WO2022006887A1 - 一种线性电机 - Google Patents

一种线性电机 Download PDF

Info

Publication number
WO2022006887A1
WO2022006887A1 PCT/CN2020/101432 CN2020101432W WO2022006887A1 WO 2022006887 A1 WO2022006887 A1 WO 2022006887A1 CN 2020101432 W CN2020101432 W CN 2020101432W WO 2022006887 A1 WO2022006887 A1 WO 2022006887A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic steel
vibrator
coil assembly
linear motor
vibration direction
Prior art date
Application number
PCT/CN2020/101432
Other languages
English (en)
French (fr)
Inventor
毛路斌
崔志勇
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022006887A1 publication Critical patent/WO2022006887A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/34Reciprocating, oscillating or vibrating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors

Definitions

  • the utility model relates to the technical field of vibration motors, in particular to a linear motor.
  • Linear motor is a transmission device that directly converts electrical energy into linear motion mechanical energy, also known as linear motor, linear motor, push rod motor, etc.
  • a linear motor usually includes a vibrator and a stator. Generally, the reciprocating motion of the vibrator is realized under the action of ampere force, and it does not need to be driven by a transmission mechanism such as gears. Due to the advantages of simple structure, high acceleration and high precision, linear motors are widely used in different manufacturing and processing technology fields.
  • the magnetic circuit of the linear motor in the prior art is designed with a symmetrical structure, and the motor vibrates symmetrically with the same amplitude on the left and right sides. Since the acceleration of the left and right vibrations is the same, the existing linear motor has no direction difference in vibration effect and a single vibration sensation.
  • the purpose of the utility model is to provide a linear motor in which the geometric center of the magnetic steel system and the geometric center of the coil assembly do not overlap each other.
  • the present utility model provides a linear motor, which includes a casing with an accommodation space, a stator, a vibrator and an elastic member accommodated in the accommodation space, the stator is fixed on the casing, and the The elastic member is connected between the casing and the vibrator, and the vibrator is suspended in the receiving space.
  • One of the vibrator and the stator includes a coil assembly, and the other of the vibrator and the stator is a coil assembly.
  • One side includes a magnetic steel system spaced apart from the coil assembly, and the geometric center of the magnetic steel system and the geometric center of the coil assembly do not overlap each other.
  • the magnetic steel system includes a first magnetic steel and a second magnetic steel located on opposite sides of the coil assembly along the vibration direction of the vibrator, the first magnetic steel and the second magnetic steel are relative to the The coil assembly is asymmetrically arranged.
  • the orthographic projections of the first magnetic steel and the second magnetic steel on the coil assembly perpendicular to the vibration direction of the vibrator do not completely overlap.
  • the magnetic steel system includes a first magnetic steel and a second magnetic steel located on opposite sides of the coil assembly along the vibration direction of the vibrator, defining the vibration of the vibrator perpendicular to the geometric center of the coil assembly
  • the axis of the direction is a vertical axis, and the first magnet steel or/and the second magnet steel are arranged asymmetrically with respect to the vertical axis.
  • the thickness values of the parts of the first magnetic steel or/and the second magnetic steel placed on both sides of the vertical axis along the vibration direction of the vibrator are not equal.
  • the magnetic steel system further comprises a third magnetic steel and a fourth magnetic steel located on opposite sides of the winding plane of the coil assembly, the third magnetic steel and the fourth magnetic steel are opposite to the coil Components are not symmetrical.
  • the distance between the third magnetic steel and the coil assembly is D1
  • the distance between the fourth magnetic steel and the coil assembly is D2
  • the thickness value of the third magnetic steel along the vibration direction of the vibrator ⁇ the thickness value of the fourth magnetic steel along the vibration direction of the vibrator.
  • the coil assembly includes an iron core extending along the vibration direction of the vibrator, a coil wound around the outer circumference of the iron core, and sleeved on opposite ends of the iron core along the vibration direction of the vibrator. a pole piece, and the coil is located between the two pole pieces.
  • the coil assembly is the stator, and the coil assembly is fixedly connected to the housing;
  • the vibrator further includes a mass block connected to the elastic member, and a through hole is formed through the mass block, and the A magnetic steel system is fixed on the mass block and accommodated in the through hole, the magnetic steel system includes a magnetic steel opposite to the coil and arranged at intervals, and a magnetic steel sandwiched between the magnetic steel and the mass block the magnetic conductive sheet, the coil assembly is fixed on the casing and partially extends into the through hole.
  • the elastic member comprises an elastic arm spaced from the mass block and the housing, and a first connecting arm and a second connecting arm respectively bent and extended from opposite ends of the elastic arm; the The first connecting arm is fixed with the mass block, and the second connecting arm is fixed with the housing.
  • the elastic members are respectively disposed on opposite sides of the mass block along the vibration direction of the vibrator, and the thicknesses of the two elastic members on different sides of the mass block are different.
  • the present invention provides a magnetic steel system whose geometric center does not overlap with that of the coil assembly. Compared with the existing linear motor with a symmetrical magnetic circuit structure, this structure can enrich the The vibration sense of the motor makes the linear motor vibrate differently in the two vibration directions.
  • FIG. 1 is a schematic three-dimensional structure diagram of Embodiment 1 of the present invention.
  • FIG. 2 is an exploded view of the structure of the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line A-A in FIG. 1 .
  • FIG. 4 is a cross-sectional view taken along the B-B direction in FIG. 1 .
