WO2022007097A1 - 天线单元及阵列天线通信设备 - Google Patents

天线单元及阵列天线通信设备 Download PDF

Info

Publication number
WO2022007097A1
WO2022007097A1 PCT/CN2020/108039 CN2020108039W WO2022007097A1 WO 2022007097 A1 WO2022007097 A1 WO 2022007097A1 CN 2020108039 W CN2020108039 W CN 2020108039W WO 2022007097 A1 WO2022007097 A1 WO 2022007097A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna unit
reflector
microstrip
array
Prior art date
Application number
PCT/CN2020/108039
Other languages
English (en)
French (fr)
Inventor
刘朋
洪涛
周凌波
郭亚军
李�浩
Original Assignee
摩比天线技术(深圳)有限公司
摩比科技(深圳)有限公司
摩比通讯技术(吉安)有限公司
摩比科技(西安)有限公司
深圳市晟煜智慧网络科技有限公司
西安摩比天线技术工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 摩比天线技术(深圳)有限公司, 摩比科技(深圳)有限公司, 摩比通讯技术(吉安)有限公司, 摩比科技(西安)有限公司, 深圳市晟煜智慧网络科技有限公司, 西安摩比天线技术工程有限公司 filed Critical 摩比天线技术(深圳)有限公司
Publication of WO2022007097A1 publication Critical patent/WO2022007097A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present disclosure relates to the technical field of smart antennas, and in particular, to an antenna unit and an array antenna communication device.
  • MIMO multiple-in multiple-out, MIMO, multiple input and multiple output
  • base station + antenna method is used for the deployment of base stations, and the corresponding antenna thickness is also relatively low.
  • the antenna unit is mostly considered to use low-profile patch units, but the patch unit in the array, usually due to surrounding environmental problems, its impedance characteristics and polarization isolation are seriously deteriorated, which is very important for the antenna array.
  • the design and use of the device have caused great difficulties and reduced the user experience.
  • the purpose of the present disclosure is to provide an antenna unit and an array antenna communication device to alleviate the above technical problems.
  • an embodiment of the present disclosure provides an antenna unit, including: at least one antenna element and a reflector;
  • the antenna elements are arranged on the reflector according to a preset arrangement to form an antenna array
  • the antenna element includes a microstrip antenna and a guide plate, a feeder circuit is arranged on the reflector, the microstrip antenna is arranged on the reflector, and is connected to a feeder formed by the feeder circuit in the network;
  • One edge of the microstrip antenna is provided with a ground wire, and the guide plate is arranged opposite to the microstrip antenna.
  • the above-mentioned antenna unit is further provided with a support frame;
  • the support frame is used for supporting the guide piece, so that the guide piece is arranged opposite to the microstrip antenna.
  • the microstrip antenna is a preset polygonal structure.
  • the above-mentioned preset polygonal structure is one of the following: a circular structure, a square structure or an approximately octagonal structure.
  • the above-mentioned guide plate is a metal plate for radiating signals.
  • a preset number of slotted structures are symmetrically arranged on the guide piece, and the slotted structures are symmetrically arranged at the edge of the guide piece, and the openings The opening direction of the groove structure is arranged radially outward of the guide piece.
  • the basic shape of the guide piece is one of the following shapes: circle, square, diamond or polygon.
  • the above-mentioned guide piece is a plane structure.
  • the guide sheet is a symmetrical non-planar structure; wherein, the edge of the guide sheet of the symmetrical non-planar structure is bent at a predetermined angle toward the reflector to form a Bucket-shaped structure; the slotted structure is symmetrically arranged at the edge position after bending.
  • an embodiment of the present disclosure further provides an array antenna communication device, where the array antenna communication device is provided with the antenna unit described in the first aspect.
  • the antenna unit and the array antenna communication device include a reflector and antenna elements arranged on the reflector according to a preset arrangement, so as to form an antenna array on the reflector, and the antenna elements include a
  • the microstrip antenna and the guide piece of the signal can meet the signal radiation function of the antenna unit.
  • the relative arrangement of the guide piece and the microstrip antenna can optimize the standing wave isolation of the antenna unit.
  • the ground wire can also be used as a decoupling wire for the antenna element, which further improves the isolation of the antenna array and facilitates the design and use of the antenna array.
  • FIG. 1 is a schematic disassembly diagram of an antenna unit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic disassembly diagram of another antenna unit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an antenna unit according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a microstrip antenna according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a guide sheet according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a current path of a lead sheet provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of electric field coupling provided by an embodiment of the present disclosure.
  • FIG 8 is a schematic diagram of a common antenna element, wherein the common antenna element in Figure 8 is a prototype of a common patch antenna element, which is commonly found in books and papers on the principle of patch antennas.
  • the common patch antenna in this article is taken from: Electronics Industry Translated by the publishing house, Modern Antenna Design by Thomas A. Milligan, Section 6.1 of the Second Edition, the content of the circular patch antenna to which the microstrip antenna pattern belongs, and further expanded into a dual-polarized model;
  • Fig. 9 is a kind of impedance curve of the antenna element of Fig. 8;
  • FIG. 10 is an impedance curve of an antenna element provided by an embodiment of the present disclosure.
  • Fig. 11 is a kind of isolation curve of the antenna element of Fig. 8;
  • FIG. 12 is an isolation curve of an antenna element according to an embodiment of the present disclosure.
  • FIG. 13 is a horizontal plane pattern of the antenna element of FIG. 8;
  • FIG. 14 is a horizontal plane pattern of an antenna element according to an embodiment of the present disclosure.
  • Icons 100-lead sheet; 101-support frame; 102-reflector; 103-microstrip antenna; 104-ground wire; 201-rivet.
  • the existing patch antennas usually have direct feeding, coupled feeding, etc., that is, direct feeding through probes and direct feeding through microstrip lines, which are called direct feeding, and using feeding sheets and radiating sheets.
  • Coupling method is used for coupled feeding.
  • the polarization isolation is often poor. It is necessary to add some metal parts to the array to debug the isolation. The size and position of the metal parts are slightly deviated. The difference is also relatively large, resulting in low efficiency in the production and debugging of the antenna.
  • an antenna unit and an array antenna communication device provided by the embodiments of the present disclosure can improve the above technical problems, and at the same time, facilitate the design and use of an antenna array.
