WO2022007485A1 - 砂质水底沉积物动力响应试验系统 - Google Patents

砂质水底沉积物动力响应试验系统 Download PDF

Info

Publication number
WO2022007485A1
WO2022007485A1 PCT/CN2021/090993 CN2021090993W WO2022007485A1 WO 2022007485 A1 WO2022007485 A1 WO 2022007485A1 CN 2021090993 W CN2021090993 W CN 2021090993W WO 2022007485 A1 WO2022007485 A1 WO 2022007485A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample chamber
pressure
excitation
sample
vertical
Prior art date
Application number
PCT/CN2021/090993
Other languages
English (en)
French (fr)
Inventor
解立波
苏雷
凌贤长
杨忠年
洪勇
江焕芝
周林禄
张安琪
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to ZA2021/07213A priority Critical patent/ZA202107213B/en
Publication of WO2022007485A1 publication Critical patent/WO2022007485A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the invention belongs to the technical field of indoor tests of civil engineering, in particular to a dynamic response test system of sandy bottom sediments.
  • Soil mechanics of geotechnical engineering is a highly experimental subject, and the development process of soil mechanics is essentially a process of continuous close integration and continuous progress of classical mechanics theory and geotechnical experiments. Geotechnical tests are an important means to reveal the mechanical properties of sandy soil materials, determine engineering design parameters, and verify the correctness and practicability of theoretical and numerical calculations. At present, experimental soil mechanics has become an important branch of soil mechanics. After reviewing the paper, it can be seen that the study of the dynamic characteristics of soil and its constitutive model, especially the study of the vibration liquefaction and anti-liquefaction measures of saturated sandy soil, is one of the hot issues in the current soil dynamics.
  • the laboratory tests to study the dynamic characteristics of sandy soil mainly include dynamic single shear test, dynamic triaxial test, and resonance column test.
  • the land foundation has strong applicability.
  • sandy bottom sediments in a saturated state such as sandy soil foundations in rivers, lakes and seas
  • the above experiments and the "structural collapse liquefaction theory" of dilatation and shrinkage cannot perfectly explain the excess pore water pressure of sandy bottom sediments Mechanisms of growth and dissipation.
  • Li Gang et al. designed a special sandy soil liquefaction test demonstration system (authorization bulletin number: CN103778842B); Tian Ling et al. designed a multi-functional soil vibration liquefaction and pile foundation anti-liquefaction function simulation device (authorization bulletin number: CN108797655A) ; Gan Xiaohong and others developed a large-scale vibration liquefaction test system and design method (authorized announcement number: CN107271637A).
  • the above-mentioned vibration liquefaction system and method are developed on the basis of the effective stress principle, without considering the turbulent fluid under the action of vibration The diffusion mechanism of interaction with solid particles also cannot realize vibration tests under high pressure and deep water.
  • the technical problem to be solved by the present invention is that the pores in the sandy bottom sediment are connected with the overlying free water, and the focus of the prior art analysis is still to separate the sandy bottom sediment from the overlying free water, and The indoor water tank test and shaking table test cannot simulate the deep water model, so the test results cannot fully explain the dynamic response of the foundation sand of hydraulic structures (structures).
  • the present invention provides a dynamic response test system for sandy bottom sediments, which takes environmental free water and sandy bottom sediments together as research samples, and uses the vertical test system under the normal pressure test mode and the high pressure test mode.
  • Three overall vibration excitation test modes of vibration, lateral vibration and mixed vibration and three local vibration excitation test modes of wave excitation, blasting excitation and mechanical vibration excitation are used to reveal the mechanism of vibration liquefaction of sandy bottom sediments and obtain dynamic load excitation. Variation mechanism of effective stress and pore water pressure in lower sandy bottom sediments.
  • a sandy bottom sediment dynamic response test system including an overall vibration excitation system, a local vibration excitation system, a sample chamber, a pressure measurement system, and a pressurization system;
  • the overall excitation system includes an annular reaction force frame, a vertical vibration exciter, a U-shaped sliding plate, a sample chamber base, a low-level transverse vibration exciter, a low-level transverse buffer, a high-level transverse vibration exciter, and a high-level transverse buffer.
  • vertical pulley, restraining ring beam, positioning rod system, series rod system the annular reaction frame is an external frame, the bottom of the vertical vibration exciter is fixed on the chassis of the annular reaction frame, and the top is connected to the bottom wall of the U-shaped sliding plate.
  • the U-shaped sliding plate is slidably connected in the annular reaction frame; the base of the sample chamber is placed in the U-shaped sliding plate and is slidably connected with it; between the side wall of the sample chamber and the base of the sample chamber; the high-level transverse vibration exciter and the high-level transverse buffer are respectively connected between the vertical pulley and the restraining ring beam; the vertical pulley is connected to the U-shaped sliding plate through the positioning rod system and The sliding connection is in the annular reaction frame; the confinement ring beam and the base of the sample chamber are fastened in series by the series rod system;
  • the local excitation system II includes: wave excitation device, explosion excitation device, and mechanical simple harmonic excitation device; wherein the wave excitation device is installed on the top of the vertical rail, and the explosion excitation device is installed on the top of the vertical rail. and the mechanical harmonic excitation device are respectively supported on the inner wall of the sample chamber;
  • the sample chamber and pressure measuring system III includes the reference section of the sample chamber, the water injection and drain pipe, the main pipe, the U-shaped sliding filter grid plate, the standard section of the sample chamber, the pressure vessel cover, the tight bolt, the water level scale plate, Pressure guiding tube, pressure measuring tube, total effective stress gauge, total stress gauge, pore water pressure sensor, earth pressure sensor, data collector, computer; the bottom of the reference section of the sample chamber is inserted into the ring of the base of the sample chamber with interference In the pit, the upper end is connected to several standard sections of the sample chamber or directly to the cover of the pressure vessel through tight bolts; several standard sections of the sample chamber are connected to each other by tight bolts, and the top standard section of the sample chamber is connected to the pressure vessel cover , the pressure vessel cover is connected to the pressurization system; the base section of the sample chamber is provided with a water injection and drainage pipe, and a U-shaped sliding filter grid plate is arranged below it, and a waterproof total effective stress gauge is arranged below the U-shaped sliding filter grid plate ,
  • the annular reaction force frame includes an annular crown beam at the top, a chassis at the bottom and a vertical rail fixedly connected between the two, and the three constitute a stainless steel barrel-shaped grid structure;
  • the outer surface of the side wall of the U-shaped disk body is provided with several groups of peripheral inlaid beads arranged axially, and the inner surface of the bottom is provided with a number of top surface inlaid beads;
  • the base of the sample chamber includes a disk body as a chassis, the disk The bottom of the body is in contact with the top surface of the U-shaped sliding plate;
  • the ring pit is slidably connected to the plate body, and the fixture is fixedly arranged on the inner side of the plate body;
  • the ring beam includes a waist beam, which has the same size as the ring pit and is compatible with the standard section of the sample chamber or the outer diameter of the reference section of the sample chamber; the waist beam and the ring pit are connected by a series rod system, and one side of the waist beam is connected.
  • the positioning screw and the straight thread adjusting cylinder connected between the positioning screw and the lower end screw of the car body are used for positioning the high-level transverse vibration exciter and the high-level transverse buffer;
  • the parts of the base of the sample chamber are fixed by nuts.
  • the span of the U-shaped disc body is l
  • the height is h
  • the height-span ratio is designed:
  • the position of the center of gravity is from the height h 0 of the U-shaped bottom surface.
  • top surface is inlaid with beads in a center-radial distribution.
  • the wave excitation device includes a ring-shaped ring rail, the ring rail is connected with the vertical rail; a chute is arranged above the ring rail, which is slidably connected with the rollers at both ends of the sliding beam, and a small pulley is slidably connected on the sliding beam; A small vertical vibration exciter is fixedly connected, and a wave ball is connected below the small vertical vibration exciter.
  • the explosion excitation device includes a positioning sleeve, which is horizontally supported on the inner wall of the sample chamber through the positioning sleeve.
  • the positioning sleeve is provided with a miniature charge chamber, and the micro charge chamber is inserted into the electronic detonation excitation probe, and the electron detonates
  • One end of the excitation probe is connected to the detonating wire, the other end passes through a water-proof manifold, then is connected to the data collector, and finally connected to the computer;
  • the waterproof positioning casing is provided with a micro-submersible oscillator, which is connected with an electric wire, and the electric wire is connected to the data collector through a water-proof header, and finally connected to the computer.
  • the clearance cross-sectional area A of the reference section of the sample room and the standard section of the sample room is greater than or equal to 0.5024m 2 .
  • the U-shaped sliding filter grid plate includes a perforated U-shaped water permeable plate, comb teeth on the top thereof and micro sliding balls inlaid around the periphery.
  • the U-shaped sliding plate permeable material density [rho], [rho] the density of the sample liquid in the chamber grid of the liquid, two-phase flow the maximum density ⁇ max requires a U-disk type sliding grille permeable material greater than or equal to 2.5 times the density of the sample chamber density of the liquid, two-phase flow and should be greater than the maximum density, i.e.: ⁇ 2.5 ⁇ liquid and ⁇ > ⁇ max; diameter, distance between the comb-shaped net, punched aperture miniature trackball U-permeable plate is not greater than Minimum diameter or minimum size of sample particles; total longitudinal section height h U of U-shaped sliding permeable grid plate, span l U , height-span ratio design: The center of gravity is the height h U0 from the bottom surface of the U-shaped sliding filter grille. The design of the center of gravity: In order to ensure that the vertical sliding does not occur eccentrically and effectively transmit the total effective stress.
  • the booster system IV includes an air compressor, a vertical pressure tank and a high-pressure pipe connected in sequence; the vertical pressure tank is composed of three spaces, which are respectively equipped with compressed air, oil and water; the vertical pressure tank is composed of three spaces.
  • the upper interface is connected to the air compressor through a high-pressure nozzle, and the lower interface is connected to the pressure vessel cover of the sample chamber through a high-pressure nozzle.