  • FIG. 5 is a schematic structural diagram of the magnetic steel system and the coil assembly according to the first embodiment.
  • FIG. 6 is a schematic structural diagram of the magnetic steel system and the coil assembly according to the second embodiment.
  • FIG. 7 is a schematic structural diagram of the magnetic steel system and the coil assembly according to the third embodiment.
  • FIG. 8 is a curve comparison diagram of the magnetic inductance BLx of the third embodiment and the symmetric structure linear motor.
  • FIG. 9 is a comparison diagram of the vibrator acceleration curves of the third embodiment and a linear motor with a symmetrical structure.
  • FIG. 10 is a schematic structural diagram of the magnetic steel system and the coil assembly according to the fourth embodiment.
  • the utility model provides a linear motor 100 .
  • the linear motor 100 includes a housing 1 , a stator 2 , a vibrator 3 , an elastic member 4 , a soldering piece 5 , a limit block 6 and a flexible circuit board 7 .
  • the stator 2, the vibrator 3, the elastic member 4, the welding piece 5 and the limit block 6 are all installed in the casing 1, the stator 2 is fixed on the casing 1, and the mass block 31 is fixed by the elastic member 4 It is placed in the casing 1 and suspended in the casing 1.
  • the elastic member 4 and the casing 1 and between the elastic member 4 and the mass block 31 are welded by the welding piece 5, and the vibrator 3 can vibrate relative to the stator 2 along the vibration direction of the vibrator 3.
  • the geometric center of the magnetic steel system 30 and the geometric center of the coil assembly 20 do not overlap each other.
  • the casing 1 includes a lower cover plate 11 , an upper cover plate 12 , a first side plate 13 and a second side plate 14 , and the casing 1 further includes a lower cover plate 11 , an upper cover plate 12 , a first The receiving space formed by the side plate 13 and the second side plate 14 (not marked in the figure).
  • the lower cover plate 11 and the upper cover plate 12 are disposed opposite to each other, the first side plate 13 and the second side plate 14 are both L-shaped, and the first side plate 13 is opposite to the second side plate 14
  • a rectangular frame is formed and connected to the lower cover 11 and the upper cover 12 .
  • a first groove 131 is defined on the short side of the L-shaped first side plate 13 close to the lower cover 11 .
  • the pole piece 23 of the stator 2 is fixed to the side of the lower cover plate 11 close to the upper cover plate 12 , and the coil 22 is electrically connected to the circuit board 7 .
  • the coil assembly 20 is the stator 2 , and the coil assembly 20 includes an iron core 21 , a coil 22 , and a pole piece 23 .
  • the coil assembly 20 is fixed on the casing 1 and partially extends into the through hole 311 opened on the mass block 31, the iron core 21 extends along the vibration direction of the vibrator 3, and the coil 22 is arranged around the outer periphery of the iron core 21 .
  • the pole pieces 23 are sleeved on both ends of the iron core along the vibration direction of the vibrator and are opposite to the two ends of the iron core 21.
  • the pole pieces 23 include a first pole piece 231 and a second pole piece 232.
  • the bottom of the pole piece 23 is welded to the lower cover plate 11. so that the entire stator 2 is fixed on the lower cover plate 11 .
  • the X axis passes through the geometric center of the coil assembly and is perpendicular to the winding plane of the coil assembly, wherein the vibration direction is along the X axis, and the Y axis passes through the geometric center of the coil assembly and Perpendicular to the vibration direction, the vibration direction includes a first vibration direction X1 and a second vibration direction X2.
  • the vibrator 3 includes a mass block 31 , a magnetic steel 32 and four magnetic conductive sheets 33 , and the magnetic steel 32 and the magnetic conductive sheets 33 form a magnetic steel system 30 .
  • the mass block 31 includes a through hole 311 , a first support portion 312 and a second support portion 313 .
  • a rectangular through hole 311 is formed at the center of the mass block 31
  • the mass block 31 is arranged around the stator 2 and the mass block 31 is suspended in the housing 1 by the elastic member 4 and the welding piece 5 .
  • the first support portion 312 and the second support portion 313 are arranged on both sides of the X-axis and the X-axis, and are located on the side of the mass block 31 close to the housing 1 . Centrosymmetric structure.
  • the first support portion 312 of the mass block 31 and the first connecting arm 42 of the elastic member 4 are welded and fixed together by the first welding piece 51 on the same side as the elastic member 4, and the second connecting arm 43 of the elastic member 4 is connected to the elastic member 4 by welding.
  • the second solder tab 52 on the same side is welded to the long side of the first side plate 13.
  • the second support portion 313 of the mass block 31 and the first connecting arm 42 of the other elastic member 4 are welded and fixed together by the first welding piece 51 on the same side as the elastic member 4 , and the second connecting arm 43 of the elastic member 4 is welded together. It is welded to the long side of the second side plate 14 through the second welding piece 52 on the same side as the elastic member 4 .
  • the elastic member 4 fixes the mass 31 on the housing 1 and is suspended in the housing 1 through the solder tabs 5 .
  • the magnetic steel system 30 includes a magnetic steel 32 opposite to the coil assembly 20 and arranged at intervals, and a magnetic conductive sheet 33 sandwiched between the magnetic steel 32 and the mass block 31 .
  • the magnetic steel 32 and the magnetic conductive sheet 33 are fixed to the mass block 31 and accommodated in the through hole 311 .
  • the magnetic steel 32 includes a first magnetic steel 321 and a second magnetic steel 322 .
  • the first magnetic steel 321 and the second magnetic steel 322 are located on both sides of the X axis, and the first magnetic steel 321 and the second magnetic steel 322 are asymmetrical with respect to the X axis or the Y axis.
  • the magnetic steel 32 further includes a third magnetic steel 323 and a fourth magnetic steel 324.
  • the third magnetic steel 323 and the fourth magnetic steel 324 are arranged opposite to both ends of the coil assembly 20 in the X-axis direction, and the third magnetic steel 323 and the fourth magnet 324 is asymmetric with respect to the X-axis or the Y-axis.
