WO2022004674A1 - Coil, power-sending device, power-receiving device, and power transmission system - Google Patents

Coil, power-sending device, power-receiving device, and power transmission system Download PDF

Info

Publication number
WO2022004674A1
WO2022004674A1 PCT/JP2021/024415 JP2021024415W WO2022004674A1 WO 2022004674 A1 WO2022004674 A1 WO 2022004674A1 JP 2021024415 W JP2021024415 W JP 2021024415W WO 2022004674 A1 WO2022004674 A1 WO 2022004674A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power transmission
power
winding line
winding
Prior art date
Application number
PCT/JP2021/024415
Other languages
French (fr)
Japanese (ja)
Inventor
将人 岡部
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2022004674A1 publication Critical patent/WO2022004674A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention belongs to the technical fields of coils, power transmission devices and power receiving devices, and power transmission systems, and more specifically, coils for non-contact power transmission, non-contact power transmission devices and power receiving devices using the coils, and power receiving devices. It belongs to the technical field of power transmission systems.
  • the wireless power transmission method generally includes an electric field coupling method, an electromagnetic induction method, a magnetic field resonance method, and the like.
  • Patent Document 1 discloses a coil that transmits power by a magnetic field resonance method using a one-turn (1 turn) loop coil and a 5.5-turn (5.5 turn) open coil. ing.
  • the frequency of power transmitted and received by the wireless power transmission is predetermined by law for each device responsible for it, and in the case of power transmission to the electric vehicle, it is set to a high frequency of 85 kilohertz.
  • a high-frequency current is passed through a conductor, the current density is high on the surface of the conductor and decreases toward the center of the conductor.
  • the higher the frequency of the current the more the current concentrates on the surface, and as a result, the AC resistance of the conductor increases. This phenomenon is known as the so-called “skin effect of conductors".
  • the AC resistance in the conductor when a high frequency current is passed through the conductor is simply referred to as "impedance".
  • the present invention has been made in view of the above problems and requirements, and one example of the problem is to improve the efficiency of wireless power transmission even when a high frequency current such as 85 kilohertz is used. It is an object of the present invention to provide a possible coil, a non-contact type power transmission device and a power receiving device using the coil, and a power transmission system.
  • the invention according to claim 1 is a coil for non-contact power transmission in which the winding lines constituting the coil are parallel to each other in the winding direction of the winding line and each of them is parallel to each other. It is composed of a plurality of parallel winding lines made of thin film conductors, and the spacing in the direction perpendicular to the winding direction of the parallel winding line constituting one winding line and the vertical direction of the adjacent winding line. The sum of the intervals and the intervals is configured to be at least longer than the threshold length corresponding to the frequency of power transmission by the coil.
  • the winding of the parallel winding line constituting one winding line is formed.
  • the sum of the directional spacing and the vertical spacing of adjacent winding lines is at least longer than the length corresponding to the frequency of power transfer. Therefore, it is possible to reduce the impedance as a coil due to the so-called skin effect or proximity effect caused by forming a parallel winding line with a thin film conductor for weight reduction and cost reduction, resulting in weight reduction and cost reduction. It is possible to improve the transmission efficiency and prevent the operating temperature from rising at the same time.
  • the invention according to claim 2 comprises the coil according to claim 1, wherein one winding line is composed of two parallel winding lines, and one winding line is formed.
  • the width of the parallel winding line on the inner peripheral side of the coil is wider than the width of the parallel winding line on the outer peripheral side of the coil.
  • one winding line is composed of two parallel winding lines, and in one winding line, the inner circumference of the coil.
  • the width of the parallel winding line on the side is wider than the width of the parallel winding line on the outer peripheral side of the coil. Therefore, since the impedance of the coil can be reduced, it is possible to achieve both weight reduction and cost reduction, improvement of transmission efficiency, and prevention of an increase in operating temperature.
  • the invention according to claim 3 is the coil according to claim 1 or 2, wherein the winding line is wound from the outer peripheral side to the inner peripheral side of the coil. It is composed of an outer inner winding line composed of the parallel winding line and an inner / outer winding line composed of the parallel winding line wound from the inner peripheral side toward the outer peripheral side.
  • the winding line in addition to the action of the invention of claim 1 or 2, since the winding line is composed of an outer inner winding line and an inner / outer winding line, it can be used as a coil. Impedance can be further reduced.
  • the winding line is a laminated structure in the coil according to any one of claims 1 to 3.
  • the invention according to claim 5 is the coil according to any one of claims 1 to 4, wherein the frequency of the coil is 85 kHz.
  • the threshold length in the vertical direction in winding is configured to be 4.5 mm.
  • one winding line is used.
  • the structure of the winding line because the sum of the spacing in the direction perpendicular to the winding direction of the constituent parallel winding lines and the spacing in the vertical direction of the adjacent winding lines is longer than 4.5 mm as the threshold length. Can be optimized to further reduce the impedance as a coil.
  • the invention according to claim 6 is configured such that the distance between the adjacent winding lines in the vertical direction is 2 mm or more in the coil according to claim 5. There is.
  • the distance between the adjacent winding lines in the direction perpendicular to the winding direction is 2 mm or more.
  • the structure can be optimized to further reduce the impedance as a coil.
  • the invention according to claim 7 is composed of a power transmission device and a power receiving device separated from the power transmission device, and transmits power from the power transmission device to the power receiving device in a non-contact manner.
  • the power transmission coil included in the power transmission system which is the coil according to any one of claims 1 to 6, is a power transmission coil arranged to face the power receiving device.
  • the invention according to claim 8 is composed of a power transmission device and a power receiving device separated from the power transmission device, and transmits power from the power transmission device to the power receiving device in a non-contact manner.
  • the power receiving device included in the power transmission system the power receiving coil which is the coil according to any one of claims 1 to 6 and which is arranged to face the power transmission device.
  • the invention according to claim 9 is the power transmission device according to claim 7 and a power receiving device that is separated from the power transmission device and is arranged so as to face the power transmission coil.
  • a power receiving device for receiving the electric power transmitted from the power transmitting device is provided.
  • the invention according to claim 10 is the power transmission device and the power receiving device according to claim 8, which are separated from the power transmission device and the power receiving coil faces the power transmission device. It is provided with a power receiving device for receiving the electric power transmitted from the power transmitting device.
  • At least one of the transmission coil provided in the power transmission device constituting the power transmission system and the power receiving coil provided in the power receiving device is claimed. Since the coil according to any one of items 1 to 6, the skin effect or the proximity effect is applied when the power transmission coil or the power receiving coil is opposed to each other to perform non-contact power transmission. The impedance of the coil can be reduced, and both weight reduction and cost reduction, improvement of transmission efficiency, and prevention of an increase in operating temperature can be achieved at the same time.
  • a winding line when a winding line is configured by a plurality of parallel winding lines parallel to the winding direction and made of thin film conductors, a direction perpendicular to the winding direction of the parallel winding lines constituting one winding line.
  • the sum of the spacing and the spacing of adjacent winding lines in the vertical direction is at least longer than the length corresponding to the frequency of power transfer.
  • the electric power transmission system by the magnetic field resonance method of the embodiment and the modified form is arranged so as to face (that is, face each other) away from the power transmission coil described later, and is separated from the power transmission coil, and from the power transmission coil. It is provided with a power receiving coil, which will be described later, for receiving the transmitted power.
  • FIG. 1 is a block diagram showing an outline configuration of the power transmission system of the embodiment.
  • the power transmission system S of the embodiment includes a power receiving device R including a power receiving unit RV and the power receiving coil RC, and a power transmission device T including a power transmission unit TR and the power transmission coil TC.
  • the power receiving device R is mounted on the electric vehicle and is connected to a storage battery (not shown) mounted on the electric vehicle.
  • the power transmission device T is installed on the ground where the electric vehicle moves or stops. Then, when charging the storage battery, the electric vehicle is operated or stopped so that the power receiving coil RC of the power receiving device R and the power transmission coil TC of the power transmission device T face each other.
