WO2022006751A1 - 激光发射装置、激光雷达和智能感应设备 - Google Patents

激光发射装置、激光雷达和智能感应设备 Download PDF

Info

Publication number
WO2022006751A1
WO2022006751A1 PCT/CN2020/100703 CN2020100703W WO2022006751A1 WO 2022006751 A1 WO2022006751 A1 WO 2022006751A1 CN 2020100703 W CN2020100703 W CN 2020100703W WO 2022006751 A1 WO2022006751 A1 WO 2022006751A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
receiving
optical adjustment
emission
unit
Prior art date
Application number
PCT/CN2020/100703
Other languages
English (en)
French (fr)
Inventor
杨莹
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2020/100703 priority Critical patent/WO2022006751A1/zh
Priority to CN202080005404.3A priority patent/CN112888957B/zh
Priority to CN202311292167.5A priority patent/CN117310654A/zh
Publication of WO2022006751A1 publication Critical patent/WO2022006751A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters

Definitions

  • Embodiments of the present invention relate to the technical field of laser radar, and in particular, to a laser emitting device, a laser radar, and an intelligent sensing device.
  • Lidar is a radar system that emits a laser beam to detect the position, speed and other characteristics of the target object. Its working principle is to first emit a detection laser beam to the target object, and then combine the received reflected laser signal reflected from the target object with the target object. The transmitted signals are compared and processed to obtain the relevant information of the target object, such as parameters such as target distance, azimuth, height, speed, attitude and shape.
  • the inventor of the present application found that the off-axis laser radar, in order to obtain the long-distance ranging capability, has the problem of low overlap of the transmitting field of view and the receiving field of view at a short distance, resulting in the inability to effectively perform effective detection on objects at a short distance. detection.
  • the purpose of the embodiments of the present invention is to provide a laser emitting device, a laser radar and an intelligent sensing device, so as to solve the problem in the prior art that close-range objects cannot be effectively detected.
  • An embodiment of the present invention provides a laser emission device, the device includes: a laser emission array, a first laser emission unit group, and a first emission optical adjustment unit group;
  • the laser emitting array includes a first laser emitting unit group
  • the first laser emitting unit group includes a plurality of first laser emitting units
  • the first emission optical adjustment unit group includes a plurality of first emission optical adjustment units
  • the first emission optical adjustment unit in the first emission optical adjustment unit group is set corresponding to the first laser emission unit in the first laser emission unit group, and is used to adjust the first laser emission unit group in the first laser emission unit group.
  • the outgoing direction of the laser signal emitted by the first laser emitting unit is determined, so that the laser beam emitted by the first laser emitting unit is aligned with the detection field of view at a short distance.
  • the device further includes: a second laser emission unit group and a second emission optical adjustment unit group;
  • the second laser emitting unit group includes at least one second laser emitting unit
  • the second emission optical adjustment unit group includes at least one second emission optical adjustment unit
  • the second emission optical adjustment unit in the second emission optical adjustment unit group is arranged corresponding to the second laser emission unit in the second laser emission unit group, and is used for adjusting the second laser emission unit group in the second laser emission unit group.
  • the laser signal emitted by the second laser emitting unit is collimated.
  • the plurality of first emission optical adjustment units in the first emission optical adjustment unit group are collimated optical adjustment units, and the emission optical axes of the plurality of first laser emission units are the same as the corresponding first laser emission units.
  • the optical axes of the emission optical adjustment units do not coincide.
  • the plurality of first emission optical adjustment units in the first emission optical adjustment unit group are a combination of one or more of optical wedges, microprisms, spherical mirrors or cylindrical mirrors.
  • the adjustment angle ⁇ of the laser signal adjusted by the first emission optical adjustment unit in the first emission optical adjustment unit group is:
  • D is the distance between the first laser emitting field of view (long-distance requirement) and the receiving field of view; L is the distance between the first laser emitting unit and the short-range target.
  • a plurality of first emission optical adjustment units in the first emission optical adjustment unit group set corresponding adjustments according to different close-range objects detected by a plurality of first laser emission units in the first laser emission unit group. angle.
  • the laser emitting lens receives the adjusted laser signal, and shoots the laser signal to a short-range detection object;
  • the laser emitting lens receives the collimated laser signal, and emits the laser signal to a long-distance detection object.
  • the embodiment of the present invention also provides a laser radar, including the above-mentioned laser transmitting device and laser receiving device;
  • the laser receiving device includes: a laser receiving array and a first laser receiving unit group;
  • the laser receiving array includes a first laser receiving unit group
  • the first laser receiving unit group includes a plurality of first laser receiving units
  • the plurality of first laser receiving units are arranged corresponding to the plurality of first laser emitting units of the first laser emitting unit group, and are used for receiving echo laser signals corresponding to the laser light emitted by the first laser emitting units.
  • the laser receiving array further includes a second laser receiving unit group; the laser receiving device further includes a first receiving optical adjustment unit group;
  • the second laser receiving unit group includes a plurality of second laser receiving units
  • the second laser receiving unit is arranged corresponding to the plurality of second laser emitting units of the second laser emitting unit group, and is used for receiving the echo laser signal corresponding to the emitted laser of the second laser emitting unit;
  • the first receiving optical adjustment unit group includes a plurality of first receiving optical adjustment units
  • the first receiving optical adjustment unit is disposed on the first side of the second laser receiving unit, and is used to emit echo laser light corresponding to the laser light from the second laser emitting unit incident on the optical surface of the first receiving optical adjustment unit The outgoing direction of the signal is adjusted to the second laser receiving unit.
  • the laser radar includes a laser receiving plate, the laser receiving array is disposed on the laser receiving plate, and the first receiving optical adjustment unit is disposed at a first preset angle with the plane where the laser receiving plate is located.
  • the first receiving optical adjustment unit forms a second preset angle with a first vertical plane perpendicular to the laser receiving plate.
  • the first receiving optical adjustment unit is arranged on the first side of the laser receiving array group, and is used to adjust the exit direction of the laser light incident on the surface of the first receiving optical adjustment unit to the laser receiving array group. on a plurality of the second laser receiving units.
  • the laser receiving device further includes a second receiving optical adjustment unit
  • the second receiving optical adjustment unit is arranged on the second side of at least one of the second laser receiving units in the second laser receiving group, and the second side of the second laser receiving unit is the same as the second laser receiving unit. the opposite side of the first receiving optical adjustment unit of the laser receiving unit.
  • the first receiving optical adjustment unit is one or more;
  • the first receiving optical adjustment unit When there is one first receiving optical adjustment unit, the first receiving optical adjustment unit is arranged along the first laser receiving group, and the optical surface of the first receiving optical adjustment unit is on the laser receiving plate
  • the length of the projection along the laser receiving array group is greater than or equal to the total length of the arrangement of all the second laser receiving units in the laser receiving group;
  • the multiple first receiving optical adjustment units correspond to multiple second laser receiving units in the second laser receiving group, and are used to The outgoing direction of the laser light to each of the optical reflection surfaces of the plurality of first receiving optical adjustment units is adjusted to each of the second laser light receiving units in the second laser light receiving group.
  • the embodiment of the present application further proposes an intelligent sensing device, which adopts the laser radar in the above-mentioned embodiment.
  • the emission optical adjustment units in front of the multiple laser emission units respectively, the adjustment of the laser signal emitted by the laser emission array is realized, and the detection of close-range objects is realized.
  • the emitting optical adjustment unit and the laser emitting unit are arranged in a one-to-one correspondence, so that the adjustment angle of each laser emitting unit can be adjusted conveniently, and the detection effect of close-range objects is ensured to the greatest extent.
  • the transmitting optical adjustment unit is directly arranged with the laser transmitting unit, the structure is simple, and the major changes to the structure of the laser radar are avoided.
  • Figure 1 shows a schematic diagram of LiDAR short-range detection
  • Fig. 2 shows the light path diagram of lidar detecting close-range objects
  • FIG. 3 shows a structural diagram of a lidar proposed by an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of the optical path adjustment of the laser emitting device proposed by the embodiment of the present invention
  • FIG. 5 shows a schematic diagram of the adjustment angle of the laser emitting device according to the embodiment of the present invention.
  • Fig. 6a shows a first optical path diagram of laser radar transmission and reception provided by an embodiment of the present invention
  • FIG. 6b shows a second optical path diagram of laser radar transmission and reception provided by an embodiment of the present invention
  • FIG. 7 shows a schematic diagram of the configuration of a receiving optical adjustment unit of a laser receiving device provided by an embodiment of the present invention
  • FIG. 8 is a schematic diagram showing the arrangement of a receiving optical adjustment unit of a laser receiving device provided by another embodiment of the present invention.
  • the basic principle of lidar is that the laser emits laser light, which is collimated by the transmitting optical system and then exits. After hitting the object, the laser is reflected back to the receiving optical system of the lidar and converted into an electrical signal.
  • the optical system of lidar can be divided into coaxial system and off-axis system.
  • the transmitting optical system and the receiving optical system are not on the same axis (ie, the off-axis system), in order to obtain the long-distance ranging capability, in the actual use case, as shown in Figure 1, in the actual scene application, the vehicle-mounted lidar is used.
  • Figure 2 is an optical path diagram of distance measurement of a short-range object by an existing laser radar.
  • the laser transmitting unit emits a laser beam A.
  • the laser beam A is collimated by the FAC fast-axis collimating lens, it passes through a reflector. Reflected to the emission lens, after the emission lens is collimated and shaped, it shoots towards the object to be measured.
  • the measured object is a short-range target
  • the emission angle of the laser emitting unit is mainly towards the far-end object
  • the light beam A directed to the short-range target is reflected by the short-range target, and then passes through the receiving lens and the reflector, and its reflection
  • the optical signal A is deflected and cannot be injected into the laser receiving unit, which makes the lidar unable to detect close-range objects.