  • the present invention is based on the theory of two-phase flow dynamics, focusing on the key feature of "the pores in the sandy bottom sediment are connected with the overlying free water", and the environmental free water and the sandy bottom sediment are jointly studied as To realize the revealing of the vibration liquefaction mechanism of underwater sediments, it is of great significance for the advancement of the theoretical research of geotechnical engineering.
  • the present invention can realize three overall vibration excitation test modes of vertical, lateral and mixed under normal pressure and high pressure test modes and three local vibration excitation test modes of wave, blasting and mechanical vibration.
  • the vibration liquefaction test of sandy bottom sediment can be realized: 6 kinds of atmospheric pressure single mode test, 6 kinds of high pressure single mode test; through the combination of different modes, 9 kinds of atmospheric pressure dual mode test can be realized, 9 kinds High voltage bimodal test.
  • the influence analysis of temperature factors can be realized.
  • the standard section of the sample chamber can be increased and connected according to the different water levels to adapt to more working conditions; and the change of the water level of each piezometer can visually display the increase and dissipation of the excess static pore water pressure. , has the function of checking the accuracy and validity of each pore water pressure sensor.
  • the invention has strong expansibility, and the addition of a temperature control system can test the influence of temperature factors on the effective stress of sandy bottom sediments and the growth and dissipation laws of excess pore water pressure; the addition of a high-pressure gas injection system
  • the dynamic test of shallow gas-bearing air-soil can be realized; the addition of mining systems such as methane low-temperature high-pressure gas injection and thermal excitation can realize the dynamic test of combustible ice before, during and after mining.
  • the present invention overcomes the deficiencies of conventional tests such as dynamic triaxial, and considers the inter-penetration of pores and overlying free water in sandy bottom sediments. For the first time, environmental free water and sandy bottom sediments are used together. The samples are tested and analyzed, and the system will promote the research and engineering application of the vibration liquefaction mechanism of sand foundations.
  • Figure 1 shows the dynamic response test system of sandy bottom sediments
  • Figure 2 is a three-dimensional view of the assembly of the main part of the sandy bottom sediment dynamic response test system
  • Figure 3 is a schematic structural diagram of the overall excitation system
  • Figure 4 is a schematic diagram of the structure of the reaction frame
  • Fig. 5 is a schematic diagram of the structure of a U-shaped sliding plate
  • Figure 6 is an assembly diagram of other key components of the overall excitation system
  • Fig. 7 is the schematic diagram of the wave excitation device of the local excitation system
  • Fig. 8 is the schematic diagram of the explosion excitation device and the mechanical simple harmonic excitation device of the local excitation system
  • Figure 9 is a schematic diagram of the sample chamber and the pressure measuring system
  • Figure 10 is a three-dimensional diagram of the connection between the reference section of the sample room, the standard section of the sample room, and the pressure measuring tube;
  • Figure 11 shows the layout of the pore water pressure gauge and the earth pressure cell
  • Fig. 12 is a U-shaped sliding filter grid plate and a working schematic diagram
  • Fig. 13 is a schematic diagram of a supercharging system.
  • a sandy bottom sediment dynamic response test system is used to test the growth and dissipation laws and influencing factors of the effective stress and excess static pore water pressure of sandy bottom sediments under vibration excitation.
  • the overall excitation system I includes an annular reaction force frame 101, a vertical vibration exciter 102, a U-shaped sliding plate 103, a sample chamber base 104, a low-level lateral vibration exciter 105, and a low-level lateral buffer 106, high-level transverse vibration exciter 107, high-level transverse buffer 108, vertical pulley 109, restraint ring beam 110, positioning rod system 111, series rod system 112;
  • annular reaction frame 101 is an external frame, vertical vibration exciter
  • the bottom of 102 is fixed on the chassis of the annular reaction force frame 101, and the top is connected with the bottom wall of the U-shaped sliding plate 103;
  • the U-shaped sliding plate 103 is slidably connected in the annular reaction force frame 101;
  • the sample chamber base 104 is placed in the U-shaped
  • the sliding plate 103 is slidably connected to it; the low-level transverse vibration exciter 105 and the low-level transverse buffer 106 are respectively
  • the local excitation system II includes: wave excitation device 201, explosion excitation device 202, and mechanical harmonic excitation device 303 according to different excitation modes;
  • the vibration device 201 is installed on the top of the vertical rail, and the explosion excitation device 202 and the mechanical harmonic excitation device 303 are respectively supported on the wall of the sample chamber.
  • the sample chamber and pressure measuring system III includes a sample chamber reference section 301, a water injection and drainage pipe 302, a manifold 303, a U-shaped sliding filter grid plate 304, a sample chamber standard section 305, Pressure vessel cover 306, tight bolts 307, water level scale plate 308, pressure guiding tube 309, pressure measuring tube 310, total effective stress gauge 311, total stress gauge 312, pore water pressure sensor 313, earth pressure sensor 314, data collector 315 , computer 316; as shown in Figures 9 and 11, the bottom of the reference section 301 of the sample chamber is inserted into the ring pit 10402 of the base of the sample chamber, and its upper end is connected to several standard sections 305 of the sample chamber through tight bolts 307 Or directly connected to the pressure vessel cover 306; several standard sections 305 of the sample chambers are connected by tight bolts 307, the top sample chamber standard section 305 is connected to the pressure vessel cover 306, and the pressure vessel cover 306 is connected to the pressurization system IV , In the
  • the chamber standard section 305 and the sample chamber standard section 305 are connected together by tight bolts 307 .
  • the pressure vessel cover 306 is connected to the sample chamber reference section 301 or the sample chamber standard section 305 through tight bolts 307, and the pressure vessel is kept in a sealed state.
  • the cover 306 is connected to the pressurization system IV; the reference section of the sample chamber is provided with a water injection and drainage pipe 302 at the bottom, and a U-shaped sliding filter grid plate 304 is arranged below it.
  • the stress gauge 311 and the total effective stress gauge 311 are connected to the bottom wall of the reference section 301 of the sample room; the standard section 305 of the sample room is located above the reference section 301 of the sample room, and the side walls of the two are provided with a number of through holes at a certain distance.
  • Each place is connected with a pressure guiding tube 309, the connection is provided with a filter mesh that is only permeable to water and impermeable to particulate matter, and the other end of the pressure guiding tube 309 is connected with the corresponding pressure measuring tube 310, and the pressure measuring tube 310 is fixed on the water level scale plate 308; the bottom of the water level scale plate 308 is fixed by the fixture 10403 of the sample chamber base 104, and the top is fixed by the extension beam 11001 of the restraining ring beam 110; the bottom of the total stress gauge 312 is fixed on the chassis 10103 of the annular reaction frame 101, and the top Connected with the U-shaped sliding plate 103; a number of pore water pressure sensors 313 and earth pressure sensors 314 are arranged at equal distances in the reference section 301 of the sample chamber and the standard section 305 of the sample chamber, and are connected to the data collector 315 through the hub 303 , the data collector 315 transmits the signal to the computer 316;
  • the annular reaction frame 101 includes an annular crown beam 10101 at the top, a chassis 10103 at the bottom, and a vertical rail 10102 fixedly connected between the two, which form a stainless steel barrel-shaped grid structure; as shown in FIG. 5
  • the U-shaped sliding disk 103 includes a U-shaped disk body 10301 with a concave bottom, the outer surface of the side wall of the U-shaped disk body 10301 is provided with several groups of axially arranged peripheral beads 10302, and the inner surface of the bottom is provided with a number of tops The surface is embedded with beads 10303, and the U-shaped sliding plate can slide up and down through the sliding between the peripheral embedded beads 10302 and the vertical rails 10102; as shown in FIG.
  • the bottom is in contact with the bead 10303 on the top surface of the U-shaped sliding plate 103, and can slide freely horizontally;
  • the ring pit 10402 is slidably connected in the plate body to place the reference section 301 of the sample chamber, and the clamp 10403 is fixed on the inner side of the plate body for
  • the bottom of the water level scale plate 308 is fixed;
  • the vertical pulley 109 includes a block-shaped car body 10901, the side of the car body is embedded with sliding balls 10902, and the vertical rail 10102 is used as a track to slide up and down;
  • the restraint ring beam 110 includes a waist beam 11002, the waist The beam is the same size as the ring pit 10402, and is compatible with the outer diameter of the standard section 305 of the sample room or the reference section 301 of the sample room, and is used to be sleeved outside the standard section 305 of the sample room or the reference section 301 of the sample room; waist beam It is connected with the ring
  • One side of the waist beam 11002 is connected to the inner side of one vehicle body 10901 through the high lateral vibration exciter 107, and the other side is connected to the other through the extension beam 11001 and the high lateral buffer 108 in turn.
  • the inner side of the car body is connected, and the extension beam 11001 is used to fix the top of the water level scale plate III-08;
  • the positioning rod system 111 includes a positioning screw 11102 whose lower end is connected to the top of the side wall of the U-shaped plate body 10301, and is connected to the positioning screw 11102 and the car body.
  • the straight thread adjusting barrel 11101 between the lower ends of the screws is used to locate the high-level transverse vibration exciter 107 and the high-level transverse buffer 108; the series rod system includes several full-length engraved screws 11201, which are connected with the confinement ring beam 110 and the sample chamber Components of the base 104 are secured by nuts 11202 .
  • U-shaped disk body 10301 has a span of l and a height of h.
  • the height-span ratio is designed: The position of the center of gravity is from the height h 0 of the U-shaped bottom surface.
  • the design of the center of gravity To ensure that vertical sliding does not occur off-center.
  • top surface inlaid beads 10303 are distributed in a center and radial pattern to ensure that the upper sliding base moves smoothly and does not tilt and jam.
  • the overall excitation system consists of an annular reaction frame, a vertical vibration exciter, a U-shaped sliding plate, a sample chamber base, a low-level transverse vibration exciter, a low-level transverse buffer, a high-level transverse vibration exciter, and a high-level transverse buffer. , vertical pulley, restraint ring beam, positioning rod system, series rod system.
  • the production process is as follows: the main body of the overall excitation system is made of stainless steel, and the yield strength of the material is not less than 345MPa.
  • the annular reaction frame is a stainless steel barrel-shaped grille connected by annular crown beams, vertical rails and chassis; the bottom of the vertical exciter is fixed on the chassis of the annular reaction frame, and the top is connected with the U-shaped sliding plate; the U-shaped The sliding plate is composed of a U-shaped body, beading on the periphery and beading on the top surface.
