WO2022007356A1 - 一种基于弱中心化联盟区块链的电力市场交易及评估方法 - Google Patents

一种基于弱中心化联盟区块链的电力市场交易及评估方法 Download PDF

Info

Publication number
WO2022007356A1
WO2022007356A1 PCT/CN2020/140395 CN2020140395W WO2022007356A1 WO 2022007356 A1 WO2022007356 A1 WO 2022007356A1 CN 2020140395 W CN2020140395 W CN 2020140395W WO 2022007356 A1 WO2022007356 A1 WO 2022007356A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
network
transaction
power
market
Prior art date
Application number
PCT/CN2020/140395
Other languages
English (en)
French (fr)
Inventor
徐巍峰
柳志军
陈炜
余彬
翁利国
范华
冯兴隆
陈杰
尉耀稳
霍凯龙
张阳辉
Original Assignee
国网浙江杭州市萧山区供电有限公司
浙江中新电力工程建设有限公司
国网浙江省电力有限公司杭州供电公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网浙江杭州市萧山区供电有限公司, 浙江中新电力工程建设有限公司, 国网浙江省电力有限公司杭州供电公司 filed Critical 国网浙江杭州市萧山区供电有限公司
Priority to US17/226,039 priority Critical patent/US20220012806A1/en
Publication of WO2022007356A1 publication Critical patent/WO2022007356A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the invention belongs to the technical field of energy transaction blockchain, and in particular relates to a power market transaction and evaluation method based on a weakly centralized alliance blockchain.
  • Yang Dechang et al. analyzed the compatibility of blockchain and energy Internet in "Analysis and Prospect of Blockchain Application in Energy Internet", as well as the application prospect of blockchain technology in power system reform.
  • Ouyang Xu et al. constructed the access mechanism and transaction framework for the direct purchase of electricity by large users under the background of electricity reform.
  • Lin Li et al. optimized the strategies of different power trading mechanisms based on blockchain technology, and further analyzed the characteristics of typical foreign energy blockchain projects. She Wei et al.
  • the power trading mode is gradually evolving from centralized to distributed, which has caused hidden dangers such as insufficient mutual trust of market entities, low data security, and difficult management under the distributed power trading mode.
  • the traditional centralized power trading model in which power grid companies supply power vertically to users is difficult to meet the requirements of distributed power trading, and its reliability is greatly reduced. Therefore, the power market urgently needs to use blockchain technology to weakly centralize the power market trading model.
  • the purpose of the present invention is to provide a system that can accommodate a large amount of transaction data generated by the distribution of power transactions, using the weak centralization characteristics of blockchain technology to partially liberate the central management and control authority of the power grid, and realize flexible, autonomous, fair and just transactions of electricity. Methods.
  • the technical solution adopted in the present invention is: a power market transaction method based on a weakly centralized consortium block chain, through consortium block chain, P2P network and authorized Byzantine fault-tolerant consensus mechanism
  • Market transaction entities are classified into full-node network and light-node network respectively; electricity market operators are equivalent to full-nodes, and full-nodes store all structured contract basic data and transaction data starting from the genesis block, which are protected by Hash mapping User privacy and confidential information of transactions; electricity market transaction entities participate in the electricity transaction process through a certain access mechanism, and as a light node in the alliance blockchain energy transaction network, it is scalable and occupies most of the node proportions, saving and contracting Relevant transaction hash and transaction data adjacent to the timestamp necessary for brief payment verification, and can upload and download data from full nodes.
  • the consensus node of the alliance blockchain energy trading network is responsible for authority control and accounting records, and offline rules constrain the behavior of participants.
  • the P2P network is introduced at the bottom layer of the communication architecture of the alliance blockchain energy trading network, the central server of the traditional client/server C/S mode is removed, and the P2P CPU computing resource sharing, disk storage sharing and information exchange are realized among the nodes of the network.
  • the power market operating agencies include power trading centers and power dispatching agencies; Ancillary service providers.
  • the access mechanism of electricity market transaction entities includes: electricity market transaction entities submit identity ID, geographic location, energy type and power generation characteristic information to the electricity transaction center, And broadcast to the whole network through the alliance blockchain energy trading network; all nodes of the alliance blockchain energy trading network verify the newly added light node information according to the preset conditions of the smart contract; electricity market transaction entities that pass the verification , join the alliance blockchain energy trading network, and obtain a specific ID as a unique identification.
  • authorizing the Byzantine fault-tolerant consensus mechanism to realize consensus communication includes: first, selecting the accounting node according to the node rights and interests, and then realizing the consensus through the Byzantine fault-tolerant algorithm.
  • Formula (1) is the comprehensive invulnerability index. While considering the influence of the alliance blockchain energy trading network structure, nodes and links, the randomness measurement of invulnerability needs to calculate the complex conditional probability:
  • l i denotes the number of available communication links connected to the node i
  • r ij denotes the j-th communication reliability of available communication links connected to the node i
  • r i indicates the reliability of the communication node i
  • the average node invulnerability index I total can be expressed as:
  • I i represents the comprehensive survivability of node i
  • Equation (3) is the survivability index, which is used to measure the connectivity ability of the remaining network nodes and communication links to realize the reorganization of the network topology when the integrity of the communication network is destroyed, reflecting the survivability of nodes and the detour characteristics of links. ;
  • t represents a hop distance communication
  • communication P i represents the reliability of node i
