WO2022006744A1 - 定位方法、装置、通信设备及存储介质 - Google Patents

定位方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022006744A1
WO2022006744A1 PCT/CN2020/100674 CN2020100674W WO2022006744A1 WO 2022006744 A1 WO2022006744 A1 WO 2022006744A1 CN 2020100674 W CN2020100674 W CN 2020100674W WO 2022006744 A1 WO2022006744 A1 WO 2022006744A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal blocks
groups
signal block
terminal device
Prior art date
Application number
PCT/CN2020/100674
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/100674 priority Critical patent/WO2022006744A1/zh
Priority to CN202080001501.5A priority patent/CN111972013B/zh
Priority to US18/012,912 priority patent/US20230300890A1/en
Priority to CN202310980191.1A priority patent/CN117156538A/zh
Priority to EP20944018.9A priority patent/EP4181567A4/en
Publication of WO2022006744A1 publication Critical patent/WO2022006744A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a positioning method, an apparatus, a communication device, and a storage medium.
  • the terminal device In order to determine its own position, the terminal device needs to perform positioning.
  • the embodiments of the present disclosure provide a positioning method, an apparatus, a communication device, and a storage medium, and by using random access resources, a method for positioning a terminal device during random access is provided.
  • the technical solution is as follows:
  • a positioning method comprising:
  • the random access preambles corresponding to the N synchronization signal blocks are sent on the random access time-frequency resources corresponding to the N synchronization signal blocks belonging to the same synchronization signal block group , the random access preamble is used for positioning, and the N is a positive integer.
  • a positioning method comprising:
  • the random access preamble For each synchronization signal block group, receive random access preambles corresponding to the N synchronization signal blocks on the random access time-frequency resources corresponding to the N synchronization signal blocks belonging to the same synchronization signal block group , the random access preamble is used for positioning, and the N is a positive integer.
  • a positioning apparatus includes: a receiving module, a grouping module and a sending module;
  • the receiving module is configured to receive multiple synchronization signal blocks sent by the network device;
  • the grouping module is configured to divide a plurality of the synchronization signal blocks into M synchronization signal block groups, where M is a positive integer;
  • the sending module is configured to, for each of the synchronization signal block groups, send the N synchronization signals on the random access time-frequency resources corresponding to the N synchronization signal blocks belonging to the same synchronization signal block group
  • the random access preamble corresponding to the block, the random access preamble is used for positioning, and the N is a positive integer.
  • the grouping module is configured to determine a grouping number M; the grouping module is configured to divide the plurality of the synchronization signal blocks into the M synchronization signal blocks according to the grouping number M Group.
  • the grouping module is configured to determine the number of TRPs included in the network device as the number M of groups.
  • the receiving module is configured to receive first indication information from an LMF network element, and determine the number of TRPs included in the network device according to the first indication information; or, the receiving module, is configured to receive second indication information from the serving cell, and determine the number of TRPs included in the network device according to the second indication information.
  • the second indication information includes: broadcast information; or, system information; or, positioning reference signal configuration information; or, signaling that has been transmitted by the serving cell when the terminal device is in a connected state.
  • the grouping module is configured to determine the number of groups M according to a first correspondence; wherein the first correspondence includes the number of groups M and the number of groups supported by the network device to send Correspondence between the first maximum number of synchronization signal blocks.
  • the grouping module in the case that the first maximum number corresponds to at least two of the grouping numbers M, the grouping module is configured to, according to the carrier frequency where the synchronization signal block is located, at least two Determine the number of target groups from among the number of groups M; or, the grouping module is configured to determine the number of target groups from at least two of the number of groups M according to the third indication information from the serving cell or, the grouping module is configured to determine the target grouping quantity from at least two of the grouping quantities M according to the fourth indication information from the LMF network element.
  • the grouping module is configured to determine a second maximum number of synchronization signal blocks that the network device supports to transmit; the grouping module is configured to determine a second maximum number of the synchronization signal blocks The second correspondence between the number of the synchronization signal block and the M synchronization signal block groups; the grouping module is configured to determine the number of the received synchronization signal blocks; the grouping module is configured according to In the second correspondence, a plurality of the synchronization signal blocks are divided into the M synchronization signal block groups; wherein, in the second correspondence, the number of the synchronization signal block and the synchronization signal block group One-to-one correspondence.
  • the numbers of the synchronization signal blocks belonging to the same synchronization signal block group are consecutive.
  • the numbers of the synchronization signal blocks belonging to the same synchronization signal block group are not consecutive.
  • the RSRPs of the N synchronization signal blocks are all greater than an RSRP threshold.
  • the value of N is independent; or, for different synchronization signal block groups, the value of N is the same; or, for at least two In the synchronization signal block group, the value of N is the same.
  • the value of N is pre-configured; or, the value of N is configured according to configuration information, and the configuration information comes from the serving cell or the LMF network element.
  • a positioning device comprising: a sending module and a receiving module;
  • the sending module is configured to send a plurality of synchronization signal blocks to a terminal device, where the plurality of synchronization signal blocks are divided into M synchronization signal block groups by the terminal device, and M is a positive integer;
  • the receiving module is configured to, for each of the synchronization signal block groups, receive N synchronization signals on random access time-frequency resources corresponding to the N synchronization signal blocks belonging to the same synchronization signal block group
  • the random access preamble corresponding to the block, the random access preamble is used for positioning, and the N is a positive integer.
  • the number of packets M is the number of TRPs included in the network device.
  • the sending module is configured to send second indication information, where the second indication information is used to indicate the number of TRPs included in the network device.
  • the second indication information includes: broadcast information; or, system information; or, positioning reference signal configuration information; or, signaling that has been transmitted when the terminal device is in a connected state.
  • the number of groups M is determined by the terminal device according to a first correspondence; wherein, the first correspondence includes the number of groups M and the number of synchronization signal blocks that the network device supports to send. A correspondence between the maximum numbers.
  • the sending module when the first maximum number corresponds to at least two of the number of groups M, the sending module is configured to send third indication information, where the third indication information is used for The terminal device determines the target number of groups from at least two of the group numbers M.
  • the RSRPs of the N synchronization signal blocks are all greater than an RSRP threshold.
  • the value of N is independent; or, for different synchronization signal block groups, the value of N is the same; or, for at least two In the synchronization signal block group, the value of N is the same.
  • the value of N is pre-configured; or, the value of N is configured according to configuration information, and the configuration information comes from the network device or the LMF network element.
  • a terminal device comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the The processor is configured to load and execute the executable instructions to implement the positioning method as described in the above aspects.
  • a network device comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein the The processor is configured to load and execute the executable instructions to implement the positioning method as described in the above aspects.
  • a computer-readable storage medium having executable instructions stored therein, the executable instructions being loaded and executed by the processor to implement the above-mentioned aspects positioning method.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device performs the positioning method provided by the above aspects.
  • the network device sends multiple synchronization signal blocks to the terminal device, so that the terminal device can, after grouping the multiple synchronization signal blocks, send on the random access resources corresponding to the N synchronization signal blocks in each synchronization signal block group.
  • the random access preambles corresponding to the N synchronization signal blocks, and the network equipment can perform positioning measurement according to the random access preambles.
  • a terminal device that can also perform positioning during random access is provided. Methods.
  • FIG. 1 is a schematic diagram of a time-frequency structure of a synchronization signal block provided by an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a random access opportunity provided by an exemplary embodiment of the present disclosure
  • FIG. 3 is a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a positioning method provided by an exemplary embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of multi-TRP communication provided by an exemplary embodiment of the present disclosure.
  • FIG. 6 is a flowchart of a positioning method provided by an exemplary embodiment of the present disclosure.
  • FIG. 7 is a block diagram of a positioning apparatus provided by an exemplary embodiment of the present disclosure.
  • FIG. 8 is a block diagram of a positioning apparatus provided by an exemplary embodiment of the present disclosure.
  • FIG. 9 is a block diagram of a communication device provided by an exemplary embodiment of the present disclosure.
  • Synchronization Signal Block It is a signal structure defined in communication standards, which includes a primary synchronization signal (Primary Synchronization Signal, PSS), a secondary synchronization signal (Secondary Synchronization Signal, SSS) and a physical broadcast channel ( Physical Broadcast Channel, PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • a sync block is a set of resources (resource units) transmitted on a basic Orthogonal Frequency Division Multiplexing (OFDM) grid.
  • the set of resources is at least one of the following: time domain resources, frequency domain resources, code domain resources, time domain resources, and frequency domain resources.
  • Figure 1 shows the time domain and frequency domain structure of a synchronization signal block. As shown in Figure 1, the synchronization signal block lasts 4 OFDM symbols in the time domain.
  • the subcarrier spacing of the sync block can be 15KHz, 30KHz, 120KHz and 240KHz. All sync blocks are sent within 5ms. In order to support beam transmission, each beam needs to send SSB when there is a beam, so the maximum number of synchronization signal blocks that can be sent within 5ms is 4 (when the carrier frequency is below 3GHz) or 8 (when the carrier frequency is 3GHz ⁇ 6GHz) or 64 (when the carrier frequency is above 6GHz).
  • the terminal device When the terminal device performs initial synchronization with the network device, the terminal device detects one of the synchronization signal blocks sent by the network device, and obtains the synchronization signal block index (SSB index) of the synchronization signal block, so as to know where the synchronization signal block is located. symbol position, so the terminal device and the network device realize downlink symbol synchronization.
  • the terminal device In order to achieve uplink synchronization, the terminal device needs to send a random access preamble (preamble), how to select the random access preamble, and which random access opportunity (Random access channel Occasion, RO) the random access preamble is in.
  • the upper transmission is determined according to the synchronization signal block received by the terminal device, which synchronization signal blocks are actually sent by the network device, and the location set of the RO.
  • the specific process is as follows:
  • Step 1 The terminal device detects that the SSB index of the synchronization signal block it has received is SSB#1.
  • Step 2 The terminal device receives the system information block 1 (System Information Block 1, SIB1) message sent by the network device, indicating which synchronization signal blocks have actually been sent by the network device.
  • SIB1 System Information Block 1, SIB1
  • the network device uses two 8bits to indicate which synchronization signal blocks are actually sent. Because the maximum transmittable position of the synchronization signal block is 64, the 64 synchronization signal blocks are divided into 8 groups, and the positions of the 8 synchronization signal blocks in each group are consecutive. That is, SSB #0 to #7 are the first group, SSB #8 to #15 are the second group... SSB #56 to #63 are the eighth group. Then among the two 8bits, the first 8bit indicates which groups have synchronization signal blocks to send. For example, the first 8bit is 00000001 (the left is the high bit, the right is the low bit), which means that only the first group has the synchronization signal block to send.
  • the second 8bit indicates which synchronization signal blocks are sent in these groups with synchronization signal blocks sent. For example, if the second 8bit is 10011011, it means that SSB#0, #1, #3 are sent in the first group. , #4, #7.
  • the terminal device knows that the SSB#1 it has received is the second of the five synchronization signal blocks sent by the network device.
  • the terminal device receives the SIB1 sent by the network device, and obtains SSB-perRACH-Occasion information, which identifies how many synchronization signal blocks actually transmitted need to be allocated to the preamble in one RO.
  • SSB-perRACH-Occasion The value of SSB-perRACH-Occasion is ⁇ 1/8, 1/4, 1/2, 1, 2, 4, 8, 16 ⁇ . When the parameter is 1/8, it means that the SSB occupies 8 consecutive ROs . When the parameter is 8, it means that 8 consecutive SSBs actually sent share the RO, but use different preambles. For example, 64 preambles are divided into 8 consecutive groups, and each synchronization signal block corresponds to one of the preambles. code.
  • the terminal device receives the SIB1 sent by the network device, and obtains the value of the number of ROs of Frequency-Division Multiplexing (FDM), which may be one of ⁇ 1, 2, 4, 8 ⁇ .
  • FDM Frequency-Division Multiplexing
  • the value is 2, it means that there are two ROs in different frequency domains at the same time.
  • the number of RO is the frequency domain first and then the time domain. For example, when SSB-perRACH-Occasion is 2, and the number of FDM ROs is 2, the RO corresponding to the synchronization signal block is shown in FIG. 2 .