  • an embodiment of the present application proposes a laser emitting device, as shown in FIG. 3 , the device includes: a laser emitting array 110 , a first laser emitting unit group 120 and a first emitting optics Adjustment unit group 140; the laser emission array 110 includes a first laser emission unit group 120; the first laser emission unit group 120 includes a plurality of first laser emission units 122; the first emission optical adjustment unit group 140 includes A plurality of first emission optical adjustment units 142 ; the first emission optical adjustment units 142 in the first emission optical adjustment unit group 140 correspond to the first laser emission units 122 in the first laser emission unit group 120 Setting, that is, one first emission optical adjustment unit 142 corresponds to one first laser emission unit 122 , and the first emission optical adjustment unit group 140 is used to adjust the first laser emission units 122 in the first laser emission unit group 120
  • the outgoing direction of the emitted laser signal aligns the laser beam emitted by the first laser emitting unit with the detection field of view at a short distance
  • the optical path diagram of the first emission optical adjustment unit 142 for adjusting the laser signal emitted by the first laser emission unit 122 is shown in FIG. 4 .
  • the dotted line represents the original emission field of view.
  • the laser beam emitted by the first laser emitting unit After adjusting the laser signal emitted by the first laser emitting unit, the laser beam emitted by the first laser emitting unit is aligned with the detection field of view at a short distance, and the alignment at a short distance is The original detection field of view formed by the laser beam before adjustment intersects with the laser beam, thereby realizing the detection of close-range objects and the realization of distance measurement of close-range objects.
  • the first emission optical adjustment units in front of the plurality of first laser emission units respectively, it is possible to enhance the detection of close-range objects under the condition that the overall detection requirements of the lidar are met.
  • the first emission optical adjustment unit and the first laser emission unit are arranged in a one-to-one correspondence, the adjustment angle of each first laser emission unit can be easily adjusted, and the The first emitting optical adjustment units corresponding to different first laser emitting units are set to different adjustment angles, so as to ensure the detection effect of close-range objects to the greatest extent.
  • the first emission optical adjustment unit is directly arranged with the first laser emission unit, the structure is simple, and major changes to the structure of the laser radar are avoided.
  • the laser emission device further includes a second laser emission unit group 160 and a second emission optical adjustment unit group 180 ;
  • the second laser emission unit group 160 includes at least one laser emission unit 162 ;
  • the second emission optical adjustment unit group 180 includes at least one second emission optical adjustment unit 182 ;
  • the second emission optical adjustment unit 182 in the second emission optical adjustment unit group 180 and the second laser emission unit group 160 The second laser emitting unit 162 in the second laser emitting unit 160 is correspondingly configured to perform collimation processing on the laser signal emitted by the second laser emitting unit 162 in the second laser emitting unit group 160 .
  • the second laser emitting unit 122 in the first laser emitting unit group 120 is used to detect close-range objects, and the second emitting optical adjustment unit in the first emitting optical adjustment unit group 140 142, respectively arranged in front of the second laser emitting units 122 in the first laser emitting unit group 120, for adjusting the laser signal, and the adjusted laser signal directly shoots at a close-range object, and the The object reflects the incident laser light into the second laser light receiving unit.
  • the second laser emitting unit 162 in the second laser emitting unit group 160 is used to detect distant objects, and the second emitting optical adjustment unit 182 in the second emitting optical adjustment unit group 180 is arranged in the Before the second laser emitting unit 162 in the second laser emitting group 160, it is used to perform collimation processing on the laser signal, and the laser signal after the collimation processing is directed to a long-distance object to detect the long-distance object, The distant object reflects the incident laser signal into the second laser receiving unit.
  • the first laser emitting unit of the first laser emitting unit group 120 satisfies:
  • L is the actual detection distance of the first laser emitting unit
  • h is the height of the fixed distance detection plane of the lidar
  • represents the field of view angle of the first laser emitting unit
  • the target detection distance is the distance between the intersection of the emission optical path and the detection field of view when the off-axis lidar is designed under normal circumstances.
  • the first emission optical adjustment unit is an optical element that can adjust the optical path, wherein the first emission optical adjustment unit can be: a light wedge, a microprism, a spherical mirror or a cylindrical mirror a combination of one or more.
  • the second emission optical adjustment unit is an optical element that can collimate the optical path, wherein the second emission optical adjustment unit can be an optical fiber or a cylindrical lens, or an optical fiber or a cylindrical lens and other A combination of optical elements.
  • the embodiment of the present application divides the laser emitting array into a first laser emitting unit group and a second laser emitting unit group, and the two are respectively used for the detection of close-range objects and the detection of long-distance objects,
  • a first emitting optical adjustment unit group is set to adjust the laser signal sent by the first laser emitting unit so that it is directed to the short-range object;
  • a second emitting optical adjustment unit group is arranged, which is used for collimating the laser signal emitted by the second laser emitting unit, so that it is directed to the distant object.
  • the detection of short-range objects and long-distance objects can be realized by a lidar, which improves the detection effect of short-range objects.
  • the laser emitting unit is often set together with the collimating optical adjustment unit, such as a collimating optical element, to perform collimation processing on the outgoing laser light, so that the entire emitting device has a high integration degree and a structure.
  • the embodiment of the present application utilizes the structure of the existing laser radar to the greatest extent, and solves the problems existing in the existing technology.
  • a plurality of first emission optical adjustment units 142 in the first emission optical adjustment unit group 140 are set as collimating lenses
  • the plurality of first laser emission unit group 120 are set as collimating lenses.
  • the emitting optical axis of the first laser emitting unit 122 and the optical axis of the corresponding first emitting optical adjustment unit 142 are set not to overlap, so as to realize the adjustment of the optical path of the laser signal emitted by the first laser emitting unit, so as to maximize the utilization of components of existing lidars.
  • setting the optical axes of the first emitting optical adjustment unit and the first laser emitting unit to be non-overlapping is achieved by setting the optical axis of the collimating lens and the emitting optical axis of the first laser emitting unit at an angle.
  • D is the distance between the original emission field of view (long-distance requirement) and the receiving field of view, that is, the relative deviation between the original spot position and the target spot position that makes the short-range signal meet the requirements
  • L is the near target distance that needs to be detected.
  • D is the distance between the original emission field of view (long-distance requirement) and the receiving field of view, that is, the relative deviation of the original spot position and the target spot position that makes the short-range signal meet the requirements
  • L is the near target distance to be detected
  • D' is the position offset of the light spot on the short-range target
  • L' is the target distance.
  • the collimating lens as the first emission optical adjustment unit, it is only necessary to set the optical axes of the collimating lens and the first laser emission unit to be out of alignment, and then the optical path of the emitted laser can be adjusted, so that the first laser emission unit can be adjusted.
  • the optical path of the laser emitting unit group and the detection field of view intersect at a close distance, so that on the basis of meeting the requirements of near-field object detection, the structure is simple, and there is no need to make too many changes to the existing laser radar, and the structure is compact.
  • each first emission optical adjustment unit 120 in the first emission optical adjustment unit group 120 can adjust the outgoing laser light of each first laser emission unit 122 in the first laser emission unit group 120 to exit at an angle to each other; each first emission optical adjustment unit 122 in the first emission optical adjustment unit group 120 also The outgoing lasers of each first laser emitting unit 122 can be adjusted to be emitted in parallel with each other; or, each first emitting optical adjusting unit 122 in the first emitting optical adjusting unit group 120 can also adjust the outgoing laser part of each first laser emitting unit 122 Angled, partially parallel.
  • each first laser emitting unit 122 in the first laser emitting unit group 120 in the first emitting optical adjustment unit group 120 can be set according to requirements.
  • the adjustment angle ⁇ of the first emission optical adjustment unit can be set respectively, so as to achieve four laser emission units.
  • the outgoing optical path of the transmitting unit and the detection field of view intersect at the positions of 1m, 3m, 5m and 10m respectively, so as to realize the near-field detection at four positions.
  • first laser emitting unit group when there are multiple emitting units in the first laser emitting unit group, they can also be divided into several groups, so that each group can detect different near-field distances.
  • each group can detect different near-field distances.
  • the laser emitting device further includes a laser emitting lens 190; the laser emitting lens 190 receives the adjusted laser signal, and shoots the laser signal to a short-range detection object; The laser emitting lens receives the collimated laser signal, and emits the laser signal to the long-distance detection object.
  • the laser emitting device provided by the embodiments of the present application, by arranging the first emitting optical adjustment unit in front of the plurality of first laser emitting units respectively, the adjustment of the laser signal emitted by the laser emitting array is realized, and the For the detection of close-range objects, at the same time, since the first emission optical adjustment unit and the first laser emission unit are arranged in a one-to-one correspondence, the adjustment angle of each first laser emission unit can be easily adjusted, and the maximum degree It ensures the detection effect of close-range objects.
  • the optical system of lidar can be divided into on-axis system and off-axis system.
  • the transmitting optical system and the receiving optical system are off-axis systems
  • the near-field blind area usually occurs due to two reasons.
  • the laser emission beam detection field of view and the detector receiving The field of view is aligned at a long distance, which leads to a completely non-overlapping area between the emission field of view and the reception field of view at a short distance, resulting in a blind area.
  • the above embodiment solves the problem of the emission light path and the The problem that the receiving optical paths do not overlap in the near distance, but there is also a situation that when the transmitting unit that detects the long distance also hits the near object and is reflected, because the transmitting optical system and the receiving optical system are aligned at a distance Therefore, the image point formed by the reflected signal light through the receiving lens is not on the focal plane of the receiving lens, and at the same time, the reflected signal cannot be received by the receiver after the optical path is folded by the reflector at the receiving end. Therefore, the invention further provides The following embodiments further address the above problems.
  • Another embodiment of the present invention further provides a laser radar, which includes a laser emitting device and a laser receiving device, as shown in FIG. 3 .
