WO2022005146A1 - Molecular diagnostic apparatus using metal-graphene-based surface plasmon resonance, manufactured by roll-to-roll process, and manufacturing method therefor - Google Patents

Molecular diagnostic apparatus using metal-graphene-based surface plasmon resonance, manufactured by roll-to-roll process, and manufacturing method therefor Download PDF

Info

Publication number
WO2022005146A1
WO2022005146A1 PCT/KR2021/008133 KR2021008133W WO2022005146A1 WO 2022005146 A1 WO2022005146 A1 WO 2022005146A1 KR 2021008133 W KR2021008133 W KR 2021008133W WO 2022005146 A1 WO2022005146 A1 WO 2022005146A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
roll
detection device
biological
biological molecule
Prior art date
Application number
PCT/KR2021/008133
Other languages
French (fr)
Korean (ko)
Inventor
리루크
조규진
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200109710A external-priority patent/KR102539869B1/en
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2022005146A1 publication Critical patent/WO2022005146A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H37/00Article or web delivery apparatus incorporating devices for performing specified auxiliary operations
    • B65H37/04Article or web delivery apparatus incorporating devices for performing specified auxiliary operations for securing together articles or webs, e.g. by adhesive, stitching or stapling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited

Definitions

  • a roll-to-roll (R2R) process apparatus refers to an apparatus for performing various types of processes on a roll-type film or web.
  • a roll-to-roll process device includes an unwinder that unwinds a film wound in a roll form, process units that perform various processes such as a printing process on a film, and a rewinder that winds the film back into a roll form. And, it may be provided with various transport units for transporting the film between them.
  • metal nanoparticles of nanometer (nm) size are subjected to collective oscillation of electrons in the conduction band of the nanoparticles by light of a specific frequency (wavelength) incident from the outside, thereby exhibiting electric dipole characteristics.
  • LSPR Localized Surface Plasmon Resonance
  • the absorbance characteristics of the metal nanoparticles for external incident light that is, the intensity or frequency (wavelength) of absorption and scattering bands, have characteristics that are determined by the type, size, and shape of the metal nanoparticles.
  • absorption and scattering wavelengths are greatly affected by the external environment of metal nanoparticles, that is, changes in the refractive index of surrounding materials on the surface of metal nanoparticles. Using these properties, biomolecules and chemical substances are detected. It is widely applied in the field of sensors, etc.
  • the present inventors have tried to develop a technology for producing a device (eg, a PCR chip, a microfluidic chip, a biosensor, etc.) for detecting biological molecules in a large quantity within a short time more efficiently by a roll-to-roll process, and also surface plasmon resonance characteristics Efforts have been made to develop a device that can perform the polymerase chain reaction (PCR) with increased sensitivity. As a result, the present invention was completed by developing a metal-graphene-based surface plasmon resonance-based molecular diagnostic device.
  • PCR polymerase chain reaction
  • an object of the present invention is to provide a device for detecting a biological molecule based on a metal-graphene-based surface plasmon resonance, manufactured by a roll-to-roll process.
  • Another object of the present invention is to provide a roll-to-roll device for manufacturing the biological molecule detection device.
  • Another object of the present invention is to provide a method for manufacturing the biological molecule detection device using a roll-to-roll process.
  • the present invention is a biological molecule detection device manufactured by a roll-to-roll process, wherein the detection device includes an upper substrate and a lower substrate, the lower end of the upper substrate or A graphene thin film is disposed on the upper end of the lower substrate, and at least one reaction space for detecting biological molecules in a sample is positioned in a space between the graphene thin film and the substrate, and the reaction space is made of gold or silver It is characterized in that it is a metal plasmonic well, manufactured by a roll-to-roll process, and provides a metal-graphene-based surface plasmon resonance-based biological molecule detection device.
  • the biological molecular detection device can be used for molecular diagnosis.
  • the graphene thin film may be disposed on the lower end of the upper substrate and the upper end of the lower substrate, respectively, and the reaction space may be positioned in a space between the graphene thin films.
  • the biological molecule detection device is a device for polymerase chain reaction (PCR), further comprising a light source for irradiating light to the graphene thin film and the reaction space,
  • the light exposed from the light source may induce plasmonic photothermal light-to-heat conversion between the graphene thin film and the reaction space to cause heating of the sample positioned in the reaction space.
  • PCR polymerase chain reaction
  • the apparatus for polymerase chain reaction may further include a temperature sensor for monitoring the temperature of biological molecules.
  • the apparatus for polymerase chain reaction further comprises a controller coupled to the light source and the temperature sensor, wherein the controller obtains one or more data from the temperature sensor and operation can be controlled.
  • the graphene thin film may be nanometer-sized graphene quantum dot particles for improving light absorption through surface plasmon resonance.
  • the graphene thin film may be a thin film including graphene quantum dots (graphene quantum dots are mixed).
  • the substrate may be translucent or transparent.
  • the apparatus for polymerase chain reaction may further include a digital camera, a photodiode, or a spectrophotometer to detect nucleic acids in real time.
  • the biological molecule detection device may be a microfluidic chip including a microfluidic channel.
  • a guide molecule capable of binding to a biological target molecule in the sample is placed in the reaction space, and a graphene thin film or metal plasmon well that is changed by the binding of the biological target molecule and the guide molecule Biological molecules can be detected by sensing the surface plasmon resonance of
  • the reaction space in a method different from the molecular diagnosis technique that uses the guide molecule to be immobilized on the surface, includes a primer having a nucleotide sequence complementary to a biological target molecule in the sample, a fluorescent die, 4 Species of dNTP molecules and polymerases are placed, and the biological molecules are detected by measuring the fluorescence intensity generated as the nucleic acid amplification reaction is initiated, or graphene that is changed by the binding of the biological target molecule and four types of dNTP molecules Biological molecules can be detected by sensing the surface plasmon resonance of a thin film or metal plasmon well.
  • the guide molecule may be a nucleic acid having a sequence complementary to the biological target molecule, or an antibody or antigen that specifically binds to the biological molecule.
  • the biological molecule may be selected from the group consisting of nucleic acids, proteins, peptides and polypeptides.
  • the present invention provides an imprinting unit for imprinting one or more reaction spaces for detecting biological molecules in a sample in the form of a metal plasmonic well made of gold or silver on a substrate; and a laminating unit for laminating an upper portion of the reaction space with a graphene-coated substrate.
  • the roll-to-roll device further comprises a coating unit for manufacturing a graphene-coated substrate by coating the substrate with graphene, wherein the imprinting unit is graphene manufactured by the coating unit.
  • - Reaction space can be imprinted on coated substrate.
  • the present invention comprises the steps of: imprinting one or more reaction spaces for detecting biological molecules in a sample in the form of a metal plasmon well made of gold or silver on a substrate; and laminating an upper portion of the reaction space with graphene.
  • the manufacturing method may further include coating the substrate with graphene before the imprinting step.
  • FIG. 1 is a diagram schematically illustrating a cross-section of a metal-graphene-based surface plasmon resonance-based biological molecule detection device manufactured by a roll-to-roll process according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a cross-section of a metal-graphene-based surface plasmon resonance-based biological molecule detection device manufactured by a roll-to-roll process according to another embodiment of the present invention.
  • FIG. 3 is a diagram schematically showing the configuration of the biological molecule detection device of the present invention in the case of a polymerase chain reaction (PCR) device.
  • PCR polymerase chain reaction
  • FIG. 4 is a diagram schematically showing the configuration of the biological molecule detection device of the present invention in the case of a microfluidic chip in which a microfluidic channel is formed.
  • FIG 5 shows each component of a roll-to-roll device for manufacturing a biological molecule detection device according to an embodiment of the present invention.
  • FIG. 6 shows the operation of a roll-to-roll device for manufacturing a biological molecule detection device according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a cross-section of a metal-graphene-based surface plasmon resonance-based biological molecule detection device manufactured by a roll-to-roll process according to an embodiment of the present invention
  • FIG. 2 is another embodiment of the present invention
  • an apparatus 100 for detecting a metal-graphene-based surface plasmon resonance based biological molecule includes an upper substrate 20 and a lower substrate 10 , and the upper substrate A graphene thin film 21 is disposed at the lower end of the 20, and in the space between the graphene thin film 21 and the lower substrate 10 there is at least one reaction space S for detecting biological molecules in the sample. Located. Unlike FIG. 1 , the graphene thin film may be disposed on top of the lower substrate 10 .
  • a graphene thin film 11 is also disposed on the upper portion of the lower substrate 10 , , the reaction space S is located in the space between the graphene thin films 21 and 11 of the upper and lower substrates 20 and 10 .
  • the material of the substrates 10 and 20 is not particularly limited, and materials (eg, plastic, glass, etc.) commonly used for manufacturing devices for detecting biomolecules such as biosensors, biochips, and microfluidic chips can be used without limitation.
  • the biological molecule detection apparatus 100 of the present invention is for polymerase chain reaction (PCR), it may be made of a substrate of a translucent or transparent material (eg, polymethyl methacrylate (PMMA)).
  • PCR polymerase chain reaction
  • PMMA polymethyl methacrylate
  • the reaction space (S) is a metal plasmonic well in the form of a well made of gold nanoparticles or silver nanoparticles, and a polymerase chain reaction for detecting a desired biological molecule present in the sample occurs, or It is a space in which a binding reaction between the biological molecule and a probe molecule binding thereto occurs.
  • the graphene thin films 11 and 21 and the metal plasmon well as the reaction space S provided in the present invention provide heat necessary for the polymerase chain reaction.
  • one cycle of temperature control (eg, 90°C-53°C-60°C) for amplification can be performed within 0.1 seconds, so it takes only 10 seconds to perform 100 amplifications, so RT using the fluorescence method -Provides a platform that can efficiently perform PCR and digital PCR.
  • the change in the surface plasmon resonance phenomenon can be detected (confirmed) a desired biological molecule by quantitatively detecting the change in proportion to the base unit of the ssDNA or ssRNA to be detected.
  • FIG. 3 is a diagram schematically illustrating the configuration of a metal-graphene-based surface plasmon resonance-based biological molecule detection device according to an embodiment of the present invention as a polymerase chain reaction (PCR) device.
  • PCR polymerase chain reaction
  • a light source 30 for irradiating light to the graphene thin films 11 and 21 is further added.
  • the light exposed from the light source 30 induces plasmonic photothermal light-to-heat conversion in the graphene thin films 11 and 21 and the reaction space S to the reaction space. (S) causes heating of the biological molecules located in it.
  • the graphene thin film may be formed by coating graphene ink prepared by mixing and homogenizing graphene flakes from which graphite is peeled with a polymer binder (eg, carboxymethyl cellulose sodium salt) on a substrate using roll-to-roll equipment.
  • a polymer binder eg, carboxymethyl cellulose sodium salt
  • the graphene thin film can also be manufactured with nanometer-sized quantum dot-shaped particles, and thus the light absorption rate through surface plasmon resonance can be controlled for each wavelength of the light source, so that plasmon heating of the graphene thin film can be designed.
  • the apparatus for polymerase chain reaction (PCR) may further include a temperature sensor for monitoring the temperature of the sample solution.
  • the temperature sensor may be coupled to or facing the platform for measuring the temperature of the sample and/or the thin film.
  • Such temperature sensors may include multiple sensor types, such as thermocouples or cameras (eg, IR cameras) facing the platform.
  • the PCR system may be integrated or compatible with a diagnostic device such as a digital camera, photodiode, spectrophotometer or similar imaging device that detects nucleic acid and/or fluorescence signals in a sample solution in real time.
  • a diagnostic device such as a digital camera, photodiode, spectrophotometer or similar imaging device that detects nucleic acid and/or fluorescence signals in a sample solution in real time.
  • the camera may be a smartphone camera, and the smartphone includes application software for analyzing a sample solution.
  • FIG. 4 is a diagram schematically illustrating the configuration of the metal-graphene-based surface plasmon resonance-based biological molecule detection device of the present invention in the case of a microfluidic chip 120 having a microfluidic channel formed therein.
  • a sample containing a biological molecule to be detected is injected into the sample inlet (I)
  • the injected sample moves to the reaction space (S) through the microfluidic channel.
  • a primer capable of binding to a biological target molecule in the sample four types of deoxyribonucleotides (dNTPs), a fluorescent dye, and a polymerase are placed.
  • dNTPs deoxyribonucleotides
  • the target can be quantitatively detected by the fluorescence intensity generated in the reaction space (S), and a dNTP to the base of a biological target molecule (eg, RNA or ssDNA) Protons are generated while pairing one by one, and the generated protons affect the graphene and/or metal plasmon wells, resulting in a change in the surface plasmon phenomenon of the graphene and/or metal plasmon wells.
  • a biological target molecule eg, RNA or ssDNA
  • the microfluidic chip in which the nucleic acid amplification reaction occurs may include components for nucleic acid amplification, for example, the graphene thin films 11 and 21 described with reference to FIG. 3 and a light source for irradiating light to the reaction space S. have. Additionally, the microfluidic chip may include components for sample preparation, sample reaction, and sample delivery.
  • a guide molecule capable of binding to a biological target molecule in a sample eg, DNA or RNA having a sequence complementary to that of a biological molecule
  • a biological target molecule in a sample eg, DNA or RNA having a sequence complementary to that of a biological molecule
  • four types of dNTPs and A fluorescence die is placed, and a very rapid amplification of biological molecules occurs in the reaction space (S) and fluorescence is displayed, enabling quantitative detection.
  • protons are generated, Protons affect the graphene and/or metal plasmon wells, resulting in a change in plasmonic phenomena in the graphene and/or metal plasmon wells. By detecting such a plasmon change, a desired biological molecule can be detected.
  • the surface plasmon resonance change may be detected and detected by an angle tunable surface plasmon resonance method, a wavelength tunable surface plasmon resonance method, or a surface plasmon resonance imaging method.
  • microfluidic channel a material used for manufacturing the microfluidic channel, such as PDMS, may be used without limitation.
  • FIG. 5 is a view showing each component (coating unit, imprinting unit, laminating unit) of the roll-to-roll device for manufacturing a biological molecule detection device according to an embodiment of the present invention.
  • the roll-to-roll device includes an imprinting unit for imprinting one or more reaction spaces for detecting biological molecules in a sample on a substrate in the form of a metal (gold or silver) plasmonic well, and the reaction space and a laminating unit for laminating an upper portion with a graphene-coated substrate.
  • the roll-to-roll apparatus may further include a coating unit for manufacturing a graphene-coated substrate by coating the substrate with graphene, in this case, the imprinting unit is a graphene-coated substrate manufactured in the coating unit. Imprinting the reaction space.
  • FIG. 6 is a view showing the operation of a roll-to-roll device for manufacturing a biological molecule detection device according to an embodiment of the present invention.
  • a process for manufacturing a biological molecule detection device according to an embodiment of the present invention using the roll-to-roll device of the present invention is as follows.
  • the substrate is coated with graphene in the coating unit.
  • the coating unit is a device for coating the graphene ink on the substrate.
  • the graphene ink may be prepared, for example, by the following method. Graphene flakes or graphene quantum dots from which graphite is peeled are mixed with sodium deoxycholate and carboxymethyl cellulose sodium salt in various ratios in water (for example, 10 by weight (Water):1:0.01:0.1) and homogenize for more than 12 hours using a probe sonicator. After homogenization, the surface tension and viscosity are measured, and the amount of graphene and the amount of carboxymethylcellulose sodium salt used as a binder can be adjusted to control the viscosity according to the printing method.
  • reaction spaces for detecting biological molecules in the imprinting unit are formed on the graphene-coated substrate in the form of gold (Au) plasmon wells or silver (Ag) plasmon wells (imprinting).
  • metal microwells can be printed on a substrate (eg, a plastic film) using R2R gravure or offset using a gold or silver nanoparticle-based conductive ink.
  • microwells of gold or silver can be printed from several hundred nanometers to several microns in diameter and to several microns in depth.
  • graphene or graphene quantum dots are laminated with a coated film to manufacture a biological molecule detection device.
  • the graphene-coated film may be prepared using R2R slot die or comma coating.

