WO2022007211A1 - 一种基于gnss的实时高精度波浪测量方法及装置 - Google Patents

一种基于gnss的实时高精度波浪测量方法及装置 Download PDF

Info

Publication number
WO2022007211A1
WO2022007211A1 PCT/CN2020/119190 CN2020119190W WO2022007211A1 WO 2022007211 A1 WO2022007211 A1 WO 2022007211A1 CN 2020119190 W CN2020119190 W CN 2020119190W WO 2022007211 A1 WO2022007211 A1 WO 2022007211A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
gnss
real
precision
epoch
Prior art date
Application number
PCT/CN2020/119190
Other languages
English (en)
French (fr)
Inventor
刘杨
李梦昊
乔方利
田力
陈冠旭
刘焱雄
Original Assignee
自然资源部第一海洋研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 自然资源部第一海洋研究所 filed Critical 自然资源部第一海洋研究所
Priority to US18/015,483 priority Critical patent/US20230288578A1/en
Publication of WO2022007211A1 publication Critical patent/WO2022007211A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • G01C13/002Measuring the movement of open water
    • G01C13/004Measuring the movement of open water vertical movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C13/00Surveying specially adapted to open water, e.g. sea, lake, river or canal
    • G01C13/002Measuring the movement of open water
    • G01C13/006Measuring the movement of open water horizontal movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/254Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to Doppler shift of satellite signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/258Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to the satellite constellation, e.g. almanac, ephemeris data, lists of satellites in view
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/52Determining velocity

