WO2021235797A1 - Tio2 nanostructure-based nucleic acid detection apparatus and method for manufacturing same using roll-to-roll process - Google Patents

Tio2 nanostructure-based nucleic acid detection apparatus and method for manufacturing same using roll-to-roll process Download PDF

Info

Publication number
WO2021235797A1
WO2021235797A1 PCT/KR2021/006150 KR2021006150W WO2021235797A1 WO 2021235797 A1 WO2021235797 A1 WO 2021235797A1 KR 2021006150 W KR2021006150 W KR 2021006150W WO 2021235797 A1 WO2021235797 A1 WO 2021235797A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid detection
roll
detection device
sample
Prior art date
Application number
PCT/KR2021/006150
Other languages
French (fr)
Korean (ko)
Inventor
리루크
조규진
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200109719A external-priority patent/KR102449073B1/en
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2021235797A1 publication Critical patent/WO2021235797A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • B65H18/10Mechanisms in which power is applied to web-roll spindle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements

Definitions

  • the present invention relates to a nucleic acid detection device having a TiO 2 nanostructure-based photocatalytic layer required for separation and amplification of nucleic acids in a sample, and a method for manufacturing the nucleic acid detection device using a roll-to-roll process.
  • pathogens such as bacteria and viruses to inhabit.
  • Pathogens are widely distributed in the surrounding environment, and specifically, bacterial pathogens are found in soil, animal organs, and water contaminated by animal feces.
  • the human body also has more than 150 types of bacteria inside and outside the human body, and although many microorganisms are harmless to the human body, some types are It causes various infectious diseases, including pneumonia and typhoid. In particular, more than 200 diseases can be transmitted through food and drinking water alone.
  • Pathogens can easily infect humans through contaminated soil and water environments. Because the reproduction rate of pathogens is very fast under normal conditions, even a small number of pathogens, once invaded into the human body, rapidly grow in the intestine suitable for their growth environment and reach a level that can threaten human health. Accordingly, there is a need for a diagnostic technology capable of quickly and easily detecting the presence or absence of a pathogen (particularly, a virus) from a contaminated environment.
  • clinical diagnostic techniques based on genetic analysis typically recover nucleic acids from bacteria, fungi, or viruses, perform an amplification reaction, and then perform an amplification reaction using various detection means (eg, optical, electrochemical, or mechanical biotechnology).
  • detection means eg, optical, electrochemical, or mechanical biotechnology.
  • a method of analyzing an amplicon using a sensor device is used. This is because, in general, trace amounts of bacteria or viruses to be detected are present in biological samples such as blood or environmental samples such as drinking water and food.
  • a roll-to-roll (R2R) process apparatus refers to an apparatus for performing various types of processes on a roll-type film or web.
  • a roll-to-roll process device includes an unwinder that unwinds a film wound in a roll form, process units that perform various processes such as a printing process on a film, and a rewinder that winds the film back into a roll form. And, it may be provided with various transport units for transporting the film between them.
  • a roll-to-roll printing apparatus for forming various patterns on the surface of a film, which is an object to be processed, may be used.
  • roll-to-roll printing apparatuses are being used in various ways to manufacture various electronic components such as electronic circuits, sensors, and flexible displays.
  • a nucleic acid detection device having a TiO 2 nanostructure-based photocatalyst layer for isolating and amplifying nucleic acids from cells or viruses present in a sample in a short time by a roll-to-roll (R2R) process, thereby completing the present invention.
  • R2R roll-to-roll
  • nucleic acid detection device capable of sensitively detecting nucleic acids by making TiO 2 nanostructures act as photocatalysts and at the same time as photonic crystals.
  • Another object of the present invention is to provide a method for manufacturing the nucleic acid detection device using a roll-to-roll process.
  • the present invention provides a sample injection hole provided on a substrate is injected; a microfluidic channel through which the sample injected into the sample inlet moves; and a nucleic acid detection unit communicating with the microfluidic channel to receive a sample and isolating and detecting nucleic acid in the sample, wherein the nucleic acid detection unit includes a plurality of titanium dioxide (TiO 2 ) nanostructure-based a photocatalyst layer formed by a photocatalyst unit; and a polymer membrane provided at the bottom of the photocatalyst layer, wherein the photocatalytic unit includes a titanium dioxide nanomaterial doped with metal nanoparticles, and light is irradiated to the TiO 2 nanostructure-based photocatalytic unit.
  • TiO 2 titanium dioxide
  • the photocatalytic unit includes a titanium dioxide nanomaterial doped with metal nanoparticles, and light is irradiated to the TiO 2 nanostructure-based photocatalytic unit.
  • the nucleic acid present in the cell or virus lysate is adsorbed to the photocatalytic unit, and the adsorbed nucleic acid is irradiated to the photocatalyst layer
  • the nucleic acid detection device characterized in that the nucleic acid amplification reaction occurs through photonic polymerase chain reaction (PCR) by light.
  • the present invention comprises the steps of: imprinting a sample injection hole into which a sample is injected and a microfluidic channel through which the injected sample moves on one end face of a substrate; laminating a polymer film from one end of the microfluidic channel; laminating a titanium foil on the polymer film and performing roll-to-roll anodization to form a titanium dioxide nanostructured unit; And it provides a method of manufacturing the nucleic acid detection device using a roll-to-roll device, comprising the step of roll-to-roll printing the metal nanoparticles on the titanium dioxide nanostructure unit.
  • the biological molecular detection device can be used for molecular diagnosis.
  • the nucleic acid detection device may be manufactured by a roll-to-roll process.
  • the titanium dioxide nanomaterial of the TiO 2 nanostructure-based photocatalytic unit is a titanium dioxide nanostructure having a polygonal surface selected from the group consisting of a triangle, a square, a pentagon, a hexagon, a heptagon, and an octagon.
  • the titanium dioxide nanomaterial may be a titanium dioxide nanostructure having a hexagonal surface (hexagonal TiO 2 nanostructure).
  • the metal nanoparticles of the TiO 2 nanostructure-based photocatalytic unit may be selected from the group consisting of silver nanoparticles, gold nanoparticles, and copper nanoparticles.
  • the polymer membrane may be a PVDF membrane (polyvinylidene difluoride membrane).
  • the nucleic acid detection device may further include a light source for irradiating light to the photocatalyst layer.
  • the nucleic acid detection device may further include a temperature sensor for monitoring the temperature of the nucleic acid molecule.
  • the nucleic acid detection device further comprises a controller coupled to the light source and the temperature sensor, wherein the controller controls the acquisition of one or more data from the temperature sensor and the operation of the light source can do.
  • a primer having a base sequence complementary to a target nucleic acid molecule, four kinds of dNTP molecules and a polymerase are placed on the photocatalyst layer, and the target nucleic acid molecule and the four kinds of dNTP molecules are bound
  • a target nucleic acid molecule can be detected by detecting a change in a photonic bandgap of a photonic crystal of a photocatalytic layer that is changed by the .
  • the change in the bandgap can be detected by absorption spectroscopy or fluorescence analysis.
  • by-products other than the nucleic acid of the cell or virus lysate may be discharged and removed through the polymer membrane through the micropores of the photocatalyst layer.
  • the present invention relates to a molecular diagnostic device capable of detecting a target nucleic acid (DNA, RNA) present in a sample.
  • a target nucleic acid DNA, RNA
  • separation and amplification reactions of the nucleic acid from the sample occur continuously, thereby extracting the nucleic acid from the sample. No additional steps are required for separation. Accordingly, by using the nucleic acid detection apparatus of the present invention, it is possible to easily detect a target nucleic acid, and it is expected that it will be usefully utilized for the detection and diagnosis (point-of-care testing) in the field of pathogenic bacteria, viruses, etc. .
  • the nucleic acid detection apparatus of the present invention can be mass-produced at low cost within a short time through a roll-to-roll process.
  • FIG. 1 is a diagram schematically showing a cross-section of a nucleic acid detection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the structure of a nucleic acid detection apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for manufacturing a nucleic acid detection apparatus using a roll-to-roll apparatus according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a cross-section of a nucleic acid detection apparatus according to an embodiment of the present invention
  • FIG. 2 is an exemplary view showing the structure of the nucleic acid detection apparatus.
  • the nucleic acid detecting apparatus 100 includes a sample inlet 20 into which a sample provided on a substrate 10 is injected, and a sample inlet 20 through which the sample is moved. It includes a microfluidic channel 30, and a nucleic acid detection unit 40 communicating with the microfluidic channel 30 to receive a sample and separate and detect nucleic acids in the sample.
  • the material of the substrate 10 is not particularly limited, and materials commonly used for manufacturing devices for detecting biomolecules such as biosensors, biochips, and microfluidic chips (eg, plastics, glass, etc.) can be used without limitation. .
  • a translucent or transparent material eg, polymethyl It can be prepared as a substrate of methacrylate (PMMA)).
  • the sample introduced into the detection device 100 through the sample inlet 20 passes through the microfluidic channel 30 and moves to the nucleic acid detection unit 40 .