  • P im m represents the survival of the surface of the hop node i
  • n im represents the number of nodes in the mth hop plane of node i
  • l im represents the number of connected communication links between node i and other nodes in the mth hop plane
  • system survivability index S total is expressed in a weighted manner:
  • ⁇ i represents the survivability weighting coefficient of node i
  • d i is the number of nodes within a certain hop of node i.
  • the invention has beneficial effects: the architecture of the underlying P2P network satisfies the exchange of resources and services among various market entities, and adapts to the distribution characteristics of the electricity trading market; based on the Byzantine fault-tolerant consensus communication technology, the indicators of survivability and survivability are established, and the weak point is quantitatively measured.
  • FIG. 1 is an electricity market transaction architecture applying weakly centralized alliance blockchain technology according to an embodiment of the present invention
  • FIG. 2 is a block chain information interaction structure according to an embodiment of the present invention.
  • Fig. 3 is an embodiment of the present invention alliance block chain energy trading network
  • FIG. 4 is an electricity trading market access architecture under the weakly centralized alliance chain technology according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of Byzantine fault-tolerant consensus communication according to an embodiment of the present invention.
  • This embodiment uses the blockchain technology to weakly centralize the electricity market transaction mode, and analyzes and selects the three blockchain technologies of the public chain, the proprietary chain, and the alliance chain. Considering that the intelligence level of the power grid is not enough to achieve Complete decentralization, and the balance between supply and demand in the process of power generation, transmission and transformation, and distribution and utilization is completed without grid deployment. Choosing a consortium chain technical framework with a degree of weak centralization between the public chain and the private chain is more suitable for the cooperation scenario between different institutions in the power transaction process.
  • the consortium chain consensus node is responsible for authority control and accounting records, and there are offline rules to constrain the behavior of participants.
  • the power market operators and power market transaction entities are classified into the full-node network and the light-node network respectively through the alliance blockchain technology, the P2P network and the authorized Byzantine fault-tolerant consensus mechanism.
  • the weak centralization feature partially liberates the central management and control authority of the market operating agency, and realizes the flexible, independent, fair and equitable trading of electricity; the underlying P2P network satisfies the exchange of resources and services among various market entities, and adapts to the distribution characteristics of the electricity trading market; based on Byzantine fault-tolerant consensus communication technology establishes invulnerability and survivability indicators, and quantitatively measures the reliability of this weakly centralized blockchain technology in the electricity trading market.
  • This embodiment is implemented through the following technical solutions, a power market transaction method based on a weakly centralized consortium blockchain, in which power market operators and power market transaction entities are classified into a full-node network and a light-node network, respectively.
  • the full node stores all structured contract basic data and transaction data starting from the genesis block, and protects user privacy and confidential information of transactions through Hash (Hash) mapping; electricity market transaction entities must pass a certain access mechanism
  • Hash Hash
  • Transaction data, and related data can be uploaded and downloaded from the full node.
  • P2P Peer-to-Peer
  • C/S Client/Sever, client/server
  • realizing the sharing of CPU computing resources among the nodes of the P2P network Disk storage sharing, information exchange, etc.
  • the consensus mechanism of delegated byzantine fault tolerance (dBFT) is adopted to reach node consensus.
  • the accounting nodes are selected according to the node rights and interests, and then the consensus is achieved through the Byzantine fault-tolerant algorithm.
  • the two communication reliability performance indicators of destructiveness and survivability are modeled, and the index results are quantitatively calculated to reflect the reliability of electricity market transactions: the survivability is comprehensively analyzed from the aspects of certainty and randomness, and the network structure is considered.
  • the survivability index of the communication network is established based on the random failure of the node and the reliable link, which reflects the reorganization and recovery ability of the communication network after partial failure.
  • the electricity market transaction structure using the weakly centralized alliance blockchain technology includes various power generation companies, electricity sales (including electricity distribution and sales) companies, power grid companies, power users, and independent auxiliary service providers. and other market entities, as well as market operating institutions such as power trading centers and power dispatching agencies.
  • the power transaction management system based on blockchain technology provides a power trading platform for power market transaction entities, realizes the matching, verification, settlement, value transfer, distributed storage and other functions of power transactions, and promotes the information openness and transparency of multi-agent power market competition and games. change.
  • the power transaction supervision policy strictly supervises the power transaction process in the form of blockchain smart contracts.
  • the main body of the electricity trading market is at the physical layer, and the information system on the virtual layer formulates the electricity trading market mechanism and pricing mechanism.
  • the electricity market trading body participates in the electricity trading process through a certain access mechanism.