  • the laser emission device includes: a laser emission array 110, a first laser emission unit group 120 and a first emission optical adjustment unit group 140; the laser emission array 110 includes a first laser emission unit group 120; the first laser emission The unit group 120 includes a plurality of first laser emission units 122 ; the first emission optical adjustment unit group 140 includes a plurality of first emission optical adjustment units 142 ; the first emission optical adjustment units in the first emission optical adjustment unit group 140
  • the adjustment units 142 are provided in a one-to-one correspondence with the first laser emitting units 122 in the first laser emitting unit group 120 , and are used for adjusting the first laser emitting units 122 in the first laser emitting unit group 120 .
  • the emitted laser signal is adjusted so that the detection field of view of the laser light emitted by the first laser emitting unit group and the corresponding receiving field of view produce an intersection in the near field.
  • the laser receiving device includes: a laser receiving array 210 and a first laser receiving unit group 220 ; the laser receiving array 210 includes a first laser receiving unit group 220 .
  • the first laser receiving unit group 220 includes a plurality of first laser receiving units 222 ; the plurality of first laser receiving units 222 are arranged corresponding to the plurality of first laser emitting units 122 of the first laser emitting unit group 120 , which is used to receive the echo laser signal corresponding to the laser emitted by the first laser emitting unit.
  • the laser radar sets a first transmitting optical adjustment unit in front of the first laser transmitting unit to detect the first laser transmitting unit that needs to detect close-range objects.
  • the emitted laser signal is adjusted, and the emitted laser signal is adjusted into a laser signal B, which is reflected by the emitting mirror, passes through the emitting lens, and is directed to a short-range target object.
  • the short-range target object reflects the laser signal B to the receiving lens of the laser receiving device.
  • the laser signal B adjusted by the first transmitting optical adjustment unit receives the echo laser signal through the laser receiving lens, and the mirror injects the adjusted laser signal B into the first laser receiving lens on the unit.
  • the adjusted echo laser signal can also be reflected to the first laser at the receiving end after being reflected by a close-range object.
  • the effect of lidar on detecting close-range objects is improved.
  • the laser emission array 110 further includes a second laser emission unit group 160 and a second emission optical adjustment unit group 180;
  • the second laser emission unit group 160 includes a plurality of second laser emission units 162;
  • the second emission optical adjustment unit group 180 includes at least one second emission optical adjustment unit 182;
  • the second laser emitting units 162 in the group 160 are correspondingly arranged, and are used to perform collimation processing on the laser signals emitted by the second laser emitting units 162 in the second laser emitting unit group 160, and shoot them to a long distance. object.
  • the laser receiving array 210 further includes a second laser receiving unit group 260 and a first receiving optical adjustment unit group 240, the second laser receiving unit group 260 includes a plurality of second laser receiving units 242; the second laser receiving unit The unit 242 is set corresponding to the plurality of second laser emitting units 162 of the second laser emitting unit group 160, and is used to receive the echo laser signal corresponding to the laser emitted by the second laser emitting unit 162; the first receiving optical adjustment unit group 240 It includes a plurality of first receiving optical adjustment units 242; the first receiving optical adjustment units 242 are arranged on the first side of the second laser receiving unit 262, and are used to The direction of the echo laser signal corresponding to the emitted laser light from the second laser emitting unit is adjusted to the second laser receiving unit 262 .
  • the second laser receiving unit group 260 is configured to receive the laser signal emitted by the second laser emitting unit group 160 , that is, the second laser receiving unit group 260 receives the laser signal emitted after collimation.
  • the first receiving optical adjustment unit 242 is used to adjust the echo laser of the laser beam emitted by the transmitting unit in the second laser transmitting unit group 160 to a near-field obstacle so that the laser beam can be received by the laser beam on the second laser receiving unit group 260 .
  • the second laser receiving unit 262 receives, so that the outgoing laser of the second laser emitting unit group can also detect a short-range object.
  • the optical path diagram is shown in Figure 6b.
  • the laser radar collimates the laser signal emitted by the second laser emitting unit by arranging a second emitting optical adjustment unit in front of the second laser emitting unit.
  • the outgoing laser light C is formed by processing, and the laser signal C is reflected by the transmitting mirror, passes through the transmitting lens, and is directed to the target object to be measured at a short distance.
  • the short-range target object reflects the laser signal C to the receiving lens of the laser receiving device, and then enters the second laser receiving unit of the receiving end through the receiving lens.
  • the echo laser signal reflected by the close-range object deviates from the second laser receiving unit and enters the first receiving optical adjustment unit, and the first receiving optical adjustment unit reflects the echo laser signal to the second laser receiving unit the receiving surface of the unit.
  • the collimated echo laser signal is reflected by the close-range object and then reflected to the first laser signal at the receiving end.
  • the first receiving optical adjustment unit reflects the echoed laser signal to the receiving surface of the second laser receiving unit, thereby improving the detection effect of the laser radar on close-range objects.
  • the lidar may include multiple laser emitting arrays 110 and multiple laser receiving arrays 210 . It can be understood that when the laser emitters of the laser emitting array 110 are edge emitters, the multiple laser emitting arrays 110 may be fixed on multiple laser emitting boards. It can be understood that, the multiple laser receiving arrays 210 may be fixed on multiple receiving boards, or may be fixed on one receiving board. Wherein, the laser emitting array 110 and the laser receiving array 210 satisfy a one-to-one arrangement relationship.
  • the laser radar by setting the first transmitting optical adjustment unit at the transmitting end and the first receiving optical adjusting unit at the receiving end respectively, and improving the transmitting end and the receiving end at the same time, the laser radar can greatly improve the accuracy of the near-range laser radar. The ability to detect objects at a distance.
  • the laser receiving device includes a laser receiving array 210, and the laser receiving array 210 includes a first laser receiving unit group 220 and a second laser receiving unit group 260.
  • the first laser receiving unit The group 220 includes a plurality of first laser receiving units
  • the second laser receiving unit group 260 includes a plurality of second laser receiving units; the plurality of second laser receiving units are arranged according to the positions of the second laser emitting units of the lidar , one or several rows of laser receiving units can be arranged on the laser receiving board to form a laser receiving array.
  • the first receiving optical adjustment unit 240 When configured as a laser receiving array, the first receiving optical adjustment unit 240 is disposed on the first side of the second laser receiving unit group 260 for outputting the laser light incident on the surface of the first receiving optical adjustment unit 240 The direction is adjusted to the plurality of second laser receiving units 262 of the laser receiving array.
  • the first receiving optical adjustment unit 240 is disposed at a first preset angle with the plane where the laser receiving plate is located.
  • the first receiving optical adjustment unit 240 may also form a second preset angle with the first vertical plane perpendicular to the laser receiving plate.
  • the setting of the first receiving optical adjustment unit 240 may be in various manners. As shown in FIG. 7 , the first receiving optical adjustment unit 240 is a whole, the first receiving optical adjustment unit 240 is arranged along the laser receiving array 210 , and the optical The projection of the surface on the laser receiving plate along the length of the laser receiving array is greater than or equal to the total length of the arrangement of all the second laser receiving units in the laser receiving array, that is, the first receiving optical adjustment unit 242 is composed of One is arranged on one side of the laser receiving array as a whole, and at the same time, in order to transmit all the echo laser signals scattered to one side of the laser receiving array to the surface of the laser receiving array as much as possible, the first receiving optical The length of the adjustment unit 242 is greater than or equal to the length of the laser receiving array.
  • a second receiving optical adjustment unit 250 is provided on the second side of at least one of the second laser receiving units in the first laser receiving array, so that The second side of the second laser receiving unit is the side opposite to the first receiving optical adjustment unit of the second laser receiving unit.
  • the echoes on both sides of the second laser receiving unit can be The laser signals are all reflected to the surface of the second laser receiving unit, which improves the receiving effect of the echoed laser light.
  • the embodiment of the present application sets multiple first receiving optical adjustment units 240 , that is, all the The plurality of first receiving optical adjustment units 240 are in a one-to-one correspondence with the plurality of second laser receiving units in the first laser receiving array, and are used to adjust the incident light to each of the plurality of first receiving optical adjustment units The outgoing direction of the laser light on the optical reflection surface is adjusted to each of the second laser light receiving units in the first laser light receiving array.
  • the reflection angle of the first receiving optical adjustment unit can be adjusted according to the emission angle of the laser emitting unit corresponding to each second laser receiving unit, thereby avoiding Setting the adjustment limit brought by a first receiving optical adjustment unit can better achieve the effect of receiving and enhancing the echo laser signal, can achieve precise control, and greatly improve the receiving efficiency of each second laser receiving unit.
  • the angle of the first receiving optical adjustment unit can be individually replaced and adjusted.
  • a second receiving optical adjustment unit may also be provided on the second side of at least one of the second laser receiving units in the first laser receiving array, and the second receiving optical adjustment unit of the second laser receiving unit The side is the side opposite to the first receiving optical adjustment unit of the second laser receiving unit. In this way, the echo laser signals scattered to both sides of the laser receiving unit can be reflected to the laser receiving unit. surface of the unit for enhanced reception.
  • the improvement is greatly improved.
  • An embodiment of the present invention further provides an intelligent sensing device.
  • the intelligent sensing device includes at least one laser radar, and the laser radar includes the laser receiving device and the laser transmitting device in the above-mentioned embodiments.
  • the functions of the laser receiving device and the laser receiving device are The structure and structure are the same as those described in the above embodiments, and are not repeated here.
  • connection In the description of the embodiments of the present implementation, unless otherwise expressly specified and limited, the technical terms “installation”, “connection”, “connection”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachable connection or integrated; it can also be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be internal communication between two elements or mutual connection between two elements. role relationship. Those of ordinary skill in the art can understand the specific meanings of the above terms in the embodiments of the present invention according to specific situations.
  • the first feature "on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features Indirect contact through an intermediary.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

