确定为第一发光区域,而仅将发出绿色激光的发光区域确定为第二发光区域,进而仅在发出绿色激光的发光区域的出光侧设置第二合光镜片组。
本申请实施例提供的光源组件10中的激光器101可以为多芯片激光二极管(multi_chip Laser Diode,MCL)型的激光器。图4是本申请实施例提供的一种MCL型激光器的结构示意图,图2所示的激光器101可以为图4所示的激光器101翻转后的截面d-d’的示意图。如图4所示,MCL型的激光器可以包括封装在同一管壳G中阵列排布的多个发光芯片(图3未示出),每个发光芯片均可以独立地发出激光,且每个发光芯片发出的激光可以通过其对应的准直透镜T射出。如图4示出的激光器101可以包括排成6行4列的24个发光芯片,其中第一发光区域Y1可以包括图4中最靠右的两列发光芯片所在的区域,第二发光区域Y21可以包括最靠左的一列发光芯片所在的区域,第二发光区域Y22可以包括第二列发光芯片所在的区域。由于MCL型的激光器体积较小,且发出的激光的亮度较高,故本申请实施例提供的光源组件采用该激光器可以减小光源组件的体积,有利于实现 投影设备的小型化。需要说明的是,本申请实施例以激光器101可以包括排成6行4列的24个发光芯片为例,该激光器101也可以包括排成4行5列的20个发光芯片,或者排成3行5列的15个发光芯片,或者2行7列的14个发光芯片,本申请实施例不做限定。
请继续参考图2,光源组件10中各个发光区域可以沿目标方向(也即图2中的x方向)排布,进而各个合光镜片组也可以沿目标方向排布。由于合光镜片组需将射入的激光反射至出光口,故各个合光镜片组与出光口可以均排布在目标方向上。该目标方向可以与激光器101的出光方向相交,如该目标方向可以与激光器101的出光方向垂直,或者该目标方向也可以与该激光器101的出光方向呈锐角或钝角。在一种具体实施中,各个发光区域也可以散乱排布或呈圆周排布或者也可以呈其他排布方式,本申请实施例不做限定。
本申请实施例中,光源组件10包括至少两个合光镜片组,且各个合光镜片组与出光口可以均排布在目标方向上,故会存在某合光镜片组位于出光口和另一合光镜片组之间。该合光镜片组要将反射的激光射向出光口,则需要保证该激光穿过该另一合光镜片组,故光源组件中位于出光口和任一合光镜片组之间的合光镜片组还用于:透射由该任一合光镜片组出射的激光。
示例地,图2中第二合光镜片组Y22位于第二合光镜片组Y21和出光口K之间,故第二合光镜片组Y22还可以用于透射由该第二合光镜片组Y21出射的激光(如绿色激光),也即是第二合光镜片组Y22中的合光镜片用于透射该绿色激光。第一合光镜片组Y1位于第二合光镜片组Y21和出光口K之间,且位于第二合光镜片组Y22和出光口K之间,故第一合光镜片组Y1还可以用于透射由第二合光镜片组Y21出射的激光(如绿色激光)以及第二合光镜片组Y22出射的激光(如蓝色激光),也即是第一合光镜片组Y1中的合光镜片还用于透射该绿色激光和蓝色激光。因此,第二合光镜片组Y21可以反射绿色激光,第二合光镜片组Y22可以反射蓝色激光且透射绿色激光,第一合光镜片组Y1可以反射红色激光且透射绿色激光和蓝色激光。
下面结合附图对光源组件中的第二合光镜片组进行介绍:
本申请实施例中,该第二合光镜片组的m个合光镜片与第二发光区域的出光方向(如图2中的y方向)可以相交。如该m个合光镜片对第二发光区域发出的激光的受光面与该发光方向相交,合光镜片的该受光面也即是该合光镜片靠近第二发光区域的表面。在一种具体实施中,第二合光镜片组的m个合光镜片可以平行,如该m个合光镜片对第二发光区域发出的激光的受光面平行。需要说明的是,第二合光镜片组中的各个合光镜片可以均呈板状结构,且板状结构具有平行的两个较大的板面,以及连接该两个板面的多个较小的侧面,该受光面为该两个板面中靠近第二发光区域的一个板面。由于合光镜片的厚度较薄,将该合光镜片看做一平面,故也可以直接称为合光镜片与该出光方向相交,该m个合光镜片平行。在一种具体实施中,第二合光镜片组的合光镜片与第二发光区域的出光方向的夹角范围可以为43度~45度。在一种具体实施中,第一合光镜片组中的合光镜片与激光器的出光方向的夹角范围也可以为43度~45度。