  • FIG. 3 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: an access network 12 and a terminal device 14 .
  • the access network 12 includes several network devices 120 .
  • the network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal device.
  • the base station may include various forms of macro base station, micro base station, relay station, access point and so on.
  • the names of devices with base station functions may be different.
  • eNodeBs or eNBs In systems using different radio access technologies, the names of devices with base station functions may be different. For example, in LTE systems, they are called eNodeBs or eNBs; in 5G NR systems, they are called gNodeBs or gNBs.
  • the description of "base station” may change.
  • the above-mentioned apparatuses for providing wireless communication functions for the terminal device 14 are collectively referred to as network devices.
  • the terminal device 14 may include various handheld devices, in-vehicle devices, wearable devices, computing devices or Internet of Things (Internet of Things, IoT) devices or Industrial Internet of Things (Industry Internet of Things, IIoT) devices or connections with wireless communication functions Other processing equipment to wireless modems, as well as various forms of user equipment, mobile stations (Mobile Station, MS), terminal (terminal device) and so on.
  • IoT Internet of Things
  • IIoT Industrial Internet of Things
  • Other processing equipment to wireless modems as well as various forms of user equipment, mobile stations (Mobile Station, MS), terminal (terminal device) and so on.
  • the network device 120 and the terminal device 14 communicate with each other through a certain air interface technology, such as a Uu interface.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • CDMA wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • evolution systems of NR systems LTE on unlicensed frequency bands (LTE-based access to Unlicensed spectrum, LTE-U) system, NR-U system, Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system, Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), next-generation communication systems or other communication systems, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • FIG. 4 shows a flowchart of a positioning method provided by an exemplary embodiment of the present disclosure, which can be applied to the terminal device and the network device as shown in FIG. 3 .
  • the method includes:
  • step 400 the terminal device determines a plurality of synchronization signal blocks.
  • the terminal device may determine multiple synchronization signal blocks in many ways, for example:
  • the multiple synchronization signal blocks may be determined according to the provisions of the communication protocol, the configuration of the network side equipment, and the synchronization signal blocks sent by the network side equipment.
  • this method is used as an example for description, that is, in the following steps 410 and 420, the network device on the network side sends a plurality of synchronization signal blocks to the terminal device.
  • Each synchronization signal block will carry its own synchronization signal block identification.
  • the terminal device receives each synchronization signal block and decodes it through the synchronization signal block identification indication method specified in the communication protocol, and then the identification of each synchronization signal block can be obtained, that is, to determine each sync block.
  • step 410 and step 420 is only one of the various implementation manners limited by step 400, and only the implementation manner corresponding to step 410 and step 420 is adopted in the embodiment of the present disclosure.
  • the embodiments are illustrative, and not intended to limit the scope of the embodiments of the present disclosure.
  • Step 410 the network device sends a plurality of synchronization signal blocks to the terminal device.
  • the network device includes one or more network devices, such as network devices where one or more cells are located, including network devices where the serving cell of the terminal device is located and network devices where neighboring cells are located; another example is one or more sending and receiving points ( The network equipment where Transmission Reception Point, TRP) is located, and multiple TRPs may belong to the serving cell or neighboring cells of the terminal equipment.
  • network devices such as network devices where one or more cells are located, including network devices where the serving cell of the terminal device is located and network devices where neighboring cells are located; another example is one or more sending and receiving points ( The network equipment where Transmission Reception Point, TRP) is located, and multiple TRPs may belong to the serving cell or neighboring cells of the terminal equipment.
  • TRP Transmission Reception Point
  • the multiple synchronization signal blocks come from different TRPs in different cells; or, different TRPs from the same cell; or, the same TRPs from the same cell.
  • the terminal device 510 is located in a serving cell (serving cell) and also in a neighboring cell (neighboring cell). Wherein, each cell may be covered by more than one TRP. As shown in Figure 5, the serving cell is jointly covered by TRP 1 and TRP 2, thereby increasing the coverage radius of the serving cell. Neighboring cells are covered by TRP 3.
  • these two synchronization signal blocks can both come from TRP 3 (that is, the same TRP in the same cell); they can come from TRP 1 and TRP 2 (that is, different TRPs in the same cell) ; can be from TRP 1 and TRP 3 (i.e. different TRPs in different cells).
  • Step 420 the terminal device receives a plurality of synchronization signal blocks.
  • 5G Radio Resource Control supports three states, namely RRC_IDLE state (ie idle state), RRC_INACTIVE state (ie inactive state) and RRC_CONNECTED state (the connected state).
  • RRC_IDLE state ie idle state
  • RRC_INACTIVE state ie inactive state
  • RRC_CONNECTED the connected state
  • the terminal device when the terminal device receives the synchronization signal block, the terminal device is in an idle state. In another possible implementation manner, when the terminal device receives the synchronization signal block, the terminal device is in an inactive state. In another possible implementation manner, the terminal device is in a connected state, but a beam failure (beam failure) or a radio link failure (Radio Link Failure, RLF) occurs.
  • beam failure beam failure
  • RLF Radio Link Failure
  • the terminal device can distinguish them according to a physical cell ID (Physical Cell ID, PCI).
  • PCI Physical Cell ID
  • Step 430 The terminal device divides the plurality of synchronization signal blocks into M synchronization signal block groups.
  • M is a positive integer.
  • M is the number of packets in which PCI-identical sync blocks are grouped. That is, the terminal device divides the plurality of synchronization signal blocks into M synchronization signal block groups according to the plurality of synchronization signal blocks having the same PCI.
  • the terminal device After receiving multiple synchronization signal blocks, the terminal device groups the multiple synchronization signal blocks and divides the multiple synchronization signal blocks into one synchronization signal block group (that is, M equal to 1), or multiple sync block groups (ie, M is greater than 1). The number of sync blocks in each sync block group is the same or different.
  • the terminal device When multiple synchronization signal blocks come from different cells, the terminal device first divides the synchronization signal blocks from different cells according to PCI, and groups the synchronization signal blocks belonging to the same cell into M groups.
  • the terminal equipment first divides all the synchronization signal blocks into two parts according to the PCI, corresponding to cell 1 and cell 2 respectively, and then divides all the synchronization signal blocks from cell 1 and cell 2 according to PCI.
  • cell synchronization signal block into a set of M 1
  • the block synchronization signal from the cell 2 into 2 M groups, the same or different from M 1 and M 2, that is, terminal device, divided into a plurality of blocks sync signals M 1 plus M 2 groups.
  • the synchronization signal blocks belonging to the same synchronization signal block group are from the same TRP.
  • the synchronization signal blocks belonging to the same synchronization signal block group may come from the same TRP, or may come from different TRPs.
  • the synchronization signal blocks from the same TRP are grouped into a group.
  • the synchronization signal blocks from the same TRP are divided into two or more groups.
  • Step 440 For each synchronization signal block group, the terminal device sends random access preambles corresponding to N synchronization signal blocks on random access resources corresponding to N synchronization signal blocks belonging to the same synchronization signal block group.
  • the terminal device For any synchronization signal block group in the M synchronization signal block groups, the terminal device sends the random access resources corresponding to the N synchronization signal blocks on the random access resources corresponding to the N synchronization signal blocks in the synchronization signal block group Preamble, N is a positive integer.
  • the N values corresponding to each of the M synchronization signal block groups may be the same or different; or the multiple synchronization signal blocks of the serving cell are grouped and the random access is sent.
  • the value of N in the case of the preamble may be the same as or different from the value of N in the case of grouping a plurality of synchronization signal blocks of adjacent cells and transmitting the random access preamble. That is, the number of synchronization signal blocks included in the M synchronization signal block groups may all be the same or may be different, or the number of synchronization signal blocks included in some synchronization signal block groups may be the same and other partial synchronization signal blocks may be the same in number.
  • the random access resources are resources used for positioning purposes, and the resources may be at least one of the following: time domain resources, frequency domain resources, code domain resources, time domain resources and frequency domain resources.
  • time domain resources, frequency domain resources, and code domain resources corresponding to the N synchronization signal blocks is different.
  • the code domain resource contains the random access preamble.
  • the N synchronization signal blocks may correspond to N random access resources one-to-one, or one of the synchronization signal blocks may correspond to two or more random access resources, or may be one of the Two or more synchronization signal blocks correspond to one random access resource.
  • the random access preamble is used for positioning.
  • the random access preamble is used for the network device to perform positioning measurement on the terminal device to determine the geographic location of the terminal device.
  • the N synchronization signal blocks may correspond to N random access preambles one-to-one, or one of the synchronization signal blocks may correspond to two or more random access preambles, or is where two or more synchronization signal blocks correspond to one random access preamble.
  • the terminal device expects that N synchronization signal blocks belonging to the same synchronization signal block group come from the same TRP.
  • the terminal device can control the number of synchronization signal blocks corresponding to the random access preamble sent for one TRP, so as to avoid sending multiple random access preambles participating in the positioning measurement to one TRP.
  • Step 450 For each synchronization signal block group, the network device receives random access preambles corresponding to N synchronization signal blocks on random access time-frequency resources corresponding to N synchronization signal blocks belonging to the same synchronization signal block group.
  • the network device receives the random access resources corresponding to the N synchronization signal blocks in the synchronization signal block group on the random access resources corresponding to the N synchronization signal blocks Preamble, N is a positive integer.
  • the network device after receiving the random access preamble, measures the random access preamble to obtain a measurement result, and locates the terminal device according to the measurement result.
  • the measurement result includes, but is not limited to, at least one of an angle measurement value, a time measurement value, and a signal strength measurement value.
  • the time measurement value includes but is not limited to: at least one of the reference signal time difference (Reference Signal Time Difference, RSTD), and the receive and transmit time difference (Rx-Tx time difference);
  • the signal strength measurement value includes but is not limited to: reference signal received power ( Reference Signal Receiving Power, RSRP), Reference Signal Received Quality (Reference Signal Received Quality, RSRQ), at least one of Received signal strength indicator (Received signal strength indicator, RSSI); angle measurement values include but are not limited to: departure angle ( At least one of Angle of Departure (AoD) and Angle of Arrival (AoA).
  • the network device sends multiple synchronization signal blocks to the terminal device, so that the terminal device can, after grouping the multiple synchronization signal blocks, On the random access resources corresponding to the synchronization signal blocks, the random access preambles corresponding to the N synchronization signal blocks are sent, and then the network device can perform positioning measurement according to the random access preambles.
  • the random access resources By using the random access resources, a method is provided. A method for positioning a terminal device when performing random access.
  • the random access preamble is only sent for N synchronization signal blocks in each synchronization signal block group, so as to avoid sending too many synchronization signal blocks for the same TRP. Too many random access preambles lead to the problem of excessive power consumption of the terminal equipment.
  • An embodiment of the present disclosure proposes a method for grouping multiple synchronization signal blocks.
  • the method for grouping multiple synchronization signal blocks may be used in conjunction with any one of the embodiments of the present disclosure, or may be used alone, which is not limited by the embodiments of the present disclosure.
  • the following embodiments of the present disclosure will be described in combination with the foregoing embodiments, that is, an exemplary description will be given by a method for obtaining M synchronization signal block groups.
  • FIG. 6 shows a flowchart of a positioning method provided by an exemplary embodiment of the present disclosure, which can be applied to the terminal device and the network device as shown in FIG. 3 .
  • step 430 is implemented as step 431 or step 432 instead.
  • steps 400 and 431 are implemented independently, they constitute at least three completely independent embodiments: one embodiment includes step 400 and step 431; another embodiment includes steps 400 and 431; The embodiment includes step 400 and step 432 ; another embodiment includes step 400 , step 431 and step 432 .
  • step 400 the terminal device determines a plurality of synchronization signal blocks.
  • Step 431 the terminal device determines the number M of groups.
  • the terminal device Before the terminal device performs grouping, it needs to determine the number of groups M. Optionally, the terminal device determines the number of groups M by one of the following two implementation manners.
  • the following two implementation manners that is, implementation manner 1 and implementation manner 2 may be used in conjunction with any one of the embodiments of the present disclosure, or may be used alone , which is not limited in the embodiments of the present disclosure.