  • the magnetic conductive sheet 33 is placed in the through hole 311 , the four magnetic conductive sheets 33 are welded to the rectangular through hole 311 respectively, and the side of the magnetic conductive sheet 33 away from the mass block 31 is connected to the magnetic steel 32 glued to fix.
  • the magnetic conductive sheet 33 includes two oppositely arranged first magnetically conductive sheets 331 and two oppositely arranged second magnetically conductive sheets 332 .
  • the two first magnetic conductive sheets 331 are glued and fixed with the third magnetic steel 323 and the fourth magnetic steel 324 respectively, and the two second magnetic conductive sheets 332 are respectively connected with the first magnetic steel 323 and the fourth magnetic steel 324 .
  • the magnetic steel 321 and the second magnetic steel 322 are relatively glued and fixed, and the four magnetic conductive sheets 33 form a rectangular frame structure, which can play the role of magnetic shielding and magnetization.
  • a first glue groove 3311 is opened on the side of the two first magnetic conductive sheets 331 close to the magnetic steel, and a first glue groove 3311 is opened on the side of the two second magnetic conductive sheets 332 close to the magnetic steel.
  • Second glue tank 3321 the opening of the glue tank can increase the reliability of the glue between the magnetic steel 32 and the magnetic conductive sheet 33, and prevent the risk of glue overflow.
  • this embodiment includes two elastic pieces 4 respectively disposed on opposite sides of the mass block along the vibration direction of the vibrator, and further, two elastic pieces located on different sides of the mass block 4 have different thicknesses.
  • the elastic member 4 includes an elastic arm 41 , a first connecting arm 42 and a second connecting arm 43 .
  • the first connecting arm 42 and the second connecting arm 43 are connected to both ends of the elastic arm 41 , and the elastic arm 41 is connected to the mass block 31 and the housing 1 . interval setting.
  • the first connecting arm 42 and the second connecting arm 43 are formed by bending and extending the opposite ends of the elastic arm 41 along the vibration direction of the vibrator 3 .
  • the first connecting arm 42 and the second connecting arm 43 of the same elastic member 4 are bent and extended in the same direction, and the elastic arm 41 is suspended above the limit block 6 on the same side.
  • the first connecting arm 42 and the mass 31 are welded together by the first welding piece 51 on the same side as the elastic piece 4 , and the second connecting arm 43 welds the elastic piece 4 on the elastic piece 4 through the second welding piece 52 on the same side as the elastic piece 4 . on the long side of the first side plate 13 . That is, the elastic member 4 fixes the mass 31 on the casing 1 and suspends it in the casing through the welding piece 5 , so as to connect the vibrator 3 and the casing 1 and provide the vibrator 3 with supporting force and restoring force. Due to the asymmetry of vibration in the first vibration direction and the second vibration direction of the linear motor provided by the present invention, in order to ensure that the balance position of the linear motor remains unchanged, the thicknesses of the two elastic members 4 are different.
  • the linear motor 100 further includes soldering pieces 5 , wherein two first soldering pieces 51 and two second soldering pieces 52 are used for welding the elastic member 4 .
  • the second solder tab 52 Fixed to the mass block 31 , the second solder tab 52 is used to weld and fix the elastic member 4 to the housing 1 .
  • the linear motor 100 further includes two limit blocks 6 .
  • the limiting block 6 is welded to the side of the lower cover 11 close to the upper cover 12 .
  • the two limit blocks 6 are respectively located between the mass block 31 and the short sides of the L-shaped first side plate 13 and the short sides of the mass block 31 and the L-shaped second side plate 14 . between the edges.
  • the two limiting blocks 6 are respectively close to the short side of the L-shaped first side plate 13 and the short side of the L-shaped second side plate 14 , and away from the mass block 31 .
  • the two limiting blocks 6 are respectively located below the elastic arms 41 of the elastic members 4 on the same side. The setting of the limit block 6 can prevent the vibrator 3 from hitting the housing 1 .
  • the circuit board 7 is fixed on the side of the lower cover 11 close to the upper cover 12 , one end is electrically connected to the coil 22 of the coil assembly 20 , and the other end extends out of the casing 1 through the first groove 131 , as shown in FIGS. 1-4 .
  • the first magnetic steel 321 and the second magnetic steel 322 are asymmetrical with respect to the X-axis. Specifically, both the first magnetic steel 321 and the second magnetic steel 322 are on the coil assembly along the vibration direction perpendicular to the vibrator. The orthographic projections do not completely overlap.
  • the third magnetic steel 323 and the fourth magnetic steel 324 are asymmetric with respect to the Y-axis, the distance between the third magnetic steel 323 and the coil assembly is D1, and the fourth magnetic steel 324 and the coil assembly The distance is D2, the value of D1 > the value of D2, as shown in Figure 5.
  • the orthographic projections of the first magnetic steel 321 and the second magnetic steel 322 on the coil assembly along the vibration direction of the vibrator do not completely overlap, and the third magnetic steel 323 and the fourth magnetic steel 324 are respectively connected to the coil assembly.
  • the distances between 20 are different, so that the magnetic inductance BLx of the linear motor is asymmetric, so as to obtain asymmetric acceleration in the first vibration direction X1 and in the second vibration direction X2, when the coil assembly 20 is in the absolute value of the incoming current.
  • the absolute values are not equal, that is, the linear motor has vibration differences in the two vibration directions, so that a linear motor with rich vibration sense can be obtained on the basis of a simple structure.
  • the first magnetic steel 321 and the second magnetic steel 322 are asymmetrical with respect to the vertical axis, that is, the Y-axis is asymmetrical.
  • the first magnetic steel 321 includes three, and the first magnetic steel passing through the Y-axis
  • the steel 3211 itself is symmetrical with respect to the Y-axis, and the first magnetic steels placed on both sides of the Y-axis are the first magnetic steel 3212 and the first magnetic steel 3213, and the thicknesses of the two magnetic steels along the Y-axis direction are different.