Definitions

  • This patent belongs to the field of marine environment monitoring, and is suitable for all water environment scenarios such as lakes, rivers, and oceans, and is especially suitable for a GNSS-based real-time high-precision wave measurement method in the open sea.
  • Waves are an important movement phenomenon in the ocean. Monitoring the changes of waves and studying their laws is of great significance to human activities at sea and disaster reduction and prevention activities. In recent decades, with the continuous increase of human development activities on the ocean, the research on ocean observation methods and the development of instruments and equipment have been greatly promoted. At present, various wave measuring instruments have appeared: acceleration wave measuring instrument, pressure wave measuring instrument, acoustic wave measuring instrument and GNSS wave measuring buoy, etc. Among them, the GNSS wave buoy uses the Global Navigation Satellite System (GNSS) to obtain the three-dimensional spatial position and time information of the buoy carrier, and the GNSS wave buoy has good wave-following characteristics, which can effectively invert wave elements through position information.
  • GNSS Global Navigation Satellite System
  • the GNSS wave measuring buoy can effectively observe the wave information, and has the advantages of simple system, low cost and small size. Due to the limitations of GNSS technology, for example, using RTK (Real-Time Kinematic) real-time carrier phase differential technology and PPK (Post-Processing Kinematic) dynamic post-processing differential technology can obtain centimeter-level positioning results, but these methods all rely on base stations and are effective The operating distance is limited to tens of kilometers offshore, and cannot be applied to distant sea scenarios; PPP (Precise Point Positioning) precision single-point positioning technology is not limited by distance, and does not need to obtain data from one or more close-range base stations.
  • RTK Real-Time Kinematic real-time carrier phase differential technology
  • PPK Post-Processing Kinematic dynamic post-processing differential technology
  • High-precision PPP relies on high-precision GNSS satellite orbit and clock correction products.
  • the real-time high-precision PPP method requires additional real-time precision differential correction products, which greatly increases the service cost and communication cost required for precision differential correction.
  • Real-time products generally suffer from time delay and reduced accuracy, which reduces the application accuracy of real-time scenarios.
  • the traditional GNSS-based wave measurement mainly has the following disadvantages:
  • the wave buoy GNSS observation data should be sent back to the data processing center for post-event calculation, which requires a large amount of communication bandwidth, resulting in communication costs, especially the cost of remote-sea satellite communication; If the wave buoy is recovered and then read the GNSS data for calculation, on the one hand, the cost of the recovery operation is increased, the automation is poor, and on the other hand, the cost of the wave buoy to store a large amount of GNSS data is also increased.
  • the present invention proposes a broadcast ephemeris that only needs to be equipped with a GNSS receiver (or board), is suitable for offshore and far-sea scenarios, and is directly broadcast and used free of charge based on GNSS satellites, without additional
  • the precise differential correction service and its communication can obtain real-time high-precision centimeter-level wave measurement results and real-time buoy positions with at least meter-level accuracy; wave element information such as wave height, period, and wave direction can be stored locally on the buoy or via communication. It is a real-time high-precision wave measurement method based on GNSS that can save the cost of precision differential correction service, communication and storage.
  • a real-time high-precision wave measurement method based on GNSS the steps of which are as follows:
  • a wave measurement device is formed by a wave buoy sea surface carrier equipped with GNSS, which collects high-frequency GNSS positioning electromagnetic wave signals in real time, converts them into phase, pseudorange, Doppler frequency shift observations and broadcast ephemeris and sends them to the wave measurement device the processor;
  • the GNSS of the present invention includes not only global navigation satellite systems such as Beidou, GPS, GLONASS, Galileo, etc., but also regional navigation satellite systems such as QZSS and NAVIC. Collect GNSS phase, pseudorange, Doppler frequency shift observations and GNSS broadcast ephemeris through the GNSS signal acquisition module carried by the buoy and other sea surface carriers, including using the epoch difference equation of the GNSS broadcast ephemeris and phase observations to determine the buoy, etc.
  • the vertical, east-west and north-south velocities of the carrier are obtained by integrating the vertical velocity and removing the trend term to obtain the change of the vertical displacement with time, and then inverting the high-precision wave height, period and other element information in real time according to the vertical displacement;
  • the directional spectrum and frequency spectrum of the wave can be obtained from the velocities in the vertical, east-west, and north-south directions measured by GNSS, and then element information such as wave height, period, and wave direction can be obtained.
  • the invention proposes that in wave measurement, the epoch difference of phase observation values is directly based on the GNSS broadcast ephemeris to determine the three-dimensional velocity without additional precise differential correction numbers, thereby saving the cost of the precise differential correction service of the GNSS-based wave measurement device and communication costs;
  • the present invention is suitable for offshore and far-sea scenarios, directly obtains wave element information in real time, stores the wave element information locally on the buoy or transmits it back via communication, without storing GNSS original observation data, without communication transmission of GNSS original observation data, and without precision
  • Differential correction and its real-time communication overcome the shortcomings of the existing GNSS wave measurement methods that require precise differential correction and real-time communication, and expand the working range of low-cost GNSS-based ocean wave measurement; the buoy and other sea surface carriers of the present invention can carry low
  • the cost single-frequency GNSS receiver can obtain real-time high-precision wave measurement results, which has high practical application value.
  • GNSS satellite-based enhancement services satellite-station differential services, and precision positioning services that may be free in the future to obtain real-time high-precision centimeter-level wave measurement results and real-time buoy positions with at least meter-level accuracy.
  • step (2) the three-dimensional velocity is solved based on the broadcast ephemeris and the established phase epoch differential observation equation, and the epoch differential carrier phase observation equation of the broadcast ephemeris is used as shown in formula (1), and the equation for solving the three-dimensional velocity is as formula ( 2) as shown:
  • is the carrier frequency (L1 or L2), is the difference between the carrier phase observations between the adjacent epochs (i, i+1) from the satellite S to the receiver r, and i is the epoch number; is the unit vector from the satellite S to the receiver r at the i+1 epoch, ⁇ r,i is the difference between the receiver position correction numbers between adjacent epochs (i, i+1); c is the speed of light, ⁇ t r,i and ⁇ t i S are the receiver clock relative deviation between adjacent epochs (i, i+1) and the satellite clock deviation calculated by broadcast ephemeris, respectively; is the comprehensive error correction between adjacent epochs (i, i+1), including satellite orbit, ionosphere, troposphere, phase change error, relativistic effect, earth rotation effect, etc., where the satellite orbit correction is calculated by the broadcast ephemeris, The ionospheric correction is calculated by the dual-frequency
  • the present invention can calculate the three-dimensional velocity of the wave measuring device by using the Doppler frequency shift observation value when the cycle slip of the GNSS phase observation value is frequent, and supplement the time series of the three-dimensional velocity.
  • the element information such as wave height and period described in step 4 can be based on the vertical displacement of the removed trend item, and the wave height and its corresponding period can be obtained, including the maximum wave height and its corresponding period, and one tenth of the large wave height and its corresponding period.
  • Period, effective wave height and its corresponding period, average wave height and its corresponding period, etc.; the wave height, period, wave direction and other element information described in step 4 can also be based on the vertical, east-west, and north-south velocities to find the direction of the wave spectrum, frequency spectrum, and then obtain wave element information such as wave height, period, and wave direction.
  • spectral analysis method can be used to invert wave element information, the formula is:
  • f is the frequency
  • S(f) is the power spectral density
  • m n is the n-order spectral moment
  • H m0 is the effective wave height obtained from the spectrum
  • T Z is the average period.
  • the three-dimensional velocity of the moving carrier is obtained by using the GNSS broadcast ephemeris and phase observation epoch difference equation, and the vertical displacement is obtained by integrating the vertical velocity and removing the trend term.
  • Element information such as wave height and period; the directional spectrum, frequency spectrum and other element information of waves are obtained from the velocities in the vertical, east-west and north-south directions measured by GNSS, and then high-precision wave height, period, wave direction and other element information are retrieved in real time . It is divided into the following three parts, and the method is described as follows:
  • the present invention proposes to directly use the GNSS broadcast ephemeris and the phase observation value epoch difference to determine the three-dimensional velocity in wave measurement.
  • the linearized GNSS carrier phase observation equation is shown in equation (6),
  • is the carrier frequency (L1 or L2)
  • the i-th epoch carrier phase observations, i is the epoch number, is the unit vector from the satellite S to the receiver r
  • ⁇ r,i is the position correction number of the receiver
  • c is the speed of light
  • ⁇ t r,i are the receiver clock bias and the satellite clock error calculated from the broadcast ephemeris, respectively
  • N is the integer ambiguity
  • Comprehensive error correction including satellite orbit, the ionosphere, the troposphere, the phase error changes, relativistic effects, and other effects of the Earth's rotation
  • ⁇ i is the noise and other residual error term.
  • the present invention uses the formula (1) to calculate the difference between two consecutive epochs (i, i+1), which can eliminate the common ambiguity N, as shown in formula (7) ) shown,
  • is the single difference operator, considering the high frequency sampling, the initial value of the receiver position at epoch i+1 and epoch i is approximately equal, and approximately equal.
  • the epoch differential carrier phase observation equation (1) established by using the broadcast ephemeris can be obtained from equation (7).
  • the estimated parameters in equation (1) are ⁇ r,i and ⁇ t r,i .
  • the initial position value of the i-th epoch of the receiver is the initial position value of the i-th epoch of the receiver.
  • the initial value of the receiver's position Obtained by a single-point positioning method based on broadcast ephemeris, such as a standard single-point positioning method.
  • the position of the receiver can also be obtained by the single-point positioning method based on broadcast ephemeris at each moment.
  • the velocity can be integrated into displacement using the time domain integration method. Since the velocity is affected by sea conditions, geographic location, signal errors and other noises, the velocity data contains errors, and the integration method will accumulate errors.