Abstract

The present invention relates to: a biomolecule detection apparatus based on metal (gold or silver)-graphene-based surface plasmon resonance, manufactured by a roll-to-roll process; a manufacturing method therefor; and the like. The present invention can manufacture, by a roll-to-roll process, a molecular diagnostic apparatus capable of detecting various biomolecules such as DNA, RNA and proteins. Particularly, the present invention can be implemented as a PCR chip, and uses both a metal and graphene to have stronger surface plasmon resonance characteristics than when graphene is used, and thus can more sensitively perform nucleic acid amplification.

Description

롤투롤 공정으로 제조된 금속-그래핀 기반 표면 플라즈몬 공명 분자진단 장치 및 이의 제조방법Metal-graphene-based surface plasmon resonance molecular diagnostic device manufactured by roll-to-roll process and manufacturing method thereof
본 발명은 롤투롤 공정으로 제조된 금속(금 또는 은)-그래핀 기반 표면 플라즈몬 공명(metal-graphene based surface plasmon resonance) 기반의 생물학적 분자 검출장치(예컨대, 표면 플라즈몬 기반 PCR칩) 및 이의 제조방법 등에 관한 것이다.The present invention relates to a metal (gold or silver) manufactured by a roll-to-roll process-graphene-based surface plasmon resonance-based biological molecule detection device (eg, surface plasmon-based PCR chip) and a method for manufacturing the same about etc.
본 출원은 2020년 06월 29일에 출원된 한국특허출원 제10-2020-0079358호 및 2020년 08월 28일에 출원된 한국특허출원 제10-2020-0109710호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2020-0079358, filed on June 29, 2020 and Korean Patent Application No. 10-2020-0109710, filed on August 28, 2020, All contents disclosed in the specification and drawings of the application are incorporated herein by reference.
일반적으로 롤투롤(Roll-to-Roll, R2R) 공정 장치는 롤(roll) 형태의 필름(film) 또는 웹(web)에 다양한 종류의 공정을 수행하는 장치를 의미한다. 이러한 롤투롤 공정 장치는 롤 형태로 권취된 필름을 풀어주는 언와인더(unwinder), 필름에 인쇄 공정 등 다양한 공정을 수행하는 공정 유닛들, 필름을 다시 롤 형태로 감아주는 리와인더(rewinder)를 포함하며, 이들 사이에서 필름을 이송하기 위한 다양한 이송 유닛들을 구비할 수 있다.In general, a roll-to-roll (R2R) process apparatus refers to an apparatus for performing various types of processes on a roll-type film or web. Such a roll-to-roll process device includes an unwinder that unwinds a film wound in a roll form, process units that perform various processes such as a printing process on a film, and a rewinder that winds the film back into a roll form. And, it may be provided with various transport units for transporting the film between them.
롤투롤 공정 장치의 일 예로, 피공정물인 필름의 표면에 다양한 패턴을 형성하는 롤투롤 인쇄 장치를 들 수 있다. 최근의 롤투롤 인쇄 장치는 전자 회로, 센서, 플렉서블 디스플레이(flexible display) 등의 다양한 전자 부품의 제조에 다양하게 활용되고 있다.As an example of the roll-to-roll process apparatus, a roll-to-roll printing apparatus for forming various patterns on the surface of a film, which is an object to be processed, may be mentioned. A recent roll-to-roll printing apparatus is used in various ways to manufacture various electronic components such as electronic circuits, sensors, and flexible displays.
한편, 나노미터(nm) 크기의 금속 나노 입자는 외부에서 입사되는 특정한 주파수(파장)의 빛에 의하여 나노입자 전도대에 있는 전자들의 집단적인 진동(collective oscillation)이 일어나 전기 쌍극자 특성을 띠게 된다. 그 결과, 금속 나노입자는 해당 주파수(파장) 영역의 빛을 강하게 흡수 및 산란을 하는데, 이를 국부적 표면 플라즈몬 공명(Localized Surface Plasmon Resonance, LSPR)이라고 한다.On the other hand, metal nanoparticles of nanometer (nm) size are subjected to collective oscillation of electrons in the conduction band of the nanoparticles by light of a specific frequency (wavelength) incident from the outside, thereby exhibiting electric dipole characteristics. As a result, metal nanoparticles strongly absorb and scatter light in the frequency (wavelength) region, which is called Localized Surface Plasmon Resonance (LSPR).
금속 나노입자의 외부 입사광에 대한 흡광도(extinction) 특성, 즉 흡수 및 산란 밴드의 세기나 주파수(파장) 등은 금속 나노입자의 종류, 크기, 모양에 따라 결정되는 특성을 가지고 있다. 뿐만 아니라, 흡수 및 산란 파장은 금속 나노입자의 외부환경, 즉 금속 나노입자 표면에 존재하는 주변 물질의 굴절률 변화에 크게 영향을 받는데, 이러한 성질을 이용하여 생체분자 및 화학물질을 검출하는 바이오, 화학 센서 분야 등에 널리 응용되고 있다.The absorbance characteristics of the metal nanoparticles for external incident light, that is, the intensity or frequency (wavelength) of absorption and scattering bands, have characteristics that are determined by the type, size, and shape of the metal nanoparticles. In addition, absorption and scattering wavelengths are greatly affected by the external environment of metal nanoparticles, that is, changes in the refractive index of surrounding materials on the surface of metal nanoparticles. Using these properties, biomolecules and chemical substances are detected. It is widely applied in the field of sensors, etc.
본 발명자들은 생물학적 분자 검출을 위한 장치(예컨대, PCR칩, 미세유체칩, 바이오센서 등)를 롤투롤 공정으로 보다 효율적으로 단시간 내에 대량으로 제조하기 위한 기술을 개발하고자 노력하였으며, 또한 표면 플라즈몬 공명 특성이 증대되어 매우 민감하게 중합효소 연쇄반응(PCR)을 수행할 수 있는 장치를 개발하고자 노력하였다. 그 결과, 금속-그래핀 기반 표면 플라즈몬 공명 기반의 분자진단 장치를 개발함으로써, 본 발명을 완성하였다.The present inventors have tried to develop a technology for producing a device (eg, a PCR chip, a microfluidic chip, a biosensor, etc.) for detecting biological molecules in a large quantity within a short time more efficiently by a roll-to-roll process, and also surface plasmon resonance characteristics Efforts have been made to develop a device that can perform the polymerase chain reaction (PCR) with increased sensitivity. As a result, the present invention was completed by developing a metal-graphene-based surface plasmon resonance-based molecular diagnostic device.
따라서, 본 발명의 목적은 롤투롤 공정으로 제조된, 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치를 제공하는 것이다.Accordingly, an object of the present invention is to provide a device for detecting a biological molecule based on a metal-graphene-based surface plasmon resonance, manufactured by a roll-to-roll process.
본 발명의 다른 목적은 상기 생물학적 분자 검출장치 제조용 롤투롤 장치를 제공하는 것이다.Another object of the present invention is to provide a roll-to-roll device for manufacturing the biological molecule detection device.
본 발명의 또 다른 목적은 롤투롤 공정을 이용하여 상기 생물학적 분자 검출장치를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing the biological molecule detection device using a roll-to-roll process.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned tasks, and other tasks not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the following description. will be.
본 발명의 목적을 달성하기 위하여, 본 발명은 롤투롤(roll-to-roll) 공정으로 제조된 생물학적 분자 검출장치이며, 상기 검출장치는 상부 기판 및 하부 기판을 포함하며, 상기 상부 기판의 하단 또는 상기 하부 기판의 상단에는 그래핀(graphene) 박막이 배치되며, 상기 그래핀 박막과 기판의 사이 공간에는 시료 내의 생물학적 분자 검출을 위한 하나 이상의 반응 공간이 위치하며, 상기 반응 공간은 금 또는 은으로 제조된 금속 플라즈몬 웰(metal plasmonic well)인 것을 특징으로 하는, 롤투롤 공정으로 제조된, 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치를 제공한다.In order to achieve the object of the present invention, the present invention is a biological molecule detection device manufactured by a roll-to-roll process, wherein the detection device includes an upper substrate and a lower substrate, the lower end of the upper substrate or A graphene thin film is disposed on the upper end of the lower substrate, and at least one reaction space for detecting biological molecules in a sample is positioned in a space between the graphene thin film and the substrate, and the reaction space is made of gold or silver It is characterized in that it is a metal plasmonic well, manufactured by a roll-to-roll process, and provides a metal-graphene-based surface plasmon resonance-based biological molecule detection device.
본 발명의 일 구현예에 있어서, 상기 생물학적 분자 검출장치는 분자진단에 사용될 수 있다.In one embodiment of the present invention, the biological molecular detection device can be used for molecular diagnosis.
본 발명의 다른 구현예에 있어서, 상기 그래핀 박막은 상부 기판의 하단과 하부 기판의 상단에 각각 배치되고, 상기 그래핀 박막의 사이 공간에 상기 반응 공간이 위치할 수 있다.In another embodiment of the present invention, the graphene thin film may be disposed on the lower end of the upper substrate and the upper end of the lower substrate, respectively, and the reaction space may be positioned in a space between the graphene thin films.