  • the following embodiments of the present disclosure are described in combination with the foregoing embodiments to illustrate how to determine the number of groups M in the embodiments of the present disclosure.
  • implementation manner 1 and implementation manner 2 can be executed independently from step 400 or step 410 or step 420 or step 432. , to form two completely independent technical solutions; the embodiments of the present disclosure do not limit this. That is, the following two implementation manners can be implemented independently, or can be implemented together with any one of the preceding steps.
  • Implementation mode 1 The terminal device determines the number of TRPs included in the network device as the number of packets M.
  • the terminal device needs to acquire the number of TRPs included in the network device, and determine the number of TRPs included in the network device as the number of packets M. It can be understood that, in all the embodiments of the present disclosure, each of the M groups corresponds to a different TRP. In some alternative embodiments, at least one of the M groups corresponds to two or more TRPs, or at least one of the M groups corresponds to one TRP set. This embodiment of the present disclosure does not limit this.
  • the terminal device receives first indication information from a location management function (location Management Function, LMF) network element, and determines the number of TRPs included in the network device according to the first indication information.
  • LMF Location Management Function
  • the number of TRPs included in the network device can be configured by the LMF network element to the terminal device.
  • the terminal device receives the second indication information from the serving cell, and determines the number of TRPs included in the network device according to the second indication information.
  • the number of TRPs contained in the network device can be configured by the network device to the terminal device.
  • the second indication information may be any one of the following information:
  • the number of TRPs included in the network device is included in a master information block (Master Information Block, MIB) sent by a physical broadcast channel (Physical Broadcast Channel, PBCH), which is broadcast by the network device to the terminal device.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • the system information includes the remaining minimum system information (Remaining Minimum System Information, RMSI) (ie SIB1) and other system information (Other System Information).
  • RMSI Remaining Minimum System Information
  • SIB1 System Information 1
  • Other system information includes any one of the system information except SIB1, such as SIB2, SIB3, SIB4 . . .
  • the terminal device has received a positioning reference signal (Positioning Reference Signal, PRS) sent by the serving cell, and the PRS configuration information is configured with the TRP ID for sending the PRS, or the PRS carries the TRP ID for sending the PRS.
  • PRS Positioning Reference Signal
  • the PRS may be received by the terminal device in a connected state or a disconnected state (including the RRC_IDLE state and the RRC_INACTIVE state). Therefore, the terminal device can determine the number of TRPs contained in the network device according to different TRP IDs.
  • the network device informs the terminal device of the number of TRPs included in the network device by using RRC signaling.
  • the number of TRPs included in the network device is mainly for the number of TRPs included in the network devices belonging to the same cell. Because if they are different cells, TRPs belonging to different cells can be distinguished according to the physical cell ID (Physical Cell ID, PCI). On the other hand, the terminal first groups the received synchronization signal blocks according to the PCI, and then divides the synchronization signal blocks with the same PCI into M synchronization signal block groups. However, how to distinguish or determine the number of TRPs belonging to the same cell, ie, TRPs with the same PCI, can follow the above four methods.
  • PCI Physical Cell ID
  • Implementation mode 2 the terminal device determines the number of groups M according to the first correspondence; wherein the first correspondence includes the correspondence between the number of groups M and the first maximum number of synchronization signal blocks supported by the network device to send. It can be understood that, in all the embodiments of the present disclosure, each of the M groups corresponds to a different TRP. In some alternative embodiments, at least one of the M groups corresponds to two or more TRPs, or at least one of the M groups corresponds to one TRP set. This embodiment of the present disclosure does not limit this.
  • the terminal device can determine the number of groups M according to default rules, such as: the first correspondence.
  • the first correspondence is preconfigured in the protocol and stored in the terminal device chip.
  • the first maximum number is the maximum possible number of synchronization signal blocks that the network device supports to transmit. Under different carrier frequencies, the maximum number of synchronization signal blocks supported by the network device is different. For example, the maximum number of synchronization signal blocks that can be sent by a network device within 5ms is 4 (when the carrier frequency is below 3GHz) or 8 (when the carrier frequency is 3GHz to 6GHz) or 64 (when the carrier frequency is above 6GHz).
  • the first maximum number includes, but is not limited to: 4, 8, and 64.
  • the first correspondence may be a one-to-one correspondence, that is, a first maximum number corresponds to a number M of groups.
  • the first correspondence may not be a one-to-one correspondence, that is, a first maximum number corresponds to one or more grouping numbers M. Exemplarily, with reference to the following Table 1:
  • a first maximum number may correspond to a grouping number M, for example, when the first maximum number is 4, the grouping number M is 2.
  • a first maximum number may also correspond to a plurality of group numbers M, for example: when the first maximum number is 8, the group number M is 2 or 4.
  • the terminal device determines the first maximum number of synchronization signal blocks that the network device supports to send, it can directly determine the number of groups M according to the first correspondence.
  • the terminal device can, according to any one of the following methods, Determine the number of target groups in M:
  • the terminal device determines the number of target packets from at least two packet numbers M according to the carrier frequency where the synchronization signal block is located.
  • the carrier frequency where the synchronization signal block is located is positively correlated with the number of packets M. That is, the higher the carrier frequency where the synchronization signal block is located, the larger the number of packets M.
  • the terminal device determines the number of target groups from at least two group numbers M.
  • the third indication information is RMSI, ie SIB1, or other system information or RRC signaling.
  • RMSI Radio Service Set
  • SIB1 system information
  • RRC signaling For example, when the first maximum number is 8, and the number of packets M is 2 or 4, the terminal device can, according to the RMSI, SIB1 or other system information or the 1-bit indication bit in RRC signaling, in 2 and 4 Determine the number of target groups.
  • the third indication information is positioning reference signal configuration information.
  • the TRP ID for sending the positioning reference signal is configured in the positioning reference signal configuration information.
  • the terminal device can determine the number of TRPs contained in the network device according to different TRP IDs. According to the number of TRPs included in the network device, the terminal device may determine the number of packets M slightly larger than the number of TRPs included in the network device as the target number of packets among the at least two packet numbers M. For example, when the first maximum number is 8 and the number of packets M is 2 or 4, and the terminal device determines that the number of TRPs included in the network device is 3, the terminal device determines 4 as the target number of packets.
  • the terminal device determines the number of target packets from at least two packet numbers M according to the fourth indication information from the LMF network element.
  • the fourth indication information is a positioning protocol, including but not limited to long-term evolution positioning protocol (LTE Positioning Protocol, LPP) information and a new wireless positioning protocol (NR Positioning Protocol); it can also be in any future generation of communication technologies. location protocol. For example, when the first maximum number is 8 and the number of packets M is 2 or 4, the terminal device can determine the number of target packets in 2 and 4 according to the indication of the 1-bit indication bit in the positioning protocol information.
  • LTE Positioning Protocol LPP
  • NR Positioning Protocol new wireless positioning protocol
  • Step 432 The terminal device divides the plurality of synchronization signal blocks into M synchronization signal block groups according to the grouping quantity M.
  • the multiple synchronization signal blocks can be divided into M synchronization signal block groups.
  • the terminal device divides the multiple synchronization signal blocks into M synchronization signal block groups in the following manner:
  • the numbers of the synchronization signal blocks are in one-to-one correspondence with the synchronization signal block groups.
  • the second correspondence is preconfigured in the protocol and stored in the terminal device chip, or the second correspondence is configured by the network device, or the second correspondence is configured by the LMF network element.
  • the second maximum number is 4, and M is 2.
  • the synchronization signal blocks supported by the network device include: SSB#0, SSB#1, SSB#2, and SSB#3.
  • the terminal device may acquire the second correspondence between the above-mentioned four synchronization signal blocks and the two synchronization signal block groups.
  • sync block group sync block first sync block group SSB#0, SSB#1 second sync block group SSB#2, SSB#3
  • Each synchronization signal block group includes a plurality of synchronization signal blocks with consecutive numbers.
  • the first synchronization signal block group includes SSB#0 and SSB#1; the second synchronization signal block group includes SSB#2 and SSB#3.
  • the numbers of the synchronization signal blocks belonging to the same synchronization signal block group are discontinuous. Refer to Table 3 below:
  • sync block group sync block first sync block group SSB#0, SSB#2 second sync block group SSB#1, SSB#3
  • Each synchronization signal block group includes multiple synchronization signal blocks with discontinuous numbers.
  • the first synchronization signal block group includes SSB#0 and SSB#2; the second synchronization signal block group includes SSB#1 and SSB#3.
  • the terminal device only receives three synchronization signal blocks: SSB#1, SSB#2, and SSB#3. Then, the terminal device can group the synchronization signal blocks received by itself according to the determined second correspondence. For example: in the second correspondence shown in Table 2, the terminal equipment divides SSB#1 into the first synchronization signal block group, and divides SSB#2 and SSB#3 into the second synchronization signal block group; In the obtained second corresponding relationship, the terminal device divides SSB#2 into the first synchronization signal block group, and divides SSB#1 and SSB#3 into the second synchronization signal block group.
  • Step 440 For each synchronization signal block group, the terminal device sends random access preambles corresponding to N synchronization signal blocks on random access resources corresponding to N synchronization signal blocks belonging to the same synchronization signal block group.
  • the terminal device needs to send a random access preamble, how to select this random access preamble, and what random access time domain resource and random access frequency domain resource (that is, the RO ) is determined according to the synchronization signal block received by the terminal device, the synchronization signal block actually sent by the network device, and the location set of the RO. Specifically, see the above process description.
  • the RSRPs of the N synchronization signal blocks are all greater than the RSRP threshold.
  • the terminal equipment measures the RSRP of the synchronization signal block.
  • RSRP is the average value of the signal power received on all resource elements (Resource Elements, REs) that carry reference signals in a certain symbol.
  • the RSRP threshold is a threshold for positioning purposes.
  • the above-mentioned RSRP threshold is independent of the threshold used for random access or the determination of the candidate beam (candidate beam), that is, the above-mentioned RSRP threshold and the other two thresholds may be the same or different.
  • Step 450 For each synchronization signal block group, the network device receives random access preambles corresponding to N synchronization signal blocks on random access time-frequency resources corresponding to N synchronization signal blocks belonging to the same synchronization signal block group.
  • the terminal device may determine the number of packets according to the number of TRPs included in the network device, or may determine the number of packets according to the difference between the number of packets M and the first maximum number of synchronization signal blocks supported by the network device to send.
  • the number of groups is determined by the first correspondence of , and the received multiple synchronization signal blocks are divided into M synchronization signal block groups, so that the N synchronization signal blocks in each synchronization signal block group are from the same TRP, avoiding Too many random access preambles are sent for the same TRP.
  • the value of N is pre-configured; or, the value of N is configured according to configuration information, and the configuration information comes from a network device or an LMF network element.
  • the configuration information may be system information from network devices, including Remaining Minimum System Information (RMSI) (ie SIB1) and other system information (Other System Information).
  • RMSI Remaining Minimum System Information
  • SIB1 system information
  • Other system information includes any one of the system information except SIB1, such as SIB2, SIB3, SIB4 . . .
  • N is a maximum value configured.
  • N is a maximum value configured.
  • the value of N is independent; or, for different synchronization signal block groups, the value of N is the same; or, for at least two synchronization signal block groups, the value of N is the same .
  • N of each synchronization signal block group is 1.
  • N 1
  • the location of the terminal is calculated from the location measurements and the locations of the first number of TRPs.
  • M synchronization signal block groups there are two synchronization signal block groups, and the value of N is the same, and both are 2.
  • the transmit beams and/or receive beams of the two synchronization signal blocks are different.
  • N the transmit beams and/or receive beams of the two synchronization signal blocks.
  • random access preambles can be sent for at most two synchronization signal blocks, then each TRP performs positioning measurement according to the two random access preambles received by each TRP, and finally according to the second number of TRPs The positioning measurement results and the position of the second number of TRPs to calculate the position of the terminal.
  • the second number of TRPs is less than or equal to the first number of TRPs when N is 1.
  • the value of N can be configured in different ways, such as pre-configuration, configuration by network equipment, and configuration by LMF network element, which improves the flexibility of the positioning method.
