WO2022007242A1 - 一种多频线圈 - Google Patents

一种多频线圈 Download PDF

Info

Publication number
WO2022007242A1
WO2022007242A1 PCT/CN2020/122918 CN2020122918W WO2022007242A1 WO 2022007242 A1 WO2022007242 A1 WO 2022007242A1 CN 2020122918 W CN2020122918 W CN 2020122918W WO 2022007242 A1 WO2022007242 A1 WO 2022007242A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
branch
coil
dual
input
Prior art date
Application number
PCT/CN2020/122918
Other languages
English (en)
French (fr)
Inventor
陈潇
罗海
吴子岳
Original Assignee
无锡鸣石峻致医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡鸣石峻致医疗科技有限公司 filed Critical 无锡鸣石峻致医疗科技有限公司
Publication of WO2022007242A1 publication Critical patent/WO2022007242A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil
    • G01R33/3635Multi-frequency operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34007Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system

Definitions

  • the invention relates to the technical field of nuclear magnetic resonance, in particular to a multi-frequency coil.
  • the radio frequency coil transmits the radio frequency pulse signal from the power amplifier to the sample area to generate a B1 field perpendicular to the static magnetic field B0 field to excite the nuclei in this area.
  • NMR spectral analysis may be used for the study of human metabolic disorders, such as nuclear analysis requires a plurality of elements excited hydrogen nuclei 1 H, Fluorine nucleus 19 F, sodium nucleus 23 Na, phosphorus nucleus 31 P, each nucleus has a different resonance frequency under the same static magnetic field.
  • the original coil resonant frequency is split into two frequencies, and each time a notch filter is inserted, one more frequency is split, so that three or more frequencies can be obtained on one port.
  • This method It is necessary to tune and match several frequencies on one port at the same time; another method is to use a parallel resonant circuit composed of inductors and capacitors to realize the switching mode. This method has more than two ports. The frequency is open circuit and the other frequency is in the channel, generally there are two or more ports. At the same time, a notch filter composed of inductors and capacitors is used to split a port into two frequencies, so as to obtain three or more ports. frequency.
  • the second type of general realization of multi-frequency uses multiple coils, each coil is tuned to a different frequency, each frequency needs a port, each port is individually matched, and the solution between the coils of each frequency needs to be solved. Coupling, when the coupling is difficult to solve, it is necessary to set an additional control signal to make the coil in the non-working state lose the resonance state.
  • the first type of multi-frequency implementation utilizes the characteristics of a parallel circuit composed of capacitors and inductors. Every time the coil achieves one more frequency, at least one more LC parallel resonant circuit is used.
  • the inductance in the coil has a certain loss.
  • the resistance of the coil contributes most of the noise.
  • the LC parallel resonator acts as a tank circuit to reduce the efficiency and signal-to-noise ratio of the coil.
  • the more LC parallel resonant circuits are placed in the coil the more efficient the coil is. The more the signal-to-noise ratio drops.
  • the second type of multi-frequency approach utilizes multiple coils, but it is difficult to decouple from each other.
  • the invention aims to provide a multi-frequency coil, which utilizes the magnetic field direction characteristics of the two coils to realize three frequencies or four frequencies, simplifies the decoupling of the coils, reduces the number of LC parallel resonators used, and effectively improves the coil performance.
  • the coil transmit efficiency and receive sensitivity.
  • the present invention adopts the following technical solutions to realize:
  • the invention discloses a multi-frequency coil, comprising a dual-frequency realization circuit, a single-frequency realization circuit and a coil body;
  • the coil body includes an input end and an output end