본 발명의 또 다른 구현예에 있어서, 상기 생물학적 분자 검출장치는 중합효소 연쇄반응(PCR)용 장치로서, 상기 그래핀 박막 및 반응 공간에 빛을 조사하기 위한 광원(light source)을 더 포함하며, 상기 광원으로부터 노출된 빛은 상기 그래핀 박막과 반응 공간의 플라즈몬 광열 광-열 변환(plasmonic photothermal light-to-heat conversion)을 유도하여 상기 반응 공간에 위치하는 시료의 가열을 일으킬 수 있다.In another embodiment of the present invention, the biological molecule detection device is a device for polymerase chain reaction (PCR), further comprising a light source for irradiating light to the graphene thin film and the reaction space, The light exposed from the light source may induce plasmonic photothermal light-to-heat conversion between the graphene thin film and the reaction space to cause heating of the sample positioned in the reaction space.
본 발명의 또 다른 구현예에 있어서, 상기 중합효소 연쇄반응용 장치는 생물학적 분자의 온도를 모니터링 하는 온도 센서를 더 포함할 수 있다.In another embodiment of the present invention, the apparatus for polymerase chain reaction may further include a temperature sensor for monitoring the temperature of biological molecules.
본 발명의 또 다른 구현예에 있어서, 상기 중합효소 연쇄반응용 장치는 상기 광원 및 온도 센서에 결합된 컨트롤러(controller)를 더 포함하며, 상기 컨트롤러는 상기 온도 센서로부터 하나 이상의 데이터 획득 및 상기 광원의 작동을 제어할 수 있다.In another embodiment of the present invention, the apparatus for polymerase chain reaction further comprises a controller coupled to the light source and the temperature sensor, wherein the controller obtains one or more data from the temperature sensor and operation can be controlled.
본 발명의 또 다른 구현예에 있어서, 상기 그래핀 박막은 표면 플라즈몬 공명(surface plasmon resonance)을 통한 광흡수율을 향상시키기 위한 나노미터 크기의 그래핀 양자점 입자일 수 있다.In another embodiment of the present invention, the graphene thin film may be nanometer-sized graphene quantum dot particles for improving light absorption through surface plasmon resonance.
본 발명의 또 다른 구현예에 있어서, 상기 그래핀 박막은 그래핀 양자점을 포함하는(그래핀 양자점이 혼용된) 박막일 수 있다.In another embodiment of the present invention, the graphene thin film may be a thin film including graphene quantum dots (graphene quantum dots are mixed).
본 발명의 또 다른 구현예에 있어서, 상기 기판은 반투명 또는 투명일 수 있다.In another embodiment of the present invention, the substrate may be translucent or transparent.
본 발명의 또 다른 구현예에 있어서, 상기 중합효소 연쇄반응용 장치는 핵산을 실시간으로 검출하기 위하여 디지털 카메라, 포토다이오드(photodiode) 또는 분광 광도계를 더 포함할 수 있다.In another embodiment of the present invention, the apparatus for polymerase chain reaction may further include a digital camera, a photodiode, or a spectrophotometer to detect nucleic acids in real time.
본 발명의 또 다른 구현예에 있어서, 상기 생물학적 분자 검출장치는 미세유체 채널을 포함하는 미세유체칩 일 수 있다.In another embodiment of the present invention, the biological molecule detection device may be a microfluidic chip including a microfluidic channel.
본 발명의 또 다른 구현예에 있어서, 상기 반응 공간에는 시료 내 생물학적 타겟 분자와 결합할 수 있는 가이드 분자가 놓여지며, 상기 생물학적 타겟 분자와 가이드 분자의 결합에 의하여 변화되는 그래핀 박막 또는 금속 플라즈몬 웰의 표면 플라즈몬 공명을 감지하여 생물학적 분자를 검출할 수 있다.In another embodiment of the present invention, a guide molecule capable of binding to a biological target molecule in the sample is placed in the reaction space, and a graphene thin film or metal plasmon well that is changed by the binding of the biological target molecule and the guide molecule Biological molecules can be detected by sensing the surface plasmon resonance of
본 발명의 또 다른 구현예에 있어서, 상기 가이드 분자를 표면에 고정화 하여 사용하는 분자진단 기술과 다른 방식으로, 상기 반응 공간에는 시료 내 생물학적 타겟 분자에 상보적인 염기서열을 갖는 프라이머, 형광다이, 4종의 dNTP 분자 및 중합효소가 놓여지며, 핵산증폭 반응이 개시됨에 따라 발생하는 형광 강도를 측정하여 생물학적 분자를 검출하거나, 또는 상기 생물학적 타겟 분자와 4종의 dNTP 분자의 결합에 의하여 변화되는 그래핀 박막 또는 금속 플라즈몬 웰의 표면 플라즈몬 공명을 감지하여 생물학적 분자를 검출할 수 있다.In another embodiment of the present invention, in a method different from the molecular diagnosis technique that uses the guide molecule to be immobilized on the surface, the reaction space includes a primer having a nucleotide sequence complementary to a biological target molecule in the sample, a fluorescent die, 4 Species of dNTP molecules and polymerases are placed, and the biological molecules are detected by measuring the fluorescence intensity generated as the nucleic acid amplification reaction is initiated, or graphene that is changed by the binding of the biological target molecule and four types of dNTP molecules Biological molecules can be detected by sensing the surface plasmon resonance of a thin film or metal plasmon well.
본 발명의 또 다른 구현예에 있어서, 상기 가이드 분자는 상기 생물학적 타겟 분자와 상보적인 서열을 갖는 핵산, 또는 상기 생물학적 분자에 특이적으로 결합하는 항체 또는 항원일 수 있다.In another embodiment of the present invention, the guide molecule may be a nucleic acid having a sequence complementary to the biological target molecule, or an antibody or antigen that specifically binds to the biological molecule.
본 발명의 또 다른 구현예에 있어서, 상기 생물학적 분자는, 핵산, 단백질, 펩타이드 및 폴리펩타이드로 이루어진 군으로부터 선택될 수 있다.In another embodiment of the present invention, the biological molecule may be selected from the group consisting of nucleic acids, proteins, peptides and polypeptides.
또한, 본 발명은 기판에 시료 내의 생물학적 분자 검출을 위한 하나 이상의 반응 공간을 금 또는 은으로 제조된 금속 플라즈몬 웰(metal plasmonic well) 형태로 임프린팅 하는 임프린팅 유닛; 및 상기 반응 공간 상부를 그래핀-코팅 기판으로 라미네이션(lamination) 하는 라미네이팅 유닛을 포함하는, 생물학적 분자 검출장치 제조용 롤투롤 장치를 제공한다.In addition, the present invention provides an imprinting unit for imprinting one or more reaction spaces for detecting biological molecules in a sample in the form of a metal plasmonic well made of gold or silver on a substrate; and a laminating unit for laminating an upper portion of the reaction space with a graphene-coated substrate.
본 발명의 일 구현예에 있어서, 상기 롤투롤 장치는 기판을 그래핀으로 코팅하여 그래핀-코팅 기판을 제조하는 코팅 유닛을 더 포함하며, 상기 임프린팅 유닛은 상기 코팅 유닛에 의해 제조된 그래핀-코팅 기판에 반응 공간을 임프린팅 할 수 있다.In one embodiment of the present invention, the roll-to-roll device further comprises a coating unit for manufacturing a graphene-coated substrate by coating the substrate with graphene, wherein the imprinting unit is graphene manufactured by the coating unit. - Reaction space can be imprinted on coated substrate.
또한, 본 발명은 기판에 시료 내 생물학적 분자 검출을 위한 하나 이상의 반응 공간을 금 또는 은으로 제조된 금속 플라즈몬 웰 형태로 임프린팅 하는 단계; 및 상기 반응 공간 상부를 그래핀으로 라미네이션하는 단계를 포함하는, 롤투롤 공정을 이용한 생물학적 분자 검출장치의 제조방법을 제공한다.In addition, the present invention comprises the steps of: imprinting one or more reaction spaces for detecting biological molecules in a sample in the form of a metal plasmon well made of gold or silver on a substrate; and laminating an upper portion of the reaction space with graphene.
본 발명의 일 구현예에 있어서, 상기 제조방법은 임프린팅 하는 단계 전에 기판을 그래핀으로 코팅하는 단계를 더 포함할 수 있다.In one embodiment of the present invention, the manufacturing method may further include coating the substrate with graphene before the imprinting step.
본 발명을 이용하면, 롤투롤(R2R) 공정을 이용하여 DNA, RNA, 단백질 등의 다양한 생물학적 분자를 검출할 수 있는 분자진단 장치를 제조할 수 있다. 특히 본 발명은 PCR 칩으로 구현될 수 있으며, 금속과 그래핀을 모두 이용함에 따라, 그래핀을 이용하는 경우보다 표면 플라즈몬 공명 특성이 더 강화되어 보다 민감하게 핵산증폭을 할 수 있다.According to the present invention, a molecular diagnostic device capable of detecting various biological molecules such as DNA, RNA, and protein can be manufactured using a roll-to-roll (R2R) process. In particular, the present invention can be implemented as a PCR chip, and since both metal and graphene are used, the surface plasmon resonance characteristic is more enhanced than when graphene is used, so that nucleic acid amplification can be performed more sensitively.
도 1은 본 발명의 일 실시예에 따른 롤투롤 공정으로 제조된, 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치의 단면을 개략적으로 도시한 도이다.1 is a diagram schematically illustrating a cross-section of a metal-graphene-based surface plasmon resonance-based biological molecule detection device manufactured by a roll-to-roll process according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 롤투롤 공정으로 제조된, 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치의 단면을 개략적으로 도시한 도이다.2 is a diagram schematically illustrating a cross-section of a metal-graphene-based surface plasmon resonance-based biological molecule detection device manufactured by a roll-to-roll process according to another embodiment of the present invention.