涉及激光雷达技术领域,具体涉及一种激光发射装置和激光雷达,激光发射装置包括:激光发射阵列(110)、第一激光发射单元组(120)和第一发射光学调整单元组(140);激光发射阵列(110)包括第一激光发射单元组(120);第一激光发射单元组(120)包括多个第一激光发射单元(122);第一发射光学调整单元组(140)包括多个第一发射光学调整单元(142);第一发射光学调整单元组(140)中的第一发射光学调整单元(142)与第一激光发射单元组(120)中的第一激光发射单元(122)对应设置,用于调整第一激光发射单元组(120)中的第一激光发射单元(122)发出的激光信号的出射方向,使第一激光发射单元(122)发射的激光光束与探测视场在近距离处对准。提高了激光雷达对近距离物体的测量效率。

Description

激光发射装置、激光雷达和智能感应设备 技术领域
本发明实施例涉及激光雷达技术领域,特别涉及一种激光发射装置、激光雷达和智能感应设备。
背景技术
随着技术的发展,激光雷达在自动驾驶、智能机器人导航、无人机等智能装备领域使用广泛,应用于环境探测、空间建模等场景。激光雷达是以发射激光光束来探测目标物体的位置、速度等特征量的雷达系统,其工作原理是先向目标物体发射探测激光束,然后将接收到的从目标物体反射回来的反射激光信号与发射信号进行比较,进行处理后,获得目标物体的有关信息,比如目标距离、方位、高度、速度、姿态和形状等参数。
本申请的发明人在研究过程中发现离轴型的激光雷达,为获得远距离的测距能力,近距离存在发射视场和接收视场重合程度低的问题,导致无法对近距离物体进行有效的探测。
发明内容
本发明实施例的目的在于提供一种激光发射装置、激光雷达和智能感应设备,解决现有技术中存在无法对近距离物体进行有效探测的问题。
本发明实施例提出了一种激光发射装置,所述装置包括:激光发射阵列、第一激光发射单元组和第一发射光学调整单元组;
所述激光发射阵列包括第一激光发射单元组;
所述第一激光发射单元组包括多个第一激光发射单元;
所述第一发射光学调整单元组包括多个第一发射光学调整单元;
所述第一发射光学调整单元组中的第一发射光学调整单元与所述第一激光发射单元组中的所述第一激光发射单元对应设置,用于调整所述第一激光发射 单元组中的所述第一激光发射单元发出的激光信号的出射方向,使所述第一激光发射单元发射的激光光束与探测视场在近距离处对准。
进一步的,所述装置还包括:第二激光发射单元组和第二发射光学调整单元组;
所述第二激光发射单元组包括至少一个第二激光发射单元;
所述第二发射光学调整单元组包括至少一个第二发射光学调整单元;
所述第二发射光学调整单元组中的第二发射光学调整单元与所述第二激光发射单元组中的所述第二激光发射单元对应设置,用于对所述第二激光发射单元组中的所述第二激光发射单元发出的激光信号进行准直处理。
进一步的,所述第一发射光学调整单元组中的多个第一发射光学调整单元为准直光学调整单元,所述多个第一激光发射单元的发射光轴与与其对应的所述第一发射光学调整单元的光轴不重合。
进一步的,所述第一发射光学调整单元组中的多个第一发射光学调整单元为光锲、微棱镜、球面镜或柱面镜中的一种或多种的组合。
进一步的,经所述第一发射光学调整单元组中的第一发射光学调整单元调整后的激光信号的调整角度θ为:
Figure PCTCN2020100703-appb-000001
其中所述D为所述第一激光原发射视场(远距离要求)与接收视场的距离;L为所述第一激光发射单元与所述近距离标靶的距离。
进一步的,所述第一发射光学调整单元组中的多个第一发射光学调整单元根据所述第一激光发射单元组中多个第一激光发射单元探测的不同的近距离物体设置相应的调整角度。
进一步的,进一步包括激光发射透镜;
所述激光发射透镜接收所述调整后的激光信号,并将所述激光信号射向近距离探测物体;
所述激光发射透镜接收所述经过准直处理后的激光信号,并将激光信号射向远距离探测物体。
本发明实施例还提出了一种激光雷达,包括上述的激光发射装置和激光接收装置;
所述激光接收装置包括:激光接收阵列和第一激光接收单元组;
所述激光接收阵列包括第一激光接收单元组;
所述第一激光接收单元组包括多个第一激光接收单元;
所述多个第一激光接收单元与所述第一激光发射单元组的多个第一激光发射单元对应设置,用于接收第一激光发射单元出射激光对应的回波激光信号。
进一步的,所述激光接收阵列还包括第二激光接收单元组;所述激光接收装置还包括第一接收光学调整单元组;
所述第二激光接收单元组包括多个第二激光接收单元;
所述第二激光接收单元与第二激光发射单元组的多个第二激光发射单元对应设置,用于接收第二激光发射单元出射激光对应的回波激光信号;
所述第一接收光学调整单元组包括多个第一接收光学调整单元;
所述第一接收光学调整单元设置于所述第二激光接收单元的第一侧,用于将入射到第一接收光学调整单元光学表面的所述第二激光发射单元出射激光对应的回波激光信号的出射方向调整到所述第二激光接收单元上。
进一步的,所述激光雷达包括激光接收板,所述激光接收阵列设置于所述激光接收板上,所述第一接收光学调整单元与所述激光接收板所在平面成第一预设角设置。
进一步的,所述第一接收光学调整单元与垂直于所述激光接收板的第一垂直平面成第二预设角度。
进一步的,所述第一接收光学调整单元设置于所述激光接收阵列组的第一侧,用于将入射到第一接收光学调整单元表面的激光的出射方向调整到所述激光接收阵列组的多个所述第二激光接收单元上。
进一步的,所述激光接收装置还包括第二接收光学调整单元;
所述第二接收光学调整单元设置于所述第二激光接收组中的至少一个所述第二激光接收单元的第二侧,所述第二激光接收单元的第二侧为与所述第二激光接收单元的所述第一接收光学调整单元相对的一侧。
进一步的,所述第一接收光学调整单元为一个或多个;
当所述第一接收光学调整单元为一个时,所述第一接收光学调整单元沿着 所述第一激光接收组设置,且所述第一接收光学调整单元的光学面在所述激光接收板的投影沿着所述激光接收阵列组的长度大于等于所述激光接收组中所有第二激光接收单元的排布的总长;
当所述第一接收光学调整单元为多个时,所述多个第一接收光学调整单元与所述第二激光接收组中的多个第二激光接收单元对应,用于将所述将入射到多个第一接收光学调整单元中的每一个光学反射面的激光的出射方向调整到所述第二激光接收组中的每一个所述第二激光接收单元上。
本申请实施例还提出一种智能感应设备,采用上述实施例中的激光雷达。
综上所述,本申请实施例通过将发射光学调整单元分别设置在多个激光发射单元前,实现了对激光发射阵列发射的激光信号进行调整,实现了对近距离物体的探测,同时,由于所述发射光学调整单元和所述激光发射单元一一对应设置,可以方便的对每个激光发射单元的调整角度进行调整,最大程度保证了对近距离物体的探测效果。而且,所述发射光学调整单元直接和所述激光发射单元设置在一起,结构简单,避免了对激光雷达结构进行大的改动。
上述说明仅是本发明实施例技术方案的概述,为了能够更清楚了解本发明实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本发明实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制:
图1示出了激光雷达近距离探测示意图;
图2示出了激光雷达探测近距离物体的光路图;
图3示出了本发明实施例提出的激光雷达结构图;
图4示出了本发明实施例提出激光发射装置的光路调整示意图;
图5示出了本发明实施例提出激光发射装置的调整角度示意图;
图6a示出了本发明实施例提供的激光雷达发射和接收第一光路图;
图6b示出了本发明实施例提供的激光雷达发射和接收第二光路图;
图7示出了本发明实施例提供的激光接收装置的接收光学调整单元设置示意图;
图8示出了本发明另一实施例提供的激光接收装置的接收光学调整单元设置示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
激光雷达的基本原理是激光器发射激光,经过发射光学系统准直后出射,激光打到物体后反射回激光雷达的接收光学系统后转换成电信号。根据激光发射光学系统和激光接收光学系统是否同轴,激光雷达的光学系统可以分为同轴系统和离轴系统。在发射光学系统和接收光学系统不同轴(即离轴系统)时,为获得远距离的测距能力,在实际使用情况下,如图1所示,在实际场景应用中,以车载激光雷达为例,当对近距离物体测距时,近距离存在发射视场和接收视场重合程度低的问题,导致近距离的回波信号弱,距离动态范围受限;对于发射和接收器件集成程度高的系统,传统的光学镜头无法同时满足主视场的远距离测距和近距离测距,会出现近距离地面线信息丢失的问题。
图2为通过现有的激光雷达对近距离物体进行测距的光路图,在发射端,激光发射单元射出激光光束A,激光光束A经过FAC快轴准直透镜准直处理后,经过反射镜反射到发射镜头,经过发射镜头准直整型后,射向被测物体。当被测物体为近距离目标物时,由于激光发射单元的发射角度主要朝向远端物体,射向近距离目标物的光束A经过近距离目标物反射后,经过接收镜头和反射镜,其反射光信号A发射了偏转,无法射入激光接收单元,进而导致激光雷达无法对近距离物体进行探测。
基于上述现有技术中存在的问题,本申请实施例提出了一种激光发射装置,如图3所示,所述装置包括:激光发射阵列110、第一激光发射单元组120和 第一发射光学调整单元组140;所述激光发射阵列110包括第一激光发射单元组120;所述第一激光发射单元组120包括多个第一激光发射单元122;所述第一发射光学调整单元组140包括多个第一发射光学调整单元142;所述第一发射光学调整单元组140中的第一发射光学调整单元142与所述第一激光发射单元组120中的所述第一激光发射单元122对应设置,即一个第一发射光学调整单元142对应一个第一激光发射单元122,第一发射光学调整单元组140用于调整所述第一激光发射单元组120中的所述第一激光发射单元122发出的激光信号的出射方向,使所述第一激光发射单元发射的激光光束与探测视场在近距离处对准。