  • the displacement data of velocity inversion has a trend term, and the tidal water level change also leads to a trend term of vertical displacement. .
  • the present invention adopts the sliding window averaging method, for example, every 10-20 minutes period, removes the linear trend term from the obtained displacement, and then obtains the displacement information of the wave.
  • the wave core element information includes wave height, period and wave direction, etc.
  • the wave height and wave period are related to the vertical displacement of the wave.
  • the present invention can use the zero-crossing method and the spectral analysis method to extract the wave height and wave period from the vertical displacement after removing the trend item. parameters; the present invention can obtain the direction spectrum and frequency spectrum of the wave from the velocity in the vertical, east-west and north-south directions, and then obtain element information such as wave height, period and wave direction.
  • the present invention can obtain the wave height and period based on the vertical displacement obtained in real time, for example, using the spectral analysis method to obtain the wave parameters from the displacement time series, and the calculation formulas are shown in (3)-(5).
  • f is the frequency
  • S(f) is the power spectral density
  • m n is the n-order spectral moment
  • H m0 is the effective wave height obtained from the spectrum
  • T Z is the average period.
  • step 4 since the general wave period is 0.1-30 seconds, a high-pass filter is used to eliminate low-frequency noise data with a frequency lower than 0.03 Hz.
  • the sampling frequency of GNSS is 5Hz or more.
  • a measurement device using any of the above-mentioned GNSS-based real-time high-precision wave measurement methods including sea surface carriers such as wave buoys equipped with GNSS, GNSS receivers or boards, antenna GNSS signal acquisition modules, processors, memory and communication modules , the GNSS signal acquisition module converts the positioning electromagnetic wave signal emitted by the GNSS satellite to the water surface into phase, pseudorange, Doppler frequency shift observations and broadcast ephemeris and sends it to the processor of the wave measuring instrument.
  • the processor runs the built-in embedded GNSS data processing and wave element inversion software, acquires and processes the GNSS observations and broadcast ephemeris collected by the GNSS signal acquisition module in real time, obtains wave element information, and converts the wave
  • the element information is stored in the memory, or the wave element information is sent to the communication module to complete the communication between the wave measuring device and the shore or land base station or satellite.
  • the wave buoy wave measurement device equipped with GNSS is equipped with more than one GNSS antenna.
  • Two or more GNSS antennas are mounted when measuring the azimuth of the wave measuring device.
  • Three or more GNSS antennas are mounted when measuring the attitude of the wave measuring device.
  • the wave measuring device of the present invention can be a sea surface carrier such as a buoy, a ship, and an unmanned ship.
  • the wave measuring instrument of the present invention includes a sea surface carrier such as a wave buoy, a GNSS signal acquisition module (GNSS receiver or board, an antenna), a processor, a memory and a communication module.
  • GNSS signal acquisition module GNSS receiver or board, an antenna
  • the function of the GNSS signal acquisition module is to capture the positioning electromagnetic wave signal emitted by the GNSS satellite to the water surface, convert it into phase, pseudorange, Doppler frequency shift observations and broadcast ephemeris, and send it to the processor of the wave measuring instrument.
  • the module is connected to the processor through serial ports; the processor runs the embedded data processing software, acquires and processes the GNSS observations and broadcast ephemeris collected by the GNSS signal acquisition module in real time, obtains wave element information, and converts the wave element information Store it in the memory, or send the wave element information to the communication module; the function of the communication module is to complete the communication between the wave measuring instrument and the shore or land base station, or complete the communication between the wave measuring instrument and the satellite (including Beidou satellite short message communication), The communication module is connected with the processor or the memory through a serial port or the like.
  • the wave measuring instrument of the invention is not only suitable for the situation that there is a signal coverage of a communication base station in the offshore sea, but also is suitable for the situation that there is no signal coverage of a communication base station in the far sea and satellite communication is used, and real-time, high-precision and low-cost automatic measurement and communication of wave elements are realized. return.
  • the wave measuring device of the present invention saves the service cost and communication cost of the GNSS precision differential correction service; the present invention does not need to store a large amount of GNSS original observation data, does not need to transmit a large amount of GNSS original observation data, and only needs to store the obtained wave element information. Locally on the buoy, read the data after waiting for the buoy to be recovered; or return the wave element information through the communication module, which greatly reduces the amount of communication data.
  • the advantage of this application is that it only needs to carry a low-cost single-frequency GNSS receiver (or board), and can obtain real-time buoy positions with at least meter-level accuracy based on GNSS observations and broadcast ephemeris, and broadcast directly based on GNSS satellites for free,
  • the free-to-use broadcast ephemeris can directly obtain real-time and high-precision centimeter-level wave measurement results without additional precision differential correction services and communications, and store the wave height, corresponding period, wave direction and other element information locally on the buoy or via communication.
  • the present invention is not only applicable to broadcast ephemeris directly based on GNSS satellites for free broadcasting and free use, but also applicable to GNSS satellite-based enhancement services, satellite station differential services, precision positioning services and the like that may be free in the future.
  • FIG. 1 is a schematic flowchart of a GNSS-based real-time high-precision wave measurement method of the present invention
  • Fig. 2 is a kind of structural representation of the wave measuring device of the real-time high-precision wave measuring method based on GNSS of the present invention
  • Fig. 3 is respectively the wave measurement method based on the difference between epochs of broadcast ephemeris products, the wave measurement method based on the difference between epochs of IGS precision ephemeris products, and the precise single point positioning based on IGS precision ephemeris products of the present invention.
  • the effective wave height obtained by the wave measurement method in which the GNSS sampling frequency is 10Hz and the sliding time window is 20 minutes;
  • Figure 4 shows the wave measurement method based on the difference between epochs of broadcast ephemeris products, the wave measurement method based on the difference between epochs of IGS precision ephemeris products, and the wave measurement method of precise single point positioning based on IGS precision ephemeris products.
  • the obtained wave average period in which the GNSS sampling frequency is 10Hz and the sliding time window is 20 minutes.
  • the embodiment of the present invention proposes a real-time high-precision wave measurement method based on GNSS.
  • the wave measurement device using this method is suitable for all water environment scenarios such as lakes, rivers, offshore, and far seas, and is especially suitable for far seas lacking precision differential correction services. scene, with high precision and real-time performance at the same time.
  • the wave measuring device of the present invention includes a buoy, a GNSS signal acquisition module (GNSS receiver or board, an antenna), a processor, a memory and a communication module.
  • GNSS signal acquisition module GNSS receiver or board, an antenna
  • the function of the GNSS signal acquisition module is to capture the positioning electromagnetic wave signal emitted by the GNSS satellite to the water surface, convert it into phase, pseudorange, Doppler frequency shift observations and broadcast ephemeris, and send it to the processor of the wave measurement device.
  • the module is connected to the processor through serial ports; the processor runs the embedded data processing software, acquires and processes the GNSS observations and broadcast ephemeris collected by the GNSS signal acquisition module in real time, obtains wave element information, and converts the wave element information Store it in the memory, or send the wave element information to the communication module; the function of the communication module is to complete the communication between the wave measurement device and the shore or land base station, or to complete the communication between the wave measurement device and the satellite (including Beidou satellite short message communication), The communication module is connected with the processor or the memory through a serial port or the like.
  • the wave measuring device of the present invention is suitable not only for the signal coverage of the communication base station in the offshore sea, but also for the case of using satellite communication without the signal coverage of the communication base station in the far sea, and realizes the real-time, high-precision and low-cost automatic measurement and communication of wave elements. return.
  • the wave measurement device of the present invention saves the service cost and communication cost of the GNSS precision differential correction service; the present invention does not need to store a large amount of GNSS original observation data, does not need to transmit a large amount of GNSS original observation data, and only needs to store the obtained wave element information.
  • the local buoy read the data after waiting for the buoy recovery; or return the wave element information through the communication module, which greatly reduces the amount of communication data.
  • the method for measuring waves by the wave measuring device specifically includes the following steps:
  • a wave measurement device is formed by a wave buoy sea surface carrier equipped with GNSS, which collects high-frequency GNSS positioning electromagnetic wave signals in real time, converts them into phase, pseudorange, Doppler frequency shift observations and broadcast ephemeris and sends them to the wave measurement device the processor;
  • the wave measurement method based on the difference between epochs of broadcast ephemeris products proposed by the present invention does not require precise differential correction service products, and its wave height measurement accuracy reaches the wave height measurement accuracy based on precise ephemeris products.
  • the wave measurement method based on the difference between epochs of broadcast ephemeris products proposed by the present invention does not require precise differential correction service products, and its average wave period measurement accuracy reaches the wave average period measurement based on precision ephemeris products. precision.
  • Figures 3 and 4 compare the wave measurement method based on the inter-epoch difference of the broadcast ephemeris product, the wave measurement method based on the inter-epoch difference of the IGS precision ephemeris product, and the wave measurement method of the precise single point positioning based on the IGS precision ephemeris product According to the measurement method, it can be seen that the difference between the three results is very small, which verifies that the present invention can obtain high-precision wave element information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明提出了一种基于GNSS的实时高精度波浪测量新方法,通过波浪浮标等海面载体搭载的GNSS接收机(或板卡)和天线,采集GNSS相位、伪距、多普勒频移观测值和广播星历,利用相位观测值的历元差分获取浮标等载体的三维速度,进而求得波浪的方向谱、频谱,以及波高、周期、波向等要素信息;由速度积分一定时长并去除线性趋势项得到位移随时间的变化,也可求得波浪要素信息;无需额外的精密差分改正数,节省了精密差分改正的服务成本与通讯成本。本发明适用于近海、远海场景,实时得到高精度的波浪要素信息,存储在浮标本地或者定期通讯传回,扩大了基于GNSS的海洋波浪测量的工作范围,具有高实际应用价值。