  • the power transmission device T installed on the ground below the stop position of the power receiving device R mounted on the stopped electric vehicle is used. It can be configured to transmit electric power from the power transmission device T via the power transmission coil TC.
  • the power receiving device R mounted on the moving electric vehicle via the power transmission coil TC of a plurality of power transmission devices T installed in a certain distance section of the road on which the electric vehicle is moving. Therefore, it may be configured to continuously transmit electric power from the power transmission device T.
  • the power transmission unit TR corresponds to an example of the "output means" of the present invention
  • the power receiving unit RV corresponds to an example of the "input means" of the present invention.
  • the power to be transmitted is input to the power transmission coil TC from the power transmission unit TR.
  • the power receiving coil RC outputs the electric power received from the power transmission coil TC by the magnetic field resonance method to the power receiving unit RV.
  • the power transmission coil TC or the power reception coil RC correspond to an example of the "coil" of the present invention, respectively.
  • the power transmission unit TR of the power transmission device T outputs the power to be transmitted to the power reception device R to the power transmission coil TC while complying with the regulations such as the Radio Law in the country where the power transmission system S is used. ..
  • the above-mentioned regulations and the like regulate the leakage magnetic field so as to be below a predetermined level in consideration of the influence on the human body, for example.
  • the frequency or frequency band in the predetermined range must follow the recommendations of international organizations such as ISO (International Organization for Standardization) or IEC (International Electrotechnical Commission) as the above regulations. Further, since the lower limit of the transmission efficiency considering the predetermined positional deviation between the power transmission coil TC and the power reception coil RC is also specified by the above international organization or the above regulations, the power transmission efficiency is high as the power transmission system S. Is required.
  • the power receiving coil RC of the power receiving device R that receives the power from the power transmission coil TC by the magnetic field resonance method outputs the received power to the power receiving unit RV.
  • the power receiving unit RV converts the output corresponding to the electric power (for example, the high frequency power of 85 kilohertz) into a DC (direct current) current by a power conversion unit (not shown) and outputs the output to the storage battery of the electric vehicle. ..
  • the storage battery is charged with a required amount of electric power.
  • FIG. 2 is a plan view showing the structure of the power transmission coil TC of the embodiment, and is a plan view of the power transmission device T when the power transmission coil TC is viewed from the power transmission unit TR side (see FIG. 1).
  • the power transmission coil TC of the embodiment has a winding line TL in which two parallel parallel copper thin film wires TL1 and copper thin film wire TL2, which will be described later, are wound in parallel. It is configured by being laminated on an insulating film BF (details will be described later).
  • each of the copper thin film wire TL1 and the copper thin film wire TL2 corresponds to an example of the "parallel winding line" of the present invention.
  • the film BF is used for laminating the power transmission coil TC, but in addition to these, an insulating material such as a glass epoxy material can also be used.
  • the winding centers of the copper thin film wire TL1 and the copper thin film wire TL2 constituting the winding line TL are the same or substantially the same in each winding.
  • the power transmission coil TC is composed of a winding line TL composed of a copper thin film wire TL1 and a copper thin film wire TL2 wound in parallel with each other in the same layer.
  • a copper thin film wire TL1 and a copper thin film wire TL2 are connected to one side of the outermost peripheral portion, and a connection terminal O1 and a connection terminal O2 for connecting the winding line TL to the power transmission unit TR are provided.
  • the power transmission coil TC is composed of a winding line TL composed of parallel copper thin film wires TL1 and copper thin film wires TL2 wound six times (6 turns), and the copper thin film wires TL1 and copper thin film wires TL2 are respectively (that is,).
  • Both ends of the winding line TL) are the connection terminal O1 and the connection terminal O2.
  • each of the copper thin film wire TL1 and the copper thin film wire TL2 in the case illustrated in FIG. 2 has the same width and the same thickness over the entire circumference of the winding line TL.
  • a straight line portion is provided on each of the upper side portion, the lower side portion, the left side portion, and the right side portion in FIG. 2, and each straight line portion is connected by a substantially concentric arcuate curved portion.
  • the copper thin film wire TL1 and the copper thin film wire TL2 can be formed by a laminated structure sandwiching an insulating layer (see FIG. 2) or a method using a jumper wire. They are isolated from each other and intersect each other.
  • the width W1 is set so as to lower the impedance as the transmitting coil TC or the receiving coil RC. And the width W2 and the interval SPL and the interval SPT are optimized.
  • a general printed circuit board manufacturing process that is, a manufacturing method including each of the following steps (1) to (5) can be used.
  • a copper-clad laminate in which copper is previously laminated on both sides of a glass epoxy substrate can be used as the material used in the manufacturing process.
  • the copper-clad laminate is simply referred to as "CCL (Copper Clad Laminate)".
  • FIGS. 3 and 4 are diagram showing the relationship between impedance and frequency as an effect of the structure of the power transmission coil TC or the power receiving coil RC of the embodiment
  • FIG. 4 is a diagram showing the structure of the power transmission coil TC or the power receiving coil RC and its effect. It is a figure which shows the relationship with the impedance of.
  • the size is 280 mm in length ⁇ 280 mm in width
  • the pitch PT in the direction perpendicular to the winding direction of the winding line TL is 16 mm (winding line).
  • the power transmission coil TC or power receiving coil RC which has six rotations (6 turns) as the TL
  • the frequency of power transmission when the width W1 and the width W2 and the interval SPL and the interval SPT are changed to various values.
  • the value obtained by multiplying the sum of the width W1 and the width W2 by the impedance are shown.
  • the sum of the width W1 and the width W2 is simply referred to as "width (W1 + W2)".
  • the continuous ⁇ mark in FIG. 3 indicates the frequency in the power transmission coil TC or the power receiving coil RC in which the width W1 and the width W2 are both 6 mm and the interval SPL and the interval SPT are both 2 mm. And the value obtained by multiplying the width (W1 + W2) by the impedance are shown.
  • the continuous * mark indicates the frequency in the power transmission coil TC or the power receiving coil RC in which the width W1 is 7 mm, the width W2 is 3 mm, and the interval SPL and the interval SPT are both 3 mm. And the value obtained by multiplying the width (W1 + W2) by the impedance are shown.
  • FIG. 4 shows the sum of the interval SPL and the interval SPT (horizontal axis in FIG. 4) and the value obtained by multiplying the width (W1 + W2) by the impedance (vertical in FIG. 4) for each structure of the power transmission coil TC shown in FIG. The relationship with the axis) is shown.
  • the transmission coil TC or the power receiving coil RC of the embodiment power transmission is performed at a transmission frequency of 85 kHz.
  • a current of about 40 to 50 Arms (Ampere root mean square) flows through the power transmission coil TC or the power reception coil RC.
  • the impedance is 0.05 ohms when the transmission frequency is 85 kHz
  • the loss ratio in the transmission coil TC or the power receiving coil RC is 0.8% to 1.25%.
  • the transmission efficiency of the power transmission coil TC or the power reception coil RC it is preferable that the loss is suppressed to the above value or less.
  • the product of the impedance and the width (W1 + W2) is 0.5 ohm mm under the above-mentioned conditions regarding loss and the like.
  • the following is preferable. Therefore, based on the experimental results shown in FIGS. 3 and 4, the product of the width (W1 + W2) and the impedance when the transmission frequency is 85 kHz is summarized for each structure of the transmission coil TC in Table 1 below. Will be. In Table 1, the structure in which the product of the impedance and the width (W1 + W2) of the power transmission coil TC or the like is 0.5 ohm mm or more is shown by hatching.
  • the impedance and width (W1 + W2) are suitable for the structure of the power transmission coil TC and the power reception coil RC of the embodiment (that is, when the power transmission frequency is 85 kHz. It can be seen that there are seven types of structures (i) to (vii) below in which the product with) is less than 0.5 ohm mm.
