WO2022005115A1 - 코로나바이러스 특이적 이중가닥 올리고뉴클레오티드 및 이를 포함하는 코로나바이러스 감염증-19 예방 및 치료용 조성물 - Google Patents
코로나바이러스 특이적 이중가닥 올리고뉴클레오티드 및 이를 포함하는 코로나바이러스 감염증-19 예방 및 치료용 조성물 Download PDFInfo
- Publication number
- WO2022005115A1 WO2022005115A1 PCT/KR2021/008011 KR2021008011W WO2022005115A1 WO 2022005115 A1 WO2022005115 A1 WO 2022005115A1 KR 2021008011 W KR2021008011 W KR 2021008011W WO 2022005115 A1 WO2022005115 A1 WO 2022005115A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coronavirus
- double
- sirna
- group
- stranded oligonucleotide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1131—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering N.A.
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/10—Applications; Uses in screening processes
- C12N2320/11—Applications; Uses in screening processes for the determination of target sites, i.e. of active nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
- C12N2320/31—Combination therapy
Definitions
- the present invention relates to a coronavirus-specific double-stranded oligonucleotide and uses thereof, and more particularly, to a novel double-stranded oligonucleotide that induces RNA interference specifically to SARS-CoV-2, comprising the double-stranded oligonucleotide It relates to a composition for inhibiting the proliferation of coronavirus and / or preventing and treating coronavirus infection-19 (COVID-19).
- a coronavirus is a type of RNA virus, and its genetic information is composed of ribonucleic acid (RNA).
- RNA ribonucleic acid
- SARS Severe acute respiratory syndrome
- SARS-CoV-2 coronavirus infection-19
- Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) first appeared in China and spread rapidly around the world, and the WHO named the disease infected with the virus COVID-19. According to a recent report, common symptoms include fever (98.6%), fatigue (69.6%), dry cough (59.4%), lymphopenia (70.3%), prolonged prothrombin time (58%), and enhancement of lactate dehydrogenase ( 39.9%) (Wang, D., et al., JAMA, 2020).
- RNA interference is a process in which the corresponding mRNA is specifically degraded by small RNA molecules such as microRNA (miRNA) and small interfering RNA (siRNA) to suppress gene expression. means a phenomenon.
- RNAi is a method used to suppress gene expression, and since it can clearly show the effect of gene suppression at a low cost and simple, the field of application of the technology is diversifying.
- a representative nucleic acid that induces such RNA interference is siRNA (small interfering RNA) composed of about 21 double-stranded RNA, typically 19 double-helical structures and two overhangs at the 3' end.
- siRNA small interfering RNA
- shRNA short hairpin RNA
- RNA interference derivative a representative nucleic acid that induces such RNA interference.
- RNA which is the genetic material of coronavirus, based on the interference effect on RNA, and exhibit the prevention and treatment effect of infection, while preventing the mutation of the virus
- the leader sequence of SARS-CoV-2, N protein, RNA-dependent RNA polymerase (RdRP), S protein, E protein, M protein, and pp1ab A double-stranded oligonucleotide that specifically interferes with a specific RNA was identified, and the double-stranded oligonucleotide exhibited a reduction in the cytopathic effect (CPE) caused by coronavirus, a reduction in viral infection, and an inhibitory effect on virus proliferation.
- CPE cytopathic effect
- Another object of the present invention is to provide a pharmaceutical composition for inhibiting the proliferation of coronavirus, preventing and treating coronavirus infection.
- the present invention provides a sense strand comprising any one sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 61 and an anti-sense strand comprising a sequence complementary thereto strand) to induce a coronavirus-specific RNAi comprising a double-stranded oligonucleotide.
- the present invention also provides a composition for inhibiting the proliferation of coronavirus comprising the double-stranded oligonucleotide.
- the present invention also provides a pharmaceutical composition for preventing and/or treating a coronavirus infection comprising the double-stranded oligonucleotide.
- the double-stranded oligonucleotide of the present invention can effectively inhibit virus infection and proliferation by inducing RNA interference specifically to coronaviruses, particularly SARS-CoV, SARS-CoV-2, and mutants thereof, while focusing on a conserved sequence Because it is targeted to , it is hardly affected by virus mutation Therefore, the double-stranded oligonucleotide of the present invention can be usefully used for inhibiting the proliferation of coronavirus, preventing infection, and treating infectious diseases, and in particular, it can be usefully used as a preventive and therapeutic agent for the COVID-19 pandemic.
- Figure 2 is the result of observing the effect of the secondary cell lesion on the 21 types of the primary designed siRNA.
- Figure 3 is the result of observing the effect of the 3rd day cell lesion on the 21 types of primarily designed siRNA.
- 5A and 5B are results of plaque analysis for 40 types of secondary designed siRNA.
- Figure 10 shows the results of the virus inhibition efficacy test for each concentration for the siRNA of SEQ ID NO: 14 according to Example 7 of the present invention.
- FIG. 11 is an animal test result for verifying the virus proliferation inhibitory efficacy for the siRNA of SEQ ID NO: 14 according to Example 8 of the present invention. According to whether or not the siRNA SEQ ID NO: 14 is treated using qRT-PCR and the degree of the Syrian hamster Results showing the number of viral RNA copies from the lungs.
- FIG. 12 is a graph showing changes in body temperature of rhesus monkeys as an animal test result for verifying the virus proliferation inhibitory efficacy against the siRNA of SEQ ID NO: 14 according to Example 8 of the present invention.
- FIG. 13 is an animal test result for verifying the virus proliferation inhibitory efficacy against the siRNA of SEQ ID NO: 14 according to Example 8 of the present invention.
- Rhesus monkey according to whether and to the extent of treatment with siRNA SEQ ID NO: 14 using qRT-PCR This is the result showing the number of viral RNA copies from the bronchi of
- coronavirus is easily transmitted by droplet or direct/indirect contact, and there is no treatment or vaccine that has been clearly proven to be effective despite its high infectivity, such as transmission of the virus through some asymptomatic individuals. Due to the absence of therapeutic agents and vaccines, in practice, self-isolation, wearing a mask, and further, in some countries, efforts are being made to prevent through house arrest, and the economic and social damage caused by this is very large. Currently, only supportive treatment that depends on the patient's immune ability and potential treatment using existing drugs that have not proven efficacy against coronavirus are being conducted for confirmed patients.
- RNA as the main genetic material.
- a target RNA is selected based on the entire gene sequence of the SARS-CoV-2 virus and exhibits an RNA interference effect specifically on the target RNA.
- siRNA was designed. In the first design, 21 target RNAs were selected for the leader sequence, RNA-dependent RNA polymerase (RdRp), Spike (S) protein, and Nucleocapsid (N) protein. 21 siRNAs that specifically induce interference with each target RNA were designed to exhibit RNA interference effects on coronaviruses other than SARS-CoV-2.
- siRNAs in order to design a more specific and effective siRNA for SARS-CoV-2 and SARS-CoV-2 mutant viruses, pp1ab, S, N, Envelope (E), Membrane (M) proteins Forty target RNAs were selected as targets, and 40 siRNAs that specifically induce RNA interference with each target RNA were designed based on the SARS-CoV-2 virus, based on a conserved sequence that did not undergo mutation. .
- three methods of cytopathic effect observation, plaque analysis, and real-time PCR were performed based on the 61 siRNAs designed above to inhibit the siRNA's ability to inhibit virus infection, virus replication and proliferation. was verified.
- the present invention provides a sense strand including any one sequence selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 61 and an anti-sense strand including a complementary sequence thereto ) to a double-stranded oligonucleotide that induces coronavirus-specific RNAi comprising
- uracil (U) when the nucleic acid of the double-stranded oligonucleotide is RNA, uracil (U) may be substituted with thymine (T) in the nucleotide sequences of SEQ ID NOs: 1 to 122.
- an siRNA comprising a sense strand in which thymine is substituted with uracil in the sequences of SEQ ID NOs: 1 to 61 and an antisense strand complementary thereto was designed.
- the target RNA sequences of SEQ ID NO: 1 to SEQ ID NO: 21 were selected based on the conserved sequences of SARS-CoV and SARS-CoV-2, and SEQ ID NO: Target RNA sequences of 22 to SEQ ID NO: 61 were selected.
- the term 'antisense strand' refers to a single-stranded portion of the double-strand whose sequence is determined for the purpose of inhibiting a target. It refers to a polynucleotide having a nucleic acid sequence that is substantially or 100% complementary to a target gene mRNA of interest and serves to guide the recognition, and may be used interchangeably with a “guide strand”. For example, it may be fully or partially complementary to a nucleic acid sequence such as siRNA, shRNA, DsiRNA, lsiRNA, ss-siRNA, piRNA, endo-siRNA or asiRNA.
- the term 'sense strand' refers to a double-stranded structure with the antisense strand among the above double strands, and serves as a carrier to help the antisense strand bind to the agonist protein, and substantially or 100% of the target nucleic acid
- a polynucleotide having the same nucleic acid sequence it may be used interchangeably with "passenger strand".
- siRNA, shRNA, DsiRNA, lsiRNA, ss-siRNA, piRNA, endo-siRNA, or a nucleic acid sequence such as asiRNA may be the same in whole or in part.
- the double-stranded oligonucleotide may be understood to be included as long as it is a double-stranded nucleotide that induces an RNA interference effect, for example, siRNA, shRNA, DsiRNA, lsiRNA, ss-siRNA, piRNA, endo -siRNA or asiRNA, wherein the guide strand composed of an antisense oligonucleotide and a carrier strand, which is a complementary sense oligonucleotide, are hybridized in a double-stranded form, or a guide strand sequence and a carrier strand sequence are It may be a single RNA strand of a stem-loop structure connected by a loop, shRNA (short hairpin RNA), but it may vary depending on the type of nucleic acid, and thus is not limited thereto.
- RNA interference effect for example, siRNA, shRNA, DsiRNA, lsiRNA, ss-siRNA, piRNA, endo
- the siRNA is not limited to a complete pairing of double-stranded RNA portions that are paired with each other, and may have a hairpin structure forming a stem-loop structure, which is specifically referred to as shRNA (short hairpin RNA). refers to
- shRNA short hairpin RNA
- the double chain or stem region may include a portion that does not form a pair due to mismatch (corresponding bases are not complementary), bulge (there is no base corresponding to one chain), and the like.
- the total length is 10 to 80 bases, preferably 15 to 60 bases, more preferably 19 to 40 bases.
- the loop region has no particular meaning in the sequence, and it is possible only if there are about 3 to 10 bases in order to connect the sense oligonucleotide and the antisense oligonucleotide at an appropriate interval.
- the siRNA end structure can have either a blunt end or a cohesive end.
- the adhesive end structure can have both a 3' end protruding structure and a 5' end protruding structure, and the number of protruding bases is not limited.
- the number of bases may be 1 to 8 bases, preferably 2 to 6 bases, but most preferably, the feature of the cleaved form by the Dicer protein is a 2 base overhang.
- hybridization refers to hybridization between the sequence of the nucleic acid fragment and a partial fragment included in the sense or antisense strand of the double-stranded oligonucleotide, and hybridization generally refers to GC and AT (U ) means by Watson-Crick base pairing such as hydrogen bonding between the two, but is not limited thereto.
- the "complementarily binding” means that the sense and antisense strands are bound to the extent that annealing is possible, and about 70 to 80% or more of the corresponding bases of each strand, preferably about 80 to 90% or more, more preferably about 90 to 95% or more, and even more preferably about 95 to 99% or more, means that the sequences are complementary to each other or completely complementary to each other.
- the nucleic acid has two nucleotide overhangs at the 3' end, or mismatch base pairing with the RNA of the target gene due to substitution. Or it may further include the creation of a bulge due to insertion.
- the term 'bulge' refers to a portion of a double-stranded nucleic acid where pairing is not made due to the introduction of one or more nucleotides and is spread out. base pairing) is not possible.
- an siRNA comprising a sense strand in which thymine is substituted with uracil in the sequences of SEQ ID NOs: 1 to 61 and an antisense strand complementary thereto was designed.
- the target RNA sequences of SEQ ID NO: 1 to SEQ ID NO: 21 were selected based on the conserved sequences of SARS-CoV and SARS-CoV-2, and SEQ ID NO: Target RNA sequences of 22 to SEQ ID NO: 61 were selected.
- siRNAs having a 2nt overhang in which dTdT is bound to the 3'-end of the sense and antisense sequences were prepared, and in other examples, various analyzes such as cell lesion effect analysis, plaque analysis, and real-time PCR were performed. Through this, it was confirmed that the siRNA had an inhibitory effect on the infection and proliferation of coronavirus.