  • an embodiment of the present disclosure provides an antenna unit, including: at least one antenna element and a reflector.
  • the antenna elements are arranged on the reflector according to a preset arrangement to form an antenna array.
  • the antenna element includes a microstrip antenna and a guide piece.
  • the microstrip antenna and the guide piece are both used to radiate signals to meet the signal radiation function of the antenna unit.
  • the strip antenna is arranged on the reflector, and is connected to the feeding network formed by the feeding circuit.
  • one edge of the above-mentioned microstrip antenna is provided with a ground wire, and the guide sheet is arranged opposite to the microstrip antenna.
  • the antenna unit provided by the embodiments of the present disclosure includes a reflector and antenna elements arranged on the reflector according to a preset arrangement, so as to form an antenna array on the reflector, and the antenna elements include microarrays for radiating signals.
  • the antenna and guide plate With antenna and guide plate, it can meet the signal radiation function of the antenna unit.
  • the relative arrangement of the guide plate and the microstrip antenna can optimize the standing wave isolation of the antenna unit.
  • the ground wire set on one edge of the microstrip antenna also It can be used as a decoupling line for the antenna element, and further improves the isolation of the antenna array, which is convenient for the design and use of the antenna array.
  • the above-mentioned reflective plate is usually in the form of a PCB (Printed Circuit Board, printed circuit board) board, and the above-mentioned feeding circuit can be directly printed on the PCB board, and constitutes the feeding network of the antenna unit. Therefore,
  • the reflector in the embodiment of the present disclosure can also be a feeder PCB.
  • the microstrip antenna included in the above-mentioned antenna element can also be directly printed on the PCB to reduce the thickness of the antenna unit, so that the antenna unit occupies less space. Therefore, the microstrip antenna in the embodiment of the present disclosure can also be It becomes a PCB microstrip antenna, and the antenna element including the microstrip antenna can also become a PCB antenna element.
  • the antenna unit of the embodiment of the present disclosure is further provided with a support frame; the support frame is used to support the guide piece, so that the guide piece and the Microstrip antennas are set relative to each other.
  • FIG. 1 and FIG. 2 respectively show a schematic diagram of disassembly of an antenna unit.
  • three antenna elements are set on a reflector as an example for illustration, and the three antenna elements form a 1
  • the array of *3, as shown in FIG. 1 is the guide sheet 100 , the support frame 101 and the reflector 102 in order from left to right.
  • FIG. 1 since three antenna elements are used as an example in FIG. 1 , there are also three guide pieces in FIG. 1 . Further, in FIG. 1 , the microstrip antenna is printed on the reflector as an example for illustration. Therefore, FIG. 1 also includes the microstrip antenna 103 printed on the reflector, and the microstrip antenna 103 arranged on the reflector. Ground line 104 on one of the edges. Usually, the ground wire is also called a decoupling wire. Generally, a ground wire is introduced at the midpoint of one side of the microstrip antenna and set into a "T" shape, which can make the isolation of each antenna element in the antenna array environment obvious. improvement.
  • the support frame 101 in FIG. 1 is usually made of plastic material, and most of them are irregular in shape, which can be clamped on the reflector by means of buckles, so as to install the guide plate above the microstrip antenna.
  • the guide plate and the microstrip antenna are arranged opposite to each other.
  • the line connecting multiple microstrip antennas is the feed circuit printed on the reflector, which is used to transmit signals and distribute the signals to the three microstrip antennas.
  • the shaded part of the feeding circuit is the protective ground printed on the reflector to enhance the anti-interference performance of the antenna system.
  • FIG. 2 is a perspective view of the disassembled schematic diagram of the antenna unit corresponding to FIG. 1 .
  • the guide sheet 100 from top to bottom are the guide sheet 100 , the support frame 101 and the reflector 102 , and the reflector on the reflector Multiple lines are printed feeder circuits and microstrip antennas.
  • FIG. 2 includes four 1*3 antenna units shown in FIG. 1, that is, equivalent to four arrays of antenna elements, which are arranged on the reflector according to the arrangement shown in FIG. 2 to form an antenna array.
  • FIG. 2 also shows a plurality of rivets 201 for assembling various structures, which are used to assemble the guide sheet 100, the support frame 101 and the reflector 102, and the nail holes of the rivets are usually provided according to the In the shaded portion shown on the far right of Figure 1.
  • FIG. 3 shows a schematic diagram of an antenna unit.
  • the antenna unit shown in FIG. 3 is an assembly diagram corresponding to the disassembly diagram shown in FIG. 2 , and is a top view of the antenna unit.
  • the number of antenna elements shown in FIG. 1 , FIG. 2 and FIG. 3 and the form of the antenna array formed by the antenna elements are only an exemplary form. In other embodiments, the number of antenna elements, and The form of the antenna array may also have other forms, which are subject to actual use conditions, which are not limited in this embodiment of the present disclosure.
  • the microstrip antenna is usually provided with a feeding port through which the microstrip antenna is connected to the feeding circuit.
  • the above-mentioned microstrip antenna is a preset polygonal structure, and a predetermined position of the microstrip antenna is provided with an opening, for example, an opening is provided in the center of the microstrip antenna.
  • the above-mentioned preset polygonal structure is one of the following: a circular structure, a square structure or an approximately octagonal structure; and, the above-mentioned feeding port is a feeding port in the direction of ⁇ 45° of the preset polygonal structure.
  • FIG. 4 shows a schematic structural diagram of a microstrip antenna, specifically, a microstrip antenna with an approximate octagonal structure.
  • the microstrip antenna with an approximately octagonal structure is actually made based on a circular microstrip antenna. Specifically, as shown in FIG. 4 , two ends of two vertical diameters are subtracted from the circular microstrip antenna. part, and, as shown in FIG. 4, the feeding ports are arranged in the ⁇ 45° direction.
  • an opening is set in the center of the microstrip antenna.
  • the opening can also be set at other preset positions, and the actual use shall prevail. No restrictions apply.
  • the above-mentioned guide piece is a metal piece for radiating signals. Further, a preset number of slotted structures are symmetrically arranged on the above-mentioned guide piece, and the slotted structures are symmetrically arranged at the edge of the guide piece, and , the opening direction of the slotted structure is set outward along the radial direction of the guide piece.