  • As a light node in the alliance blockchain energy trading network it is scalable and occupies most of the node proportion, saving the transaction hash and brief payment related to the contract. Validate transaction data near timestamps necessary for validation.
  • the power trading operator is equivalent to a full node.
  • the number of full nodes is small.
  • Each full node stores all the structured contract basic data and transaction data starting from the genesis block.
  • the block contains the block header and block body: the block header contains the hash value of the previous block header, random number, Merkle root, etc.
  • the block body records the verified transaction information, which is processed by Hash and connected to the block header with the data structure of Merkle tree, which can easily and quickly verify the integrity of the block data and ensure that the information is not maliciously tampered with and spread. .
  • the relationship between the full node and the light node in the weakly centralized alliance blockchain technology in this embodiment the light node can upload and download related data from the full node.
  • the full node protects user privacy and confidential information of transactions through Hash mapping, ensuring that the data cannot be tampered with. The benefits of doing so not only preserve the ledger storage capacity, improve processing performance, but also greatly reduce the storage burden of the system.
  • the power trading alliance chain retains a database similar to a centralized database, which constitutes a "weakly centralized" distributed power trading communication mechanism in a broad sense, which is not only conducive to improving the consensus efficiency on the chain, but also facilitates query, statistics, auditing and other centers operation.
  • the power trading center assumes a supervisory role, and only when the power market transaction entity conforms to the market access mechanism can join the power trading alliance blockchain.
  • Power market transaction entities submit relevant information to the power trading center, such as identity ID, geographic location, energy type, power generation characteristics, etc., and broadcast to the entire network through the alliance blockchain energy trading network.
  • the full node of the alliance blockchain verifies the newly added light node information according to the preset conditions in the smart contract. After verification, the main body of the electricity trading market can join the alliance blockchain energy trading network and obtain a specific ID as a unique identification.
  • the weakly centralized consortium blockchain technology in this embodiment uses an authorized Byzantine fault-tolerant algorithm to realize the consensus communication process. It is assumed that the consortium chain full node X 0 in a certain consensus cycle is selected with a higher node equity. It is a "temporary" communication master node, and the remaining full nodes in the alliance chain are communication slave nodes X 1 , X 2 ,..., X n , denoted as, the crossed node X n represents that the node is a problem node, which is expressed as Other requests to the node are not responding.
  • a successful algorithm consensus includes: the temporary communication master node X 0 of the alliance chain collects the power transaction information of the whole network, integrates it into a block data to be verified, attaches the digital signature of the node and the block hash value, and sends it to the whole network.
  • each node After each node receives the transaction list, it executes the transaction according to the block content, calculates the hash digest of the new block based on the transaction result, uses the private key to form a digital signature on the block audit result (result), and broadcasts it to the entire network; Within a certain time range, if a node receives more than 2f (f is the tolerable number of Byzantine nodes) the audit information sent by other nodes is equal to itself, it will broadcast an authentication message (commit) to the whole network; if one including its own node receives a total 2f + 1 certifications that information, representatives of consensus has been completed correctly, you can submit a reply message (reply) to a temporary communication with the master node X 0; communication with the master node X 0 blocks together with the participation of the audit Other node certificates and corresponding data signatures are integrated into records and broadcast, and the blocks are stored in the alliance chain.
  • 2f the tolerable number of Byzantine nodes
  • the reliability evaluation method of electricity market transactions based on the weakly centralized alliance blockchain is adopted, including the corresponding modeling of the two major indicators of destructibility and survivability, and the use of quantitative calculation methods. method to quantify the reliability of weakly centralized blockchain technology in the electricity trading market.
  • the comprehensive survivability index shown in formula (1) takes into account the influence of network structure, nodes and links, and solves the problem that the randomness measurement of survivability needs to calculate complex conditional probabilities. problem:
  • l i represents the number of available communication links connected to the node i; r ij denotes the j-th communication reliability of available communication links connected to the node i; i R & lt reliability indicating the communication node i.
  • the average node invulnerability index I total can be expressed as:
  • I i represents the comprehensive invulnerability of node i.
  • t represents a hop distance communication
  • P i represents the reliability of the communication node i
  • P im m represents the survival of the surface of the hop node i, is equal to the product of the reliability of all the nodes hop communications within the plane
  • n im represents the number of nodes in the mth hop plane of node i
  • l im represents the number of communication links between node i and other nodes in the mth hop plane.
  • system survivability index S total is expressed in a weighted manner:
  • ⁇ i represents the survivability weighting coefficient of node i
  • d i is the number of nodes within a certain hop of node i.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Finance (AREA)
  • Economics (AREA)
  • Accounting & Taxation (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Primary Health Care (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Technology Law (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Hardware Redundancy (AREA)