  • the vertical rail is used as a track and can slide up and down; the base of the sample chamber is placed on the beading on the top surface of the U-shaped sliding plate, which can slide freely horizontally.
  • the base of the sample chamber is composed of a disk body, a ring pit, and a fixture.
  • the ring pit is used to place the reference section of the sample chamber, and the fixture is used to fix the bottom of the water level scale plate; the low-level transverse vibration exciter and the low-level transverse buffer are both at one end It is fixed on the side wall of the U-shaped sliding plate, and the other end is connected with the base of the sample chamber.
  • Both the high-level transverse exciter and the high-level transverse buffer are fixed at one end of the vertical pulley, and the other end is connected with the restraining ring beam; one side of the vertical pulley is embedded with sliding balls, which slide up and down with the vertical rail as the track, and the other side is connected to the high position Transverse vibration exciter or high-level lateral buffer, the bottom of the vertical pulley is connected with the positioning rod, and as an option, a lifting ring can be set on the top;
  • the restraint ring beam is composed of an extension beam and a waist beam, and the waist beam is connected to the standard section or sample of the sample room
  • the outer diameter of the chamber reference section is adapted, and the extension beam is used to fix the top of the water level scale plate, and is connected with the high-level lateral buffer.
  • the positioning rod is composed of a straight thread adjusting cylinder and a positioning screw, and the rotating straight thread adjusting cylinder is used to locate the high-level transverse vibration exciter and the high-level transverse buffer.
  • the series rod system is composed of a full-length engraved wire screw and a nut, which is used to connect the confinement ring beam and the sample chamber base in series to coordinate the movement.
  • the wave excitation device 201 includes an annular ring rail 20101, and the ring rail is connected with the vertical rail 20102; a chute is provided above the ring rail, which is slidably connected with the rollers at both ends of the sliding beam 20102.
  • the rollers can roll along the ring rail 20101; the trolley 20103 is slidably connected on the sliding beam, and the trolley 20103 can move on the sliding beam 20102; the small vertical vibration exciter 20104 is fixedly connected under the small trolley, which is a small vertical vibration exciter.
  • the bottom is connected to the wave ball 20105, which can simulate the excitation effect of wave action on sandy bottom sediments.
  • the explosion excitation device 202 includes a positioning sleeve 20201, which is horizontally supported on the wall of the sample chamber through the positioning sleeve.
  • the positioning sleeve is provided with a micro-column chamber 20202, which is inserted into the electronic guide.
  • mechanical vibration excitation device 203 includes a waterproof positioning sleeve 20301, which is horizontally supported on the inner wall of the sample chamber through the waterproof positioning sleeve, and a micro-submersible oscillator 20302 is arranged on the waterproof positioning sleeve.
  • the water seepage header 303 is connected to the data collector 315 and finally to the computer 316 .
  • the local excitation system includes: wave excitation device, explosion excitation device, and mechanical simple harmonic excitation device.
  • the wave excitation device consists of a ring rail, a sliding beam, a small pulley, a small vertical vibration exciter, and a wave-making ball.
  • the production process is as follows: the ring rail is installed on the vertical rail of the ring reaction frame, the rollers on the sliding beam can roll along the ring rail, the small pulley can move on the sliding beam, and the wave ball is connected to the small vertical vibration exciter .
  • the explosion excitation device is composed of a positioning sleeve, a miniature coil chamber, an electronic detonation excitation probe, and a detonating wire.
  • the detonation wire of the electronic detonation excitation probe is connected to the data collector through the manifold, and the data collector is connected to the computer.
  • the mechanical vibration excitation device is composed of a waterproof positioning sleeve, a micro-submersible oscillator, and an electric wire.
  • the waterproof positioning sleeve installed with the micro-submersible oscillator is horizontally supported on the inner wall of the sample chamber, and the electric wire is connected to the data collector through the collecting pipe. , the data collector is connected to the computer.
  • the U-shaped sliding filter grid plate 304 includes a perforated U-shaped water permeable plate 30402, comb teeth 30401 on the top thereof and micro sliding balls 30403 inlaid around the periphery.
  • the raw material density of the grid plate 304 should be greater than or equal to 2.5 times the density of the liquid in the sample chamber, and should be greater than the maximum density of the two-phase flow, namely: ⁇ 2.5 ⁇ liquid and ⁇ > ⁇ max ;
  • 30401 from the net, perforated U-permeable aperture plate not larger than 30,402 is the minimum diameter of the sample particle size or minimum;
  • the position of the center of gravity is the height h U0 from the bottom surface of the U-shaped sliding filter grid plate 304.
  • the design of the center of gravity In order to ensure that the vertical sliding does not occur eccentrically and effectively transmit
  • the sample chamber and pressure measuring system are composed of the reference section of the sample chamber, the water injection and drain pipe, the main pipe, the U-shaped sliding filter grid plate, the standard section of the sample chamber, the pressure vessel cover, the tight bolt, and the water level scale plate. , pressure guiding tube, pressure measuring tube, total effective stress gauge, total stress gauge, pore water pressure sensor, earth pressure sensor, data collector, and computer.
  • the reference section of the sample room, the standard section of the sample room, and the cover of the pressure vessel are made of transparent special glass or high-strength plexiglass; the pressure guiding tube is made of soft plastic, and the pressure measuring tube is made of plexiglass.
  • the bottom of the reference section of the sample room is clamped in the ring pit of the base of the sample room, and the bottom is connected with a water injection and drainage pipe.
  • the reference section of the sample room is equipped with a total effective stress gauge and a U-shaped sliding filter grid plate; the total effective stress
  • the meter is waterproof, its bottom is fixed to the bottom of the reference section of the sample chamber, and the top is connected to the bottom of the U-shaped sliding filter grid.
  • the U-shaped sliding filter grid plate is composed of comb teeth, a perforated U-shaped permeable plate, and micro sliding balls, and the micro sliding balls are embedded in the periphery of the perforated U-shaped permeable plate.
  • the reference section of the sample room and the side wall of the standard section of the sample room are opened at a certain distance, and the pressure guiding pipe is connected to the opening;
  • the other end is connected to the pressure measuring tube;
  • the pressure measuring tube is fixed on the water level scale plate;
  • the bottom of the water level scale plate is fixed by the fixture of the sample chamber base, and the top is fixed by the extension beam of the restraining ring beam;
  • the compression test mode when the size of the sample exceeds the height of the reference section of the sample room, the height of the sample room can be increased by increasing the standard section of the sample room.
  • the reference section of the sample room and the standard section of the sample room, and The standard sections of the sample chamber are connected together by tight bolts.
  • the pressure vessel cover is connected to the reference section of the sample chamber or the standard section of the sample chamber through tight bolts to maintain a sealed state. system connection.
  • the bottom of the total stress gauge is fixed on the chassis of the annular reaction frame, and the top is connected with the U-shaped sliding plate.
  • the booster system IV includes an air compressor 402, a vertical pressure tank 401 and a high-pressure nozzle 403 connected in sequence; the vertical pressure tank 401 has three spaces in the tank, which are respectively filled with compressed air, oil , water; the upper interface of the vertical pressure tank 401 is connected to the air compressor 402 through the high-pressure nozzle 403 , and the lower interface is connected to the pressure vessel cover 406 of the sample chamber through the high-pressure nozzle 403 .
  • the booster system is composed of a vertical pressure tank, an air compressor, and a high-pressure connection.
  • the inner part of the vertical pressure tank is divided into three spaces, which are respectively equipped with compressed air, oil and water; the upper interface of the vertical pressure tank is connected to the air compressor through a high-pressure nozzle, and the lower interface is connected to the pressure vessel cover of the sample chamber through a high-pressure nozzle. .
  • the water injection and drainage pipe III-02 at the bottom of Section III-01 is filled with ambient water, cover the pressure vessel cover III-06, connect the high pressure pipe IV-03, and continue to inject ambient water to squeeze out the air in the sample chamber, so that the ambient water Fill the entire sample chamber, and flow into the vertical pressure tank IV-01 through the high-pressure nozzle IV-03 to about one third of the height, close the water injection and drain valve III-02, and open the air compressor IV-02 to reach the test set air pressure strength.
  • an external temperature control system is connected, and the temperature of the sample is controlled at the temperature required for the test and maintained for 12 hours.
  • Vibration excitation devices include: vertical vibration exciter I-02, low lateral vibration exciter I-05, high lateral vibration exciter I-07, wave excitation device II-01, explosion excitation device II-02, mechanical simple Resonant excitation device II-03.
  • the mass M mixture the density of the two-phase flow ⁇ mixture .
  • V mixture V particle +V fluid
  • the volume of solid particles accounts for the fraction of the total volume of the two-phase flow, that is, the volume concentration of particles C v , or the volume of solid particles C' v owned by a unit volume of fluid:
  • the mass of solid particles accounts for the fraction of the total mass of the two-phase flow, that is, the mass concentration of particles C W , or the solid particle mass C' W possessed by a unit mass of fluid:
  • the ratio of the fluid volume to the total volume of the two-phase flow is the porosity:
  • the volume of particles V particle , the mass of particles M particle , and the density of particles ⁇ particle were measured before the test; the volume of fluid V fluid , the mass of particles M fluid , and the density of particles ⁇ fluid ; the volume of two-phase flow V mixture , the two-phase flow The mass of the flow M mixture .
  • the change function of the total stress at any depth z with time can be measured by the earth pressure cell.
  • the function curve of effective stress time history with depth z and time t, and the function curve of the density ⁇ mixture of two-phase flow with depth z and time t are the sandy bottom of a certain sample under a certain vibration excitation mode. Growth and dissipation laws of effective stress and excess pore water pressure in sediments.
  • the scaled pile foundation, scaled geotextile, anchor rod, etc. are placed in the sample to realize the engineering scale test.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种砂质水底沉积物动力响应试验系统及试验方法。该系统包括整体激振系统(Ⅰ)、局部激振系统(Ⅱ)、试样室及测压系统(Ⅲ)和增压系统(Ⅳ)。将环境自由水与砂质水底沉积物共同作为研究试样,利用常压试验模式和高压试验模式下的竖向振动、横向振动、混合振动三种整体振动激励试验模态和波浪激励、爆破激励、机械振动激励三种局部振动激励试验模态,来揭示砂质水底沉积物振动液化的机理,获得动荷载激励下砂质水底沉积物的有效应力和孔隙水压力的变化机理。