  • the basic shape of the guide piece is one of the following shapes: circle, square, diamond or polygon.
  • FIG. 5 shows a schematic structural diagram of a guide piece, wherein FIG. 5 shows a guide piece with various basic shapes.
  • the left guide pieces of the first row and the second row are circular guide pieces
  • the right side is a guide piece similar in shape to the approximate octagonal structure of the microstrip antenna.
  • FIG. 5 is an embodiment in which four slotted structures are symmetrically arranged on the edge of the guide plate. This slotted structure can change the isolation degree of the antenna element after the antenna array is formed. The reason is that after the slotting and the original Compared with slotting, the level position of the end changes. It can be assumed that the radiation direction of the antenna is ⁇ 45°, then slotting at 0 and 90°, the edge current end of the microstrip antenna changes from the original outer edge.
  • the change of the current distribution after slotting changes the isolation of the antenna unit, but due to the current distribution on the entire guide chip, it presents an axis-symmetric + center-symmetric structure, which makes the terminal current change at the edge of the guide chip. , can cancel each other in terms of radiation field, the radiation field distribution can still be equivalent to a symmetrical distribution, so there is no special deterioration of the pattern.
  • Fig. 6 shows a schematic diagram of the current path of the guide piece, as shown in Fig. 6, the left side of Fig. 6 is the surface current distribution of the unslotted guide piece, and the right side is the slotted guide piece
  • the surface current distribution as can be seen from Figure 6, the current distribution of the slotted structure and the non-slotted lead sheet is different, and the change of the local direction and the overall path of the current can contribute to a part of the magnitude of the isolation optimization.
  • the above-mentioned guide piece has a planar structure, or the above-mentioned guide piece has a symmetrical non-planar structure.
  • 1 and 2 show an embodiment in which the guide piece is a non-planar structure.
  • the guide piece shown in the second row can bend the edge of the planar structure along the line segment shown in the figure. folded at a predetermined angle, thereby forming a guide sheet with a non-planar structure.
  • the guide piece shown in the third row in FIG. 5 is also an embodiment of a non-planar structure.
  • its four sides or four corners can be bent downward at the same angle.
  • the shape is high in the middle and low on all sides. Taking a quadrilateral (or octagon) as an example, the four sides of the quadrilateral are bent down at the same angle at the same time to form a bucket-shaped structure, and then the four sides after bending are bent at the same angle.
  • the center is a slotted structure; or, for a circular plane structure, the perimeter area is bent downward, and the positions of 0°, 90°, 180°, and 270° are selected to make the slotted structure, and then the embodiment of the present disclosure is formed.
  • symmetric non-planar structure
  • the field distribution can be locally changed through the change of the coupling current brought by the non-planar structure, so as to achieve the purpose of converging the impedance curve.
  • FIG. 7 shows a schematic diagram of electric field coupling.
  • FIG. 7 shows a comparison of the electric field coupling between the guide plate of the planar structure and the guide plate of the symmetrical non-planar structure and the reflector.
  • the electric field distribution between the reflector and the reflector is different at the edge of the guide plate, that is, the coupling height of the electric field at the periphery of the guide plate changes. Therefore, the guide plate with a symmetrical non-planar structure can make the impedance of the array converge as shown in Figure 10. shape shown.
  • the operating frequency band of the antenna unit shown in FIG. 1 or FIG. 2 is 2500MHz-2700MHz, and in the embodiment of the present disclosure, by setting a ground wire on one edge of the microstrip antenna, the antenna can be The isolation of the antenna elements in the array environment is significantly improved.
  • the microstrip antenna has oppositely arranged guide pieces, and by changing the depth of the slots on the guide pieces, the standing wave isolation of the antenna unit can also be optimized, and the impedance curve can be converged within an ideal range. .
  • FIG. 8 shows a common antenna element, and its impedance curve is shown in FIG. 9
  • FIG. 9 shows the impedance curve of a common antenna element.
  • the impedance curves of the antenna elements of the lead sheet specifically, Figures 9 and 10 are the comparison of the impedance curves (standing waves) of the two after forming the antenna array. It can be seen from Figures 9 and 10 that in the embodiments of the present disclosure , relative to the antenna element with the guide plate, its impedance curve converges a lot, and it is easy to make a matching array.
  • FIG. 11 is an isolation curve of the antenna element of FIG. 8
  • FIG. 12 is an isolation curve of an antenna array relatively provided with a guide plate in an embodiment of the disclosure.
  • FIG. 11 and FIG. 12 are the two Comparison of isolation curves after forming multiple parallel 1*3 arrays. It can be seen from FIG. 11 and FIG. 12 that the improvement of the isolation degree in the embodiment of the present disclosure is more than 4dB on average, and the improvement of the average value of the overall polarization isolation is about 6dB or 7dB. After the ground wire, the isolation of the antenna element is greatly improved.
  • FIG. 13 is a horizontal plane pattern of a common antenna element
  • FIG. 14 is a horizontal plane pattern of an antenna element of an antenna unit in an embodiment of the disclosure.
  • FIG. 13 and FIG. 14 are the pattern comparison of the two after forming an array. , it can be seen from Figure 13 and Figure 14 that the two main polarization patterns are the same, and the level curves of the cross polarization patterns diverge, but they are also of the same magnitude.
  • the antenna unit provided by the embodiments of the present disclosure has the following advantages:
  • the antenna element can obtain a relatively convergent impedance, which is easy to match, and also optimizes isolation. Spend.
  • the ground wire can be used as a decoupling wire, which can effectively improve the isolation after the antenna unit is formed into a sub-array, and can be used together with the guide plate.
  • the embodiments of the present disclosure further provide an array antenna communication device, specifically, the array antenna communication device is provided with the above antenna unit.
  • the array antenna communication device provided by the embodiment of the present disclosure has the same technical features as the antenna unit provided by the above-mentioned embodiment, so it can also solve the same technical problem and achieve the same technical effect.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or the internal communication between the two components.