本申请实施例中,第二合光镜片组的m个合光镜片中,至少第一个合光镜片包括多个 反射区和多个透射区,且该反射区与透射区可以交替设置。示例地,请继续参考图3,第二合光镜片组103a中的第一个合光镜片P 1包括沿z方向依次排布的反射区a1、透射区b1、反射区a2、透射区b2、反射区a3、透射区b3和反射区a4。如此可将第二发光区域发出的激光光束分成多束且占用较多的区域出射,且透射区与反射区交替设置可以保证从各个合光镜片中反射激光的区域均匀分布,进而保证从各个合光镜片射出的激光分布较为均匀。在一种具体实施中,在m≥3时,除第一个合光镜片也可以存在其他合光镜片(如第二个合光镜片)包括多个反射区和多个透射区。在一种具体实施中,各个透射区和反射区的面积均可以相同,以进一步保证各个合光镜片射出的激光分布较为均匀。
需要说明的是,图2仅以第二合光镜片组包括两个合光镜片(也即m=2)为例,且图3仅以第一个合光镜片包括四个反射区和三个透射区,且第一合光镜片的两端均为反射区为例。在一种具体实施中,第二合光镜片组也可以包括三个、四个甚至更多合光镜片,第一个合光镜片中反射区的个数也可以为三个、五个或其他个数,透射区的个数也可以为两个、三个或其他个数;第一合光镜片的两端也可以均为透射区,此时第一合光镜片中透射区的数量多于反射区的数量;或者第一合光镜片也可以一端为透射区一端为反射区,此时第一合光镜片中透射区和反射区的数量相同;各个透射区与反射区的面积也可以不同,本申请实施例不做限定。
在一种具体实施中,第二合光镜片组中透射区与反射区的数量可以与第二发光区域中发光芯片的数量和排布方式相关。如第二合光镜片组的第一个合光镜片中透射区与反射区的数量和等于第二发光区域中某一方向上排布的发光芯片的数量,透射区与反射区的排布方向平行于第二发光区域中的发光芯片的排布方向。例如,本申请实施例中激光器可以包括排成4行7列的发光芯片,第二发光区域发出的第二激光可以由激光器中一列中的7个发光芯片发出,则可以将第二发光区域发出的激光光束分成7束。如使第二合光镜片组的第一个合光镜片中透射区与反射区的数量和为7,且可以保证每个发光芯片发出的激光射向一个透射区或反射区。又例如,该7个发光芯片排布在z方向上,则可以使第二合光镜片组的合光镜片的透射区与反射区也排布在z方向上。
在一可选实施例中,第二合光镜片组中合光镜片的数量多于2,也即m≥3。此时该m个合光镜片中的第j个合光镜片可以具有第一透射区,第j+1个合光镜片可以具有与第一透射区对应的第二透射区,1≤j<m-1。在第二发光区域上,第一透射区的正投影与第一透射区对应的第二透射区的正投影至少部分重合,进而保证第一透射区可以将射入的第二激光中的至少部分激光射向第一透射区对应的第二透射区。
图5是本申请实施例提供的另一种光源组件的结构示意图,且图5以光源组件10中的激光器101具有两个发光区域,且第二合光镜片组包括三个合光镜片,也即m=3为例进行解释说明。如图5所示,激光器101具有第一发光区域Y1和第二发光区域Y2,第二合光镜片组103包括三个合光镜片P 1、P 2和P 3。图6是本申请实施例提供的另一种第二合光镜片组的结构示意图。图6所示的第二合光镜片组103可以为图5所示的第二合光镜片组103的左视图。第一个合光镜片P 1包括沿z方向排布的透射区b1、反射区a1、透射区b2、 反射区a2和透射区b3;第二个合光镜片P 2包括沿目标方向排布的反射区a3、透射区b4和反射区a4。该透射区b2可以为第一透射区,该透射区b4可以为透射区b2对应的第二透射区。该透射区b2在第二发光区域Y2上的正投影与透射区b4在第二发光区域Y2上的正投影至少部分重合,如透射区b2在第二发光区域Y2上的正投影,覆盖透射区b4在第二发光区域Y2上的正投影中的部分区域。本申请实施例中,激光器的发光区域包括垂直于其出光方向(也即y方向)的出光面,故透射区在第二发光区域上的正投影与该透射区在垂直于y方向的平面上的正投影相同。