  • the dual-frequency realization circuit includes dual-frequency input and output branch, dual-frequency frequency adjustment branch, high-frequency adjustment branch, low-frequency adjustment branch, dual-frequency input and output branch, dual-frequency frequency adjustment branch connected to the input end, high-frequency adjustment
  • the branch and the low-frequency adjustment branch are connected to the output end, the dual-frequency input and output branch includes a matching module, and the low-frequency adjustment branch includes a high-impedance module;
  • the single-frequency implementation circuit includes a single-frequency input and output branch, a grounding branch, and a single-frequency adjustment branch.
  • the single-frequency input and output branch is connected to the input end
  • the grounding branch is connected to the output end
  • both ends of the single-frequency adjustment branch are connected to the input end respectively.
  • the output end, the single-frequency input and output branch includes a single-frequency frequency adjustment module.
  • one end of the dual-frequency input and output branch is connected to the input terminal, and the other end of the dual-frequency input and output branch is connected to the dual-frequency input and output port, and the matching module includes a capacitor C1, and the capacitor C1 is connected in series on the dual-frequency input and output branch.
  • One end of the dual-frequency frequency adjustment branch is connected to the input terminal, the other end of the dual-frequency frequency adjustment branch is grounded, and the capacitor C5 is connected in series on the dual-frequency frequency adjustment branch.
  • One end of the high-frequency regulating branch is connected to the output end, the other end of the high-frequency regulating branch is grounded, and the capacitor C2 is connected in series on the high-frequency regulating branch,
  • the low frequency adjusting branch includes a capacitor C3, a capacitor C4, and an inductor L1.
  • the capacitor C4 and the inductor L1 are connected in series with the capacitor C3 after being connected in parallel.
  • the capacitor C3 is connected in series with the inductor L1 and then connected in series with the capacitor C4.
  • one end of the single-frequency input and output branch is connected to the input terminal, and the other end of the single-frequency input and output branch is connected to the single-frequency input and output port, and the single-frequency frequency adjustment module includes a capacitor C11, which is connected in series on the single-frequency input and output branch.
  • a capacitor C10 is arranged in parallel on the single-frequency regulating branch.
  • the coil body includes a butterfly coil and a toroidal coil, and the butterfly coil and the toroidal coil are overlapped and placed together in parallel.
  • the toroidal coil is connected to the single-frequency realization circuit
  • the butterfly coil is connected to the dual-frequency realization circuit
  • the two coils are overlapped and placed together in parallel to realize the three-frequency coil.
  • the butterfly coil is connected to the single-frequency realization circuit
  • the toroidal coil is connected to the dual-frequency realization circuit
  • the two coils are overlapped in parallel and placed together to realize the three-frequency coil.
  • the toroidal coil is connected to one dual-frequency implementation circuit
  • the butterfly coil is connected to the other dual-frequency implementation circuit
  • the two coils are placed in parallel and overlapped to realize a four-frequency coil.
  • the butterfly coil and/or the toroidal coil has a multi-turn structure.
  • the invention can simply realize multi-frequency coils with three or four frequencies, the mutual decoupling of the coils becomes easy, the loss and the use of the energy storage circuit are reduced, and the signal-to-noise ratio of the coils is improved.
  • Fig. 1 is the schematic diagram of the first dual-frequency realization circuit
  • Fig. 2 is the schematic diagram of the second dual-frequency realization circuit