  • the number of the second magnetic steel 322 is also three and is relatively symmetrical with the first magnetic steel 321.
  • the magnetic steel passing through the Y-axis is symmetrical with respect to the Y-axis.
  • the first magnetic steels placed on both sides of the Y-axis are respectively
  • the first magnetic steel 3212 and the first magnetic steel 3213 have different thicknesses along the Y-axis direction.
  • the thicknesses of the first magnetic steel 321 and the second magnetic steel 322 placed on the same side of the Y-axis along the Y-axis direction are the same, as shown in FIG. 6 .
  • the first magnetic steel 321 and the second magnetic steel 322 are asymmetrical with respect to the Y axis, so that the magnetic circuit structure of the linear motor realizes an asymmetrical structure, and the magnetic induction coefficient BLx is also asymmetrical, so that the first vibration direction is obtained.
  • the absolute value of , and the absolute value of the electromagnetic induction force F2 received by the vibrator in the second vibration direction are not equal, that is, the linear motor has vibration differences in the two vibration directions, so that a linear motor with rich vibration sense can be obtained on the basis of a simple structure. motor.
  • the third magnetic steel 323 and the fourth magnetic steel 324 are asymmetrical with respect to the Y-axis. Specifically, the distance between the third magnetic steel 323 and the coil assembly is D1, and the fourth magnetic steel 324 The distance from the coil assembly is D2, D1>D2, as shown in FIG. 7 .
  • the first magnet 321 includes three magnets 3211, 3212 and 3212
  • the second magnet 322 includes three magnets 3221, 3222 and 3223
  • the first magnet 321 and the second magnet 322 are opposite to each other. Both the X and Y axes are symmetrical.
  • the vibration direction of the vibrator is shown in the X direction in FIG. 7, and the vibration direction includes the first vibration direction X1 and the second vibration direction X2.
  • the curve of the magnetic inductance BLx of the vibrator in the magnetic circuit system is shown in Figure 8, and the curve A1 represents the symmetrical magnetic steel system structure corresponding to the vibration direction of the vibrator.
  • the curve change diagram of BLx during the movement process the curve A2 represents the corresponding curve change diagram of BLx during the movement process in the vibration direction of the vibrator in this embodiment. It can be seen from FIG. 8 that the curve A2 is obviously asymmetric and biased towards the X1 direction.
  • the acceleration curve of the vibrator is shown in Figure 9.
  • the curve B1 represents the curve change of the acceleration of the vibrator in the vibration direction corresponding to the symmetrical magnetic steel system structure, and the curve B2 represents this implementation.
  • the curve change diagram of the acceleration of the vibrator during the movement in the vibration direction the acceleration value of X1 is defined as a1, and the acceleration value of X2 is a2.
  • a1>a2 that is, the absolute value of the electromagnetic induction force F1 received by the vibrator in the first vibration direction and the vibrator
  • the absolute values of the electromagnetic induction force F2 received in the second vibration direction are not equal.
  • the third magnetic steel 323 and the fourth magnetic steel 324 are asymmetrical with respect to the Y-axis.
  • the distance between the third magnetic steel 323 and the coil assembly is D1
  • the distance between the fourth magnetic steel 324 and the coil assembly is D2
  • the value of D1 > the value of D2 so that the geometric center of the coil assembly is the same as The geometric centers of the magnetic steel system do not overlap, so as to obtain asymmetric acceleration, and further, when the coil assembly is under the condition that the absolute value of the incoming current is equal and the current direction is opposite, the electromagnetic induction force of the vibrator in the first vibration direction
  • the absolute value of F1 is not equal to the absolute value of the electromagnetic induction force F2 received by the vibrator in the second vibration direction, that is, the linear motor has vibration differences in the two vibration directions.
  • the utility model obtains a linear motor with rich vibration sense on the basis of a simple structure, that is, the linear motor has different vibration directions, thereby obtaining a linear motor with rich vibration sense on the basis of
  • the first magnet 321 includes three magnets 3211, 3212 and 3212
  • the second magnet 322 includes three magnets 3221, 3222 and 3223
  • the first magnet 321 and the second magnet 322 are opposite to each other. Both the X and Y axes are symmetrical.
  • the thicknesses of the third magnetic steel 323 and the fourth magnetic steel 324 along the X direction are not equal, so that the geometric center of the coil assembly does not overlap with the geometric center of the magnetic steel system, so as to obtain asymmetric acceleration, and further , under the condition that the absolute value of the incoming current is equal and the current direction is opposite, the absolute value of the electromagnetic induction force F1 received by the vibrator in the first vibration direction and the electric current received by the vibrator in the second vibration direction
  • the absolute value of the magnetic induction force F2 is not equal, that is, the linear motor has vibration differences in the two vibration directions.
  • the utility model obtains a linear motor with rich vibration sense on the basis of a simple structure, that is, the linear motor has different vibration directions, thereby obtaining a linear motor with rich vibration sense on the basis of a simple structure.
  • the magnetic steel system 30 is arranged so that the geometric centers of the magnetic steel system 30 and the coil assembly 20 do not overlap, so that the coil assembly can obtain Asymmetric acceleration, so that the absolute value of the electromagnetic induction force received by the vibrator in the first vibration direction is not equal to the absolute value of the electromagnetic induction force received by the vibrator in the second vibration direction, that is, a linear motor
  • the utility model can obtain a linear motor with rich vibration sense on the basis of a simple structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