  • the microfluidic channel 30 may be designed for pretreatment of a sample (eg, blood). For example, by designing each channel of the microfluidic channel 30 to be higher in one direction so that there is a step difference, impurities (eg, red blood cells, etc.) included in the sample can be gradually removed by gravity.
  • the nucleic acid detection unit 40 is a space for separating the nucleic acid in the sample received from the microfluidic channel 30 and performing a nucleic acid amplification reaction. and a polymer film 42 .
  • the photocatalyst layer 41 is composed of a plurality of TiO 2 nanostructure-based photocatalytic units M, and the photocatalytic unit M may be a titanium dioxide nanomaterial doped with metal nanoparticles.
  • the titanium dioxide nanomaterial of the photocatalytic unit M may be a titanium dioxide nanostructure having a surface of a polygon (eg, a triangle, a square, a pentagon, a hexagon, a heptagon, an octagon, etc.).
  • the titanium dioxide nano-material may be of hexagonal titanium dioxide having a surface nano-structure (hexagonal TiO 2 nanostructure), for example, titanium dioxide nanotubes (hexagonal nanotube TiO 2) having a hexagonal surface.
  • the hexagonal titanium dioxide may be formed in the photocatalyst layer 41 by performing roll-to-roll anodization on a titanium foil. Thereafter, the metal nanoparticles are roll-to-roll printed (doped) on the titanium dioxide nanostructure to prepare a titanium dioxide pattern doped with the metal nanoparticles.
  • Titanium dioxide (TiO 2 ) semiconductor material has a bandgap energy of 3.0 eV or more, so there is a limit in the absorption of visible light in a wide wavelength band except for light in the ultraviolet (UV) region.
  • the photocatalytic function can be improved by increasing the electron-hole pair recombination rate and decreasing the electron-hole pair recombination rate. If the titanium dioxide nanomaterial surface is doped with Ag, which has its own antibacterial properties, in a nano size, the photofunctionality and lysis effect can be enhanced.
  • the polymer membrane 42 is disposed at the bottom of the photocatalyst layer 41 to serve as a support layer and a separation membrane, and impurities (by-products) excluding nucleic acids (DNA, RNA) adsorbed to the photocatalytic unit (M) in the cell or virus lysate. Silver is discharged through the polymer film 42 to be removed.
  • a polyvinylidene difluoride membrane (PVDF) may be used as the polymer membrane 42 .
  • the nucleic acid detection device may include a microfluidic channel 60 for accommodating impurities that have passed through the polymer film 42 at the lower end of the polymer film 42 .
  • One end of the microfluidic channel 60 is in communication with a waste reservoir 70 , so that impurities passing through the polymer film 42 can be stored in the impurity reservoir 70 through the microfluidic channel 60 . have.
  • a process of detecting a target nucleic acid using the nucleic acid detection apparatus according to an embodiment of the present invention is as follows.
  • Titanium dioxide and metal (eg, silver, gold) nanoparticles of the photocatalyst layer 41 act as photonic crystals to match the photonic bandgap (PBG) with light (eg, UV, visible light) When irradiated, electron transition occurs and photocatalytic activity appears.
  • the photonic crystal is a structure having an optical band gap and means a material having a periodic repeating structure of dielectric constant.
  • photonic crystals have a characteristic in that different materials having a period of several hundred nanometers to several micrometers are arranged in one-dimensional, two-dimensional or three-dimensional order, and when light having a certain wavelength region meets the photonic crystal structure, In this case, part is transmitted and part is reflected.
  • the sample injected into the sample inlet 20 arrives at the nucleic acid detection unit 40 through the microfluidic channel 30, and the virus or bacteria contained in the reached sample is deposited on the TiO 2 nanostructure-based photocatalyst layer 41.
  • concentrated When the photocatalyst layer 41 is irradiated with light after the virus or bacteria is concentrated in the photocatalyst layer 41, destruction (dissolution) of the virus or bacteria occurs due to the photocatalytic activity induced by the light irradiation, and the lysate
  • the contained nucleic acid is adsorbed to the photocatalyst layer (mainly titanium dioxide), and the remaining impurities (by-products) that are not adsorbed are the photocatalyst layer 41 through the micropores of the photocatalyst layer 41 (eg, micropores in the photocatalyst unit M).
  • the nucleic acid adsorbed to the photocatalyst layer 41 is amplified by photonic PCR.
  • the pH of the adsorbed nucleic acid may be appropriately adjusted for the nucleic acid amplification reaction.
  • a sample solution for PCR such as a primer having a nucleotide sequence complementary to a target nucleic acid molecule, four dNTP molecules, and a polymerase is placed on the photocatalyst layer 41, and the pH is adjusted (eg, pH 6- 7), when light is irradiated to the photocatalyst layer 41, heat is generated by light-to-heat conversion, so that heating and cooling of the nucleic acid and PCR sample solution located in the photocatalyst layer 41 is fast The cycle takes place so that the nucleic acid amplification reaction occurs rapidly.
  • temperature control for nucleic acid amplification may be performed by controlling light irradiation.
  • dNTPs are paired one by one with the bases of the target nucleic acid molecule (eg, RNA or ssDNA), and protons are generated, and the generated protons change the photonic crystal band gap of the photocatalytic layer 41 . is brought about By detecting such a change in the optical bandgap, a desired target nucleic acid can be detected.
  • target nucleic acid molecule eg, RNA or ssDNA
  • a technique known in the art for detecting the change in the photo-bandgap may be used without limitation.
  • it can be detected by absorption spectroscopy or fluorescence analysis.
  • the nucleic acid detection apparatus may further include a light source for irradiating light to the photocatalytic layer 41 .
  • the light source may be located inside the detection device 100 or outside the device.
  • the light source may be implemented as an LED, diode lasers, diode laser array, quantum well (vertical)-cavity laser, or the like.
  • the emission wavelength of the light source may be ultraviolet (UV) light, visible light or infrared (IR) light.
  • the nucleic acid detection apparatus may further include a temperature sensor for monitoring the temperature of the PCR sample solution for nucleic acid amplification.
  • the temperature sensor may be coupled to or facing the platform for measuring the temperature of the sample.
  • Such temperature sensors may include multiple sensor types, such as thermocouples or cameras (eg, IR cameras) facing the platform.
  • the PCR system may be integrated or compatible with a diagnostic device such as a digital camera, photodiode, spectrophotometer or similar imaging device that detects nucleic acid and/or fluorescence signals in a sample solution in real time.
  • a diagnostic device such as a digital camera, photodiode, spectrophotometer or similar imaging device that detects nucleic acid and/or fluorescence signals in a sample solution in real time.
  • the camera may be a smartphone camera, and the smartphone includes application software for analyzing a sample solution.
  • the sensor and light source may be coupled to a computing unit for obtaining sensor data and controlling the light source.
  • a computing device obtains data from a sensor, including a processor and memory stored in application software executable by the processor for driving the light source (eg, for controlling LED timing, intensity/injection current, etc.) and/or process data from the diagnostic device, such as digital camera real-time detection of fluorescent signals of nucleic acids and/or sample solutions.
  • the computing device may include a separate computer or device, or may be integrated into a microcontroller module having the remaining components.
  • the nucleic acid detection apparatus may include a vacuum battery 50 for moving the injected sample to the nucleic acid detection unit 40 through the microfluidic channel 30 . If the vacuum battery 50 is provided, a fluid flow can be induced without a separate microfluidic pumping, which is advantageous in reducing the weight and size of the detection device.
  • a vacuum battery 50 for example, reference may be made to US Patent No. 9,970,423.
  • FIG. 3 is a flowchart of a method for manufacturing a nucleic acid detection apparatus using a roll-to-roll apparatus according to an embodiment of the present invention.
  • the method of manufacturing a nucleic acid detection device is performed using a roll-to-roll device, and a sample inlet through which a sample is injected and a microscopic hole through which the injected sample moves on one end surface of a substrate Imprinting the fluid channel (S100), laminating a polymer film from one end of the microfluidic channel (S200), laminating a titanium foil on the polymer film, and performing roll-to-roll anodization Forming a titanium nanostructured unit (S300) and a step (S400) of roll-to-roll printing of metal nanoparticles on the titanium dioxide nanostructured unit.
  • a roll-to-roll device Imprinting the fluid channel (S100), laminating a polymer film from one end of the microfluidic channel (S200), laminating a titanium foil on the polymer film, and performing roll-to-roll anodization Forming a titanium nanostructured unit (S300) and a step (S400) of roll-to-roll printing of
  • FIGS. 1 to 3 a method of manufacturing a nucleic acid detecting apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3 .
  • the sample injection hole 20 and the microfluidic channel 30 are imprinted by a roll-to-roll process and formed on the substrate.
  • the microfluidic channel 30 may use any material used for manufacturing the microfluidic channel, such as PDMS, without limitation. Imprinting is performed by manufacturing an embossed roll according to the required depth and width of the microfluidic channel 30, re-coating the graphene with UV acrylic resin or epoxy resin, and curing with UV while imprinting through the embossed roll.
  • the microfluidic channel 30 can be printed.
  • a photocatalyst layer 41 is prepared by roll-to-roll printing of metal nanoparticles on the titanium dioxide nanostructure unit (M) to form a titanium dioxide nanomaterial doped with metal nanoparticles.
  • the coating speed at the time of roll-to-roll coating can be appropriately controlled, for example, it can be coated by controlling from 1 m to 6 m per minute, in this case, the coating method is continuous in roll-to-roll using a gravure coater, comma coater, or slot die. can be coated.
  • a target nucleic acid can be easily detected, and thus it is expected to be usefully utilized for on-site detection and diagnosis of pathogenic bacteria and viruses (Point-of-care testing).