  • FIG. 3 is a schematic diagram of a single-frequency implementation circuit
  • Figure 4 shows the first three-frequency implementation
  • Figure 5 shows the second three-frequency implementation
  • Figure 6 is a quad-frequency implementation
  • Fig. 7 is a kind of multi-frequency coil structure
  • Figure 8 is the first multi-turn butterfly coil
  • Figure 9 shows the second kind of multi-turn butterfly coil.
  • X1 represents the dual-frequency implementation circuit
  • X2 represents the single-frequency implementation circuit
  • X represents the implementation circuit of X1 or X2.
  • the magnetic field generated by it is perpendicular to the plane of the coil, and the coil of butterfly structure or the coil based on the figure-8 form (similar to the figure-8) has opposite current flows in the two loops.
  • a magnetic field parallel to the plane of the coil is generated.
  • the magnetic fields generated by the two coils are perpendicular to each other, which is called orthogonal.
  • the coupling between the two coils is very high. Small, it can be ignored. Since the magnetic fields generated by the two coils are not perfectly orthogonal in some areas, a certain coupling will occur.
  • Adjusting the relative positions of the two coils can reduce the coupling between the two coils. Based on this principle, if one of the two coils is made into a dual-frequency coil, a three-frequency coil can be realized, and if both coils are made into a dual-frequency coil, a four-frequency coil can be realized. No other means of decoupling are required for all frequencies except to adjust the relative overlap position of the coils for optimal decoupling.
  • the dashed box 1 in Figures 1 and 2 is the sample receiving area of the coil.
  • the two ends of the coil in the sample receiving area are connected to both ends of the circuit in the dashed box 2, so that the entire coil forms a current loop.
  • the black dots are the two ends of the coil and the circuit ( X1, X2) connection part, and realize the tuning and matching of the coil through the circuit in the dashed box 2, the circuit in the dashed box 2 in Fig. 1 and Fig. 2 realizes the dual-frequency circuit of the coil and the tuning and matching of the coil.
  • the circuit within the dashed box 2 implements the tuning and matching of a single frequency coil.
  • C1 is used to adjust the matching of f1 and f2.
  • C2 realizes the frequency adjustment of f2 (f2>f1), and adjusts L1, C3 and C4 so that this branch is in a high impedance state at f2.
  • C3 is used to adjust the resonant frequency of f1
  • C5 Used to adjust the frequency of f1 and f2 at the same time.
  • C10 adjusts the frequency of the coil
  • C11 adjusts the matching of the coil.
  • FIG. 4 A three-frequency method is shown in Figure 4.
  • the toroidal coil and the butterfly coil are placed in parallel and overlapped together, wherein the toroidal coil (dotted line) is used to realize two frequencies f1 and f2, and X1 is the circuit for the coil to realize dual-frequency, including tuning With matching, the butterfly coil (solid line) realizes the third frequency f3, and X2 is the conventional matching and tuning circuit of the single frequency of the coil.
  • Figure 5 is the opposite of Figure 4, using a butterfly coil to achieve two frequencies f1 and f2, and a loop coil to achieve a third frequency f3.
  • the parallel overlapping arrangement of the multi-frequency coils can be a combination of a single-turn butterfly coil and a multi-turn toroid, or a combination of a single-turn toroid and a multi-turn butterfly coil, or a multi-turn ring
  • the combination of the coil and the multi-turn butterfly coil realizes three-frequency and four-frequency by connecting the combined circuit of X1 and X2 after the combined coil.
  • FIG. 7 is a multi-turn coil structure, in the figure, the ring-shaped coil structure is 2 turns, and the butterfly-shaped structure coil is 1 turn.
  • 8 and 9 are schematic diagrams of two types of butterfly coils for realizing the combination of multi-frequency coils.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Filters And Equalizers (AREA)