Description

砂质水底沉积物动力响应试验系统 技术领域:
本发明属于土木工程室内试验技术领域,具体涉及砂质水底沉积物动力响应试验系统。
背景技术:
岩土工程的土力学是一门试验性很强的学科,土力学的发展历程实质上就是经典力学理论与土工试验不断紧密结合、不断前进的过程。土工试验是揭示砂土材料力学特性、确定工程设计参数、验证理论和数值计算的正确性和实用性的重要手段。当前,试验土力学已经成为土力学的一个重要分支。经过论文查阅可以看出,土的动力特性及其本构模型的研究,尤其是饱和砂土的振动液化和抗液化措施的研究是当前土动力学中的热点问题之一。
当前研究砂土动力特性的室内试验主要有动单剪试验、动三轴试验、共振柱试验,这些试验手段均着重研究三相或二相(饱和)砂土试样的力学特性,对于陆地砂土地基有较强的适用性。但是,对于处于饱和状态的砂质水底沉积物,例如江河湖海中的砂土地基,上述试验及剪胀剪缩的“结构塌陷液化理论”无法完美解释砂质水底沉积物的超静孔隙水压力增长和消散的机理。
对于超静孔隙水压力,砂质水底沉积物与陆地饱和砂土地基的关键不同点在于:砂质水底沉积物内的孔隙与上覆自由水是贯通的。用上述单剪试验、动三轴试验、共振柱试验研究砂质水底沉积物,其根本的缺陷是:人为的将环境自由水与砂质水底沉积物的相互作用割裂,忽略了振动荷载作用下,环境自由水流动对砂质水底沉积物中颗粒做功的影响,现有技术的室内水槽试验和振动台试验无法实现模拟深水模式,并且分析的着眼点仍然将砂质水底沉积物内与上覆自由水分割开。
经检索,李刚等设计了专用型沙土液化试验演示系统(授权公告号:CN103778842B);田玲等设计了一种多功能土体振动液化及桩基抗液化功能模拟装置(授权公告号:CN108797655A);干啸洪等开发了一种大型振动液化试验系统及设计方法(授权公告号:CN107271637A),上述振动液化系统与方法均在有效应力原理的基础上开发,并未考虑振动作用下紊流流体与固体颗粒物相互作用的扩散机理,也无法实现高压深水情况下的振动试验。
由于上述的试验瓶颈和理论瓶颈,导致试验结论无法充分地解释水工建(构)筑物地基砂土的动力响应,形成的本构模型复杂且参数众多,难以推广使用。因此,为了寻求动荷载激励下砂质水底沉积物的有效应力和孔隙水压力变化机理,在两相流体动力学理论基础上研发砂质水底沉积物动力响应试验系统,将极大推动砂土地基液化理论研究的进展、突破工程应用的理论瓶颈。
发明内容:
本发明要解决的技术问题是砂质水底沉积物内的孔隙与上覆自由水是贯通的,而现有技术分析的着眼点仍然将砂质水底沉积物内与上覆自由水分割开,并且室内水槽试验和振动台试验无法实现模拟深水模式,导致试验结论无法充分地解释水工建(构)筑物地基砂土的动力响应,形成的本构模型复杂且参数众多,难以推广使用。
为解决上述问题,本发明提供了一种砂质水底沉积物动力响应试验系统,将环境自由水与砂质水底沉积物共同作为研究试样,利用常压试验模式和高压试验模式下的竖向振动、横向振动、混合振动三种整体振动激励试验模态和波浪激励、爆破激励、机械振动激励三种局部振动激励试验模态,来揭示砂质水底沉积物振动液化的机理,获得动荷载激励下砂质水底沉积物的有效应力和孔隙水压力的变化机理。
为达到上述目的,本发明通过以下技术方案实现,一种砂质水底沉积物动力响应试验系统,包括整体激振系统、局部激振系统、试样室及测压系统和增压系统;
所述整体激振系统包括环形反力架、竖向激振器、U型滑盘、试样室基座、低位横向激振器、低位横向缓冲器、高位横向激振器、高位横向缓冲器、竖向滑车、约束环梁、定位杆系、串联杆系;环形反力架为外部框架,竖向激振器底部固定在环形反力架的底盘上,顶部与U型滑盘的底壁连接;U型滑盘滑动连接在环形反力架中;试样室基座置于U型滑盘内,与其滑动连接;低位横向激振器与低位横向缓冲器各自分别连接在U型滑盘的侧壁和试样室基座之间;高位横向激振器与高位横向缓冲器各自分别连接在竖向滑车和约束环梁之间;竖向滑车通过定位杆系与U型滑盘连接并滑动连接在环形反力架中;约束环梁与试样室基座之间通过串联杆系串联紧固;
所述局部激振系统Ⅱ根据激振模态的不同,分别有:波浪激振装置、爆炸激振装置、机械简谐激振装置;其中波浪激振装置安装在立轨顶部,爆炸激振装置和机械简谐激振装置分别横撑在试样室内壁;
所述试样室及测压系统Ⅲ包括试样室基准节、注水泄水管、集线管、U型滑动过滤格栅盘、试样室标准节、压力容器盖、紧密螺栓、水位刻度牌、导压管、测压管、总有效应力计、总应力计、孔隙水压力传感器、土压力传感器、数据采集器、计算机;试样室基准节底部过盈套接在试样室基座的环坑中,其上端通过紧密螺栓与若干试样室标准节连接或直接与压力容器盖相连;若干试样室标准节之间通过紧密螺栓相连,最顶部的试样室标准节上连接压力容器盖,压力容器盖与增压系相连;试样室基准节其底部设有注水泄水管,下方设有U型滑动过滤格栅盘,U型滑动过滤格栅盘下方设有防水的总有效应力计,总有效应力计与试样室 基准节底壁相连;试样室标准节位于试样室基准节上方,二者的侧壁定距开有若干通孔,开孔处各连接一条导压管,连接处设有只透水不透颗粒物的过滤密网,导压管的另一端与相应的测压管相连,所述测压管固定在水位刻度牌上;水位刻度牌底部由试样室基座的夹具固定,顶部由约束环梁的延伸梁固定;总应力计底部固定在环形反力架的底盘上,顶部与U型滑盘连接;在试样室基准节和试样室标准节内等距设有若干孔隙水压力传感器和土压力传感器,通过集线管与数据采集器相连,数据采集器将信号传给计算机。
进一步的,环形反力架包括顶部的环形冠梁、底部的底盘和在二者之间固定连接的立轨,三者构成不锈钢圆桶状格栅结构;U型滑盘包括底部下凹的U型盘体,U型盘体的侧壁外表面设有若干组轴向排布的周边嵌珠,底部内表面设有若干顶面嵌珠;试样室基座包括作为底盘的盘体,盘体底部与U型滑盘的顶面嵌珠接触;环坑滑动连接在盘体内,夹具固定设置于盘体内侧;竖向滑车包括块状的车体,车体外侧的侧嵌滑珠;约束环梁包括腰梁,该腰梁与环坑尺寸一致,并且与试样室标准节或试样室基准节外径相适应;腰梁与环坑二者通过串联杆系相连,腰梁一侧通过高位横向激振器与一个车体的内侧连接,另一侧依次通过延伸梁和高位横向缓冲器与另一车体的内侧连接;定位杆系包括下端与U型盘体侧壁顶部相连的定位螺杆、连接在定位螺杆和车体下端螺杆之间的直螺纹调节筒,用以定位高位横向激振器与高位横向缓冲器;串联杆系包括若干的通长刻丝螺杆,其与约束环梁和试样室基座的部件通过螺母固定。
进一步的,立轨为6根,在截面上排布组成一个圆环,该圆环内表面光滑;其内弧长不低于0.314米。
进一步的,U型盘体跨度为l,高度为h,高跨比设计:
Figure PCTCN2021090993-appb-000001
重心位置距离U型底面高度h 0,重心设计:
Figure PCTCN2021090993-appb-000002
进一步的,顶面嵌珠成中心辐射状分布。
进一步的,波浪激振装置包括环形的环轨,环轨与立轨相连;环轨上方设有滑槽,与滑梁的两端的滚轮滑动连接,滑梁上滑动连接的小滑车;小滑车下方固定连接有小型竖向激振器,小型竖向激振器下方连接造波球。
爆炸激振装置包括定位套管,通过定位套管横撑在试样室内壁,定位套管上设置有微型药卷室,微型药卷室插接在电子导爆激发探针上,电子导爆激发探针一端与导爆导线相连,一端经过具有防渗水的集线管,然后连接到数据采集器,最后连接计算机;机械激振装置包括防水定位套管,通过防水定位套管横撑在试样室内壁,防水定位套管上设置有微型潜水振荡器,微型潜水振荡器与电导线相连,电导线通过具有防渗水的集线管连接到数据采集器, 最后连接计算机。
进一步的,试样室基准节与试样室标准节净空横截面面积A≥0.5024m 2
进一步的,U型滑动过滤格栅盘包括打孔U型透水板,其顶部的梳齿和周边镶嵌的微型滑珠。
进一步的,U型滑动透水格栅盘原材料密度ρ,试样室中液体的密度ρ ,两相流最大密度ρ max,要求U型滑动透水格栅盘原材料密度要大于等于2.5倍试样室中液体的密度,且应大于两相流最大密度,即:ρ≥2.5ρ liquid且ρ>ρ max;微型滑珠的直径、梳齿间净距离、打孔U型透水板的孔径均不大于试样颗粒的最小直径或最小尺寸;U型滑动透水格栅盘总纵断面高度h U,跨度l U,高跨比设计:
Figure PCTCN2021090993-appb-000003
重心位置距离U型滑动过滤格栅盘底面高度h U0,重心设计:
Figure PCTCN2021090993-appb-000004
以确保竖向滑动不发生偏心且有效传递总有效应力。
进一步的,增压系统Ⅳ包括依次连接的空气压缩机、立式压力罐和高压接管;其中立式压力罐罐体内部分为三个空间,分别装有压缩空气、油、水;立式压力罐上部接口通过高压接管连接空气压缩机,下部接口通过高压接管连接试样室的压力容器盖。
本发明的有益效果为:
(1)本发明基于两相流动力学理论,着眼于“砂质水底沉积物内的孔隙与上覆自由水是贯通的”这一关键特点,将环境自由水与砂质水底沉积物共同作为研究对象,实现水底沉积物的振动液化机理的揭示,对于岩土工程理论研究的推进具有举足轻重的意义。
(2)对于同一试样,本发明可以实现常压和高压试验模式下的竖向、横向、混合三种整体振动激励试验模态和波浪、爆破、机械振动三种局部振动激励试验模态下的砂质水底沉积物振动液化试验,可以实现:6种常压单模态试验,6种高压单模态试验;通过不同模态的组合,可以实现9种常压双模态试验,9种高压双模态试验。优选的,接入外部温控系统,可以实现温度因素的影响分析。
(3)常压试验模式下,试样室标准节可以根据水位不同实现增高接长,适应更多的工况;并且各测压管水位变化,直观显示超静孔水压力的的增长与消散,具有校核各孔隙水压力传感器精度和有效性的作用。