Abstract

一种基于弱中心化联盟区块链的电力市场交易及评估方法,涉及能源交易区块链技术,通过联盟区块链技术、P2P网络和授权拜占庭容错共识机制,将电力市场运营机构和电力市场交易主体分别归入全节点网络和轻节点网络,通过引入联盟区块链技术,利用其弱中心化特性,部分解放市场运营机构的中心管控权限,实现了电力灵活自主、公平公正的交易;架构底层P2P网络满足了各市场主体间资源与服务交换,适应了电力交易市场分布特性;基于拜占庭容错共识通信技术,建立抗毁性与生存性指标,定量衡量了该弱中心化区块链技术在电力交易市场中的可靠性。

Description

一种基于弱中心化联盟区块链的电力市场交易及评估方法 技术领域
本发明属于能源交易区块链技术领域,尤其涉及一种基于弱中心化联盟区块链的电力市场交易及评估方法。
背景技术
随着售电市场逐步放开,交易主体不断增加,产生了大量多元交融的交易数据,电力信息系统的管理难度提高,分布式电力交易平台被提出更高效可靠的要求。区块链技术作为新兴的分布式价值传输协议,其弱中心化的技术特性有利于电力市场交易主体充分发挥市场化自主行为促进电力市场交易的公平公正与高效运营。因此区块链技术被广泛应用在电力交易领域。
杨德昌等人在《区块链在能源互联网中应用现状分析和前景展望》分析了区块链与能源互联网的兼容性,以及区块链技术在电力体制改革中的应用前景。欧阳旭等人在《区块链技术在大用户直购电中的应用初探》中构建了区块链技术在电改背景下的大用户直购电的准入机制与交易框架。林俐等在《典型分布式发电市场化交易机制分析与建议》中进行基于区块链技术的不同电力交易机制策略优化,并进一步分析了国外的典型能源区块链项目特性。佘维等人在《基于能源区块链网络的虚拟电厂运行与调度模型》中结合区块链技术与虚拟电厂运行调度模型,致力于提高虚拟电厂运行效率与数据和存储安全性。Yu S,Yang S等人在《Distributed energy transaction mechanism design based on smart contract》中基于区块链智能合约实现电力市场交易机制,并对电力交易过程中的审计, 投标,清算和结算过程进行了分析。
目前电力交易模式由集中式向分布式逐渐演化,引发了分布式电力交易模式下市场主体互信不足,数据安全性不高、管理难度大等隐患。传统的由电网公司垂直向用户供电的中心化电力交易模式难以满足分布式电力交易的要求,其可靠性大大降低,因此电力市场迫切需要利用区块链技术对电力市场交易模式进行弱中心化。
发明内容
本发明的目的是提供一种能够容纳电力交易分布化产生的大量交易数据前提下,利用区块链技术的弱中心化特性,部分解放电网的中心管控权限,实现电力灵活自主、公平公正的交易的方法。
为实现上述目的,本发明采用的技术方案是:一种基于弱中心化联盟区块链的电力市场交易方法,通过联盟区块链、P2P网络和授权拜占庭容错共识机制将电力市场运营机构和电力市场交易主体分别归入全节点网络和轻节点网络;电力市场运营机构等效为全节点,全节点保存有从创世区块开始的所有结构化的合约基础数据与交易数据,通过Hash映射保护用户隐私与交易的机密信息;电力市场交易主体通过一定的准入机制参与电力交易过程,在联盟区块链能源交易网络中作为轻节点,具备可扩展性并且占据大部分节点比例,保存与合约相关的交易Hash以及简要支付验证所必须的时间戳邻近的交易数据,并可从全节点上传、下载数据。
在上述的基于弱中心化联盟区块链的电力市场交易方法中,联盟区块链能源交易网络的共识节点负责权限控制和账务记载,同时线下规则约束参与者的行为。
在上述的基于弱中心化联盟区块链的电力市场交易方法中,在联盟区块链能源交易网络的通信架构底层引入P2P网络,去除传统客户端/服务器C/S模式的中心服务器,在P2P网络各节点间实现CPU计算资源共用、磁盘存储共享和信息交换。
在上述的基于弱中心化联盟区块链的电力市场交易方法中,电力市场运营机构包括电力交易中心与电力调度机构;电力市场交易主体包括发电企业、售电公司、电网企业、电力用户和独立辅助服务提供者。
在上述的基于弱中心化联盟区块链的电力市场交易方法中,电力市场交易主体的准入机制包括:电力市场交易主体向电力交易中心提交身份ID、地理位置、能源类型和发电特性信息,并通过联盟区块链能源交易网络广播至全网;联盟区块链能源交易网络的全节点根据智能合约的预设条件对新增的轻节点信息进行校验;通过校验的电力市场交易主体,加入联盟区块链能源交易网络,并获得特定ID作为唯一的身份标识。
在上述的基于弱中心化联盟区块链的电力市场交易方法中,授权拜占庭容错共识机制实现共识通信包括:首先根据节点权益选出记账节点,再通过拜占庭容错算法实现共识。
一和基于弱中心化联盟区块链的电力市场交易的可靠性评估方法,通过对抗毁性与生存性两大指标进行相应建模,利用定量计算的方法,量化联盟区块链能源交易网络在电力交易市场中的可靠性;具体步骤如下:
式(1)为综合抗毁性指标在考虑联盟区块链能源交易网络结构、节点和链路影响的同时,解决抗毁性的随机性量度需要计算复杂的条件概率:
Figure PCTCN2020140395-appb-000001