Abstract

The present invention relates to a molecular diagnostic apparatus capable of detecting a target nucleic acid (DNA, RNA) present in a sample and a technology for manufacturing same by an R2R process. When the sample is injected into a detection device, separation and amplification of the nucleic acid from the sample continuously occur, and thus no additional steps are required to isolate the nucleic acid from the sample. Accordingly, by using the nucleic acid detection apparatus, the target nucleic acid can be easily detected, and the nucleic acid detection apparatus is expected to be usefully used for point-of-care testing of pathogenic bacteria and viruses.

Description

TIO2 나노구조 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법TIO2 nanostructure-based nucleic acid detection device and manufacturing method thereof using roll-to-roll process
본 발명은 시료 내 핵산의 분리 및 증폭에 필요한 TiO 2 나노구조 기반 광촉매층을 구비하는 핵산 검출장치 및 롤투롤 공정을 이용하여 상기 핵산 검출장치를 제조하는 방법에 관한 것이다. The present invention relates to a nucleic acid detection device having a TiO 2 nanostructure-based photocatalytic layer required for separation and amplification of nucleic acids in a sample, and a method for manufacturing the nucleic acid detection device using a roll-to-roll process.
본 출원은 2020년 05월 18일에 출원된 한국특허출원 제10-2020-0058996호 및 2020년 08월 28일에 출원된 한국특허출원 제10-2020-0109719호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2020-0058996, filed on May 18, 2020, and Korean Patent Application No. 10-2020-0109719, filed on August 28, 2020, All contents disclosed in the specification and drawings of the application are incorporated herein by reference.
인간을 포함한 모든 온혈동물의 장 내에는 박테리아, 바이러스 등과 같은 다양한 병원체가 서식하는데 매우 좋은 환경이 제공되고 있다. 병원체는 주변 환경에서 널리 분포되어 있는 바, 구체적으로 박테리아 병원체는 흙, 동물 장기, 동물의 변에 의하여 오염된 물 등에서 발견되고 있다. 인체 역시 평균적으로 인체 내외에 걸쳐 150 타입 이상의 박테리아를 갖고 있으며, 이중 많은 미생물들이 인체에 무해하기는 하나, 몇몇 종류는 식중독(botulism), 콜레라(cholera), 설사(diarrhea), 구토(emesis), 폐렴(pneumonia), 장티푸스(typhoid) 등을 포함하는 다양한 감염성 질환을 유발한다. 특히, 200 종류 이상의 질병이 음식 및 음용수 단독을 통하여 전염될 수 있다.In the intestines of all warm-blooded animals including humans, a very favorable environment is provided for various pathogens such as bacteria and viruses to inhabit. Pathogens are widely distributed in the surrounding environment, and specifically, bacterial pathogens are found in soil, animal organs, and water contaminated by animal feces. On average, the human body also has more than 150 types of bacteria inside and outside the human body, and although many microorganisms are harmless to the human body, some types are It causes various infectious diseases, including pneumonia and typhoid. In particular, more than 200 diseases can be transmitted through food and drinking water alone.
병원체는 오염된 토양, 그리고 수질 환경을 통해 쉽게 인간에게 감염될 수 있다. 통상의 조건 하에서 병원체의 번식속도는 매우 빠르기 때문에 아무리 적은 수의 병원체라도 일단 인체 내에 침입할 경우, 이의 생장환경에 매우 적합한 장 속에서 빠르게 성장하여 인간의 건강을 위협할 수 있는 수준까지 이르게 된다. 따라서, 오염된 환경으로부터 빠르고 간편하게 병원체(특히, 바이러스)의 유무를 검출할 수 있는 진단 기술이 요구되고 있다.Pathogens can easily infect humans through contaminated soil and water environments. Because the reproduction rate of pathogens is very fast under normal conditions, even a small number of pathogens, once invaded into the human body, rapidly grow in the intestine suitable for their growth environment and reach a level that can threaten human health. Accordingly, there is a need for a diagnostic technology capable of quickly and easily detecting the presence or absence of a pathogen (particularly, a virus) from a contaminated environment.
이처럼, 유전학적 분석을 기반으로 하는 임상 진단 기술은 통상적으로 박테리아, 균류(fungus) 또는 바이러스로부터 핵산을 회수하여 증폭 반응을 수행한 다음, 다양한 검출 수단(예를 들면, 광학적, 전기화학적 또는 기계적 바이오센서 디바이스)을 이용하여 앰플리콘(amplicon)을 분석하는 방식을 이용한다. 이는 혈액과 같은 생물학적 시료나 식수, 음식물 등의 환경 시료에는 검출 대상인 박테리아 또는 바이러스가 미량으로 존재하는 경우가 일반적이기 때문이다.As such, clinical diagnostic techniques based on genetic analysis typically recover nucleic acids from bacteria, fungi, or viruses, perform an amplification reaction, and then perform an amplification reaction using various detection means (eg, optical, electrochemical, or mechanical biotechnology). A method of analyzing an amplicon using a sensor device) is used. This is because, in general, trace amounts of bacteria or viruses to be detected are present in biological samples such as blood or environmental samples such as drinking water and food.
한편, 일반적으로 롤투롤(Roll-to-Roll, R2R) 공정 장치는 롤(roll) 형태의 필름(film) 또는 웹(web)에 다양한 종류의 공정을 수행하는 장치를 의미한다. 이러한 롤투롤 공정 장치는 롤 형태로 권취된 필름을 풀어주는 언와인더(unwinder), 필름에 인쇄 공정 등 다양한 공정을 수행하는 공정 유닛들, 필름을 다시 롤 형태로 감아주는 리와인더(rewinder)를 포함하며, 이들 사이에서 필름을 이송하기 위한 다양한 이송 유닛들을 구비할 수 있다.Meanwhile, in general, a roll-to-roll (R2R) process apparatus refers to an apparatus for performing various types of processes on a roll-type film or web. Such a roll-to-roll process device includes an unwinder that unwinds a film wound in a roll form, process units that perform various processes such as a printing process on a film, and a rewinder that winds the film back into a roll form. And, it may be provided with various transport units for transporting the film between them.
롤투롤 공정 장치의 일 예로, 피공정물인 필름의 표면에 다양한 패턴을 형성하는 롤투롤 인쇄 장치를 들 수 있다. 최근의 롤투롤 인쇄 장치는 전자 회로, 센서, 플렉서블 디스플레이(flexible display) 등의 다양한 전자 부품의 제조에 다양하게 활용되고 있다.As an example of the roll-to-roll process apparatus, a roll-to-roll printing apparatus for forming various patterns on the surface of a film, which is an object to be processed, may be used. Recently, roll-to-roll printing apparatuses are being used in various ways to manufacture various electronic components such as electronic circuits, sensors, and flexible displays.
본 발명자들은 생물학적 분자(핵산) 검출을 위한 장치(예컨대, PCR칩, 미세유체칩, 바이오센서 등)를 보다 효율적으로 단시간 내에 저렴한 비용(low-cost)으로 대량 생산하기 위한 기술을 개발하고자 노력하여, 시료 내에 존재하는 세포 또는 바이러스로부터 핵산을 짧은 시간 내에 분리 및 증폭하기 위한 TiO 2 나노구조 기반 광촉매층을 구비하는 핵산 검출장치를 롤투롤(R2R) 공정으로 제조함으로써, 본 발명을 완성하였다.The present inventors strive to develop a technology for mass-producing devices (eg, PCR chips, microfluidic chips, biosensors, etc.) for detecting biological molecules (nucleic acids) more efficiently and at low cost in a short time. , a nucleic acid detection device having a TiO 2 nanostructure-based photocatalyst layer for isolating and amplifying nucleic acids from cells or viruses present in a sample in a short time by a roll-to-roll (R2R) process, thereby completing the present invention.
따라서, 본 발명의 목적은 TiO 2 나노구조가 광촉매로 작용하면서 동시에 광결정으로 제조되어 핵산을 민감하게 검출할 수 있는 핵산 검출장치를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a nucleic acid detection device capable of sensitively detecting nucleic acids by making TiO 2 nanostructures act as photocatalysts and at the same time as photonic crystals.
본 발명의 다른 목적은 롤투롤 공정을 이용하여 상기 핵산 검출장치를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing the nucleic acid detection device using a roll-to-roll process.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the technical task to be achieved by the present invention is not limited to the tasks mentioned above, and other tasks not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the following description. will be.
본 발명의 목적을 달성하기 위하여, 본 발명은 기판 상에 마련된 시료가 주입되는 시료 주입구; 상기 시료 주입구로 주입된 시료가 이동하는 미세유체 채널; 및 상기 미세유체 채널에 연통되어 시료를 전달받아 시료 내 핵산(nucleic acid)을 분리 및 검출하는 핵산 검출부를 포함하는 핵산 검출장치로서, 상기 핵산 검출부는, 복수 개의 이산화티타늄(TiO 2) 나노구조 기반 광촉매 단위체가 형성한 광촉매층; 및 상기 광촉매층의 하단에 마련된 고분자막(polymer membrane)을 포함하고, 상기 광촉매 단위체는 금속 나노입자가 도핑된 이산화티타늄 나노물질(nanomaterial)을 포함하며, 상기 TiO 2 나노구조 기반 광촉매 단위체에 빛이 조사되면 시료 내의 세포(예컨대, 적혈구, 백혈구, 박테리아 등) 또는 바이러스가 용해(lysis)되고, 세포 또는 바이러스 용해물 내에 존재하는 핵산은 상기 광촉매 단위체에 흡착되고, 상기 흡착된 핵산은 광촉매층에 조사된 빛에 의한 광 PCR(photonic polymerase chain reaction)을 통하여 핵산 증폭반응이 일어나는 것을 특징으로 하는, 핵산 검출장치를 제공한다.In order to achieve the object of the present invention, the present invention provides a sample injection hole provided on a substrate is injected; a microfluidic channel through which the sample injected into the sample inlet moves; and a nucleic acid detection unit communicating with the microfluidic channel to receive a sample and isolating and detecting nucleic acid in the sample, wherein the nucleic acid detection unit includes a plurality of titanium dioxide (TiO 2 ) nanostructure-based a photocatalyst layer formed by a photocatalyst unit; and a polymer membrane provided at the bottom of the photocatalyst layer, wherein the photocatalytic unit includes a titanium dioxide nanomaterial doped with metal nanoparticles, and light is irradiated to the TiO 2 nanostructure-based photocatalytic unit. When the cell (eg, red blood cells, white blood cells, bacteria, etc.) or virus in the sample is lysed, the nucleic acid present in the cell or virus lysate is adsorbed to the photocatalytic unit, and the adsorbed nucleic acid is irradiated to the photocatalyst layer It provides a nucleic acid detection device, characterized in that the nucleic acid amplification reaction occurs through photonic polymerase chain reaction (PCR) by light.