  • the interval SPL When the relationship between the sum of the interval SPT and the product of the width (W1 + W2) and the impedance is confirmed in FIG. 4, when the total value of the interval SPL and the interval SPT is less than around 4.5 mm, the width (W1 + W2) and the impedance It can be seen that the product is rising sharply. From this, it can be seen that at this transmission frequency (85 kHz), it is preferable that the total value of the interval SPL and the interval SPT is 4.5 mm or less.
  • the pitch PT is unified to 16 mm, but the cause of the impedance fluctuation due to the interval SPL and the interval SPT is presumed to be mainly due to the proximity effect, so even if the pitch PT changes. , It is considered that the same effect can be obtained.
  • the pitch PT when the sum of the interval SPL and the interval SPT is 4.5 mm, if the pitch PT is too narrow, the width W1 of the copper thin film wire TL1 or the width W2 of the copper thin film wire TL2 for passing the required current can be obtained. Therefore, in order to secure the required width W1 and the width W2 at half or more of the number of turns, it is necessary to set the pitch PT to 9 mm or more. Further, looking at the relationship between the interval SPL and the interval SPT in detail in Table 1 and the like, it is desirable that the interval SPT is the same as or equal to or greater than the interval SPL. That is, from the viewpoint of the sum of the interval SPL and the interval SPT, as illustrated in FIG. 4, if the sum is longer than 4.5 mm, it is suitable as the structure of the power transmission coil TC and the power reception coil RC of the embodiment. Will be.
  • the copper thin film wire TL1 and the copper thin film wire TL2 parallel to the winding direction thereof.
  • the winding line TL is configured by The sum of the directional spacing SPT is longer than 4.5 millimeters in length, which corresponds to the power transmission frequency of 85 kilohertz. Therefore, as a power transmission coil TC or a power receiving coil RC due to the so-called skin effect or proximity effect, which is caused by forming a winding line TL with parallel copper thin film wires TL1 and copper thin film wires TL2 for weight reduction and cost reduction. Impedance can be reduced, and the weight and cost of the power transmission system S can be reduced, the transmission efficiency can be improved, and the operating temperature can be prevented from rising.
  • the one winding line TL is formed by the copper thin film wire TL1 and the copper thin film wire TL2, and in the one winding line TL, the width W2 of the copper thin film wire TL2 on the inner peripheral side of the power transmission coil TC or the power receiving coil RC. May be formed wider than the width W1 of the copper thin film wire TL1 on the outer peripheral side of the power transmission coil TC or the power reception coil RC ("6_3_4_3", “7_3_3_3”, “8_3_2_3”, “9_3_1_3", “9” in FIG. .5_3_0.5_3 "and” 8_3_3_2 "in each case). Even in this case, since the impedance of the power transmission coil TC or the power reception coil RC can be reduced, it is possible to further achieve both weight reduction and cost reduction, improvement of transmission efficiency, and prevention of an increase in operating temperature. ..
  • the winding line TL is composed of a winding line wound from the outside to the inside and a winding line wound from the inside to the outside, the impedance as the power transmission coil TC or the power receiving coil RC can be further reduced. ..
  • the frequency of power transmission is 85 kHz
  • the sum of the interval SPL and the interval SPT is longer than 4.5 mm. Therefore, the structure of the winding line TL is optimized to be used as the transmission coil TC or the power receiving coil RC. Impedance can be further reduced.
  • interval SPT is 2 mm or more (in the case of "6_3_4_3”, “7_3_3_3”, “8_3_2_3”, “9_3_1_3” and “9.5_3_0.5_3” and "8_3_3_2” in FIG. 3 respectively).
  • the winding line TL has a single layer structure, but in addition to this, two or more winding line TLs having similar configurations to each other are provided with an insulating layer such as a film BF.
  • the structure is such that two or more layers are stacked so that they are in the same position when viewed from one side, and each connection terminal O1 and connection terminal O2 are connected to the power transmission unit TR (in the case of the power transmission device T) or the power reception unit RV (in the case of the power transmission device T). In the case of the power receiving device R), it may be configured to be connected.
  • the impedance as the transmission coil TC or the power receiving coil RC can be increased by increasing the cross-sectional area of the winding line TL constituting the power transmission coil TC or the power receiving coil RC. It can be further reduced.
  • the winding line TL is composed of the copper thin film wire TL1 and the copper thin film wire TL2, but in addition to this, one winding line is formed by three or more copper thin film wires. It may be configured to optimize each interval and the interval between winding lines with respect to the frequency of power transmission.
  • the winding line is composed of three or more copper thin film wires, the impedance as the transmitting coil or the receiving coil can be increased by further increasing the cross-sectional area of the winding line constituting the transmitting coil or the receiving coil. It can be further reduced.
  • the width W1 and the width W2 are the same over the entire circumference of the winding line TL, but other than these.
  • the width of the power transmission coil TC or the power reception coil RC may be widened from the outer circumference to the inner circumference. In this case, the width obtained by adding the widths of the two copper thin film wires constituting the winding line also becomes wider toward the inner peripheral side of the power transmission coil TC or the power reception coil RC.
  • the winding line TL having two or more layers is used.
  • the radial position of the power transmission coil TC or the power reception coil RC of each winding may be the same or different between the two or more layers of winding line TL as in the case of the embodiment. In any of these cases, if two or more layers of winding lines TL are stacked, the same effect as that of the power transmission system S can be obtained.
  • connection mode between the connection terminal O1 and the connection terminal O2 and the power transmission coil TC (or the power receiving coil RC) in the above embodiment is the configuration of the embodiment. That is, in addition to the configuration in which both ends of the winding line TL are connected to the connection terminal O1 and the connection terminal O2 at the outermost peripheral portion thereof, the winding of the winding line is from the outermost peripheral portion to the innermost peripheral portion.
  • the end of the winding line drawn out to the outermost peripheral portion by a jumper wire or the like may be configured to be connected to, for example, the connection terminal O2.
  • the present invention can be used in the field of non-contact power transmission, and is particularly remarkable when applied in the field of power transmission for charging a storage battery mounted on an electric vehicle. The effect is obtained.

Abstract

Provided is a coil, etc., with which it is possible to, e.g., improve the efficiency as wireless power transmission even when a high-frequency current is used. In a power-sending coil TC or a power-receiving coil RC for non-contact power transmission, a winding line TL constituting the power-sending coil TC or the power-receiving coil RC is constituted from a thin-film conductor TL1 and a thin-film conductor TL2 parallel to the winding direction of the winding line TL, and the sum of the spacing SPL between the thin-film conductor TL1 and the thin-film conductor TL2 in a direction perpendicular to the winding direction and the spacing SPT between adjacent winding lines TL in the direction perpendicular to the winding direction is greater than at least a threshold length corresponding to the frequency of power transmission.

Description

コイル、送電装置及び受電装置並びに電力伝送システムCoil, power transmission device and power receiving device and power transmission system
 本発明は、コイル、送電装置及び受電装置並びに電力伝送システムの技術分野に属し、より詳細には、非接触型電力伝送用のコイル及び当該コイルを用いた非接触型の送電装置及び受電装置並びに電力伝送システムの技術分野に属する。 The present invention belongs to the technical fields of coils, power transmission devices and power receiving devices, and power transmission systems, and more specifically, coils for non-contact power transmission, non-contact power transmission devices and power receiving devices using the coils, and power receiving devices. It belongs to the technical field of power transmission systems.