如此,第二发光区域Y2发出的第二激光可以射向第一个合光镜片P1,且射向合光镜片P1中透射区b1的第二激光穿过透射区b1射向第二个合光镜片P 2中的反射区a3,进而被该反射区a3反射至出光口K;射向透射区b3的第二激光穿过透射区b3射向第二个合光镜片P 2中的反射区a4,进而被该反射区a4反射至出光口K。射向合光镜片P1中透射区b2的第二激光穿过透射区b2射向第二个合光镜片P 2中的透射区b4,进而继续穿过透射区b4射向第三个合光镜片P 3,被该第三个合光镜片P 3反射至出光口K。故第二发光区域Y2发出的第二激光可以被该三个合光镜片分束,以从该三个合光镜片分别射出第二激光,进而使得第二激光的传输范围扩大,第二激光在出光口K处的光斑较大。
图4以透射区b2的尺寸小于透射区b4的尺寸,透射区b2在第二发光区域Y2上的正投影面积小于透射区b4在第二发光区域Y2上的正投影面积为例;本申请实施例对透射区b2与透射区b4的尺寸关系不做限定。在一可选示例中,透射区b2与透射区b4的尺寸可以相同,透射区b2在第二发光区域Y2上的正投影与透射区b4在第二发光区域Y2上的正投影可以完全重合。在另一可选示例中,透射区b2的尺寸可以大于透射区b4的尺寸,透射区b4在第二发光区域Y2上的正投影面积可以大于透射区b2在第二发光区域Y2上的正投影面积。此时,从透射区b2射向第二个合光镜片P 2的第二激光中的一部分穿过透射区b4射向第三个合光镜片P 3,另一部分可以射向第二个合光镜片P 2的反射区a3或a4,进而在第二个合光镜片P 2的反射区a3或a4上反射。对于各个合光镜片中透射区与反射区的设置方式可以根据需要灵活设置,仅需保证通过前面的合光镜片中的透射区的第二激光可以在后面的合光镜片上反射即可,本申请实施例不做限定。在一种具体实施中,m个合光镜片中后一个合光镜片中反射区的数量可以小于或等于前一个合光镜片中透射区的数量。
在一可选实施例中,光源组件包括多个第二发光区域和多个第二合光镜片组。对于其中任两个第二合光镜片组:在垂直于目标方向的平面上,目标反射区的正投影与目标透射区的正投影至少部分重合。其中,目标反射区属于远离出光口的第二合光镜片组的合光镜片,目标透射区属于靠近出光口的第二合光镜片组的合光镜片。该目标反射区可以将射入的第二激光反射至目标透射区,以使第二激光穿过目标透射区射向出光口。如此,也即是将该两个合光镜片组中的透射区和反射区插空设置。在一种具体实施中,该两个合光镜片组中一个合光镜片组的透射区的数量与另一个合光镜片组的反射区的数量相等。
示例地,图7是本申请实施例提供的一种光源组件的部分结构示意图。图7为图2的光源组件中第二合光镜片组103a和103b中的第一个合光镜片、第一合光镜片组102以及 出光口K的仰视图。请结合图2和图7,对于其中的该两个第二合光镜片组103a和103b,第二合光镜片组103a远离出光口K,第二合光镜片组103b靠近出光口K,第二合光镜片组103a中的反射区为目标反射区,第二合光镜片组103b中的透射区为目标透射区。在垂直于目标方向(x方向)的平面上,第二合光镜片组103a的合光镜片中的反射区的正投影与第二合光镜片组103b的合光镜片中的透射区的正投影重合。例如,第二合光镜片组103a中第一个合光镜片包括四个反射区和三个透射区,第二合光镜片组10b中第一个合光镜片包括三个反射区和四个透射区。如图7所示,第二合光镜片组103a中第一个合光镜片包括沿z方向排布的反射区a11、透射区b11、反射区a12、透射区b12、反射区a13、透射区b13和反射区a14,第二合光镜片组10b中第一个合光镜片包括沿z方向排布的透射区b21、反射区a21、透射区b22、反射区a22、透射区b23、反射区a23和透射区b24。反射区a11可以将第二发光区域Y21发出的第二激光反射至透射区b21,进而穿过透射区b21射向出光口K;反射区a12可以将第二发光区域Y21发出的第二激光反射至透射区b22,进而穿过透射区b22射向出光口K;反射区a13可以将第二发光区域Y21发出的第二激光反射至透射区b23,进而穿过透射区b23射向出光口K;反射区a14可以将第二发光区域Y21发出的第二激光反射至透射区b24,进而穿过透射区b24射向出光口K。