또한, 본 발명은 기판의 일 단면에 시료가 주입되는 시료 주입구와, 주입된 시료가 이동하는 미세유체 채널을 임프린팅 하는 단계; 상기 미세유체 채널의 일 말단에서부터 고분자막을 라미네이션 하는 단계; 상기 고분자막 위에 티타늄박(titanium foil)을 라미네이션 하고, 롤투롤 양극 산화(anodization)를 수행하여 이산화티타늄 나노구조 단위체를 형성시키는 단계; 및 상기 이산화티타늄 나노구조 단위체 상에 금속 나노입자를 롤투롤 인쇄하는 단계를 포함하는, 롤투롤 장치를 이용하여 상기 핵산 검출장치를 제조하는 방법을 제공한다.In addition, the present invention comprises the steps of: imprinting a sample injection hole into which a sample is injected and a microfluidic channel through which the injected sample moves on one end face of a substrate; laminating a polymer film from one end of the microfluidic channel; laminating a titanium foil on the polymer film and performing roll-to-roll anodization to form a titanium dioxide nanostructured unit; And it provides a method of manufacturing the nucleic acid detection device using a roll-to-roll device, comprising the step of roll-to-roll printing the metal nanoparticles on the titanium dioxide nanostructure unit.
본 발명의 일 구현예에 있어서, 상기 생물학적 분자 검출장치는 분자진단에 사용될 수 있다.In one embodiment of the present invention, the biological molecular detection device can be used for molecular diagnosis.
본 발명의 다른 구현예에 있어서, 상기 핵산 검출장치는 롤투롤 공정으로 제조될 수 있다.In another embodiment of the present invention, the nucleic acid detection device may be manufactured by a roll-to-roll process.
본 발명의 또 다른 구현예에 있어서, 상기 TiO 2 나노구조 기반 광촉매 단위체의 이산화티타늄 나노물질은 삼각형, 사각형, 오각형, 육각형, 칠각형 및 팔각형으로 이루어진 군으로부터 선택된 다각형의 표면을 갖는 이산화티타늄 나노구조일 수 있다.In another embodiment of the present invention, the titanium dioxide nanomaterial of the TiO 2 nanostructure-based photocatalytic unit is a titanium dioxide nanostructure having a polygonal surface selected from the group consisting of a triangle, a square, a pentagon, a hexagon, a heptagon, and an octagon. can
본 발명의 또 다른 구현예에 있어서, 상기 이산화티타늄 나노물질은 육각형의 표면을 갖는 이산화티타늄 나노구조(hexagonal TiO 2 nanostructure)일 수 있다.In another embodiment of the present invention, the titanium dioxide nanomaterial may be a titanium dioxide nanostructure having a hexagonal surface (hexagonal TiO 2 nanostructure).
본 발명의 또 다른 구현예에 있어서, 상기 TiO 2 나노구조 기반 광촉매 단위체의 금속 나노입자는 은 나노입자, 금 나노입자 및 구리 나노입자로 이루어진 군으로부터 선택될 수 있다.In another embodiment of the present invention, the metal nanoparticles of the TiO 2 nanostructure-based photocatalytic unit may be selected from the group consisting of silver nanoparticles, gold nanoparticles, and copper nanoparticles.
본 발명의 또 다른 구현예에 있어서, 상기 고분자막은 PVDF 막(polyvinylidene difluoride membrane)일 수 있다.In another embodiment of the present invention, the polymer membrane may be a PVDF membrane (polyvinylidene difluoride membrane).
본 발명의 또 다른 구현예에 있어서, 상기 핵산 검출장치는 상기 광촉매층에 빛을 조사하기 위한 광원(light source)을 더 포함할 수 있다.In another embodiment of the present invention, the nucleic acid detection device may further include a light source for irradiating light to the photocatalyst layer.
본 발명의 또 다른 구현예에 있어서, 상기 핵산 검출장치는 핵산 분자의 온도를 모니터링 하는 온도 센서를 더 포함할 수 있다.In another embodiment of the present invention, the nucleic acid detection device may further include a temperature sensor for monitoring the temperature of the nucleic acid molecule.
본 발명의 또 다른 구현예에 있어서, 상기 핵산 검출장치는 상기 광원 및 온도 센서에 결합된 컨트롤러(controller)를 더 포함하며, 상기 컨트롤러는 상기 온도 센서로부터 하나 이상의 데이터 획득 및 상기 광원의 작동을 제어할 수 있다.In another embodiment of the present invention, the nucleic acid detection device further comprises a controller coupled to the light source and the temperature sensor, wherein the controller controls the acquisition of one or more data from the temperature sensor and the operation of the light source can do.
본 발명의 또 다른 구현예에 있어서, 상기 광촉매층에는 타겟 핵산 분자에 상보적인 염기서열을 갖는 프라이머, 4종의 dNTP 분자 및 중합효소가 놓여지며, 상기 타겟 핵산 분자와 4종의 dNTP 분자의 결합에 의하여 변화되는 광촉매층의 광자결정(photonic crystal)의 밴드갭(photonic bandgap) 변화를 감지하여 타겟 핵산 분자를 검출할 수 있다.In another embodiment of the present invention, a primer having a base sequence complementary to a target nucleic acid molecule, four kinds of dNTP molecules and a polymerase are placed on the photocatalyst layer, and the target nucleic acid molecule and the four kinds of dNTP molecules are bound A target nucleic acid molecule can be detected by detecting a change in a photonic bandgap of a photonic crystal of a photocatalytic layer that is changed by the .
본 발명의 또 다른 구현예에 있어서, 상기 밴드갭의 변화는 흡수 분광법 또는 형광분석법으로 감지할 수 있다.In another embodiment of the present invention, the change in the bandgap can be detected by absorption spectroscopy or fluorescence analysis.
본 발명의 또 다른 구현예에 있어서, 상기 세포 또는 바이러스 용해물의 핵산을 제외한 부산물은 상기 광촉매층의 미세공극을 통하여 고분자막을 통해 배출되어 제거될 수 있다.In another embodiment of the present invention, by-products other than the nucleic acid of the cell or virus lysate may be discharged and removed through the polymer membrane through the micropores of the photocatalyst layer.
본 발명은 시료에 존재하는 타겟 핵산(DNA, RNA)을 검출할 수 있는 분자진단 장치에 관한 것으로, 시료를 검출장치에 주입하면 시료로부터 핵산의 분리 및 증폭반응이 연속적으로 일어나, 시료로부터 핵산을 분리하기 위한 추가적인 과정이 필요하지 않다. 이에 따라, 본 발명의 핵산 검출장치를 사용하면 간편하게 타겟 핵산을 검출할 수 있는바, 병원성 세균, 바이러스 등의 현장에서의 검출 및 진단(Point-of-care testing)에 유용하게 활용될 것으로 기대된다.The present invention relates to a molecular diagnostic device capable of detecting a target nucleic acid (DNA, RNA) present in a sample. When the sample is injected into the detection device, separation and amplification reactions of the nucleic acid from the sample occur continuously, thereby extracting the nucleic acid from the sample. No additional steps are required for separation. Accordingly, by using the nucleic acid detection apparatus of the present invention, it is possible to easily detect a target nucleic acid, and it is expected that it will be usefully utilized for the detection and diagnosis (point-of-care testing) in the field of pathogenic bacteria, viruses, etc. .
또한, 본 발명의 핵산 검출장치는 롤투롤 공정을 통하여 단시간 내에 저렴한 비용으로 대량 생산이 가능하다.In addition, the nucleic acid detection apparatus of the present invention can be mass-produced at low cost within a short time through a roll-to-roll process.
도 1은 본 발명의 일 실시예에 따른 핵산 검출장치의 단면을 개략적으로 도시한 도이다.1 is a diagram schematically showing a cross-section of a nucleic acid detection apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 핵산 검출장치의 구조를 보여주는 도이다.2 is a diagram showing the structure of a nucleic acid detection apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 핵산 검출장치를 롤투롤 장치를 이용하여 제조하는 방법에 대한 순서도이다.3 is a flowchart of a method for manufacturing a nucleic acid detection apparatus using a roll-to-roll apparatus according to an embodiment of the present invention.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 더욱 상세하게 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형할 수 있으며, 본 발명의 범위가 아래의 실시예들로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해 제공되는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해 과장되게 도시된 부분도 있다. 또한, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 안 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the following embodiments. This example is provided to more completely explain the present invention to those of ordinary skill in the art. Accordingly, the shape of the element in the drawings is exaggerated to emphasize a clearer description. In addition, the terms or words used in the present specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventor appropriately defines the concept of the term in order to best describe his invention. It should be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle that it can be done.
도면을 참조하여 설명할 때 동일 하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.When describing with reference to the drawings, the same or corresponding components are given the same reference numerals, and overlapping descriptions thereof will be omitted.
도 1은 본 발명의 일 실시예에 따른 핵산 검출장치의 단면을 개략적으로 도시한 도이고, 도 2는 상기 핵산 검출장치의 구조를 보여주는 예시도이다.1 is a diagram schematically showing a cross-section of a nucleic acid detection apparatus according to an embodiment of the present invention, and FIG. 2 is an exemplary view showing the structure of the nucleic acid detection apparatus.
도 1을 참조하면, 본 발명의 일 실시예에 따른 핵산 검출장치(100)는 기판(10) 상에 마련된 시료가 주입되는 시료 주입구(20), 시료 주입구(20)로 주입된 시료가 이동하는 미세유체 채널(30), 및 미세유체 채널(30)에 연통되어 시료를 전달받아 시료 내 핵산을 분리 및 검출하는 핵산 검출부(40)를 포함한다.Referring to FIG. 1 , the nucleic acid detecting apparatus 100 according to an embodiment of the present invention includes a sample inlet 20 into which a sample provided on a substrate 10 is injected, and a sample inlet 20 through which the sample is moved. It includes a microfluidic channel 30, and a nucleic acid detection unit 40 communicating with the microfluidic channel 30 to receive a sample and separate and detect nucleic acids in the sample.
상기 기판(10)의 재질은 크게 제한되지 않으며, 바이오센서, 바이오칩, 미세유체칩 등 생체분자의 검출을 위한 장치 제조에 통상적으로 사용되는 소재(예컨대, 플라스틱, 유리 등)를 제한 없이 사용할 수 있다. 후술한 바와 같이, 본 발명의 핵산 검출장치(100)는 광촉매층(41)을 구비하므로, 검출장치의 외부에서 광촉매층(41)으로 빛을 조사하는 경우에는 반투명 또는 투명한 소재(예컨대, 폴리메틸메타크릴레이트(PMMA))의 기판으로 제조될 수 있다.The material of the substrate 10 is not particularly limited, and materials commonly used for manufacturing devices for detecting biomolecules such as biosensors, biochips, and microfluidic chips (eg, plastics, glass, etc.) can be used without limitation. . As described below, since the nucleic acid detection device 100 of the present invention includes the photocatalyst layer 41, when irradiating light to the photocatalyst layer 41 from the outside of the detection device, a translucent or transparent material (eg, polymethyl It can be prepared as a substrate of methacrylate (PMMA)).