 近年、例えばリチウムイオン電池等からなる蓄電池を搭載した電気自動車が普及しつつある。このような電気自動車では、蓄電池に蓄えた電力を使ってモータを駆動して移動することとなるため、蓄電池への効率のよい充電が求められる。そこで、電気自動車に対して充電用プラグ等を物理的に接続することなくそれに搭載されている蓄電池を充電する方法として、互いに離隔して対向された受電コイルと送電コイルを用いる、いわゆるワイヤレス電力伝送に関する研究が行われている。ワイヤレス電力伝送の方式としては、一般には、電界結合方式、電磁誘導方式及び磁界共鳴方式等がある。これらの方式を、例えば送受電される電力の周波数、水平及び垂直それぞれの方向の位置自由度並びに伝送効率等の観点から比較した場合、電気自動車に搭載されている蓄電池を充電するためのワイヤレス電力伝送の方式としては、コンデンサを使った電界結合方式又はコイルを使った磁界共鳴方式が有望視されており、これらに対する研究開発も活発に行われている。このような背景技術を開示した先行技術文献としては、例えば下記特許文献1が挙げられる。この特許文献1には、1回巻き(1ターン)のループコイルと、5.5回巻き(5.5ターン)のオープンコイルと、を用いて磁界共鳴方式により電力伝送を行うコイルが開示されている。 In recent years, electric vehicles equipped with storage batteries such as lithium-ion batteries are becoming widespread. In such an electric vehicle, the electric power stored in the storage battery is used to drive and move the motor, so that the storage battery is required to be charged efficiently. Therefore, as a method of charging the storage battery mounted on an electric vehicle without physically connecting a charging plug or the like, so-called wireless power transmission using a power receiving coil and a power transmission coil that are separated from each other and opposed to each other is used. Is being researched. The wireless power transmission method generally includes an electric field coupling method, an electromagnetic induction method, a magnetic field resonance method, and the like. When these methods are compared from the viewpoints of, for example, the frequency of power transmitted and received, the degree of positional freedom in each of the horizontal and vertical directions, and the transmission efficiency, wireless power for charging the storage battery mounted on the electric vehicle is used. As a transmission method, an electric field coupling method using a capacitor or a magnetic field resonance method using a coil is promising, and research and development on these are being actively carried out. Examples of the prior art document that discloses such a background technique include the following Patent Document 1. Patent Document 1 discloses a coil that transmits power by a magnetic field resonance method using a one-turn (1 turn) loop coil and a 5.5-turn (5.5 turn) open coil. ing.
 一方、上記ワイヤレス電力伝送により送受電される電力の周波数は、それを担う機器ごとに例えば法律により予め定められており、上記電気自動車に対する電力伝送の場合には85キロヘルツの高周波とされている。ここで一般に、高周波の電流を導体に流すと、その電流密度は、導体の表面で高く、表面からその中心に向かうほど低くなることが知られている。またこの点については、電流の周波数が高くなるほど電流が表面へ集中することとなるので、この結果として、その導体の交流抵抗は高くなってしまう。この現象は、いわゆる「導体の表皮効果」として知られているところである。なお以下の説明において、高周波の電流を導体に流す際の当該導体における交流抵抗を、単に「インピーダンス」と称する。 On the other hand, the frequency of power transmitted and received by the wireless power transmission is predetermined by law for each device responsible for it, and in the case of power transmission to the electric vehicle, it is set to a high frequency of 85 kilohertz. Here, it is generally known that when a high-frequency current is passed through a conductor, the current density is high on the surface of the conductor and decreases toward the center of the conductor. Regarding this point, the higher the frequency of the current, the more the current concentrates on the surface, and as a result, the AC resistance of the conductor increases. This phenomenon is known as the so-called "skin effect of conductors". In the following description, the AC resistance in the conductor when a high frequency current is passed through the conductor is simply referred to as "impedance".
特開2011-200045号公報Japanese Unexamined Patent Publication No. 2011-2000
 他方、電気自動車用の上述したワイヤレス電力伝送(非接触給電)では、高周波(例えば上記85キロヘルツ)の電流を用いつつ最小でも3.7キロワットの高出力の電力を伝送すること(即ちコイルに流すこと)が必要とされる。よって、この様な高出力の電力(電流)を流す結果として上記表皮効果によって導体(コイル)の抵抗が高くなると、ジュール熱の発生によりコイルとしての損失が大きくなり、ワイヤレス電力伝送としての効率を低下させてしまうという問題点があった。 On the other hand, in the above-mentioned wireless power transmission (contactless power supply) for electric vehicles, high-frequency (for example, 85 kW) current is used while transmitting high output power of at least 3.7 kW (that is, flowing through a coil). That) is required. Therefore, if the resistance of the conductor (coil) increases due to the skin effect as a result of passing such high output power (current), the loss as a coil increases due to the generation of Joule heat, and the efficiency as wireless power transmission is improved. There was a problem of lowering it.
 また、上記表皮効果と同様にワイヤレス電力伝送としての効率を低下させてしまう電気的な現象としては、コイルとしての巻回において導体同士が近接することに起因する、いわゆる「導体の近接効果」が挙げられる。よって、この近接効果による抵抗の上昇についても、対策を講じる必要がある。 Further, as an electrical phenomenon that reduces the efficiency of wireless power transmission as in the above skin effect, the so-called "conductor proximity effect" caused by the proximity of conductors in winding as a coil is Can be mentioned. Therefore, it is necessary to take measures against the increase in resistance due to this proximity effect.
 そこで本発明は、上記の問題点及び要請に鑑みて為されたもので、その課題の一例は、例えば85キロヘルツ等の高周波の電流を用いる場合でもワイヤレス電力伝送としての効率を向上させること等が可能なコイル及び当該コイルを用いた非接触型の送電装置及び受電装置並びに電力伝送システムを提供することにある。 Therefore, the present invention has been made in view of the above problems and requirements, and one example of the problem is to improve the efficiency of wireless power transmission even when a high frequency current such as 85 kilohertz is used. It is an object of the present invention to provide a possible coil, a non-contact type power transmission device and a power receiving device using the coil, and a power transmission system.
 上記の課題を解決するために、請求項1に記載の発明は、非接触型電力伝送用のコイルにおいて、当該コイルを構成する巻回線が、当該巻回線の巻回方向に並行し且つそれぞれが薄膜導体からなる複数の並行巻回線により構成されており、一の前記巻回線を構成する前記並行巻回線の前記巻回方向に垂直な方向の間隔と、隣接する前記巻回線の当該垂直な方向の間隔と、の和が、少なくとも前記コイルによる電力伝送の周波数に対応した閾値長さより長いように構成されている。 In order to solve the above problems, the invention according to claim 1 is a coil for non-contact power transmission in which the winding lines constituting the coil are parallel to each other in the winding direction of the winding line and each of them is parallel to each other. It is composed of a plurality of parallel winding lines made of thin film conductors, and the spacing in the direction perpendicular to the winding direction of the parallel winding line constituting one winding line and the vertical direction of the adjacent winding line. The sum of the intervals and the intervals is configured to be at least longer than the threshold length corresponding to the frequency of power transmission by the coil.
 請求項1に記載の発明によれば、その巻回方向に並行し且つ薄膜導体からなる複数の並行巻回線により巻回線を構成する場合に、一の巻回線を構成する並行巻回線の巻回方向に垂直な方向の間隔と、隣接する巻回線の当該垂直な方向の間隔と、の和が、少なくとも電力伝送の周波数に対応した長さより長くなっている。よって、軽量化及び低コスト化のために並行巻回線を薄膜導体により形成することに起因する、いわゆる表皮効果又は近接効果によるコイルとしてのインピーダンスを低減することができ、軽量化及び低コスト化と、伝送効率の向上及び動作温度の上昇の防止と、を両立させることができる。 According to the first aspect of the present invention, when a winding line is configured by a plurality of parallel winding lines parallel to the winding direction and made of a thin film conductor, the winding of the parallel winding line constituting one winding line is formed. The sum of the directional spacing and the vertical spacing of adjacent winding lines is at least longer than the length corresponding to the frequency of power transfer. Therefore, it is possible to reduce the impedance as a coil due to the so-called skin effect or proximity effect caused by forming a parallel winding line with a thin film conductor for weight reduction and cost reduction, resulting in weight reduction and cost reduction. It is possible to improve the transmission efficiency and prevent the operating temperature from rising at the same time.