Abstract

本公开提供了一种天线单元及阵列天线通信设备,涉及智能天线的技术领域,天线单元,包括:至少一个天线阵子和反射板;天线阵子按照预设的排列方式设置在反射板上,以形成天线阵列;天线阵子包括微带天线和引向片,反射板上设置有馈电电路,微带天线设置在反射板上,且,连接至馈电电路构成的馈电网络中;微带天线的其中一个边缘上设置有接地线,引向片与微带天线相对设置。本公开提供的天线单元及阵列天线通信设备,通过引向片与微带天线相对设置可以优化天线单元的驻波和隔离度,在微带天线的其中一个边缘上设置的接地线还可以作为天线阵子的去耦线使用,也进一步提升了天线阵列的隔离度,便于天线阵列的设计和使用。

Description

天线单元及阵列天线通信设备
相关申请的交叉引用
本公开要求于2020年07月09日提交中国专利局的申请号为CN202010660376.0、名称为“天线单元及阵列天线通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及智能天线的技术领域,尤其是涉及一种天线单元及阵列天线通信设备。
背景技术
随着全球5G(5th generation mobile networks,第五代移动通信技术)通信领域建设展开,MIMO(multiple-in multiple-out,MIMO,多进多出)天线越来越的应用在5G基站上,匹配的基站部署,一般都采用基站+天线的方式,对应的天线厚度也比较低。
考虑到对天线厚度的限制,天线单元多考虑使用低轮廓的贴片单元,但贴片单元在阵列中,通常因为周边环境问题,使其阻抗特性和极化隔离度恶化严重,这对天线阵列的设计和使用,造成极大困难,降低了用户的体验度。
发明内容
有鉴于此,本公开的目的在于提供一种天线单元及阵列天线通信设备,以缓解上述技术问题。
第一方面,本公开实施例提供了一种天线单元,包括:至少一个天线阵子和反射板;
所述天线阵子按照预设的排列方式设置在所述反射板上,以形成天线阵列;
所述天线阵子包括微带天线和引向片,所述反射板上设置有馈电电路,所述微带天线设置在所述反射板上,且,连接至所述馈电电路构成的馈电网络中;
所述微带天线的其中一个边缘上设置有接地线,所述引向片与所述微带天线相对设置。
优选地,在一种较佳的实施例中,上述天线单元还设置有支撑架;
所述支撑架用于支撑所述引向片,以使所述引向片与所述微带天线相对设置。
优选地,在一种较佳的实施例中,上述微带天线为预设的多边形结构。
优选地,在一种较佳的实施例中,上述预设的多边形结构为以下之一:圆形结构、方形结构或者近似八边形结构。
优选地,在一种较佳的实施例中,上述引向片为金属片,用于辐射信号。
优选地,在一种较佳的实施例中,上述引向片上对称设置有预设数量个开槽结构,所述开槽结构对称设置在所述引向片的边缘位置,且,所述开槽结构的开口方向沿所述引向 片的径向向外设置。
优选地,在一种较佳的实施例中,上述引向片的基本形状为以下形状之一:圆形、方形、菱形或者多边形。
优选地,在一种较佳的实施例中,上述引向片为平面结构。
优选地,在一种较佳的实施例中,上述引向片为对称非平面结构;其中,对称非平面结构的所述引向片的边缘朝向所述反射板折弯预设角度,以形成斗状结构;所述开槽结构对称设置在折弯后的边缘位置。
第二方面,本公开实施例还提供一种阵列天线通信设备,所述阵列天线通信设备设置有第一方面所述的天线单元。
本公开实施例带来了以下有益效果:
本公开实施例提供的天线单元及阵列天线通信设备,包括反射板和在该反射板上按照预设的排列方式设置的天线阵子,以在反射板上形成天线阵列,而天线阵子包括用于辐射信号的微带天线和引向片,可以满足天线单元的信号辐射功能,同时引向片与微带天线相对设置可以优化天线单元的驻波隔离度,在微带天线的其中一个边缘上设置的接地线还可以作为天线阵子的去耦线使用,也进一步提升了天线阵列的隔离度,便于天线阵列的设计和使用。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一种天线单元的拆解示意图;
图2为本公开实施例提供的另一种天线单元的拆解示意图;
图3为本公开实施例提供的一种天线单元的示意图;
图4为本公开实施例提供的一种微带天线的结构示意图;
图5为本公开实施例提供的一种引向片的结构示意图;
图6为本公开实施例提供的一种引向片的电流路径示意图;
图7为本公开实施例提供的一种电场耦合示意图;
图8为一种普通天线阵子示意图,其中,图8中的普通天线阵子为普通贴片天线阵子原型,常见于贴片天线原理的书籍和论文中,本文中的普通贴片天线摘自:电子工业出版社所译,Thomas A.Milligan所著Modern Antenna Design,Second Edition一书中6.1节,微带天线方向图所属之圆形贴片天线内容,并将其进一步拓展成双极化后的模型;
图9为一种图8天线阵子的阻抗曲线;
图10为本公开实施例提供的一种天线阵子的阻抗曲线;