상기 시료 주입구(20)를 통하여 검출장치(100) 내로 유입된 시료는 미세유체 채널(30)을 통과하여 핵산 검출부(40)로 이동하게 된다. 상기 미세유체 채널(30)은 시료(예컨대, 혈액)의 전처리를 위하여 설계될 수 있다. 예를 들어, 미세유체 채널(30)의 각 채널을 단차가 있도록 일방향으로 갈수록 더 높게 설계함으로써, 시료에 포함된 불순물(예컨대, 적혈구 등)을 중력에 의하여 점차적으로 제거할 수 있다.The sample introduced into the detection device 100 through the sample inlet 20 passes through the microfluidic channel 30 and moves to the nucleic acid detection unit 40 . The microfluidic channel 30 may be designed for pretreatment of a sample (eg, blood). For example, by designing each channel of the microfluidic channel 30 to be higher in one direction so that there is a step difference, impurities (eg, red blood cells, etc.) included in the sample can be gradually removed by gravity.
상기 핵산검출부(40)는 미세유체 채널(30)로부터 전달받은 시료 내의 핵산을 분리하고, 핵산 증폭반응을 수행하는 공간으로, 이를 위한 광촉매층(41) 및 상기 광촉매층(41)의 하단에 마련된 고분자막(42)을 포함한다.The nucleic acid detection unit 40 is a space for separating the nucleic acid in the sample received from the microfluidic channel 30 and performing a nucleic acid amplification reaction. and a polymer film 42 .
상기 광촉매층(41)은 복수 개의 TiO 2 나노구조 기반 광촉매 단위체(M)로 구성되며, 상기 광촉매 단위체(M)는 금속 나노입자가 도핑된 이산화티타늄 나노물질(nanomaterial) 일 수 있다.The photocatalyst layer 41 is composed of a plurality of TiO 2 nanostructure-based photocatalytic units M, and the photocatalytic unit M may be a titanium dioxide nanomaterial doped with metal nanoparticles.
상기 광촉매 단위체(M)의 이산화티타늄 나노물질은 다각형(예컨대, 삼각형, 사각형, 오각형, 육각형, 칠각형 및 팔각형 등)의 표면을 갖는 이산화티타늄 나노구조일 수 있다. 예를 들어, 상기 이산화티타늄 나노물질은 육각형의 표면을 갖는 이산화티타늄 나노구조(hexagonal TiO 2 nanostructure), 예를 들어 육각형 표면을 갖는 이산화티타늄 나노튜브(hexagonal TiO 2 nanotube)일 수 있다.The titanium dioxide nanomaterial of the photocatalytic unit M may be a titanium dioxide nanostructure having a surface of a polygon (eg, a triangle, a square, a pentagon, a hexagon, a heptagon, an octagon, etc.). For example, the titanium dioxide nano-material may be of hexagonal titanium dioxide having a surface nano-structure (hexagonal TiO 2 nanostructure), for example, titanium dioxide nanotubes (hexagonal nanotube TiO 2) having a hexagonal surface.
상기 육각형의 이산화티타늄은 티타늄박(titanium foil)에 롤투롤(Roll-to-Roll) 양극 산화(anodization)를 수행하여 광촉매층(41)에 형성시킬 수 있다. 이후 상기 이산화티타늄 나노구조 상에 금속 나노입자를 롤투롤 인쇄(도핑)하여 금속 나노입자가 도핑된 이산화티타늄 패턴을 제조할 수 있다.The hexagonal titanium dioxide may be formed in the photocatalyst layer 41 by performing roll-to-roll anodization on a titanium foil. Thereafter, the metal nanoparticles are roll-to-roll printed (doped) on the titanium dioxide nanostructure to prepare a titanium dioxide pattern doped with the metal nanoparticles.
상기 광촉매 단위체(M)의 금속 나노입자로는 은 나노입자, 금 나노입자, 구리 나노입자 또는 이들의 조합을 사용할 수 있다. 이산화티타늄(TiO 2) 반도체 소재는 3.0 eV 이상의 밴드갭 에너지를 가지므로 자외선(UV) 영역의 빛을 제외한 넓은 파장 영역대의 가시광 흡수도에 있어서 한계가 있는데, 나노 사이즈의 금속을 도핑하면 광흡수도를 높이고 전자-홀 쌍의 재결합속도를 감소시킴으로써 광촉매 기능의 향상을 이룰 수 있다. 이산화티타늄 나노물질 표면에 자체 항균성이 있는 Ag을 나노 사이즈로 도핑하면 광기능성 및 용해(lysis) 효과를 증진시킬 수 있다.As the metal nanoparticles of the photocatalytic unit (M), silver nanoparticles, gold nanoparticles, copper nanoparticles, or a combination thereof may be used. Titanium dioxide (TiO 2 ) semiconductor material has a bandgap energy of 3.0 eV or more, so there is a limit in the absorption of visible light in a wide wavelength band except for light in the ultraviolet (UV) region. The photocatalytic function can be improved by increasing the electron-hole pair recombination rate and decreasing the electron-hole pair recombination rate. If the titanium dioxide nanomaterial surface is doped with Ag, which has its own antibacterial properties, in a nano size, the photofunctionality and lysis effect can be enhanced.
상기 고분자막(42)은 광촉매층(41)의 하단에 배치되어 지지층과 분리막으로서의 역할을 하며, 세포 또는 바이러스 용해물 중 광촉매 단위체(M)에 흡착된 핵산(DNA, RNA)을 제외한 불순물(부산물)은 고분자막(42)을 통하여 배출되어 제거된다. 예를 들어, 상기 고분자막(42)으로는 PVDF 막(polyvinylidene difluoride membrane)을 사용할 수 있다.The polymer membrane 42 is disposed at the bottom of the photocatalyst layer 41 to serve as a support layer and a separation membrane, and impurities (by-products) excluding nucleic acids (DNA, RNA) adsorbed to the photocatalytic unit (M) in the cell or virus lysate. Silver is discharged through the polymer film 42 to be removed. For example, a polyvinylidene difluoride membrane (PVDF) may be used as the polymer membrane 42 .
본 발명의 일 실시예에 따른 핵산 검출장치는 고분자막(42)의 하단에 고분자막(42)을 통과한 불순물을 수용하는 미세유체 채널(60)을 포함할 수 있다. 상기 미세유체 채널(60)의 일 말단은 불순물 저장소(waste reservoir, 70)에 연통되어 있어, 고분자막(42)을 통과한 불순물은 미세유체 채널(60)을 통하여 불순물 저장소(70)에 저장될 수 있다.The nucleic acid detection device according to an embodiment of the present invention may include a microfluidic channel 60 for accommodating impurities that have passed through the polymer film 42 at the lower end of the polymer film 42 . One end of the microfluidic channel 60 is in communication with a waste reservoir 70 , so that impurities passing through the polymer film 42 can be stored in the impurity reservoir 70 through the microfluidic channel 60 . have.
본 발명의 일 실시예에 따른 핵산 검출장치를 이용하여 타겟 핵산을 검출하는 과정은 다음과 같다.A process of detecting a target nucleic acid using the nucleic acid detection apparatus according to an embodiment of the present invention is as follows.
상기 광촉매층(41)의 이산화티타늄과 금속(예컨대, 은, 금) 나노입자는 광자결정(photonic crystal)으로 작용하여 광밴드갭(photonic bandgap, PBG)에 맞추어 빛(예컨대, UV, 가시광선)을 조사하면, 전자 전이가 일어나면서 광촉매 활성(photocatalytic activity)이 나타나게 된다. 광자결정이란 광밴드갭을 가지는 구조로서 유전율의 주기적인 반복 구조를 가지는 물질을 의미한다. 광자결정은 일반적으로 수백 나노미터에서 수 마이크로미터 크기의 주기를 갖는 서로 다른 물질이 1차원, 2차원 혹은 3차원으로 배열되어 있는 특징을 가지고 있으며, 일정한 파장 영역을 갖는 빛이 광자결정 구조를 만나게 되면 일부는 투과되고 일부는 반사되는데, 이때 광자결정을 투과하지 못하고 반사되어 나오는 빛의 파장 영역을 광밴드갭이라고 한다.Titanium dioxide and metal (eg, silver, gold) nanoparticles of the photocatalyst layer 41 act as photonic crystals to match the photonic bandgap (PBG) with light (eg, UV, visible light) When irradiated, electron transition occurs and photocatalytic activity appears. The photonic crystal is a structure having an optical band gap and means a material having a periodic repeating structure of dielectric constant. In general, photonic crystals have a characteristic in that different materials having a period of several hundred nanometers to several micrometers are arranged in one-dimensional, two-dimensional or three-dimensional order, and when light having a certain wavelength region meets the photonic crystal structure, In this case, part is transmitted and part is reflected.
시료 주입구(20)로 주입된 시료는 미세유체 채널(30)을 통하여 핵산 검출부(40)에 도달하게 되고, 도달된 시료 내에 포함되어 있는 바이러스나 박테리아는 TiO 2 나노구조 기반 광촉매층(41)에 농축된다. 광촉매층(41)에 바이러스나 박테리아가 농축된 후 광촉매층(41)에 빛이 조사되면, 빛 조사에 의하여 유도된 광촉매 활성에 의하여 바이러스나 박테리아 등의 파괴(용해)가 일어나게 되며, 용해물에 함유된 핵산은 광촉매층(주로 이산화티타늄)에 흡착되고, 흡착되지 않은 나머지 불순물(부산물)들은 광촉매층(41)의 미세공극(예컨대, 광촉매 단위체(M) 안의 미세공극)을 통하여 광촉매층(41) 하단에 마련되어 있는 고분자막(42)으로 분리 배출된다. 예를 들어, 상기와 같이 시료 내 바이러스나 박테리아 등의 용해가 일어난 후 시료 주입구(20)를 통하여 세척 용액을 주입하면, 광촉매층(41)에 흡착되지 않은 부산물이 고분자막(42)을 통해 씻겨져 나가 제거될 수 있다.The sample injected into the sample inlet 20 arrives at the nucleic acid detection unit 40 through the microfluidic channel 30, and the virus or bacteria contained in the reached sample is deposited on the TiO 2 nanostructure-based photocatalyst layer 41. concentrated When the photocatalyst layer 41 is irradiated with light after the virus or bacteria is concentrated in the photocatalyst layer 41, destruction (dissolution) of the virus or bacteria occurs due to the photocatalytic activity induced by the light irradiation, and the lysate The contained nucleic acid is adsorbed to the photocatalyst layer (mainly titanium dioxide), and the remaining impurities (by-products) that are not adsorbed are the photocatalyst layer 41 through the micropores of the photocatalyst layer 41 (eg, micropores in the photocatalyst unit M). ) separated and discharged to the polymer membrane 42 provided at the bottom. For example, when a washing solution is injected through the sample inlet 20 after dissolution of viruses or bacteria in the sample occurs as described above, by-products that are not adsorbed on the photocatalyst layer 41 are washed out through the polymer membrane 42 . can be removed.
이후 상기 광촉매층(41)에 흡착된 핵산은 광 PCR(photonic PCR)을 통하여 핵산 증폭이 이루어진다. 이때 상기 핵산 증폭이 일어나기 전에 흡착된 핵산의 pH를 핵산 증폭반응에 적절하게 조절할 수 있다. 구체적으로, 상기 광촉매층(41)에는 타겟 핵산 분자에 상보적인 염기서열을 갖는 프라이머, 4종의 dNTP 분자 및 중합효소 등의 PCR을 위한 시료 용액이 놓여지며, pH를 조절(예컨대, pH 6-7로)한 후에 광촉매층(41)에 빛이 조사되면 광열 변환(light-to-heat conversion)에 의하여 열이 발생하여 광촉매층(41)에 위치하는 핵산 및 PCR 시료 용액의 히팅과 쿨링이 빠른 사이클로 일어나게 되어 핵산 증폭반응이 신속하게 일어나게 된다. 이때 핵산 증폭을 위한 온도 조절은 빛의 조사를 조절하여 이루어질 수 있다.Thereafter, the nucleic acid adsorbed to the photocatalyst layer 41 is amplified by photonic PCR. In this case, before the nucleic acid amplification occurs, the pH of the adsorbed nucleic acid may be appropriately adjusted for the nucleic acid amplification reaction. Specifically, a sample solution for PCR such as a primer having a nucleotide sequence complementary to a target nucleic acid molecule, four dNTP molecules, and a polymerase is placed on the photocatalyst layer 41, and the pH is adjusted (eg, pH 6- 7), when light is irradiated to the photocatalyst layer 41, heat is generated by light-to-heat conversion, so that heating and cooling of the nucleic acid and PCR sample solution located in the photocatalyst layer 41 is fast The cycle takes place so that the nucleic acid amplification reaction occurs rapidly. In this case, temperature control for nucleic acid amplification may be performed by controlling light irradiation.