式中,l i表示与节点i相连的可用通信链路数量;r ij表示与节点i相连的第j条可用通信链路的通信可靠度,r i表示节点i的通信可靠度;
考虑因素繁杂且求解过程困难的问题,在N个节点构成的通信网络中,节点平均抗毁性指标I total可表示为:
Figure PCTCN2020140395-appb-000002
式中,I i表示节点i的综合抗毁性;
式(3)为生存度指标用于度量当通信网络的健全性遭到毁坏后,剩余网络节点和通信链路实现网络拓扑结构的重组的连通能力,反映节点的生存性和链路的迂回特性;
Figure PCTCN2020140395-appb-000003
式中,t表示通信跳距,p i表示节点i的通信可靠度,P im表示节点i的跳面m的生存度,等于该跳面内所有节点通信可靠度乘积
Figure PCTCN2020140395-appb-000004
n im表示节点i第m跳面内的节点数目,l im表示节点i与第m跳面内其他节点的相连通信链路数;
对于N节点电力交易通信网络,采用加权方式表示系统生存度指标S total
Figure PCTCN2020140395-appb-000005
Figure PCTCN2020140395-appb-000006
式中,α i表示节点i的生存度加权系数;d i为节点i的某跳数内的节点数量。
本发明是有益效果:架构底层P2P网络满足了各市场主体间资源与服务交换,适应了电力交易市场分布特性;基于拜占庭容错共识通信技术,建立抗毁 性与生存性指标,定量衡量了该弱中心化区块链技术在电力交易市场中的可靠性。
可适应电力交易不断分布化下大量多元交融的交易数据的电力交易管理,利用联盟区块链技术弱化电网在电力市场交易中的调配作用,实现参与电力交易的产消用户间的权责平等、透明互信、智能自治;在联盟区块链技术的改型下,定量计算电力市场交易的毁灭性与生存性,减小了定量分析通信可靠性的计算与求解复杂程度,确保弱中心化联盟区块链技术对电力市场交易改进后的可靠性。
附图说明
图1为本发明一个实施例应用弱中心化联盟区块链技术的电力市场交易架构;
图2为本发明一个实施例区块链信息交互结构;
图3为本发明一个实施例联盟区块链能源交易网络;
图4为本发明一个实施例弱中心化联盟链技术下电力交易市场准入架构;
图5为本发明一个实施例拜占庭容错共识通信示意图。
具体实施方式
下面结合附图对本发明的实施方式进行详细描述。
本实施例利用区块链技术对电力市场交易模式进行弱中心化,在公有链、专有链、联盟链三大区块链技术中进行分析选型,考虑到电网的智能化水平不足以实现完全去中心化,脱离电网调配完成发电、输变电、配用电过程供需关系平衡。选择弱中心化程度处于公有链和专有链之间的联盟链技术框架,更适应于电力交易过程中不同机构间的协作场景。联盟链共识节点负责权限控制、 账务记载,同时有线下规则约束参与者的行为。
本实施例通过联盟区块链技术、P2P网络和授权拜占庭容错共识机制,将电力市场运营机构和电力市场交易主体分别归入全节点网络和轻节点网络,通过引入联盟区块链技术,利用其弱中心化特性,部分解放市场运营机构的中心管控权限,实现了电力灵活自主、公平公正的交易;架构底层P2P网络满足了各市场主体间资源与服务交换,适应了电力交易市场分布特性;基于拜占庭容错共识通信技术,建立抗毁性与生存性指标,定量衡量了该弱中心化区块链技术在电力交易市场中的可靠性。
本实施例通过以下技术方案来实现,一种基于弱中心化联盟区块链的电力市场交易方法,将电力市场运营机构和电力市场交易主体分别归入全节点网络和轻节点网络。其中全节点保存有从创世区块开始的所有结构化的合约基础数据与交易数据,通过Hash(哈希)映射保护用户隐私与交易的机密信息;电力市场交易主体要通过一定的准入机制才能在参与电力交易过程,在联盟区块链能源交易网络中作为轻节点,具备可扩展性并且占据了大部分节点比例,保存与合约相关的交易Hash以及简要支付验证所必须的时间戳邻近的交易数据,并可从全节点上传、下载相关数据。
并且,在通信架构底层引入P2P(Peer-to-Peer)网络,去除传统C/S(Client/Sever,客户端/服务器)模式中的中心服务器,在P2P网络各节点间实现CPU计算资源共用、磁盘存储共享、信息交换等。
并且,基于联盟链系统,采用授权拜占庭容错(delegated byzantine fault tolerance,dBFT)共识机制达成节点共识。先根据节点权益选出记账节点,再通过拜占庭容错算法实现共识。
并且,对抗毁性与生存性两个通信可靠性性能指标进行建模,定量计算出指标结果反映电力市场交易的可靠程度:从确定性和随机性方面综合分析抗毁性,在考虑了网络结构、节点和链路影响的同时,大大减小计算与求解的复杂程度;基于节点随机失效、链路可靠的情况,建立通信网络的生存度指标,反映通信网络部分失效后的重组回复能力。
具体实施时,如图1所示,应用弱中心化联盟区块链技术的电力市场交易架构包括各类发电企业、售电(含配售电)公司、电网企业、电力用户、独立辅助服务提供者等市场主体以及电力交易中心与电力调度机构等市场运营机构。基于区块链技术的电力交易管理系统为电力市场交易主体提供电能交易平台,实现电力交易的匹配、验证、结算、价值转移,分布式存储等功能,促进多主体电力市场竞争博弈的信息公开透明化。电力交易监管政策以区块链智能合约等形式,严格监管电力交易过程。其中电力交易市场主体处于物理层,虚拟层上的信息系统制定电力交易市场机制与定价机制。