도 3은 본 발명의 생물학적 분자 검출장치가 중합효소 연쇄반응(PCR)용 장치인 경우의 구성을 개략적으로 도시한 도이다.3 is a diagram schematically showing the configuration of the biological molecule detection device of the present invention in the case of a polymerase chain reaction (PCR) device.
도 4는 본 발명의 생물학적 분자 검출장치가 미세유체 채널이 형성된 미세유체칩인 경우의 구성을 개략적으로 도시한 도이다.4 is a diagram schematically showing the configuration of the biological molecule detection device of the present invention in the case of a microfluidic chip in which a microfluidic channel is formed.
도 5는 본 발명의 일 실시예에 따른 생물학적 분자 검출장치 제조를 위한 롤투롤 장치의 각 구성요소를 보여준다.5 shows each component of a roll-to-roll device for manufacturing a biological molecule detection device according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 생물학적 분자 검출장치 제조를 위한 롤투롤 장치의 작동을 보여준다.6 shows the operation of a roll-to-roll device for manufacturing a biological molecule detection device according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예에 따른 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치 및 이의 제조를 위한 롤투롤 장치를 더욱 상세하게 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되게 도시된 부분도 있다. 또한, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, a metal-graphene-based surface plasmon resonance-based biological molecule detection apparatus and a roll-to-roll apparatus for manufacturing the same according to an embodiment of the present invention will be described in more detail with reference to the accompanying drawings. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the following embodiments. This example is provided to more completely explain the present invention to those of ordinary skill in the art. Accordingly, the shapes of elements in the drawings are exaggerated in some cases to emphasize a clearer description. In addition, the terms or words used in the present specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventor appropriately defines the concept of the term in order to best describe his invention. Based on the principle that it can be done, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.
도면을 참조하여 설명할 때 동일 하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.When describing with reference to the drawings, the same or corresponding components are given the same reference numerals, and overlapping descriptions thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 롤투롤 공정으로 제조된, 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치의 단면을 개략적으로 도시한 도이며, 도 2는 본 발명의 다른 실시예에 따른 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치의 단면을 개략적으로 도시한 도이다.1 is a diagram schematically showing a cross-section of a metal-graphene-based surface plasmon resonance-based biological molecule detection device manufactured by a roll-to-roll process according to an embodiment of the present invention, and FIG. 2 is another embodiment of the present invention A diagram schematically illustrating a cross-section of a metal-graphene-based surface plasmon resonance-based biological molecule detection device according to an example.
도 1을 참조하면, 본 발명의 일 실시예에 따른 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치(100)는 상부 기판(20) 및 하부 기판(10)을 포함하며, 상기 상부 기판(20)의 하단에 그래핀(graphene) 박막(21)이 배치되며, 상기 그래핀 박막(21)과 하부 기판(10) 사이 공간에는 시료 내의 생물학적 분자 검출을 위한 하나 이상의 반응 공간(S)이 위치한다. 도 1에 도시된 바와 달리, 그래핀 박막은 하부 기판(10)의 상단에 배치될 수도 있다.Referring to FIG. 1 , an apparatus 100 for detecting a metal-graphene-based surface plasmon resonance based biological molecule according to an embodiment of the present invention includes an upper substrate 20 and a lower substrate 10 , and the upper substrate A graphene thin film 21 is disposed at the lower end of the 20, and in the space between the graphene thin film 21 and the lower substrate 10 there is at least one reaction space S for detecting biological molecules in the sample. Located. Unlike FIG. 1 , the graphene thin film may be disposed on top of the lower substrate 10 .
도 2를 참조하면, 본 발명의 다른 실시예에 따른 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치(100)는 상기 하부 기판(10)의 상단에도 그래핀 박막(11)이 배치되고, 상기 상하부 기판(20, 10)의 그래핀 박막(21, 11) 사이 공간에 상기 반응 공간(S)이 위치한다.Referring to FIG. 2 , in the metal-graphene-based surface plasmon resonance-based biological molecule detection apparatus 100 according to another embodiment of the present invention, a graphene thin film 11 is also disposed on the upper portion of the lower substrate 10 , , the reaction space S is located in the space between the graphene thin films 21 and 11 of the upper and lower substrates 20 and 10 .
상기 기판(10, 20)의 재질은 크게 제한되지 않으며, 바이오센서, 바이오칩, 미세유체칩 등 생체분자의 검출을 위한 장치 제조에 통상적으로 사용되는 소재(예컨대, 플라스틱, 유리 등)를 제한 없이 사용할 수 있다. 본 발명의 생물학적 분자 검출장치(100)가 중합효소 연쇄반응(PCR)을 위한 것인 경우에는 반투명 또는 투명한 소재(예컨대, 폴리메틸메타크릴레이트(PMMA))의 기판으로 제조될 수 있다.The material of the substrates 10 and 20 is not particularly limited, and materials (eg, plastic, glass, etc.) commonly used for manufacturing devices for detecting biomolecules such as biosensors, biochips, and microfluidic chips can be used without limitation. can When the biological molecule detection apparatus 100 of the present invention is for polymerase chain reaction (PCR), it may be made of a substrate of a translucent or transparent material (eg, polymethyl methacrylate (PMMA)).
상기 반응 공간(S)은 금 나노입자 또는 은 나노입자로 제조된 우물 형태의 금속 플라즈몬 웰(metal plasmonic well)로서, 시료 내에 존재하는 목적하는 생물학적 분자를 검출하기 위한 중합효소 연쇄반응이 일어나거나, 상기 생물학적 분자와 이에 결합하는 탐침(probe) 분자 사이의 결합 반응이 일어나는 공간이다. 본 발명에 마련된 그래핀 박막(11, 21) 및 반응 공간(S)인 금속 플라즈몬 웰은 상기 중합효소 연쇄반응에 필요한 열을 제공한다. 이때, 증폭을 위해 제어하는 온도 제어의 한 싸이클(예: 90℃-53℃-60℃)을 0.1초 안에 진행할 수 있어, 100회의 증폭을 수행하는데 10초의 시간 밖에 소요되지 않아, 형광법을 이용한 rt-PCR 및 디지털 PCR을 효율적으로 수행할 수 있는 플랫폼을 제공한다. 또한, 상기 생물학적 분자와 이에 결합하는 4종의 dNTP 또는 탐침(probe) 분자 사이의 결합 반응에 따라 발생하는 프로톤이 그래핀 박막(11, 21) 및/또는 금속 플라즈몬 웰에 영향을 주어 그래핀 또는 금속(금 또는 은)의 표면 플라즈몬 공명 현상의 변화가 나타난다. 이러한 표면 플라즈몬 공명 현상의 변화는 탐지하고자 하는 ssDNA 또는 ssRNA의 염기서열수(base unit)에 비례하여 정량적으로 감지함으로써 목적하는 생물학적 분자를 검출(확인)할 수 있다.The reaction space (S) is a metal plasmonic well in the form of a well made of gold nanoparticles or silver nanoparticles, and a polymerase chain reaction for detecting a desired biological molecule present in the sample occurs, or It is a space in which a binding reaction between the biological molecule and a probe molecule binding thereto occurs. The graphene thin films 11 and 21 and the metal plasmon well as the reaction space S provided in the present invention provide heat necessary for the polymerase chain reaction. At this time, one cycle of temperature control (eg, 90°C-53°C-60°C) for amplification can be performed within 0.1 seconds, so it takes only 10 seconds to perform 100 amplifications, so RT using the fluorescence method -Provides a platform that can efficiently perform PCR and digital PCR. In addition, protons generated according to the binding reaction between the biological molecules and the four types of dNTPs or probe molecules that bind thereto affect the graphene thin films 11 and 21 and/or the metal plasmon wells to form graphene or Changes in the surface plasmon resonance phenomenon of metals (gold or silver) appear. The change in the surface plasmon resonance phenomenon can be detected (confirmed) a desired biological molecule by quantitatively detecting the change in proportion to the base unit of the ssDNA or ssRNA to be detected.
도 3은 본 발명의 일 실시예에 따른 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치가 중합효소 연쇄반응(PCR)용 장치인 경우의 구성을 개략적으로 도시한 도이다.3 is a diagram schematically illustrating the configuration of a metal-graphene-based surface plasmon resonance-based biological molecule detection device according to an embodiment of the present invention as a polymerase chain reaction (PCR) device.