本发明提供了一种线性电机,包括具有收容空间的外壳和收容于收容空间内的定子和振子以及弹性件,定子固定于外壳,弹性件连接在外壳与振子之间并振子悬置于收容空间内,振子和定子的其中一方包括线圈组件,振子和定子的另一方包括与线圈组件间隔相对的磁钢系统,磁钢系统的几何中心与线圈组件的几何中心互不重叠。本发明提供的线性电机的线圈组件在通入电流绝对值相等且电流方向相反的条件下,所述振子于第一振动方向所受到的电磁感应力F1的绝对值和所述振子于第二振动方向所受到的电磁感应力F2的绝对值不相等,即线性电机于两个振动方向存在振动差异,丰富了电机的振感。

Description

一种线性电机 技术领域
本实用新型涉及振动马达技术领域,尤其涉及一种线性电机。
背景技术
线性电机是一种将电能直接转换为直线运动机械能的传动装置,也称线性马达、直线马达、推杆马达等。线性电机通常包括振子和定子,一般在安培力的作用下实现其振子的往复运动,并不需要通过齿轮等传动机构进行传动。由于线性电机结构简单,高加速度,高精度等优势,被广泛应用于不同的制造加工技术领域中。
现有技术的线性电机的磁路为对称的结构设计,电机做左右振幅相同的对称振动,由于其左右振动的加速度相同,现有的线性马达在振动效果上无方向的差异且振感单一。
因此,有必要提供一种线性电机使得电机振动有方向上的偏向差异,丰富电机的振感。
技术问题
本实用新型的目的在于提供一种磁钢系统的几何中心与线圈组件的几何中心互不重叠的线性电机。
技术解决方案
本实用新型的技术方案如下:本实用新型提供了一种线性电机,包括具有收容空间的外壳和收容于所述收容空间内的定子和振子以及弹性件,所述定子固定于所述外壳,所述弹性件连接在所述外壳与所述振子之间并所述振子悬置于所述收容空间内,所述振子和所述定子的其中一方包括线圈组件,所述振子和所述定子的另一方包括与所述线圈组件间隔相对的磁钢系统,所述磁钢系统的几何中心与所述线圈组件的几何中心互不重叠。
优选地,所述磁钢系统包括位于所述线圈组件沿垂直所述振子的振动方向相对两侧的第一磁钢和第二磁钢,所述第一磁钢和第二磁钢相对于所述线圈组件不对称设置。
优选地,所述第一磁钢和第二磁钢沿垂直所述振子的振动方向在所述线圈组件上的正投影不完全重叠。
优选地,所述磁钢系统包括位于所述线圈组件沿所述振子的振动方向相对两侧的第一磁钢和第二磁钢,定义经过所述线圈组件的几何中心垂直所述振子的振动方向的轴为垂直轴,所述第一磁钢或/和所述第二磁钢相对所述垂直轴不对称设置。
优选地,所述第一磁钢或/和所述第二磁钢置于所述垂直轴两侧的部分沿垂直所述振子的振动方向的厚度值不相等。
优选地,所述磁钢系统还包括位于所述线圈组件的绕线平面的相对两侧的第三磁钢和第四磁钢,所述第三磁钢和第四磁钢相对于所述线圈组件不对称。
所述第三磁钢与所述线圈组件之间的距离为D1,所述第四磁钢与所述线圈组件之间的距离为D2,D1的值≠D2的值。
优选地,所述第三磁钢沿所述振子的振动方向的厚度值≠所述第四磁钢沿所述振子的振动方向的厚度值。
优选地,所述线圈组件包括沿所述振子的振动方向延伸的铁芯、绕设于所述铁芯外周的线圈、以及套设于所述铁芯沿所述振子的振动方向的相对两端的极靴,所述线圈位于两所述极靴之间。
优选地,所述线圈组件为所述定子,所述线圈组件与所述外壳固定相连;所述振子还包括与所述弹性件连接的质量块,所述质量块贯穿开设有通孔,所述磁钢系统固定于所述质量块并收容于所述通孔内,所述磁钢系统包括与所述线圈相对且间隔设置的磁钢以及夹设于所述磁钢与所述质量块之间的导磁片,所述线圈组件固定于所述外壳且部分延伸至所述通孔内。
优选地,所述弹性件包括与所述质量块及所述外壳间隔设置的弹力臂,以及分别自所述弹力臂相对两端分别弯折延伸的第一连接臂和第二连接臂;所述第一连接臂与所述质量块固定,所述第二连接臂与所述外壳固定。
优选地,所述弹性件沿所述振子的振动方向分别设置于所述质量块的相对两侧,位于所述质量块不同侧的两所述弹性件的厚度不同。
有益效果
本实用新型的有益效果在于:本实用新型提供了一种磁钢系统的几何中心与线圈组件的几何中心互不重叠,这种结构相对于现有的具有对称磁路结构的线性电机,可以丰富电机振感,使得线性电机于两个振动方向存在振动差异。
附图说明
图1为本实用新型实施例一的立体结构示意图。
图2为本实用新型实施例一的结构分解图。
图3为图1中A-A方向的剖面图。
图4为图1中B-B方向的剖面图。
图5为实施例一的磁钢系统与线圈组件的结构示意图。
图6为实施例二的磁钢系统与线圈组件的结构示意图。
图7为实施例三的磁钢系统与线圈组件的结构示意图。
图8为实施例三与对称结构线性电机的磁感应系数BLx的曲线对比图。
图9为实施例三与对称结构线性电机的振子加速度曲线对比图。
图10为实施例四的磁钢系统与线圈组件的结构示意图。
本发明的实施方式
下面结合附图和实施方式对本实用新型作进一步说明。
本实用新型提供了一种线性电机100。如图1-4所示,线性电机100包括外壳1、定子2、振子3、弹性件4、焊片5、限位块6和柔性电路板7。
如图1-4所示,定子2、振子3、弹性件4、焊片5和限位块6均装设于外壳1内,定子2固定于外壳1上,质量块31通过弹性件4固定于外壳1且悬置于外壳1内,弹性件4与外壳1之间以及弹性件4与质量块31之间均通过焊片5焊接,振子3可相对定子2沿振子3的振动方向振动,磁钢系统30的几何中心与线圈组件20的几何中心互不重叠。
具体地,如图1所示,外壳1包括下盖板11、上盖板12、第一侧板13和第二侧板14,外壳1还包括下盖板11、上盖板12、第一侧板13和第二侧板14形成的收容空间(图中未标示)。
更进一步地,如图1所示,下盖板11与上盖板12相对设置,第一侧板13和第二侧板14均呈L型,第一侧板13与第二侧板14相对设置围成一个矩形框且连接下盖板11与上盖板12。如图1-2所示,L型第一侧板13的短边靠近下盖板11一侧开设有第一凹槽131,第一凹槽131供电路板7穿设伸出外壳1。定子2的极靴23与下盖板11靠近上盖板12一侧相固定,并且线圈22与电路板7电连接。