- the sense strand may include a sequence selected from the group consisting of SEQ ID NOs: 1 to 61, preferably SEQ ID NOs: 1, 5, 9, 10, 14, 16, 26, 29, It may include a sequence selected from the group consisting of 36, and 61, and more preferably, SEQ ID NO: 1, 9, 14, 26, 29, 36, or 61 may be characterized.
- the corona virus is preferably SARS-CoV or SARS-CoV-2, but if it is a coronavirus in which the same target RNA sequence is conserved, the RNA interference effect can be obtained using the double-stranded oligonucleotide of the present invention without limitation. It will be apparent that inducing the virus can exhibit the effect of inhibiting infection or proliferation of the virus through this.
- the corona virus is a coronavirus other than SARS-CoV-2 (eg, SARS-CoV)
- SEQ ID NO: 1-21 More preferably, it may be selected from the group consisting of SEQ ID NOs: 1, 2, 5, 8, 9, 10, 11, 12, 13, and 14 using a conserved sequence as a target RNA, but is not limited thereto.
- the corona virus is a coronavirus other than SARS-CoV-2 (eg, SARS-CoV)
- the antisense strand is preferably selected from the group consisting of SEQ ID NOs: 62, to 82, , More preferably, it may be selected from the group consisting of SEQ ID NOs: 62, 63, 66, 69, 70, 71, 72, 73, 74, and 75 using a conserved sequence as a target RNA, but is not limited thereto.
- the present invention may be characterized in that one to three, most preferably two, deoxythymidine (dT) are bound to the 3'-end of the sense and/or antisense strand.
- dT deoxythymidine
- siRNA Despite siRNA's excellent effect and wide range of uses, for siRNA to be developed as a therapeutic agent, siRNA must be effectively delivered to target cells by improving the stability of siRNA in the body and improving cell delivery efficiency (FY Xie, Drug Discov. Today. 2006 Jan; 11(1-2):67-73).
- some nucleotides or backbone of siRNA are modified to have nuclease resistance or a viral vector, Research on this is being actively attempted, such as using a carrier such as liposomes or nanoparticles.
- the -OH group at the 2' carbon position of the sugar structure in one or more nucleotides is -CH 3 (methyl), -OCH 3 (methoxy), - NH 2 , -F (fluorine), -O-2-methoxyethyl -O-propyl (propyl), -O-2-methylthioethyl, -O-3-aminopropyl, -O-3- substituted with dimethylaminopropyl; replacement of oxygen in the nucleotide structure with sulfur;
- One or more modifications selected from the group consisting of phosphorothioate, phosphorodithioate, boranophosphate, or methyl phosphonate modification of the phosphate bond of the nucleotide may be used in combination.
- PNA peptide nucleic acid
- LNA locked nucleic acid
- UPA unlocked nucleic acid
- siRNA passenger (sense) strand it is possible to induce high efficiency in vivo by linking chemicals to the end portion of the siRNA passenger (sense) strand to have enhanced pharmacokinetics characteristics. is known (J Soutschek, Nature 11; 432(7014):173-8, 2004).
- the stability of the siRNA varies depending on the nature of the chemical substance bound to the end of the siRNA sense (passenger) and/or antisense (guide) strand.
- siRNA conjugated with a high molecular compound such as polyethylene glycol (PEG) interacts with the anionic phosphate group of siRNA in the presence of a cationic material to form a complex, resulting in improved siRNA stability.
- PEG polyethylene glycol
- micelles composed of polymer complexes are extremely small in size compared to other systems used as drug delivery vehicles, such as microspheres or nanoparticles, but their distribution is very uniform and spontaneously formed. It has the advantage of being easy to control the quality of the formulation and secure the reproducibility.
- modifications to improve the properties of the double-stranded oligonucleotide may be included, and preferably, one or more chemical modifications and/or conjugation of polyethylene glycol (PEG) ( PEGylation).
- PEG polyethylene glycol
- the chemical modification is the -OH group at the 2' carbon position of the sugar structure in one or more nucleotides of the sense strand and/or the antisense strand -CH 3 (methyl), -OCH 3 (methoxy), -NH 2 , -F (fluorine), -O-2-methoxyethyl -O-propyl (propyl), -O-2-methylthioethyl, -O-3-aminopropyl, -O-3-dimethylaminopropyl replaced by; replacement of oxygen in the nucleotide structure with sulfur; the phosphate bond of the nucleotide is modified with phosphorothioate, phosphorodithioate, boranophosphate, or methyl phosphonate; and substitution with peptide nucleic acid (PNA), locked nucleic acid (LNA), or unlocked nucleic acid (UNA); may be one or more modifications selected from the group consisting of.
- PNA peptide nu
- a phosphate group at the end of at least one of the sense strand and the antisense strand, a lipophilic compound, a hydrophilic compound, and a cell-penetrating peptide selected from the group consisting of It may be characterized in that any one or more of them are combined.
- the hydrophilic compound may be polyethylene glycol (polyethylene glycol, PEG) or hexaethylene glycol (Hexaethylenglycol, HEG), and most preferably, polyethylene glycol, but is not limited thereto.
- a hydrophilic material eg, polyethylene glycol, PEG
- PEG polyethylene glycol
- a technique for securing siRNA stability and improving efficient cell membrane permeability through the siRNA conjugate is described in detail in Korean Patent No. 883471, and Korean Patent No. 1224828 discloses a more advanced method, SAMiRNA TM (selfassembledmicelleinhibitoryRNA) method. is starting
- the PEG is a synthetic polymer and is often used for increasing the solubility of pharmaceuticals, particularly proteins, and controlling pharmacokinetics.
- PEG is a polydisperse material, and one batch of polymer is composed of the sum of different numbers of monomers, so the molecular weight is in the form of a Gaussian curve, and the polydisperse value (Mw/Mn) is It expresses the degree of homogeneity of a substance. That is, when PEG has a low molecular weight (3 to 5 kDa), it exhibits a polydispersity index of about 1.01, and when it has a high molecular weight (20 kDa), it exhibits a high polydispersity index of about 1.2. looks like
- siRNA designed through various analyzes had excellent ability to inhibit the infection and proliferation of coronavirus.
- the present invention relates to a composition for inhibiting the proliferation of coronavirus comprising a double-stranded oligonucleotide comprising the double-stranded oligonucleotide.
- the present invention relates to a pharmaceutical composition for preventing or treating coronavirus infection comprising the double-stranded oligonucleotide.
- the composition for inhibiting the proliferation of coronavirus and the pharmaceutical composition for preventing or treating coronavirus infection may include one or more double-stranded oligonucleotides of the present invention, preferably, SEQ ID NOs: 62, 70, 75 , 87, 90, 97, and 122 may be characterized as comprising any one or more selected from the group of double-stranded oligonucleotides having an antisense strand comprising a sequence selected from the group consisting of.
- the coronavirus is preferably SARS-CoV, SARS-CoV-2 or a mutant thereof, but is not limited thereto, and the double-stranded oligonucleotide of the present invention has an RNA as its genetic information. If it is a coronavirus, it can be used to inhibit its proliferation, or to prevent or treat infections.
- the coronavirus infection may be, for example, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), or coronavirus infection-19 (COVID-19), but is not limited thereto.
- SARS severe acute respiratory syndrome
- MERS Middle East respiratory syndrome
- COVID-19 coronavirus infection-19
- the pharmaceutical composition may be prepared by including one or more pharmaceutically acceptable excipients in addition to the double-stranded oligonucleotide as an active ingredient.
- Pharmaceutically acceptable excipients must be compatible with the active ingredient of the present invention, and include saline, sterile water, Ringer's solution, buffered saline, dextrose solution, maltodextrin solution, glycerol, ethanol, and one or two or more of these components. They can be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostats can be added as needed.
- diluents, dispersants, surfactants, binders and lubricants may be additionally added to form an injectable formulation such as an aqueous solution, suspension, emulsion, and the like.
- an injectable formulation such as an aqueous solution, suspension, emulsion, and the like.
- a method commonly known in the art to which the present invention pertains may be used, and a stabilizer for freeze-drying may be added.
- inhalation formulations can be prepared in various forms such as dry powder, liquid, and aerosol, and dry powder inhalers (DPIs), nebulizers, and metered dose inhalers. It can be administered using a metered-dose inhaler (MDI) or a spacer.
- MDI metered-dose inhaler
- the method of administering the pharmaceutical composition may be determined by a person skilled in the art based on the symptoms and severity of the disease of a typical coronavirus-infected patient.
- it may be formulated in various forms such as powders, tablets, capsules, liquids, injections, ointments, syrups, etc., and may be provided in unit-dose or multi-dose containers, such as sealed ampoules and bottles. .
- the pharmaceutical composition of the present invention can be administered orally or parenterally.
- the route of administration of the composition according to the present invention is not limited thereto, but for example, intra-respiratory, intravenous, subcutaneous, intramuscular, intra-arterial, intramedullary, intrathecal, intracardiac, transdermal, intraperitoneal, intestinal, Sublingual, oral or topical administration is possible.
- the dosage of the composition according to the present invention varies according to the patient's weight, age, sex, health status, diet, administration time, method, excretion rate, or severity of disease, etc. can decide
- the composition of the present invention may be formulated into a suitable dosage form for clinical administration using known techniques.
- the present invention also provides a method for preventing or treating a coronavirus infection comprising administering the pharmaceutical composition according to the present invention as described above.
- Example 1 Target RNA selection and siRNA design for SARS-associated coronavirus
- siRNAs targeting SARS-associated coronaviruses SARS-associated coronaviruses (SARS-CoV and SARS-COV-2).
- SARS-CoV and SARS-COV-2 SARS-associated coronaviruses
- the entire gene sequence of SNU-MT039890 was obtained through NCBI.
- RNA of leader sequence, RNA-dependent RNA polymerase (RdRp), Spike (S) protein, and Nucleocapsid (N) protein were selected as targets, and siDirect (http://sidirect2.rnai. jp/) tool to obtain siRNA candidates.
- siRNA candidates sequences conserved in SARS-CoV were preferentially selected through siVirus (http://sivirus.rnai.jp/) so that they could be used as therapeutic agents for other CoV-related infectious diseases that may occur later. .
- siRNApred http://crdd.osdd.net/servers/virsirnapred/) tool. This program creates an algorithm based on 1,700 experimentally verified siRNAs for HIV, HBV, HCV, influenza, and SARS and predicts the inhibition efficiency for each siRNA sequence, so more effective siRNAs can be obtained.
- the secondary siRNA was designed to be 70 or more and 200 or less human gene off-target sites.
- siRNA targeting a conserved sequence that has not been mutated from among the COVID-19 variants (as of 20.03.27) reported through Kobic is selected first.
- the 40 designed secondary siRNAs are shown in Table 2 below.
- siRNA stability and binding efficiency were improved, and the total length including overhang was 21 mer.
- Example 2 Verification of siRNA efficacy through observation of cytopathic effect (CPE)
- Vero E6 cells are cells capable of confirming the cytopathic effect caused by apoptosis after SARS-CoV infection.
- vero E6 cells were inoculated in a 24-well plate with 1 ml each through 10% FBS DMEM w/o pen-strep medium to become 60-80% confluent in a 24-well plate.
- 2 ⁇ l of 100 pmol siRNA duplex and 3 ⁇ l of Lipofectamine RNAiMAX were diluted in 50 ⁇ l of Opti-MEM (Thermofisher scientific, MA, USA), respectively, and the two solutions were mixed and reacted at room temperature (RT) for 5 minutes. 50 ⁇ l of each siRNA-lipid complex was dispensed into each well so that the final siRNA concentration was 100 pmol. After incubation at 37 ° C.
- siRNAs 1 COVID-19-LS1), 9 (COVID-19-RdRp2) and 14 (COVID-19-RdRp7) had the least cytopathic effect, and normal cells Recovery was observed, confirming that the three primary siRNAs were the most effective.
- Plaque assay was performed through 21 primary siRNAs to confirm how effectively siRNAs inhibit virus infection.
- overlay media mixed with 1 ml PBS, 31.5 ml 2 ⁇ MEM, and 17.5 ml Oxoid Agar was heated and then dispensed 2 ml/well at 37 °C 5% CO 2 condition. Incubated for 3 days. After 3 days, 1.5 ml/well of 4% formaldehyde (w/methanol) was dispensed, followed by O/N incubation to inactivate the virus. After staining with crystal violet for 1 hour, plaques were observed.
- siRNAs 26 EI_105
- 29 EI_108
- RdRp replicase polyprotein 1a
- 61 siRNA targeting the N protein It was confirmed that plaque formation was most inhibited in the plate treated with (EI_908).