도 3을 참조하면, 본 발명의 생물학적 분자 검출장치가 중합효소 연쇄반응을 위한 장치(110)인 경우, 그래핀 박막(11, 21)에 빛을 조사하기 위한 광원(light source, 30)을 더 포함한다. 상기 광원(30)으로부터 노출된 빛은 상기 그래핀 박막(11, 21)과 반응 공간(S)의 내부에 플라즈몬 광열 광-열 변환(plasmonic photothermal light-to-heat conversion)을 유도하여 상기 반응 공간(S)에 위치하는 생물학적 분자의 가열을 일으킨다.Referring to FIG. 3 , when the biological molecule detection device of the present invention is the device 110 for a polymerase chain reaction, a light source 30 for irradiating light to the graphene thin films 11 and 21 is further added. include The light exposed from the light source 30 induces plasmonic photothermal light-to-heat conversion in the graphene thin films 11 and 21 and the reaction space S to the reaction space. (S) causes heating of the biological molecules located in it.
물질과의 광자 상호 작용을 고려할 때, 광자의 흡수는 종종 열로 처리된다. 여기원(excitation source)으로부터 광자가 얇은 그래핀 분자 또는 금속 나노입자의 표면에 도달할 때, 플라즈몬-보조된 강한 광 흡수가 발생할 수 있다. 이것은 차례로 표면 근처에서 전자를 더 높은 에너지 상태로 여기하여, 100 fs 내에서 고온 전자를 생성할 수 있다. 이러한 고온 전자는 작은 전자 열 용량으로 인해 수천 도의 켈빈 온도에 도달할 수 있다. 또한, 고온 전자는 그래핀 박막과 금속 플라즈몬 웰 전체에 빠르게 확산되어 고온 전자를 균일하게 분포시킨다. 급속 가열은 5~10 ps 후에 고온 전자와 격자 포논(lattice phonons) 사이의 에너지 교환에 의해 평형 상태로 냉각된다. 따라서, 그래핀과 금속 플라즈몬 웰이 빛을 받을 때, 고온 그래핀 표면/금속 플라즈몬 웰과 시료 용액 사이의 큰 온도 차이가 발생하여, 100 ps 이상의 장시간 동안 시료 용액의 가열을 초래한다.When considering photon interactions with matter, the absorption of photons is often treated as heat. When photons from an excitation source reach the surface of thin graphene molecules or metal nanoparticles, plasmon-assisted strong light absorption can occur. This in turn excites the electrons near the surface to a higher energy state, which can produce hot electrons within 100 fs. These high-temperature electrons can reach temperatures of several thousand degrees Kelvin due to their small electron heat capacity. In addition, the high-temperature electrons are rapidly diffused throughout the graphene thin film and the metal plasmon well to uniformly distribute the high-temperature electrons. Rapid heating cools to equilibrium by energy exchange between hot electrons and lattice phonons after 5-10 ps. Therefore, when the graphene and metal plasmon wells receive light, a large temperature difference occurs between the high temperature graphene surface/metal plasmon well and the sample solution, resulting in heating of the sample solution for a long time of 100 ps or more.
상기 그래핀 박막은 그라파이트를 박리시킨 그래핀 플레이크를 고분자 바인더(예컨대, carboxymethyl cellulose sodium salt)와 혼합하고 균질화하여 제조한 그래핀 잉크를 기판에 롤투롤 장비로 코팅하여 형성시킬 수 있다.The graphene thin film may be formed by coating graphene ink prepared by mixing and homogenizing graphene flakes from which graphite is peeled with a polymer binder (eg, carboxymethyl cellulose sodium salt) on a substrate using roll-to-roll equipment.
상기 그래핀 박막은 나노미터 크기의 양자점 형태의 입자로도 제조가능하며, 이에 따라 표면 플라즈몬 공명(surface plasmon resonance)을 통한 광흡수율을 광원의 파장별로 제어 가능하여 그래핀 박막의 플라즈몬 가열을 디자인할 수 있다.The graphene thin film can also be manufactured with nanometer-sized quantum dot-shaped particles, and thus the light absorption rate through surface plasmon resonance can be controlled for each wavelength of the light source, so that plasmon heating of the graphene thin film can be designed. can
상기 광원(30)은 LED, 다이오드 레이저(diode lasers), 다이오드 레이저 어레이(diode laser array), 양자 웰(수직)-공동 레이저(quantum well(vertical)-cavity laser) 등으로 구현될 수 있다. 또한, 광원의 방출 파장은 자외선(UV), 가시광선 또는 적외선(IR) 등 일 수 있다.The light source 30 may be implemented as an LED, diode lasers, a diode laser array, a quantum well (vertical)-cavity laser, or the like. In addition, the emission wavelength of the light source may be ultraviolet (UV) light, visible light or infrared (IR) light.
본 발명의 일 실시예에 따른 중합효소 연쇄반응(PCR)용 장치는 시료 용액의 온도를 모니터링 하는 온도 센서를 더 포함할 수 있다.The apparatus for polymerase chain reaction (PCR) according to an embodiment of the present invention may further include a temperature sensor for monitoring the temperature of the sample solution.
상기 온도 센서는 시료 및/또는 박막의 온도를 측정하는 플랫폼에 결합되거나 플랫폼을 향할 수 있다. 이러한 온도 센서는 플랫폼을 향하는 열전대(thermocouple) 또는 카메라(예를 들어, IR 카메라)와 같이 다수의 센서 타입을 포함할 수 있다.The temperature sensor may be coupled to or facing the platform for measuring the temperature of the sample and/or the thin film. Such temperature sensors may include multiple sensor types, such as thermocouples or cameras (eg, IR cameras) facing the platform.
또한, PCR 시스템이 샘플 용액의 핵산 및/또는 형광 신호를 실시간으로 검출하는 디지털 카메라, 포토다이오드(photodiode), 분광 광도계(spectrophotometer) 또는 유사한 촬상 장치(imaging device)와 같은 진단 장치와 통합되거나 호환될 수 있는 것이 이해될 것이다. 예를 들어, 상기 카메라는 스마트폰 카메라 일 수 있으며, 상기 스마트폰은 시료 용액을 분석하는 어플리케이션 소프트웨어를 포함한다.In addition, the PCR system may be integrated or compatible with a diagnostic device such as a digital camera, photodiode, spectrophotometer or similar imaging device that detects nucleic acid and/or fluorescence signals in a sample solution in real time. It can be understood that For example, the camera may be a smartphone camera, and the smartphone includes application software for analyzing a sample solution.
일 실시예에서, 상기 센서 및 광원은 센서 데이터의 획득 및 광원의 제어를 위한 컴퓨팅 장치(computing unit)에 결합할 수 있다. 일반적으로, 컴퓨팅 장치는 프로세서 및 광원을 구동하기 위한(예를 들어, LED 타이밍, 강도/주입 전류 등을 제어하기 위한) 프로세서로 실행 가능한 어플리케이션 소프트웨어에 저장되는 메모리를 포함하여, 센서로부터 데이터를 획득하고 및/또는 핵산 및/또는 샘플 용액의 형광 신호의 디지털 카메라 실시간 검출과 같이 진단 장치로부터 데이터를 처리할 수 있다. 컴퓨팅 장치는 별개의 컴퓨터 또는 장치를 포함할 수 있거나, 나머지 구성 요소들을 가지는 마이크로컨트롤러 모듈(microcontroller module)에 통합될 수 있다.In one embodiment, the sensor and light source may be coupled to a computing unit for obtaining sensor data and controlling the light source. In general, a computing device obtains data from a sensor, including a processor and a memory stored in application software executable by the processor to drive the light source (eg, to control LED timing, intensity/injection current, etc.) and/or process data from the diagnostic device, such as digital camera real-time detection of fluorescent signals of nucleic acids and/or sample solutions. The computing device may include a separate computer or device, or may be integrated into a microcontroller module having the remaining components.
도 4는 본 발명의 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치가 미세유체 채널이 형성된 미세유체칩(120)인 경우의 구성을 개략적으로 도시한 도이다.4 is a diagram schematically illustrating the configuration of the metal-graphene-based surface plasmon resonance-based biological molecule detection device of the present invention in the case of a microfluidic chip 120 having a microfluidic channel formed therein.
도 4를 참조하면, 검출하고자 하는 생물학적 분자가 포함된 시료를 시료주입구(I)에 주입하면, 주입된 시료는 미세유체 채널을 통하여 반응 공간(S)으로 이동하게 된다. 상기 반응 공간(S)에는 시료 내 생물학적 타겟 분자와 결합할 수 있는 프라이머, 4종류의 디옥시리보뉴클레오타이드(dNTP), 형광다이 및 중합효소가 놓여져 있다. 플라즈모닉 공명에 의해 빠른 속도로 핵산증폭 반응이 개시됨에 따라 반응 공간(S)에서는 발생하는 형광 강도에 의해 타겟을 정량적으로 검출 가능하며, 또한 생물학적 타겟 분자(예컨대, RNA 또는 ssDNA)의 염기에 dNTP가 하나씩 페어링 하면서 프로톤이 발생하게 되며, 발생하는 프로톤이 그래핀 및/또는 금속 플라즈몬 웰에 영향을 주어 그래핀 및/또는 금속 플라즈몬 웰의 표면 플라즈몬 현상의 변화가 초래된다. 이러한 표면 플라즈몬 변화를 감지함으로써 목적하는 생물학적 분자를 검출할 수 있다.Referring to FIG. 4 , when a sample containing a biological molecule to be detected is injected into the sample inlet (I), the injected sample moves to the reaction space (S) through the microfluidic channel. In the reaction space (S), a primer capable of binding to a biological target molecule in the sample, four types of deoxyribonucleotides (dNTPs), a fluorescent dye, and a polymerase are placed. As the nucleic acid amplification reaction is initiated at a high speed by plasmonic resonance, the target can be quantitatively detected by the fluorescence intensity generated in the reaction space (S), and a dNTP to the base of a biological target molecule (eg, RNA or ssDNA) Protons are generated while pairing one by one, and the generated protons affect the graphene and/or metal plasmon wells, resulting in a change in the surface plasmon phenomenon of the graphene and/or metal plasmon wells. By detecting such a surface plasmon change, a desired biological molecule can be detected.