图11为一种图8天线阵子的隔离度曲线;
图12为本公开实施例提供的一种天线阵子的隔离度曲线;
图13为一种图8天线阵子的水平面方向图;
图14为本公开实施例提供的一种天线阵子的水平面方向图。
图标:100-引向片;101-支撑架;102-反射板;103-微带天线;104-接地线;201-铆钉。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图对本公开的技术方案进行清楚和完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
目前,现有的贴片天线,通常有直馈,耦合馈电等方式,即,通过探针直接馈电和微带线直接馈电,称为直接馈电,以及使用馈电片和辐射片耦合的方式进行耦合式馈电,上述馈电方式,在组成阵列之后,其极化隔离度往往比较差,需要在阵列中加入一些金属件来调试隔离度,金属件的尺寸位置稍有偏差,差异也比较大,造成天线的生产调试效率较低。基于此,本公开实施例提供的一种天线单元及阵列天线通信设备,可以改善上述技术问题,同时,也便于天线阵列的设计和使用。
为便于对本实施例进行理解,首先对本公开实施例所公开的一种天线单元进行详细介绍。
在一种可能的实施方式中,本公开实施例提供了一种天线单元,包括:至少一个天线阵子和反射板。
其中,天线阵子按照预设的排列方式设置在反射板上,以形成天线阵列。
具体地,天线阵子包括微带天线和引向片,该微带天线和引向片均用于辐射信号,以满足天线单元的信号辐射功能,同时,在反射板上设置有馈电电路,微带天线设置在反射 板上,且,连接至馈电电路构成的馈电网络中。
进一步,上述微带天线的其中一个边缘上设置有接地线,引向片与微带天线相对设置,通过在天线单元中加载接地线,并设置引向片的方式,可以优化天线的隔离度,提升天线单元的性能。
因此,本公开实施例提供的天线单元,包括反射板和在该反射板上按照预设的排列方式设置的天线阵子,以在反射板上形成天线阵列,而天线阵子包括用于辐射信号的微带天线和引向片,可以满足天线单元的信号辐射功能,同时引向片与微带天线相对设置可以优化天线单元的驻波隔离度,在微带天线的其中一个边缘上设置的接地线还可以作为天线阵子的去耦线使用,也进一步提升了天线阵列的隔离度,便于天线阵列的设计和使用。
在实际使用时,上述反射板通常是PCB(Printed Circuit Board,印制电路板)板的形式,上述馈电电路可以直接印制在该PCB板上,并构成天线单元的馈电网络,因此,本公开实施例中的反射板也可以成为馈电PCB板。
进一步,上述天线阵子包括的微带天线也可以直接印制在该PCB上,以减少天线单元的厚度,使得天线单元占用更少的空间,因此,本公开实施例中的微带天线,也可以成为PCB微带天线,而包括该微带天线的天线阵子也可以成为PCB天线阵子。
此外,为了使引向片与微带天线相对设置,并保持该相对的位置,本公开实施例的天线单元还设置有支撑架;该支撑架用于支撑引向片,以使引向片与微带天线相对设置。
为了便于理解,图1和图2分别示出了一种天线单元的拆解示意图,其中,图1中,以反射板上设置3个天线阵子为例进行说明,且,3个天线阵子组成1*3的阵列,如图1所示,从左到右依次是引向片100、支撑架101和反射板102。
其中,由于图1中是以3个天线阵子为例,因此,图1中的引向片也为3个。进一步,图1中,以微带天线印制在反射板上为例进行说明,因此,图1中,还包括印制在反射板上的微带天线103,以及,设置在微带天线103的其中一个边缘上的接地线104。通常,该接地线也称为去耦线,一般在微带天线的一边中点引入一节接地线,并设置成“T”字型,可以使天线阵列环境中各个天线阵子的隔离度有明显的提升。
在实际使用时,图1中的支撑架101通常是塑料材质,并且多为不规则的形状,可以通过卡扣卡接在反射板上,用于将引向片安装在微带天线的上方,并与微带天线之间留有一定间隙,以便于使引向片与微带天线相对设置。
进一步,图1中,将多个微带天线连接起来的线路即为印制在反射板上的馈电电路,用于传输信号,并将信号分配给三个微带天线,同时,图1中,布设在馈电电路的阴影部分为印制在反射板上的保护地,以增强天线系统的抗干扰性能。
进一步,图2是与图1对应的天线单元的拆解示意图的立体图,如图2所示,从上到下依次是引向片100、支撑架101和反射板102,且,反射板上的多个线路为印制的馈电电路和微带天线。
其中,图2中包括4个图1所示的1*3的天线单元,即,相当于是4列天线阵子,按照图2所示的排列方式设置在反射板上,以形成天线阵列。此外,图2中还示出了多个用于组装各个结构的铆钉201,用于将引向片100、支撑架101和反射板102进行组装,并且,按照该铆钉的钉孔,通常也设置在图1最右侧所示的阴影部分中。