- siRNA 14 was confirmed to have the best antiviral effect.
- Example 4 Verification of the virus replication inhibition efficacy of siRNA through Real-Time PCR
- RNA extraction was performed from 140 ⁇ l of the supernatant of SARS-CoV-2. Viral RNA was extracted.
- QIAamp Viral RNA mini kit was used, and 560 ⁇ l of AVL buffer was added to 140 ⁇ l of supernatant, followed by voltexing for 25 seconds. After incubation at room temperature for 10 minutes, 560 ⁇ l of 100% EtOH was added and voltexed for 15 seconds. The liquid was placed in a mini column and centrifuged at 6000xg for 1 minute, and then the solution from the collection tube was removed.
- 500 ⁇ l AW1 buffer was added to each column and centrifuged at 6000xg for 1 minute. The solution from the collection tube was discarded, 500 ⁇ l AW2 buffer was added, and centrifugation was performed at full speed for 3 minutes. After the column was transferred to a 1.5 ml EP tube, 60 ⁇ l AVE buffer was added, incubated at room temperature for 1 minute, and centrifuged at 6000xg for 1 minute to obtain viral RNA. After cDNA was synthesized using random primers, qRT PCR was performed.
- RT-PCR was performed targeting E and RdRp genes using PowerChek 2019-nCoV Real-time PCR kit (Kogene, Korea), and RT-PCR was performed through QuantStudio 6 Flex (version 1.1). PCR conditions were initial denaturation (denaturation) at 95 °C for 10 minutes, followed by annealing and amplification at 95 °C for 15 seconds and 60 °C for 1 minute 40 times. For product detection, Ct values were quantified and compared through FAM, which is a fluorescent material.
- siRNAs A total of 7 most effective siRNAs were selected through CPE, plaque assay, and RT-PCR, and one RdRp in the leader sequence, two in three pp1a, and one siRNA in the N protein were finally selected.
- the final selected siRNA is shown in Table 4 below.
- Example 7 Inhibitory efficacy test for each concentration of siRNA 14
- Antiviral efficacy tests were conducted for each concentration of siRNA 14, which was the most effective through CPE, plaque assay, and RT-PCR. As shown in FIG. 10 , the cytopathic effect was measured by treating cells with siRNA 14 at different concentrations (5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 nM). , on the second day of cell infection, the EC50 value was 9.709 nM, which was more than the effect of remdesivir and chloroquine in effectively inhibiting the novel coronavirus recently announced by TheWuhan Institute of Virology (WIV) under the Chinese Academy of Sciences. It represents an excellent figure.
- siRNA No. 14 which is the most effective in intracellular experiments.
- an animal experiment was performed.
- Syrian hamsters and primates (rhesus monkeys) were used as experimental animal models. Details regarding animal experiments are shown in Table 5 below.
- each group of Syrian hamsters was inoculated with 4-40,000 PFU SARS-CoV-2 by intranasal route, and the control hamsters not treated with siRNA showed slouched posture, wrinkled hair, and mild coughing symptoms. However, clinical signs of coronavirus such as cough were not observed in the G2 and G3 groups treated with siRNA 14.
- siRNA SEQ ID NO: 14 was treated and observed at a dose of 2 mg/kg in the G2 group and 4 mg/kg in the G3 group.
- Sequence information of SEQ ID NOs: 1 to 122 is submitted in a separate file format.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Virology (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
본 발명은 코로나바이러스 특이적 이중가닥 올리고뉴클레오티드 및 이의 용도에 관한 것으로, 코로나바이러스, 특히 SARS-CoV, SARS-CoV-2 및 이의 돌연변이체에 특이적으로 RNA 간섭을 유도하여 바이러스의 감염 및 증식을 효과적으로 억제할 수 있으면서도, 보존서열을 중심으로 표적하므로 바이러스의 변이에 영향을 거의 받지 않는다. 따라서, 본 발명의 이중 가닥 올리고뉴클레오티드는 코로나바이러스의 증식억제, 감염 예방 및 감염증의 치료에 유용하게 사용될 수 있으며, 특히, 대유행 중인 COVID-19의 예방 및 치료제로 유용하게 사용될 수 있다.
Description
본 발명은 코로나바이러스 특이적 이중가닥 올리고뉴클레오티드 및 이의 용도에 관한 것으로, 보다 구체적으로는 SARS-CoV-2에 특이적으로 RNA 간섭을 유도하는 신규한 이중가닥 올리고뉴클레오티드, 상기 이중가닥 올리고뉴클레오티드를 포함하는 코로나바이러스 증식 억제 및/또는 코로나바이러스감염증-19(COVID-19) 예방 및 치료용 조성물에 관한 것이다.
코로나바이러스(coronavirus)는 RNA 바이러스의 한 종류로 유전정보가 리보핵산(RNA)으로 이뤄진 바이러스이다. 사람과 동물의 호흡기와 소화기계 감염을 유발한다. 주로, 점막전염, 비말전파 등으로 쉽게 감염되며, 사람은 일반적으로 경미한 호흡기 감염을 일으키지만 드물게 치명적인 감염을 일으키기도 한다. 중증급성호흡기증후군(SARS)은 2003년 4월 중국으로부터 유행하여, 사망률 9.6%를 기록하며 많은 사람이 사망했고, 2015년에는 중동호흡기증후군(MERS)는 중동으로부터 유행하여 전 세계로 퍼지면서 약 36%의 높은 사망률을 나타내었고, 2019년 12월 중국으로부터 유행한 코로나바이러스감염증-19 (SARS-CoV-2)는 팬데믹 선언 이후, 아직까지 진행 중이다.
중증급성호흡기증후군-코로나바이러스-2(SARS-CoV-2)는 중국에서 처음 출현하여 전 세계로 빠르게 확산되었으며 WHO는 해당 바이러스에 감염된 질환을 COVID-19로 명명하였다. 최근 보고에 따르면, 일반적인 증상으로 발열(98.6%), 피로감(69.6%), 마른 기침(59.4%), 림프구감소증(70.3%), 프로트롬빈 시간의 연장(58%), 및 젖산 탈수소효소의 증진(39.9%)이 있다(Wang, D., et al., JAMA, 2020). 상기 SARS-CoV-2는 기침과 재채기로 생성된 호흡기 비말을 통한 사람과 사람의 접촉 또는 기침 또는 재채기를 하는 사람들에 의해 오염된 물체 표면을 통해 주로 전염되는 것으로 보고되었고(CDC, C.f.d.c.a.p., How COVID-19 Spreads. Coronavirus Disease 2019 (COVID-19), 2020), 심지어 무증상 감염이 가능한 것으로 보고된 바 있다(Yu, P., et al., J Infect Dis, 2020; Hoehl, S., et al., N Engl J Med, 2020; Bendix, A., Science alert, 2020).
SARS-CoV-2의 사례가 전 세계적으로 급증하면서, WHO는 2020년 1월 30일 '국제적 공중보건 비상사태'(PHEIC)를 선포했으며, 코로나바이러스 감염 확진자가 전 세계에서 속출하자 WHO는 3월 11일 홍콩독감(1968), 신종플루(2009)에 이어 사상 세 번째로 코로나19에 대해 팬데믹(세계적 대유행)을 선포했다. 2021년 5월 12일을 기준으로 전 세계적으로 약 1억 5천만명 이상의 환자가 발생하고, 약 3백 3십만명 이상이 사망했으며, 매일 수 만명의 확진환자가 추가되어, 지속적으로 감염환자가 증가하는 추세에 있다. 한국에서도, 약 128,918명의 환자가 확진되었으며, 1,884명의 사망자가 보고되었다(COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU), 한국질병관리청 통계자료 참고).
이러한 세계적 대유행 및 심각성에도 불구하고, 현재 다른 바이러스(독감, 에볼라 바이러스 등)를 대상으로 하는 항바이러스제 치료, 항생제 치료(antibiotics therapy), 대증 요법(symptomatic treatment), 및 지지 치료(supportive therapy) 등을 병용하여 치료하는 포괄 치료(comprehensive treatment)로 대처한다(National Library of Medicine. Clinical Features of Suspected and Confirmed Patients of 2019 Novel Coronavirus Infection). 상기한 것과 같은 포괄치료는 코로나바이러스에 특이성이 입증되지 않은 제제를 사용한 잠재적 치료방법에 불과하기 때문에, 환자의 특징, 면역력 및 상태에 크게 의존하여 각 환자마다 그 임상적 효과가 매우 상이하고, 특히 기저질환을 앓고 있는 환자 또는 어린아이와 노인을 포함하는 면역력이 약한 노약자들에 대한 치료효과가 적어, COVID-19에 특이적인 치료효과가 임상적으로 입증된 치료제의 개발이 필요하다.
현재 다른 바이러스 감염증 치료제로 승인된 항바이러스제에 기반한 COVID-19 치료제 연구가 진행 중이며 구체적으로, 인디나비르(indinavir), 사퀴나비르(saquinavir), 로피나비르/리토나비르(lopinavir/ritonavir)와 같은 항레트로바이러스(Antiretroviral) 인간면역결핍 I 단백질분해효소(HIV-1 protease) 억제제, 렘데시비르와 같은 RNA 중합효소 억제제(polymerase inhibitor), 라싸열과 에볼라 출혈열 대항 조사 중인 신약 트리아자비린(triazavirin), 항바이러스 단백질인 베타인터페론(en:interferon beta), 이전에 식별된 단일클론항체(Monoclonal antibody) 등이 COVID-19에 대한 치료제 후보 물질로 연구 또는 임상시험 중에 있으나, 현재 COVID-19의 치료제로 최종 승인이 완료된 치료제는 없다(Paules, Catharine I., Marston, Hilary D., Fauci, Anthony S. (2020.01.23)., Coronavirus Infections―More Than Just the Common Cold; “Ural scientists have proposed testing the drug against coronavirus. Ural Federal University, 23/1/2020”등).
한편, RNA 간섭(RNA interference, RNAi)은 microRNA(miRNA)와 small interfering RNA(siRNA)와 같은 작은 RNA 분자(small RNA molecules)에 의해 그에 대응하는 mRNA가 특이적으로 분해되어 유전자의 발현이 억제되는 현상을 의미한다. RNAi는 유전자 발현을 억제하기 위해 사용되는 방법으로 간편하면서 적은 비용으로 유전자 억제 효과를 뚜렷하게 볼 수 있기 때문에 그 기술의 응용 분야가 다양해지고 있다.
이러한 RNA 간섭을 유도하는 대표적인 핵산으로는 약 21개 정도의 RNA 이중가닥으로, 전형적으로는 19개의 이중나선 구조와 3' 말단의 2개의 돌출부(overhang)로 구성된 siRNA(small interfering RNA)가 있다. 이때의 2개의 돌출부의 핵산은 주로 디옥시티미딘(deoxythymidine)을 사용한다. 또한 이외에도 마이크로RNA의 전구체인 헤어핀 구조로 만드는 shRNA(short hairpin RNA)도 RNA간섭 유도체로 널리 사용되고 있다. 이외에도, 최근에는 이러한 RNA간섭 현상을 활용하여, 특히 세포 내의 유전자가 아닌 외부에서의 유입된 유전자인 바이러스 유전자를 선택적으로 침묵시키기 위한 용도로 활발히 연구되고 있으며, 이를 통해 바이러스 및 바이러스에 의해 유도되는 질병을 억제할 수 있다는 것이 증명되었다.
이러한 기술적 배경 하에서, 본 발명자들은 RNA에 간섭효과에 기반하여, 코로나바이러스의 유전물질인 RNA에 특이적인 간섭을 통해 코로나바이러스의 증식을 억제하고 감염증의 예방 및 치료효과를 나타내면서도, 바이러스의 변이에 영향을 거의 받지 않는 효과적인 이중가닥 올리고뉴클레오티드를 개발하기 위해 예의 노력한 결과, SARS-CoV-2의 Leader sequence, N 단백질, RNA 의존 RNA 중합효소(RdRP), S 단백질, E 단백질, M 단백질, pp1ab의 특정 RNA에 특이적으로 간섭하는 이중가닥 올리고뉴클레오티드를 동정해 내었으며, 상기 이중가닥 올리고뉴클레오티드가 코로나바이러스에 의한 세포병변효과(CPE; cytopathic effect)의 감소, 바이러스 감염 감소효과 및 바이러스 증식억제효과를 나타내는 것을 확인하였으며, 나아가 상기 이중가닥 올리고뉴클레오티드를 조합하여 사용하는 경우 더욱 뛰어난 바이러스 감염 감소 및 바이러스 증식 억제효과를 나타내는 것을 확인하고 본 발명을 완성하였다.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.