핵산 증폭반응이 개시됨에 따라 타겟 핵산 분자(예컨대, RNA 또는 ssDNA)의 염기에 dNTP가 하나씩 페어링 하면서 프로톤이 발생하게 되며, 발생하는 프로톤이 광촉매층(41)의 광자결정의 광밴드갭의 변화가 초래된다. 이러한 광밴드갭의 변화를 감지함으로써 목적하는 타겟 핵산을 검출할 수 있다.As the nucleic acid amplification reaction is initiated, dNTPs are paired one by one with the bases of the target nucleic acid molecule (eg, RNA or ssDNA), and protons are generated, and the generated protons change the photonic crystal band gap of the photocatalytic layer 41 . is brought about By detecting such a change in the optical bandgap, a desired target nucleic acid can be detected.
상기 광촉매층(41)의 광밴드갭의 변화는 광밴드갭 변화를 감지할 수 있는 당해 분야에 알려진 기술을 제한 없이 사용할 수 있다. 예를 들어, 흡수 분광법 또는 형광분석법에 의하여 감지할 수 있다.As the change in the photo-bandgap of the photocatalyst layer 41, a technique known in the art for detecting the change in the photo-bandgap may be used without limitation. For example, it can be detected by absorption spectroscopy or fluorescence analysis.
이와 같은 광촉매 활성 및 광 PCR을 위하여, 본 발명의 일 실시예에 따른 핵산 검출장치는 광촉매층(41)에 빛을 조사하기 위한 광원(light source)을 더 포함할 수 있다. 상기 광원은 검출장치(100)의 내부에 위치할 수도 있고, 장치의 외부에 위치할 수도 있다.For such photocatalytic activity and photoPCR, the nucleic acid detection apparatus according to an embodiment of the present invention may further include a light source for irradiating light to the photocatalytic layer 41 . The light source may be located inside the detection device 100 or outside the device.
상기 광원은 LED, 다이오드 레이저(diode lasers), 다이오드 레이저 어레이(diode laser array), 양자 웰(수직)-공동 레이저(quantum well(vertical)-cavity laser) 등으로 구현될 수 있다. 또한, 광원의 방출 파장은 자외선(UV), 가시광선 또는 적외선(IR) 등 일 수 있다.The light source may be implemented as an LED, diode lasers, diode laser array, quantum well (vertical)-cavity laser, or the like. In addition, the emission wavelength of the light source may be ultraviolet (UV) light, visible light or infrared (IR) light.
본 발명의 일 실시예에 따른 핵산 검출장치는 핵산 증폭을 위한 PCR 시료 용액의 온도를 모니터링 하는 온도 센서를 더 포함할 수 있다. 상기 온도 센서는 시료의 온도를 측정하는 플랫폼에 결합되거나 플랫폼을 향할 수 있다. 이러한 온도 센서는 플랫폼을 향하는 열전대(thermocouple) 또는 카메라(예를 들어, IR 카메라)와 같이 다수의 센서 타입을 포함할 수 있다.The nucleic acid detection apparatus according to an embodiment of the present invention may further include a temperature sensor for monitoring the temperature of the PCR sample solution for nucleic acid amplification. The temperature sensor may be coupled to or facing the platform for measuring the temperature of the sample. Such temperature sensors may include multiple sensor types, such as thermocouples or cameras (eg, IR cameras) facing the platform.
또한, PCR 시스템이 시료 용액의 핵산 및/또는 형광 신호를 실시간으로 검출하는 디지털 카메라, 포토다이오드(photodiode), 분광 광도계(spectrophotometer) 또는 유사한 촬상 장치(imaging device)와 같은 진단 장치와 통합되거나 호환될 수 있는 것이 이해될 것이다. 예를 들어, 상기 카메라는 스마트폰 카메라 일 수 있으며, 상기 스마트폰은 시료 용액을 분석하는 어플리케이션 소프트웨어를 포함한다.In addition, the PCR system may be integrated or compatible with a diagnostic device such as a digital camera, photodiode, spectrophotometer or similar imaging device that detects nucleic acid and/or fluorescence signals in a sample solution in real time. It can be understood that For example, the camera may be a smartphone camera, and the smartphone includes application software for analyzing a sample solution.
일 실시예에서, 상기 센서 및 광원은 센서 데이터의 획득 및 광원의 제어를 위한 컴퓨팅 장치(computing unit)에 결합할 수 있다. 일반적으로, 컴퓨팅 장치는 프로세서 및 광원을 구동하기 위한(예를 들어, LED 타이밍, 강도/주입 전류 등을 제어하기 위한) 프로세서로 실행 가능한 어플리케이션 소프트웨어에 저장되는 메모리를 포함하여, 센서로부터 데이터를 획득하고 및/또는 핵산 및/또는 샘플 용액의 형광 신호의 디지털 카메라 실시간 검출과 같이 진단 장치로부터 데이터를 처리할 수 있다. 컴퓨팅 장치는 별개의 컴퓨터 또는 장치를 포함할 수 있거나, 나머지 구성 요소들을 가지는 마이크로컨트롤러 모듈(microcontroller module)에 통합될 수 있다.In one embodiment, the sensor and light source may be coupled to a computing unit for obtaining sensor data and controlling the light source. In general, a computing device obtains data from a sensor, including a processor and memory stored in application software executable by the processor for driving the light source (eg, for controlling LED timing, intensity/injection current, etc.) and/or process data from the diagnostic device, such as digital camera real-time detection of fluorescent signals of nucleic acids and/or sample solutions. The computing device may include a separate computer or device, or may be integrated into a microcontroller module having the remaining components.
본 발명의 일 실시예에 따른 핵산 검출장치는 주입된 시료를 미세유체 채널(30)을 통하여 핵산 검출부(40)로 이동시키기 위한 진공 배터리(50)를 구비할 수 있다. 상기 진공 배터리(50)를 구비하면, 별도의 미세유체 펌프(microfluidic pumping) 없이도 유체 흐름을 유도할 수 있어 검출장치의 경량화, 소형화에 유리하다. 상기 진공 배터리(50)에 대한 상세한 내용은, 예를 들어 미국 등록특허 제9,970,423호를 참조할 수 있다.The nucleic acid detection apparatus according to an embodiment of the present invention may include a vacuum battery 50 for moving the injected sample to the nucleic acid detection unit 40 through the microfluidic channel 30 . If the vacuum battery 50 is provided, a fluid flow can be induced without a separate microfluidic pumping, which is advantageous in reducing the weight and size of the detection device. For details on the vacuum battery 50, for example, reference may be made to US Patent No. 9,970,423.
도 3은 본 발명의 일 실시예에 따른 핵산 검출장치를 롤투롤 장치를 이용하여 제조하는 방법에 대한 순서도이다.3 is a flowchart of a method for manufacturing a nucleic acid detection apparatus using a roll-to-roll apparatus according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 일 실시예에 따른 핵산 검출장치의 제조방법은, 롤투롤 장치를 이용하여 실시되며, 기판의 일 단면에 시료가 주입되는 시료 주입구와 주입된 시료가 이동하는 미세유체 채널을 임프린팅 하는 단계(S100), 미세유체 채널의 일 말단에서부터 고분자막을 라미네이션 하는 단계(S200), 고분자막 위에 티타늄박(titanium foil)을 라미네이션 하고, 롤투롤 양극 산화(anodization)를 수행하여 이산화티타늄 나노구조 단위체를 형성시키는 단계(S300) 및 이산화티타늄 나노구조 단위체 상에 금속 나노입자를 롤투롤 인쇄하는 단계(S400)를 포함한다.Referring to FIG. 3 , the method of manufacturing a nucleic acid detection device according to an embodiment of the present invention is performed using a roll-to-roll device, and a sample inlet through which a sample is injected and a microscopic hole through which the injected sample moves on one end surface of a substrate Imprinting the fluid channel (S100), laminating a polymer film from one end of the microfluidic channel (S200), laminating a titanium foil on the polymer film, and performing roll-to-roll anodization Forming a titanium nanostructured unit (S300) and a step (S400) of roll-to-roll printing of metal nanoparticles on the titanium dioxide nanostructured unit.
이하, 도 1 내지 3을 참조하여 본 발명의 일 실시예에 따른 핵산 검출장치의 제조방법을 설명한다.Hereinafter, a method of manufacturing a nucleic acid detecting apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3 .
S100에서는 시료 주입구(20)와 미세유체 채널(30)을 롤투롤 공정으로 임프린팅 하여 기판에 형성시킨다. 상기 미세유체 채널(30)은 PDMS와 같은 미세유체 채널을 제조에 사용되는 소재를 제한 없이 사용할 수 있다. 임프린팅은 필요로 하는 미세유체 채널(30)의 깊이와 폭에 맞추어 양각 롤을 제조하여, UV 아크릴 레진이나 에폭시 레진으로 그래핀 위를 다시 코팅하고 양각된 롤을 통해 임프린팅하면서 UV로 경화하여 미세유체 채널(30)을 인쇄할 수 있다.In S100, the sample injection hole 20 and the microfluidic channel 30 are imprinted by a roll-to-roll process and formed on the substrate. The microfluidic channel 30 may use any material used for manufacturing the microfluidic channel, such as PDMS, without limitation. Imprinting is performed by manufacturing an embossed roll according to the required depth and width of the microfluidic channel 30, re-coating the graphene with UV acrylic resin or epoxy resin, and curing with UV while imprinting through the embossed roll. The microfluidic channel 30 can be printed.
다음으로, 미세유체 채널(30)의 일 말단에서부터 고분자막(42)을 라미네이션하고(S200), 곧바로 고분자막(42) 위에 티타늄박을 라미네이션 하고, 롤투롤 양극 산화(anodization)를 수행하여 이산화티타늄 나노구조 단위체(M)를 형성시킨다(S300).Next, laminating the polymer film 42 from one end of the microfluidic channel 30 (S200), laminating a titanium foil directly on the polymer film 42, and performing roll-to-roll anodization to form a titanium dioxide nanostructure A unit (M) is formed (S300).
S400에서는 이산화티타늄 나노구조 단위체(M) 상에 금속 나노입자를 롤투롤 인쇄하여 금속 나노입자가 도핑된 이산화티타늄 나노물질을 형성시켜 광촉매층(41)을 제조한다.In S400, a photocatalyst layer 41 is prepared by roll-to-roll printing of metal nanoparticles on the titanium dioxide nanostructure unit (M) to form a titanium dioxide nanomaterial doped with metal nanoparticles.
롤투롤 코팅 시의 코팅 속도는 적절히 조절할 수 있으며, 예를 들어, 분당 1 m에서 6 m까지 제어하여 코팅할 수 있으며, 이때 코팅 방법은 그라비아 코터나, 콤마 코터 또는 슬롯다이를 이용하여 롤투롤로 연속 코팅할 수 있다.The coating speed at the time of roll-to-roll coating can be appropriately controlled, for example, it can be coated by controlling from 1 m to 6 m per minute, in this case, the coating method is continuous in roll-to-roll using a gravure coater, comma coater, or slot die. can be coated.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The above description of the present invention is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
[부호의 설명][Explanation of code]
10: 기판10: substrate
20: 시료 주입구20: sample inlet
30: 미세유체 채널30: microfluidic channel
40: 핵산 검출부40: nucleic acid detection unit
41: 광촉매층41: photocatalyst layer
42: 고분자막42: polymer film
50: 진공 배터리50: vacuum battery
60: 미세유체 채널60: microfluidic channel
70: 불순물 저장소70: impurity reservoir
본 발명에 따른 핵산 검출장치를 사용할 경우 간편하게 타겟 핵산을 검출할 수 있는 바, 병원성 세균, 바이러스 등의 현장에서의 검출 및 진단(Point-of-care testing)에 유용하게 활용될 것으로 기대된다.When the nucleic acid detection apparatus according to the present invention is used, a target nucleic acid can be easily detected, and thus it is expected to be usefully utilized for on-site detection and diagnosis of pathogenic bacteria and viruses (Point-of-care testing).