(4)本发明具有很强的可扩展性,增设温控系统可以实现测试温度因素对砂质水底沉积物的有效应力与超静孔隙水压力的增长与消散规律的影响;增设高压注气系统可以实现浅层气含气土的动力试验;增加甲烷低温高压注气与热激励等开采系统可以实现可燃冰开采前、 开采中、开采后的动力试验。
(5)本发明克服了动三轴等常规试验的不足,考虑了砂质水底沉积物中的孔隙与上覆自由水相互贯通这一特性,首次将环境自由水与砂质水底沉积物共同作为试样进行试验分析,该系统将会推动砂土地基振动液化机理的研究与工程应用。
附图说明:
图1为砂质水底沉积物动力响应试验系统;
图2为砂质水底沉积物动力响应试验系统主体部分组装三维图;
图3为整体激振系统结构示意图;
图4为反力架结构示意图;
图5为U型滑盘结构示意图;
图6为整体激振系统其它关键部件组装图;
图7为局部激振系统波浪激振装置示意图;
图8为局部激振系统爆炸激振装置与机械简谐激振装置示意图;
图9为试样室及测压系统示意图;
图10为试样室基准节、试样室标准节、测压管互相连接三维图;
图11为孔隙水压力计、土压力盒布置图;
图12为U型滑动过滤格栅盘及工作示意图;
图13为增压系统示意图。
具体实施方式:
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图1和图2所示,一种砂质水底沉积物动力响应试验系统,用于测试振动激励下砂质水底沉积物的有效应力与超静孔隙水压力的增长与消散规律及影响因素,包括整体激振系统Ⅰ、局部激振系统Ⅱ、试样室及测压系统Ⅲ和增压系统Ⅳ;其中,整体激振系统Ⅰ、局部激振系统Ⅱ、试样室及测压系统Ⅲ为主体部分;可以实现常压试验模式和高压试验模式下的竖向振动、横向振动、混合振动三种整体振动激励试验模态和波浪激励、爆破激励、机械振动激励三种局部振动激励试验模态。
如图3所示,所述整体激振系统Ⅰ包括环形反力架101、竖向激振器102、U型滑盘103、试样室基座104、低位横向激振器105、低位横向缓冲器106、高位横向激振器107、高位横向缓冲器108、竖向滑车109、约束环梁110、定位杆系111、串联杆系112;环形反力架101为外部框架,竖向激振器102底部固定在环形反力架101的底盘上,顶部与U型滑盘103的底壁连接;U型滑盘103滑动连接在环形反力架101中;试样室基座104置于U型滑盘103内,与其滑动连接;低位横向激振器105与低位横向缓冲器106各自分别连接在U型滑盘103的侧壁和试样室基座104之间;高位横向激振器107与高位横向缓冲器108各自分别连接在竖向滑车109和约束环梁110之间;竖向滑车109通过定位杆系111与U型滑盘103连接并滑动连接在环形反力架101中;约束环梁110与试样室基座104之间通过串联杆系112串联紧固。
如图7-图8所示,所述局部激振系统Ⅱ根据激振模态的不同,分别有:波浪激振装置201、爆炸激振装置202、机械简谐激振装置303;其中波浪激振装置201安装在立轨顶部,爆炸激振装置202和机械简谐激振装置303分别横撑在试样室内壁。
如图9所示,所述试样室及测压系统Ⅲ包括试样室基准节301、注水泄水管302、集线管303、U型滑动过滤格栅盘304、试样室标准节305、压力容器盖306、紧密螺栓307、水位刻度牌308、导压管309、测压管310、总有效应力计311、总应力计312、孔隙水压力传感器313、土压力传感器314、数据采集器315、计算机316;如图9和11所示,试样室基准节301底部过盈套接在试样室基座的环坑10402中,其上端通过紧密螺栓307与若干试样室标准节305连接或直接与压力容器盖306相连;若干试样室标准节305之间通过紧密螺栓307相连,最顶部的试样室标准节305上连接压力容器盖306,压力容器盖306与增压系统Ⅳ相连,常压试验模式下,当试样的尺寸超出试样室基准节301的高度时,可以采用增加试样室标准节305的方式增加试样室的高度,试样室基准节301与试样室标准节305、以及试样室标准节305之间,通过紧密螺栓307连接在一起。当试验深水工况时,常压模式无法满足,需采用高压试验模式,通过紧密螺栓307将压力容器盖306与试样室基准节301或试样室标准节305连接,保持密封状态,压力容器盖306与增压系统Ⅳ连接;试样室基准节其底部设有注水泄水管302,下方设有U型滑动过滤格栅盘304,U型滑动过滤格栅盘304下方设有防水的总有效应力计311,总有效应力计311与试样室基准节301底壁相连;试样室标准节305位于试样室基准节301上方,二者的侧壁定距开有若干通孔,开孔处各连接一条导压管309,连接处设有只透水不透颗粒物的过滤密网,导压管309的另一端与相应的测压管310相连,所述测压管310固定在水位刻度牌308上;水位刻度牌308底部由试样室基座104的夹具10403 固定,顶部由约束环梁110的延伸梁11001固定;总应力计312底部固定在环形反力架101的底盘10103上,顶部与U型滑盘103连接;在试样室基准节301和试样室标准节305内等距设有若干孔隙水压力传感器313和土压力传感器314,通过集线管303与数据采集器315相连,数据采集器315将信号传给计算机316;
实施例2:
如图4所示,环形反力架101包括顶部的环形冠梁10101、底部的底盘10103和在二者之间固定连接的立轨10102,三者构成不锈钢圆桶状格栅结构;如图5所示,U型滑盘103包括底部下凹的U型盘体10301,U型盘体10301的侧壁外表面设有若干组轴向排布的周边嵌珠10302,底部内表面设有若干顶面嵌珠10303,通过周边嵌珠10302与立轨10102之间的滑动实现U型滑盘的上下滑动;如图6所示,试样室基座104包括作为底盘的盘体10401,盘体10401底部与U型滑盘103的顶面嵌珠10303接触,可自由水平滑动;环坑10402滑动连接在盘体内,用以放置试样室基准节301,夹具10403固定设置于盘体内侧,用于固定水位刻度牌308的底部;竖向滑车109包括块状的车体10901,车体外侧的侧嵌滑珠10902,以立轨10102为轨道上下滑动;约束环梁110包括腰梁11002,该腰梁与环坑10402尺寸一致,并且与试样室标准节305或试样室基准节301外径相适应,用于套接在试样室标准节305或试样室基准节301外;腰梁与环坑二者通过串联杆系112相连,腰梁11002一侧通过高位横向激振器107与一个车体10901的内侧连接,另一侧依次通过延伸梁11001和高位横向缓冲器108与另一车体的内侧连接,延伸梁11001用于固定水位刻度牌Ⅲ-08的顶部;定位杆系111包括下端与U型盘体10301侧壁顶部相连的定位螺杆11102、连接在定位螺杆11102和车体10901下端螺杆之间的直螺纹调节筒11101,用以定位高位横向激振器107与高位横向缓冲器108;串联杆系包括若干的通长刻丝螺杆11201,其与约束环梁110和试样室基座104的部件通过螺母11202固定。
其余均与实施例1相同。
实施例3:
立轨为6根,在截面上排布组成一个圆环,该圆环内表面光滑,作为轨道;其内弧长不低于0.314米。
其余均与实施例1-2任一相同。
实施例4:
U型盘体10301跨度为l,高度为h,高跨比设计:
Figure PCTCN2021090993-appb-000005
重心位置距离U型底 面高度h 0,重心设计:
Figure PCTCN2021090993-appb-000006
以确保竖向滑动不发生偏心。
其余均与实施例1-3任一相同。
实施例5:
顶面嵌珠10303成中心辐射状分布,保证上部滑动基座平动顺滑且不发生倾斜与卡顿。
其余均与实施例1-4任一相同。
所述整体激振系统由环形反力架、竖向激振器、U型滑盘、试样室基座、低位横向激振器、低位横向缓冲器、高位横向激振器、高位横向缓冲器、竖向滑车、约束环梁、定位杆系、串联杆系组成。制作工艺流程为:整体激振系统主体均由不锈钢材料制成,材料屈服强度不低于345MPa。环形反力架是由环形冠梁、立轨、底盘连接成的不锈钢圆桶状格栅;竖向激振器底部固定在环形反力架的底盘上,顶部与U型滑盘连接;U型滑盘由U型盘体、周边嵌珠和顶面嵌珠构成,以立轨为轨道,可以上下滑动;试样室基座放置在U型滑盘的顶面嵌珠上,可以自由水平滑动,试样室基座由盘体、环坑、夹具组成,环坑用以放置试样室基准节,夹具用于固定水位刻度牌的底部;低位横向激振器与低位横向缓冲器均为一端固定在U型滑盘的侧壁,另一端与试样室基座连接。高位横向激振器与高位横向缓冲器均为一端固定在竖向滑车,另一端与约束环梁相连;竖向滑车一侧嵌有滑珠,以立轨为轨道上下滑动,另一侧连接高位横向激振器或高位横向缓冲器,竖向滑车底部与定位杆系相连,作为优选,顶部可设吊环;约束环梁由延伸梁和腰梁组成,腰梁与试样室标准节或试样室基准节外径相适应,延伸梁用于固定水位刻度牌的顶部,并与高位横向缓冲器相连。定位杆系由直螺纹调节筒与定位螺杆构成,旋转直螺纹调节筒用以定位高位横向激振器与高位横向缓冲器。串联杆系由通长刻丝螺杆和螺母构成,用于串联约束环梁与试样室基座,以运动协调。
实施例6:
如图7所示,波浪激振装置201包括环形的环轨20101,环轨与立轨20102相连;环轨上方设有滑槽,与滑梁20102的两端的滚轮滑动连接,滑梁20102上的滚轮可以沿着环轨20101滚动;滑梁上滑动连接的小滑车20103,小滑车20103可以在滑梁20102上移动;小滑车下方固定连接有小型竖向激振器20104,小型竖向激振器下方连接造波球20105,可以模拟波浪作用对砂质水底沉积物的激励作用。