본 발명의 목적은 코로나바이러스 RNA에 특이적이면서 매우 높은 효율로 그 발현을 저해할 수 있는 신규한 이중가닥 올리고뉴클레오티드 및 이를 포함하는 이중가닥 올리고뉴클레오티드를 제공하는 데 있다.
본 발명의 다른 목적은 코로나바이러스의 증식 억제, 코로나바이러스감염증의 예방 및 치료를 위한 약학 조성물을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 서열번호 1 내지 서열번호 61로 구성된 군에서 선택되는 어느 하나의 서열을 포함하는 센스 가닥(sense strand)과 이에 상보적인 서열을 포함하는 안티센스 가닥(anti-sense strand)을 포함하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드를 제공한다.
본 발명은 또한, 상기 이중가닥 올리고뉴클레오티드를 포함하는 코로나바이러스 증식 억제용 조성물을 제공한다.
본 발명은 또한, 상기 이중가닥 올리고뉴클레오티드를 포함하는 코로나바이러스감염증의 예방 및/또는 치료용 약학 조성물을 제공한다.
본 발명의 이중가닥 올리고뉴클레오티드는 코로나바이러스, 특히 SARS-CoV, SARS-CoV-2 및 이의 돌연변이체에 특이적으로 RNA 간섭을 유도하여 바이러스의 감염 및 증식을 효과적으로 억제할 수 있으면서도, 보존서열을 중심으로 표적하므로 바이러스의 변이에 영향을 거의 받지 않는다. 따라서, 본 발명의 이중 가닥 올리고뉴클레오티드는 코로나바이러스의 증식 억제, 감염 예방 및 감염증의 치료에 유용하게 사용될 수 있으며, 특히, 대유행 중인 COVID-19의 예방 및 치료제로 유용하게 사용될 수 있다.
도 1은 1차 디자인된 siRNA 21종에 대한 1일차 세포병변효과를 관찰한 결과이다.
도 2는 1차 디자인된 siRNA 21종에 대한 2일차 세포병변효과를 관찰한 결과이다.
도 3은 1차 디자인된 siRNA 21종에 대한 3일차 세포병변효과를 관찰한 결과이다.
도 4는 1차 디자인된 siRNA 21종에 대한 플라크 분석 결과이다.
도 5a 및 5b는 2차 디자인된 siRNA 40종에 대한 플라크 분석 결과이다.
도 6은 1차 디자인된 siRNA 중 플라크가 거의 관찰되지 않았던 1번, 9번 및 14번 siRNA의 세포병변효과 및 플라크 분석을 수행한 결과를 나타낸 것이다.
도 7은 코로나바이러스의 E 단백질 RNA를 타겟으로한 real-time PCR 분석 결과이다.
도 8은 코로나바이러스의 RdRp RNA를 타겟으로한 real-time PCR 분석 결과이다.
도 9은 효과가 가장 좋은 3종(1번, 9번 및 14번)의 siRNA의 조합에 대한 플라크 분석결과이다.
도 10은 본 발명의 실시예 7에 따른 서열번호 14의 siRNA에 대한 농도별 바이러스 억제효능 시험 결과를 나타낸 것이다.
도 11은 본 발명의 실시예 8에 따른 서열번호 14의 siRNA에 대한 바이러스 증식 억제 효능 검증을 위한 동물 시험 결과로서, qRT-PCR을 이용하여 siRNA 서열번호 14를 처리 여부 및 정도에 따라 시리아 햄스터의 폐로부터 나온 바이러스 RNA copies 수를 나타낸 결과이다.
도 12는 본 발명의 실시예 8에 따른 서열번호 14의 siRNA에 대한 바이러스 증식 억제 효능 검증을 위한 동물 시험 결과로서, 붉은 털 원숭이의 체온 변화를 나타낸 그래프이다.
도 13은 본 발명의 실시예 8에 따른 서열번호 14의 siRNA에 대한 바이러스 증식 억제 효능 검증을 위한 동물 시험 결과로서, qRT-PCR을 이용하여 siRNA 서열번호 14를 처리 여부 및 정도에 따라 붉은 털 원숭이의 기관지로부터 나온 바이러스 RNA copies 수를 나타낸 결과이다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
현재 코로나바이러스 중 하나인 SARS-CoV-2 바이러스에 의한 COVID-19가 전세계적으로 대유행 중에 있으며, 매일 수만명의 확진자 및 수천명의 사망자가 발생하고 있다. 코로나바이러스는 비말 또는 직/간접 접촉에 의해 쉽게 감염되며, 일부 무증상자를 통해 바이러스가 전파가 되는 등, 높은 감염성에도 불구하고 효과가 확실하게 입증된 치료제 또는 백신이 전무한 상황이다. 치료제 및 백신의 부재로 인해, 실제적으로는 자가격리, 마스크착용, 나아가 일부 국가에서는 가택연금을 통한 예방에 힘을 쓰고 있으며, 이로 인한 경제적 사회적 피해가 매우 큰 실정이다. 현재 확진자들을 대상으로는 환자의 면역능력에 의존하는 지지치료와 코로나바이러스에 대한 효능이 입증되지 않은 기존의 약제를 이용한 잠재적 치료만이 진행되고 있다
본 발명자들은 이러한 상황에서 RNA를 주 유전물질로 하는 코로나바이러스 특이적인 RNA 간섭을 통해 바이러스의 감염 및 증식을 억제하는 신규한 이중가닥 올리고뉴클레오티드를 개발하고자 노력하였다.
본 발명의 일 실시예에서, 코로나바이러스를 표적으로 하는 siRNA를 디자인하기 위해, SARS-CoV-2 바이러스의 전체 유전자 서열을 기반으로 표적 RNA를 선별하고 상기 표적 RNA에 특이적으로 RNA 간섭효과를 나타내는 siRNA를 디자인하였다. 1차 디자인에서는 Leader sequence, RNA-dependent RNA polymerase(RdRp), Spike(S) 단백질, Nucleocapsid(N) 단백질을 대상으로 21개의 표적 RNA를 선별하였으며, SARS-CoV와의 보존서열을 중심으로 선별하고, 각각의 표적 RNA에 특이적으로 간섭을 유도하는 21개의 siRNA를 디자인하여 SARS-CoV-2 이외의 코로나바이러스에도 RNA 간섭효과를 나타낼 수 있도록 하였다.
본 발명의 다른 실시예에서, SARS-CoV-2 및 SARS-CoV-2의 변이체 바이러스에 보다 특이적이고 효과적인 siRNA를 디자인하기 위해, pp1ab, S, N, Envelope(E), Membrane(M) 단백질을 대상으로 40개의 표적 RNA를 선별하였으며, SARS-CoV-2 바이러스를 기준으로 변이가 일어나지 않은 보존서열을 중심으로 선별하고, 각각의 표적 RNA에 특이적으로 RNA 간섭을 유도하는 40개의 siRNA를 디자인하였다.
본 발명의 또 다른 실시예에서, 상기 디자인된 61개의 siRNA를 기반으로 세포병변효과관찰, 플라크분석 및 Real-Time PCR의 3가지 방법을 수행하여 상기 siRNA의 바이러스 감염, 바이러스 복제 및 증식에 대한 억제능을 검증하였다.
따라서, 본 발명은 일 관점에서, 서열번호 1 내지 서열번호 61로 구성된 군에서 선택되는 어느 하나의 서열을 포함하는 센스 가닥(sense strand)과 이에 상보적인 서열을 포함하는 안티센스 가닥(anti-sense strand)을 포함하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드에 관한 것이다.
본 발명에 있어서, 상기 이중가닥 올리고뉴클레오티드의 핵산이 RNA인 경우 서열번호 1 내지 서열번호 122의 뉴클레오티드 서열에서 우라실(U)은 티민(T)으로 치환될 수 있다.
본 발명의 일 실시예에서는 서열번호 1 내지 서열번호 61의 서열에서 티민이 우라실로 치환된 센스 가닥 및 이에 상보적인 안티센스 가닥을 포함하는 siRNA를 설계하였다. 구체적으로, SARS-CoV 및 SARS-CoV-2의 보존서열을 중심으로 서열번호 1 내지 서열번호 21의 표적 RNA 서열을 선별하였으며, SARS-CoV-2와 이의 변이체사이의 보존서열을 중심으로 서열번호 22 내지 서열번호 61의 표적 RNA 서열을 선별하였다.
본 발명의 용어 '안티센스 가닥(antisense strand)'이란 상기 이중가닥 중 표적을 저해할 용도로 서열이 정해진 단일가닥 부분으로, 실질적으로 아고너트(Argonaute) 단백질에 주로 결합하여, 아고너트 복합체가 표적 유전자를 인식하도록 가이드를 해주는 역할을 하며, 관심 있는 타겟 유전자 mRNA에 실질적으로 또는 100% 상보적인 핵산 서열을 갖는 폴리뉴클레오티드를 의미하며, "가이드 가닥(guide strand)"과 상호호환적으로 사용될 수 있다. 예를 들면, siRNA, shRNA, DsiRNA, lsiRNA, ss-siRNA, piRNA, endo-siRNA 또는 asiRNA 등의 핵산 서열과 전체 또는 일부 상보적일 수 있다. 용어 '센스 가닥(sense strand)'이란 상기의 이중가닥 중 안티센스 가닥과 이중가닥 구조를 이루어서, 안티센스 가닥이 아고너트 단백질과 결합할 수 있도록 도와주는 운반자 역할을 하며, 표적 핵산과 실질적으로 또는 100% 동일한 핵산 서열을 갖는 폴리뉴클레오티드로서, "운반자 가닥(passenger strand)"과 상호호환적으로 사용될 수 있다. 예를 들면, siRNA, shRNA, DsiRNA, lsiRNA, ss-siRNA, piRNA, endo-siRNA 또는 asiRNA 등의 핵산 서열과 전체 또는 일부 동일할 수 있다.
본 발명에 있어서, 상기 이중가닥 올리고뉴클레오티드는 RNA 간섭효과를 유도하는 이중가닥의 뉴클레오티드라면 이에 포함되는 것으로 이해될 수 있으며, 예를 들면, siRNA, shRNA, DsiRNA, lsiRNA, ss-siRNA, piRNA, endo-siRNA 또는 asiRNA일 수 있으며, 안티센스 올리고뉴클레오티드로 이루어진 가이드 가닥 및 이에 상보적인 센스 올리고뉴클레오티드인 운반자 가닥이 상보적으로 이중가닥으로 혼성화된 siRNA(small interfering RNA), 또는 가이드 가닥 서열과 운반자 가닥 서열이 루프에 의해 연결된 스템-루프 구조의 단일 RNA 가닥인 shRNA(short hairpin RNA)것일 수 있으나, 핵산의 형태에 따라 달라질 수 있으므로, 이에 제한되는 것은 아니다.
상기 siRNA는 RNA끼리 짝을 이루는 이중사슬 RNA 부분이 완전히 쌍을 이루는 것에 한정되지 않고, 스템-루프(stem-loop)의 구조를 이루는 헤어핀 구조를 가질 수 있는데, 이를 특히 shRNA(short hairpin RNA)라 지칭한다. 한편, 상기 이중사슬 또는 스템 부위는 미스매치(대응하는 염기가 상보적이지 않음), 벌지(일방의 사슬에 대응하는 염기가 없음) 등에 의하여 쌍을 이루지 않는 부분이 포함될 수도 있다. 전체 길이는 10 내지 80 염기, 바람직하게는 15 내지 60 염기, 더욱 바람직하게는 19 내지 40 염기이다. 또한, 상기 루프 영역은 서열에 특별한 의미가 없으며, 단지 센스 올리고뉴클레오티드와 안티센스 올리고뉴클레오티드를 적당한 간격으로 연결하기 위하여 3 ~ 10 정도의 염기가 있으면 가능하다. siRNA 말단 구조는 평활(blunt) 말단 또는 점착(cohesive) 말단 모두 가능하다. 점착 말단 구조는 3' 말단 돌출한 구조(protruding structure)와 5' 말단 쪽이 돌출한 구조가 모두 가능하고 돌출하는 염기 수는 한정되지 않는다. 예를 들어, 염기 수로는 1 내지 8 염기, 바람직하게는 2 내지 6 염기로 할 수 있으나, 가장 바람직하게는 다이서 단백질에 의해 잘린 형태의 특징이 2 염기 돌출(overhang)이다.