进一步,图3示出了一种天线单元的示意图,具体地,图3所示的天线单元为图2所示的拆解图对应的组装图,且为天线单元的俯视图。应当理解,图1、图2和图3中所示的天线阵子的数量,以及天线阵子组成的天线阵列的形式仅仅是一种示例性的形式,在其他实施方式中,天线阵子的数量,以及天线阵列的形式还可以有其他的形式,具体以实际使用情况为准,本公开实施例对此不进行限制。
在实际使用时,为了便于微带天线能够接入到馈电电路组成的馈电网络,上述微带天线通常设置有馈电端口,微带天线通过该馈电端口连接至所述馈电电路。
具体地,上述微带天线为预设的多边形结构,且微带天线的预设位置设置有开孔,如,在微带天线的中心部位设置开孔。
进一步,上述预设的多边形结构为以下之一:圆形结构、方形结构或者近似八边形结构;且,上述馈电端口为预设的多边形结构±45°方向上的馈电端口。
为了便于理解,图4示出了一种微带天线的结构示意图,具体地,示出的是一种近似八边形结构的微带天线。
其中,该近似八边形结构的微带天线实际是基于圆形微带天线制成的,具体地,如图4所示,是在圆形微带天线上减去两个垂直直径的两端部分,并且,如图4所示,馈电端口设置在±45°方向上。
进一步,图4中,是在微带天线的中心设置的开孔,在实际使用时,该开孔还可以设置在其他的预设位置,具体以实际使用情况为准,本公开实施例对此不进行限制。
在实际使用时,上述引向片为金属片,用于辐射信号,进一步,上述引向片上对称设置有预设数量个开槽结构,该开槽结构对称设置在引向片的边缘位置,且,开槽结构的开口方向沿引向片的径向向外设置。
具体地,引向片的基本形状为以下形状之一:圆形、方形、菱形或者多边形。
为了便于理解,图5示出了一种引向片的结构示意图,其中,图5中示出了多种基本形状的引向片。其中,第一行和第二行的左侧引向片为圆形引向片,右侧为与微带天线的 近似八边形结构类似形状的引向片。
具体地,图5中所示的各类引向片,可以和反射板上的微带天线共同作用,形成天线方向图。其中,图5中是在引向片的边缘对称设置四个开槽结构的实施方式,这种开槽结构能改变天线阵子在组成天线阵列之后的隔离度,其原因是开槽之后和原来未开槽相比,末端的电平位置发生变化,可以假设天线的辐射方向是在±45°,那么在0和90°做开槽,微带天线的边缘电流末端,就从原来的外沿变成里面,开槽后电流分布的改变,使天线单元的隔离度发生变化,但因整个引向片上的电流分布,呈现轴对称+中心对称的结构,使得末端电流在引向片边缘部分的变化,在辐射场方面可以互相抵消的,辐射场分布仍可等效成对称分布,所以并没有特别恶化方向图。
为了便于理解,图6示出了引向片的电流路径示意图,如图6所示,图6中左侧为未开槽的引向片表面电流分布,右侧为开槽后的引向片表面电流分布,由图6可以看出,开槽结构和不开槽引向片的电流分布是不同的,而电流的局部方向和总体路径改变,能贡献一部分隔离度优化的幅度。
进一步,上述引向片为平面结构,或者,上述引向片为对称非平面结构。其中,图1和图2中示出的是引向片为非平面结构的实施方式,图5中,第二行所示的引向片,可以将平面结构的边缘沿图中所示线段弯折预设角度,进而形成非平面结构的引向片。
此外,图5中第三行所示的引向片,也是一种非平面结构的实施方式,具体地,可以在一个正方形的平面上,将其四边或者四角,向下弯折相同的角度,也可以在弯折之后,将其四边或者四角,修改为其他的形状,比如四边的开槽,或者四角的尖角钝化,或者,设置成圆形角等,而最终形成的非平面结构,通常是中间高,四周低的形状,以四边形(或八边形)为例,四边形的四个边位置同时向下弯折相同角度,形成一个斗状结构,再在弯折后的四个边中心做开槽结构;或者,圆形平面结构,将周长的区域,向下弯折后,选取0°、90°、180°和270°位置做开槽结构,进而形成本公开实施例中的对称非平面结构。
当对称非平面结构的金属材质的引向片放置在微带天线的正上方之后,可以通过其非平面结构所带来的耦合电流变化,局部的改变场分布,从而达到收敛阻抗曲线的目的。
为例便于理解,图7示出了一种电场耦合示意图,具体地,图7示出的是平面结构的引向片与对称非平面结构的引向片与反射板之间的电场耦合的对比示意图,其中,图7中左侧为平面结构的引向片的耦合电场,右侧为对称非平面结构的引向片的耦合电场,由图7可以看出,对称非平面结构的引向片和反射板之间的电场分布,在引向片边缘的不同,即,电场在引向片外围的耦合高度变化,因此,对称非平面结构的引向片能使阵子的阻抗收敛为图10所示的形状。
在实际使用时,上述图1或图2所示的天线单元,其工作频段为2500MHz-2700MHz,并且,本公开实施例中,通过在微带天线的其中一个边缘上设置接地线,可以使天线阵列环境中的天线阵子的隔离度有明显的提升。
进一步,本公开实施例中,微带天线有相对设置的引向片,通过对引向片的开槽深浅变化,也能使天线单元的驻波隔离度优化,使阻抗曲线收敛在理想范围内。