如图8所示,爆炸激振装置202包括定位套管20201,通过定位套管横撑在试样室内壁,定位套管上设置有微型药卷室20202,微型药卷室插接在电子导爆激发探针20203上,电子导爆激发探针一端与导爆导线20204相连,一端经过具有防渗水的集线管303,然后连接到数据采集器315,最后连接计算机316;机械激振装置203包括防水定位套管20301,通过防 水定位套管横撑在试样室内壁,防水定位套管上设置有微型潜水振荡器20302,微型潜水振荡器与电导线20303相连,电导线20303通过具有防渗水的集线管303连接到数据采集器315,最后连接计算机316。
所述局部激振系统根据激振模态的不同,分别有:波浪激振装置、爆炸激振装置、机械简谐激振装置。其中,波浪激振装置由环轨、滑梁、小滑车、小型竖向激振器、造波球组成。制作工艺流程为:环轨安装于环形反力架的立轨上,滑梁上的滚轮可以沿着环轨滚动,小滑车可以在滑梁上移动,造波球连接于小型竖向激振器。爆炸激振装置由定位套管、微型药卷室、电子导爆激发探针、导爆导线组成,将安装有微型药卷室的定位套管横撑在试样室内壁,将微型药卷插在电子导爆激发探针上,电子导爆激发探针的导爆导线经过集线管连接到数据采集器,数据采集器连接计算机。机械激振装置由防水定位套管、微型潜水振荡器、电导线组成,将安装有微型潜水振荡器的防水定位套管横撑在试样室内壁,电导线经过集线管连接到数据采集器,数据采集器连接计算机。
其余均与实施例1-5任一相同。
实施例7:
进一步的,动力试验试样存在尺寸效应,为防止试样室截面过小,振动波在容器壁叠加反射效应明显、误差急剧放大,设计试样室基准节301与试样室标准节305净空横截面面积A≥0.5024m 2
其余均与实施例1-6任一相同。
实施例8:
如图12所示,U型滑动过滤格栅盘304包括打孔U型透水板30402,其顶部的梳齿30401和周边镶嵌的微型滑珠30403。
其余均与实施例1-7任一相同。
实施例9:
为防止振动导致漂移,保证总有效应力计311测量准确,U型滑动透水格栅盘304原材料密度ρ,试样室中液体的密度ρ ,两相流最大密度ρ max,要求U型滑动透水格栅盘304原材料密度要大于等于2.5倍试样室中液体的密度,且应大于两相流最大密度,即:ρ≥2.5ρ liquid且ρ>ρ max;微型滑珠30403的直径、梳齿30401间净距离、打孔U型透水板30402的孔径均不大于试样颗粒的最小直径或最小尺寸;U型滑动透水格栅盘304总纵断面高度h U,跨度l U, 高跨比设计:
Figure PCTCN2021090993-appb-000007
重心位置距离U型滑动过滤格栅盘304底面高度h U0,重心设计:
Figure PCTCN2021090993-appb-000008
以确保竖向滑动不发生偏心且有效传递总有效应力。
所述试样室及测压系统,是由试样室基准节、注水泄水管、集线管、U型滑动过滤格栅盘、试样室标准节、压力容器盖、紧密螺栓、水位刻度牌、导压管、测压管、总有效应力计、总应力计、孔隙水压力传感器、土压力传感器、数据采集器、计算机构成。其中,试样室基准节、试样室标准节、压力容器盖材料选用透明的特种玻璃或高强有机玻璃材质;导压管为软质塑料材质、测压管为有机玻璃材质。试样室基准节底部夹紧在试样室基座的环坑中,底部接有注水泄水管,试样室基准节中放有总有效应力计和U型滑动过滤格栅盘;总有效应力计具有防水性,其底部固定在试样室基准节的底部,上部与U型滑动过滤格栅盘底部相连。U型滑动过滤格栅盘由梳齿、打孔U型透水板、微型滑珠组成,微型滑珠嵌在打孔U型透水板的周边。试样室基准节与试样室标准节侧壁定距开孔,开孔处连接导压管;导压管与试样室基准节或试样室标准节密封相连的一端安装有只透水不透颗粒物的过滤密网,另一端与测压管相连;测压管固定在水位刻度牌上;水位刻度牌底部由试样室基座的夹具固定,顶部由约束环梁的延伸梁固定;常压试验模式下,当试样的尺寸超出试样室基准节的高度时,可以采用增加试样室标准节的方式增加试样室的高度,试样室基准节与试样室标准节、以及试样室标准节之间,通过紧密螺栓连接在一起。当试验深水工况时,常压模式无法满足,需采用高压试验模式,通过紧密螺栓将压力容器盖与试样室基准节或试样室标准节连接,保持密封状态,压力容器盖与增压系统连接。总应力计底部固定在环形反力架的底盘上,顶部与U型滑盘连接。
其余均与实施例1-8任一相同。
实施例10:
如图13所示,增压系统Ⅳ包括依次连接的空气压缩机402、立式压力罐401和高压接管403;其中立式压力罐401罐体内部分为三个空间,分别装有压缩空气、油、水;立式压力罐401上部接口通过高压接管403连接空气压缩机402,下部接口通过高压接管403连接试样室的压力容器盖406。
所述增压系统是由立式压力罐、空气压缩机、高压接管组成。其中立式压力罐罐体内部分为三个空间,分别装有压缩空气、油、水;立式压力罐上部接口通过高压接管连接空气压缩机,下部接口通过高压接管连接试样室的压力容器盖。
其余均与实施例1-9任一相同。
具体工作过程如下:
(1)安装实验室埋设传感器:根据水位不同安装试样室标准节Ⅲ-05,并用串联杆系Ⅰ-12、紧密螺栓Ⅲ-07实现试样室增高接长;将孔隙水压力传感器Ⅲ-13、土压力传感器Ⅲ-14固定在试验设定位置、作为调节总有效应力计Ⅲ-11和总应力计Ⅲ-12归零。当局部激振模式下,需要同时将装有药卷的爆炸激振装置Ⅱ-02或机械简谐激振装置Ⅱ-03固定在试样室设定位置,确保试验过程中不发生漂移,并将数据线经集线管Ⅲ-03引出,与数据采集器Ⅲ-15连接,数据采集器Ⅲ-15与计算机Ⅲ-16连接。
(2)放入试样:在试样室内先放入砂质水底沉积物,然后通过注水泄水管Ⅲ-02注入环境自由水,并达到设定水位,同时,各测压管Ⅲ-10内水位上升到与试样室水位平齐,通过测压管Ⅲ-10校核各孔隙水压力传感器Ⅲ-13精度和有效性的作用。当采用高压试验模式,关闭导压管Ⅲ-09阀门,此时测压管Ⅲ-10不参与测试,具体操作:试样室内装入砂质水底沉积物及环境水,然后从试样室基准节Ⅲ-01底部的注水泄水管Ⅲ-02注满环境水,盖上压力容器盖Ⅲ-06,接通高压接管Ⅳ-03,继续注入环境水挤出试样室中的空气,使得环境水充满整个试样室,并经过高压接管Ⅳ-03流入立式压力罐Ⅳ-01达到三分之一高度左右,关闭注水泄水管阀门Ⅲ-02,打开空气压缩机Ⅳ-02达到试验设定气压强度。优选的,接入外部温控系统,将试样温度控制在试验所需温度,并保持12小时。
(3)输出振动激励并测试:启动计算机Ⅲ-16,根据试验目的和实际工况,选择试验模式,启动振动激励装置,以整体水平振动激励为例,通过计算机Ⅲ-16输入振动激励参数加速度时程曲线a(t)并控制振动激励装置的输出信号,根据试验目的开始振动激励试验与测试。振动激励装置包括:竖向激振器Ⅰ-02、低位横向激振器Ⅰ-05、高位横向激振器Ⅰ-07、波浪激振装置Ⅱ-01、爆炸激振装置Ⅱ-02、机械简谐激振装置Ⅱ-03。
(4)数据分析:获得总应力时程曲线σ 0(t),总有效应力时程曲线σ 0'(t)、不同深度z处孔隙水压力时程曲线u(t)、不同深度z处总应力时程曲线σ(t),将输入的振动加速度时程曲线a(t),与上述曲线关联,获得某t时刻u-z曲线、u-a曲线。u(t)曲线反映了超静孔隙水压力随时间的变化,某t时刻u-z曲线反映超静孔隙水压力随深度z的变化关系。通过函数拟合,确定各自曲线的函数表达式。
流动体系中颗粒的体积V particle、颗粒的质量M particle、颗粒的密度ρ particle;流体的体积V fluid、颗粒的质量M fluid、颗粒的密度ρ fluid;两相流的体积V mixture、两相流的质量M mixture、两相流的密度ρ mixture。则有:
M mixture=M particle+M fluid
V mixture=V particle+V fluid
两相流中,固体颗粒的体积占两相流总体积的分数,即颗粒的体积浓度C v,或以单位体积流体所拥有的固体颗粒体积C’ v表示:
Figure PCTCN2021090993-appb-000009
Figure PCTCN2021090993-appb-000010
两相流中,固体颗粒的质量占两相流总质量的分数,即颗粒的质量浓度C W,或以单位质量流体所拥有的固体颗粒质量C’ W表示:
Figure PCTCN2021090993-appb-000011
Figure PCTCN2021090993-appb-000012
用密度表示上述关系:
Figure PCTCN2021090993-appb-000013
Figure PCTCN2021090993-appb-000014
流体体积与两相流总体积之比为孔隙率:
Figure PCTCN2021090993-appb-000015
Figure PCTCN2021090993-appb-000016
试验前测得颗粒的体积V particle、颗粒的质量M particle、颗粒的密度ρ particle;流体的体积V fluid、颗粒的质量M fluid、颗粒的密度ρ fluid;两相流的体积V mixture、两相流的质量M mixture
根据试验,可以测得孔隙水压力u沿着深度z、时间t变化的变化曲线,函数式为:
u=u(z,t)
又因为,
u=ρ mixturegz
因此,
ρ mixture=u(z,t).gz
即两相流的密度ρ mixture随着深度z和时间t变化的函数。当:
Figure PCTCN2021090993-appb-000017
深度z处ρ mixture达到峰值。
同样,通过土压力盒可以测得任意深度z处的总应力随时间的变化函数,根据有效应力原理σ'(t)+u(t)=σ(t),可以获得任意z处的有效应力时程曲线。