본 발명의 용어, "상보적으로 결합"이란 상기 핵산 단편의 서열과 이중가닥 올리고뉴클레오티드의 센스 또는 안티센스 가닥에 포함되는 일부 단편이 혼성화하여 결합하는 것을 의미하며, 일반적으로 혼성화는 G-C 및 A-T(U) 간의 수소결합과 같은 왓슨-크릭 배열(Watson-Crick base pairing)에 의한 것을 의미하나 이에 제한되는 것은 아니다. 상기 "상보적으로 결합"은 센스 및 안티센스 가닥이 어닐링(annealing)이 가능한 정도로 결합되어 있는 것을 의미하며, 각 가닥의 대응하는 염기들 중 약 70~80% 이상, 바람직하게는 약 80~90% 이상, 보다 바람직하게는 약 90~95% 이상, 보다 더 바람직하게는 약 95~99% 이상 서열이 서로 상보적이거나 완전히 상보적으로 혼성화 될 수 있음을 의미한다. 다만, 또한, 최적의 오프-타겟 저해 효과를 나타내도록 하기 위하여 상기 핵산은 3'말단에 2개의 뉴클레오티드 돌출부(overhang)를 갖거나, 치환으로 인한 표적 유전자의 RNA와의 불일치 염기배열(mismatch base pairing) 또는 삽입으로 인한 융기(bulge) 생성을 더 포함할 수 있다. 용어 '융기(bulge)'란 이중가닥의 핵산에 있어서 하나 이상의 뉴클레오티드의 도입으로 인하여 페어링(pairing)이 이루어지지 않고 벌어진 부분을 말하며, 불일치 염기배열이란 일반적으로 염기쌍 간에 왓슨-크릭 배열(Watson-Crick base pairing)이 되지 않는 경우를 의미한다.
본 발명의 일 실시예에서는 서열번호 1 내지 서열번호 61의 서열에서 티민이 우라실로 치환된 센스 가닥 및 이에 상보적인 안티센스 가닥을 포함하는 siRNA를 설계하였다. 구체적으로, SARS-CoV 및 SARS-CoV-2의 보존서열을 중심으로 서열번호 1 내지 서열번호 21의 표적 RNA 서열을 선별하였으며, SARS-CoV-2와 이의 변이체 사이의 보존서열을 중심으로 서열번호 22 내지 서열번호 61의 표적 RNA서열을 선별하였다. 상기 선별된 61개의 코로나바이러스 RNA를 표적으로 하는 siRNA의 안정성을 위해 센스 가닥(서열번호 1 내지 61) 및 안티센스 가닥(서열번호 62 내지 122)의 3'-말단에 2개의 deoxythymidine(dT)를 붙여주어, 센스 및 안티센스 서열의 3'-말단에 dTdT가 결합된 2nt overhang을 가지는 61개의 siRNA를 제작하였고, 다른 실시예에서, 세포병변효과분석, 플라크 분석, 및 real-time PCR과 같은 다양한 분석을 통해 상기 siRNA가 가지는 코로나바이러스의 감염 및 증식 억제효과를 확인하였다.
따라서, 본 발명에 있어서, 상기 센스 가닥은 서열번호 1 내지 61로 구성된 군에서 선택되는 서열을 포함할 수 있으며, 바람직하게는 서열번호 1, 5, 9, 10, 14, 16, 26, 29, 36, 및 61로 구성된 군에서 선택되는 서열을 포함할 수 있고, 더욱 바람직하게는 서열번호 1, 9, 14, 26, 29, 36, 또는 61인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 코로나 바이러스는 SARS-CoV 또는 SARS-CoV-2인 것이 바람직하나, 동일한 표적 RNA서열이 보존되어 있는 코로나바이러스라면 제한없이 본 발명의 이중가닥 올리고뉴클레오티드를 사용하여 RNA 간섭효과를 유도하고, 이를 통해 바이러스의 감염 억제 또는 증식 억제 효과를 나타낼 수 있음은 자명할 것이다.
본 발명에 있어서, 상기 코로나 바이러스가 SARS-CoV-2 외의 코로나바이러스(예를 들어, SARS-CoV)인 경우, 서열번호 상기 센스 가닥은 서열번호 1 내지 21로 구성된 군에서 선택되는 것이 바람직하며, 더욱 바람직하게는 보존서열을 표적 RNA로 하는 서열번호 1, 2, 5, 8, 9, 10, 11, 12, 13, 및 14로 구성된 군에서 선택될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 상기 코로나 바이러스가 SARS-CoV-2 외의 코로나바이러스(예를 들어, SARS-CoV)인 경우, 서열번호 상기 안티센스 가닥은 서열번호 62, 내지 82로 구성된 군에서 선택되는 것이 바람직하며, 더욱 바람직하게는 보존서열을 표적 RNA로하는 서열번호 62, 63, 66, 69, 70, 71, 72, 73, 74, 및 75로 구성된 군에서 선택될 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 있어서, 센스 및/또는 안티센스 가닥의 3'-말단에 1개 내지 3개, 가장 바람직하게는 2개의 deoxythymidine(dT)가 결합된 것을 특징으로 할 수 있다.
siRNA의 뛰어난 효과 및 다양한 사용범위에도 불구하고, siRNA가 치료제로 개발되기 위해서는 체내에서의 siRNA의 안정성(stability) 개선과 세포 전달 효율 개선을 통해 siRNA가 타겟 세포에 효과적으로 전달되어야 한다(FY Xie, Drug Discov. Today. 2006 Jan; 11(1-2):67-73). 체내 안정성 향상 및 siRNA의 비특이적인 세포 면역 반응(innate immune stimulation) 문제 해결을 위하여 siRNA의 일부 뉴클레오티드 또는 골격(backbone)을 핵산분해효소 저항성을 가지도록 변형(modification)하거나 바이러스성 벡터(viral vector), 리포좀 또는 나노입자(nanoparticle) 등의 전달체를 이용하는 등, 이에 대한 연구가 활발하게 시도되고 있다. 예를 들어, 상기 이중가닥 올리고뉴클레오티드를 구성하는 센스 가닥 또는 안티센스 가닥의 변형은 하나 이상의 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -CH3(메틸), -OCH3(methoxy), -NH2, -F(불소), -O-2-메톡시에틸 -O-프로필(propyl), -O-2-메틸티오에틸(methylthioethyl), -O-3-아미노프로필, -O-3-디메틸아미노프로필로 치환; 뉴클레오티드 내 당(sugar) 구조의 산소가 황으로 치환; 뉴클레오티드의 포스페이트 결합의 포스포로티오에이트(phosphorothioate), 포스포로디티오에이트(phosphorodithioate), 보라노포스페이트(boranophosphate), 또는 메틸포스포네이트(methyl phosphonate)로 변형;에서 선택된 하나 이상의 변형이 조합되어 사용될 수 있으며, PNA(peptide nucleic acid), LNA(locked nucleic acid) 또는 UNA(unlocked nucleic acid) 형태로의 변형도 사용이 가능하다(Ann. Rev. Med. 55, 61-65 2004; US 5,660,985; US 5,958,691; US 6,531,584; US 5,808,023; US 6,326,358; US 6,175,001; Bioorg. Med. Chem. Lett. 14:1139-1143, 2003; RNA, 9:1034-1048, 2003; Nucleic Acid Res. 31:589-595, 2003; Nucleic Acids Research, 38(17) 5761-5773, 2010; Nucleic Acids Research, 39(5) 1823-1832, 2011).
또한, siRNA 패신저(passenger; 센스(sense)) 가닥의 말단 부위에 화학물질 등을 연결하여 증진된 약동력학(pharmacokinetics)적 특징을 갖도록 하여 생체 내(in vivo)에서 높은 효율을 유도할 수 있다는 것이 알려져 있다(J Soutschek, Nature 11; 432(7014):173-8, 2004). 이 때 siRNA 센스(sense; 패신저(passenger)) 및/또는 안티센스(antisence; 가이드(guide)) 가닥의 말단에 결합된 화학 물질의 성질에 따라 siRNA의 안정성이 달라진다. 예를 들어, 폴리에틸렌 글리콜(polyethylene glycol, PEG)과 같은 고분자 화합물이 접합된 형태의 siRNA는 양이온성 물질이 존재하는 조건에서 siRNA의 음이온성 인산기와 상호작용하여 복합체를 형성함으로써, 개선된 siRNA 안정성을 가진 전달체가 된다(SH Kim, J Control Release 129(2):107-16, 2008). 특히 고분자 복합체로 구성된 미셀(micelle)들은 약물 전달 운반체로 쓰이는 다른 시스템인, 미소구체(microsphere) 또는 나노입자(nanoparticle) 등에 비해 그 크기가 극히 작으면서도 분포가 매우 일정하고, 자발적으로 형성되는 구조이므로 제제의 품질 관리 및 재현성 확보가 용이하다는 장점이 있다.
따라서, 본 발명에 있어서, 상기 이중가닥 올리고뉴클레오티드의 성질을 개선하기 위한 변형(modification)을 포함할 수 있으며, 바람직하게는 하나 이상의 화학적 변형(chemical modification) 및/또는 폴리에틸렌글리콜(PEG)의 접합(PEGylation)을 포함할 수 있다.
본 발명에 있어서, 상기 화학적 변형은 센스 가닥 및/또는 안티센스 가닥 중 하나 이상의 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -CH3(메틸), -OCH3(methoxy), -NH2, -F(불소), -O-2-메톡시에틸 -O-프로필(propyl), -O-2-메틸티오에틸(methylthioethyl), -O-3-아미노프로필, -O-3-디메틸아미노프로필로 치환; 뉴클레오티드 내 당(sugar) 구조의 산소가 황으로 치환; 뉴클레오티드의 포스페이트 결합이 포스포로티오에이트(phosphorothioate), 포스포로디티오에이트(phosphorodithioate), 보라노포스페이트(boranophosphate), 또는 메틸포스포네이트(methyl phosphonate)로 변형; 및 PNA(peptide nucleic acid), LNA(locked nucleic acid) 또는 UNA(unlocked nucleic acid)로 치환;으로 구성된 군에서 선택된 하나 이상의 변형일 수 있다.
또한, 본 발명에 있어서, 상기 센스 가닥 및 안티센스 가닥 중 어느 하나 이상의 가닥의 말단에 인산기(phosphate group), 친유성 화합물(lipophilic compound), 친수성 화합물(hydrophilic compound) 및 세포 투과성 펩티드로 구성된 군에서 선택되는 어느 하나 이상이 결합된 것을 특징으로 할 수 있다.
특히, 본 발명에 있어서, 상기 친수성 화합물은 폴리에틸렌 글리콜(polyethylene glycol, PEG) 또는 헥사에틸렌글리콜(Hexaethylenglycol, HEG)일 수 있으며, 가장 바람직하게는 폴리에틸렌 글리콜일 수 있으나 이에 제한되는 것은 아니다.
siRNA의 세포 내 전달 효율성을 향상시키기 위해, siRNA에 생체 적합성 고분자인 친수성 물질(예를 들면, 폴리에틸렌 글리콜(polyethylene glycol, PEG))을 단순 공유결합 또는 링커-매개(linker-mediated) 공유결합으로 접합시킨 siRNA 접합체를 통해, siRNA의 안정성 확보 및 효율적인 세포막 투과성을 향상시키는 기술은 대한민국 등록특허 제883471호에 상세히 기재되어 있으며, 대한민국 등록 특허 제1224828호는 한층 진화한 방법인 SAMiRNATM(selfassembledmicelleinhibitoryRNA)방법을 개시하고 있다.
상기 PEG는 합성 폴리머(synthetic polymer)로 흔히 의약품 특히 단백질의 수용성(solubility) 증가 및 약물동태학(pharmacokinetics)의 조절을 위해 사용된다. PEG는 다분산계(polydisperse) 물질로, 한 배치(batch)의 폴리머는 다른 개수의 단량체(monomer)의 총 합으로 이루어져 분자량이 가우스 곡선 형태를 나타내며, 다분산지수(polydisperse value, Mw/Mn)로 물질의 동질성 정도를 표현한다. 즉, PEG가 낮은 분자량(3~5kDa)일 때 약 1.01의 다분산지수를 나타내며 높은 분자량(20 kDa)일 때 약 1.2라는 높은 다분산지수를 나타내어, 높은 분자량일수록 물질의 동질성이 상대적으로 낮은 특징을 보인다.
본 발명에 일 실시예에서는 VeroE6 세포를 기반으로 하여, 다양한 분석을 통해 디자인된 siRNA가 뛰어난 코로나바이러스의 감염 및 증식 억제능을 가지는 것을 확인하였다.