具体地,如图2所示,线圈组件20为定子2,线圈组件20包括铁芯21、线圈22、极靴23。
更进一步地,如图2-4所示,线圈组件20固定于外壳1上去部分延伸至质量块31上开设的通孔311内,铁芯21沿振子3的振动方向延伸,线圈22饶设于铁芯21的外周。极靴23套设于铁芯沿振子的振动方向相对设置于铁芯21的两端,极靴23包括第一极靴231和第二极靴232,极靴23的底部焊接于下盖板11上,从而将整个定子2固定在下盖板11上。
如图5-7和图10所示的实施例中,X轴经过线圈组件的几何中心且垂直线圈组件的绕线平面,其中,振动方向沿着X轴,Y轴经过线圈组件的几何中心且垂直所述振动方向,振动方向包括第一振动方向X1和第二振动方向X2。
具体地,如图2所示,振子3包括质量块31、磁钢32和四个导磁片33,磁钢32和导磁片33组成磁钢系统30。
更进一步地,如图1-2所示,质量块31包括通孔311、第一支撑部312和第二支撑部313。如图2-4所述,质量块31中心处开设有贯穿其上的矩形通孔311,质量块31围绕定子2设置且通过弹性件4与焊片5将质量块31悬置于外壳1内。第一支撑部312和第二支撑部313设于X轴X轴两旁侧,且位于质量块31靠近外壳1的一侧,第一支撑部312和第二支撑部313关于质量块31的中心呈中心对称结构。质量块31的第一支撑部312与弹性件4的第一连接臂42通过与弹性件4同侧的第一焊片51焊接固定在一起,弹性件4的第二连接臂43通过与弹性件4同侧的第二焊片52焊接在第一侧板13的长边上。质量块31的第二支撑部313与另一个弹性件4的第一连接臂42通过与该弹性件4同侧的第一焊片51焊接固定在一起,该弹性件4的第二连接臂43通过与该弹性件4同侧的第二焊片52焊接在第二侧板14的长边上。弹性件4通过焊片5将质量块31固定于外壳1上且悬置于外壳1内。
具体地,如图2-4所示,磁钢系统30包括与线圈组件20相对且间隔设置的磁钢32以及夹设于磁钢32与质量块31之间的导磁片33,。磁钢32和导磁片33固定于质量块31并收容于通孔311内。
更进一步地,磁钢32包括第一磁钢321和第二磁钢322。第一磁钢321和第二磁钢322位于所述X轴两旁侧,且第一磁钢321和第二磁钢322相对所述X轴或所述Y轴不对称。磁钢32还包括第三磁钢323和第四磁钢324,第三磁钢323和第四磁钢324与线圈组件20于X轴方向的两端部间隔相对设置,且第三磁钢323和第四磁钢324相对所述X轴或Y轴不对称。
具体地,如图2-4所示,导磁片33置于通孔311内,四个导磁片33分别焊接于矩形通孔311,导磁片33远离质量块31的一侧与磁钢32胶粘固定。
具体地,如图2-4所示,导磁片33包括两个相对设置的第一导磁片331和两个相对设置的第二导磁片332。
更进一步地,如图2-4所示,两个第一导磁片331分别与第三磁钢323和第四磁钢324相对胶粘固定,两个第二导磁片332分别与第一磁钢321和第二磁钢322相对胶粘固定,且四个导磁片33形成一个矩形框结构,可起到磁屏蔽和聚磁的作用。
更进一步地,如图2所示,两个第一导磁片331分别靠近磁钢的一侧开设有第一胶水槽3311,两个第二导磁片332靠近磁钢的一侧开设有第二胶水槽3321,胶水槽的开设可以增加磁钢32和导磁片33之间胶粘的可靠性,防止溢胶风险。
具体地,如图2-4所示,本实施例包括沿振子的振动方向分别设置于质量块的相对两侧的两个弹性件4,更进一步地,位于质量块不同侧的两个弹性片4的厚度不同。弹性件4包括弹力臂41、第一连接臂42和第二连接臂43,第一连接臂42和第二连接臂43与弹力臂41的两端相连且弹力臂41与质量块31及外壳1之间间隔设置。本实施例中,第一连接臂42和第二连接臂43由弹力臂41相对两端沿振子3的振动方向弯折延伸形成。同一个弹性件4的第一连接臂42和第二连接臂43朝同一方向弯曲延伸且弹力臂41悬置于与其同侧的限位块6的上方。第一连接臂42与质量块31通过与弹性件4同侧的第一焊片51焊接在一起,第二连接臂43通过与弹性件4同侧的第二焊片52将弹性件4焊接在第一侧板13的长边上。即弹性件4通过焊片5将质量块31固定于外壳1上并悬置于外壳内,从而连接振子3和外壳1并给振子3提供支撑力和回复力。由于本实用新型所提供的线性电机第一振动方向和第二振动方向上振动的不对称,为了保证线性电机的平衡位置不变,则设置两个弹性件4的厚度不同。
具体地,如图1-4所示,线性电机100还包括焊片5,其中,两个第一焊片51和两个第二焊片52,第一焊片51用于将弹性件4焊接固定至质量块31上,第二焊片52用于将弹性件4焊接固定至外壳1上。
具体地,如图2-4所示,线性电机100还包括两个限位块6。限位块6焊接于下盖板11靠近上盖板12的一侧。
更进一步地,如图1-4所示,两个限位块6分别位于质量块31和L型第一侧板13的短边之间以及质量块31和L型第二侧板14的短边之间。两个限位块6分别靠近L型第一侧板13的短边和L型第二侧板14的短边,且远离质量块31。本实施例中,两个限位块6分别位于同侧弹性件4的弹力臂41的下方。限位块6的设置可以避免振子3撞到外壳1。
电路板7固定在下盖板11靠近上盖板12一侧且一端与线圈组件20的线圈22电连接,另一端穿过第一凹槽131伸出外壳1,如图1-4所示。
实施例1
本实施例中,第一磁钢321和第二磁钢322相对所述X轴不对称,具体地,第一磁钢321和第二磁钢322两者沿垂直振子的振动方向在线圈组件上的正投影不完全重叠。
更进一步地,第三磁钢323和第四磁钢324相对所述Y轴不对称,第三磁钢323与所述线圈组件的距离为D1,所述第四磁钢324与所述线圈组件的距离为D2,D1的值>D2的值,如图5所示。