电力市场交易主体通过一定的准入机制参与电力交易过程,在联盟区块链能源交易网络中作为轻节点,具备可扩展性并且占据了大部分节点比例,保存与合约相关的交易Hash以及简要支付验证所必须的时间戳邻近的交易数据。
电力交易运营机构等效为全节点,全节点的数量较少,每个全节点保存有从创世区块开始的所有结构化的合约基础数据与交易数据。
如图2所示,本实施例联盟区块链技术下各个区块的信息交互方式。区块具体包含区块头与区块体:区块头包含前一区块头Hash值,随机数,Merkle根等。区块体记录了得到验证后的交易信息,这些交易信息经过Hash运算,以Merkle tree的数据结构连接到区块头,可以方便快速地校验区块数据的完整性, 保证信息不被恶意篡改传播。
如图3所示,本实施例弱中心化联盟区块链技术中全节点与轻节点的关系:轻节点可从全节点上传、下载相关数据。全节点通过Hash映射保护用户隐私与交易的机密信息,保证了数据的不可篡改性。这样做的好处不仅保留了账本存储容量,提高处理性能,也极大减少了系统的存储负担。电力交易联盟链保留了类似于中心化的数据库,构成了一个广义上的“弱中心化”分布式电力交易通讯机制,不仅有利于提高链上的共识效率,且便于查询、统计、审计等中心化的操作。
如图4所示,本实施例弱中心化联盟区块链技术中的交易网络准入管理过程,电力交易中心承担监管角色,只有当电力市场交易主体符合市场准入机制后才能加入电力交易联盟区块链。电力市场交易主体向电力交易中心提交相关信息,如身份ID,地理位置,能源类型,发电特性等,并通过联盟区块链能源交易网络广播至全网。联盟区块链全节点根据智能合约中的预设条件对新增的轻节点信息进行校验。通过校验的电力交易市场主体,即可加入联盟区块链能源交易网络中,并获得特定ID作为唯一的身份标识。
如图5所示,本实施例弱中心化联盟区块链技术采用授权拜占庭容错算法实现共识通信过程,假定在某个共识周期内的联盟链全节点X 0以较高的节点权益被选定为“临时”通信主节点,联盟链内的其余全节点为通信从节点X 1,X 2,...,X n,记为,打叉的节点X n代表该节点为问题节点,表现为其他对节点的请求无响应。一次成功的算法共识包括:联盟链临时通信主节点X 0收集全网电力交易信息,整合成一个待验证区块(block data),附上本节点的数字签名以及区块Hash值,向全网广播;每个节点收到交易列表后,根据区块内容执行交易,基于交易结 果计算新区块的哈希摘要,用私钥对区块审计结果(result)形成数字签名,并向全网广播;在一定时间范围内,若一个节点收到超过2f(f为可容忍的拜占庭节点数)个其他节点发来的审计信息都与自己相等,则向全网广播一条认证信息(commit);如果一个节点收到包括自己共2f+1个认证信息后,代表代表共识已正确完成,即可提交回复信息(reply)至临时通信主节点X 0;通信主节点X 0将该区块连同参与审计的其他节点证书及对应数据签名整合成记录(records)并广播,并将区块存入联盟链中。
要保证弱中心化区块链技术的可靠性,采用基于弱中心化联盟区块链的电力市场交易的可靠性评估方法,包括对抗毁性与生存性两大指标进行相应建模,利用定量计算的方法,量化弱中心化区块链技术在电力交易市场中的可靠性。
式(1)所示的综合抗毁性指标在考虑了网络结构、节点和链路影响的同时,解决了抗毁性的随机性量度需要计算复杂的条件概率,考虑因素繁杂且求解过程困难的问题:
Figure PCTCN2020140395-appb-000007
式中,l i表示与节点i相连的可用通信链路数量;r ij表示与节点i相连的第j条可用通信链路的通信可靠度;r i表示节点i的通信可靠度。
在N个节点构成的通信网络中,节点平均抗毁性指标I total可表示为:
Figure PCTCN2020140395-appb-000008
式中,I i表示节点i的综合抗毁性。
(3)
Figure PCTCN2020140395-appb-000009
式中,t表示通信跳距;p i表示节点i的通信可靠度;P im表示节点i的跳面m的生存度,等于该跳面内所有节点通信可靠度乘积
Figure PCTCN2020140395-appb-000010
n im表示节点i第m跳面内的节点数目;l im表示节点i与第m跳面内其他节点的相连通信链路数。
对于N节点电力交易通信网络,采用加权方式表示系统生存度指标S total
Figure PCTCN2020140395-appb-000011
Figure PCTCN2020140395-appb-000012
式中,α i表示节点i的生存度加权系数;d i为节点i的某跳数内的节点数量。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
虽然以上结合附图描述了本发明的具体实施方式,但是本领域普通技术人员应当理解,这些仅是举例说明,可以对这些实施方式做出多种变形或修改,而不背离本发明的原理和实质。本发明的范围仅由所附权利要求书限定。