  • the steps performed by the terminal device may be independently implemented as a positioning method on the terminal device side
  • the steps performed by the network device may be independently implemented as a positioning method on the network device side.
  • FIG. 7 shows a structural block diagram of a positioning apparatus provided by an exemplary embodiment of the present disclosure.
  • the apparatus may be implemented as a terminal device, or may be implemented as a part of the terminal device.
  • the apparatus includes: a receiving module 701, a grouping module 702 and sending module 703;
  • the receiving module 701 is configured to receive multiple synchronization signal blocks sent by the network device;
  • the grouping module 702 is configured to divide the plurality of synchronization signal blocks into M synchronization signal block groups, where M is a positive integer;
  • the sending module 703 is configured to, for each synchronization signal block group, send random access preambles corresponding to the N synchronization signal blocks on the random access resources corresponding to the N synchronization signal blocks belonging to the same synchronization signal block group,
  • the random access preamble is used for positioning, and N is a positive integer.
  • the grouping module 702 is configured to determine the number M of groups; according to the number M of groups, divide the multiple synchronization signal blocks into M synchronization signal block groups.
  • the grouping module 702 is configured to determine the number of TRPs included in the network device as the number of groups M.
  • the receiving module 701 is configured to receive first indication information from the LMF network element, and determine the number of TRPs included in the network device according to the first indication information; or, the receiving module 701 is configured to Receive second indication information from the serving cell, and determine the number of TRPs included in the network device according to the second indication information.
  • the second indication information includes: broadcast information; or, system information; or, positioning reference signal configuration information; or, signaling that has been transmitted by the serving cell when the terminal device is in a connected state.
  • the grouping module 702 is configured to determine the number of groups M according to a first correspondence relationship; wherein the first correspondence relationship includes the number of groups M and the first number of synchronization signal blocks supported by the network device to send Correspondence between the maximum numbers.
  • the grouping module 702 in the case where the first maximum number corresponds to at least two grouping numbers M, the grouping module 702 is configured to, according to the carrier frequency where the synchronization signal block is located, at least two grouping numbers M Determine the number of target groups in M; or, the grouping module 702 is configured to determine the number of target groups in at least two grouping numbers M according to the third indication information from the serving cell; or, the grouping module 702 is configured to be based on The fourth indication information from the LMF network element determines the target number of packets from at least two packet numbers M.
  • the grouping module 702 is configured to determine the second maximum number of synchronization signal blocks that the network device supports to send; the grouping module 702 is configured to determine the number of the second maximum number of synchronization signal blocks and The second correspondence between the M synchronization signal block groups; the grouping module 702 is configured to determine the numbers of the received multiple synchronization signal blocks; the grouping module 702 is configured to group the multiple synchronization signal blocks according to the second correspondence
  • the signal blocks are divided into M synchronization signal block groups; wherein, in the second correspondence relationship, the numbers of the synchronization signal blocks are in one-to-one correspondence with the synchronization signal block groups.
  • the numbers of the synchronization signal blocks belonging to the same synchronization signal block group are consecutive.
  • the numbers of the synchronization signal blocks belonging to the same synchronization signal block group are not consecutive.
  • the RSRPs of the N synchronization signal blocks are all greater than the RSRP threshold.
  • the value of N is independent; or, for different synchronization signal block groups, the value of N is the same; or, for at least two synchronization signal block groups, The value of N is the same.
  • the value of N is pre-configured; or, the value of N is configured according to configuration information, and the configuration information comes from the serving cell or the LMF network element.
  • FIG. 8 shows a structural block diagram of a positioning apparatus provided by an exemplary embodiment of the present disclosure.
  • the apparatus may be implemented as a network device, or be implemented as a part of the network device, and the apparatus includes: a sending module 801 and a receiving module 802;
  • the sending module 801 is configured to send multiple synchronization signal blocks to the terminal device, and the multiple synchronization signal blocks are divided into M synchronization signal block groups by the terminal device, where M is a positive integer;
  • the receiving module 802 is configured to, for each synchronization signal block group, receive random access preambles corresponding to N synchronization signal blocks on random access resources corresponding to N synchronization signal blocks belonging to the same synchronization signal block group,
  • the random access preamble is used for positioning, and N is a positive integer.
  • the number of packets M is the number of sending and receiving points TRP included in the network device.
  • the sending module 801 is configured to send second indication information, where the second indication information is used to indicate the number of TRPs included in the network device.
  • the second indication information includes: broadcast information; or, system information; or, positioning reference signal configuration information; or, signaling that has been transmitted when the terminal device is in a connected state.
  • the number of groups M is determined by the terminal device according to a first correspondence; wherein, the first correspondence includes a difference between the number of groups M and the first maximum number of synchronization signal blocks supported by the network device to send corresponding relationship.
  • the sending module 801 is configured to send third indication information, where the third indication information is used for the terminal device to use at least two The target grouping quantity is determined from the two grouping quantities M.
  • the RSRPs of the N synchronization signal blocks are all greater than the RSRP threshold.