따라서, 본 발명은 다른 관점에서, 상기 이중가닥 올리고뉴클레오티드를 포함하는 이중가닥 올리고뉴클레오티드를 포함하는 코로나바이러스 증식 억제용 조성물에 관한 것이다.
본 발명은 또 다른 관점에서, 상기 이중가닥 올리고뉴클레오티드를 포함하는 코로나바이러스감염증의 예방 또는 치료용 약학 조성물에 관한 것이다.
본 발명에 있어서, 상기 코로나바이러스 증식 억제용 조성물 및 코로나바이러스감염증의 예방 또는 치료용 약학 조성물은 본 발명의 이중가닥 올리고뉴클레오티드를 하나 이상 포함할 수 있으며, 바람직하게는, 서열번호 62, 70, 75, 87, 90, 97 및 122로 구성된 군에서 선택되는 서열을 포함하는 안티센스 가닥을 갖는 이중가닥 올리고뉴클레오티드군에서 선택되는 어느 하나 이상을 포함하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 코로나바이러스는 바람직하게는 SARS-CoV, SARS-CoV-2 또는 이의 돌연변이체일 수 있으나, 이에 한정되는 것은 아니고 본 발명의 이중가닥 올리고뉴클레오티드가 표적하는 RNA를 유전정보로 가지고 있는 코로나바이러스라면 이의 증식 억제, 또는 감염증의 예방 또는 치료용도로 사용될 수 있다.
본 발명에 있어서, 상기 코로나바이러스감염증은, 예를 들어, 중증 급성 호흡기 증후군(SARS), 중동 호흡기 증후군 (MERS) 또는 코로나바이러스감염증-19(COVID-19)일 수 있으나, 이에 제한되는 것은 아니다.
상기 약학 조성물은 유효성분인 이중가닥 올리고뉴클레오티드 이외에 추가로 약제학적으로 허용 가능한 부형제를 1종 이상 포함하여 제조할 수 있다. 약제학적으로 허용 가능한 부형제는 본 발명의 유효성분과 양립 가능하여야 하며, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로즈 용액, 말토덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 한 성분 또는 둘 이상의 성분을 혼합하여 사용할 수 있고, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형으로 제제화 할 수 있다. 특히, 동결건조(lyophilized)된 형태의 제형 또는 흡입형으로 제제화하여 제공하는 것이 바람직하다. 동결건조 제형 제조를 위해서 본 발명이 속하는 기술분야에서 통상적으로 알려져 있는 방법이 사용될 수 있으며, 동결건조를 위한 안정화제가 추가될 수도 있다. 특히, 흡입형 제제의 경우, 흡입형 제제는 건조분말형태, 액체형태, 에어로졸 형태 등 다양한 형태로 제조될 수 있으며, 건조분말 흡입기(Dry powder inhalers: DPIs), 네뷸라이저(Nebulizer), 정량식 흡입기(metered-dose inhaler: MDI), 스페이서(spacer)등을 사용하여 투여될 수 있다.
상기 약학 조성물의 투여방법은 통상의 코로나바이러스 감염 환자의 증후와 질병의 심각도에 기초하여 본 기술분야의 통상의 전문가가 결정할 수 있다. 또한, 산제, 정제, 캡슐제, 액제, 주사제, 연고제, 시럽제 등의 다양한 형태로 제제화 할 수 있으며 단위-투여량 또는 다-투여량 용기, 예를 들면 밀봉된 앰플 및 병 등으로 제공될 수도 있다.
본 발명의 약학 조성물은 경구 또는 비경구 투여가 가능하다. 본 발명에 따른 조성물의 투여경로는 이들로 한정되는 것은 아니지만, 예를 들면, 호흡기 내, 정맥 내, 피하, 근육 내, 동맥 내, 골수 내, 경막 내, 심장 내, 경피, 복강 내, 장관, 설하, 구강 또는 국소 투여가 가능하다. 본 발명에 따른 조성물의 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 방법, 배설율 또는 질병의 중증도 등에 따라 그 범위가 다양하며, 본 기술 분야의 통상의 전문가가 용이하게 결정할 수 있다. 또한, 임상 투여를 위해 공지의 기술을 이용하여 본 발명의 조성물을 적합한 제형으로 제제화할 수 있다.
또한 본 발명은 상술한 본 발명에 따른 약학적 조성물을 투여하는 단계를 포함하는 코로나바이러스감염증을 예방 또는 치료하는 방법을 제공한다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: SARS-관련 코로나바이러스를 표적 RNA 선별 및 siRNA 디자인
SARS-관련 코로나바이러스(SARS-CoV 및 SARS-COV-2)를 표적으로 하는 siRNA를 디자인하기 위해 SNU-MT039890의 전체 유전자 서열을 NCBI를 통해 확보하였다. 바이러스의 복제 또는 감염을 억제하기 위해 Leader sequence, RNA-dependent RNA polymerase(RdRp), Spike(S) 단백질, Nucleocapsid(N) 단백질의 RNA를 표적으로 선택하였으며, siDirect(http://sidirect2.rnai.jp/) tool을 통해 siRNA 후보를 얻었다. 총 422개의 siRNA 후보 중 SARS-CoV에서도 보존되어 있는 시퀀스를 siVirus(http://sivirus.rnai.jp/)를 통해 우선적으로 선택하여 후에 생길 수 있는 또 다른 CoV 관련 전염병에도 치료제로 사용할 수 있도록 하였다.
그러나 S와 N 단백질의 경우 보존되어 있는 시퀀스가 거의 없기 때문에 이 경우에는 off-target effect가 적은 것을 우선으로 하였으며, 특히 S 단백질에서는 사람에게 감염성을 가지게하는 RBM과 변이가 가장 적게 일어나는 부위인 HR2를 중점으로 디자인하였다. 이와 같은 방법으로 Leader sequence(5'-UTR)에서 2개, RdRp에서 7개, S 단백질에서 7개, N 단백질에서 5개, 총 21개의 1차 siRNA를 디자인하였다. 디자인 21개의 1차 siRNA는 하기 표 1과 같다.
[표 1]
*상기 표 1에서 보존 여부는 SARS-CoV 바이러스에 대한 RNA 서열의 보존여부를 의미
*실시예에서는 상기 표의 siRNA의 안티센스 및 센스 가닥의 3'-말단에 오버행으로 2개의 deoxythymidine(dTdT)를 붙여 제작함
SARS-CoV-2 및 SARS-CoV-2 변이체에 보다 특이적이고 효과적인 siRNA를 찾기 위해 SNU-MT039890을 토대로 2차 siRNA를 추가적으로 디자인하였다. 타겟 단백질은 pp1ab, S, N, Envelope(E), Membrane(M) 단백질로 확장하여 선택하였으며 VIRsiRNApred(http://crdd.osdd.net/servers/virsirnapred/) tool을 통해 후보를 추려냈다. 이 프로그램은 HIV, HBV, HCV, influenza, SARS를 대상으로 실험적으로 검증된 1700여개의 siRNA를 토대로 알고리즘을 만들어 siRNA 시퀀스별 억제 효율을 예측해 주기 때문에 보다 더 효과적인 siRNA를 얻을 수 있다. 알고리즘을 통해 얻은 억제효율점수(inhibition efficiency score)를 1부터 100까지의 범위로 점수를 매겼을 때 70 이상인 것과 인간 유전자 off target 부위가 200개 이하인 것으로 2차 siRNA를 디자인 하였다. 또한, RNA 바이러스의 특징인 돌연변이가 계속 보고되고 있기 때문에 Kobic을 통해 보고되고 있는 COVID-19 variants(20.03.27 기준) 중 변이가 일어나지 않은 보존 서열(conserved sequence)을 표적으로 하는 siRNA를 우선으로 선정하여 총 40개의 2차 siRNA를 디자인 하였다. 디자인된 40개의 2차 siRNA는 하기 표 2와 같다.
[표 2]
*상기 표 2에서 보존 여부는 SARS-CoV-2 바이러스 변이체에 대한 RNA 서열의 보존여부를 의미함
*실시예에서는 상기 표 2의 siRNA의 안티센스 및 센스 가닥의 3'-말단에 오버행으로 2개의 deoxythymidine(dTdT)를 붙여 제작함
1차 및 2차 siRNA 3' overhang으로 2개의 deoxythymidine(dTdT)를 붙여주어 siRNA stability 및 RNA와의 결합 효율(binding efficiency)을 높였으며 overhang을 포함한 총 길이가 21mer가 되도록 하였다.
실시예 2: 세포병변효과(cytopathic effect, CPE) 관찰을 통한 siRNA 효능 검증
VeroE6 세포에서 1차 디자인된 siRNA의 효능을 검증하였다. Vero E6 cell은 SARS-CoV 감염 후 나타나는 세포사멸(apoptosis)로 인한 세포병변효과를(cytopathic effect)를 확인할 수 있는 세포이다.
하루 전, 24 well plate에 vero E6 세포를 60-80% confluent가 되도록 10% FBS DMEM w/o pen-strep 배지를 통해 1 ㎖씩 24 웰 플레이트에 접종하였다. 다음 날, 100 pmol siRNA duplex 2 ㎕와 3 ㎕ Lipofectamine RNAiMAX를 각각 Opti-MEM (Thermofisher scientific, MA, USA) 50 ㎕에 dilution 한 후, 두 solution을 섞고 실온(RT)에서 5분간 반응시켰다. 각각의 siRNA-lipid complex를 50 ㎕씩 웰에 분주하여서 최종 siRNA 농도가 100 pmol이 되도록 하였다. 3 시간동안 37 ℃ 5% CO2 조건에서 배양한 후, phosphate-buffered saline(PBS)으로 세척하였다. 그 후 1×PFU/㎖의 SARS-CoV2 stock으로 희석시켜서 1XPFU/㎖로 만들어 준 뒤, 그 중 200 ㎕를 넣어 최종 PFU가 200이 되도록 하였으며, 1시간 30분동안 배양(incubation)하였다. 접종(infection) 후, 2% FBS DMEM 배지로 바꿔주고 3일동안 37 ℃ 5% CO2 조건으로 배양하며 매일 현미경을 통해 세포병변효과를 확인하였다.
도 1 내지 도 3에 도시된 것과 같이, 2 일차부터 세포병변효과를 뚜렷하게 관찰할 수 있었으며, 모든 1차 siRNA에서 세포병변효과의 감소를 확인할 수 있었다. 1차 siRNA 중에서도 1번(COVID-19-LS1), 9번(COVID-19-RdRp2) 및 14번(COVID-19-RdRp7) siRNA를 처리한 경우에 세포병변효과가 가장 적게 일어났고, 정상 세포로의 회복이 관찰되어, 상기 3개의 1차 siRNA가 가장 효과적임을 확인하였다.
실시예 3: 플라크 분석(Plaque assay)을 통한 siRNA의 바이러스 감염 억제효과 검증
21개의 1차 siRNA를 통해 플라크 분석(plaque assay)을 진행하여서 siRNA가 얼마나 효과적으로 바이러스 감염을 억제하는지 확인하였다. siRNA와 COVID19 바이러스를 위와 같이 처리한 당일에, 1 ㎖ PBS와 31.5 ㎖ 2×MEM, 17.5 ㎖ Oxoid Agar를 섞은 overlay media를 heating시킨 다음 2 ㎖/well씩 분주한 후 37 ℃ 5% CO2 조건에서 3 일동안 배양시켰다. 3일 후에 4% formaldehyde(w/methanol)를 1.5 ㎖/well씩 분주한 후 O/N 배양하여서 바이러스를 inactivation 시킨 후 crystal violet으로 1시간 염색한 후 플라크를 관찰하였다.
도 4에 도시된 것과 같이, 21개의 1차 siRNA 중 바이러스에 감염을 나타내는 플라크가 거의 관찰되지 않은 것은 1번(COVID-19-LS1), 9번(COVID-19-RdRp2), 10번(COVID-19-RdRp3), 14번(COVID-19-RdRp7), 및 16번(COVID-19-S2)이었으며 앞서 CPE를 통해 효과가 검증된 1번, 9번, 14번 siRNA가 플라크 분석에서도 효과적인 것으로 확인되었다.
동일한 방법으로 40개의 2차 디자인된 siRNA의 플라크 분석을 진행하였다. 도 5a 및 5b에 도시된 것과 같이, replicase polyprotein 1a를 표적으로 하는 26번(EI_1O5)과 29번(EI_108), RdRp를 표적으로 하는 36번(EI_1015), 및 N단백질을 표적으로 하는 61번 siRNA(EI_908)를 처리한 플레이트에서 플라크의 형성이 가장 억제된 것을 확인할 수 있었다.