 上記の課題を解決するために、請求項2に記載の発明は、請求項1に記載のコイルにおいて、一の前記巻回線は二の前記並行巻回線により構成されており、一の前記巻回線において、前記コイルの内周側の前記並行巻回線の幅が、当該コイルの外周側の前記並行巻回線の幅より広いように構成されている。 In order to solve the above problems, the invention according to claim 2 comprises the coil according to claim 1, wherein one winding line is composed of two parallel winding lines, and one winding line is formed. The width of the parallel winding line on the inner peripheral side of the coil is wider than the width of the parallel winding line on the outer peripheral side of the coil.
 請求項2に記載の発明によれば、請求項1に記載の発明の作用に加えて、一の巻回線は二の並行巻回線により構成されており、一の巻回線において、コイルの内周側の並行巻回線の幅が、コイルの外周側の並行巻回線の幅より広くなっている。よって、コイルとしてのインピーダンスを低減することができることで、軽量化及び低コスト化と、伝送効率の向上及び動作温度の上昇の防止と、を両立させることができる。 According to the invention of claim 2, in addition to the action of the invention of claim 1, one winding line is composed of two parallel winding lines, and in one winding line, the inner circumference of the coil. The width of the parallel winding line on the side is wider than the width of the parallel winding line on the outer peripheral side of the coil. Therefore, since the impedance of the coil can be reduced, it is possible to achieve both weight reduction and cost reduction, improvement of transmission efficiency, and prevention of an increase in operating temperature.
 上記の課題を解決するために、請求項3に記載の発明は、請求項1又は請求項2に記載のコイルにおいて、前記巻回線は、当該コイルの外周側から内周側に向けて巻回された前記並行巻回線により構成される外内巻回線と、前記内周側から前記外周側に向けて巻回された前記並行巻回線により構成される内外巻回線と、により構成されている。 In order to solve the above problems, the invention according to claim 3 is the coil according to claim 1 or 2, wherein the winding line is wound from the outer peripheral side to the inner peripheral side of the coil. It is composed of an outer inner winding line composed of the parallel winding line and an inner / outer winding line composed of the parallel winding line wound from the inner peripheral side toward the outer peripheral side.
 請求項3に記載の発明によれば、請求項1又は請求項2に記載の発明の作用に加えて、巻回線が外内巻回線と内外巻回線とにより構成されているので、コイルとしてのインピーダンスをより低減することができる。 According to the invention of claim 3, in addition to the action of the invention of claim 1 or 2, since the winding line is composed of an outer inner winding line and an inner / outer winding line, it can be used as a coil. Impedance can be further reduced.
 上記の課題を解決するために、請求項4に記載の発明は、請求項1から請求項3のいずれか一項に記載のコイルにおいて、前記巻回線が積層構造とされている。 In order to solve the above problems, in the invention according to claim 4, the winding line is a laminated structure in the coil according to any one of claims 1 to 3.
 請求項4に記載の発明によれば、請求項1から請求項3のいずれか一項に記載の発明の作用に加えて、巻回線が積層構造とされているので、コイルを構成する巻回線としての断面積を増やすことで、コイルとしてのインピーダンスを更に低減することができる。 According to the invention of claim 4, in addition to the operation of the invention according to any one of claims 1 to 3, since the winding line has a laminated structure, the winding line constituting the coil By increasing the cross-sectional area of the coil, the impedance as a coil can be further reduced.
 上記の課題を解決するために、請求項5に記載の発明は、請求項1から請求項4のいずれか一項に記載のコイルにおいて、前記周波数が85キロヘルツである場合に、前記巻回線の巻回における前記垂直な方向の前記閾値長さが4.5ミリメートルであるように構成されている。 In order to solve the above problems, the invention according to claim 5 is the coil according to any one of claims 1 to 4, wherein the frequency of the coil is 85 kHz. The threshold length in the vertical direction in winding is configured to be 4.5 mm.
 請求項5に記載の発明によれば、請求項1から請求項4のいずれか一項に記載の発明の作用に加えて、電力伝送の周波数が85キロヘルツである場合に、一の巻回線を構成する並行巻回線の巻回方向に垂直な方向の間隔と、隣接する巻回線の当該垂直な方向の間隔と、の和が閾値長さとしての4.5ミリメートルより長いので、巻回線の構造を最適化してコイルとしてのインピーダンスをより低減することができる。 According to the invention of claim 5, in addition to the operation of the invention of any one of claims 1 to 4, when the frequency of power transmission is 85 kHz, one winding line is used. The structure of the winding line because the sum of the spacing in the direction perpendicular to the winding direction of the constituent parallel winding lines and the spacing in the vertical direction of the adjacent winding lines is longer than 4.5 mm as the threshold length. Can be optimized to further reduce the impedance as a coil.
 上記の課題を解決するために、請求項6に記載の発明は、請求項5に記載のコイルにおいて、隣接する前記巻回線の前記垂直な方向の間隔が2ミリメートル以上であるように構成されている。 In order to solve the above problems, the invention according to claim 6 is configured such that the distance between the adjacent winding lines in the vertical direction is 2 mm or more in the coil according to claim 5. There is.
 請求項6に記載の発明によれば、請求項5に記載の発明の作用に加えて、隣接する巻回線のその巻回方向に垂直な方向の間隔が2ミリメートル以上であるので、巻回線の構造を最適化してコイルとしてのインピーダンスをより低減することができる。 According to the invention of claim 6, in addition to the action of the invention of claim 5, the distance between the adjacent winding lines in the direction perpendicular to the winding direction is 2 mm or more. The structure can be optimized to further reduce the impedance as a coil.
 上記の課題を解決するために、請求項7に記載の発明は、送電装置と、当該送電装置から離隔した受電装置と、により構成され、前記送電装置から非接触で前記受電装置に電力を伝送する電力伝送システムに含まれる前記送電装置において、請求項1から請求項6のいずれか一項に記載の前記コイルである送電コイルであって、前記受電装置に対向して配置される送電コイルと、伝送すべき電力を前記送電コイルに出力する出力手段と、を備える。 In order to solve the above problems, the invention according to claim 7 is composed of a power transmission device and a power receiving device separated from the power transmission device, and transmits power from the power transmission device to the power receiving device in a non-contact manner. The power transmission coil included in the power transmission system, which is the coil according to any one of claims 1 to 6, is a power transmission coil arranged to face the power receiving device. , An output means for outputting electric power to be transmitted to the power transmission coil.
 上記の課題を解決するために、請求項8に記載の発明は、送電装置と、当該送電装置から離隔した受電装置と、により構成され、前記送電装置から非接触で前記受電装置に電力を伝送する電力伝送システムに含まれる前記受電装置において、請求項1から請求項6のいずれか一項に記載の前記コイルである受電コイルであって、前記送電装置に対向して配置される受電コイルと、当該受電コイルに接続された入力手段と、を備える。 In order to solve the above problems, the invention according to claim 8 is composed of a power transmission device and a power receiving device separated from the power transmission device, and transmits power from the power transmission device to the power receiving device in a non-contact manner. In the power receiving device included in the power transmission system, the power receiving coil which is the coil according to any one of claims 1 to 6 and which is arranged to face the power transmission device. , And an input means connected to the power receiving coil.
 上記の課題を解決するために、請求項9に記載の発明は、請求項7に記載の送電装置と、当該送電装置から離隔し、且つ前記送電コイルに対向して配置される受電装置であって、前記送電装置から送信された電力を受電する受電装置と、を備える。 In order to solve the above problems, the invention according to claim 9 is the power transmission device according to claim 7 and a power receiving device that is separated from the power transmission device and is arranged so as to face the power transmission coil. A power receiving device for receiving the electric power transmitted from the power transmitting device is provided.