所述第一发射光学调整单元142对第一激光发射单元122发出的激光信号进行调整的光路图如图4所示,在图4中,虚线表示原发射视场,在不对第一激光发射单元发出的激光信号进行调整时,激光雷达为了测试远距离的目标,激光发射光束与探测器的视场是在远距离对准的。当对所述第一激光发射单元发出的激光信号进行调整后,使所述第一激光发射单元发射的激光光束与探测视场在近距离处对准,所述的在近距离对准即在调整前的激光光束形成的原探测视场前与所述激光光束相交,从而实现了对近距离物体探测,实现了对近距离物体的测距。
因此,由上可以知悉,本申请实施例通过将第一发射光学调整单元分别设置在多个第一激光发射单元前,实现了在满足激光雷达整体探测需求的情况下,增强对近距离物体的探测,同时,由于所述第一发射光学调整单元和所述第一激光发射单元一一对应设置,可以方便的对每个第一激光发射单元的调整角度进行调整,可以针对不同的测量距离分别将不同的第一激光发射单元对应的第一发射光学调整单元设置成不同的调整角度,最大程度保证了对近距离物体的探测效果。而且,所述第一发射光学调整单元直接和所述第一激光发射单元设置在一起,结构简单,避免了对激光雷达结构进行大的改动。
进一步的,如图3所示,所述激光发射装置还包括第二激光发射单元组160和第二发射光学调整单元组180;所述第二激光发射单元组160包括至少一个激光发射单元162;所述第二发射光学调整单元组180包括至少一个第二发射光学调整单元182;所述第二发射光学调整单元组180中的第二发射光学调整单元182与所述第二激光发射单元组160中的所述第二激光发射单元162对应设置,用于对所述第二激光发射单元组160中的所述第二激光发射单元162发 出的激光信号进行准直处理。
如图3所示,所述第一激光发射单元组120中的第二激光发射单元122用于对近距离物体进行探测,所述第一发射光学调整单元组140中的第二发射光学调整单元142,分别设置在所述第一激光发射单元组120中的第二激光发射单元122前,用于对所述激光信号进行调整,调整后的激光信号直接射向近距离物体,所述近距离物体将入射的激光反射到第二激光接收单元中。所述第二激光发射单元组160中的第二激光发射单元162用于对远距离物体进行探测,所述第二发射光学调整单元组180中的第二发射光学调整单元组182设置在所述第二激光发射组160中的第二激光发射单元162前,用于对所述激光信号进行准直处理,准直处理后的激光信号射向远距离物体,对所述远距离物体进行探测,所述远距离物体将入射的激光信号反射到第二激光接收单元中。
其中,可以理解的是,如图1所示,在一些可选的实施例中,所述第一激光发射单元组120的第一激光发射单元满足:
L=h/sinβ≤目标探测距离
其中,L为第一激光发射单元实际探测距离,h为激光雷达的固定距离探测平面的高度,β表示第一激光发射单元的视场角。
其中,从上式可以看出,选择哪些激光发射单元做为第一激光发射单元组的第一激光发射单元进行光路调整,与第一激光发射单元的发射角及激光雷达的固定位置高度有关。其中,目标探测距离为正常情况下离轴激光雷达设计时发射光路与探测视场产生交集的距离。
其中,可以理解的是,所述第一发射光学调整单元为可以对光路进行调整的光学元件,其中,所述第一发射光学调整单元可以为:光锲、微棱镜、球面镜或柱面镜中的一种或多种的组合。
其中,可以理解的是,所述第二发射光学调整单元为可以对光路进行准直的光学元件,其中,所述第二发射光学调整单元可以为光纤或柱透镜,或者光纤或柱透镜与其他光学元件的组合。
因此,由上可以知悉,本申请实施例将激光发射阵列划分为第一激光发射单元组和第二激光发射单元组,并将两者分别用于近距离物体的探测和远距离物体的探测,在进行近距离物体探测的第一激光发射单元组前,设置第一发射光学调整单元组,用于对第一激光发射单元发出的激光信号进行调整,使其射向近距离物体;在进行远距离物体探测的第二激光发射单元组前,设置第二发 射光学调整单元组,用于对第二激光发射单元发出的激光信号进行准直处理,使其射向远距离物体。通过一个激光雷达实现了可以分别对近距离物体和远距离物体的探测,提高了对近距离物体的探测效果。
进一步的,由于现有的激光雷达中,激光发射单元往往和准直光学调整单元设置在一起,如准直光学元件,对出射的激光进行准直处理,从而使得整个发射装置集成度高,结构简单,本申请实施例最大程度利用了现有激光雷达的结构,解决现有技术中存在的问题。优选的,本申请实施例将所述第一发射光学调整单元组140中的多个第一发射光学调整单元142设置为准直透镜,将所述第一激光发射单元组120的所述多个第一激光发射单元122的发射光轴与其对应的第一发射光学调整单元142的光轴设置为不重合,实现对所述第一激光发射单元发射的激光信号光路的进行调整,最大程度的利用了现有的激光雷达的部件。
上述实施例中,将第一发射光学调整单元与第一激光发射单元的光轴不重合设置是通过将准直透镜的光轴与第一激光发射单元的发射光轴进行成角度设置实现的。
其中,可以理解的是,准直光学元件的调整角度θ满足:
Figure PCTCN2020100703-appb-000002
其中,D为原发射视场(远距离要求)与接收视场的距离,即原光斑位置与使近距离信号满足要求的目标光斑位置的相对偏差;L为所需要探测的近处目标距离。
在实际作业中,也可以采用图5所示的等效光路图确定准直透镜的位置,即:
Figure PCTCN2020100703-appb-000003
其中,D为原发射视场(远距离要求)与接收视场的距离,即原光斑位置与使近距离信号满足要求的目标光斑位置的相对偏差;L为所需要探测的近处目标距离;D’为近距离标靶上的光斑位置偏移量;L’为标靶距离。
由上可知,通过采用准直透镜作为第一发射光学调整单元,只需要将准直透镜和第一激光发射单元的光轴不重合设置,就可以实现对发射激光的光路进行调整,使第一激光发射单元组的光路与探测视场在近处产生交集,从而在满足近场物体探测需求的基础上,实现结构简单,不需要对现有的激光雷达进行 过多的改动,结构紧凑。
进一步的,在其他可选的实施例中,由于所述第一发射光学调整单元142分别与第一激光发射单元122一一对应设置,因此,第一发射光学调整单元组120中的各个第一发射光学调整单元122可以调整第一激光发射单元组120中的各个第一激光发射单元122的出射激光彼此成角度出射;第一发射光学调整单元组120中的各个第一发射光学调整单元122也可以调整各个第一激光发射单元122的出射激光彼此平行出射;或,第一发射光学调整单元组120中的各个第一发射光学调整单元122也可以调整各个第一激光发射单元122的出射激光部分成角度,部分平行。
其中,可以理解的是,第一发射光学调整单元组120中的对于第一激光发射单元组120中的各个第一激光发射单元122的出射光路的具体调整方案可以根据需求进行设置。
举例来说,当选择四个发射单元作为第一激光发射单元时,当第一发射光学调整单元为准直单元时,可以分别设定第一发射光学调整单元的调整角度θ,从而实现四个发射单元的出射光路分别与探测视场在1m,3m,5m,10m的位置产生交集,从而实现四个位置的近场探测。
其中,可以理解的是当所述第一激光发射单元组中的发射单元为多个时,也可以将其分成几个小组,实现每个小组对不同近场距离的探测。通过对不同的第一发射光学调整单元122设置不同的调整角度,实现了激光雷达对近距离物体探测的灵活性。
进一步的,如图3所示,所述激光发射装置还包括激光发射透镜190;所述激光发射透镜190接收所述调整后的激光信号,并将所述激光信号射向近距离探测物体;所述激光发射透镜接收所述经过准直处理后的激光信号,并将激光信号射向远距离探测物体。
综上所述,本申请实施例提供的激光发射装置,通过将第一发射光学调整单元分别设置在多个第一激光发射单元前,实现了对激光发射阵列发射的激光信号进行调整,实现了对近距离物体的探测,同时,由于所述第一发射光学调整单元和所述第一激光发射单元一一对应设置,可以方便的对每个第一激光发射单元的调整角度进行调整,最大程度保证了对近距离物体的探测效果。
激光雷达的光学系统可以分为同轴系统和离轴系统。在发射光学系统和接收光学系统为离轴系统时,近场盲区的产生通常由于两方面原因产生,一方面 为激光雷达为了满足测距需求,要使激光发射光束探测视场与探测器的接收视场在远距离对准,这就导致发射视场和接收视场在近距离处存在完全没有交叠的区域从而产生盲区,上述实施例通过使用对部分发射光路进行调整使得解决了发射光路和接收光路在近处不交叠的问题,但是还有一种情况,就是当探测远距离的发射单元同样打到近处物体被反射时,由于发射光学系统和接收光学系统是在远处进行对准的,所以反射回来的信号光通过接收透镜所成的像点不在接收透镜的焦平面上,同时经过接收端的反射镜进行光路折叠后使反射信号不能被接收器所接收,因此别发明进一步提供了下述实施例进一步解决上述问题。
本发明另一实施例还提出了一种激光雷达,包括激光发射装置和激光接收装置,如图3所示。