Description

一种基于GNSS的实时高精度波浪测量方法及装置 技术领域
本专利属于海洋环境监测领域,适用于湖泊、河流、海洋等所有水体环境场景,特别适用于远海的一种基于GNSS的实时高精度波浪测量方法。
背景技术
波浪作为海洋中的重要运动现象,监测波浪的变化并研究其规律,对人类在海上活动及减灾防灾活动具有重要意义。近几十年来,随着人类对海洋的开发活动不断增加,大大促进了海洋观测方法的研究和仪器设备的研制。目前,已经出现了各式各样的测波仪器:加速度式测波仪、压力式测波仪、声学测波仪及GNSS测波浮标等。其中GNSS测波浮标利用了全球导航卫星系统(GNSS)获取浮标载体的三维空间位置和时间信息,而且GNSS测波浮标具有良好的随波运动特性,可以通过位置信息来有效反演波浪要素。GNSS测波浮标结合现有的GNSS技术,可以有效观测波浪信息,而且具有系统简单、成本低、体积小等优点。由于GNSS技术的限制,比如利用RTK(Real-Time Kinematic)实时载波相位差分技术和PPK(Post-Processing Kinematic)动态后处理差分技术均可得到厘米级定位结果,但这些方法都依赖于基站,有效作用距离限制在离岸几十公里以内,无法应用于远海场景;PPP(Precise Point Positioning)精密单点定位技术不受距离限制,不需要从一个或多个近距离基站获取数据。卫星轨道和钟差产品的精度是影响PPP定位精度的最重要因素之一。高精度PPP依赖于高精度的GNSS卫星轨道、钟差改正产品,实时高精度PPP方法需要额外的实时精密差分改正产品,极大增加了精密差分改正所需要的服务成本和通讯成本,而且这类实时产品一般存在时间延迟和精度下降,降低了实时场景的应用精度。
综上所述,传统的基于GNSS的波浪测量主要有如下缺点:
(1)若要实现实时厘米级的测量精度,要将波浪浮标GNSS观测值传回数据处理中心进行实时解算,则需要大量的通讯带宽,从而产生了通讯成本,尤其是远海卫星通讯成本,并且由于通讯降低了实时性;若将波浪浮标GNSS观测值在浮标本地进行实时解算,则需要额外的差分改正服务,其中,在近海需要与陆地通讯获得差分改正服务,在远海需要从通讯卫星获得差分改正服务,因此增加了购买差分改正服务和通讯的成本。
(2)若要实现事后厘米级的测量精度,要将波浪浮标GNSS观测数据传回数据处理中心进行事后解算,则需要大量的通讯带宽,从而产生了通讯成本,尤其是远海卫星通讯成本;若回收波浪浮标再读取GNSS数据进行解算,一方面增加了回收操作的成本,自动化差,另一方面也增加了波浪浮标存储大量GNSS数据的成本。
由以上分析不难了解,目前传统的GNSS测波方法在实时高精度波浪测量方面存在极大劣势和限制。随着GNSS技术的不断发展,突破实时高精度波浪测量方法,是提高海洋波浪业务化实时测量时效和波浪反演精度的核心,可直接为全球海洋波浪要素信息反演提供技术支持。
发明内容
为克服上述技术中的缺陷,本发明提出了一种只需要搭载一个GNSS接收机(或板卡),适用于近海、远海场景,直接基于GNSS卫星免费播发、免费使用的广播星历,无需额外的精密差分改正服务及其通讯,可获得实时高精度厘米级的波浪测量结果,实时的至少米级精度的浮标位置;可将波高、周期、波向等波浪要素信息存储在浮标本地或者通讯传回,能够节省精密差分改正服务、通讯及存储成本的基于GNSS的实时高精度波浪测量方法。
本发明目的是由以下技术方案实现的:
1.一种基于GNSS的实时高精度波浪测量方法,其步骤如下:
(1)采用搭载GNSS的波浪浮标海面载体构成波浪测量装置,实时采集高频GNSS定位电磁波信号,将其转换成相位、伪距、多普勒频移观测值和广播星历发送至波浪测量装置的处理器;
(2)利用基于广播星历和建立的相位历元差分观测方程,顾及误差项的处理,实时求解浮标等海面载体运动水平和垂直的三维运动速度;
(3)返回重复(1)~(2)的步骤,10-20分钟,达到一定数据量,直至波浪测量的初始化完成;
(4)实时求解每个历元的海面载体水平和垂直三维运动速度,采用滑动时间窗口的方法,重复(1)~(4)的步骤,对垂向运动速度进行10-30分钟时长的积分,并去除由系统误差与潮汐导致的趋势项或采用直接去除线性趋势项,得到垂向位移随时间变化信息,求得波浪波高、周期要素信息;或者通过求得的波浪测量装置的垂向、东西、南北方向的速度,由互相关函数计算交叉谱,然后通过方向谱分析方法,求得方向谱、频谱,进而求得波高、周期、波向;
(5)将实时计算的这些滑动时间窗口时段的波浪要素信息,存储在浮标本地,或者实时定期通讯传回。本发明的GNSS既包括北斗、GPS、GLONASS、Galileo等全球导航卫星系统,也包括QZSS,NAVIC等区域导航卫星系统。通过浮标等海面载体搭载的GNSS信号采集模块,采集GNSS相位、伪距、多普勒频移观测值和GNSS广播星历,包括利用GNSS广播星历和相位观测值的历元差分方程测定浮标等载体的垂向、东西方向及南北方向的速度,由垂向速度积分并去除趋势项得到垂向位移随时间的变化,进而根据垂向位移实时反演高精度的波浪波高、周期等要素信息;或者由GNSS测定的垂向、东西方向及南北方向的速度求 得波浪的方向谱、频谱,进而求得波高、周期、波向等要素信息。本发明提出了在波浪测量中,直接基于GNSS广播星历进行相位观测值的历元差分确定三维速度,无需额外的精密差分改正数,从而节省了基于GNSS的波浪测量装置的精密差分改正服务成本与通讯成本;本发明适用于近海、远海场景,实时直接得到波浪要素信息,将波浪要素信息存储在浮标本地或者通讯传回,无需存储GNSS原始观测数据,无需通讯传输GNSS原始观测数据,无需精密差分改正及其实时通讯,克服了现有GNSS波浪测量方法需要精密差分改正和实时通讯的缺点,扩大了低成本的基于GNSS的海洋波浪测量的工作范围;本发明的浮标等海面载体可以搭载低成本单频GNSS接收机,得到实时高精度波浪测量结果,具有较高的实际应用价值。
也可以使用未来可能免费的GNSS星基增强服务、星站差分服务、精密定位服务等,获得实时高精度厘米级的波浪测量结果,实时的至少米级精度的浮标位置。
步骤(2)中基于广播星历和建立的相位历元差分观测方程求解三维速度,利用广播星历的历元差分载波相位观测方程如式(1)所示,求解三维速度的方程如式(2)所示:
Figure PCTCN2020119190-appb-000001
Figure PCTCN2020119190-appb-000002
其中,方程(1)中,λ为载波频率(L1或L2),
Figure PCTCN2020119190-appb-000003
为从卫星S到接收机r相邻历元(i,i+1)之间的载波相位观测值之差,i为历元号;
Figure PCTCN2020119190-appb-000004