有效应力时程随着深度z和时间t变化的函数曲线、两相流的密度ρ mixture随着深度z和时间t变化的函数曲线即为一定试样在某一振动激励模态下砂质水底沉积物的有效应力与超静孔隙水压力的增长与消散规律。
判定一定试样在某一振动激励模态下砂质水底沉积物的有效应力与超静孔隙水压力的增长与消散规律的影响因素,包括温度、固相、液相、桩基础等。
通过外设温控系统,测试温度因素对砂质水底沉积物的有效应力与超静孔隙水压力的增长与消散规律的影响。
同样,不同试样,包括不同类砂土,同类不同粒径、不同质量、不同颗粒密度、不同初始密实度(初始孔隙率)、不同自由水位、不同流体介质、不同试样室直径、材质对在某一振动激励模态下砂质水底沉积物的有效应力与超静孔隙水压力的增长与消散规律的影响分析。
同一试样在不同的振动激励模态下砂质水底沉积物的有效应力与超静孔隙水压力的增长与消散规律的试验分析,可以判定不同的激励模态、同一激励模态不同激励参数对液化的影响。
在试样中放置缩尺桩基础、缩尺土工布、锚杆等,可以实现工程缩尺试验测试。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种砂质水底沉积物动力响应试验系统,其特征在于:包括整体激振系统、局部激振系统、试样室及测压系统和增压系统;
    所述整体激振系统包括环形反力架、竖向激振器、U型滑盘、试样室基座、低位横向激振器、低位横向缓冲器、高位横向激振器、高位横向缓冲器、竖向滑车、约束环梁、定位杆系、串联杆系;环形反力架为外部框架,竖向激振器底部固定在环形反力架的底盘上,顶部与U型滑盘的底壁连接;U型滑盘滑动连接在环形反力架中;试样室基座置于U型滑盘内,与其滑动连接;低位横向激振器与低位横向缓冲器各自分别连接在U型滑盘的侧壁和试样室基座之间;高位横向激振器与高位横向缓冲器各自分别连接在竖向滑车和约束环梁之间;竖向滑车通过定位杆系与U型滑盘连接并滑动连接在环形反力架中;约束环梁与试样室基座之间通过串联杆系串联紧固;
    所述局部激振系统Ⅱ根据激振模态的不同,分别有:波浪激振装置、爆炸激振装置、机械简谐激振装置;其中波浪激振装置安装在立轨顶部,爆炸激振装置和机械简谐激振装置分别横撑在试样室内壁;
    所述试样室及测压系统Ⅲ包括试样室基准节、注水泄水管、集线管、U型滑动过滤格栅盘、试样室标准节、压力容器盖、紧密螺栓、水位刻度牌、导压管、测压管、总有效应力计、总应力计、孔隙水压力传感器、土压力传感器、数据采集器、计算机;试样室基准节底部过盈套接在试样室基座的环坑中,其上端通过紧密螺栓与若干试样室标准节连接或直接与压力容器盖相连;若干试样室标准节之间通过紧密螺栓相连,最顶部的试样室标准节上连接压力容器盖,压力容器盖与增压系相连;试样室基准节其底部设有注水泄水管,下方设有U型滑动过滤格栅盘,U型滑动过滤格栅盘下方设有防水的总有效应力计,总有效应力计与试样室基准节底壁相连;试样室标准节位于试样室基准节上方,二者的侧壁定距开有若干通孔,开孔处各连接一条导压管,连接处设有只透水不透颗粒物的过滤密网,导压管的另一端与相应的测压管相连,所述测压管固定在水位刻度牌上;水位刻度牌底部由试样室基座的夹具固定,顶部由约束环梁的延伸梁固定;总应力计底部固定在环形反力架的底盘上,顶部与U型滑盘连接;在试样室基准节和试样室标准节内等距设有若干孔隙水压力传感器和土压力传感器,通过集线管与数据采集器相连,数据采集器将信号传给计算机。
  2. 如权利要求1所述的砂质水底沉积物动力响应试验系统,其特征在于:环形反力架包括顶部的环形冠梁、底部的底盘和在二者之间固定连接的立轨,三者构成不锈钢圆桶状格栅结构;U型滑盘包括底部下凹的U型盘体,U型盘体的侧壁外表面设有若干组轴向排布的周边嵌珠,底部内表面设有若干顶面嵌珠;试样室基座包括作为底盘的盘体,盘体底部与U型 滑盘的顶面嵌珠接触;环坑滑动连接在盘体内,夹具固定设置于盘体内侧;竖向滑车包括块状的车体,车体外侧的侧嵌滑珠;约束环梁包括腰梁,该腰梁与环坑尺寸一致,并且与试样室标准节或试样室基准节外径相适应;腰梁与环坑二者通过串联杆系相连,腰梁一侧通过高位横向激振器与一个车体的内侧连接,另一侧依次通过延伸梁和高位横向缓冲器与另一车体的内侧连接;定位杆系包括下端与U型盘体侧壁顶部相连的定位螺杆、连接在定位螺杆和车体下端螺杆之间的直螺纹调节筒,用以定位高位横向激振器与高位横向缓冲器;串联杆系包括若干的通长刻丝螺杆,其与约束环梁和试样室基座的部件通过螺母固定。
  3. 如权利要求2所述的砂质水底沉积物动力响应试验系统,其特征在于:立轨在截面上排布组成一个圆环,该圆环内表面光滑;其内弧长不低于0.314米。
  4. 如权利要求1或2所述的砂质水底沉积物动力响应试验系统,其特征在于:U型盘体跨度为l,高度为h,高跨比为:
    Figure PCTCN2021090993-appb-100001
    重心位置距离U型底面高度h 0,重心为:
    Figure PCTCN2021090993-appb-100002
  5. 如权利要求1所述的砂质水底沉积物动力响应试验系统,其特征在于:波浪激振装置包括环形的环轨,环轨与立轨相连;环轨上方设有滑槽,与滑梁的两端的滚轮滑动连接,滑梁上滑动连接的小滑车;小滑车下方固定连接有小型竖向激振器,小型竖向激振器下方连接造波球;
    爆炸激振装置包括定位套管,通过定位套管横撑在试样室内壁,定位套管上设置有微型药卷室,微型药卷室插接在电子导爆激发探针上,电子导爆激发探针一端与导爆导线相连,一端经过具有防渗水的集线管,然后连接到数据采集器,最后连接计算机;机械激振装置包括防水定位套管,通过防水定位套管横撑在试样室内壁,防水定位套管上设置有微型潜水振荡器,微型潜水振荡器与电导线相连,电导线通过具有防渗水的集线管连接到数据采集器,最后连接计算机。
  6. 如权利要求1所述的砂质水底沉积物动力响应试验系统,其特征在于:U型滑动过滤格栅盘包括打孔U型透水板,其顶部的梳齿和周边镶嵌的微型滑珠。
  7. 如权利要求1或6所述的砂质水底沉积物动力响应试验系统,其特征在于:试样室基准节与试样室标准节净空横截面面积A≥0.5024m 2
  8. 如权利要求1或6所述的砂质水底沉积物动力响应试验系统,其特征在于:U型滑动透水格栅盘原材料密度ρ,试样室中液体的密度ρ ,两相流最大密度ρ max,满足:ρ≥2.5ρ liquid且ρ>ρ max;微型滑珠的直径、梳齿间净距离、打孔U型透水板的孔径均不大于试样颗粒的 最小直径或最小尺寸;U型滑动透水格栅盘总纵断面高度h U,跨度l U,高跨比为:
    Figure PCTCN2021090993-appb-100003
    重心位置距离U型滑动过滤格栅盘底面高度h U0,重心为:
    Figure PCTCN2021090993-appb-100004
  9. 如权利要求1所述的砂质水底沉积物动力响应试验系统,其特征在于:增压系统Ⅳ包括依次连接的空气压缩机、立式压力罐和高压接管;其中立式压力罐罐体内部分为三个空间,分别装有压缩空气、油、水;立式压力罐上部接口通过高压接管连接空气压缩机,下部接口通过高压接管连接试样室的压力容器盖。
  10. 一种利用权利要求1中砂质水底沉积物动力响应试验系统测试的方法,其特征在于:
    (1)试验前测得颗粒的体积V particle、颗粒的质量M particle、颗粒的密度ρ particle;流体的体积V fluid、颗粒的质量M fluid、颗粒的密度ρ fluid;两相流的体积V mixture、两相流的质量M mixture
    (2)根据试验,测得孔隙水压力u沿着深度z、时间t变化的变化曲线,函数式为:
    u=u(z,t)
    又因为,
    u=ρ mixturegz
    因此,
    ρ mixture=u(z,t).gz
    即两相流的密度ρ mixture随着深度z和时间t变化的函数;
    当:
    Figure PCTCN2021090993-appb-100005
    深度z处ρ mixture达到峰值;
    同样,通过土压力盒可以测得任意深度z处的总应力随时间的变化函数,根据有效应力原理σ'(t)+u(t)=σ(t),可以获得任意z处的有效应力时程曲线;
    (3)有效应力时程随着深度z和时间t变化的函数曲线、两相流的密度ρ mixture随着深度z和时间t变化的函数曲线即为一定试样在某一振动激励模态下砂质水底沉积物的有效应力与超静孔隙水压力的增长与消散规律。
    (4)判定一定试样在某一振动激励模态下砂质水底沉积物的有效应力与超静孔隙水压力的增长与消散规律的影响因素。
PCT/CN2021/090993 2020-07-09 2021-04-29 砂质水底沉积物动力响应试验系统 WO2022007485A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/07213A ZA202107213B (en) 2020-07-09 2021-09-27 Dynamic response test system for benthal sandy sediment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010654925.3 2020-07-09
CN202010654925.3A CN111650120B (zh) 2020-07-09 2020-07-09 砂质水底沉积物动力响应试验系统