Abstract

一种多频线圈,包括双频实现电路(X1)、单频实现电路(X2)、线圈本体;线圈本体包括输入端、输出端,线圈本体包括蝶形线圈、环形线圈;双频实现电路(X1)包括双频输入输出支路、双频频率调节支路、高频调节支路、低频调节支路,双频输入输出支路、双频频率调节支路连接输入端,高频调节支路、低频调节支路连接输出端;单频实现电路(X2)包括单频输入输出支路、接地支路、单频调节支路,单频输入输出支路连接输入端,接地支路连接输出端,单频调节支路两端分别连接输入端、输出端;利用两种线圈的磁场方向特性实现三个频率或者四个频率,简化线圈的解耦并减少了LC并联谐振器的使用数量,有效的提高了线圈的发射效率与接收灵敏度。

Description

一种多频线圈 技术领域
本发明涉及核磁共振技术领域,尤其涉及一种多频线圈。
背景技术
在MR系统中,射频线圈把功率放大器发出的射频脉冲信号发射到样品区域产生一个与静态磁场B0场垂直的B1场,用以激发该区域的原子核。在发射射频脉冲之后的磁共振信号接收阶段,射频线圈用于接收MR回波信号,NMR波谱分析可以用于人类新陈代谢疾病的研究,这种分析需要激发多种元素的核如氢核 1H,氟核 19F,钠核 23Na,磷核 31P,每个核在同一静态磁场下均具有不同的谐振频率,除了医院常规MRI所用到的 1H核外,要激发其他的核均需要制作相应的发射接收线圈,对于大多数射频功率放大器而言,基于输出增益和谐波抑制等原因,其输出的频率带宽不能做的很宽,因此对于激发频率较远的核,则需要多个功率放大器,对于激发频率较近的核,只要功率放大器带宽足够,可以对两个频率的核进行激发。用于多核分析的多频率线圈早已得到使用,通用方式可以归为两类,第一类利用了电感和电容并联谐振的特性,一种方式是把由电感和电容组成的陷波器插入到一个单端口的线圈中,把原本的线圈谐振频率分裂为两个频率,每插入一个陷波器则多分裂出一个频率,从而可以在一个端口上得到三个或者三个以上的频率,这种方式需要在一个端口上几个频率同时进行调谐与匹配;另一种方式是利用电感和电容组成的一个并联谐振电路实现开关方式,这种 方式具有两个以上的端口,这种开关可以实现在一个频率开路而对于另一个频率处于通路,一般有两个或者两个以上的端口,同时使用由电感电容组成的陷波器把某一路端口分裂成为两个频率,从而得到三个或者三个以上的频率。第二类通用的实现多频方式利用多个线圈,每个线圈调谐到不同的频率,每个频率都需要一个端口,每个端口进行单独的匹配,需要对每个频率的线圈之间进行解耦合,当耦合难以解决时,需要设置额外的控制信号让处于非工作状态的线圈失去谐振状态。
第一类实现多频的方式利用电容电感组成的并联电路特性,线圈每多实现一个频率就会多使用至少一个LC并联谐振电路,线圈中的电感具有一定的损耗,对于低场的磁共振射频线圈而言,线圈的电阻贡献了绝大部分的噪声,同时LC并联谐振器作为一个储能电路降低了线圈的效率与信噪比,线圈中LC并联谐振电路放置的越多,其线圈效率与信噪比下降的越多。第二类的实现多频的方式利用多个线圈,但是相互解耦比较困难。
发明内容
本发明旨在提供一种多频线圈,利用两种线圈的磁场方向特性来实现三个频率或者四个频率,简化线圈的解耦并减少了LC并联谐振器的使用数量,有效的提高了线圈的线圈发射效率与接收灵敏度。
为达到上述目的,本发明是采用以下技术方案实现的:
本发明公开一种多频线圈,包括双频实现电路、单频实现电路、线圈本体;
线圈本体包括输入端、输出端;
双频实现电路包括双频输入输出支路、双频频率调节支路、高频调节支路、低频调节支路,双频输入输出支路、双频频率调节支路连接输入端,高频调节支路、低频调节支路连接输出端,双频输入输出支路包括匹配模块,低频调节支路 包括高阻抗模块;
单频实现电路包括单频输入输出支路、接地支路、单频调节支路,单频输入输出支路连接输入端,接地支路连接输出端,单频调节支路两端分别连接输入端、输出端,单频输入输出支路包括单频频率调节模块。
优选的,双频输入输出支路一端连接输入端,双频输入输出支路另一端连接双频输入输出端口,匹配模块包括电容C1,电容C1串联设于双频输入输出支路上,
双频频率调节支路一端连接输入端,双频频率调节支路另一端接地,电容C5串联设于双频频率调节支路上,