Claims (12)

  1. 기판 상에 마련된 시료가 주입되는 시료 주입구;a sample inlet through which a sample provided on the substrate is injected;
    상기 시료 주입구로 주입된 시료가 이동하는 미세유체 채널; 및a microfluidic channel through which the sample injected into the sample inlet moves; and
    상기 미세유체 채널에 연통되어 시료를 전달받아 시료 내 핵산(nucleic acid)을 분리 및 검출하는 핵산 검출부를 포함하는 핵산 검출장치로서,A nucleic acid detection device communicating with the microfluidic channel to receive a sample and comprising a nucleic acid detection unit for separating and detecting nucleic acids in the sample,
    상기 핵산 검출부는, 복수 개의 이산화티타늄(TiO 2) 나노구조 기반 광촉매 단위체가 형성한 광촉매층; 및 상기 광촉매층의 하단에 마련된 고분자막(polymer membrane)을 포함하고,The nucleic acid detection unit may include: a photocatalyst layer formed by a plurality of titanium dioxide (TiO 2 ) nanostructure-based photocatalytic units; and a polymer membrane provided at the lower end of the photocatalyst layer,
    상기 광촉매 단위체는 금속 나노입자가 도핑된 이산화티타늄 나노물질(nanomaterial)을 포함하며,The photocatalytic unit includes a titanium dioxide nanomaterial doped with metal nanoparticles,
    상기 TiO 2 나노구조 기반 광촉매 단위체에 빛이 조사되면 시료 내의 세포 또는 바이러스가 용해(lysis)되고, 세포 또는 바이러스 용해물 내에 존재하는 핵산은 상기 광촉매 단위체에 흡착되고,When light is irradiated to the TiO 2 nanostructure-based photocatalytic unit, cells or viruses in the sample are lysed, and nucleic acids present in the cell or virus lysate are adsorbed to the photocatalytic unit,
    상기 흡착된 핵산은 광촉매층에 조사된 빛에 의한 광 PCR(photonic polymerase chain reaction)을 통하여 핵산 증폭반응이 일어나는 것을 특징으로 하는, 핵산 검출장치.The nucleic acid detection device, characterized in that the adsorbed nucleic acid undergoes a nucleic acid amplification reaction through photonic polymerase chain reaction (PCR) by light irradiated to the photocatalyst layer.
  2. 제1항에 있어서,According to claim 1,
    상기 핵산 검출장치는 롤투롤(roll-to-roll) 공정으로 제조된 것을 특징으로 하는, 핵산 검출장치.The nucleic acid detection device, characterized in that manufactured by a roll-to-roll process, a nucleic acid detection device.
  3. 제1항에 있어서,According to claim 1,
    상기 TiO 2 나노구조 기반 광촉매 단위체의 이산화티타늄 나노물질은 삼각형, 사각형, 오각형, 육각형, 칠각형 및 팔각형으로 이루어진 군으로부터 선택된 다각형의 표면을 갖는 이산화티타늄 나노구조인 것을 특징으로 하는, 핵산 검출장치.The titanium dioxide nanomaterial of the TiO 2 nanostructure-based photocatalytic unit is a titanium dioxide nanostructure having a surface of a polygon selected from the group consisting of a triangle, a square, a pentagon, a hexagon, a heptagon, and an octagon, It characterized in that it is a nucleic acid detection device.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 이산화티타늄 나노물질은 육각형의 표면을 갖는 이산화티타늄 나노구조(hexagonal TiO 2 nanostructure)인 것을 특징으로 하는, 핵산 검출장치.The titanium dioxide nanomaterial is a nucleic acid detection device, characterized in that the titanium dioxide nanostructure (hexagonal TiO 2 nanostructure) having a hexagonal surface.
  5. 제1항에 있어서,According to claim 1,
    상기 TiO 2 나노구조 기반 광촉매 단위체의 금속 나노입자는 은 나노입자, 금 나노입자 및 구리 나노입자로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 핵산 검출장치.The TiO 2 nanostructure-based metal nanoparticles of the photocatalytic unit are silver nanoparticles, gold nanoparticles, and copper nanoparticles, characterized in that selected from the group consisting of, nucleic acid detection device.
  6. 제1항에 있어서,According to claim 1,
    상기 고분자막은 PVDF 막(polyvinylidene difluoride membrane)인 것을 특징으로 하는, 핵산 검출장치.The polymer membrane is a PVDF membrane (polyvinylidene difluoride membrane), characterized in that the nucleic acid detection device.
  7. 제1항에 있어서,According to claim 1,
    상기 핵산 검출장치는 상기 광촉매층에 빛을 조사하기 위한 광원(light source)을 더 포함하는 것을 특징으로 하는, 핵산 검출장치.The nucleic acid detection apparatus, characterized in that it further comprises a light source (light source) for irradiating light to the photocatalyst layer, nucleic acid detection apparatus.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 핵산 검출장치는 핵산 분자의 온도를 모니터링 하는 온도 센서를 더 포함하는 것을 특징으로 하는, 핵산 검출장치.The nucleic acid detection device, characterized in that it further comprises a temperature sensor for monitoring the temperature of the nucleic acid molecule, nucleic acid detection device.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 핵산 검출장치는 상기 광원 및 온도 센서에 결합된 컨트롤러(controller)를 더 포함하며, 상기 컨트롤러는 상기 온도 센서로부터 하나 이상의 데이터 획득 및 상기 광원의 작동을 제어하는 것을 특징으로 하는, 핵산 검출장치.The nucleic acid detection device further comprises a controller coupled to the light source and the temperature sensor, wherein the controller acquires one or more data from the temperature sensor and controls the operation of the light source, the nucleic acid detection device.
  10. 제1항에 있어서,According to claim 1,
    상기 광촉매층에는 타겟 핵산 분자에 상보적인 염기서열을 갖는 프라이머, 4종의 dNTP 분자 및 중합효소가 놓여지며, 상기 타겟 핵산 분자와 4종의 dNTP 분자의 결합에 의하여 변화되는 광촉매층의 광자결정(photonic crystal)의 밴드갭(photonic bandgap) 변화를 감지하여 타겟 핵산 분자를 검출하는 것을 특징으로 하는, 핵산 검출장치.A primer having a nucleotide sequence complementary to a target nucleic acid molecule and a polymerase are placed on the photocatalyst layer, and a photonic crystal of the photocatalyst layer that is changed by the binding of the target nucleic acid molecule to the four dNTP molecules ( A nucleic acid detection device, characterized in that for detecting a target nucleic acid molecule by detecting a change in a photonic bandgap of a photonic crystal.
  11. 제1항에 있어서,According to claim 1,
    상기 세포 또는 바이러스 용해물의 핵산을 제외한 부산물은 상기 광촉매층의 미세공극을 통하여 고분자막을 통해 배출되어 제거되는 것을 특징으로 하는, 핵산 검출장치.A nucleic acid detection device, characterized in that the by-products other than the nucleic acid of the cell or virus lysate are discharged and removed through the polymer membrane through the micropores of the photocatalyst layer.
  12. 기판의 일 단면에 시료가 주입되는 시료 주입구와, 주입된 시료가 이동하는 미세유체 채널을 임프린팅 하는 단계;Imprinting a sample injection hole through which a sample is injected and a microfluidic channel through which the injected sample moves on one end surface of the substrate;
    상기 미세유체 채널의 일 말단에서부터 고분자막을 라미네이션 하는 단계;laminating a polymer film from one end of the microfluidic channel;
    상기 고분자막 위에 티타늄박(titanium foil)을 라미네이션 하고, 롤투롤(Roll-to-Roll) 양극 산화(anodization)를 수행하여 이산화티타늄 나노구조 단위체를 형성시키는 단계; 및laminating a titanium foil on the polymer film and performing roll-to-roll anodization to form a titanium dioxide nanostructured unit; and
    상기 이산화티타늄 나노구조 단위체 상에 금속 나노입자를 롤투롤 인쇄하는 단계를 포함하는, 롤투롤 장치를 이용하여 제1항 내지 제11항 중 어느 한 항에 따른 핵산 검출장치를 제조하는 방법.A method for manufacturing a nucleic acid detection device according to any one of claims 1 to 11 using a roll-to-roll device, comprising the step of roll-to-roll printing of metal nanoparticles on the titanium dioxide nanostructured unit.
PCT/KR2021/006150 2020-05-18 2021-05-17 Tio2 nanostructure-based nucleic acid detection apparatus and method for manufacturing same using roll-to-roll process WO2021235797A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200058996 2020-05-18
KR10-2020-0058996 2020-05-18
KR1020200109719A KR102449073B1 (en) 2020-05-18 2020-08-28 Apparatus for detecting nucleic acid based on TiO2 Nano-structure and method for fabricating the same using Roll-to-Roll processing
KR10-2020-0109719 2020-08-28