상기 핵산증폭 반응이 일어나는 미세유체칩은 핵산증폭을 위한 구성요소, 예컨대, 도 3을 참조로 설명한 그래핀 박막(11, 21) 및 반응 공간(S)에 빛을 조사하기 위한 광원을 포함할 수 있다. 추가적으로, 상기 미세유체칩은 시료 준비, 시료 반응 및 시료 전달을 위한 구성을 포함할 수 있다.The microfluidic chip in which the nucleic acid amplification reaction occurs may include components for nucleic acid amplification, for example, the graphene thin films 11 and 21 described with reference to FIG. 3 and a light source for irradiating light to the reaction space S. have. Additionally, the microfluidic chip may include components for sample preparation, sample reaction, and sample delivery.
또 다른 생물학적 분자 검출을 위한 방법으로서, 상기 반응 공간(S)에는 시료 내 생물학적 타겟 분자와 결합할 수 있는 가이드 분자(예컨대, 생물학적 분자와 상보적인 서열을 갖는 DNA 또는 RNA) 및 4종류의 dNTP 및 형광다이가 놓여져 있으며, 반응 공간(S)에서 매우 빠른 생물학적 분자의 증폭이 일어나며 형광을 나타내게 되어 정량 검출이 가능하며, 동시에 이러한 생물학적 타겟 분자와 가이드 분자가 결합하게 되면, 프로톤이 발생하게 되며, 발생한 프로톤이 그래핀 및/또는 금속 플라즈몬 웰에 영향을 주어 그래핀 및/또는 금속 플라즈몬 웰의 플라즈몬 현상의 변화가 초래된다. 이러한 플라즈몬 변화를 감지함으로써 목적하는 생물학적 분자를 검출할 수 있다.As another method for detecting biological molecules, in the reaction space (S), a guide molecule capable of binding to a biological target molecule in a sample (eg, DNA or RNA having a sequence complementary to that of a biological molecule) and four types of dNTPs and A fluorescence die is placed, and a very rapid amplification of biological molecules occurs in the reaction space (S) and fluorescence is displayed, enabling quantitative detection. At the same time, when these biological target molecules and guide molecules are combined, protons are generated, Protons affect the graphene and/or metal plasmon wells, resulting in a change in plasmonic phenomena in the graphene and/or metal plasmon wells. By detecting such a plasmon change, a desired biological molecule can be detected.
상기 표면 플라즈몬 공명의 변화는 플라즈몬 공명 변화를 감지 및 검출할 수 있는 당해 분야에 알려진 기술을 제한 없이 사용할 수 있다. 예를 들어, 상기 표면 플라즈몬 공명 변화는 각도 가변형 표면 플라즈몬 공명 방식, 파장 가변형 표면 플라즈몬 공명 방식 또는 표면 플라즈몬 공명 이미징 방식에 의하여 감지 및 검출될 수 있다.For the change in surface plasmon resonance, any technique known in the art capable of sensing and detecting a change in plasmon resonance may be used without limitation. For example, the surface plasmon resonance change may be detected and detected by an angle tunable surface plasmon resonance method, a wavelength tunable surface plasmon resonance method, or a surface plasmon resonance imaging method.
상기 미세유체 채널은 PDMS와 같은 미세유체 채널의 제조에 사용되는 소재를 제한 없이 사용할 수 있다.As the microfluidic channel, a material used for manufacturing the microfluidic channel, such as PDMS, may be used without limitation.
도 5는 본 발명의 일 실시예에 따른 생물학적 분자 검출장치 제조를 위한 롤투롤 장치의 각 구성요소(코팅 유닛, 임프린팅 유닛, 라미네이팅 유닛)를 보여주는 도이다.5 is a view showing each component (coating unit, imprinting unit, laminating unit) of the roll-to-roll device for manufacturing a biological molecule detection device according to an embodiment of the present invention.
도 5를 참조하면, 상기 롤투롤 장치는 기판에 시료 내의 생물학적 분자 검출을 위한 하나 이상의 반응 공간을 금속(금 또는 은) 플라즈몬 웰(metal plasmonic well) 형태로 임프린팅 하는 임프린팅 유닛 및 상기 반응 공간 상부를 그래핀-코팅 기판으로 라미네이션(lamination) 하는 라미네이팅 유닛을 포함한다. 또한, 상기 롤투롤 장치는 기판을 그래핀으로 코팅하여 그래핀-코팅 기판을 제조하는 코팅 유닛을 더 포함할 수 있으며, 이 경우 상기 임프린팅 유닛은 상기 코팅 유닛에서 제조된 그래핀-코팅 기판에 반응 공간을 임프린팅 하게 된다.Referring to FIG. 5 , the roll-to-roll device includes an imprinting unit for imprinting one or more reaction spaces for detecting biological molecules in a sample on a substrate in the form of a metal (gold or silver) plasmonic well, and the reaction space and a laminating unit for laminating an upper portion with a graphene-coated substrate. In addition, the roll-to-roll apparatus may further include a coating unit for manufacturing a graphene-coated substrate by coating the substrate with graphene, in this case, the imprinting unit is a graphene-coated substrate manufactured in the coating unit. Imprinting the reaction space.
도 6은 본 발명의 일 실시예에 따른 생물학적 분자 검출장치 제조를 위한 롤투롤 장치의 작동을 보여주는 도이다.6 is a view showing the operation of a roll-to-roll device for manufacturing a biological molecule detection device according to an embodiment of the present invention.
도 5 및 6을 참조로, 본 발명의 롤투롤 장치를 사용하여 본 발명의 일 실시예에 따른 생물학적 분자 검출장치를 제조하는 과정은 다음과 같다.5 and 6 , a process for manufacturing a biological molecule detection device according to an embodiment of the present invention using the roll-to-roll device of the present invention is as follows.
코팅 유닛에서 기판을 그래핀으로 코팅하게 된다. 상기 코팅 유닛은 그래핀 잉크를 기판에 코팅하는 장치이다. 그래핀 잉크는, 예를 들어 다음과 같은 방법으로 제조할 수 있다. 그라파이트(graphite)를 박리시킨 그래핀 플레이크 또는 그래핀 양자점을 소듐 디옥시콜레이트(sodium deoxycholate)와 카복시메틸셀룰로오스 나트륨 염(carboxymethyl cellulose sodium salt)을 다양한 비로 물에 혼합하여(예를 들어, 무게비로 10(물):1:0.01:0.1)하여 프로브소니케이터를 이용하여 12시간 이상 균질화한다. 균질화 후 표면 장력과 점도를 측정하고, 인쇄 방법에 따라 점도를 제어하기 위하여 그래핀의 양과 바인더로 사용한 카복시메틸셀룰로오스 나트륨 염의 양을 조절할 수 있다.The substrate is coated with graphene in the coating unit. The coating unit is a device for coating the graphene ink on the substrate. The graphene ink may be prepared, for example, by the following method. Graphene flakes or graphene quantum dots from which graphite is peeled are mixed with sodium deoxycholate and carboxymethyl cellulose sodium salt in various ratios in water (for example, 10 by weight (Water):1:0.01:0.1) and homogenize for more than 12 hours using a probe sonicator. After homogenization, the surface tension and viscosity are measured, and the amount of graphene and the amount of carboxymethylcellulose sodium salt used as a binder can be adjusted to control the viscosity according to the printing method.
다음으로, 임프린팅 유닛에서 생물학적 분자 검출을 위한 하나 이상의 반응 공간을 금(Au) 플라즈몬 웰 또는 은(Ag) 플라즈몬 웰 형태로 그래핀-코팅 기판에 형성시킨다(임프린팅). 일 특정예에서, 금이나 은 나노입자 기반 전도성 잉크를 R2R 그라비아 또는 옵셋을 이용하여 금속 미세우물을 기판(예컨대, 플라스틱 필름) 상에 인쇄할 수 있다. 이때 금이나 은의 미세우물은 직경이 수백 나노미터에서 수마이크론까지, 그리고 깊이는 수 마이크론까지 인쇄할 수 있다.Next, one or more reaction spaces for detecting biological molecules in the imprinting unit are formed on the graphene-coated substrate in the form of gold (Au) plasmon wells or silver (Ag) plasmon wells (imprinting). In one specific example, metal microwells can be printed on a substrate (eg, a plastic film) using R2R gravure or offset using a gold or silver nanoparticle-based conductive ink. In this case, microwells of gold or silver can be printed from several hundred nanometers to several microns in diameter and to several microns in depth.
다음으로, 라미네이팅 유닛에서 그래핀 또는 그래핀 양자점이 코팅된 필름으로 라미네이션하여 생물학적 분자 검출장치를 제조한다. 상기 그래핀 코팅 필름은 R2R 슬롯다이나 콤마코팅을 이용하여 제조할 수 있다.Next, in a laminating unit, graphene or graphene quantum dots are laminated with a coated film to manufacture a biological molecule detection device. The graphene-coated film may be prepared using R2R slot die or comma coating.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The above description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
[부호의 설명][Explanation of code]
10: 하부 기판10: lower substrate
11: 그래핀 박막11: Graphene thin film
20: 상부기판20: upper substrate
21: 그래핀 박막21: graphene thin film
S: 반응 공간S: reaction space
30: 광원30: light source
100: 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치100: metal-graphene-based surface plasmon resonance-based biological molecular detection device
110: 중합효소 연쇄반응용 장치 110: device for polymerase chain reaction
120: 미세유체칩120: microfluidic chip
I: 시료주입구I: sample inlet
본 발명의 롤투롤(R2R) 공정을 이용하여 제조한 분자진단 장치는 PCR 칩으로 구현될 수 있으며, 금속과 그래핀을 모두 이용함에 따라 보다 신속하게 핵산증폭을 수행가능하고 동시에 형광신호를 보다 강하게 증폭할 수 있는 바, DNA, RNA, 단백질 등의 다양한 생물학적 분자를 검출하는 데에 유용하게 이용될 것으로 기대된다.The molecular diagnostic apparatus manufactured using the roll-to-roll (R2R) process of the present invention can be implemented as a PCR chip, and by using both metal and graphene, it is possible to perform nucleic acid amplification more quickly and at the same time to strengthen the fluorescence signal As it can be amplified, it is expected that it will be usefully used to detect various biological molecules such as DNA, RNA, and protein.