本申请实施例中,光源组件包括多个第二合光镜片组时,各个第二合光镜片组中的合光镜片的数量可以相同也可以不同,各个第二合光镜片组中的合光镜片的面积可以相同也可以不同,本申请实施例不做限定。
本申请实施例中,可以通过下述方式实现第二合光镜片组的功能:
在第一种可选实现方式中,第二合光镜片组中的第i个合光镜片包括:透光基板和贴附于透光基板上的二向色膜,该第i个合光镜片通过该二向色膜的功能来实现对于固定波段的激光的透射,以及对于固定波段的激光的反射。该第i个合光镜片中透射区的二向色膜用于:透射由该第二合光镜片组对应的第二发光区域发出的第二激光,该第i个合光镜片中反射区的二向色膜用于:反射射入的激光中由该第二合光镜片组对应的第二发光区域发出的第二激光。该透射区和反射区的二向色膜还可以透射位于该第i个合光镜片远离出光口的一侧的其他合光镜片出射的激光。示例地,图2中第二合光镜片组103a中的第一个合光镜片中反射区的二向色膜可以反射绿光,透射区的二向色膜可以透过绿光;第二合光镜片组103b中的第一个合光镜片中反射区的二向色膜可以透过绿光且反射蓝光,透射区的二向色膜可以透过绿光和蓝光。
在第二种可选实现方式中,第二合光镜片组中的第i个合光镜片包括透光基板和位于透光基板上的反光涂层。第i个合光镜片中的反射区包括第i个合光镜片中设置反光涂层的区域,该反光涂层用于反射对应的第二发光区域发出的第二激光,第i个合光镜片中的透射区包括第i个合光镜片中未设置反光涂层的区域。如此实现第i个合光镜片中反射区对射入的第二激光的反射,透射区对射入的第二激光的透射。在一种具体实施中,当第i个合光镜片中的反射区无需透过任何波段的激光时,该反光涂层可以反射全波段的光。当第i个合光镜片中的反射区还需透过某波段的激光时,该反光涂层可以具有透过该波段的 激光的功能,此时该反光涂层的功能与二向色膜的功能类似。
在第三种可选实现方式中,第二合光镜片组中的第i个合光镜片包括多个子镜片,第i个合光镜片的每个反射区包括一个子镜片,第i个合光镜片的透射区可以不设置任何材料。该子镜片的形成方式可以参考上述第一种可选实现方式和第二种可选实现方式中反射区的形成方式。
在上述第二种可选实现方式和第三种可选实现方式中,该透射区可以透射所有波段的光,该反射区可以反射所有波段的光。在一种具体实施中,在这两种方式中若光源组件包括多个第二合光镜片组,则该多个第二合光镜片组中的透射区和反射区可以采用上述插空设置的方式进行设计。如此某一第二合光镜片组中反射区反射的光线可以通过其他第二合光镜片组中的透射区射向出光口,故无需在该透射区设置二向色膜,可以避免在该其他第二合光镜片组的合光镜片各个位置均需设置二向色膜导致的制备成本增加,以及制备过程较为繁琐的问题。且对于上述第三种可选实现方式无需在透射区设置任何材料,故可以进一步节省光源组件的制备成本。
在一种具体实施中,对于第二合光镜片组中的第m个合光镜片:该第m个合光镜片的功能的一种实现方式可以参考第i个合光镜片的上述第一种可选实现方式。在另一种实现方式中,若某第二合光镜片组为光源组件中距出光口最远的合光镜片组,则该第二合光镜片组中的第m个合光镜片可以为反光片,该反光片可以反射所有波段的光,如该反光片可以为金属片(如铝片或铜片)等。或者,第m个合光镜片的结构也可以参考第i个合光镜片的上述第二种可选实现方式。
对于第一合光镜片组中的合光镜片的功能的实现方式可以参考第i个合光镜片的上述第一种可选实现方式。如图2中第一合光镜片组中的合光镜片的二向色膜可以用于透过绿光和蓝光且反射红光。
图8是本申请实施例提供的再一种光源组件的结构示意图。如图8所示,光源组件10还可以包括:壳体104。上述的激光器101、第一合光镜片组102和第二合光镜片组103均可以设置在壳体104内部的容置腔中。