所述激光发射装置包括:激光发射阵列110、第一激光发射单元组120和第一发射光学调整单元组140;所述激光发射阵列110包括第一激光发射单元组120;所述第一激光发射单元组120包括多个第一激光发射单元122;所述第一发射光学调整单元组140包括多个第一发射光学调整单元142;所述第一发射光学调整单元组140中的第一发射光学调整单元142与所述第一激光发射单元组120中的所述第一激光发射单元122一一对应设置,用于对所述第一激光发射单元组120中的所述第一激光发射单元122发出的激光信号进行调整,以使得第一激光发射单元组发射的激光的探测视场与其对应的接收视场在近场产生交集。
所述激光接收装置包括:激光接收阵列210和第一激光接收单元组220;所述激光接收阵列210包括第一激光接收单元组220。所述第一激光接收单元组220包括多个第一激光接收单元222;所述多个第一激光接收单元222与所述第一激光发射单元组120的多个第一激光发射单元122对应设置,用于接收第一激光发射单元出射激光对应的回波激光信号。
具体的,其光路图如图6a所示,在发射端,在所述激光雷达通过在第一激光发射单元前设置第一发射光学调整单元,对需要进行近距离物体探测的第一激光发射单元发射的激光信号进行调整,将射出的激光信号调整成激光信号B,所述激光信号B经过发射镜反射,并穿过发射镜头,射向近距离目标物体。所述近距离目标物体将所述激光信号B反射到激光接收装置的接收镜头上。
在接收端,所述经过第一发射光学调整单元调整后的激光信号B经过激光 接收透镜接收回波激光信号,所述反射镜将所述调整后的激光信号B入射到所述第一激光接收单元上。
由于在发射端对通过第一发射光学调整单元对第一激光发射单元发射的激光信号进行了调整,调整后的回波激光信号经过近距离物体的反射后,也能够反射到接收端的第一激光接收单元上,提高了激光雷达对近距离物体探测的效果。
进一步的,再次参考图3,所述激光发射阵列110还包括第二激光发射单元组160和第二发射光学调整单元组180;所述第二激光发射单元组160包括多个第二激光发射单元162;所述第二发射光学调整单元组180包括至少一个第二发射光学调整单元182;所述第二发射光学调整单元组180中的第二发射光学调整单元182与所述第二激光发射单元组160中的所述第二激光发射单元162对应设置,用于对所述第二激光发射单元组160中的所述第二激光发射单元162发出的激光信号进行准直处理,射向远距离物体。
所述激光接收阵列210还包括第二激光接收单元组260和第一接收光学调整单元组240,所述第二激光接收单元组260包括多个第二激光接收单元242;所述第二激光接收单元242与第二激光发射单元组160的多个第二激光发射单元162对应设置,用于接收第二激光发射单元162出射激光对应的回波激光信号;所述第一接收光学调整单元组240包括多个第一接收光学调整单元242;所述第一接收光学调整单元242设置于所述第二激光接收单元262的第一侧,用于将入射到第一接收光学调整单元242光学表面的所述第二激光发射单元出射激光对应的回波激光信号的方向调整到所述第二激光接收单元262上。所述第二激光接收单元组260用于接收所述第二激光发射单元组160射出的激光信号,即所述第二激光接收单元组260接收经过准直后射出的激光信号。所述第一接收光学调整单元242用于当第二激光发射单元组160中的发射单元的出射激光打到近场障碍物时,调整其回波激光可以被第二激光接收单元组260上的第二激光接收单元262接收,从而使第二激光发射单元组的出射激光也可以探测到近距离的物体。
具体的,其光路图如图6b所示,在发射端,在所述激光雷达通过在第二激光发射单元前设置第二发射光学调整单元,对第二激光发射单元发射的激光信号进行准直处理形成出射激光C,所述激光信号C经过发射镜反射,并穿过发射镜头,射向近距离待测目标物体。
在接收端,所述近距离目标物体将所述激光信号C反射到激光接收装置的接收镜头上,并通过所述接收镜头入射到接收端的第二激光接收单元上。经过近距离物体反射后的回波激光信号偏离第二激光接收单元而入射到第一接收光学调整单元,所述第一接收光学调整单元将所述回波激光信号反射到所述第二激光接收单元的接收表面。
由于在发射端对通过第二发射光学调整单元对第二激光发射单元发射的激光信号进行了准直处理,准直后的回波激光信号经过近距离物体的反射后,反射到接收端的第一接收光学调整单元上,所述第一接收光学调整单元将所述回波激光信号反射到所述第二激光接收单元的接收表面,提高了激光雷达对近距离物体探测的效果。
进一步的,可以理解的是,所述激光雷达可以包括多个激光发射阵列110,和多个激光接收阵列210。其中,可以理解的是,当所述激光发射阵列110的激光发射器为边发射器时,所述多个激光发射阵列110可以固定在多块激光发射板上。可以理解的是,所述多个激光接收阵列210可以固定在多个接收板上,也可以固定在一块接收板。其中,所述激光发射阵列110和激光接收阵列210满足一对一的设置关系。
本申请实施例提出的激光雷达,通过分别在发射端设置第一发射光学调整单元,在接收端设置第一接收光学调整单元,在发射端和接收端同时进行改进,大大提高了激光雷达对近距离物体的探测能力。
进一步的,所述激光接收装置包括激光接收阵列210,所述激光接收阵列210包括第一激光接收单元组220和第二激光接收单元组260,如图7所示,所述第一激光接收单元组220包括多个第一激光接收单元,所述第二激光接收单元组260包括多个第二激光接收单元;所述多个第二激光接收单元根据激光雷达的第二激光发射单元设置的位置,可以在激光接收板上设置一排或者几排激光接收单元形成激光接收阵列。当设置成激光接收阵列时,所述第一接收光学调整单元240设置于所述第二激光接收单元组260的第一侧,用于将入射到第一接收光学调整单元240表面的激光的出射方向调整到所述激光接收阵列的多个所述第二激光接收单元262上。所述第一接收光学调整单元240与激光接收板所在平面成第一预设角设置。所述第一接收光学调整单元240还可以与垂直于所述激光接收板的第一垂直平面成第二预设角度。
进一步的,所述第一接收光学调整单元240的设置可以有多种方式。如图 7所示,所述第一接收光学调整单元240为一个整体,所述第一接收光学调整单元240沿着所述激光接收阵列210设置,且所述第一接收光学调整单元242的光学面在所述激光接收板的投影沿着所述激光接收阵列的长度大于等于所述激光接收阵列中的所有第二激光接收单元的排布的总长,即所述第一接收光学调整单元242成一个整体设置在激光接收阵列的一侧,同时,为了能够尽可能的将所有发散到所述激光接收阵列一侧的回波激光信号发射到所述激光接收阵列的表面,所述第一接收光学调整单元242的长度大于或者等于所述激光接收阵列的长度。同时,优选的,为了增强特定第二激光接收单元的接收效果,在所述第一激光接收阵列中的至少一个所述第二激光接收单元的第二侧设置第二接收光学调整单元250,所述第二激光接收单元的第二侧为与所述第二激光接收单元的所述第一接收光学调整单元相对的一侧,通过这种方式,可以将第二激光接收单元两侧的回波激光信号都反射到所述第二激光接收单元的表面,提高了回波激光的接收效果。
如图8所示,为了能够增加单个激光接收单元针对的回波激光信号的接收效果增强的独立性调节,本申请实施例将所述第一接收光学调整单元240设置为多个,即,所述多个第一接收光学调整单元240与所述第一激光接收阵列中的多个第二激光接收单元一一对应,用于将所述入射到多个第一接收光学调整单元中的每一个光学反射面的激光的出射方向调整到所述第一激光接收阵列中的每一个所述第二激光接收单元上。通过这种方式,由于所述多个第一接收光学调整单元独立设置,可以根据每个第二激光接收单元对应的激光发射单元的发射角度,调整第一接收光学调整单元的反射角度,避免了设置一个第一接收光学调整单元带来的调整限制,能够更好的起到对回波激光信号进行接收增强的效果,可以做到精确控制,大大提高每个第二激光接收单元的接收效率,而且当某个激光接收单元出现问题时,可以单独进行更换和调整第一接收光学调整单元的角度。优选的,本申请实施例还可以在所述第一激光接收阵列中的至少一个所述第二激光接收单元的第二侧设置第二接收光学调整单元,所述第二激光接收单元的第二侧为与所述第二激光接收单元的所述第一接收光学调整单元相对的一侧,通过这种方式,可以将发散到所述激光接收单元两侧的回波激光信号都反射到激光接收单元的表面,增强接收效果。
综上所述,本申请实施例提出的激光雷达,通过分别在发射端设置第一发射光学调整单元,在接收端设置第一接收光学调整单元,在发射端和接收端同 时进行改进,大大提高了激光雷达对近距离物体的探测能力。
本发明实施例还提供一种智能感应设备,智能感应设备包括至少一个激光雷达,所述激光雷达包括上述实施例中的激光接收装置和激光发射装置,所述激光接收装置和激光接收装置的功能和结构同上述实施例中的描述一致,在这里不再赘述。
需要注意的是,除非另有说明,本发明实施例使用的技术术语或者科学术语应当为本发明实施例所属领域技术人员所理解的通常意义。
在本实施新型实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明实施例的限制。
此外,技术术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本发明实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本实施新型实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明实施例中的具体含义。
在本发明实施例的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术 人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (15)