 上記の課題を解決するために、請求項10に記載の発明は、送電装置と、請求項8に記載の受電装置であって、前記送電装置から離隔し且つ前記受電コイルが当該送電装置に対向して配置され、前記送電装置から送信された電力を受電する受電装置と、を備える。 In order to solve the above problems, the invention according to claim 10 is the power transmission device and the power receiving device according to claim 8, which are separated from the power transmission device and the power receiving coil faces the power transmission device. It is provided with a power receiving device for receiving the electric power transmitted from the power transmitting device.
 請求項7から請求項10のいずれか一項に記載の発明によれば、電力伝送システムを構成する送電装置に備えられた送電コイル又は受電装置に備えられた受電コイルの少なくともいずれか一方が請求項1から請求項6のいずれか一項に記載のコイルであるので、当該送電コイル又は当該受電コイルを対向させて非接触型の電力伝送を行った場合に、上記表皮効果又は上記近接効果によるコイルとしてのインピーダンスを低減することができ、軽量化及び低コスト化と、伝送効率の向上及び動作温度の上昇の防止と、を両立させることができる。 According to the invention according to any one of claims 7 to 10, at least one of the transmission coil provided in the power transmission device constituting the power transmission system and the power receiving coil provided in the power receiving device is claimed. Since the coil according to any one of items 1 to 6, the skin effect or the proximity effect is applied when the power transmission coil or the power receiving coil is opposed to each other to perform non-contact power transmission. The impedance of the coil can be reduced, and both weight reduction and cost reduction, improvement of transmission efficiency, and prevention of an increase in operating temperature can be achieved at the same time.
  本発明によれば、その巻回方向に並行し且つ薄膜導体からなる複数の並行巻回線により巻回線を構成する場合に、一の巻回線を構成する並行巻回線の巻回方向に垂直な方向の間隔と、隣接する巻回線の当該垂直な方向の間隔と、の和が、少なくとも電力伝送の周波数に対応した長さより長くなっている。 According to the present invention, when a winding line is configured by a plurality of parallel winding lines parallel to the winding direction and made of thin film conductors, a direction perpendicular to the winding direction of the parallel winding lines constituting one winding line. The sum of the spacing and the spacing of adjacent winding lines in the vertical direction is at least longer than the length corresponding to the frequency of power transfer.
 従って、軽量化及び低コスト化のために並行巻回線を薄膜導体により形成することに起因する、いわゆる表皮効果又は近接効果によるコイルとしてのインピーダンスを低減することができ、軽量化及び低コスト化と、伝送効率の向上及び動作温度の上昇の防止と、を両立させることができる。 Therefore, it is possible to reduce the impedance as a coil due to the so-called skin effect or proximity effect caused by forming a parallel winding line with a thin film conductor for weight reduction and cost reduction, resulting in weight reduction and cost reduction. It is possible to improve the transmission efficiency and prevent the operating temperature from rising at the same time.
実施形態の電力伝送システムの概要構成を示すブロック図である。It is a block diagram which shows the outline structure of the power transmission system of an embodiment. 実施形態の送電コイルの構造を示す平面図である。It is a top view which shows the structure of the power transmission coil of an embodiment. 実施形態の送電コイル及び受電コイルの構造による効果としてのインピーダンスと周波数との関係を示す図である。It is a figure which shows the relationship between the impedance and the frequency as an effect by the structure of the power transmission coil and the power reception coil of an embodiment. 実施形態の送電コイル及び受電コイルの構造と当該構造による効果としてのインピーダンスとの関係を示す図である。It is a figure which shows the relationship between the structure of the power transmission coil and the power receiving coil of embodiment, and impedance as an effect by the structure.
 次に、本発明を実施するための形態について、図1乃至図4を用いて説明する。なお、以下に説明する実施形態及び変形形態は、電気自動車に搭載されている蓄電池を充電するための電力を、当該蓄電池を備えた電気自動車に対して磁界共鳴方式により非接触で電送する電力伝送システムに対して、本発明を適用した場合の実施形態及び変形形態である。 Next, a mode for carrying out the present invention will be described with reference to FIGS. 1 to 4. In the embodiments and modifications described below, electric power for charging a storage battery mounted on an electric vehicle is transmitted to an electric vehicle equipped with the storage battery in a non-contact manner by a magnetic field resonance method. It is an embodiment and a modification when this invention is applied to a system.
 ここで、実施形態及び変形形態の磁界共鳴方式による電力伝送システムは、電力を送る後述の送電コイルと、当該送電コイルから離隔して向き合うように(即ち対向するように)配置され且つ送電コイルから送られた電力を受電する後述の受電コイルと、を備える。 Here, the electric power transmission system by the magnetic field resonance method of the embodiment and the modified form is arranged so as to face (that is, face each other) away from the power transmission coil described later, and is separated from the power transmission coil, and from the power transmission coil. It is provided with a power receiving coil, which will be described later, for receiving the transmitted power.
(I)実施形態の電力伝送システムの全体構成及び動作について
 先ず、実施形態の電力伝送システムの全体構成及び動作について、図1を用いて説明する。なお図1は、実施形態の電力伝送システムの概要構成を示すブロック図である。
(I) Overall configuration and operation of the power transmission system of the embodiment First, the overall configuration and operation of the power transmission system of the embodiment will be described with reference to FIG. Note that FIG. 1 is a block diagram showing an outline configuration of the power transmission system of the embodiment.
 図1に示すように、実施形態の電力伝送システムSは、受電部RV及び上記受電コイルRCを備えた受電装置Rと、送電部TR及び上記送電コイルTCを備えた送電装置Tと、により構成されている。このとき受電装置Rは上記電気自動車に搭載され、且つ当該電気自動車に搭載されている図示しない蓄電池に接続されている。一方送電装置Tは、当該電気自動車が移動又は停車する位置の地面に設置されている。そして、当該蓄電池を充電する場合、受電装置Rの受電コイルRCと送電装置Tの送電コイルTCとが対向するように電気自動車が運転又は停車される。なお、実施形態の電力伝送システムSによる上記蓄電池の充電に際しては、停車している電気自動車に搭載されている受電装置Rに対して、その停車位置の下方の地面に設置された送電装置Tの送電コイルTCを介して、当該送電装置Tから電力を伝送するように構成することができる。またこの他、移動中の電気自動車に搭載されている受電装置Rに対して、その電気自動車が移動している道路の一定距離の区間に設置された複数の送電装置Tの送電コイルTCを介して、当該送電装置Tから連続的に電力を伝送するように構成してもよい。このとき、送電部TRが本発明の「出力手段」の一例に相当し、受電部RVが本発明の「入力手段」の一例に相当する。 As shown in FIG. 1, the power transmission system S of the embodiment includes a power receiving device R including a power receiving unit RV and the power receiving coil RC, and a power transmission device T including a power transmission unit TR and the power transmission coil TC. Has been done. At this time, the power receiving device R is mounted on the electric vehicle and is connected to a storage battery (not shown) mounted on the electric vehicle. On the other hand, the power transmission device T is installed on the ground where the electric vehicle moves or stops. Then, when charging the storage battery, the electric vehicle is operated or stopped so that the power receiving coil RC of the power receiving device R and the power transmission coil TC of the power transmission device T face each other. When charging the storage battery by the power transmission system S of the embodiment, the power transmission device T installed on the ground below the stop position of the power receiving device R mounted on the stopped electric vehicle is used. It can be configured to transmit electric power from the power transmission device T via the power transmission coil TC. In addition, for the power receiving device R mounted on the moving electric vehicle, via the power transmission coil TC of a plurality of power transmission devices T installed in a certain distance section of the road on which the electric vehicle is moving. Therefore, it may be configured to continuously transmit electric power from the power transmission device T. At this time, the power transmission unit TR corresponds to an example of the "output means" of the present invention, and the power receiving unit RV corresponds to an example of the "input means" of the present invention.