为第i+1历元从卫星S到接收机r的单位矢量,△ξ r,i为相邻历元(i,i+1)之间的接收机位置改正数之差;c为光速,△δt r,i、δt i S分别为相邻历元(i,i+1)之间的接收机时钟相对偏差、广播星历计算的卫星时钟偏差;
Figure PCTCN2020119190-appb-000005
为相邻历元(i,i+1)之间的综合误差改正,包括卫星轨道、 电离层、对流层、相位变化误差、相对论效应、地球自转效应等,其中卫星轨道改正由广播星历计算,电离层改正由双频无电离层组合消除一阶项或者由广播星历发播的电离层模型计算,对流层改正由气象数据(实测值或者模型值)及投影函数改正,相位变化误差、相对论效应、地球自转效应等由相应模型计算;
Figure PCTCN2020119190-appb-000006
为其他残余误差项与噪声;方程(1)中的估计参数为△ξ r,i和△δt r,i;方程(2)中,V i为三维速度,△ξ r,i为相邻历元(i,i+1)之间的接收机位置改正数之差,△t i为相邻历元之间的时间间隔。本发明可以在GNSS相位观测值周跳频繁时,采用多普勒频移观测值计算波浪测量装置的三维速度,补充三维速度的时间序列。
步骤4所述的波浪波高、周期等要素信息可以基于去除趋势项的垂向位移,可得到波浪的波高及其对应周期,具体包括最大波高及其对应周期、十分之一大波波高及其对应周期、有效波高及其对应周期、平均波高及其对应周期等;步骤4所述的波浪波高、周期、波向等要素信息也可以基于垂向、东西及南北方向的速度,求出波浪的方向谱、频谱,进而求得波高、周期、波向等波浪要素信息。例如,可以采用谱分析方法反演波浪要素信息,公式为:
Figure PCTCN2020119190-appb-000007
Figure PCTCN2020119190-appb-000008
Figure PCTCN2020119190-appb-000009
其中,f为频率,S(f)为功率谱密度,m n为n阶谱矩,H m0为由频谱得到的有效波高,T Z为平均周期。
利用GNSS广播星历和相位观测值历元差分方程获取运动载体的三维速度,由垂向速度积分并去除趋势项得到垂向位移随时间的变化,进而根据垂向位移实时反演高精度的波浪波高、周期等要素信息;由GNSS测定的垂向、东西方向及南北方向的速度求得波浪的方向谱、频谱等要素信息,进而实时反演高精度的波浪波高、周期、波向等要素信息。具体分为以下三部分进行,方法描述如 下:
(1)建立历元差分观测方程
本发明提出了在波浪测量中,直接利用GNSS广播星历和相位观测值历元差分来确定三维速度。线性化的GNSS载波相位观测方程,如式(6)所示,
Figure PCTCN2020119190-appb-000010
其中,λ为载波频率(L1或L2),
Figure PCTCN2020119190-appb-000011
为第 i个历元的载波相位观测值,i为历元号,
Figure PCTCN2020119190-appb-000012
为从卫星S到接收机r的单位矢量,δξ r,i为接收机的位置改正数,c为光速,δt r,i
Figure PCTCN2020119190-appb-000013
分别为接收机时钟偏差和广播星历计算的卫星时钟误差,N是整周模糊度,
Figure PCTCN2020119190-appb-000014
为综合误差改正,包括卫星轨道、电离层、对流层、相位变化误差、相对论效应、地球自转效应等,ε i为其他残余误差项与噪声。
探测周跳,载波相位观测值质量良好无周跳时,本发明利用(1)式对两个连续的历元(i,i+1)求差,可以消除共同模糊度N,如式(7)所示,
Figure PCTCN2020119190-appb-000015
其中,△为单差算子,考虑到高频采样时,历元i+1与历元i时刻的接收机位置初值近似相等,
Figure PCTCN2020119190-appb-000016
Figure PCTCN2020119190-appb-000017
近似相等。
由式(7)可得到利用广播星历建立的历元差分载波相位观测方程(1)。
Figure PCTCN2020119190-appb-000018
其中,△ξ r,i=δξ r,i+1-δξ r,i,为相邻历元(i,i+1)之间的接收机位置改正数之差。方程(1)中的估计参数为△ξ r,i和△δt r,i
(2)速度及位移信息获取
由式(1)可以得到如式(2)的平均速度。
Figure PCTCN2020119190-appb-000019
利用式(8)更新接收机第i+1个历元的位置初值。
Figure PCTCN2020119190-appb-000020
其中,
Figure PCTCN2020119190-appb-000021
为接收机第i个历元的位置初值。在起始历元,接收机的位置初值
Figure PCTCN2020119190-appb-000022
由基于广播星历的单点定位方法获取,例如采用标准单点定位方法。在后续历元,根据公式(1)计算相邻历元(i,i+1)之间的△ξ r,i,然后根据式(8)进行位置更新,从而获得接收机后续历元的位置初值。本发明也可以在每个时刻采用基于广播星历的单点定位方法得到接收机位置。
可以采用时域积分方法将速度积分为位移。由于速度受海况、地理位置、信号误差和其他噪声的影响,速度数据含有误差,积分方法将积累误差,速度反演的位移数据存在趋势项,同时潮汐的水位变化也导致垂向位移的趋势项。本发明采用滑动窗口平均的方法,例如每10~20分钟的时段,将所得到的位移去掉线性趋势项,进而得到波浪的位移信息。
(3)实时高精度波浪测量
波浪核心要素信息包括波高、周期及波向等,波高和波浪周期与波浪垂直位移有关,本发明可以采用跨零法、谱分析方法都可从去除趋势项后的垂直位移中提取波高及波浪周期参数;本发明可以由垂向、东西方向及南北方向的速度可以求得波浪的方向谱、频谱,进而求得波浪波高、周期及波向等要素信息。本发明可以基于实时获取的垂直位移获取波高与周期,例如采用谱分析方法,由位移时间序列得到波浪参数,计算公式见(3)~(5)。
Figure PCTCN2020119190-appb-000023
Figure PCTCN2020119190-appb-000024
Figure PCTCN2020119190-appb-000025
其中,f为频率,S(f)为功率谱密度,m n为n阶谱矩,H m0为由频谱得到的有效波高,T Z为平均周期。
步骤4中由于一般波浪周期为0.1-30秒,采用高通滤波器消除低于0.03Hz频率的低频噪声数据。
GNSS的采样频率是5Hz以上。