Publications (1)

Publication Number Publication Date
WO2022007485A1 true WO2022007485A1 (zh) 2022-01-13

Family

ID=72351709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090993 WO2022007485A1 (zh) 2020-07-09 2021-04-29 砂质水底沉积物动力响应试验系统

Country Status (3)

Country Link
CN (1) CN111650120B (zh)
WO (1) WO2022007485A1 (zh)
ZA (1) ZA202107213B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152511A (zh) * 2022-02-07 2022-03-08 中国矿业大学(北京) 盾体注浆浆液-土复合体压缩模量和注浆率的测算方法
CN114859017A (zh) * 2022-07-06 2022-08-05 湖南大学 一种地层应力场和位移场控制试验装置及方法
CN115014999A (zh) * 2022-01-19 2022-09-06 昆明理工大学 一种爆炸荷载下饱和砂土液化程度的测试装置及测试方法
CN115265987A (zh) * 2022-07-28 2022-11-01 中国人民解放军海军工程大学 一种振动传递路径实验装置
CN115407047A (zh) * 2022-08-08 2022-11-29 河海大学 一种室内模拟土体液化的实验装置及实验方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650120B (zh) * 2020-07-09 2021-08-31 青岛理工大学 砂质水底沉积物动力响应试验系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120133234A (ko) * 2011-05-31 2012-12-10 전자부품연구원 다중 계측 센서에 의한 지중 데이터 수집장치 및 방법
CN106769547A (zh) * 2016-12-20 2017-05-31 西安科技大学 一种冲击液化试验设备及试验方法
CN107271637A (zh) * 2017-06-29 2017-10-20 宁波市交通建设工程试验检测中心有限公司 一种大型振动液化试验系统及设计方法
CN107942033A (zh) * 2017-11-01 2018-04-20 东南大学 共振法加固液化土模型试验装置及试验方法
CN108797655A (zh) * 2017-04-26 2018-11-13 黄河水利职业技术学院 一种多功能土体振动液化及桩基抗液化功能模拟装置
CN109596497A (zh) * 2018-12-19 2019-04-09 河南理工大学 模拟砂体液化侵入触发机制与形成过程的实验装置及方法
CN111650120A (zh) * 2020-07-09 2020-09-11 青岛理工大学 砂质水底沉积物动力响应试验系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104634614B (zh) * 2015-02-17 2017-05-24 大连理工大学 一种基于单片机的振动式沉积物采集仪及其控制方法
CN105424466A (zh) * 2015-11-19 2016-03-23 中国石油天然气集团公司 一种评价波浪作用下砂土对埋置海底管线抗力的方法
CN105675835A (zh) * 2016-01-07 2016-06-15 大连理工大学 一种振动式沉积物采集仪的手持终端监控装置及方法
JP6815757B2 (ja) * 2016-06-09 2021-01-20 株式会社不動テトラ 地盤の液状化評価方法
CN106284437B (zh) * 2016-07-28 2018-09-14 河海大学 一种桶基竖向初始动阻抗试验装置及试验方法
CN106680459A (zh) * 2016-12-02 2017-05-17 河南理工大学 一种模拟尾矿液化的实验装置
CN107782879A (zh) * 2017-10-11 2018-03-09 中国能源建设集团广东省电力设计研究院有限公司 确定海床最大液化深度与黏土混配比例关系的方法和装置
CN108801865B (zh) * 2018-05-31 2024-02-23 沈阳大学 一种砂土颗粒梯度疲劳液化实验装置及方法
CN109374855B (zh) * 2018-09-20 2021-03-26 中南大学 一种模拟铁路路基翻浆冒泥病害现象试验装置和试验方法
CN210954031U (zh) * 2019-11-04 2020-07-07 西南交通大学 一种模拟深厚饱和砂土液化振动台实验的加载装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120133234A (ko) * 2011-05-31 2012-12-10 전자부품연구원 다중 계측 센서에 의한 지중 데이터 수집장치 및 방법
CN106769547A (zh) * 2016-12-20 2017-05-31 西安科技大学 一种冲击液化试验设备及试验方法
CN108797655A (zh) * 2017-04-26 2018-11-13 黄河水利职业技术学院 一种多功能土体振动液化及桩基抗液化功能模拟装置
CN107271637A (zh) * 2017-06-29 2017-10-20 宁波市交通建设工程试验检测中心有限公司 一种大型振动液化试验系统及设计方法
CN107942033A (zh) * 2017-11-01 2018-04-20 东南大学 共振法加固液化土模型试验装置及试验方法
CN109596497A (zh) * 2018-12-19 2019-04-09 河南理工大学 模拟砂体液化侵入触发机制与形成过程的实验装置及方法
CN111650120A (zh) * 2020-07-09 2020-09-11 青岛理工大学 砂质水底沉积物动力响应试验系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN JING, FENG XIU-LI, LIN LIN: "In-situ Answering Pore Pressure under Wave and Its Application to Stability Analysis of Silty Seabed", MARINE SCIENCES, vol. 30, no. 3, 7 June 2006 (2006-06-07), pages 1 - 5, XP055886473, ISSN: 1000-3096 *
LIU HONGJUN, WANG XIAO-HUA, JIA YONG-GANG, QIAO SHE, ZHANG HONG-GANG: "Experimental Study on Liquefaction Properties and Pore-Water Pressure Model of Saturated Silt in Yellow River Delta", YANTU LIXUE - ROCK AND SOIL MECHANICS, ZHONGGUO KEXUEYUAN, WUHAN YANTU LIXUE YANJIUSUO, vol. 26, 30 November 2005 (2005-11-30), pages 83 - 87, XP055886468, ISSN: 1000-7598, DOI: 10.16285/j.rsm.2005.s2.046 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115014999A (zh) * 2022-01-19 2022-09-06 昆明理工大学 一种爆炸荷载下饱和砂土液化程度的测试装置及测试方法
CN114152511A (zh) * 2022-02-07 2022-03-08 中国矿业大学(北京) 盾体注浆浆液-土复合体压缩模量和注浆率的测算方法
CN114152511B (zh) * 2022-02-07 2022-04-29 中国矿业大学(北京) 盾体注浆浆液-土复合体压缩模量和注浆率的测算方法
CN114859017A (zh) * 2022-07-06 2022-08-05 湖南大学 一种地层应力场和位移场控制试验装置及方法
CN114859017B (zh) * 2022-07-06 2022-10-11 湖南大学 一种地层应力场和位移场控制试验装置及方法
CN115265987A (zh) * 2022-07-28 2022-11-01 中国人民解放军海军工程大学 一种振动传递路径实验装置
CN115265987B (zh) * 2022-07-28 2024-04-12 中国人民解放军海军工程大学 一种振动传递路径实验装置
CN115407047A (zh) * 2022-08-08 2022-11-29 河海大学 一种室内模拟土体液化的实验装置及实验方法

Also Published As

Publication number Publication date
CN111650120A (zh) 2020-09-11
CN111650120B (zh) 2021-08-31
ZA202107213B (en) 2022-03-30

Similar Documents

Publication Publication Date Title
WO2022007485A1 (zh) 砂质水底沉积物动力响应试验系统
Bhattacharya et al. Pile instability during earthquake liquefaction
CN104090086B (zh) 地下承压水位动态变化作用下土结构性测试装置及方法
CN102278117B (zh) 平行顶管顶进施工模拟装置
CN206420738U (zh) 砂岩渗透模拟试验装置及其系统
CN104833775B (zh) 模拟突水突泥地质灾害的三维模型试验装置
CN107290501B (zh) 裂隙断层型地质构造内部充填介质渗透失稳突水实验装置与方法
CN105223087A (zh) 粗粒土渗流直剪试验装置及方法
Liang et al. Constant gradient erosion apparatus for appraisal of piping behavior in upward seepage flow
CN109946212A (zh) 一种用于测试粗糙裂隙渗流特性的试验装置及方法
CN107063919A (zh) 一种测量页岩中二氧化碳与烷烃竞争吸附量的装置及方法
CN109036065A (zh) 单层阻水型盖层塌陷成因实验装置
WEI et al. Variation of transverse forces on nearby shield tunnel caused by foundation pits excavation
Thay et al. Monotonic and cyclic behavior of Chiang Mai sand under simple shear mode
CN105842073A (zh) 含水合物沉积物原位在线固结与剪切实验系统
CN212674935U (zh) 一种水下灌浆质量检测试验装置
CN205080013U (zh) 粗粒土渗流直剪试验装置
CN209460106U (zh) 一种动荷载影响下顶板渗流试验装置
CN204589911U (zh) 模拟动力荷载作用下尾矿库溃坝相似模拟实验装置
CN207992203U (zh) 一种可模拟矩形水头边界作用土体的试验装置
Mamou Effects of principal stress rotation and drainage on the resilient stiffness of railway foundations
CN211318136U (zh) 一种适用于承压含水层上断层突水研究的突水模拟装置
Zhao et al. Performance evaluation of light-weighted cement-stabilized-clay columns for soft ground improvement using the centrifuge model test
Towhata et al. Lateral loads on offshore structures exerted by submarine mudflows
Guo et al. Analysis of Shaking Table Tests of Underground Structures considering the Influence of the Structure‐Soil Interface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21837790

Country of ref document: EP

Kind code of ref document: A1