 一方上記送電コイルTCには、送電すべき電力が送電部TRから入力される。そして受電コイルRCは、磁界共鳴方式により送電コイルTCから受電した電力を受電部RVに出力する。このとき、送電コイルTC又は受電コイルRCが本発明の「コイル」の一例にそれぞれ相当する。 On the other hand, the power to be transmitted is input to the power transmission coil TC from the power transmission unit TR. Then, the power receiving coil RC outputs the electric power received from the power transmission coil TC by the magnetic field resonance method to the power receiving unit RV. At this time, the power transmission coil TC or the power reception coil RC correspond to an example of the "coil" of the present invention, respectively.
 以上の構成において、送電装置Tの送電部TRは、例えば電力伝送システムSが用いられる国における電波法等の法規等に対応しつつ、受電装置Rに伝送すべき電力を送電コイルTCに出力する。このとき上記法規等は、例えば人体への影響を考慮して漏洩磁界が予め決められた所定のレベル以下になるように規制している。また、全ての送電装置Tと上記受電装置Rとの間における相互接続利用が可能となるためには、結果的に、両者が予め決められた所定範囲の周波数を利用する必要があり、このため上記所定範囲の周波数又は周波数帯域は、上記法規等としてのISO(International Organization for Standardization)又はIEC(International Electrotechnical Commission)等の国際機関の推奨に従う必要がある。また、送電コイルTCと受電コイルRCとの間の所定の位置ずれも考慮した伝送効率の下限値も上記国際機関又は上記法規等により規定されているため、電力伝送システムSとしても高い電力伝送効率が要求される。 In the above configuration, the power transmission unit TR of the power transmission device T outputs the power to be transmitted to the power reception device R to the power transmission coil TC while complying with the regulations such as the Radio Law in the country where the power transmission system S is used. .. At this time, the above-mentioned regulations and the like regulate the leakage magnetic field so as to be below a predetermined level in consideration of the influence on the human body, for example. Further, in order to be able to use the interconnection between all the power transmission devices T and the power receiving device R, as a result, it is necessary for both to use a frequency within a predetermined range, which is why. The frequency or frequency band in the predetermined range must follow the recommendations of international organizations such as ISO (International Organization for Standardization) or IEC (International Electrotechnical Commission) as the above regulations. Further, since the lower limit of the transmission efficiency considering the predetermined positional deviation between the power transmission coil TC and the power reception coil RC is also specified by the above international organization or the above regulations, the power transmission efficiency is high as the power transmission system S. Is required.
 一方、上記磁界共鳴方式により送電コイルTCからの電力を受電した受電装置Rの受電コイルRCは、当該受電した電力を受電部RVに出力する。これにより受電部RVは、当該電力に対応した出力(例えば、上記85キロヘルツの高周波電力となる)を、例えば図示しない電力変換ユニットによりDC(直流)電流に変換し、電気自動車の蓄電池に出力する。これにより当該蓄電池には、必要量の電力が充電される。 On the other hand, the power receiving coil RC of the power receiving device R that receives the power from the power transmission coil TC by the magnetic field resonance method outputs the received power to the power receiving unit RV. As a result, the power receiving unit RV converts the output corresponding to the electric power (for example, the high frequency power of 85 kilohertz) into a DC (direct current) current by a power conversion unit (not shown) and outputs the output to the storage battery of the electric vehicle. .. As a result, the storage battery is charged with a required amount of electric power.
(II)送電コイルTC(受電コイルRC)の構成について
 次に、上述した実施形態の電力伝送システムSに用いられる、実施形態の送電コイルTC及び受電コイルRCの構成について、図2を用いて説明する。なお、実施形態の送電コイルTCと受電コイルRCとは、基本的に同じ構成を備える。よって以下の説明では、送電コイルTCについて、その構造を説明する。また、図2は実施形態の送電コイルTCの構造を示す平面図であり、送電装置Tにおいて、送電部TR側から送電コイルTCを見た場合(図1参照)の平面図である。
(II) Configuration of Power Transmission Coil TC (Power Receiving Coil RC) Next, the configuration of the power transmission coil TC and power receiving coil RC of the embodiment used in the power transmission system S of the above-described embodiment will be described with reference to FIG. do. The power transmission coil TC and the power reception coil RC of the embodiment basically have the same configuration. Therefore, in the following description, the structure of the power transmission coil TC will be described. Further, FIG. 2 is a plan view showing the structure of the power transmission coil TC of the embodiment, and is a plan view of the power transmission device T when the power transmission coil TC is viewed from the power transmission unit TR side (see FIG. 1).
 図2にその平面図を示すように、実施形態の送電コイルTCは、後述する並行する二本の例えば銅薄膜線TL1及び銅薄膜線TL2が並行して巻回されてなる巻回線TLが、絶縁性のフィルムBF(詳細は後述する)上に積層されて構成される。この構成において、銅薄膜線TL1及び銅薄膜線TL2のそれぞれが、本発明の「並行巻回線」の一例に相当する。ここで実施形態では、送電コイルTCの積層のためにフィルムBFを用いているが、これらの他に、ガラスエポキシ材料等の絶縁性の材料を用いることもできる。また、送電コイルTCとして発生した熱を効率良く放熱するため、例えばセラミック粒子等を分散した薄膜化材料を用いることもできる。更にまた、巻回線TLを構成する銅薄膜線TL1及び銅薄膜線TL2の巻回の中心は、各巻回において相互に同一又は略同一とされている。 As shown in the plan view in FIG. 2, the power transmission coil TC of the embodiment has a winding line TL in which two parallel parallel copper thin film wires TL1 and copper thin film wire TL2, which will be described later, are wound in parallel. It is configured by being laminated on an insulating film BF (details will be described later). In this configuration, each of the copper thin film wire TL1 and the copper thin film wire TL2 corresponds to an example of the "parallel winding line" of the present invention. Here, in the embodiment, the film BF is used for laminating the power transmission coil TC, but in addition to these, an insulating material such as a glass epoxy material can also be used. Further, in order to efficiently dissipate the heat generated as the power transmission coil TC, for example, a thin film material in which ceramic particles or the like are dispersed can be used. Furthermore, the winding centers of the copper thin film wire TL1 and the copper thin film wire TL2 constituting the winding line TL are the same or substantially the same in each winding.