  1. 一种激光发射装置,其特征在于,所述装置包括:激光发射阵列、第一激光发射单元组和第一发射光学调整单元组;
    所述激光发射阵列包括第一激光发射单元组;
    所述第一激光发射单元组包括多个第一激光发射单元;
    所述第一发射光学调整单元组包括多个第一发射光学调整单元;
    所述第一发射光学调整单元组中的第一发射光学调整单元与所述第一激光发射单元组中的所述第一激光发射单元对应设置,用于调整所述第一激光发射单元组中的所述第一激光发射单元发出的激光信号的出射方向,使所述第一激光发射单元发射的激光光束与探测视场在近距离处对准。
  2. 如权利要求1所述的激光发射装置,其特征在于,所述装置还包括:第二激光发射单元组和第二发射光学调整单元组;
    所述第二激光发射单元组包括至少一个第二激光发射单元;
    所述第二发射光学调整单元组包括至少一个第二发射光学调整单元;
    所述第二发射光学调整单元组中的第二发射光学调整单元与所述第二激光发射单元组中的所述第二激光发射单元对应设置,用于对所述第二激光发射单元组中的所述第二激光发射单元发出的激光信号进行准直处理。
  3. 如权利要求2所述的激光发射装置,其特征在于,所述第一发射光学调整单元组中的多个第一发射光学调整单元为准直光学调整单元,所述多个第一激光发射单元的发射光轴与与其对应的所述第一发射光学调整单元的光轴不重合。
  4. 如权利要求2所述的激光发射装置,其特征在于,所述第一发射光学调整单元组中的多个第一发射光学调整单元为光锲、微棱镜、球面镜或柱面镜中的一种或多种的组合。
  5. 如权利要求3或4所述的激光发射装置,其特征在于,经所述第一发射光学调整单元组中的第一发射光学调整单元调整后的激光信号的调整角度θ为:
    Figure PCTCN2020100703-appb-100001
    其中所述D为所述第一激光原发射视场(远距离要求)与接收视场的距离;L为所述第一激光发射单元与所述近距离标靶的距离。
  6. 如权利要求5所述的激光发射装置,其特征在于,所述第一发射光学调整单元组中的多个第一发射光学调整单元根据所述第一激光发射单元组中多个第一激光发射单元探测的不同的近距离物体设置相应的调整角度。
  7. 如权利要求2所述的激光发射装置,其特征在于,进一步包括激光发射透镜;
    所述激光发射透镜接收所述调整后的激光信号,并将所述激光信号射向近距离探测物体;
    所述激光发射透镜接收所述经过准直处理后的激光信号,并将激光信号射向远距离探测物体。
  8. 一种激光雷达,其特征在于,包括如权利要求1-7任意一项所述的激光发射装置和激光接收装置;
    所述激光接收装置包括:激光接收阵列和第一激光接收单元组;
    所述激光接收阵列包括第一激光接收单元组;
    所述第一激光接收单元组包括多个第一激光接收单元;
    所述多个第一激光接收单元与所述第一激光发射单元组的多个第一激光发射单元对应设置,用于接收第一激光发射单元出射激光对应的回波激光信号。
  9. 如权利要求8所述的激光雷达,其特征在于,所述激光接收阵列还包括第二激光接收单元组;所述激光接收装置还包括第一接收光学调整单元组;
    所述第二激光接收单元组包括多个第二激光接收单元;
    所述第二激光接收单元与第二激光发射单元组的多个第二激光发射单元对应设置,用于接收第二激光发射单元出射激光对应的回波激光信号;
    所述第一接收光学调整单元组包括多个第一接收光学调整单元;
    所述第一接收光学调整单元设置于所述第二激光接收单元的第一侧,用于将入射到第一接收光学调整单元光学表面的所述第二激光发射单元出射激光对应的回波激光信号的出射方向调整到所述第二激光接收单元上。
  10. 如权利要求9所述的激光雷达,其特征在于,所述激光雷达包括激光接收板,所述激光接收阵列设置于所述激光接收板上,所述第一接收光学调整单元与所述激光接收板所在平面成第一预设角设置。
  11. 如权利要求10所述的激光接收装置,其特征在于,所述第一接收光学调整单元与垂直于所述激光接收板的第一垂直平面成第二预设角度。
  12. 如权利要求9所述的激光雷达,其特征在于,所述第一接收光学调整单元设置于所述激光接收阵列组的第一侧,用于将入射到第一接收光学调整单元表面的激光的出射方向调整到所述激光接收阵列组的多个所述第二激光接收单元上。
  13. 如权利要求12所述的激光雷达,其特征在于,所述激光接收装置还包括第二接收光学调整单元;
    所述第二接收光学调整单元设置于所述第二激光接收组中的至少一个所述第二激光接收单元的第二侧,所述第二激光接收单元的第二侧为与所述第二激光接收单元的所述第一接收光学调整单元相对的一侧。
  14. 如权利要求13所述的激光雷达,其特征在于,所述第一接收光学调整单元为一个或多个;
    当所述第一接收光学调整单元为一个时,所述第一接收光学调整单元沿着所述第一激光接收组设置,且所述第一接收光学调整单元的光学面在所述激光接收板的投影沿着所述激光接收阵列组的长度大于等于所述激光接收组中所有第二激光接收单元的排布的总长;
    当所述第一接收光学调整单元为多个时,所述多个第一接收光学调整单元与所述第二激光接收组中的多个第二激光接收单元对应,用于将所述将入射到多个第一接收光学调整单元中的每一个光学反射面的激光的出射方向调整到所述第二激光接收组中的每一个所述第二激光接收单元上。
  15. 一种智能感应设备,包括如权利要求8-14任意一项所述的激光雷达。
PCT/CN2020/100703 2020-07-07 2020-07-07 激光发射装置、激光雷达和智能感应设备 WO2022006751A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/100703 WO2022006751A1 (zh) 2020-07-07 2020-07-07 激光发射装置、激光雷达和智能感应设备
CN202080005404.3A CN112888957B (zh) 2020-07-07 2020-07-07 激光发射装置、激光雷达和智能感应设备
CN202311292167.5A CN117310654A (zh) 2020-07-07 2020-07-07 激光发射装置和激光雷达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/100703 WO2022006751A1 (zh) 2020-07-07 2020-07-07 激光发射装置、激光雷达和智能感应设备