采用上述的任何一种基于GNSS的实时高精度波浪测量方法的测量装置,包括搭载GNSS的波浪浮标等海面载体、GNSS接收机或板卡、天线GNSS信号的采集模块、处理器、存储器和通讯模块,GNSS信号采集模块将GNSS卫星向水面发射的定位电磁波信号,转换成相位、伪距、多普勒频移观测值和广播星历并发送至波浪测量仪的处理器,该模块通过串口等方式与处理器相连接;处理器运行内置的嵌入式GNSS数据处理与波浪要素反演软件,实时获取并处理GNSS信号采集模块采集到的GNSS观测值和广播星历,得到波浪要素信息,并将波浪要素信息存储至存储器,或者将波浪要素信息发送给通讯模块,完成波浪测量装置与岸边或陆地基站或卫星通讯。
搭载GNSS的波浪浮标波浪测量装置,搭载一个以上GNSS天线。
测量波浪测量装置的方位角时搭载两个以上GNSS天线。
测量波浪测量装置的姿态时搭载三个以上GNSS天线。
本发明的波浪测量装置可以是浮标、船只、无人船等海面载体。
本发明的波浪测量仪包括波浪浮标等海面载体、GNSS信号采集模块(GNSS接收机或板卡、天线)、处理器、存储器和通讯模块。其中,GNSS信号采集模块的作用是捕获GNSS卫星向水面发射的定位电磁波信号,将其转换成相位、伪距、多普勒频移观测值和广播星历并发送至波浪测量仪的处理器,该模块通过串口等方式与处理器相连接;处理器运行嵌入式数据处理软件,实时获取并处理GNSS信号采集模块采集到的GNSS观测值和广播星历,得到波浪要素信息,并将波浪 要素信息存储至存储器,或者将波浪要素信息发送给通讯模块;通信模块的功能是完成波浪测量仪与岸边或陆地基站的通信,或者完成波浪测量仪与卫星通讯(包括北斗卫星短报文通讯),通信模块通过串口等方式与处理器或存储器连接。本发明的波浪测量仪既适用于近海有通讯基站信号覆盖的情况,也适用于远海无通讯基站信号覆盖而使用卫星通讯的情况,实现了波浪要素实时、高精度、低成本的自动测量和通讯回传。本发明的波浪测量装置节约了GNSS精密差分改正服务的服务成本及其通讯成本;本发明无需存储大量GNSS原始观测数据,无需传输大量GNSS原始观测数据,只需要将解算得到的波浪要素信息存储在浮标本地,等待浮标回收后读取数据;或者通过通讯模块回传波浪要素信息,大大降低了通讯的数据量。
本申请的优点是:只需要搭载一个低成本单频GNSS接收机(或板卡),可以基于GNSS观测值和广播星历得到实时的至少米级精度的浮标位置,直接基于GNSS卫星免费播发、免费使用的广播星历,无需额外的精密差分改正服务及其通讯,即可直接获得实时高精度的厘米级波浪测量结果,将波高、对应周期、波向等要素信息存储在浮标本地或者通讯传回;无需存储大量的GNSS观测数据,节省了存储成本、服务及通讯成本,克服了传统的基于GNSS的波浪测量方法的高成本缺点,实现了低成本的实时高精度的波浪测量。因适用于近海、远海场景,所以扩大了海洋监测范围。
本发明不仅适用于直接基于GNSS卫星免费播发、免费使用的广播星历,也适用于未来可能免费的GNSS星基增强服务、星站差分服务、精密定位服务等。
附图说明
图1为本发明的一种基于GNSS的实时高精度波浪测量方法的流程示意图;
图2为本发明的一种基于GNSS的实时高精度波浪测量方法的波浪测量装置 的结构示意图;
图3分别为本发明的基于广播星历产品的历元间差分的波浪测量方法、基于IGS精密星历产品的历元间差分的波浪测量方法、基于IGS精密星历产品的精密单点定位的波浪测量方法得到的波浪有效波高,其中GNSS采样频率10Hz、滑动时间窗口20分钟;
图4分别为基于广播星历产品的历元间差分的波浪测量方法、基于IGS精密星历产品的历元间差分的波浪测量方法、基于IGS精密星历产品的精密单点定位的波浪测量方法得到的波浪平均周期,其中GNSS采样频率10Hz、滑动时间窗口20分钟。
具体实施方式
本发明实施例提出了一种基于GNSS的实时高精度波浪测量方法,利用该方法的波浪测量装置适用于湖泊、河流、近海、远海等所有水体环境场景,特别适用于缺少精密差分改正服务的远海场景,同时具有高精度和实时性。
本发明的波浪测量装置包括浮标、GNSS信号采集模块(GNSS接收机或板卡、天线)、处理器、存储器和通讯模块。其中,GNSS信号采集模块的作用是捕获GNSS卫星向水面发射的定位电磁波信号,将其转换成相位、伪距、多普勒频移观测值和广播星历并发送至波浪测量装置的处理器,该模块通过串口等方式与处理器相连接;处理器运行嵌入式数据处理软件,实时获取并处理GNSS信号采集模块采集到的GNSS观测值和广播星历,得到波浪要素信息,并将波浪要素信息存储至存储器,或者将波浪要素信息发送给通讯模块;通信模块的功能是完成波浪测量装置与岸边或陆地基站的通信,或者完成波浪测量装置与卫星通讯(包括北斗卫星短报文通讯),通信模块通过串口等方式与处理器或存储器连接。本发明的波浪测量装置既适用于近海有通讯基站信号覆盖的情况,也适用 于远海无通讯基站信号覆盖而使用卫星通讯的情况,实现了波浪要素实时、高精度、低成本的自动测量和通讯回传。本发明的波浪测量装置节约了GNSS精密差分改正服务的服务成本及其通讯成本;本发明无需存储大量GNSS原始观测数据,无需传输大量GNSS原始观测数据,只需要将解算得到的波浪要素信息存储在浮标本地,等待浮标回收后读取数据;或者通过通讯模块回传波浪要素信息,大大降低了通讯的数据量。
该波浪测量装置测量波浪的方法具体包括如下步骤:
(1)采用搭载GNSS的波浪浮标海面载体构成波浪测量装置,实时采集高频GNSS定位电磁波信号,将其转换成相位、伪距、多普勒频移观测值和广播星历发送至波浪测量装置的处理器;
(2)利用基于广播星历和建立的相位历元差分观测方程,顾及误差项的处理,实时求解浮标等海面载体运动水平和垂直的三维运动速度;
(3)返回重复(1)~(2)的步骤,直至波浪测量的初始化完成,达到一定数据量,观测20分钟;
(4)实时求解每个历元的海面载体水平和垂直三维运动速度,采用滑动时间窗口的方法,对垂直运动速度进行20分钟的积分,并去除由系统误差与潮汐导致的趋势项,得到垂向位移随时间变化信息,求得波浪波高、周期等要素信息;由于一般波浪周期为0.1-30秒,本发明实施采用高通滤波器消除低于0.03Hz频率低频噪声数据;按照本发明的方法并采用公式1~8分别计算得出波高、周期波浪要素信息。(如图3和图4所示)
(5)将实时计算的这些时滑动时间窗口段的波浪要素信息,存储在浮标本地,或者实时定期通讯传回。
如图3可以看出,本发明提出的基于广播星历产品的历元间差分的波浪测 量方法,无需精密差分改正服务产品,其波高测量精度达到基于精密星历产品的波高测量精度。
如图4可以看出,本发明提出的基于广播星历产品的历元间差分的波浪测量方法,无需精密差分改正服务产品,其波浪平均周期测量精度达到基于精密星历产品的波浪平均周期测量精度。
图3和4对比了基于广播星历产品的历元间差分的波浪测量方法、基于IGS精密星历产品的历元间差分的波浪测量方法、基于IGS精密星历产品的精密单点定位的波浪测量方法,可以看出三者结果相差很小,验证了本发明可获取高精度波浪要素信息。