도 6에 도시된 것과 같이, 1차 siRNA 중 바이러스에 감염을 나타내는 플라크가 거의 관찰되지 않았던, 효과가 가장 좋았던 1번, 9번, 14번 siRNA의 효능을 다시 한번 확인하기 위해 세포병변효과관찰 및 플라크 분석법을 실시하였다. 그 중에서 14번 siRNA가 바이러스 억제 효과 가장 좋은 것으로 확인되었다.
실시예 4: Real-Time PCR을 통한 siRNA의 바이러스 복제 억제 효능 검증
각 siRNA를 Vero E6 세포에 처리한 뒤, 3일차에 각 세포의 2% FBS DMEM media 상층액을 1 ㎖ 확보한 후, 그 중 140 ㎕의 상층액에서 RNA extraction을 진행하여 SARS-CoV-2의 바이러스 RNA를 추출하였다. RNA 추출은 QIAamp Viral RNA mini kit를 사용하였으며 140 ㎕의 상층액에 560 ul의 AVL 버퍼를 넣고 25초간 voltexing 하였다. 상온에서 10분간 incubation한 후에 100% EtOH을 560 ㎕ 넣고 15초간 voltexing 하였다. 액체를 Mini column에 넣고 6000xg로 1분간 원심분리를 진행한 후, collection tube에 나온 용액을 제거하였다. 각 컬럼에 500 ㎕ AW1 buffer를 넣고 6000xg로 1분간 원심분리 하였다. collection tube에 나온 용액을 버리고 500 ㎕ AW2 버퍼를 넣고 full speed로 3분간 원심분리를 진행하였다. column을 1.5 ㎖ EP tube에 옮긴 후 60 ㎕ AVE 버퍼를 넣고 1분간 상온에서 인큐베이션한 뒤, 6000xg에 1분간 원심분리하여, 바이러스 RNA를 얻었다. random primer를 통해 cDNA를 합성한 후 qRT PCR을 진행하였다. PowerChek 2019-nCoV Real-time PCR kit(Kogene, Korea)를 통해 E와 RdRp 유전자를 타겟으로 RT-PCR을 진행하였으며, QuantStudio 6 Flex(version1.1)를 통해 RT-PCR을 진행하였다. PCR 조건은 95 ℃에서 10분간 초기 변성(denaturation) 시킨 뒤 95 ℃에서 15초, 60 ℃에서 1분간 어닐링(annealing) 및 증폭(amplification)하는 사이클을 40회 진행하였다. 생성물의 검출은 형광물질인 FAM을 통해 Ct값을 정량하고 비교하였다.
도 7 및 도 8에 도시된 바와 같이, Kogene에서 생산중인 PowerChek2019-nCoVReal-timePCRkit 를 사용해서 SARS-CoV-2의 E와 RdRp 유전자를 타겟으로 Ct값을 얻어 컨트롤과 비교했을 때 상대적으로 얼마나 바이러스 발현이 억제되었는지 확인하였다. siRNA mock을 처리한 대조군과 비교했을 때 E와 RdRp에서 모두 1번(COVID-19-LS1), 5번(COVID-19-N3), 9번(COVID-19-RdRp2), 14번(COVID-19-RdRp7) siRNA의 Ct 값이 높은 것으로 보아 컨트롤을 포함한 다른 siRNA와 비교했을 때에도 virus 복제가 억제되었다는 것을 확인할 수 있었다.
실시예 5: siRNA의 조합에 따른 바이러스 감염 억제효과 확인
상기 실시예에서 가장 효과가 뛰어난 것으로 확인된 1번(COVID-19-LS1), 9번(COVID-19-RdRp2) 및 14번(COVID-19-RdRp7) siRNA의 조합에 따른 바이러스 감염 억제효과를 확인하기 위해, 실시예 3의 바이러스 infection 농도였던 200 PFU보다 2.5배 늘린 500 PFU에서 동일한 방법으로 플라크 분석을 진행하였다. siRNA 조합의 최종 농도는 다음 표 3과 같이 100 nM이 되게 하였으며, 마지막 조합은 농도를 더 높여서 진행하였다.
[표 3]
도 9에 도시된 것과 같이, 상기 siRNA들을 조합하여 처리할 때, 플라크의 발생이 모두 감소한 것을 확인할 수 있었으며, 특히 3개의 siRNA를 모두 합쳐서 처리한 것이 가장 플라크 발생 감소 효과가 우수한 것으로 나타났다.
실시예 6: 최종 siRNA 선별
CPE, plaque assay, RT-PCR을 통해 총 7개의 가장 효과가 뛰어난 siRNA를 선별하였으며, leader sequence에서 1개 RdRp에서 3개 pp1a에서 2개, N 단백질에서 1개의 siRNA를 최종적으로 선별하였다. 최종 선별된 siRNA는 하기 표 4와 같다.
[표 4]
실시예 7: 14번 siRNA에 대한 농도별 억제효능시험
CPE, plaque assay, RT-PCR을 통해 가장 효과가 뛰어난 14번 siRNA에 대해 농도별 바이러스 억제효능 시험을 실시하였다. 도 10에 도시된 것과 같이, 14번 siRNA를 농도별(5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 nM)로 세포에 처리하여 세포병변효과를 측정한 결과, 세포 감염 2일째 EC50의 값이 9.709 nM을 나타냈고, 이는 최근 중국 과학원 산하 우한바이러스연구소(TheWuhan Institute of Virology, WIV)에서 발표한 신종코로나바이러스를 효과적으로 억제하는 렘데시비르 및 클로로퀸의 효과보다 더 우수한 수치를 나타내는 것이다. 구체적으로 참고 논문에서 가장 우수한 바이러스 억제 효능을 가지는 것으로 본 렘데시비르 및 클로로퀸의 경우 EC50값은 각각 0.77 μM및 1.13 μM을 나타내었다. 이를 볼 때, 본 발명에 따른 EC50 수치로 판단한다면 상기 렘데시비르 및 클로로퀸과 대비하여 약 77.6배 더 우수한 억제 효능을 나타내는 것을 확인하였다. (*참고 논문: Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell research 2020, 30(3):269-271).
실시예 8: 14번 siRNA에 대한 동물 효능시험
세포 내 실험에서 가장 효과가 뛰어난 14번 siRNA에 대한 치료 효능을 평가하기 위해 동물실험을 실시하였다. 실험동물 모델로 시리아 햄스터 및 영장류(붉은털 원숭이)를 사용하였다. 동물실험에 관한 사항은 하기 표 5에 나타내었다.
[표 5]
먼저, 시리안 햄스터 각 그룹에 비강 내 경로로 4-40,000 PFU SARS-CoV-2를 접종하였고 siRNA를 처리하지 않은 대조군 햄스터의 경우 구부정한 자세, 주름진 털, 가벼운 기침 증상을 보였다. 그러나 14번 siRNA를 처리한 G2 및 G3군에서는 기침과 같은 코로나바이러스의 임상적 징후가 관찰되지 않았다.
도 11에 도시된 것과 같이, qRT-PCR을 이용하여 햄스터의 폐를 viral RNA양을 분석하였고, siRNA 서열번호 14를 처리한 햄스터의 폐 조직에서 나온 바이러스 RNA copies는 대조군 햄스터에 비해 약 104 개의 바이러스 copies 정도가 감소한 것으로 확인되었다.
붉은 털 원숭이의 경우, 마취시킨 후, 4 × 106 PFU SARS-CoV-2를 기관 내(4 ㎖) 및 비강 내(1 ㎖) 점적을 통해 5 ㎖의 용량을 최종 접종하였다. 감염 후 4시간, 24시간 후 G2군에 2 mg/kg, G3군에 4 mg/kg 용량으로 siRNA 서열번호 14를 처리하고 관찰하였다.
도 12에 도시된 것과 같이, 대조군의 경우 체온이 38.6 내지 40.4 ℃로 상승하고, 설사 증상을 보였으나, siRNA 서열번호 14를 처리한 G3군에서는 3일 동안 정상 체온을 유지하는 것으로 관찰되었다.
도 13에 도시된 것과 같이, qRT-PCR을 이용하여 붉은 털 원숭이의 기관지를 분석하였고, siRNA 서열번호 14를 처리한 원숭이의 기관지 조직에서 나온 바이러스 RNA copies는 대조군 원숭이에 비해 약 103 개의 바이러스 copies 정도가 감소한 것으로 나타났다. 종합해보면, 서열번호 14 siRNA를 투여하면 햄스터 폐 및 원숭이 기관지에서 SARS-CoV-2 감염 및 복제를 효과적으로 억제한다는 것을 동물 실험을 통해 입증한 것이다.
서열번호 1 내지 122의 서열 정보는 별도의 파일 형태로 제출함.
Claims (15)
- 서열번호 1 내지 서열번호 61로 구성된 군에서 선택되는 어느 하나의 서열을 포함하는 센스 가닥(sense strand)과 이에 상보적인 서열을 포함하는 안티센스 가닥(anti-sense strand)을 포함하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드.
- 제1항에 있어서,상기 이중가닥 올리고뉴클레오티드는 siRNA, shRNA, DsiRNA, lsiRNA, ss-siRNA, piRNA, endo-siRNA 및 asiRNA로 이루어진 군으로부터 선택되는 것을 특징으로 하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드.
- 제1항에 있어서,상기 센스 가닥 및 안티센스 가닥은 독립적으로 19 내지 31개의 뉴클레오티드로 구성되는 것을 특징으로 하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드.
- 제1항에 있어서,상기 안티센스 가닥은 서열번호 62 내지 서열번호 122로 구성된 군에서 선택되는 서열을 포함하는 것을 특징으로 하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드.
- 제1항에 있어서,상기 안티센스 가닥은 서열번호 62, 70, 75, 87, 90, 97 및 122로 구성된 군에서 선택되는 서열을 포함하고,상기 센스 가닥은 서열번호 1, 9, 14, 26, 29, 36, 및 61로 구성된 군에서 선택되는 것을 특징으로 하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드.
- 제1항에 있어서,상기 siRNA의 센스 가닥 및 안티센스 가닥 중 어느 하나 이상은 하나 이상의 화학적 변형(chemical modification)을 포함하는 것을 특징으로 하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드.
- 제6항에 있어서,상기 화학적 변형은 뉴클레오티드 내 당 구조의 2' 탄소 위치에서 -OH기가 -CH3(메틸), -OCH3(methoxy), -NH2, -F(불소), -O-2-메톡시에틸 -O-프로필(propyl), -O-2-메틸티오에틸(methylthioethyl), -O-3-아미노프로필, -O-3-디메틸아미노프로필로 치환;뉴클레오티드 내 당(sugar) 구조의 산소가 황으로 치환;뉴클레오티드의 포스페이트 결합이 포스포로티오에이트(phosphorothioate), 포스포로디티오에이트(phosphorodithioate), 보라노포스페이트(boranophosphate), 또는 메틸포스포네이트(methyl phosphonate)로 변형; 및PNA(peptide nucleic acid), LNA(locked nucleic acid) 또는 UNA(unlocked nucleic acid)로 치환;으로 구성된 군에서 선택된 하나 이상의 변형인 것을 특징으로 하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드.
- 제1항에 있어서,상기 센스 가닥 및 안티센스 가닥 중 어느 하나 이상의 가닥의 말단에 인산기(phosphate group), 친유성 화합물(lipophilic compound), 친수성 화합물(hydrophilic compound) 및 세포 투과성 펩티드로 구성된 군에서 선택되는 어느 하나 이상이 결합된 것을 특징으로 하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드.
- 제8항에 있어서,상기 친수성 화합물은 폴리에틸렌 글리콜(PEG) 또는 헥사에틸렌 글리콜(HEG)인 것을 특징으로 하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드.
- 제1항에 있어서,상기 코로나 바이러스는 SARS-CoV 또는 SARS-CoV-2인 것을 특징으로 하는 코로나바이러스 특이적 RNAi를 유도하는 이중가닥 올리고뉴클레오티드.
- 제1항 내지 제10항 중 어느 한 항의 이중가닥 올리고뉴클레오티드를 포함하는 코로나바이러스 증식 억제용 조성물.
- 제11항에 있어서,서열번호 62, 70, 75, 87, 90, 97 및 122로 구성된 군에서 선택되는 서열을 포함하는 안티센스 가닥을 갖는 이중가닥 올리고뉴클레오티드군에서 선택되는 어느 하나 이상을 포함하는 것을 특징으로 하는 코로나바이러스 증식 억제용 조성물.
- 제1항 내지 제10항 중 어느 한 항의 이중가닥 올리고뉴클레오티드를 포함하는 코로나바이러스감염증의 예방 또는 치료용 약학 조성물.