本实施例中,第一磁钢321和第二磁钢322两者沿垂直振子的振动方向在线圈组件上的正投影不完全重叠,第三磁钢323和第四磁钢324分别与线圈组件20之间的距离不一样,使得线性电机的磁感应系数BLx不对称,从而获得在第一振动方向X1上和在第二振动方向X2上不对称的加速度,当线圈组件20在通入电流绝对值相等且电流方向相反的条件下,所述振子于第一振动方向X1方向上所受到的电磁感应力F1的绝对值和所述振子于第二振动方向X2方向上所受到的电磁感应力F2的绝对值不相等,即线性电机于两个振动方向存在振动差异,从而在结构简单的基础上得到振感丰富的线性电机。
实施例2
本实施例中,第一磁钢321和第二磁钢322相对所述垂直轴不对称,即Y轴不对称,具体地,第一磁钢321包括三个,穿过Y轴的第一磁钢3211自身相对Y轴对称,置于Y轴两侧的第一磁钢分别为第一磁钢3212和第一磁钢3213,这两个磁钢沿Y轴方向上的厚度不相同。第二磁钢322的个数也为三个且与第一磁钢321相对对称,穿过Y轴的磁钢为3221自身相对Y轴对称,置于Y轴两侧的第一磁钢分别为第一磁钢3212和第一磁钢3213,这两个磁钢沿Y轴方向上的厚度不相同。且第一磁钢321与第二磁钢322中置于Y轴同侧的磁钢沿Y轴方向上的厚度一致,如图6所示。
更进一步地,第三磁钢323和第四磁钢324相对所述Y轴不对称,第三磁钢323与所述线圈组件的距离为D1,所述第四磁钢324与所述线圈组件的距离为D2,D1的值=D2的值,如图6所示。
本实施例中,通过第一磁钢321和第二磁钢322相对Y轴不对称,使得线性电机的磁路结构实现不对称的结构,磁感应系数BLx也不对称,从而获得在第一振动方向X1方向上和在第二振动方向X2方向上不对称的加速度,当线圈组件在通入电流绝对值相等且电流方向相反的条件下,所述振子于第一振动方向所受到的电磁感应力F1的绝对值和所述振子于第二振动方向所受到的电磁感应力F2的绝对值不相等,即线性电机于两个振动方向存在振动差异,从而在结构简单的基础上得到振感丰富的线性电机。
实施例3
本实施例中,第三磁钢323和第四磁钢324相对于所述Y轴不对称,具体地,第三磁钢323与所述线圈组件的距离为D1,所述第四磁钢324与所述线圈组件的距离为D2,D1>D2,如图7所示。本实施例中,第一磁钢321包括三个磁钢3211、3212和3212,第二磁钢322包括三个磁钢3221、3222和3223,且第一磁钢321和第二磁钢322相对所述X轴和Y轴均对称。
由实施例3所得,由于D1>D2,振子的振动方向如图7中X方向所示,振动方向包括第一振动方向X1和第二振动方向X2。则与现有技术中对称的磁路系统结构相比,振子在磁路系统中的磁感应系数BLx的曲线如图8所示,曲线A1表示对称的磁钢系统结构对应的在振子的振动方向上运动过程中BLx的曲线变化图,曲线A2表示本实施例中对应的在振子的振动方向上运动过程中BLx的曲线变化图,由图8可知,曲线A2明显的不对称且偏向X1方向。与对称的磁钢系统结构相比,振子的加速度曲线如图9所示,曲线B1表示对称的磁钢系统结构对应的振子在振动方向上运动过程中加速度的曲线变化图,曲线B2表示本实施例中振子在振动方向上运动过程中加速度的曲线变化图,定义X1的加速度数值为a1,X2的加速度数值为a2。当线圈组件在通入电流绝对值相等且电流方向相反的条件下,本实施例中,a1>a2,即所述振子于第一振动方向所受到的电磁感应力F1的绝对值和所述振子于第二振动方向所受到的电磁感应力F2的绝对值不相等。
本实施例中,通过第三磁钢323和第四磁钢324相对于所述Y轴不对称。具体地,第三磁钢323与所述线圈组件的距离为D1,所述第四磁钢324与所述线圈组件的距离为D2,D1的值>D2的值,使得线圈组件的几何中心与磁钢系统的几何中心不重叠,从而获得不对称的加速度,进而,当线圈组件在通入电流绝对值相等且电流方向相反的条件下,所述振子于第一振动方向所受到的电磁感应力F1的绝对值和所述振子于第二振动方向所受到的电磁感应力F2的绝对值不相等,即线性电机于两个振动方向上存在振动差异。本实用新型在结构简单的基础上得到振感丰富的线性电机,即线性电机在振动有方向上的差异,从而在结构简单的基础上得到振感丰富的线性电机。
实施例4
本实施例中,第三磁钢323和第四磁钢324相对于所述Y轴不对称,具体地,第三磁钢323与所述线圈组件20的距离为D1,所述第四磁钢324与所述线圈组件20的距离为D2,D1=D2,但是,第三磁钢323和第四磁钢324沿X方向上的厚度不相等,如图10所示。本实施例中,第一磁钢321包括三个磁钢3211、3212和3212,第二磁钢322包括三个磁钢3221、3222和3223,且第一磁钢321和第二磁钢322相对所述X轴和Y轴均对称。
本实施例中,通过第三磁钢323和第四磁钢324沿X方向上的厚度不相等,使得线圈组件的几何中心与磁钢系统的几何中心不重叠,从而获得不对称的加速度,进而,当线圈组件在通入电流绝对值相等且电流方向相反的条件下,所述振子于第一振动方向所受到的电磁感应力F1的绝对值和所述振子于第二振动方向所受到的电磁感应力F2的绝对值不相等,即线性电机于两个振动方向上存在振动差异。本实用新型在结构简单的基础上得到振感丰富的线性电机,即线性电机在振动有方向上的差异,从而在结构简单的基础上得到振感丰富的线性电机。
综上所述,本实用新型通过设置磁钢系统30使磁钢系统30与线圈组件20的几何中心不重叠,以致所述线圈组件在通入电流绝对值相等且电流方向相反的条件下,获得不对称的加速度,从而使所述振子于第一振动方向上所受到的电磁感应力的绝对值和所述振子于第二振动方向上所受到的电磁感应力的绝对值不相等,即线性电机于两个振动方向存在振动差异,从而使本实用新型在结构简单的基础上得到振感丰富的线性电机。
以上所述的仅是本实用新型的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本实用新型创造构思的前提下,还可以做出改进,但这些均属于本实用新型的保护范围。