Claims (10)

  1. 一种基于GNSS的实时高精度波浪测量方法,其步骤如下:
    (1)采用搭载GNSS的波浪浮标海面载体构成波浪测量装置,实时采集高频GNSS定位电磁波信号,将其转换成相位、伪距、多普勒频移观测值和广播星历发送至波浪测量装置的处理器;
    (2)利用基于广播星历和建立的相位历元差分观测方程,顾及误差项的处理,实时求解浮标等海面载体运动水平和垂直的三维运动速度;
    (3)返回重复(1)~(2)的步骤,10-20分钟,达到一定数据量,直至波浪测量的初始化完成;
    (4)实时求解每个历元的海面载体水平和垂直三维运动速度,采用滑动时间窗口的方法,重复(1)~(4)的步骤,对垂向运动速度进行10-30分钟时长的积分,并去除由系统误差与潮汐导致的趋势项或采用直接去除线性趋势项,得到垂向位移随时间变化信息,求得波浪波高、周期要素信息;或者通过求得的波浪测量装置的垂向、东西、南北方向的速度,由互相关函数计算交叉谱,然后通过方向谱分析方法,求得方向谱、频谱,进而求得波高、周期、波向;
    (5)将实时计算的这些滑动时间窗口时段的波浪要素信息,存储在浮标本地,或者实时定期通讯传回。
  2. 根据权利要求1所述的一种基于GNSS的实时高精度波浪测量方法,其特征在于步骤(2)中基于广播星历和建立的相位历元差分观测方程求解三维速度,利用广播星历的历元差分载波相位观测方程如式(1)所示,求解三维速度的方程如式(2)所示:
    Figure PCTCN2020119190-appb-100001
    Figure PCTCN2020119190-appb-100002
    其中,方程(1)中,λ为载波频率(L1或L2),
    Figure PCTCN2020119190-appb-100003
    为从卫星S到接收机r相邻历元(i,i+1)之间的载波相位观测值之差,i为历元号;
    Figure PCTCN2020119190-appb-100004
    为第i+1历元从卫星S到接收机r的单位矢量,△ξ r,i为相邻历元(i,i+1)之间的接收机位置改正数之差;c为光速,△δt r,i、δt i S分别为相邻历元(i,i+1)之间的接收机时钟相对偏差、广播星历计算的卫星时钟偏差;
    Figure PCTCN2020119190-appb-100005
    为相邻历元(i,i+1)之间的综合误差改正,包括卫星轨道、电离层、对流层、相位变化误差、相对论效应、地球自转效应等,其中卫星轨道改正由广播星历计算,电离层改正由双频无电离层组合消除一阶项或者由广播星历发播的电离层模型计算,对流层改正由气象数据(实测值或者模型值)及投影函数改正,相位变化误差、相对论效应、地球自转效应等由相应模型计算;
    Figure PCTCN2020119190-appb-100006
    为其他残余误差项与噪声;方程(1)中的估计参数为△ξ r,i和△δt r,i;方程(2)中,V i为三维速度,△ξ r,i为相邻历元(i,i+1)之间的接收机位置改正数之差,△t i为相邻历元之间的时间间隔;GNSS相位观测值周跳频繁时,采用多普勒频移观测值计算波浪测量装置的三维速度,补充三维速度的时间序列。
  3. 根据权利要求1所述的一种基于GNSS的实时高精度波浪测量方法,其特征在于步骤4所述的波浪波高、周期等要素信息可以基于去除趋势项的垂向位移,可得到波浪的波高及其对应周期,具体包括最大波高及其对应周期、十分之一大波波高及其对应周期、有效波高及其对应周期、平均波高及其对应周期等;步骤4所述的波浪波高、周期、波向等要素信息也可以基于垂向、东西及南北方向的速度,求出波浪的方向谱、频谱,进而求得波高、周期、波向等波浪要素信息;可以采用谱分析方法反演波浪要素信息,公式为:
    Figure PCTCN2020119190-appb-100007
    Figure PCTCN2020119190-appb-100008
    Figure PCTCN2020119190-appb-100009
    其中,f为频率,S(f)为功率谱密度,m n为n阶谱矩,H m0为由频谱得到的有效波高,T Z为平均周期;
    利用GNSS广播星历和相位观测值历元差分方程获取运动载体的三维速度,由垂向速度积分并去除趋势项得到垂向位移随时间的变化,进而根据垂向位移实时反演高精度的波浪波高、周期等要素信息;由GNSS测定的垂向、东西方向及南北方向的速度求得波浪的方向谱、频谱等要素信息,进而实时反演高精度的波浪波高、周期、波向等要素信息;具体分为以下三部分进行,方法描述如下:
    (1)建立历元差分观测方程
    本发明提出了在波浪测量中,直接利用GNSS广播星历和相位观测值历元差分来确定三维速度,线性化的GNSS载波相位观测方程,如式(6)所示:
    Figure PCTCN2020119190-appb-100010
    其中,λ为载波频率(L1或L2),
    Figure PCTCN2020119190-appb-100011
    为第i个历元的载波相位观测值,i为历元号,
    Figure PCTCN2020119190-appb-100012
    为从卫星S到接收机r的单位矢量,δξ r,i为接收机的位置改正数,c为光速,δt r,i、δt i S分别为接收机时钟偏差和广播星历计算的卫星时钟误差,N是整周模糊度,
    Figure PCTCN2020119190-appb-100013
    为综合误差改正,包括卫星轨道、电离层、对流层、相位变化误差、相对论效应、地球自转效应等,ε i为其他残余误差项与噪声;
    探测周跳,载波相位观测值质量良好无周跳时,本发明利用(1)式对两个连续的历元(i,i+1)求差,可以消除共同模糊度N,如式(7)所示:
    Figure PCTCN2020119190-appb-100014
    其中,△为单差算子,考虑到高频采样时,历元i+1与历元i时刻的接收机位置初值近似相等,
    Figure PCTCN2020119190-appb-100015
    Figure PCTCN2020119190-appb-100016
    近似相等;
    由式(7)可得到利用广播星历建立的历元差分载波相位观测方程(1);
    Figure PCTCN2020119190-appb-100017
    其中,△ξ r,i=δξ r,i+1-δξ r,i,为相邻历元(i,i+1)之间的接收机位置改正数之差,方程(1)中的估计参数为△ξ r,i和△δt r,i
    (2)速度及位移信息获取
    由式(1)可以得到如式(2)的平均速度:
    Figure PCTCN2020119190-appb-100018
    利用式(8)更新接收机第i+1个历元的位置初值;
    Figure PCTCN2020119190-appb-100019
    其中,
    Figure PCTCN2020119190-appb-100020
    为接收机第i个历元的位置初值,在起始历元,接收机的位置初值
    Figure PCTCN2020119190-appb-100021
    由基于广播星历的单点定位方法获取,在后续历元,根据公式(1)计算相邻历元(i,i+1)之间的△ξ r,i,然后根据式(8)进行位置更新,从而获得接收机后续历元的位置初值,或者在每个时刻采用基于广播星历的单点定位方法得到接收机位置;
    采用时域积分方法将速度积分为位移,由于速度受海况、地理位置、信号误差和其他噪声的影响,速度数据含有误差,积分方法将积累误差,速度反演的位移数据存在趋势项,同时潮汐的水位变化也导致垂向位移的趋势项,本发明采用滑动窗口平均的方法,每10~20分钟的时段,将所得到的位移去掉线性趋势项,进而得到波浪的位移信息;
    (3)实时高精度波浪测量
    波浪核心要素信息包括波高、周期及波向等,波高和波浪周期与波浪垂直位移有关,本发明采用跨零法、谱分析方法去除趋势项后的垂直位移中提取波高及波浪周期参数;由垂向、东西方向及南北方向的速度求得波浪的方向谱、频谱,进而求得波浪波高、周期及波向等要素信息。本发明基于实时获取的垂直位移获取波高与周期,采用谱分析方法,由位移时间序列得到波浪参数,计算公式见(3)~(5):
    Figure PCTCN2020119190-appb-100022
    Figure PCTCN2020119190-appb-100023
    Figure PCTCN2020119190-appb-100024
    其中,f为频率,S(f)为功率谱密度,m n为n阶谱矩,H m0为由频谱得到的有效波高,T Z为平均周期;
  4. 根据权利要求1所述的一种基于GNSS的实时高精度波浪测量方法,其特征在于步骤4中由于一般波浪周期为0.1-30秒,采用高通滤波器消除低于0.03Hz频率的低频噪声数据。
  5. 根据权利要求1所述的一种基于GNSS的实时高精度波浪测量方法,其特征在于GNSS的采样频率是5Hz以上。
  6. 采用权利要求1-5所述的任何一种基于GNSS的实时高精度波浪测量方法的测量装置,包括搭载GNSS的波浪浮标海面载体、GNSS接收机或板卡、天线GNSS信号的采集模块、处理器、存储器和通讯模块,GNSS信号采集模块将GNSS卫星向水面发射的定位电磁波信号,转换成相位、伪距、多普勒频移观测值和广播星历并发送至波浪测量装置的处理器,该模块通过串口等方式与处理器相连接;处理器运行内置的嵌入式GNSS数据处理与波浪要素反演软件,实时获取并处理GNSS信号采集模块采集到的GNSS观测值和广播星历,得到波浪要素信 息,并将波浪要素信息存储至存储器,或者将波浪要素信息发送给通讯模块,完成波浪测量装置与岸边或陆地基站或卫星通讯。
  7. 根据权利要求6所述的一种基于GNSS的实时高精度波浪测量方法的测量装置,其特征在于搭载GNSS的波浪浮标等海面载体,搭载一个以上GNSS天线。
  8. 根据权利要求7所述的一种基于GNSS的实时高精度波浪测量方法的测量装置,其特征在于测量波浪测量装置的方位角时搭载两个以上GNSS天线。
  9. 根据权利要求7所述的一种基于GNSS的实时高精度波浪测量方法的测量装置,其特征在于测量波浪测量装置的姿态时搭载三个以上GNSS天线。
  10. 根据权利要求6所述的一种基于GNSS的实时高精度波浪测量方法的测量装置,其特征在于本发明的波浪测量装置可以是浮标、船只、无人船海面载体。
PCT/CN2020/119190 2020-07-10 2020-09-30 一种基于gnss的实时高精度波浪测量方法及装置 WO2022007211A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/015,483 US20230288578A1 (en) 2020-07-10 2020-09-30 Gnss-based real-time high-precision wave measurement method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010666656.2 2020-07-10
CN202010666656.2A CN111896984B (zh) 2020-07-10 2020-07-10 一种基于gnss的实时高精度波浪测量方法及装置

Publications (1)

Publication Number Publication Date
WO2022007211A1 true WO2022007211A1 (zh) 2022-01-13

Family

ID=73192362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119190 WO2022007211A1 (zh) 2020-07-10 2020-09-30 一种基于gnss的实时高精度波浪测量方法及装置

Country Status (3)

Country Link
US (1) US20230288578A1 (zh)
CN (1) CN111896984B (zh)
WO (1) WO2022007211A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114659618A (zh) * 2022-03-22 2022-06-24 中国科学院长春光学精密机械与物理研究所 一种基于近似积分法空间微振动测试方法及其装置
CN114839354A (zh) * 2022-07-02 2022-08-02 杭州电子科技大学 基于滑动算法和加权策略的北斗/gps土壤湿度测量法
CN115451803A (zh) * 2022-09-19 2022-12-09 福州大学 基于gnss与测量机器人融合的水闸实时监测预警方法
CN116224393A (zh) * 2023-05-10 2023-06-06 自然资源部第一海洋研究所 一种基于gnss测波浮标的波浪谱计算方法
CN117058532A (zh) * 2023-10-08 2023-11-14 自然资源部第一海洋研究所 基于海浪与太阳耀斑信号反演水深、波高的方法和系统
TWI843128B (zh) 2022-06-22 2024-05-21 董東璟 近全時連續觀測小型輕量化波浪浮標