高频调节支路一端连接输出端,高频调节支路另一端接地,电容C2串联设于高频调节支路上,
低频调节支路一端连接输出端,低频调节支路另一端接地,低频调节支路包括电容C3、电容C4、电感L1。
优选的,电容C4、电感L1并联后与电容C3串联。
优选的,电容C3与电感L1串联后与电容C4串联。
优选的,单频输入输出支路一端连接输入端,单频输入输出支路另一端连接单频输入输出端口,单频频率调节模块包括电容C11,电容C11串联设于单频输入输出支路上,
单频调节支路上并联设有电容C10。
优选的,线圈本体包括蝶形线圈、环形线圈,蝶形线圈与环形线圈平行交叠放置在一起。
优选的,环形线圈连接单频实现电路,蝶形线圈连接双频实现电路,两种线圈平行交叠放置在一起使用实现三频线圈。
优选的,蝶形线圈连接单频实现电路,环形线圈连接双频实现电路,两种线圈平行交叠放置在一起使用实现三频线圈。
优选的,双频实现电路共有两个,环形线圈连接一个双频实现电路,蝶形线圈连接另一个双频实现电路,两种线圈平行交叠放置在一起使用实现四频线圈。
优选的,蝶形线圈和/或环形线圈为多圈结构。
本发明的有益效果:
本发明可以简单的实现三个或者四个频率的多频线圈,线圈的相互解耦变得容易,且减少了损耗与储能电路的使用,线圈的信噪比得到提高。
附图说明
图1为第一种双频实现电路的示意图;
图2为第二种双频实现电路的示意图;
图3为单频实现电路的示意图;
图4为第一种三频实现方式;
图5为第二种三频实现方式;
图6为四频实现方式;
图7为一种多频线圈结构;
图8为第一种多圈蝶形线圈;
图9为第二种多圈蝶形线圈。
图中:X1代表双频实现电路,X2代表单频实现电路,X代表X1或者X2的实现电路。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
对于单圈或者多圈的环形线圈,其产生的磁场与线圈的平面垂直,蝶形结构的线圈或者基于figure-8形式(类似于8字形)的线圈其两个环路具有相反的电流流向,产生与线圈平面相平行的磁场,当这种结构的线圈与环状线圈交叠在一起平行放置时,两个线圈产生的磁场相互垂直,称之为正交,此时连个线圈的耦合很小,可以忽略不计,由于两个线圈的产生的磁场在部分区域不是完美的正交,会产生一定的耦合,调整两个线圈的相对位置,可以减小两个线圈之间的耦合。基于这样的原理,把这两个线圈的其中一个做成双频线圈,就可以实现三频线圈,如果把两个线圈都做成双频线圈,则可以实现四频线圈。除了调整线圈的相对交叠位置以实现最佳的解耦,所有的频率均不需要其他解耦手段。
图1和图2的虚线框1为线圈的样品接收区域,样品接收区域的线圈两端连接到虚线框2内电路的两端,让整个线圈形成电流回路,黑点为线圈两端与电路(X1,X2)连接部分,并通过虚线框2内的电路实现线圈的调谐与匹配,图1和图2的虚线框2内的电路实现线圈的双频电路以及线圈的调谐与匹配,图3的虚线框2内的电路实现单个频率线圈的调谐与匹配。
C1用于调节f1与f2的匹配。
C2实现f2(f2>f1)的频率调节,调节L1、C3和C4使得这条支路在f2处于高阻抗状态,第一种X1双频实现电路中,C3用于调节f1的谐振频率,C5用于同时调节f1和f2的频率。在图3的单频实现电路,C10调节线圈的频率,C11调节线圈的匹配。
图4所示一种三频方式,环形线圈与蝶形线圈平行交叠放置在一起,其中环形线圈(虚线)用以实现两个频率f1和f2,X1为线圈实现双频的电路,包含 调谐与匹配,蝶形线圈(实线)实现第三个频率f3,X2为线圈单个频率的常规匹配与调谐电路。图5与图4相反,使用蝶形线圈实现两个频率f1和f2,环形线圈实现第三个频率f3。
图6中实现四个频率,环形线圈与蝶形线圈平行交叠放置在一起,蝶形线圈和环线线圈都通过X1电路制成双频线圈,实现四频线圈。
多频线圈的平行交叠放置组合可以是单圈的蝶形线圈和多圈的环状线圈的组合,或者单圈的环状线圈和多圈的蝶形线圈的组合,或者多圈的环状线圈和多圈的蝶形线圈的组合,通过在这种组合的线圈后连接X1与X2的组合电路实现三频和四频。图7是一种多圈的线圈结构,图中为环状线圈结构为2圈,蝶形结构线圈为1圈。图8、图9为实现多频线圈组合的两种蝶形线圈示意图。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (9)