  • the value of N is independent; or, for different synchronization signal block groups, the value of N is the same; or, for at least two synchronization signal block groups, The value of N is the same.
  • the value of N is pre-configured; or, the value of N is configured according to configuration information, and the configuration information comes from the serving cell or the LMF network element.
  • FIG. 9 shows a schematic structural diagram of a communication device (terminal device or network device) provided by an exemplary embodiment of the present disclosure.
  • the communication device includes: a processor 101 , a receiver 102 , a transmitter 103 , a memory 104 and a bus 105 .
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, which may be a communication chip.
  • the memory 104 is connected to the processor 101 through the bus 105 .
  • the memory 104 may be configured to store at least one instruction, and the processor 101 may be configured to execute the at least one instruction, so as to implement various steps in the foregoing method embodiments.
  • memory 104 may be implemented by any type or combination of volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory ( Read-Only Memory, ROM), magnetic memory, flash memory, Programmable Read-Only Memory (PROM).
  • volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programmable Read Only Memory (Electrically Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory ( Read-Only Memory, ROM), magnetic memory, flash memory, Programmable Read-Only Memory (PROM).
  • volatile or non-volatile storage devices including, but not limited to, magnetic or optical disks, electrically erasable programm
  • a computer-readable storage medium stores at least one instruction, at least one piece of program, code set or instruction set, the at least one instruction, the At least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the positioning method executed by the communication device provided by the above method embodiments.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device performs the positioning method provided by the above aspects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种定位方法、装置、通信设备及存储介质,涉及通信技术领域。该方法应用于终端设备中,包括:接收网络设备发送的多个同步信号块;将多个所述同步信号块分成M个同步信号块组,所述M为正整数;针对每个所述同步信号块组,在属于同一同步信号块组的N个所述同步信号块对应的随机接入资源上,发送N个所述同步信号块对应的随机接入前导码,所述随机接入前导码用于进行定位,所述N为正整数。

Description

定位方法、装置、通信设备及存储介质 技术领域
本公开涉及通信技术领域,特别涉及一种定位方法、装置、通信设备及存储介质。
背景技术
为了明确自身的位置,终端设备有进行定位的需求。
发明内容
本公开实施例提供了一种定位方法、装置、通信设备及存储介质,通过利用随机接入资源,提供了一种终端设备在进行随机接入时也能进行定位的方法。所述技术方案如下:
根据本公开的一个方面,提供了一种定位方法,所述方法包括:
接收网络设备发送的多个同步信号块;
将多个所述同步信号块分成M个同步信号块组,所述M为正整数;
针对每个所述同步信号块组,在属于同一同步信号块组的N个所述同步信号块对应的随机接入时频资源上,发送N个所述同步信号块对应的随机接入前导码,所述随机接入前导码用于进行定位,所述N为正整数。
根据本公开的一个方面,提供了一种定位方法,所述方法包括:
向终端设备发送多个同步信号块,多个所述同步信号块被所述终端设备分成M个同步信号块组,所述M为正整数;
针对每个所述同步信号块组,在属于同一同步信号块组的N个所述同步信号块对应的随机接入时频资源上,接收N个所述同步信号块对应的随机接入前导码,所述随机接入前导码用于进行定位,所述N为正整数。
根据本公开的一个方面,提供了一种定位装置,所述装置包括:接收模块、分组模块和发送模块;
所述接收模块,被配置为接收网络设备发送的多个同步信号块;
所述分组模块,被配置为将多个所述同步信号块分成M个同步信号块组, 所述M为正整数;
所述发送模块,被配置为针对每个所述同步信号块组,在属于同一同步信号块组的N个所述同步信号块对应的随机接入时频资源上,发送N个所述同步信号块对应的随机接入前导码,所述随机接入前导码用于进行定位,所述N为正整数。
在一些实施例中,所述分组模块,被配置为确定分组数量M;所述分组模块,被配置为根据所述分组数量M,将多个所述同步信号块分成所述M个同步信号块组。
在一些实施例中,所述分组模块,被配置为将所述网络设备包含的TRP的数量,确定为所述分组数量M。
在一些实施例中,所述接收模块,被配置为接收来自LMF网元的第一指示信息,根据所述第一指示信息确定所述网络设备包含的TRP的数量;或,所述接收模块,被配置为接收来自服务小区的第二指示信息,根据所述第二指示信息确定所述网络设备包含的TRP的数量。
在一些实施例中,所述第二指示信息包括:广播信息;或,系统信息;或,定位参考信号配置信息;或,所述服务小区在所述终端设备连接态时已传输的信令。
在一些实施例中,所述分组模块,被配置为根据第一对应关系,确定所述分组数量M;其中,所述第一对应关系中包括所述分组数量M与所述网络设备支持发送的同步信号块的第一最大数目之间的对应关系。
在一些实施例中,在所述第一最大数目对应有至少两个所述分组数量M的情况下,所述分组模块,被配置为根据所述同步信号块所处的载频,在至少两个所述分组数量M中确定出目标分组数量;或,所述分组模块,被配置为根据来自服务小区的第三指示信息,在至少两个所述分组数量M中确定出所述目标分组数量;或,所述分组模块,被配置为根据来自LMF网元的第四指示信息,在至少两个所述分组数量M中确定出所述目标分组数量。
在一些实施例中,所述分组模块,被配置为确定所述网络设备支持发送的同步信号块的第二最大数目;所述分组模块,被配置为确定第二最大数目个所述同步信号块的编号与所述M个同步信号块组之间的第二对应关系;所述分组模块,被配置为确定接收到的多个所述同步信号块的编号;所述分组模块,被配置为根据所述第二对应关系,将多个所述同步信号块分成所述M个同步信号 块组;其中,在所述第二对应关系中,所述同步信号块的编号与所述同步信号块组一一对应。
在一些实施例中,在所述第二对应关系中,属于同一同步信号块组的同步信号块的编号连续。
在一些实施例中,在所述第二对应关系中,属于同一同步信号块组的同步信号块的编号不连续。
在一些实施例中,所述N个同步信号块的RSRP均大于RSRP阈值。
在一些实施例中,针对不同的所述同步信号块组,所述N的取值独立;或,针对不同的所述同步信号块组,所述N的取值相同;或,针对至少两个所述同步信号块组,所述N的取值相同。
在一些实施例中,所述N的取值是预配置的;或,所述N的取值是根据配置信息配置的,所述配置信息来自服务小区或LMF网元。
根据本公开的一个方面,提供了一种定位装置,所述装置包括:发送模块和接收模块;
所述发送模块,被配置为向终端设备发送多个同步信号块,多个所述同步信号块被所述终端设备分成M个同步信号块组,所述M为正整数;
所述接收模块,被配置为针对每个所述同步信号块组,在属于同一同步信号块组的N个所述同步信号块对应的随机接入时频资源上,接收N个所述同步信号块对应的随机接入前导码,所述随机接入前导码用于进行定位,所述N为正整数。
在一些实施例中,分组数量M为所述网络设备包含的TRP的数量。
在一些实施例中,所述发送模块,被配置为发送第二指示信息,所述第二指示信息用于指示所述网络设备包含的TRP的数量。
在一些实施例中,所述第二指示信息包括:广播信息;或,系统信息;或,定位参考信号配置信息;或,在所述终端设备连接态时已传输的信令。
在一些实施例中,分组数量M是所述终端设备根据第一对应关系确定的;其中,所述第一对应关系中包括所述分组数量M与所述网络设备支持发送的同步信号块的第一最大数目之间的对应关系。
在一些实施例中,在所述第一最大数目对应有至少两个所述分组数量M的情况下,所述发送模块,被配置为发送第三指示信息,所述第三指示信息用于供所述终端设备在至少两个所述分组数量M中确定出目标分组数量。
在一些实施例中,所述N个同步信号块的RSRP均大于RSRP阈值。
在一些实施例中,针对不同的所述同步信号块组,所述N的取值独立;或,针对不同的所述同步信号块组,所述N的取值相同;或,针对至少两个所述同步信号块组,所述N的取值相同。
在一些实施例中,所述N的取值是预配置的;或,所述N的取值是根据配置信息配置的,所述配置信息来自所述网络设备或LMF网元。
根据本公开的一个方面,提供了一种终端设备,所述终端设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的定位方法。
根据本公开的一个方面,提供了一种网络设备,所述网络设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的定位方法。
根据本公开的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的定位方法。
根据本申请的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述方面提供的定位方法。
本公开实施例提供的技术方案至少包括如下有益效果:
网络设备向终端设备发送多个同步信号块,使得终端设备能够在对多个同步信号块进行分组后,在每个同步信号块组中的N个同步信号块对应的随机接入资源上,发送N个同步信号块对应的随机接入前导码,进而网络设备能够根据随机接入前导码进行定位测量,通过利用随机接入资源,提供了一种终端设备在进行随机接入时也能进行定位的方法。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个示例性实施例提供的同步信号块的时频结构的示意图;
图2是本公开一个示例性实施例提供的随机接入机会的示意图;
图3是本公开一个示例性实施例提供的通信系统的框图;
图4是本公开一个示例性实施例提供的定位方法的流程图;
图5是本公开一个示例性实施例提供的多TRP通信的示意图;
图6是本公开一个示例性实施例提供的定位方法的流程图;
图7是本公开一个示例性实施例提供的定位装置的框图;
图8是本公开一个示例性实施例提供的定位装置的框图;
图9是本公开一个示例性实施例提供的通信设备的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
首先,对本申请中涉及的名词做出解释:
同步信号块(Synchronization Signal Block,SSB):是通信标准中定义的一种信号结构,其包含主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)以及物理广播信道(Physical Broadcast Channel,PBCH)。
同步信号块是在基本的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)网格上传输的一组资源(资源单位)。在一些实施例中,所述一组资源为以下的至少一种:时域资源、频域资源、码域资源、时域资源和频域资源。图1示出了一个同步信号块的时域和频域结构。如图1所示,同步信号块在时域上持续4个OFDM符号。
同步信号块的子载波间隔可以为15KHz,30KHz,120KHz和240KHz。所有同步信号块在5ms时间内发送。为了支持波束(beam)发送,有beam时每个beam都需要发送SSB,所以5ms内可发送的同步信号块的数目最大为4(载频3GHz以下时)或8(载频3GHz~6GHz时)或64(载频6GHz以上时)。
在终端设备与网络设备进行初始同步时,终端设备检测到网络设备发送的其中一个同步信号块,获得了该同步信号块的同步信号块索引(SSB index),从而得知该同步信号块所在的符号位置,因此终端设备与网络设备实现了下行的符号同步。而为了实现上行同步,终端设备需要发送随机接入前导码(preamble),而这个随机接入前导码如何选择,以及这个随机接入前导码在哪个随机接入机会(Random access channel Occasion,RO)上发送,是根据终端设备接收到的这个同步信号块以及网络设备实际发送了哪些同步信号块以及RO的位置集合来决定的。具体过程如下:
第一步:终端设备检测到自己接收到的这个同步信号块的SSB index为SSB#1。
第二步:终端设备接收网络设备发送的系统信息块1(System Information Block 1,SIB1)的消息,指示网络设备实际发送了哪些同步信号块。
其中,网络设备使用两个8bit来指示实际发送了哪些同步信号块。因为同步信号块最大可发送位置为64,将64个同步信号块分为8组,每组内的8个同步信号块位置连续。即SSB#0~#7为第一组,SSB#8~15为第二组……SSB#56~#63为第八组。那么两个8bit中,第一个8bit指示哪些组有同步信号块发送,比如第一个8bit为00000001(左边为高位,右边为低位),即表示只有第一组有同步信号块发送。那第二个8bit指示有同步信号块发送的这些组内是发送了哪些位置的同步信号块,比如第二个8bit为10011011,则表示第一组内发送了SSB#0,#1,#3,#4,#7。
第三步,通过第一步和第二步,终端设备知道了自己接收到的这个SSB#1是网络设备发送的5个同步信号块中的第二个。
第四步,终端设备接收网络设备发送的SIB1,获得SSB-perRACH-Occasion信息,该信息标识一个RO内的前导码需要分配给多少个实际发送的同步信号块。
SSB-perRACH-Occasion取值为{1/8,1/4,1/2,1,2,4,8,16},当该参数为1/8时,表示该SSB占用8个连续的RO。而当该参数为8时,表示8个实际发送的连续的SSB共享该RO,但使用不同的前导码,比如将64个前导码分成连续的8组,每个同步信号块对应其中一组前导码。