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730883B (zh) * 2020-12-21 2022-07-05 自然资源部第一海洋研究所 测量河流水位高度和坡度的gnss漂流浮毯及方法
CN112904316B (zh) * 2021-01-21 2023-07-04 自然资源部第一海洋研究所 一种针对海面波动的机载激光测深数据折射误差改正方法
CN113703020B (zh) * 2021-01-30 2023-12-05 东南大学 一种海面小型目标升沉运动测量方法
CN113391287B (zh) * 2021-06-10 2023-09-01 哈尔滨工业大学 基于时间序列的高频地波雷达海态数据融合方法
CN113344275B (zh) * 2021-06-15 2022-10-14 上海交通大学 一种基于lstm模型的浮式平台波浪爬升在线预报方法
CN114355421B (zh) * 2021-12-22 2023-08-18 杭州电子科技大学 一种基于北斗卫星l4和cmc组合观测值洪水探测方法
CN114674524A (zh) * 2022-03-03 2022-06-28 深圳市朗诚科技股份有限公司 波浪谱测量方法、波浪测量装置及计算机可读存储介质
CN115201936B (zh) * 2022-07-08 2024-02-20 自然资源部第一海洋研究所 一种基于北斗/gnss的实时高精度海表测量方法及浮标
CN117420581B (zh) * 2023-12-19 2024-03-08 自然资源部第一海洋研究所 单频卫星浮标时间差分载波相位波浪参数反演方法及系统
CN117607908B (zh) * 2024-01-23 2024-04-05 山东大学 无人机载平台的gnss-r码相位海面测高方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829770A (zh) * 2012-08-20 2012-12-19 国家海洋技术中心 Gps浮标测波方法和测波系统
CN103616711A (zh) * 2013-12-04 2014-03-05 国家海洋技术中心 北斗浮标测波方法
CN105182369A (zh) * 2015-07-30 2015-12-23 国家海洋技术中心 基于北斗地基增强系统的测量波浪和潮汐方法
CN106291639A (zh) * 2016-08-31 2017-01-04 和芯星通科技(北京)有限公司 一种gnss接收机实现定位的方法及装置
CN106840113A (zh) * 2017-04-06 2017-06-13 国家海洋标准计量中心 一种基于星基差分增强技术的深远海波浪和潮位测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102829770A (zh) * 2012-08-20 2012-12-19 国家海洋技术中心 Gps浮标测波方法和测波系统
CN103616711A (zh) * 2013-12-04 2014-03-05 国家海洋技术中心 北斗浮标测波方法
CN105182369A (zh) * 2015-07-30 2015-12-23 国家海洋技术中心 基于北斗地基增强系统的测量波浪和潮汐方法
CN106291639A (zh) * 2016-08-31 2017-01-04 和芯星通科技(北京)有限公司 一种gnss接收机实现定位的方法及装置
CN106840113A (zh) * 2017-04-06 2017-06-13 国家海洋标准计量中心 一种基于星基差分增强技术的深远海波浪和潮位测量方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU GUODONG: "Research on Wave Buoy System Design and Wave Measurement Method", SCIENCE TECHNOLOGY AND ENGINEERING, ZHONGGUO JISHU JINGJI YANJIUHUI, CN, vol. 11, no. 35, 18 December 2011 (2011-12-18), CN , pages 8805 - 8809, XP055885564, ISSN: 1671-1815 *
SHAN RUI, YAN-XIONG LIU, TIE-HU ZHAO, YI-KAI FENG: "Feasibility study of using GPS absolute velocity estimation to measure wave", MARINE SCIENCE BULLETIN, vol. 30, no. 5, 15 October 2011 (2011-10-15), pages 529 - 534, XP055885566, ISSN: 1001-6392 *
WANG JUNJIE, HE XIUFENG;LIU YANXIONG: "GPS Wave Measurement Method Using TRACK", JOURNAL OF GEODESY AND GEODYNAMICS, 15 October 2015 (2015-10-15), XP055885559, ISSN: 1671-5942, DOI: 10.14075/j.jgg.2015.05.009 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114659618A (zh) * 2022-03-22 2022-06-24 中国科学院长春光学精密机械与物理研究所 一种基于近似积分法空间微振动测试方法及其装置
TWI843128B (zh) 2022-06-22 2024-05-21 董東璟 近全時連續觀測小型輕量化波浪浮標
CN114839354A (zh) * 2022-07-02 2022-08-02 杭州电子科技大学 基于滑动算法和加权策略的北斗/gps土壤湿度测量法
CN115451803A (zh) * 2022-09-19 2022-12-09 福州大学 基于gnss与测量机器人融合的水闸实时监测预警方法
CN116224393A (zh) * 2023-05-10 2023-06-06 自然资源部第一海洋研究所 一种基于gnss测波浮标的波浪谱计算方法
CN116224393B (zh) * 2023-05-10 2023-09-22 自然资源部第一海洋研究所 一种基于gnss测波浮标的波浪谱计算方法
CN117058532A (zh) * 2023-10-08 2023-11-14 自然资源部第一海洋研究所 基于海浪与太阳耀斑信号反演水深、波高的方法和系统
CN117058532B (zh) * 2023-10-08 2023-12-19 自然资源部第一海洋研究所 基于海浪与太阳耀斑信号反演水深、波高的方法和系统

Also Published As

Publication number Publication date
US20230288578A1 (en) 2023-09-14
CN111896984A (zh) 2020-11-06
CN111896984B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2022007211A1 (zh) 一种基于gnss的实时高精度波浪测量方法及装置
EP3532867B1 (en) Offshore gnss reference station apparatus, offshore gnss positioning system, and method of generating positioning reference data offshore
CN110855343B (zh) 一种水声定位与授时浮标及其工作方法
CN115201936B (zh) 一种基于北斗/gnss的实时高精度海表测量方法及浮标
Liu et al. Coastal sea-level measurements based on gnss-r phase altimetry: A case study at the onsala space observatory, sweden
JP2003302221A (ja) Gps式波高・流向流速計測装置及びgps式波高・流向流速計測システム
Bahrami et al. Instantaneous Doppler-aided RTK positioning with single frequency receivers
CN104597471A (zh) 面向时钟同步多天线gnss接收机的定向测姿方法
KR101631967B1 (ko) 장주기 파고측정용 gnss 기반 부이에서의 수신기 위상말림 보상을 위한 ppp 및 마그네틱 컴파스 통합시스템
CN105486291A (zh) 一种用于无验潮水深测量的动态精密单点定位方法
CN106802153B (zh) 基于单频导航原始观测量地面处理的高精度测定轨方法
CN112730883A (zh) 测量河流水位高度和坡度的gnss漂流浮毯及方法
CN115451921A (zh) 一种全海域浪-潮-流同步观测方法、设备、介质及终端
Liu et al. Real-time precise measurements of ocean surface waves using GNSS variometric approach
CN116224393B (zh) 一种基于gnss测波浮标的波浪谱计算方法
Xu et al. NLOS detection and compensation using a vector tracking-based GPS software receiver
CN210426679U (zh) 一种水位监测终端及系统
Wang et al. Analysis of GNSS-R Code-Level Altimetry using QZSS C/A, L1C, and BDS B1C signals and their Combinations in a Coastal Experiment
TW448304B (en) Fully-coupled positioning process and system
Lin et al. Variations in directional wave parameters obtained from data measured using a GNSS buoy
CN116009042A (zh) 一种单站载波历元间差分实时探测相对形变的方法及系统
KR102583028B1 (ko) 위성항법시스템 및 관성측정장치를 이용한 해양기상관측장비, 그리고 그 장비의 구동법
Collett et al. GPS signal land reflection coherence dependence on water extent and surface topography using CYGNSS measurements
Galas et al. On precise GNSS-based sea surface monitoring systems
CN117420581B (zh) 单频卫星浮标时间差分载波相位波浪参数反演方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944651

Country of ref document: EP

Kind code of ref document: A1