在一种具体实施中,光源组件10还可以包括相位延迟片105,该相位延迟片105可以位于激光器的第二发光区域的出光侧,且位于第二发光区域与第二合光镜片组103之间。第二发光区域发出的第二激光(如绿色激光或蓝色激光)可以在经过相位延迟片105调整偏振方向后,再射向第二合光镜片组103。由于第一发光区域与第二发光区域发出的激光的偏振方向通常不同,故可以在第二发光区域的出光侧设置相位延迟片105,以使得通过该相位延迟片105的第二激光的偏振方向与第一激光(如红色激光)的偏振方向相同。在一种具体实施中,相位延迟片105可以通过加持部件夹持的方式固定在壳体104内部,如此可以避免相位延迟片105的固定装置遮挡光路。如该相位延迟片105可以为半波片。在一种具体实施中,发出绿色激光的发光区域与发出蓝色激光的发光区域相邻,故光源组件10中可以仅设置一片半波片就对绿色激光和蓝色激光的相位进行调整。
本申请实施例中,壳体104的容置腔中还可以设置有一体化的基座,各个合光镜片组 可以通过该一体化的基座进行固定,以减少多个结构组装的累积公差,便于保持各个合光镜片间相同的设置角度和彼此的相对位置关系。在一种具体实施中,相位延迟片105也可以通过一体化的基座进行固定。
在一种具体实施中,光源组件10还可以包括会聚透镜106。该会聚透镜106可以位于光源组件10的出光口K处。激光器101各个发光区域射出的激光可以在对应的合光镜片组上反射,进而混合为一束激光,射向光源组件10的出光口K处的会聚透镜106。会聚透镜106可以将接收的光线进行会聚缩小光斑后射向光机,如射向光机中的光路整型部件,如光路整型部件包括用于匀化光线的光导管。激光器10的各个发光区域发出的不同颜色的激光在混合后可以得到白光,会聚透镜106处可以形成白色光斑。且由于本申请实施例中第二合光镜片组的设置,各个颜色的激光在会聚透镜106上单独形成的光斑大小相差较小,故会聚透镜106上形成的白色光斑的均匀性较高。
在一种具体实施中,光源组件10还可以包括扩散部(图8未示出),该扩散部可位于会聚透镜106的出光路径上,出光口射出的激光经扩散部扩散后再入射至光束整型部件。该扩散部可以为扩散轮结构,包括转动的扩散片。通过扩散片对光线的旋转扩散,可以对光线进行消散斑,以提高光源组件发出的光线的质量,减轻投影图像的散斑效应。
综上所述,本申请实施例提供的光源组件中,第二合光镜片组位于激光器的第二发光区域的出光侧,且该第二合光镜片组中的多个合光镜片沿第二发光区域的出光方向排布且相邻两个合光镜片之间具有间隙。第二合光镜片组中最后一个合光镜片之前的合光镜片包括透射区和反射区,射向该反射区的第二激光可以直接被该反射区反射至出光口,射向该透射区的第二激光可以穿过该透射区射向下一个合光镜片,且射向最后一个合光镜片的第二激光可以被反射至出光口。如此一来,激光器的第二发光区域发出的第二激光可以从相互之间存在间隙的多个合光镜片射向出光口,射向出光口的第二激光可以覆盖较大的范围,第二激光在出光口处形成的光斑可以较大。即使第一发光区域发出的第一激光的发散角度较大使第一激光在出光口形成的光斑较大,本申请中通过该第二合光镜片组中的多个合光镜片也可以保证第二激光形成的光斑与第一激光形成的光斑尺寸差异较小,进而保证出光口处第一激光和第二激光混合得到的激光均匀性较高。
图9是本申请实施例提供的一种投影设备的结构示意图。如图9所示,该投影设备可以包括:光源组件10、光机20和镜头30。该光源组件10用于向光机20发出光线,该光机20用于将射入的光线调制后射向镜头30,镜头30用于将射入的光线进行投射。该光源组件可以为上述任一光源组件10。由于上述光源组件10发出的激光的均匀性较高,因此采用该光源组件的投影设备可以根据该均匀性较高的激光形成显示效果较好的投影画面。