为了便于理解,图8展示了一种普通常见的天线阵子,其阻抗曲线如图9所示,图9示出了一种普通天线阵子的阻抗曲线,图10为本公开实施例中相对设置有引向片的天线阵子的阻抗曲线,具体地,图9和图10为两者在组成天线阵列之后的阻抗曲线(驻波)对比,由图9和图10可以看出,本公开实施例中,相对设置有引向片的天线阵子,其阻抗曲线收敛很多,很容易做匹配组阵。
进一步,图11为一种图8天线阵子的隔离度曲线,图12为本公开实施例中相对设置有引向片的天线阵的隔离度曲线,具体地,图11和图12是两者在组成多组并联的1*3阵列之后的隔离度曲线对比。由图11和图12可以看出,本公开实施例中的隔离度的改善平均有4dB以上,整体极化隔离均值的改善在6、7dB左右,说明在加入引向片的基础上,再加入接地线之后,天线振子的隔离度有较大的改善。
进一步,图13为普通天线阵子的水平面方向图,图14为本公开实施例中天线单元的天线阵子的水平面方向图,具体地,图13和图14是两者在组成阵列之后的方向图对比,由图13和图14可以看出,两者主极化方向图相同,交叉极化方向图电平曲线发散,但也是相同量级的。
综上,本公开实施例提供的天线单元具有以下优点:
(1)通过与微带天线相对设置的引向片,并将引向片设置成非平面结构,以及开槽等措施,可以使天线阵子获得比较收敛的阻抗,易于匹配,同时也优化了隔离度。
(2)接地线可以作为去耦线使用,能有效的改善天线单元组成子阵列后的隔离度,并且可以和引向片共同使用。
在上述实施例的基础上,本公开实施例还提供了一种阵列天线通信设备,具体地,该阵列天线通信设备设置有上述天线单元。
本公开实施例提供的阵列天线通信设备,与上述实施例提供的天线单元具有相同的技术特征,所以也能解决相同的技术问题,达到相同的技术效果。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的阵列天线通信设备的具体工作过程,可以参考前述实施例中的对应过程,在此不再赘述。
另外,在本公开实施例的描述中,除非另有明确的规定和限定,术语“安装”、“相连” 和“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”和“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示明本公开的技术方案,而非对其限制,本公开的保护范围并不局限于此,尽管参照前述实施例对本公开进行了详细的说明,本领域技术人员应当理解:任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本公开实施例技术方案的精神和范围,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种天线单元,其特征在于,包括:至少一个天线阵子和反射板;
    所述天线阵子按照预设的排列方式设置在所述反射板上,以形成天线阵列;
    所述天线阵子包括微带天线和引向片,所述反射板上设置有馈电电路,所述微带天线设置在所述反射板上,且,连接至所述馈电电路构成的馈电网络中;
    所述微带天线的其中一个边缘上设置有接地线,所述引向片与所述微带天线相对设置。
  2. 根据权利要求1所述的天线单元,其特征在于,所述天线单元还设置有支撑架;
    所述支撑架用于支撑所述引向片,以使所述引向片与所述微带天线相对设置。
  3. 根据权利要求1所述的天线单元,其特征在于,所述微带天线为预设的多边形结构。
  4. 根据权利要求3所述的天线单元,其特征在于,所述预设的多边形结构为以下之一:圆形结构、方形结构或者近似八边形结构。
  5. 根据权利要求1所述的天线单元,其特征在于,所述引向片为金属片,用于辐射信号。
  6. 根据权利要求5所述的天线单元,其特征在于,所述引向片上对称设置有预设数个开槽结构,所述开槽结构对称设置在所述引向片的边缘位置,且,所述开槽结构的开口方向沿所述引向片的径向向外设置。
  7. 根据权利要求5所述的天线单元,其特征在于,所述引向片的基本形状为以下形状之一:圆形、方形、菱形或者多边形。
  8. 根据权利要求6所述的天线单元,其特征在于,所述引向片为平面结构。
  9. 根据权利要求6所述的天线单元,其特征在于,所述引向片为对称非平面结构;
    其中,对称非平面结构的所述引向片的边缘朝向所述反射板折弯预设角度,以形成斗状结构;
    所述开槽结构对称设置在折弯后的边缘位置。
  10. 一种阵列天线通信设备,其特征在于,所述阵列天线通信设备设置有权利要求1~9任一项所述的天线单元。
PCT/CN2020/108039 2020-07-09 2020-08-10 天线单元及阵列天线通信设备 WO2022007097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010660376.0 2020-07-09
CN202010660376.0A CN111755838B (zh) 2020-07-09 2020-07-09 天线单元及阵列天线通信设备