- 제13항에 있어서,서열번호 62, 70, 75, 87, 90, 97 및 122로 구성된 군에서 선택되는 서열을 포함하는 안티센스 가닥을 갖는 이중가닥 올리고뉴클레오티드군에서 선택되는 어느 하나 이상을 포함하는 것을 특징으로 하는 코로나바이러스감염증의 예방 또는 치료용 약학 조성물.
- 제13항에 있어서,상기 코로나바이러스감염증은 코로나바이러스감염증-19(COVID-19)인 것을 특징으로 하는 예방 또는 치료용 약학 조성물.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21832018.2A EP4174177A1 (en) | 2020-06-30 | 2021-06-25 | Coronavirus-specific double-stranded oligonucleotides, and composition comprising same for preventing and treating coronavirus disease-19 |
US18/013,811 US20230295633A1 (en) | 2020-06-30 | 2021-06-25 | Coronavirus-specific double-stranded oligonucleotides, and composition comprising same for preventing and treating coronavirus disease-19 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200079766A KR102272800B1 (ko) | 2020-06-30 | 2020-06-30 | 코로나바이러스 특이적 이중가닥 올리고뉴클레오티드 및 이를 포함하는 코로나바이러스 감염증-19 예방 및 치료용 조성물 |
KR10-2020-0079766 | 2020-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022005115A1 true WO2022005115A1 (ko) | 2022-01-06 |
Family
ID=76899655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/008011 WO2022005115A1 (ko) | 2020-06-30 | 2021-06-25 | 코로나바이러스 특이적 이중가닥 올리고뉴클레오티드 및 이를 포함하는 코로나바이러스 감염증-19 예방 및 치료용 조성물 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230295633A1 (ko) |
EP (1) | EP4174177A1 (ko) |
KR (1) | KR102272800B1 (ko) |
WO (1) | WO2022005115A1 (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230047473A1 (en) * | 2021-07-14 | 2023-02-16 | Toagosei Co., Ltd. | siRNA based on RNA sequence of SARS-CoV-2 and use thereof |
CN113684210B (zh) * | 2021-07-19 | 2022-12-30 | 武汉大学 | 抗新型冠状病毒的核酸及其药物组合物与应用 |
CN114250229B (zh) * | 2021-07-19 | 2023-12-26 | 深圳大学 | 抑制新冠病毒2019-nCoV的siRNA及其用途 |
WO2023015231A1 (en) * | 2021-08-04 | 2023-02-09 | The Regents Of The University Of California | Sars-cov-2 virus-like particles |
EP4148131A1 (en) * | 2021-09-10 | 2023-03-15 | Charité - Universitätsmedizin Berlin | Rna for inhibiting sars-cov-2 replication |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5660985A (en) | 1990-06-11 | 1997-08-26 | Nexstar Pharmaceuticals, Inc. | High affinity nucleic acid ligands containing modified nucleotides |
US5808023A (en) | 1990-07-27 | 1998-09-15 | Isis Pharmaceuticals, Inc. | Modified oligonucleotides |
US6175001B1 (en) | 1998-10-16 | 2001-01-16 | The Scripps Research Institute | Functionalized pyrimidine nucleosides and nucleotides and DNA's incorporating same |
US6326358B1 (en) | 1998-07-14 | 2001-12-04 | Isis Pharmaceuticals, Inc. | Carbohydrate or 2′-modified oligonucleotides having alternating internucleoside linkages |
US6531584B1 (en) | 1990-01-11 | 2003-03-11 | Isis Pharmaceuticals, Inc. | 2'modified oligonucleotides |
US20050100885A1 (en) * | 2003-04-28 | 2005-05-12 | Crooke Stanley T. | Compositions and methods for the treatment of severe acute respiratory syndrome (SARS) |
US20060257852A1 (en) * | 2003-04-10 | 2006-11-16 | Chiron Corporation | Severe acute respiratory syndrome coronavirus |
KR100883471B1 (ko) | 2005-08-17 | 2009-02-16 | (주)바이오니아 | siRNA의 세포내 전달을 위한 siRNA와 친수성 고분자 간의접합체 및 그의 제조방법 |
KR101224828B1 (ko) | 2009-05-14 | 2013-01-22 | (주)바이오니아 | siRNA 접합체 및 그 제조방법 |
-
2020
- 2020-06-30 KR KR1020200079766A patent/KR102272800B1/ko active IP Right Grant
-
2021
- 2021-06-25 US US18/013,811 patent/US20230295633A1/en active Pending
- 2021-06-25 WO PCT/KR2021/008011 patent/WO2022005115A1/ko unknown
- 2021-06-25 EP EP21832018.2A patent/EP4174177A1/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6531584B1 (en) | 1990-01-11 | 2003-03-11 | Isis Pharmaceuticals, Inc. | 2'modified oligonucleotides |
US5660985A (en) | 1990-06-11 | 1997-08-26 | Nexstar Pharmaceuticals, Inc. | High affinity nucleic acid ligands containing modified nucleotides |
US5958691A (en) | 1990-06-11 | 1999-09-28 | Nexstar Pharmaceuticals, Inc. | High affinity nucleic acid ligands containing modified nucleotides |
US5808023A (en) | 1990-07-27 | 1998-09-15 | Isis Pharmaceuticals, Inc. | Modified oligonucleotides |
US6326358B1 (en) | 1998-07-14 | 2001-12-04 | Isis Pharmaceuticals, Inc. | Carbohydrate or 2′-modified oligonucleotides having alternating internucleoside linkages |
US6175001B1 (en) | 1998-10-16 | 2001-01-16 | The Scripps Research Institute | Functionalized pyrimidine nucleosides and nucleotides and DNA's incorporating same |
US20060257852A1 (en) * | 2003-04-10 | 2006-11-16 | Chiron Corporation | Severe acute respiratory syndrome coronavirus |
US20050100885A1 (en) * | 2003-04-28 | 2005-05-12 | Crooke Stanley T. | Compositions and methods for the treatment of severe acute respiratory syndrome (SARS) |
KR100883471B1 (ko) | 2005-08-17 | 2009-02-16 | (주)바이오니아 | siRNA의 세포내 전달을 위한 siRNA와 친수성 고분자 간의접합체 및 그의 제조방법 |
KR101224828B1 (ko) | 2009-05-14 | 2013-01-22 | (주)바이오니아 | siRNA 접합체 및 그 제조방법 |
Non-Patent Citations (19)
Title |
---|
ANN. REV. MED., vol. 55, 2004, pages 61 - 65 |
BENDIX, A., SCIENCE ALERT, 2020 |
BIOORG. MED. CHEM. LETT., vol. 14, 2003, pages 1139 - 1143 |
DATABASE Nucleotide 11 February 2020 (2020-02-11), ANONYMOUS: "Severe acute respiratory syndrome coronavirus 2 isolate SNU01, complete genome", XP055853537, retrieved from Genbank Database accession no. MT039890 * |
FY XIE, DRUG DISCOV. TODAY., vol. 11, no. 1-2, January 2006 (2006-01-01), pages 67 - 73 |
HOEHL, S. ET AL., N ENGL J MED, 2020 |
J SOUTSCHEK, NATURE, vol. 432, no. 7014, 2004, pages 173 - 8 |
NUCLEIC ACID RES., vol. 31, 2003, pages 589 - 595 |
NUCLEIC ACIDS RESEARCH, vol. 38, no. 17, 2010, pages 5761 - 5773 |
NUCLEIC ACIDS RESEARCH, vol. 39, no. 5, 2011, pages 1823 - 1832 |
PAULES, CATHARINE I.MARSTON, HILARY D.FAUCI, ANTHONY S.: "Coronavirus Infections-More Than Just the Common Cold; ''Ural scientists have proposed testing the drug against coronavirus", 23 January 2020, URAL FEDERAL UNIVERSITY |
PUBLIC HEALTH EMERGENCY OF INTERNATIONAL CONCERN (PHEIC, 30 January 2020 (2020-01-30) |
QIN, Z.L. ZHAO, P. CAO, M.M. QI, Z.T.: "siRNAs targeting terminal sequences of the SARS-associated coronavirus membrane gene inhibit M protein expression through degradation of M mRNA", JOURNAL OF VIROLOGICAL METHODS, ELSEVIER BV, NL, vol. 145, no. 2, 31 August 2007 (2007-08-31), NL , pages 146 - 154, XP022226045, ISSN: 0166-0934, DOI: 10.1016/j.jviromet.2007.05.017 * |
RNA, vol. 9, 2003, pages 1034 - 1048 |
SH KIM, J CONTROL RELEASE, vol. 129, no. 2, 2008, pages 107 - 16 |
SHI YI, DE HUA, YANG JIE, XIONG JIE, JIA BING, HUANG YOU XIN, JIN: "Inhibition of genes expression of SARS coronavirus by synthetic small inter- fering RNAs", CELL RESEARCH, vol. 15, no. 3, 31 March 2005 (2005-03-31), pages 193 - 200, XP055884817, DOI: 10.1038/sj.cr.7290286 * |
WANG MCAO RZHANG LYANG XLIU JXU MSHI ZHU ZZHONG WXIAO G: "Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro", CELL RESEARCH, vol. 30, no. 3, 2020, pages 269 - 271, XP037049320, DOI: 10.1038/s41422-020-0282-0 |
WANG, D. ET AL., JAMA, 2020 |
YU, P. ET AL., J INFECT DIS, 2020 |
Also Published As
Publication number | Publication date |
---|---|
EP4174177A1 (en) | 2023-05-03 |
US20230295633A1 (en) | 2023-09-21 |
KR102272800B1 (ko) | 2021-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022005115A1 (ko) | 코로나바이러스 특이적 이중가닥 올리고뉴클레오티드 및 이를 포함하는 코로나바이러스 감염증-19 예방 및 치료용 조성물 | |
US20220145301A1 (en) | siRNA/Nanoparticle Formulations for Treatment of Middle-East Respiratory Syndrome Coronaviral Infection | |
Zhou et al. | Effective small interfering RNAs targeting matrix and nucleocapsid protein gene inhibit influenza A virus replication in cells and mice | |
EP1507791B1 (en) | Antisense antiviral agent and method for treating ssrna viral infection | |
JP2023513436A (ja) | 2019新型コロナウイルス(2019-nCoV)によって引き起こされる重症急性呼吸器感染症の治療のためのRNAi予防治療薬組成物及び方法 | |
US20100168205A1 (en) | Methods and Compositions for Prevention or Treatment of RSV Infection Using Modified Duplex RNA Molecules | |
EP4015634A1 (en) | Sirna and compositions for prophylactic and therapeutic treatment of virus diseases | |
AU2005297376A1 (en) | Antiviral oligonucleotides | |
Deng et al. | The highly conserved 5'untranslated region as an effective target towards the inhibition of Enterovirus 71 replication by unmodified and appropriate 2'-modified siRNAs | |
Lai et al. | Inhibition of respiratory syncytial virus infections with morpholino oligomers in cell cultures and in mice | |
WO2022031410A1 (en) | Antisense oligonucleotides targeting sars-cov-2 | |
US8198256B2 (en) | Treatment of influenza | |
US20090136544A1 (en) | Interfering RNAs Targeting the Morbillivirus Nucleoprotein Gene | |
WO2021255262A1 (en) | siRNA AND COMPOSITIONS FOR PROPHYLACTIC AND THERAPEUTIC TREATMENT OF VIRUS DISEASES | |
JP7399876B2 (ja) | 病態治療のためのRNAエディターのmRNA駆動型発現 | |
EP4183879A1 (en) | Double-stranded oligonucleotide and composition for treating covid-19 containing same | |
US9868952B2 (en) | Compositions and methods for “resistance-proof” SiRNA therapeutics for influenza | |
Bitko et al. | Respiratory viral diseases: access to RNA interference therapy | |
WO2021228585A1 (en) | Sina molecules, methods of production and uses thereof | |
Thomas et al. | Polycation-mediated delivery of siRNAs for prophylaxis and treatment of influenza virus infection | |
US7858770B2 (en) | siRNA having antiviral activity against nonpolio enterovirus | |
WO2024153586A1 (en) | Antisense molecules and their uses for the treatment of coronavirus infection, in particular the treatment of covid-19 related to sars-cov-2 infection | |
JP2024070748A (ja) | 非ゲノム配列抗ウイルス用オリゴヌクレオチド | |
CN116814632B (zh) | 一种抑制流感病毒的siRNA及其应用 | |
CN116790605B (zh) | 一种抑制流感病毒的siRNA的突变体及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21832018 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021832018 Country of ref document: EP Effective date: 20230130 |