在一种具体实施中,光机可以包括光匀化部件、透镜组、全内反射(total internal reflection prism,TIR)棱镜组和光调制部件。光源组件出射的光线依次光匀化部件、透镜组、全内反射(total internal reflection prism,TIR)棱镜组和光调制部件后射出至镜头。经过光匀化部件的出光面与光调制器件的入光面互为共轭的物像关系。光调制部件可以为硅 基液晶(Liquid Crystal on Silicon,LCOS),液晶显示器(Liquid Crystal Display,LCD)或者数字微镜器件(Digital Micromirror Device,DMD)。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。本申请中术语“A、B和C的至少一种”表示可以存在七种关系,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在A和C,同时存在C和B,同时存在A、B和C这七种情况。在本申请实施例中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种光源组件,其特征在于,所述光源组件包括:
    激光器,具有第一发光区域和第二发光区域;所述第一发光区域用于出射第一激光,所述第二发光区域用于出射第二激光,所述第一激光的发散角度大于所述第二激光的发散角度;
    第一合光镜片组,位于所述第一发光区域的出光侧,用于将所述第一发光区域出射的所述第一激光反射至所述光源组件的出光口;
    第二合光镜片组,位于所述第二发光区域的出光侧;所述第二合光镜片组包括沿所述第二发光区域的出光方向依次排布的m个合光镜片,所述m个合光镜片中第i个合光镜片与第i+1个合光镜片之间具有间隙,m≥2,1≤i≤m-1;其中,所述第i个合光镜片包括反射区和透射区,所述反射区用于将射入的所述第二激光反射至所述出光口,所述透射区用于将射入的所述第二激光透射至所述第i+1个合光镜片;第m个合光镜片用于将射入的所述第二激光反射至所述出光口。
  2. 根据权利要求1所述的光源组件,其特征在于,所述m个合光镜片中第一个合光镜片包括多个所述反射区和多个所述透射区,所述反射区与所述透射区交替设置。
  3. 根据权利要求1所述的光源组件,其特征在于,所述m≥3;
    所述m个合光镜片中的第j个合光镜片具有第一透射区,第j+1个合光镜片具有与所述第一透射区对应的第二透射区,1≤j<m-1;在所述第二发光区域上,所述第一透射区的正投影与所述第一透射区对应的所述第二透射区的正投影至少部分重合;
    所述第一透射区用于将射入的所述第二激光中的至少部分激光射向所述第一透射区对应的所述第二透射区。
  4. 根据权利要求1所述的光源组件,其特征在于,所述第一合光镜片组、所述第二合光镜片组和所述出光口排布在目标方向上,所述目标方向与所述激光器的出光方向相交;
    位于所述出光口和任一合光镜片组之间的合光镜片组还用于:透射由所述任一合光镜片组出射的激光。
  5. 根据权利要求4所述的光源组件,其特征在于,所述光源组件包括多个所述第二发光区域和多个所述第二合光镜片组;每个所述第二合光镜片组对应一个所述第二发光区域,且不同的所述第二合光镜片组对应不同的所述第二发光区域,每个所述第二合光镜片组位于对应的所述第二发光区域的出光侧;
    对于任两个所述第二合光镜片组:在垂直于所述目标方向的平面上,目标反射区的正投影与目标透射区的正投影至少部分重合;
    其中,所述目标反射区属于远离所述出光口的所述第二合光镜片组的合光镜片,所述目标透射区属于靠近所述出光口的所述第二合光镜片组的合光镜片;所述目标反射区用于:将射入的所述第二激光反射至所述目标透射区,以使所述第二激光穿过所述目标透射区射向所述出光口。
  6. 根据权利要求1至5任一所述的光源组件,其特征在于,所述第i个合光镜片包括透光基板和位于所述透光基板上的反光涂层,所述反射区包括所述第i个合光镜片中设置所述反光涂层的区域,所述透射区包括所述第i个合光镜片中未设置所述反光涂层的区域。