Publications (1)

Publication Number Publication Date
WO2022006751A1 true WO2022006751A1 (zh) 2022-01-13

Family

ID=76047887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100703 WO2022006751A1 (zh) 2020-07-07 2020-07-07 激光发射装置、激光雷达和智能感应设备

Country Status (2)

Country Link
CN (2) CN112888957B (zh)
WO (1) WO2022006751A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534168A (zh) * 2021-07-19 2021-10-22 深圳市镭神智能系统有限公司 一种激光雷达系统及驾驶设备
CN113933811B (zh) * 2021-11-22 2023-12-29 上海禾赛科技有限公司 激光雷达的探测方法、激光雷达以及计算机存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2811945Y (zh) * 2005-08-08 2006-08-30 南京德朔实业有限公司 光学测距装置
CN203053429U (zh) * 2012-09-05 2013-07-10 贾怀昌 一种激光测距模组
CN106872961A (zh) * 2017-04-08 2017-06-20 北醒(北京)光子科技有限公司 一种光学透镜、光学测距装置及测距方法、测距系统
CN107132519A (zh) * 2017-06-30 2017-09-05 深圳市镭神智能系统有限公司 一种激光雷达光路系统
DE102016208713A1 (de) * 2016-05-20 2017-11-23 Ifm Electronic Gmbh Optoelektronischer Sensor
CN111090082A (zh) * 2019-08-30 2020-05-01 上海禾赛光电科技有限公司 激光雷达和利用其进行探测的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105891844B (zh) * 2016-04-24 2018-02-23 西南技术物理研究所 双模激光脉冲发射控制及回波信号处理系统
US10408923B2 (en) * 2016-12-15 2019-09-10 National Chung Shan Institute Of Science And Technology Optical design for modularizing laser radar sensor
CN208000376U (zh) * 2018-03-01 2018-10-23 深圳市镭神智能系统有限公司 一种车载激光雷达
CN109270515B (zh) * 2018-11-29 2020-06-16 北京理工大学 可变扫描区域同轴收发扫描激光雷达

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2811945Y (zh) * 2005-08-08 2006-08-30 南京德朔实业有限公司 光学测距装置
CN203053429U (zh) * 2012-09-05 2013-07-10 贾怀昌 一种激光测距模组
DE102016208713A1 (de) * 2016-05-20 2017-11-23 Ifm Electronic Gmbh Optoelektronischer Sensor
CN106872961A (zh) * 2017-04-08 2017-06-20 北醒(北京)光子科技有限公司 一种光学透镜、光学测距装置及测距方法、测距系统
CN107132519A (zh) * 2017-06-30 2017-09-05 深圳市镭神智能系统有限公司 一种激光雷达光路系统
CN111090082A (zh) * 2019-08-30 2020-05-01 上海禾赛光电科技有限公司 激光雷达和利用其进行探测的方法

Also Published As

Publication number Publication date
CN117310654A (zh) 2023-12-29
CN112888957B (zh) 2023-10-31
CN112888957A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN214795200U (zh) 用于激光雷达的视窗和激光雷达
US20210278510A1 (en) Distributed laser radar
WO2020151539A1 (zh) 一种激光雷达系统
WO2019129259A1 (zh) 多线激光雷达
CN108445467A (zh) 一种扫描激光雷达系统
WO2020216143A1 (zh) 激光雷达的接收装置、激光雷达及其回波处理方法
WO2022006751A1 (zh) 激光发射装置、激光雷达和智能感应设备
CN112099023B (zh) 多线激光雷达
US20230145710A1 (en) Laser receiving device, lidar, and intelligent induction apparatus
CN112965044B (zh) 一种激光雷达
CN111007484B (zh) 一种单线激光雷达
WO2020164221A1 (zh) 一种收发装置及激光雷达
CN211718520U (zh) 一种多线激光雷达
CN111398969A (zh) 一种激光雷达及其收发装置
CN111366907B (zh) 一种mems三维激光雷达系统
CN212060560U (zh) 具有对称收发光路的光学系统、激光雷达及智能车、无人机
CN210347918U (zh) 一种激光发射装置以及激光雷达系统
CN216748074U (zh) 一种广角固态激光雷达系统
WO2022198475A1 (zh) 一种探测方法及装置
CN210894701U (zh) 一种激光雷达
CN115047428A (zh) 激光雷达
CN215067307U (zh) 一种激光雷达发射系统
CN212340225U (zh) 一种多程光斑的激光发射器
CN218630189U (zh) 激光雷达
CN210690829U (zh) 激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944068

Country of ref document: EP

Kind code of ref document: A1