Claims (14)

  1. 롤투롤(roll-to-roll) 공정으로 제조된 생물학적 분자 검출장치이며,It is a biological molecule detection device manufactured by a roll-to-roll process,
    상기 검출장치는 상부 기판 및 하부 기판을 포함하며, 상기 상부 기판의 하단 또는 상기 하부 기판의 상단에는 그래핀(graphene) 박막이 배치되며,The detection device includes an upper substrate and a lower substrate, and a graphene thin film is disposed on a lower end of the upper substrate or an upper end of the lower substrate,
    상기 그래핀 박막과 기판의 사이 공간에는 시료 내의 생물학적 분자 검출을 위한 하나 이상의 반응 공간이 위치하며, 상기 반응 공간은 금 또는 은으로 제조된 금속 플라즈몬 웰(metal plasmonic well)인 것을 특징으로 하는, 롤투롤 공정으로 제조된, 금속-그래핀 기반 표면 플라즈몬 공명 기반의 생물학적 분자 검출장치.One or more reaction spaces for detecting biological molecules in a sample are positioned in the space between the graphene thin film and the substrate, and the reaction space is a metal plasmonic well made of gold or silver, characterized in that the roll, A metal-graphene-based surface plasmon resonance-based biological molecular detection device manufactured by the two-roll process.
  2. 제1항에 있어서,According to claim 1,
    상기 그래핀 박막은 상부 기판의 하단과 하부 기판의 상단에 각각 배치되고, 상기 그래핀 박막의 사이 공간에 상기 반응 공간이 위치하는 것을 특징으로 하는, 생물학적 분자 검출장치.The graphene thin film is respectively disposed on the lower end of the upper substrate and the upper end of the lower substrate, and the reaction space is located in the space between the graphene thin film, a biological molecule detection device.
  3. 제1항 또는 제2항에 있어서,3. The method of claim 1 or 2,
    상기 생물학적 분자 검출장치는 중합효소 연쇄반응(PCR)용 장치로서, 상기 그래핀 박막 및 반응 공간에 빛을 조사하기 위한 광원(light source)을 더 포함하며,The biological molecule detection device is a device for polymerase chain reaction (PCR), and further includes a light source for irradiating light to the graphene thin film and the reaction space,
    상기 광원으로부터 노출된 빛은 상기 그래핀 박막과 반응 공간의 플라즈몬 광열 광-열 변환(plasmonic photothermal light-to-heat conversion)을 유도하여 상기 반응 공간에 위치하는 시료의 가열을 일으키는 것을 특징으로 하는, 생물학적 분자 검출장치.The light exposed from the light source induces plasmonic photothermal light-to-heat conversion between the graphene thin film and the reaction space to cause heating of the sample located in the reaction space, Biological Molecular Detection Device.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 중합효소 연쇄반응용 장치는 생물학적 분자의 온도를 모니터링 하는 온도 센서를 더 포함하는 것을 특징으로 하는, 생물학적 분자 검출장치.The device for the polymerase chain reaction further comprises a temperature sensor for monitoring the temperature of the biological molecule, a biological molecule detection device.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 중합효소 연쇄반응용 장치는 상기 광원 및 온도 센서에 결합된 컨트롤러(controller)를 더 포함하며, 상기 컨트롤러는 상기 온도 센서로부터 하나 이상의 데이터 획득 및 상기 광원의 작동을 제어하는 것을 특징으로 하는, 생물학적 분자 검출장치.The apparatus for polymerase chain reaction further comprises a controller coupled to the light source and the temperature sensor, the controller controlling the acquisition of one or more data from the temperature sensor and operation of the light source, molecular detection device.
  6. 제3항에 있어서,4. The method of claim 3,
    상기 그래핀 박막은 표면 플라즈몬 공명(surface plasmon resonance)을 통한 광흡수율을 향상시키기 위한 나노미터 크기의 그래핀 양자점 입자인 것을 특징으로 하는, 생물학적 분자 검출장치.The graphene thin film is a nanometer-sized graphene quantum dot particle for improving light absorption through surface plasmon resonance, a biological molecular detection device.
  7. 제3항에 있어서,4. The method of claim 3,
    상기 중합효소 연쇄반응용 장치는 핵산을 실시간으로 검출하기 위하여 디지털 카메라, 포토다이오드(photodiode) 또는 분광 광도계를 더 포함하는 것을 특징으로 하는, 생물학적 분자 검출장치.The apparatus for polymerase chain reaction further comprises a digital camera, a photodiode, or a spectrophotometer to detect nucleic acids in real time, a biological molecule detection apparatus.
  8. 제1항 또는 제2항에 있어서,3. The method of claim 1 or 2,
    상기 생물학적 분자 검출장치는 미세유체 채널을 포함하는 미세유체칩인 것을 특징으로 하는, 생물학적 분자 검출장치.The biological molecule detection device is a biological molecule detection device, characterized in that the microfluidic chip including a microfluidic channel.
  9. 제1항 또는 제2항에 있어서,3. The method of claim 1 or 2,
    상기 반응 공간에는 시료 내 생물학적 타겟 분자에 상보적인 염기서열을 갖는 프라이머, 형광다이, 4종의 dNTP 분자 및 중합효소가 놓여지며, 핵산증폭 반응이 개시됨에 따라 발생하는 형광 강도를 측정하여 생물학적 분자를 검출하거나, 또는 상기 생물학적 타겟 분자와 4종의 dNTP 분자의 결합에 의하여 변화되는 그래핀 박막 또는 금속 플라즈몬 웰의 표면 플라즈몬 공명을 감지하여 생물학적 분자를 검출하는 것을 특징으로 하는, 생물학적 분자 검출장치.In the reaction space, a primer having a base sequence complementary to a biological target molecule in the sample, a fluorescent die, four types of dNTP molecules, and a polymerase are placed, and the biological molecule is measured by measuring the fluorescence intensity generated as the nucleic acid amplification reaction starts. A biological molecule detection device, characterized in that the biological molecule is detected by detecting or detecting the surface plasmon resonance of a graphene thin film or a metal plasmon well that is changed by the binding of the biological target molecule and four types of dNTP molecules.
  10. 제1항 또는 제2항에 있어서,3. The method of claim 1 or 2,
    상기 생물학적 분자는, 핵산, 단백질, 펩타이드 및 폴리펩타이드로 이루어진 군으로부터 선택된 것을 특징으로 하는, 생물학적 분자 검출장치.The biological molecule is a biological molecule detection device, characterized in that selected from the group consisting of nucleic acids, proteins, peptides and polypeptides.
  11. 기판에 시료 내의 생물학적 분자 검출을 위한 하나 이상의 반응 공간을 금 또는 은으로 제조된 금속 플라즈몬 웰(metal plasmonic well) 형태로 임프린팅 하는 임프린팅 유닛; 및an imprinting unit imprinting one or more reaction spaces for detecting biological molecules in a sample on a substrate in the form of a metal plasmonic well made of gold or silver; and
    상기 반응 공간 상부를 그래핀-코팅 기판으로 라미네이션(lamination) 하는 라미네이팅 유닛을 포함하는, 제1항 내지 제10항 중 어느 한 항에 따른 생물학적 분자 검출장치 제조용 롤투롤 장치.The roll-to-roll device for manufacturing a biological molecule detection device according to any one of claims 1 to 10, comprising a laminating unit for laminating an upper portion of the reaction space with a graphene-coated substrate.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 롤투롤 장치는 기판을 그래핀으로 코팅하여 그래핀-코팅 기판을 제조하는 코팅 유닛을 더 포함하며, 상기 임프린팅 유닛은 상기 코팅 유닛에 의해 제조된 그래핀-코팅 기판에 반응 공간을 임프린팅 하는 것을 특징으로 하는, 생물학적 분자 검출장치 제조용 롤투롤 장치.The roll-to-roll apparatus further includes a coating unit for manufacturing a graphene-coated substrate by coating the substrate with graphene, wherein the imprinting unit imprints a reaction space on the graphene-coated substrate manufactured by the coating unit A roll-to-roll device for manufacturing a biological molecular detection device, characterized in that.
  13. 기판에 시료 내 생물학적 분자 검출을 위한 하나 이상의 반응 공간을 금 또는 은으로 제조된 금속 플라즈몬 웰(metal plasmonic well) 형태로 임프린팅 하는 단계; 및Imprinting one or more reaction spaces for detecting biological molecules in a sample on a substrate in the form of a metal plasmonic well made of gold or silver; and
    상기 반응 공간 상부를 그래핀으로 라미네이션하는 단계를 포함하는, 제1항 내지 제10항 중 어느 한 항에 따른 생물학적 분자 검출장치의 제조방법.11. A method of manufacturing a biological molecule detection device according to any one of claims 1 to 10, comprising laminating an upper portion of the reaction space with graphene.
  14. 제13항에 있어서,14. The method of claim 13,
    상기 제조방법은 임프린팅 하는 단계 전에 기판을 그래핀으로 코팅하는 단계를 더 포함하는 것을 특징으로 하는, 생물학적 분자 검출장치의 제조방법.The manufacturing method of the manufacturing method of the biological molecule detection device, characterized in that it further comprises the step of coating the substrate with graphene before the imprinting step.
PCT/KR2021/008133 2020-06-29 2021-06-29 Molecular diagnostic apparatus using metal-graphene-based surface plasmon resonance, manufactured by roll-to-roll process, and manufacturing method therefor WO2022005146A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200079358 2020-06-29
KR10-2020-0079358 2020-06-29
KR1020200109710A KR102539869B1 (en) 2020-06-29 2020-08-28 Roll-to-roll fabricated apparatus for molecular diagnosis through metal-graphene based surface plasmon resonance and Method of fabricating the same
KR10-2020-0109710 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022005146A1 true WO2022005146A1 (en) 2022-01-06