  7. 根据权利要求1至5任一所述的光源组件,其特征在于,所述第i个合光镜片包括:透光基板和贴附于所述透光基板上的二向色膜;所述透射区的所述二向色膜用于透射射入的所述第二激光,所述反射区的所述二向色膜用于反射射入的所述第二激光。
  8. 根据权利要求1至5任一所述的光源组件,其特征在于,所述光源组件中距所述出光口最远的合光镜片组为所述第二合光镜片组,距所述出光口最远的合光镜片组中的所述第m个合光镜片为反光片。
  9. 根据权利要求1至5任一所述的光源组件,其特征在于,所述m个合光镜平行。
  10. 一种投影设备,其特征在于,所述投影设备包括:权利要求1至9任一所述的光源组件,以及光机和镜头;
    所述光源组件用于向所述光机发出光线,所述光机用于将所述光源组件发出的光线汇聚至所述镜头,所述镜头用于将所述光机汇聚后的光线进行投射。
PCT/CN2021/103531 2020-07-06 2021-06-30 光源组件和投影设备 WO2022007679A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180048264.2A CN115702385A (zh) 2020-07-06 2021-06-30 光源组件和投影设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010641579.5A CN113900342A (zh) 2020-07-06 2020-07-06 光源组件和投影设备
CN202010641579.5 2020-07-06

Publications (1)

Publication Number Publication Date
WO2022007679A1 true WO2022007679A1 (zh) 2022-01-13

Family

ID=79186553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103531 WO2022007679A1 (zh) 2020-07-06 2021-06-30 光源组件和投影设备

Country Status (2)

Country Link
CN (2) CN113900342A (zh)
WO (1) WO2022007679A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079622A (ja) * 2010-10-05 2012-04-19 Seiko Epson Corp 光源装置及びプロジェクター
CN102722071A (zh) * 2011-03-30 2012-10-10 青岛海信电器股份有限公司 激光投影光源模块及投影机
CN106873297A (zh) * 2017-04-11 2017-06-20 中视迪威激光显示技术有限公司 用于激光显示的激光光源系统及应用该系统的投影设备
CN106997142A (zh) * 2015-12-18 2017-08-01 卡西欧计算机株式会社 光源装置及投影装置
CN208060924U (zh) * 2018-04-17 2018-11-06 中强光电股份有限公司 投影机及其照明系统
CN110275379A (zh) * 2018-03-16 2019-09-24 青岛海信激光显示股份有限公司 一种三色激光光源及激光投影装置
CN111258165A (zh) * 2020-03-31 2020-06-09 青岛海信激光显示股份有限公司 激光投影设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079622A (ja) * 2010-10-05 2012-04-19 Seiko Epson Corp 光源装置及びプロジェクター