Publications (1)

Publication Number Publication Date
WO2021235797A1 true WO2021235797A1 (en) 2021-11-25

Family

ID=78708613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006150 WO2021235797A1 (en) 2020-05-18 2021-05-17 Tio2 nanostructure-based nucleic acid detection apparatus and method for manufacturing same using roll-to-roll process

Country Status (1)

Country Link
WO (1) WO2021235797A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526255A (en) * 2005-01-13 2008-07-24 マイクロニクス, インコーポレイテッド Microfluidic diluted cell detection device
KR20110000091A (en) * 2009-06-26 2011-01-03 강원대학교산학협력단 Gold/tio2 nanoparticle composite for in-vitro diagnostic testing and method for preparation thereof
KR20160143795A (en) * 2014-04-14 2016-12-14 에스알아이 인터내셔널 Portable nucleic acid analysis system and high-performance microfluidic electroactive polymer actuators
KR20170083229A (en) * 2016-01-08 2017-07-18 고려대학교 산학협력단 Surface measurement sensing-based realtime nucleic acid amplification measuring apparatus
KR101766283B1 (en) * 2016-03-02 2017-08-24 경북대학교 산학협력단 Microfluidic chip for real-time monitoring water quility and method for manufacturing the microfluidic chip
KR20180098744A (en) * 2017-02-27 2018-09-05 한국과학기술원 Film-based integrated chip and its nucleic acid detection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526255A (en) * 2005-01-13 2008-07-24 マイクロニクス, インコーポレイテッド Microfluidic diluted cell detection device
KR20110000091A (en) * 2009-06-26 2011-01-03 강원대학교산학협력단 Gold/tio2 nanoparticle composite for in-vitro diagnostic testing and method for preparation thereof
KR20160143795A (en) * 2014-04-14 2016-12-14 에스알아이 인터내셔널 Portable nucleic acid analysis system and high-performance microfluidic electroactive polymer actuators
KR20170083229A (en) * 2016-01-08 2017-07-18 고려대학교 산학협력단 Surface measurement sensing-based realtime nucleic acid amplification measuring apparatus
KR101766283B1 (en) * 2016-03-02 2017-08-24 경북대학교 산학협력단 Microfluidic chip for real-time monitoring water quility and method for manufacturing the microfluidic chip
KR20180098744A (en) * 2017-02-27 2018-09-05 한국과학기술원 Film-based integrated chip and its nucleic acid detection method

Similar Documents

Publication Publication Date Title
US11041197B2 (en) Efficient optical analysis of polymers using arrays of nanostructures
Ingham et al. Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology
Sims et al. Fluorogenic DNA sequencing in PDMS microreactors
TW200928364A (en) Microfluidic platforms for multi-target detection
CA2963604C (en) Nanopore-based polymer analysis with mutually-quenching fluorescent labels
US20120264617A1 (en) Dna sequencing employing nanomaterials
CA2910019A1 (en) Nanopore-based nucleic acid analysis with mixed fret detection
US20050208539A1 (en) Quantitative amplification and detection of small numbers of target polynucleotides
Espinoza et al. Functionalization of nanochannels by radio-induced grafting polymerization on PET track-etched membranes
Fu et al. Microfluidic systems applied in solid-state nanopore sensors
WO2021235797A1 (en) Tio2 nanostructure-based nucleic acid detection apparatus and method for manufacturing same using roll-to-roll process
Li et al. Nanofabrication enabled lab-on-a-chip technology for the manipulation and detection of bacteria
WO2022145766A1 (en) Optical sensor membrane for detecting dissolved oxygen having micro-fine structure
US10981174B1 (en) Protein and nucleic acid detection for microfluidic devices
Ranjbaran et al. Microfluidics at the interface of bacteria and fresh produce
Ionescu Biosensor platforms for rapid detection of E. coli bacteria
KR102449073B1 (en) Apparatus for detecting nucleic acid based on TiO2 Nano-structure and method for fabricating the same using Roll-to-Roll processing
Ngashangva et al. Emerging bioanalytical devices and platforms for rapid detection of pathogens in environmental samples
He et al. Superhydrophobic rotation-chip for computer-vision identification of drug-resistant bacteria
WO2022045805A1 (en) Plasmonic well-based nucleic acid detecting device and fabrication method therefor using roll-to-roll process
Liao et al. Advancing point-of-care microbial pathogens detection by material-functionalized microfluidic systems
WO2022045806A1 (en) Manufacturing of apparatus for monitoring organoid in real time by using r2r process
WO2021215850A1 (en) Graphene-based surface plasmon resonance molecular diagnostic device manufactured by roll-to-roll process
KR102492974B1 (en) Photonic PCR system using surface plasmon resonance by conductive polymer and real-time detection of target nucleic acid using the same
WO2022005146A1 (en) Molecular diagnostic apparatus using metal-graphene-based surface plasmon resonance, manufactured by roll-to-roll process, and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21807742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21807742

Country of ref document: EP

Kind code of ref document: A1