Publications (1)

Publication Number Publication Date
WO2022007097A1 true WO2022007097A1 (zh) 2022-01-13

Family

ID=72711140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108039 WO2022007097A1 (zh) 2020-07-09 2020-08-10 天线单元及阵列天线通信设备

Country Status (2)

Country Link
CN (1) CN111755838B (zh)
WO (1) WO2022007097A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112510354B (zh) * 2020-11-23 2023-03-24 抖音视界有限公司 天线及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473040B1 (en) * 2000-03-31 2002-10-29 Mitsubishi Denki Kabushiki Kaisha Patch antenna array with isolated elements
CN104300211A (zh) * 2013-07-17 2015-01-21 中兴通讯股份有限公司 一种mimo天线、终端及其提高隔离度的方法
CN106910999A (zh) * 2017-01-20 2017-06-30 哈尔滨工程大学 一种微带天线阵的多层电磁带隙去耦结构
CN110165397A (zh) * 2019-05-22 2019-08-23 广东通宇通讯股份有限公司 一种塑料电镀 Massive MIMO 天线
CN210326125U (zh) * 2019-10-15 2020-04-14 罗森伯格技术有限公司 微带天线单元以及天线

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117969B (zh) * 2011-03-11 2012-08-29 深圳市华信天线技术有限公司 一种阵列天线
CN103682631A (zh) * 2013-12-31 2014-03-26 张家港保税区国信通信有限公司 多制式多频段双极化天线
CN104143685B (zh) * 2014-07-01 2017-02-15 泰兴市东盛电子器材厂 一种耦合馈电倒f天线
CN104319464B (zh) * 2014-10-29 2017-01-18 中国人民解放军理工大学 Uhf波段卫星通信双频圆极化天线装置
CN104409833A (zh) * 2014-11-26 2015-03-11 摩比天线技术(深圳)有限公司 天线辐射单元及具有该天线辐射单元的通信基站
CN105591191B (zh) * 2015-11-26 2020-02-11 广东通宇通讯股份有限公司 寄生辐射体及其双极化基站天线
CN106450674A (zh) * 2016-08-24 2017-02-22 重庆大学 天线阵列、通信器件和终端设备
US10290931B1 (en) * 2016-11-03 2019-05-14 Mano D. Judd Leading edge antenna structures
CN110768004B (zh) * 2019-10-28 2022-03-25 常州安塔歌电子科技有限公司 一种微带天线阵列解耦结构、方法以及采用该结构的微带天线阵列

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473040B1 (en) * 2000-03-31 2002-10-29 Mitsubishi Denki Kabushiki Kaisha Patch antenna array with isolated elements
CN104300211A (zh) * 2013-07-17 2015-01-21 中兴通讯股份有限公司 一种mimo天线、终端及其提高隔离度的方法
CN106910999A (zh) * 2017-01-20 2017-06-30 哈尔滨工程大学 一种微带天线阵的多层电磁带隙去耦结构
CN110165397A (zh) * 2019-05-22 2019-08-23 广东通宇通讯股份有限公司 一种塑料电镀 Massive MIMO 天线
CN210326125U (zh) * 2019-10-15 2020-04-14 罗森伯格技术有限公司 微带天线单元以及天线

Also Published As

Publication number Publication date
CN111755838B (zh) 2022-01-25
CN111755838A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
CN201655979U (zh) 复合式多输入多输出天线模块及其系统
CN102055072B (zh) 宽波束多环形天线模块
CN102403567B (zh) 多天线系统及具有该多天线系统的电子装置
WO2018040839A1 (zh) 一种低剖面基站天线辐射单元及天线
US11367943B2 (en) Patch antenna unit and antenna in package structure
CN105896071A (zh) 双极化振子单元、天线及多频天线阵列
WO2010078797A1 (zh) 双极化辐射单元及其平面振子
CN102570058A (zh) 复合式多天线系统及其无线通信装置
CN110957569B (zh) 一种宽频辐射单元及天线
WO2020134362A1 (zh) 一种天线、天线阵列和基站
US20110001678A1 (en) Antenna Array
CN110994147A (zh) 一种低频辐射单元和天线
CN109616766A (zh) 天线系统及通讯终端
WO2023025100A1 (zh) 天线振子及天线阵列
CN107465002B (zh) 一种多频多波束mimo天线
CN111541010A (zh) 一种5g低剖面双极化辐射单元及基站天线
WO2022007097A1 (zh) 天线单元及阵列天线通信设备
WO2021244063A1 (zh) 贴片天线及天线阵列
CN203386888U (zh) 双极化全向吸顶天线
CN111600116A (zh) 基站天线振子及天线
CN216597973U (zh) 一种双极化低频辐射单元
CN214153197U (zh) 一种天线单元及基站天线
JP2023090605A (ja) アンテナ構造体
CN203562508U (zh) 一种印刷板式小型化超宽频lte定向天线
CN213184541U (zh) 贴片天线及天线阵列

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944110

Country of ref document: EP

Kind code of ref document: A1