CN102722071A (zh) * 2011-03-30 2012-10-10 青岛海信电器股份有限公司 激光投影光源模块及投影机
CN106997142A (zh) * 2015-12-18 2017-08-01 卡西欧计算机株式会社 光源装置及投影装置
CN106873297A (zh) * 2017-04-11 2017-06-20 中视迪威激光显示技术有限公司 用于激光显示的激光光源系统及应用该系统的投影设备
CN110275379A (zh) * 2018-03-16 2019-09-24 青岛海信激光显示股份有限公司 一种三色激光光源及激光投影装置
CN208060924U (zh) * 2018-04-17 2018-11-06 中强光电股份有限公司 投影机及其照明系统
CN111258165A (zh) * 2020-03-31 2020-06-09 青岛海信激光显示股份有限公司 激光投影设备

Also Published As

Publication number Publication date
CN113900342A (zh) 2022-01-07
CN115702385A (zh) 2023-02-14

Similar Documents

Publication Publication Date Title
US11243460B2 (en) Light source device and projection system
US6866404B2 (en) Illumination apparatus and a liquid crystal projector using the illumination apparatus
US20200124952A1 (en) Light source apparatus and projection system
CN111562713B (zh) 激光投影设备
US10372028B2 (en) Light source device and projection type display apparatus
CN113311654B (zh) 投影光源和投影设备
WO2019071951A1 (zh) 复眼透镜组及投影装置
CN114527578B (zh) 投影光源及投影设备
CN113050354A (zh) 光源组件和投影设备
CN114594610A (zh) 投影光源及投影设备
JP3646597B2 (ja) 投写型画像表示装置
US10634981B2 (en) Light source device and projection type display apparatus
WO2021259276A1 (zh) 光源组件和投影设备
US10690931B2 (en) Light source device and projection display apparatus
CN113960866A (zh) 激光光源及激光投影设备
CN218350698U (zh) 投影光源及投影设备
WO2021259270A1 (zh) 光源组件和投影设备
WO2022007679A1 (zh) 光源组件和投影设备
WO2022078436A1 (zh) 投影光学系统
WO2021259268A1 (zh) 光源组件和投影设备
CN114721159A (zh) 投影光源
CN115343904A (zh) 投影光源及投影设备
US8562138B2 (en) Projection display device
WO2021143444A1 (zh) 复眼透镜组、光源装置及投影设备
WO2023185768A1 (zh) 一种投影光源及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838353

Country of ref document: EP

Kind code of ref document: A1