  1. 一种多频线圈,其特征在于:包括双频实现电路、单频实现电路、线圈本体;
    线圈本体包括输入端、输出端,线圈本体包括蝶形线圈、环形线圈,多个线圈本体平行交叠放置;
    双频实现电路包括双频输入输出支路、双频频率调节支路、高频调节支路、低频调节支路,双频输入输出支路、双频频率调节支路连接输入端,高频调节支路、低频调节支路连接输出端,双频输入输出支路包括匹配模块,低频调节支路包括高阻抗模块;
    单频实现电路包括单频输入输出支路、接地支路、单频调节支路,单频输入输出支路连接输入端,接地支路连接输出端,单频调节支路两端分别连接输入端、输出端,单频输入输出支路包括单频频率调节模块。
  2. 根据权利要求1所述的多频线圈,其特征在于:双频输入输出支路一端连接输入端,双频输入输出支路另一端连接双频输入输出端口,匹配模块包括电容C1,电容C1串联设于双频输入输出支路上,
    双频频率调节支路一端连接输入端,双频频率调节支路另一端接地,电容C5串联设于双频频率调节支路上,
    高频调节支路一端连接输出端,高频调节支路另一端接地,电容C2串联设于高频调节支路上,
    低频调节支路一端连接输出端,低频调节支路另一端接地,低频调节支路包括电容C3、电容C4、电感L1。
  3. 根据权利要求2所述的多频线圈,其特征在于:电容C4、电感L1并联 后与电容C3串联。
  4. 根据权利要求2所述的多频线圈,其特征在于:电容C3与电感L1串联后与电容C4串联。
  5. 根据权利要求1所述的多频线圈,其特征在于:单频输入输出支路一端连接输入端,单频输入输出支路另一端连接单频输入输出端口,单频频率调节模块包括电容C11,电容C11串联设于单频输入输出支路上,
    单频调节支路上并联设有电容C10。
  6. 根据权利要求1~5中任一所述的多频线圈,其特征在于:蝶形线圈和/或环形线圈为多圈结构。
  7. 根据权利要求6所述的多频线圈,其特征在于:环形线圈连接单频实现电路,蝶形线圈连接双频实现电路。
  8. 根据权利要求6所述的多频线圈,其特征在于:双频实现电路共有两个,环形线圈连接一个双频实现电路,蝶形线圈连接另一个双频实现电路。
  9. 根据权利要求6所述的多频线圈,其特征在于:蝶形线圈连接单频实现电路,环形线圈连接双频实现电路。
PCT/CN2020/122918 2020-07-07 2020-10-22 一种多频线圈 WO2022007242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010648305.9A CN111965577B (zh) 2020-07-07 2020-07-07 一种多频线圈
CN202010648305.9 2020-07-07