Claims (7)

  1. 一种基于弱中心化联盟区块链的电力市场交易方法,通过联盟区块链、P2P网络和授权拜占庭容错共识机制将电力市场运营机构和电力市场交易主体分别归入全节点网络和轻节点网络;其特征是,电力市场运营机构等效为全节点,全节点保存有从创世区块开始的所有结构化的合约基础数据与交易数据,通过Hash映射保护用户隐私与交易的机密信息;电力市场交易主体通过一定的准入机制参与电力交易过程,在联盟区块链能源交易网络中作为轻节点,具备可扩展性并且占据大部分节点比例,保存与合约相关的交易Hash以及简要支付验证所必须的时间戳邻近的交易数据,并可从全节点上传、下载数据。
  2. 如权利要求1所述的基于弱中心化联盟区块链的电力市场交易方法,其特征是,所述联盟区块链能源交易网络的共识节点负责权限控制和账务记载,同时线下规则约束参与者的行为。
  3. 如权利要求1所述的基于弱中心化联盟区块链的电力市场交易方法,其特征是,在所述联盟区块链能源交易网络的通信架构底层引入P2P网络,去除传统客户端/服务器C/S模式的中心服务器,在P2P网络各节点间实现CPU计算资源共用、磁盘存储共享和信息交换。
  4. 如权利要求1所述的基于弱中心化联盟区块链的电力市场交易方法,其特征是,电力市场运营机构包括电力交易中心与电力调度机构;电力市场交易主体包括发电企业、售电公司、电网企业、电力用户和独立辅助服务提供者。
  5. 如权利要求4所述的基于弱中心化联盟区块链的电力市场交易方法,其特征是,电力市场交易主体的准入机制包括:电力市场交易主体向电力交易中心提交身份ID、地理位置、能源类型和发电特性信息,并通过联盟区块链能源 交易网络广播至全网;所述联盟区块链能源交易网络的全节点根据智能合约的预设条件对新增的轻节点信息进行校验;通过校验的电力市场交易主体,加入联盟区块链能源交易网络,并获得特定ID作为唯一的身份标识。
  6. 如权利要求1所述的基于弱中心化联盟区块链的电力市场交易方法,其特征是,授权拜占庭容错共识机制实现所述联盟区块链能源交易网络的共识通信,包括:首先根据节点权益选出记账节点,再通过拜占庭容错算法实现共识。
  7. 一种基于弱中心化联盟区块链的电力市场交易的可靠性评估方法,其特征是,通过对抗毁性与生存性两大指标进行相应建模,利用定量计算的方法,量化联盟区块链能源交易网络在电力交易市场中的可靠性;具体步骤如下:
    式(1)为综合抗毁性指标在考虑联盟区块链能源交易网络结构、节点和链路影响的同时,解决抗毁性的随机性量度需要计算复杂的条件概率:
    Figure PCTCN2020140395-appb-100001
    式中,l i表示与节点i相连的可用通信链路数量;r ij表示与节点i相连的第j条可用通信链路的通信可靠度,r i表示节点i的通信可靠度;
    考虑因素繁杂且求解过程困难的问题,在N个节点构成的通信网络中,节点平均抗毁性指标I total可表示为:
    Figure PCTCN2020140395-appb-100002
    式中,I i表示节点i的综合抗毁性;
    式(3)为生存度指标用于度量当通信网络的健全性遭到毁坏后,剩余网络节点和通信链路实现网络拓扑结构的重组的连通能力,反映节点的生存性和链路的迂回特性;
    Figure PCTCN2020140395-appb-100003
    式中,t表示通信跳距,p i表示节点i的通信可靠度,P im表示节点i的跳面m的生存度,等于该跳面内所有节点通信可靠度乘积
    Figure PCTCN2020140395-appb-100004
    n im表示节点i第m跳面内的节点数目,l im表示节点i与第m跳面内其他节点的相连通信链路数;
    对于N节点电力交易通信网络,采用加权方式表示系统生存度指标S total
    Figure PCTCN2020140395-appb-100005
    Figure PCTCN2020140395-appb-100006
    式中,α i表示节点i的生存度加权系数;d i为节点i的某跳数内的节点数量。
PCT/CN2020/140395 2020-07-10 2020-12-28 一种基于弱中心化联盟区块链的电力市场交易及评估方法 WO2022007356A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/226,039 US20220012806A1 (en) 2020-07-10 2021-04-08 Electricity market trading and evaluation method based on weak centralized consortium blockchain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010661634.7 2020-07-10
CN202010661634.7A CN111882385A (zh) 2020-07-10 2020-07-10 一种基于弱中心化联盟区块链的电力市场交易及评估方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/226,039 Continuation-In-Part US20220012806A1 (en) 2020-07-10 2021-04-08 Electricity market trading and evaluation method based on weak centralized consortium blockchain

Publications (1)

Publication Number Publication Date
WO2022007356A1 true WO2022007356A1 (zh) 2022-01-13

Family

ID=73150013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140395 WO2022007356A1 (zh) 2020-07-10 2020-12-28 一种基于弱中心化联盟区块链的电力市场交易及评估方法

Country Status (2)

Country Link
CN (1) CN111882385A (zh)
WO (1) WO2022007356A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114745288A (zh) * 2022-03-31 2022-07-12 上海电力大学 基于区块链和动态赋权的复杂网络抗毁性模型量化方法
CN115052001A (zh) * 2022-06-09 2022-09-13 上海万向区块链股份公司 联盟链的可扩展性解决方法、系统及介质
CN115834247A (zh) * 2023-01-18 2023-03-21 北京交通大学 一种基于区块链的边缘计算信任评价方法
CN115834599A (zh) * 2022-06-16 2023-03-21 北京大学 一种基于区块链和演化博弈模型的信用数据共享管理机制