Claims (10)

  1. 一种线性电机,包括具有收容空间的外壳和收容于所述收容空间内的定子和振子以及弹性件,所述定子固定于所述外壳,所述弹性件连接在所述外壳与所述振子之间并所述振子悬置于所述收容空间内,所述振子和所述定子的其中一方包括线圈组件,所述振子和所述定子的另一方包括与所述线圈组件间隔相对的磁钢系统,其特征在于,所述磁钢系统的几何中心与所述线圈组件的几何中心互不重叠。
  2. 根据权利要求1所述的线性电机,其特征在于,所述磁钢系统包括位于所述线圈组件沿垂直所述振子的振动方向相对两侧的第一磁钢和第二磁钢,所述第一磁钢和第二磁钢相对于所述线圈组件不对称设置。
  3. 根据权利要求2所述的线性电机,其特征在于,所述第一磁钢和第二磁钢沿垂直所述振子的振动方向在所述线圈组件上的正投影不完全重叠。
  4. 根据权利要求1所述的线性电机,其特征在于,所述磁钢系统包括位于所述线圈组件沿所述振子的振动方向相对两侧的第一磁钢和第二磁钢,定义经过所述线圈组件的几何中心垂直所述振子的振动方向的轴为垂直轴,所述第一磁钢或/和所述第二磁钢相对所述垂直轴不对称设置。
  5. 根据权利要求4所述的线性电机,其特征在于,所述第一磁钢或/和所述第二磁钢置于所述垂直轴两侧的部分沿垂直所述振子的振动方向的厚度值不相等。
  6. 根据权利要求1所述的线性电机,其特征在于,所述磁钢系统还包括位于所述线圈组件的绕线平面的相对两侧的第三磁钢和第四磁钢,所述第三磁钢和第四磁钢相对于所述线圈组件不对称。
  7. 根据权利要求6所述的线性电机,其特征在于,所述第三磁钢与所述线圈组件之间的距离为D1,所述第四磁钢与所述线圈组件之间的距离为D2,D1的值≠D2的值。
  8. 根据权利要求6所述的线性电机,其特征在于,所述第三磁钢沿所述振子的振动方向的厚度值≠所述第四磁钢沿所述振子的振动方向的厚度值。
  9. 根据权利要求1所述的线性电机,其特征在于,所述线圈组件包括沿所述振子的振动方向延伸的铁芯、绕设于所述铁芯外周的线圈、以及套设于所述铁芯沿所述振动方向的相对两端的极靴,所述线圈位于两所述极靴之间。
  10. 根据权利要求1-9任一项所述的线性电机,其特征在于,所述线圈组件为所述定子,所述线圈组件与所述外壳固定相连;所述振子还包括与所述弹性件连接的质量块,所述质量块贯穿开设有通孔,所述磁钢系统固定于所述质量块并收容于所述通孔内,所述磁钢系统包括与所述线圈相对且间隔设置的磁钢以及夹设于所述磁钢与所述质量块之间的导磁片,所述线圈组件固定于所述外壳且部分延伸至所述通孔内。
    11. 根据权利要求10所述的线性电机,其特征在于,所述弹性件包括与所述质量块及所述外壳间隔设置的弹力臂,以及分别自所述弹力臂相对两端分别弯折延伸的第一连接臂和第二连接臂;所述第一连接臂与所述质量块固定,所述第二连接臂与所述外壳固定。
    12. 根据权利要求10所述的线性电机,其特征在于,所述弹性件沿所述振子的振动方向分别设置于所述质量块的相对两侧,位于所述质量块不同侧的两所述弹性件的厚度不同。
PCT/CN2020/101432 2020-07-06 2020-07-10 一种线性电机 WO2022006887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021297412.3 2020-07-06
CN202021297412.3U CN212627625U (zh) 2020-07-06 2020-07-06 一种线性电机

Publications (1)

Publication Number Publication Date
WO2022006887A1 true WO2022006887A1 (zh) 2022-01-13

Family

ID=74745945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101432 WO2022006887A1 (zh) 2020-07-06 2020-07-10 一种线性电机

Country Status (2)

Country Link
CN (1) CN212627625U (zh)
WO (1) WO2022006887A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116915013B (zh) * 2023-09-14 2024-03-08 苏州索迩电子技术有限公司 一种线性振动装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548474B2 (ja) * 1999-12-24 2004-07-28 帝国通信工業株式会社 振動発生器
US20150123498A1 (en) * 2013-11-04 2015-05-07 Hyun-Ki Yang Linear vibrator and production method therefor
CN204597757U (zh) * 2015-05-29 2015-08-26 金龙机电股份有限公司 一种低漏磁水平振动线性电机
CN208955872U (zh) * 2018-08-03 2019-06-07 瑞声科技(南京)有限公司 线性振动电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3548474B2 (ja) * 1999-12-24 2004-07-28 帝国通信工業株式会社 振動発生器
US20150123498A1 (en) * 2013-11-04 2015-05-07 Hyun-Ki Yang Linear vibrator and production method therefor
CN204597757U (zh) * 2015-05-29 2015-08-26 金龙机电股份有限公司 一种低漏磁水平振动线性电机
CN208955872U (zh) * 2018-08-03 2019-06-07 瑞声科技(南京)有限公司 线性振动电机

Also Published As

Publication number Publication date
CN212627625U (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
JP7386062B2 (ja) 振動発生装置
KR101471061B1 (ko) 스피커
WO2021000093A1 (zh) 一种马达
WO2018058808A1 (zh) 线性振动马达以及电子设备
CN113873381A (zh) 一种振动装置、骨传导耳机、可穿戴设备及智能硬件设备
US11289990B2 (en) Linear vibration motor
US7814505B2 (en) Objective-lens driving device utilizing tracking coils and focus coils arranged in series
US20200412228A1 (en) Vibration motor
WO2020140536A1 (zh) 线性振动电机
WO2022000642A1 (zh) 线性振动电机
WO2022006887A1 (zh) 一种线性电机
WO2020134379A1 (zh) 线性振动电机
WO2020134378A1 (zh) 线性振动电机
WO2022000643A1 (zh) 线性振动电机
WO2022006938A1 (zh) 一种线性振动马达
WO2020098426A1 (zh) 振动电机
CN213125810U (zh) 震动模块
CN216313372U (zh) 一种振动装置、骨传导耳机、可穿戴设备及智能硬件设备
JP6633801B1 (ja) リニア振動モータ
WO2022134238A1 (zh) 振动马达
JP2020019007A (ja) リニア振動モータ
JP2020185516A (ja) 振動発生装置
CN216673281U (zh) 扬声器
CN219041559U (zh) 一种永磁直线电机
WO2022067905A1 (zh) 一种振动电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944188

Country of ref document: EP

Kind code of ref document: A1