Publications (1)

Publication Number Publication Date
WO2022007242A1 true WO2022007242A1 (zh) 2022-01-13

Family

ID=73361366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122918 WO2022007242A1 (zh) 2020-07-07 2020-10-22 一种多频线圈

Country Status (2)

Country Link
CN (1) CN111965577B (zh)
WO (1) WO2022007242A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023028785A1 (zh) * 2021-08-30 2023-03-09 深圳先进技术研究院 多核射频接收线圈结构、多核射频接收装置及设备
CN113921239B (zh) * 2021-11-02 2024-06-04 深圳市联影高端医疗装备创新研究院 一种线圈系统
CN115133271A (zh) * 2022-08-11 2022-09-30 西南交通大学 一种并联式双环磁耦合通信抗干扰线圈天线
CN117783974B (zh) * 2024-02-26 2024-05-28 哈尔滨医科大学 一种直肠用氢、氟双共振射频线圈

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228291A (zh) * 1997-12-23 1999-09-15 通用电气公司 用于磁共振系统的阻容线圈装置
US20010033165A1 (en) * 2000-01-05 2001-10-25 National Research Council Of Canada Multiple tunable double ring surface coil with high B1 homogeneity
CN101315416A (zh) * 2007-05-31 2008-12-03 株式会社日立制作所 磁场线圈以及磁共振摄像装置
CN102007421A (zh) * 2008-04-11 2011-04-06 通用电气公司 多频rf线圈
CN102597794A (zh) * 2009-04-20 2012-07-18 美时医疗控股有限公司 低温冷却超导体rf头部线圈阵列和具有超导的头部专用mri系统
US20130314088A1 (en) * 2012-04-19 2013-11-28 New York University Multi-channel coil arrangement
CN103959085A (zh) * 2011-10-18 2014-07-30 皇家飞利浦有限公司 具有能够在阻挡状态与透明状态之间切换的射频屏蔽的mri线圈组件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002160A1 (de) * 1990-01-25 1991-08-08 Bruker Analytische Messtechnik Probenkopf fuer kernresonanzmessungen und verfahren zur messung von kernresonanzen
US6201392B1 (en) * 1997-11-07 2001-03-13 Varian, Inc. Coplanar RF probe coil arrangement for multifrequency excitation
US6650926B1 (en) * 2001-03-30 2003-11-18 Usa Instruments, Inc. Flexible multi-section MRI radio frequency array coil
US6900635B1 (en) * 2001-06-08 2005-05-31 General Electric Company Head RF quadrature coil array for parallel imaging
GB2490548B (en) * 2011-05-06 2016-08-17 Renishaw Plc RF coil assembly for magnetic resonance apparatus
CN103257331B (zh) * 2012-02-16 2016-03-02 上海联影医疗科技有限公司 一种双频射频线圈
CN103033778B (zh) * 2012-12-10 2015-06-17 奥泰医疗系统有限责任公司 双频射频表面线圈
CN105759230A (zh) * 2016-02-25 2016-07-13 哈尔滨医科大学 一种多核磁共振成像用四频射频表面线圈
CN106301011B (zh) * 2016-10-10 2019-08-02 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种基于双频阻抗匹配的微带整流电路
WO2018098248A1 (en) * 2016-11-23 2018-05-31 General Electric Company Systems for a radio frequency coil for mr imaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228291A (zh) * 1997-12-23 1999-09-15 通用电气公司 用于磁共振系统的阻容线圈装置
US20010033165A1 (en) * 2000-01-05 2001-10-25 National Research Council Of Canada Multiple tunable double ring surface coil with high B1 homogeneity
CN101315416A (zh) * 2007-05-31 2008-12-03 株式会社日立制作所 磁场线圈以及磁共振摄像装置
CN102007421A (zh) * 2008-04-11 2011-04-06 通用电气公司 多频rf线圈
CN102597794A (zh) * 2009-04-20 2012-07-18 美时医疗控股有限公司 低温冷却超导体rf头部线圈阵列和具有超导的头部专用mri系统
CN103959085A (zh) * 2011-10-18 2014-07-30 皇家飞利浦有限公司 具有能够在阻挡状态与透明状态之间切换的射频屏蔽的mri线圈组件
US20130314088A1 (en) * 2012-04-19 2013-11-28 New York University Multi-channel coil arrangement

Also Published As

Publication number Publication date
CN111965577B (zh) 2023-07-28
CN111965577A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
WO2022007242A1 (zh) 一种多频线圈
US10884080B2 (en) Dual-nuclear RF coil device and dual-nuclear RF coil array device
CN106932743B (zh) 用于磁共振成像的射频线圈单元和射频线圈
US7616000B2 (en) Ultra low output impedance RF power amplifier for parallel excitation
US8138762B2 (en) Coil decoupling for an RF coil array
US5424645A (en) Doubly broadband triple resonance or quad resonance NMR probe circuit
US5179332A (en) NMR radio frequency coil with disable circuit
US7187176B2 (en) NMR probe circuit with nodal impedance bridge
JPH11503950A (ja) 共振コイル装置における相互誘導の影響を除去するための方法及び装置
US7746073B2 (en) Magnetic resonance imaging system
WO2010018535A1 (en) Multi-channel rf-transmit (multix) tem coil array with non-radiating inductive stripline decoupling
CN105759230A (zh) 一种多核磁共振成像用四频射频表面线圈
GB2489565A (en) Birdcage RF resonator with two operating frequencies
WO2021097940A1 (zh) 多通道射频线圈装置及核磁共振成像系统
WO1992017792A1 (en) Balanced multi-tuned high-power broadband coil for nmr
US4731584A (en) Magnetic resonance probe for operation at frequencies above self resonance
CN111965576B (zh) 一种单端口双频线圈
US20080157770A1 (en) Dual-tuned tem/birdcage hybrid volume coil for human brain and spectroscopy
CN112649774A (zh) 一种双调谐射频线圈装置
US11789100B2 (en) Dual tuned magnetic resonance medical imaging device
Attaran et al. Small footprint high gain and low noise figure preamplifier for 7T MRI scanner
CN214845725U (zh) 发射线圈组件
US11835606B2 (en) Decoupled MRI coils through coil matching
US20240045007A1 (en) Broadband transmit/receive switches for magnetic resonance imaging
US11243280B2 (en) Augmented tune/match circuits for high performance dual nuclear transmission line resonators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944494

Country of ref document: EP

Kind code of ref document: A1