Family

ID=79315355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008133 WO2022005146A1 (en) 2020-06-29 2021-06-29 Molecular diagnostic apparatus using metal-graphene-based surface plasmon resonance, manufactured by roll-to-roll process, and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2022005146A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100090480A (en) * 2009-02-06 2010-08-16 한국과학기술연구원 Single molecule detection biosensor, manufacturing method thereof and detecting method using the biosensor
KR20160075504A (en) * 2013-09-04 2016-06-29 크레도 바이오메디컬 피티이 엘티디 Assay test device, kit and method of using
KR20170106995A (en) * 2015-01-16 2017-09-22 더 리전트 오브 더 유니버시티 오브 캘리포니아 LED Driven Plasmon Heating Device for Nucleic Acid Amplification
US20180207920A1 (en) * 2015-07-17 2018-07-26 Illumina, Inc. Polymer sheets for sequencing applications
WO2019002678A1 (en) * 2017-06-30 2019-01-03 Teknologian Tutkimuskeskus Vtt Oy A microfluidic chip and a method for the manufacture of a microfluidic chip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100090480A (en) * 2009-02-06 2010-08-16 한국과학기술연구원 Single molecule detection biosensor, manufacturing method thereof and detecting method using the biosensor
KR20160075504A (en) * 2013-09-04 2016-06-29 크레도 바이오메디컬 피티이 엘티디 Assay test device, kit and method of using
KR20170106995A (en) * 2015-01-16 2017-09-22 더 리전트 오브 더 유니버시티 오브 캘리포니아 LED Driven Plasmon Heating Device for Nucleic Acid Amplification
US20180207920A1 (en) * 2015-07-17 2018-07-26 Illumina, Inc. Polymer sheets for sequencing applications
WO2019002678A1 (en) * 2017-06-30 2019-01-03 Teknologian Tutkimuskeskus Vtt Oy A microfluidic chip and a method for the manufacture of a microfluidic chip

Similar Documents

Publication Publication Date Title
Xia et al. Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review
KR102438315B1 (en) Assay test device, kit and method of using
Loo et al. Integrated printed microfluidic biosensors
Ge et al. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection
D’Agata et al. Surface plasmon resonance imaging for nucleic acid detection
WO2011071343A2 (en) Heterodimer core-shell nanoparticle in which raman-active molecules are located at a binding portion of a nanoparticle heterodimer, use thereof, and method for preparing same
Tong et al. A fully portable microchip real‐time polymerase chain reaction for rapid detection of pathogen
Li et al. Achieving broad availability of SARS-CoV-2 detections via smartphone-based analysis
WO2022005146A1 (en) Molecular diagnostic apparatus using metal-graphene-based surface plasmon resonance, manufactured by roll-to-roll process, and manufacturing method therefor
Ma et al. based bipolar electrode electrochemiluminescence sensors for point-of-care testing
WO2021215850A1 (en) Graphene-based surface plasmon resonance molecular diagnostic device manufactured by roll-to-roll process
ITTO20060883A1 (en) PROCEDURE AND MICRO-DEVICE WITH OPTICAL TRANSDUCTION FOR THE IDENTIFICATION AND / OR QUANTIFICATION OF AN ANALITY IN A BIOLOGICAL SAMPLE
KR102539869B1 (en) Roll-to-roll fabricated apparatus for molecular diagnosis through metal-graphene based surface plasmon resonance and Method of fabricating the same
WO2016093569A1 (en) Plasmonic paper and manufacturing method therefor
KR102404682B1 (en) Roll-to-roll fabricated apparatus for molecular diagnosis through graphene based surface plasmon resonance and Method of fabricating the same
WO2018074832A1 (en) Biosensor
TWM373489U (en) A temperature-controlled bio-molecular reaction microchip coated with a conductive substrate and equipped with a reaction chamber.
WO2022045811A1 (en) Photonic pcr system using surface plasmonic phenomenon of conductive polymer, and real-time detection of target nucleic acids using same
WO2022045805A1 (en) Plasmonic well-based nucleic acid detecting device and fabrication method therefor using roll-to-roll process
Bose et al. An integrated all foil based micro device for point of care diagnostic applications
Hsu et al. The portable fluorescence detection system matched with PDMS microfluidic biochip for DNA hybridization detection
CN112485313A (en) Electrochemical sensor for detecting virus and preparation method thereof
Guo et al. A portable and partitioned DNA hydrogel chip for multitarget detection
WO2021235797A1 (en) Tio2 nanostructure-based nucleic acid detection apparatus and method for manufacturing same using roll-to-roll process
Das et al. On-chip screening of SARS-CoV-2 cDNA by LAMP-integrated rotational diffusometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21831613

Country of ref document: EP

Kind code of ref document: A1