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111882385A (zh) * 2020-07-10 2020-11-03 浙江中新电力工程建设有限公司自动化分公司 一种基于弱中心化联盟区块链的电力市场交易及评估方法
CN112529729B (zh) * 2020-11-25 2024-03-26 江苏瑞中数据股份有限公司 一种基于区块链的智能电力数据交换方法
CN112907082B (zh) * 2021-02-23 2024-04-09 上海腾天节能技术有限公司 一种区块链共识算法评估优化方法
CN112818414B (zh) * 2021-04-16 2021-07-13 腾讯科技(深圳)有限公司 数据处理方法、装置、计算机设备和存储介质
CN115411740B (zh) * 2022-09-23 2023-06-02 中国人民解放军国防科技大学 一种基于场景削减的自主供电网络拓扑优化方法
CN116485547B (zh) * 2023-06-20 2023-09-22 华北电力大学 一种基于区块链的碳资产交易方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170358041A1 (en) * 2012-07-31 2017-12-14 Causam Energy, Inc. Systems and methods for advanced energy settlements, network-based messaging, and applications supporting the same on a blockchain platform
CN110599261A (zh) * 2019-09-21 2019-12-20 江西理工大学 一种基于能源区块链的电动汽车安全电力交易和激励系统
CN111882385A (zh) * 2020-07-10 2020-11-03 浙江中新电力工程建设有限公司自动化分公司 一种基于弱中心化联盟区块链的电力市场交易及评估方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170358041A1 (en) * 2012-07-31 2017-12-14 Causam Energy, Inc. Systems and methods for advanced energy settlements, network-based messaging, and applications supporting the same on a blockchain platform
CN110599261A (zh) * 2019-09-21 2019-12-20 江西理工大学 一种基于能源区块链的电动汽车安全电力交易和激励系统
CN111882385A (zh) * 2020-07-10 2020-11-03 浙江中新电力工程建设有限公司自动化分公司 一种基于弱中心化联盟区块链的电力市场交易及评估方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN ZHONGXUE, JIN FAN, ZHOU SHENGTANG, ZHU HONGCHEN: "Invulnerability Assessment of HF Communication Networking Based on Nodes", COMMUNICATIONS TECHNOLOGY, JI-DIAN-BU 30 SUO, CN, vol. 3, no. 110, 30 September 2000 (2000-09-30), CN , pages 26 - 28, XP055887161, ISSN: 1002-0802 *
JING LU, SONG BIN, XIANG WAN-HONG, ZHOU ZHI-MING: "Smart Contract for Electricity Transaction and Charge Settlement Based on Blockchain", COMPUTER SYSTEMS AND APPLICATIONS, ZHONGGUO KEXUEYUAN RUANJIAN YANJIUSUO, CN, vol. 26, no. 12, 15 December 2017 (2017-12-15), CN , pages 43 - 50, XP055887156, ISSN: 1003-3254, DOI: 10.15888/j.cnki.csa.006109] *
WANG HAI-FENG: "Analysis on Survivability of Regional Communications Network Based on BGAN", RADIO ENGINEERING, no. 5, 1 May 2010 (2010-05-01), CN , pages 7 - 9, XP055887165, ISSN: 1003-3106 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114745288A (zh) * 2022-03-31 2022-07-12 上海电力大学 基于区块链和动态赋权的复杂网络抗毁性模型量化方法
CN114745288B (zh) * 2022-03-31 2023-08-25 上海电力大学 基于区块链和动态赋权的复杂网络抗毁性模型量化方法
CN115052001A (zh) * 2022-06-09 2022-09-13 上海万向区块链股份公司 联盟链的可扩展性解决方法、系统及介质
CN115052001B (zh) * 2022-06-09 2024-04-05 上海万向区块链股份公司 联盟链的可扩展性解决方法、系统及介质
CN115834599A (zh) * 2022-06-16 2023-03-21 北京大学 一种基于区块链和演化博弈模型的信用数据共享管理机制
CN115834247A (zh) * 2023-01-18 2023-03-21 北京交通大学 一种基于区块链的边缘计算信任评价方法

Also Published As

Publication number Publication date
CN111882385A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2022007356A1 (zh) 一种基于弱中心化联盟区块链的电力市场交易及评估方法
CN109426567B (zh) 一种区块链的节点部署和选举方法
US20220012806A1 (en) Electricity market trading and evaluation method based on weak centralized consortium blockchain
Sun et al. Blockchain-enhanced high-confidence energy sharing in internet of electric vehicles
Zheng et al. Blockchain challenges and opportunities: A survey
CN112434343B (zh) 一种基于双重区块链技术的虚拟电厂安全调度与交易方法
Zheng et al. An overview of blockchain technology: Architecture, consensus, and future trends
Bada et al. Towards a green blockchain: A review of consensus mechanisms and their energy consumption
Zheng et al. Blockchain challenges and opportunities: A survey
CN109889382A (zh) 一种基于区块链混合共识的域名信息维护系统
CN113438084A (zh) 一种基于r-pbft共识算法和时间戳的绿电溯源方法及系统
CN114663091B (zh) 基于多链式区块链架构的电力交易方法
Xu et al. μDFL: A secure microchained decentralized federated learning fabric atop IoT networks
CN109493041B (zh) 基于区域场链的分布式记账方法与交易平台
Huang et al. A solution for bilayer energy-trading management in microgrids using multiblockchain
CN113554421A (zh) 一种基于区块链的警务资源数据治理协同方法
Cui et al. Blockchain enabled data transmission for energy imbalance market
CN116452334B (zh) 一种基于区块链的工业园区多边碳交易方法及系统
CN113689295A (zh) 一种多元参与主体间的分布式能源交易方法及系统
Zhao et al. Design of trust blockchain consensus protocol based on node role classification
CN110049030B (zh) 基于随机连续离散的区块链共识系统
US20210326984A1 (en) Power transaction data storage system based on private blockchain platform and method for verifying and distributedly storing power transaction data using the same
Du et al. Anti-collusion multiparty smart contracts for distributed watchtowers in payment channel networks
Bolgouras et al. RETINA: Distributed and secure trust management for smart grid applications and energy trading
Gai et al. A Secure Sidechain for Decentralized Trading in Internet of Things

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943924

Country of ref document: EP

Kind code of ref document: A1