同时,终端设备接收网络设备发送的SIB1,获得频分多路复用 (Frequency-Division Multiplexing,FDM)的RO的个数取值,其取值可能为{1,2,4,8}中的一个。示例性的,若取值为2,表示同一时间,有两个处在不同频域的RO。而RO的编号是先频域后时域。比如SSB-perRACH-Occasion为2,FDM的RO的个数取值为2时,同步信号块对应的RO如图2所示。
图3示出了本公开一个示例性实施例提供的通信系统的框图,该通信系统可以包括:接入网12和终端设备14。
接入网12中包括若干个网络设备120。网络设备120可以是基站,所述基站是一种部署在接入网中用以为终端设备提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为终端设备14提供无线通信功能的装置统称为网络设备。
终端设备14可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或物联网(Internet of Things,IoT)设备或工业物联网(Industry Internet of Things,IIoT)设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端设备。网络设备120与终端设备14之间通过某种空口技术互相通信,例如Uu接口。
本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to Unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless  Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及车联网(Vehicle to Everything,V2X)系统等。本公开实施例也可以应用于这些通信系统。
图4示出了本公开一个示例性实施例提供的定位方法的流程图,可以应用于如图3所示的终端设备和网络设备中。该方法包括:
步骤400,终端设备确定多个同步信号块。
在本公开实施例中,终端设备确定多个同步信号块的方式可以为很多种,例如:
可以根据通信协议的规定和网络侧设备的配置,以及网络侧设备发送的同步信号块来确定多个同步信号块。
在本公开的以下实施例中,采用该方式作为例子进行说明,即以下的步骤410和步骤420是由网络侧的网络设备将多个同步信号块发送到终端设备。而每个同步信号块会携带自身的同步信号块标识,终端设备通过通信协议规定的同步信号块标识指示方法,接收每个同步信号块并解码,即可获得每个同步信号块标识,即确定每个同步信号块。当然,本领域内技术人员可以理解,步骤410和步骤420对应的实施方式,只是步骤400所限定的多种实施方式中的一种,本公开实施例中仅仅是采用步骤410和步骤420对应的实施方式进行举例说明,而并非是对本公开实施例的范围的限定。
步骤410,网络设备向终端设备发送多个同步信号块。
可选地,网络设备包含一个或多个网络设备,比如一个或多个小区所在网络设备,包括终端设备的服务小区所在网络设备和邻小区所在网络设备;又比如一个或多个发送接收点(Transmission Reception Point,TRP)所在网络设备,多个TRP可以属于终端设备的服务小区或邻小区。
可以理解的是,多个同步信号块来自不同小区的不同TRP;或,来自相同小区的不同TRP;或,来自相同小区的相同TRP。
结合参考图5,终端设备510处于服务小区(serving cell)之中,也处于邻小区(neighboring cell)之中。其中,每个小区可以由不止一个TRP来覆盖。如图5所示,服务小区由TRP 1和TRP 2联合覆盖,从而增大了服务小区的覆盖半径。邻小区由TRP 3覆盖。
假设网络设备向终端设备发送了两个同步信号块,这两个同步信号块可以均来自TRP 3(即相同小区的相同TRP);可以来自于TRP 1和TRP 2(即相同小区的不同TRP);可以来自于TRP 1和TRP 3(即不同小区的不同TRP)。
步骤420,终端设备接收多个同步信号块。
在第五代移动通信(5G)系统中,5G无线资源控制(Radio Resource Control,RRC)支持三种状态,分别是RRC_IDLE状态(即空闲态)、RRC_INACTIVE状态(即非激活态)及RRC_CONNECTED状态(即连接态)。随着后续技术的演进,可能会增加其他状态;且前述这些状态可能会被改变名称。但是这些改变都不影响本公开实施例的技术方案的可实施性和完整性;且这些名称的改变也应视为在本公开实施例的保护范围内。
在一种可能的实现方式中,在终端设备接收同步信号块时,终端设备处于空闲态。在另一种可能的实现方式中,在终端设备接收同步信号块时,终端设备处于非激活态。在另一种可能的实现方式中,终端设备处于连接态,但发生了波束失败(beam failure)或无线链路失败(Radio Link Failure,RLF)。
可以理解的是,对于来自不同小区的同步信号块,终端设备可以根据物理小区标识(Physical Cell ID,PCI)进行区分。
步骤430,终端设备将多个同步信号块分成M个同步信号块组。
其中,M为正整数。M是PCI相同的同步信号块被分组的分组数量。即,终端设备根据具有相同的PCI的多个同步信号块,将多个同步信号块分成M个同步信号块组。
终端设备在接收到多个同步信号块之后,在多个同步信号块来自同一小区的情况下,对多个同步信号块进行分组,将多个同步信号块分成1个同步信号块组(即M等于1),或多个同步信号块组(即M大于1)。每个同步信号块组中同步信号块的数量相同或不同。在多个同步信号块来自不同小区的情况下,终端设备首先根据PCI将来自不同小区的同步信号块进行拆分,对属于同一个小区的同步信号块进行分组,分成M组。如:终端设备接收到的同步信号块来自两个小区(小区1和小区2),则终端设备首先根据PCI将所有的同步信号块 分成两部分,分别对应于小区1和小区2,再将来自小区1的同步信号块分成M 1组,来自小区2的同步信号块分成M 2组,M 1和M 2相同或不同,也就是说,终端设备将多个同步信号块共分成M 1加M 2组。
在一种可能的实现方式中,属于同一同步信号块组的同步信号块来自同一TRP。在另一种可能的实现方式中,属于同一同步信号块组的同步信号块可能来自相同的TRP,也可能来自不同的TRP。在一种可能的实现方式中,来自相同的TRP的同步信号块被分成一个组。在另一种可能的实现方式中,来自相同的TRP的同步信号块被分成两个或两个以上的组。
步骤440,终端设备针对每个同步信号块组,在属于同一同步信号块组的N个同步信号块对应的随机接入资源上,发送N个同步信号块对应的随机接入前导码。
对于M个同步信号块组中的任意一个同步信号块组,终端设备在该同步信号块组中的N个同步信号块对应的随机接入资源上,发送N个同步信号块对应的随机接入前导码(preamble),N为正整数。
可以理解的是,在本公开的所有实施例中,M个同步信号块组各自所对应的N值可以相同,也可以不同;或者对于服务小区的多个同步信号块进行分组并发送随机接入前导码的情况下的N值与对于邻小区的多个同步信号块进行分组并发送随机接入前导码的情况下的N值可以相同,也可以不同。即,所述M个同步信号块组中所包含的同步信号块的数量可以全部相同,也可以全部不相同,还可以是部分同步信号块组包含的同步信号块的数量相同且其他部分同步信号块组包含的同步信号块的数量不同;即,N=(N 1,N 2,……N M),其中M为对应的同步信号块组。本公开实施例对此不进行限制。
其中,随机接入资源是用于定位用途的资源,该资源可以为以下的至少一种:时域资源、频域资源、码域资源、时域资源和频域资源。可选地,N个同步信号块对应的时域资源、频域资源、码域资源中的至少一项不同。码域资源包含随机接入前导码。
在本公开实施例中,N个同步信号块可以一一对应于N个随机接入资源,也可以是其中的一个同步信号块对应于两个或两个以上随机接入资源,还可以是其中两个或两个以上同步信号块对应于一个随机接入资源。
其中,随机接入前导码用于进行定位。可选地,随机接入前导码用于供网络设备对终端设备进行定位测量,确定终端设备的地理位置。
在本公开实施例中,N个同步信号块可以一一对应于N个随机接入前导码,也可以是其中的一个同步信号块对应于两个或两个以上随机接入前导码,还可以是其中两个或两个以上同步信号块对应于一个随机接入前导码。
可选地,终端设备期望属于同一同步信号块组的N个同步信号块来自同一个TRP。通过N的数值,终端设备可以控制针对一个TRP发送的随机接入前导码所对应的同步信号块的数量,避免参与定位测量的多个随机接入前导码都发送到一个TRP。
步骤450,网络设备针对每个同步信号块组,在属于同一同步信号块组的N个同步信号块对应的随机接入时频资源上,接收N个同步信号块对应的随机接入前导码。
对于M个同步信号块组中的任意一个同步信号块组,网络设备在该同步信号块组中的N个同步信号块对应的随机接入资源上,接收N个同步信号块对应的随机接入前导码,N为正整数。
可选地,网络设备在接收随机接入前导码后,将对随机接入前导码进行测量,得到测量结果,根据测量结果对终端设备进行定位。其中,测量结果包括但不限于:角度测量值、时间测量值和信号强度测量值中的至少一种。
时间测量值包括但不限于:参考信号时间差(Reference Signal Time Difference,RSTD),接收发射时间差(Rx–Tx time difference)中的至少一种;信号强度测量值包括但不限于:参考信号接收功率(Reference Signal Receiving Power,RSRP),参考信号接收质量(Reference Signal Received Quality,RSRQ),接收信号强度指示(Received signal strength indicator,RSSI)中的至少一种;角度测量值包括但不限于:出发角(Angle of Departure,AoD)和到达角(Angle of Arrival,AoA)中的至少一种。
综上所述,本实施例提供的方法,网络设备向终端设备发送多个同步信号块,使得终端设备能够在对多个同步信号块进行分组后,在每个同步信号块组中的N个同步信号块对应的随机接入资源上,发送N个同步信号块对应的随机接入前导码,进而网络设备能够根据随机接入前导码进行定位测量,通过利用随机接入资源,提供了一种终端设备在进行随机接入时也能进行定位的方法。
同时,本实施例提供的方法,通过对多个同步信号块进行分组,只针对每个同步信号块组中的N个同步信号块发送随机接入前导码,避免了针对同一个TRP发送了过多的随机接入前导码,导致终端设备的功耗过大的问题。
本公开实施例中提出了一种对多个同步信号块进行分组的方法。在本公开的所有实施例中,对多个同步信号块进行分组的方法可以结合本公开的任意一个实施例一起使用,也可以单独使用,本公开实施例并不对此做出限定。但是为了使得技术方案更容易被理解,本公开的以下实施例结合前述的实施例进行举例说明,即通过得到M个同步信号块组的方法进行示例性的说明。
在基于图4的可选实施例中,图6示出了本公开一个示例性实施例提供的定位方法的流程图,可以应用于如图3所示的终端设备和网络设备中。在本实施例中,步骤430替换实现为步骤431或步骤432。当然,本领域内技术人员可以理解,在本公开实施例的以下的两个技术方案独立实施时,其构成了至少三个完全独立的实施例:一个实施例包括步骤400、步骤431;另一个实施例包括步骤400、步骤432;又一个实施例包括步骤400、步骤431、步骤432。
步骤400,终端设备确定多个同步信号块。
步骤431,终端设备确定分组数量M。
终端设备在进行分组之前,需要确定分组数量M。可选地,终端设备通过如下两种实现方式中的一种确定分组数量M。本领域内技术人员可以理解,在本公开的所有实施例中,以下的两种实现方式(即:实现方式一、实现方式二)可以结合本公开的任意一个实施例一起使用,也可以单独使用,本公开实施例并不对此做出限定。但是为了使得技术方案更容易被理解,本公开的以下实施例结合前述的实施例进行举例说明,以说明本公开实施例中如何确定分组数量M。当然,这只是一种举例说明;本领域内技术人员可以理解,以下的两种实现方式(即:实现方式一、实现方式二)完全可以脱离步骤400或步骤410或步骤420或步骤432独立执行,以形成两个完全独立的技术方案;本公开实施例并不对此作出限定。即,以下的两种实现方式可以独立被实施,也可以结合之前的任何一个步骤一起被实施。
实现方式一:终端设备将网络设备包含的TRP的数量,确定为分组数量M。
终端设备需要获取网络设备包含的TRP的数量,并将网络设备包含的TRP的数量确定为分组数量M。可以理解的是,在本公开的所有实施例中,M个分组中的每个分组分别对应一个不同的TRP。在一些可替代的实施例中,M个分组中至少存在其中一个分组对应两个或两个以上的TRP,或是M个分组中至少存在其中一个分组对应一个TRP集合。本公开实施例对此不进行限制。
可选地,终端设备接收来自定位管理功能(location Management Function,LMF)网元的第一指示信息,根据第一指示信息确定网络设备包含的TRP的数量。
也就是说,网络设备包含的TRP的数量可以由LMF网元配置给终端设备。
可选地,终端设备接收来自服务小区的第二指示信息,根据第二指示信息确定网络设备包含的TRP的数量。
也就是说,网络设备包含的TRP的数量可以由网络设备配置给终端设备。具体地,第二指示信息可以是如下信息中的任意一种:
一、广播信息。
示例性的,网络设备包含的TRP的数量包括在物理广播信道(Physical Broadcast Channel,PBCH)发送的主信息块(Master Information Block,MIB)中,由网络设备广播给终端设备。
二、系统信息。
系统信息包括剩余最少系统信息(Remaining Minimum System Information,RMSI)(即SIB1)和其它系统信息(Other System Information)。其他系统信息包括系统信息中除了SIB1之外的任意一种,比如SIB2,SIB3,SIB4……。
三、定位参考信号配置信息。
示例性的,终端设备接收过服务小区发送的定位参考信号(Positioning Reference Signal,PRS),PRS配置信息中配置有发送该PRS的TRP ID,或者PRS携带发送该PRS的TRP ID。该PRS可以是终端设备在连接态或非连接态(包括RRC_IDLE状态和RRC_INACTIVE状态)接收的。所以终端设备能够根据不同的TRP ID,确定网络设备包含的TRP的数量。
四、服务小区在终端设备连接态时已传输的信令。
示例性的,在该终端处于连接态时,网络设备使用RRC信令告知终端设备网络设备包含的TRP的数量。
需要说明的是,这里网络设备包含的TRP的数量,主要是针对属于同一个小区的网络设备包含的TRP数量。因为如果是不同小区,可以根据物理小区标识(Physical Cell ID,PCI)来区分属于不同小区的TRP。而终端针对接收到的多个同步信号块,首先根据PCI进行分组,再将PCI相同的多个同步信号块分成M个同步信号块组。但是属于同一小区即PCI相同的TRP如何区分或确定属于同一小区的TRP的数目,就可以依照上述四种方法。
实现方式二:终端设备根据第一对应关系,确定分组数量M;其中,第一对应关系中包括分组数量M与网络设备支持发送的同步信号块的第一最大数目之间的对应关系。可以理解的是,在本公开的所有实施例中,M个分组中的每个分组分别对应一个不同的TRP。在一些可替代的实施例中,M个分组中至少存在其中一个分组对应两个或两个以上的TRP,或是M个分组中至少存在其中一个分组对应一个TRP集合。本公开实施例对此不进行限制。
终端设备能够根据默认规则,如:第一对应关系,确定分组数量M。可选地,第一对应关系是在协议中预配置且存储在终端设备芯片中的。
第一最大数目是网络设备支持发送的同步信号块的可能的最大数目。在不同的载频下,网络设备支持发送的同步信号块的最大数目不同。如:网络设备5ms内可发送的同步信号块的数目最大为4(载频3GHz以下时)或8(载频3GHz~6GHz时)或64(载频6GHz以上时)。可选地,第一最大数目包括但不限于:4、8、64。
第一对应关系可以是一一对应关系,即:一种第一最大数目对应于一个分组数量M。第一对应关系也可以不是一一对应关系,即:一种第一最大数目对应于一个或多个分组数量M。示例性的,结合参考如下表一:
表一
第一最大数目 分组数量M
4 2
8 2或4
64 2或4或8
在表一中,一种第一最大数目有可能对应于一个分组数量M,如:在第一最大数目是4时,分组数量M是2。一种第一最大数目也有可能对应于多个分组数量M,如:在第一最大数目是8时,分组数量M是2或4。
在第一对应关系是一一对应关系的情况下,终端设备确定网络设备支持发送的同步信号块的第一最大数目后,即可根据第一对应关系,直接确定分组数量M。
在第一对应关系不是一一对应关系的情况下,即:第一最大数目对应有至少两个分组数量M的情况下,终端设备可以根据如下方式中的任意一种,在至少两个分组数量M中确定出目标分组数量:
一、终端设备根据同步信号块所处的载频,在至少两个分组数量M中确定 出目标分组数量。
可选地,同步信号块所处的载频与分组数量M正相关。即:同步信号块所处的载频越高,分组数量M越大。
二、终端设备根据来自服务小区的第三指示信息,在至少两个分组数量M中确定出目标分组数量。
示例性的,第三指示信息是RMSI即SIB1或其它系统信息或RRC信令。如:在第一最大数目是8时,分组数量M是2或4的情况下,终端设备可以根据RMSI即SIB1或其它系统信息或RRC信令中的1bit指示位的指示,在2和4中确定出目标分组数量。
示例性的,第三指示信息是定位参考信号配置信息。定位参考信号配置信息中配置有发送该定位参考信号的TRP ID。终端设备能够根据不同的TRP ID,确定网络设备包含的TRP的数量。终端设备根据网络设备包含的TRP的数量,在至少两个分组数量M中,可以将略大于网络设备包含的TRP的数量的分组数量M确定为目标分组数量。如:在第一最大数目是8时,分组数量M是2或4的情况下,终端设备确定网络设备包含的TRP的数量为3,则终端设备将4确定为目标分组数量。
三、终端设备根据来自LMF网元的第四指示信息,在至少两个分组数量M中确定出目标分组数量。
示例性的,第四指示信息是定位协议,包括但不限于长期演进定位协议(LTE Positioning Protocol,LPP)信息和新无线定位协议(NR Positioning Protocol);还可以是今后的任意一代通信技术中的定位协议。如:在第一最大数目是8时,分组数量M是2或4的情况下,终端设备可以根据定位协议信息中的1bit指示位的指示,在2和4中确定出目标分组数量。
步骤432,终端设备根据分组数量M,将多个同步信号块分成M个同步信号块组。
在终端设备确定了分组数量M之后,即可将多个同步信号块分入M个同步信号块组中。
可选地,终端设备通过如下方式,将多个同步信号块分成M个同步信号块组:
确定网络设备支持发送的同步信号块的第二最大数目;确定第二最大数目个同步信号块的编号与M个同步信号块组之间的第二对应关系;确定接收到的 多个同步信号块的编号;根据第二对应关系,将多个同步信号块分成M个同步信号块组。
其中,在第二对应关系中,同步信号块的编号与同步信号块组一一对应。可选地,第二对应关系是在协议中预配置且存储在终端设备芯片中的,或,第二对应关系是网络设备配置的,或,第二对应关系是LMF网元配置的。
示例性的,第二最大数目是4,M为2。网络设备支持发送的同步信号块包括:SSB#0,SSB#1,SSB#2,SSB#3。终端设备可以获取上述4个同步信号块与2个同步信号块组之间的第二对应关系。
在一种可能的第二对应关系中,属于同一同步信号块组的同步信号块的编号连续。结合参考如下表二:
表二
同步信号块组 同步信号块
第一同步信号块组 SSB#0,SSB#1
第二同步信号块组 SSB#2,SSB#3
每个同步信号块组包含编号连续的多个同步信号块,如第一同步信号块组包含SSB#0,SSB#1;第二同步信号块组包含SSB#2,SSB#3。
在另一种可能的第二对应关系中,属于同一同步信号块组的同步信号块的编号不连续。结合参考如下表三:
表三
同步信号块组 同步信号块
第一同步信号块组 SSB#0,SSB#2
第二同步信号块组 SSB#1,SSB#3
每个同步信号块组包含编号不连续的多个同步信号块,如第一同步信号块组包含SSB#0,SSB#2;第二同步信号块组包含SSB#1,SSB#3。
而实际上,终端设备只接收到3个同步信号块:SSB#1,SSB#2,SSB#3。则终端设备可以根据确定好的第二对应关系,对自身接收到的同步信号块进行分组。如:在表二示出的第二对应关系中,终端设备将SSB#1分入第一同步信号块组,将SSB#2和SSB#3分入第二同步信号块组;在表三示出的第二对应关系中,终端设备将SSB#2分入第一同步信号块组,将SSB#1和SSB#3分入第二同步信号块组。
步骤440,终端设备针对每个同步信号块组,在属于同一同步信号块组的N 个同步信号块对应的随机接入资源上,发送N个同步信号块对应的随机接入前导码。
可选地,在终端设备需要发送随机接入前导码时,如何选择这个随机接入前导码,以及这个随机接入前导码在什么随机接入时域资源和随机接入频域资源(即RO)上发送,是根据终端设备接收到的这个同步信号块以及网络设备实际发送的同步信号块以及RO的位置集合来决定的。具体地,参见上述过程说明。
可选地,N个同步信号块的RSRP均大于RSRP阈值。
终端设备对同步信号块的RSRP进行测量。RSRP是在某个符号内承载参考信号的所有资源单元(Resource Element,RE)上接收到的信号功率的平均值。
其中,RSRP阈值是针对定位用途的阈值。上述RSRP阈值与用于随机接入或用于备选波束(candidate beam)确定的阈值独立,即上述RSRP阈值与另外两种阈值的取值可以一样,也可以不一样。
步骤450,网络设备针对每个同步信号块组,在属于同一同步信号块组的N个同步信号块对应的随机接入时频资源上,接收N个同步信号块对应的随机接入前导码。
综上所述,本实施例提供的方法,终端设备可以根据网络设备包含的TRP的数量确定出分组数量,也可以根据分组数量M与网络设备支持发送的同步信号块的第一最大数目之间的第一对应关系确定出分组数量,并将接收到的多个同步信号块分成M个同步信号块组,使得每个同步信号块组内的N个同步信号块都来自于同一个TRP,避免针对同一TRP发送过多的随机接入前导码。
下面,对终端设备实际用于定位的同步信号块的数量N进行示例性的说明。
在基于图4的可选实施例中,N的取值是预配置的;或,N的取值是根据配置信息配置的,配置信息来自网络设备或LMF网元。
配置信息可以是来自网络设备的系统信息,包括剩余最少系统信息(Remaining Minimum System Information,RMSI)(即SIB1)和其它系统信息(Other System Information)。其他系统信息包括系统信息中除了SIB1之外的任意一种,比如SIB2,SIB3,SIB4……。
可以理解的是,N是配置的一个最大值。在某一同步信号块组中的同步信号块的数量小于N的情况下,终端设备实际上发送的随机接入前导码所对应的同步信号块的数目小于N。
可选地,针对不同的同步信号块组,N的取值独立;或,针对不同的同步信号块组,N的取值相同;或,针对至少两个同步信号块组,N的取值相同。
示例性的,针对M个同步信号块组,每个同步信号块组的N都为1。
当N为1时,表明针对一个TRP,最多只针对一个同步信号块发送随机接入前导码,那么各个TRP根据各自接收到的一个随机接入前导码进行定位测量,最后根据第一数量个TRP的定位测量结果和第一数量个TRP的位置计算出终端的位置。
示例性的,M个同步信号块组中,存在两个同步信号块组,N的取值相同,都为2。
当N为2时,这两个同步信号块的发送波束和/或接收波束不同。表明针对一个TRP,最多可针对两个同步信号块发送随机接入前导码,那么各个TRP根据各自接收到的两个随机接入前导码进行定位测量,最后根据第二数量个TRP的定位测量结果和第二数量个TRP的位置计算出终端的位置。
其中,当N为2时的TRP的第二数量小于或等于N为1时的TRP的第一数量。
综上所述,本实施例提供的方法,N的取值可以通过不同的方式进行配置,如:预配置,网络设备进行配置,LMF网元进行配置,提高了定位方法的灵活性。
需要说明的是,上述方法实施例可以分别单独实施,也可以组合实施,本公开对此不进行限制。
在上述各个实施例中,由终端设备执行的步骤可以单独实现成为终端设备一侧的定位方法,由网络设备执行的步骤可以单独实现成为网络设备一侧的定位方法。
图7示出了本公开一个示例性实施例提供的定位装置的结构框图,该装置可以实现成为终端设备,或者,实现成为终端设备中的一部分,该装置包括:接收模块701、分组模块702和发送模块703;
接收模块701,被配置为接收网络设备发送的多个同步信号块;
分组模块702,被配置为将多个同步信号块分成M个同步信号块组,M为正整数;
发送模块703,被配置为针对每个同步信号块组,在属于同一同步信号块组的N个同步信号块对应的随机接入资源上,发送N个同步信号块对应的随机接入前导码,随机接入前导码用于进行定位,N为正整数。
在一个可选的实施例中,分组模块702,被配置为确定分组数量M;根据分组数量M,将多个同步信号块分成M个同步信号块组。
在一个可选的实施例中,分组模块702,被配置为将网络设备包含的TRP的数量,确定为分组数量M。
在一个可选的实施例中,接收模块701,被配置为接收来自LMF网元的第一指示信息,根据第一指示信息确定网络设备包含的TRP的数量;或,接收模块701,被配置为接收来自服务小区的第二指示信息,根据第二指示信息确定网络设备包含的TRP的数量。
在一个可选的实施例中,第二指示信息包括:广播信息;或,系统信息;或,定位参考信号配置信息;或,服务小区在终端设备连接态时已传输的信令。
在一个可选的实施例中,分组模块702,被配置为根据第一对应关系,确定分组数量M;其中,第一对应关系中包括分组数量M与网络设备支持发送的同步信号块的第一最大数目之间的对应关系。
在一个可选的实施例中,在第一最大数目对应有至少两个分组数量M的情况下,分组模块702,被配置为根据同步信号块所处的载频,在至少两个分组数量M中确定出目标分组数量;或,分组模块702,被配置为根据来自服务小区的第三指示信息,在至少两个分组数量M中确定出目标分组数量;或,分组模块702,被配置为根据来自LMF网元的第四指示信息,在至少两个分组数量M中确定出目标分组数量。
在一个可选的实施例中,分组模块702,被配置为确定网络设备支持发送的同步信号块的第二最大数目;分组模块702,被配置为确定第二最大数目个同步信号块的编号与M个同步信号块组之间的第二对应关系;分组模块702,被配置为确定接收到的多个同步信号块的编号;分组模块702,被配置为根据第二对应关系,将多个同步信号块分成M个同步信号块组;其中,在第二对应关系中,同步信号块的编号与同步信号块组一一对应。
在一个可选的实施例中,在第二对应关系中,属于同一同步信号块组的同步信号块的编号连续。
在一个可选的实施例中,在第二对应关系中,属于同一同步信号块组的同 步信号块的编号不连续。
在一个可选的实施例中,N个同步信号块的RSRP均大于RSRP阈值。
在一个可选的实施例中,针对不同的同步信号块组,N的取值独立;或,针对不同的同步信号块组,N的取值相同;或,针对至少两个同步信号块组,N的取值相同。
在一个可选的实施例中,N的取值是预配置的;或,N的取值是根据配置信息配置的,配置信息来自服务小区或LMF网元。
图8示出了本公开一个示例性实施例提供的定位装置的结构框图,该装置可以实现成为网络设备,或者,实现成为网络设备中的一部分,该装置包括:发送模块801和接收模块802;
发送模块801,被配置为向终端设备发送多个同步信号块,多个同步信号块被终端设备分成M个同步信号块组,M为正整数;
接收模块802,被配置为针对每个同步信号块组,在属于同一同步信号块组的N个同步信号块对应的随机接入资源上,接收N个同步信号块对应的随机接入前导码,随机接入前导码用于进行定位,N为正整数。
在一个可选的实施例中,分组数量M为网络设备包含的发送接收点TRP的数量。
在一个可选的实施例中,发送模块801,被配置为发送第二指示信息,第二指示信息用于指示网络设备包含的TRP的数量。
在一个可选的实施例中,第二指示信息包括:广播信息;或,系统信息;或,定位参考信号配置信息;或,在终端设备连接态时已传输的信令。
在一个可选的实施例中,分组数量M是终端设备根据第一对应关系确定的;其中,第一对应关系中包括分组数量M与网络设备支持发送的同步信号块的第一最大数目之间的对应关系。
在一个可选的实施例中,在第一最大数目对应有至少两个分组数量M的情况下,发送模块801,被配置为发送第三指示信息,第三指示信息用于供终端设备在至少两个分组数量M中确定出目标分组数量。
在一个可选的实施例中,N个同步信号块的RSRP均大于RSRP阈值。
在一个可选的实施例中,针对不同的同步信号块组,N的取值独立;或,针对不同的同步信号块组,N的取值相同;或,针对至少两个同步信号块组,N 的取值相同。
在一个可选的实施例中,N的取值是预配置的;或,N的取值是根据配置信息配置的,配置信息来自服务小区或LMF网元。
图9示出了本公开一个示例性实施例提供的通信设备(终端设备或网络设备)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Electrically Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的定位方法。
在示例性实施例中,还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述方面提供的定位方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于 一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (27)

  1. 一种定位方法,其特征在于,应用于终端设备中,所述方法包括:
    接收网络设备发送的多个同步信号块;
    将多个所述同步信号块分成M个同步信号块组,所述M为正整数;
    针对每个所述同步信号块组,在属于同一同步信号块组的N个所述同步信号块对应的随机接入资源上,发送N个所述同步信号块对应的随机接入前导码,所述随机接入前导码用于进行定位,所述N为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述将多个所述同步信号块分成M个同步信号块组,包括:
    确定分组数量M;
    根据所述分组数量M,将多个所述同步信号块分成所述M个同步信号块组。
  3. 根据权利要求2所述的方法,其特征在于,所述确定分组数量M,包括:
    将所述网络设备包含的发送接收点TRP的数量,确定为所述分组数量M。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收来自定位管理功能LMF网元的第一指示信息,根据所述第一指示信息确定所述网络设备包含的TRP的数量;
    或,接收来自服务小区的第二指示信息,根据所述第二指示信息确定所述网络设备包含的TRP的数量。
  5. 根据权利要求4所述的方法,其特征在于,所述第二指示信息包括:
    广播信息;
    或,系统信息;
    或,定位参考信号配置信息;
    或,所述服务小区在所述终端设备连接态时已传输的信令。
  6. 根据权利要求2所述的方法,其特征在于,所述确定分组数量M,包括:
    根据第一对应关系,确定所述分组数量M;
    其中,所述第一对应关系中包括所述分组数量M与所述网络设备支持发送的同步信号块的第一最大数目之间的对应关系。
  7. 根据权利要求6所述的方法,其特征在于,在所述第一最大数目对应有至少两个所述分组数量M的情况下,所述方法还包括:
    根据所述同步信号块所处的载频,在至少两个所述分组数量M中确定出目标分组数量;
    或,根据来自服务小区的第三指示信息,在至少两个所述分组数量M中确定出所述目标分组数量;
    或,根据来自LMF网元的第四指示信息,在至少两个所述分组数量M中确定出所述目标分组数量。
  8. 根据权利要求2所述的方法,其特征在于,所述根据所述分组数量M,将多个所述同步信号块分成所述M个同步信号块组,包括:
    确定所述网络设备支持发送的同步信号块的第二最大数目;
    确定第二最大数目个所述同步信号块的编号与所述M个同步信号块组之间的第二对应关系;
    确定接收到的多个所述同步信号块的编号;
    根据所述第二对应关系,将多个所述同步信号块分成所述M个同步信号块组;
    其中,在所述第二对应关系中,所述同步信号块的编号与所述同步信号块组一一对应。
  9. 根据权利要求8所述的方法,其特征在于,
    在所述第二对应关系中,属于同一同步信号块组的同步信号块的编号连续。
  10. 根据权利要求8所述的方法,其特征在于,
    在所述第二对应关系中,属于同一同步信号块组的同步信号块的编号不连续。
  11. 根据权利要求1至10任一所述的方法,其特征在于,
    所述N个同步信号块的参考信号接收功率RSRP均大于RSRP阈值。
  12. 根据权利要求1至10任一所述的方法,其特征在于,
    针对不同的所述同步信号块组,所述N的取值独立;
    或,针对不同的所述同步信号块组,所述N的取值相同;
    或,针对至少两个所述同步信号块组,所述N的取值相同。
  13. 根据权利要求1至10任一所述的方法,其特征在于,
    所述N的取值是预配置的;
    或,所述N的取值是根据配置信息配置的,所述配置信息来自服务小区或LMF网元。
  14. 一种定位方法,其特征在于,应用于网络设备中,所述方法包括:
    向终端设备发送多个同步信号块,多个所述同步信号块被所述终端设备分成M个同步信号块组,所述M为正整数;
    针对每个所述同步信号块组,在属于同一同步信号块组的N个所述同步信号块对应的随机接入资源上,接收N个所述同步信号块对应的随机接入前导码,所述随机接入前导码用于进行定位,所述N为正整数。
  15. 根据权利要求14所述的方法,其特征在于,
    分组数量M为所述网络设备包含的发送接收点TRP的数量。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述网络设备包含的TRP的数量。
  17. 根据权利要求16所述的方法,其特征在于,所述第二指示信息包括:
    广播信息;
    或,系统信息;
    或,定位参考信号配置信息;
    或,在所述终端设备连接态时已传输的信令。
  18. 根据权利要求14所述的方法,其特征在于,
    分组数量M是所述终端设备根据第一对应关系确定的;
    其中,所述第一对应关系中包括所述分组数量M与所述网络设备支持发送的同步信号块的第一最大数目之间的对应关系。
  19. 根据权利要求18所述的方法,其特征在于,在所述第一最大数目对应有至少两个所述分组数量M的情况下,所述方法还包括:
    发送第三指示信息,所述第三指示信息用于供所述终端设备在至少两个所述分组数量M中确定出目标分组数量。
  20. 根据权利要求14至19任一所述的方法,其特征在于,
    所述N个同步信号块的参考信号接收功率RSRP均大于RSRP阈值。
  21. 根据权利要求14至19任一所述的方法,其特征在于,
    针对不同的所述同步信号块组,所述N的取值独立;
    或,针对不同的所述同步信号块组,所述N的取值相同;
    或,针对至少两个所述同步信号块组,所述N的取值相同。
  22. 根据权利要求14至19任一所述的方法,其特征在于,
    所述N的取值是预配置的;
    或,所述N的取值是根据配置信息配置的,所述配置信息来自所述网络设备或定位管理功能LMF网元。
  23. 一种定位装置,其特征在于,应用于终端设备中,所述装置包括:接收模块、分组模块和发送模块;
    所述接收模块,被配置为接收网络设备发送的多个同步信号块;
    所述分组模块,被配置为将多个所述同步信号块分成M个同步信号块组, 所述M为正整数;
    所述发送模块,被配置为针对每个所述同步信号块组,在属于同一同步信号块组的N个所述同步信号块对应的随机接入资源上,发送N个所述同步信号块对应的随机接入前导码,所述随机接入前导码用于进行定位,所述N为正整数。
  24. 一种定位装置,其特征在于,应用于网络设备中,所述装置包括:发送模块和接收模块;
    所述发送模块,被配置为向终端设备发送多个同步信号块,多个所述同步信号块被所述终端设备分成M个同步信号块组,所述M为正整数;
    所述接收模块,被配置为针对每个所述同步信号块组,在属于同一同步信号块组的N个所述同步信号块对应的随机接入资源上,接收N个所述同步信号块对应的随机接入前导码,所述随机接入前导码用于进行定位,所述N为正整数。
  25. 一种终端设备,其特征在于,所述终端设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至13任一所述的定位方法。
  26. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求14至22任一所述的定位方法。
  27. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有 可执行指令,所述可执行指令由处理器加载并执行以实现如权利要求1至22任一所述的定位方法。
PCT/CN2020/100674 2020-07-07 2020-07-07 定位方法、装置、通信设备及存储介质 WO2022006744A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/100674 WO2022006744A1 (zh) 2020-07-07 2020-07-07 定位方法、装置、通信设备及存储介质
CN202080001501.5A CN111972013B (zh) 2020-07-07 2020-07-07 定位方法、装置、通信设备及存储介质
US18/012,912 US20230300890A1 (en) 2020-07-07 2020-07-07 Positioning method, communication device, and storage medium
CN202310980191.1A CN117156538A (zh) 2020-07-07 2020-07-07 通信方法、装置、通信设备及存储介质
EP20944018.9A EP4181567A4 (en) 2020-07-07 2020-07-07 POSITIONING METHOD AND APPARATUS, COMMUNICATION DEVICE AND INFORMATION MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/100674 WO2022006744A1 (zh) 2020-07-07 2020-07-07 定位方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022006744A1 true WO2022006744A1 (zh) 2022-01-13

Family

ID=73386969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100674 WO2022006744A1 (zh) 2020-07-07 2020-07-07 定位方法、装置、通信设备及存储介质

Country Status (4)

Country Link
US (1) US20230300890A1 (zh)
EP (1) EP4181567A4 (zh)
CN (2) CN117156538A (zh)
WO (1) WO2022006744A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053284A1 (ja) * 2022-09-09 2024-03-14 日本電気株式会社 基地局、無線端末、及びこれらの方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115134742A (zh) * 2021-03-26 2022-09-30 维沃移动通信有限公司 定位方法、终端及网络侧设备
CN118042636A (zh) * 2022-11-10 2024-05-14 维沃移动通信有限公司 随机接入方法、终端及网络侧设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474845A (zh) * 2009-08-19 2012-05-23 Lg电子株式会社 发射用于基于定位的服务的信号的方法和装置及基于该信号测量定位相关信息的方法和装置
US20130028204A1 (en) * 2011-07-25 2013-01-31 Esmael Dinan Time Alignment in Multicarrier Systems
CN109041250A (zh) * 2018-07-19 2018-12-18 宇龙计算机通信科技(深圳)有限公司 一种ssb的传输方法、客户端及基站
CN109151905A (zh) * 2017-06-16 2019-01-04 展讯通信(上海)有限公司 随机接入资源分配方法及基站、可读存储介质及电子设备
WO2019075041A1 (en) * 2017-10-10 2019-04-18 Qualcomm Incorporated BEAM SPECIFIC WAITING INDICATOR
CN110463332A (zh) * 2017-03-24 2019-11-15 摩托罗拉移动有限责任公司 用于无线通信网络上的随机接入的方法和装置
CN111183684A (zh) * 2017-10-09 2020-05-19 高通股份有限公司 基于同步信号块传输的随机接入响应技术

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101883423B (zh) * 2009-05-07 2012-07-04 电信科学技术研究院 一种确定终端的位置信息的方法、系统和装置
CN109391410B (zh) * 2017-08-10 2020-09-11 电信科学技术研究院 同步信号块传输信息的指示、确定方法、基站及终端
EP3679756B1 (en) * 2017-09-08 2022-04-13 Samsung Electronics Co., Ltd. Method and apparatus for resource determination, resource configuration, transmitting random access preamble and random access
US10687366B2 (en) * 2017-09-29 2020-06-16 Electronics And Telcommunications Research Institute SSB to RACH resource associations and related RACH configuration contents in multi-beam system
CN110149294B (zh) * 2018-02-13 2023-12-08 华为技术有限公司 同步信号块的传输方法、通信装置及通信设备
CN109041593B (zh) * 2018-07-11 2021-04-06 北京小米移动软件有限公司 随机接入配置方法及装置、随机接入方法及装置和基站
CN111148268B (zh) * 2018-11-02 2022-02-01 维沃移动通信有限公司 随机接入资源确定方法、终端及网络设备
CN111294787B (zh) * 2018-12-10 2024-03-12 中兴通讯股份有限公司 一种用户设备ue定位方法及装置
CN110381578B (zh) * 2019-07-01 2021-09-24 京信网络系统股份有限公司 用户设备定位方法、装置、接入网设备和可读存储介质
US20230292281A1 (en) * 2020-07-01 2023-09-14 Beijing Xiaomi Mobile Software Co., Ltd. Positioning method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102474845A (zh) * 2009-08-19 2012-05-23 Lg电子株式会社 发射用于基于定位的服务的信号的方法和装置及基于该信号测量定位相关信息的方法和装置
US20130028204A1 (en) * 2011-07-25 2013-01-31 Esmael Dinan Time Alignment in Multicarrier Systems
CN110463332A (zh) * 2017-03-24 2019-11-15 摩托罗拉移动有限责任公司 用于无线通信网络上的随机接入的方法和装置
CN109151905A (zh) * 2017-06-16 2019-01-04 展讯通信(上海)有限公司 随机接入资源分配方法及基站、可读存储介质及电子设备
CN111183684A (zh) * 2017-10-09 2020-05-19 高通股份有限公司 基于同步信号块传输的随机接入响应技术
WO2019075041A1 (en) * 2017-10-10 2019-04-18 Qualcomm Incorporated BEAM SPECIFIC WAITING INDICATOR
CN109041250A (zh) * 2018-07-19 2018-12-18 宇龙计算机通信科技(深圳)有限公司 一种ssb的传输方法、客户端及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4181567A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053284A1 (ja) * 2022-09-09 2024-03-14 日本電気株式会社 基地局、無線端末、及びこれらの方法

Also Published As

Publication number Publication date
EP4181567A1 (en) 2023-05-17
US20230300890A1 (en) 2023-09-21
EP4181567A4 (en) 2024-03-13
CN111972013B (zh) 2023-09-12
CN117156538A (zh) 2023-12-01
CN111972013A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
CN111543024B (zh) 波束失败的检测方法、装置、设备及可读存储介质
CN111201818B (zh) 侧行链路通信中载波聚合的方法和装置
US11398940B2 (en) Indication of subcarrier spacing numerology
WO2022006744A1 (zh) 定位方法、装置、通信设备及存储介质
JP6792717B2 (ja) 無線通信ネットワークにおいて搬送波を関連付けるための方法および装置
WO2022000380A1 (zh) 定位方法、装置、通信设备及存储介质
US20190075430A1 (en) D2d communications in a cellular network
CN114073163A (zh) 用于随机接入过程的方法和装置
WO2019193427A1 (en) System and method for providing time domain allocations in a communication system
CN116210335A (zh) 用于降低能力设备的早期指示
WO2021063410A1 (en) Method and apparatus for random access
CN106162816B (zh) 网络发现方法、站点及接入点
CN114554603A (zh) 随机接入方法、装置及通信设备
WO2021160088A1 (en) Method and apparatus for random access
JP7507242B2 (ja) 無線ネットワーク一時識別子に関連する方法および装置
US20240235918A9 (en) Indication of Subcarrier Spacing Numerology
WO2023151144A1 (zh) 信号测量方法、装置、设备、介质及程序产品
CN111937473B (zh) 用于在通信系统中提供时域分配的系统和方法
WO2023010470A1 (en) Ssb and prach transmissions during initial access in wireless communications
CN118044140A (zh) 用于对定位参考信号的测量的系统和方法
CN116095805A (zh) 物理小区标识冲突的调节方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020944018

Country of ref document: EP

Effective date: 20230207