 図2に示すように、送電コイルTCは、同じ層内を相互に並行して巻回されている銅薄膜線TL1及び銅薄膜線TL2からなる巻回線TLの巻回により構成されており、その最外周部の一辺に、銅薄膜線TL1及び銅薄膜線TL2を接続すると共に巻回線TLを送電部TRに接続するための接続用端子O1及び接続用端子O2を有している。そして送電コイルTCは、並行する銅薄膜線TL1及び銅薄膜線TL2からなる巻回線TLが六回転(6ターン)巻回されて構成されており、銅薄膜線TL1及び銅薄膜線TL2それぞれ(即ち巻回線TL)の両端部(図2に示す場合は右辺部の中央)が上記接続用端子O1及び上記接続用端子O2とされている。なお図2に例示する場合の上記銅薄膜線TL1及び銅薄膜線TL2のそれぞれは、巻回線TLの全周に渡って同一幅及び同一厚さとされている。更に巻回線TLとしては、図2におけるその上辺部、下辺部、左辺部及び右辺部それぞれに直線部が設けられており、それぞれの直線部が、略同心円弧状の曲線部により接続されている。また、銅薄膜線TL1と銅薄膜線TL2との交差部分は、絶縁層を挟んだ積層構造(図2参照)又はジャンパ線を用いる方法等により、当該銅薄膜線TL1と銅薄膜線TL2との間は絶縁されつつ、相互に交差されている。なお後述するように、実施形態の送電コイルTC又は受電コイルRCでは、図2に示す銅薄膜線TL1の幅W1及び銅薄膜線TL2の幅W2、並びに巻回線TLの一巻回における銅薄膜線TL1と銅薄膜線TL2との間の間隔SPL及び相隣接する巻回線TL間の間隔SPTを様々に変更した場合において、送電コイルTC又は受電コイルRCとしてのインピーダンスを低くするように、上記幅W1及び上記幅W2並びに上記間隔SPL及び上記間隔SPTを最適化している。 As shown in FIG. 2, the power transmission coil TC is composed of a winding line TL composed of a copper thin film wire TL1 and a copper thin film wire TL2 wound in parallel with each other in the same layer. A copper thin film wire TL1 and a copper thin film wire TL2 are connected to one side of the outermost peripheral portion, and a connection terminal O1 and a connection terminal O2 for connecting the winding line TL to the power transmission unit TR are provided. The power transmission coil TC is composed of a winding line TL composed of parallel copper thin film wires TL1 and copper thin film wires TL2 wound six times (6 turns), and the copper thin film wires TL1 and copper thin film wires TL2 are respectively (that is,). Both ends of the winding line TL) (center of the right side in the case of FIG. 2) are the connection terminal O1 and the connection terminal O2. It should be noted that each of the copper thin film wire TL1 and the copper thin film wire TL2 in the case illustrated in FIG. 2 has the same width and the same thickness over the entire circumference of the winding line TL. Further, as the winding line TL, a straight line portion is provided on each of the upper side portion, the lower side portion, the left side portion, and the right side portion in FIG. 2, and each straight line portion is connected by a substantially concentric arcuate curved portion. Further, at the intersection of the copper thin film wire TL1 and the copper thin film wire TL2, the copper thin film wire TL1 and the copper thin film wire TL2 can be formed by a laminated structure sandwiching an insulating layer (see FIG. 2) or a method using a jumper wire. They are isolated from each other and intersect each other. As will be described later, in the transmission coil TC or the power receiving coil RC of the embodiment, the width W1 of the copper thin film wire TL1 and the width W2 of the copper thin film wire TL2 shown in FIG. When the spacing SPL between the TL1 and the copper thin film wire TL2 and the spacing SPT between the adjacent winding lines TL are variously changed, the width W1 is set so as to lower the impedance as the transmitting coil TC or the receiving coil RC. And the width W2 and the interval SPL and the interval SPT are optimized.
(III)送電コイルTC及び受電コイルRCの製造方法について
 次に、実施形態の送電コイルTC及び受電コイルRCの製造方法について、その概要を説明する。
(III) Manufacturing Method of Power Transmission Coil TC and Power Receiving Coil RC Next, the outline of the manufacturing method of the power transmission coil TC and the power receiving coil RC of the embodiment will be described.
 当該製造方法としては、一般的なプリント基板の製造工程、即ち下記(1)乃至(5)の各工程を含む製造方法等を用いることができる。このとき、当該製造工程に用いられる材料としては、例えば、ガラスエポキシ基板の両面に銅が予め積層された銅張積層板を用いることができる。以下の説明では、当該銅張積層板を、単に「CCL(Copper Clad Laminate)」と称する。
(1)上記CCLにおける両面の銅を接合する(導通させる)箇所にドリルで穴を空け、無電解めっき→電界めっきの順に銅を積層して上記両面の銅を表と裏で電気的に接合する。(いわゆるThrough holeを形成する)
(2)上記(1)で形成された銅薄膜の一方の面上にレジストを塗布
(3)上記(2)で塗布したレジストを銅薄膜線TL1及び銅薄膜線TL2(接続用端子O1及び接続用端子O2を含む)にパターニング
(4)上記(3)のパターニング後にエッチング処理を施し、巻回線TLとしての銅薄膜線TL1及び銅薄膜線TL2を形成
(5)接続用端子O1及び接続用端子O2と、送電部TR(送電装置Tの場合)又は受電部RV(受電装置Rの場合)とを接続
As the manufacturing method, a general printed circuit board manufacturing process, that is, a manufacturing method including each of the following steps (1) to (5) can be used. At this time, as the material used in the manufacturing process, for example, a copper-clad laminate in which copper is previously laminated on both sides of a glass epoxy substrate can be used. In the following description, the copper-clad laminate is simply referred to as "CCL (Copper Clad Laminate)".
(1) Make a hole with a drill at the place where the copper on both sides is joined (conducted) in the CCL, stack the copper in the order of electroless plating → electroplating, and electrically join the copper on both sides on the front and back. do. (Forms a so-called Through hole)
(2) Apply a resist on one surface of the copper thin film formed in (1) above (3) Apply the resist applied in (2) above to the copper thin film wire TL1 and the copper thin film wire TL2 (connection terminal O1 and connection). (Including terminal O2) is patterned (4) Etched after patterning in (3) above to form copper thin film wire TL1 and copper thin film wire TL2 as winding line TL (5) Connection terminal O1 and connection terminal. Connect O2 to the power transmission unit TR (in the case of the power transmission device T) or the power reception unit RV (in the case of the power reception device R).
 次に、図2に示す構成を基本とする実施形態の送電コイルTC又は受電コイルRCにおいて、上記幅W1及び上記幅W2並びに上記間隔SPL及び上記間隔SPTを種々の値に変更してインピーダンスを計測した結果(シミュレーション結果)について、図3及び図4を用いて説明する。なお、図3は実施形態の送電コイルTC又は受電コイルRCの構造による効果としてのインピーダンスと周波数との関係を示す図であり、図4は当該送電コイルTC又は受電コイルRCの構造とその効果としてのインピーダンスとの関係を示す図である。 Next, in the transmission coil TC or the power receiving coil RC of the embodiment based on the configuration shown in FIG. 2, the width W1 and the width W2 and the interval SPL and the interval SPT are changed to various values to measure the impedance. The results (simulation results) will be described with reference to FIGS. 3 and 4. 3 is a diagram showing the relationship between impedance and frequency as an effect of the structure of the power transmission coil TC or the power receiving coil RC of the embodiment, and FIG. 4 is a diagram showing the structure of the power transmission coil TC or the power receiving coil RC and its effect. It is a figure which shows the relationship with the impedance of.
 このとき図3は、その大きさ(図2参照)が縦280ミリメートル×横280ミリメートルであり、巻回線TLの巻回方向に垂直な方向のピッチPT(図2参照)が16ミリメートル(巻回線TLとしては六回転(6ターン))である送電コイルTC又は受電コイルRCにおいて、上記幅W1及び上記幅W2並びに上記間隔SPL及び上記間隔SPTを種々の値に変更した場合の、電力伝送の周波数と、上記幅W1と上記幅W2との和にインピーダンスを乗じた値との関係を示している。なお以下の説明において、上記幅W1と上記幅W2との和を、単に「幅(W1+W2)」と示す。そして例えば、図3における連続する▲印は、上記幅W1及び上記幅W2が共に6ミリメートルであり且つ上記間隔SPL及び上記間隔SPTが共に2ミリメートルである送電コイルTC又は受電コイルRCにおける、当該周波数と、幅(W1+W2)にインピーダンスを乗じた値との関係を示している。また例えば、連続する*印は、上記幅W1が7ミリメートルであり上記幅W2が3ミリメートルであると共に上記間隔SPL及び上記間隔SPTが共に3ミリメートルである送電コイルTC又は受電コイルRCにおける、当該周波数と、幅(W1+W2)にインピーダンスを乗じた値との関係を示している。このとき、図3の凡例では、「(▲印等)(幅W2(内周側)の値)_(間隔SPLの値)_(幅W1(外周側)の値)_(間隔SPTの値)」の形式で、各構造を示している。また、連続する「-」印で示される「12_4」は、巻回線が幅12ミリメートルの単線であり、当該巻回線の間隔が4ミリメートルである構造を示している。 At this time, in FIG. 3, the size (see FIG. 2) is 280 mm in length × 280 mm in width, and the pitch PT (see FIG. 2) in the direction perpendicular to the winding direction of the winding line TL is 16 mm (winding line). In the power transmission coil TC or power receiving coil RC, which has six rotations (6 turns) as the TL, the frequency of power transmission when the width W1 and the width W2 and the interval SPL and the interval SPT are changed to various values. And the value obtained by multiplying the sum of the width W1 and the width W2 by the impedance are shown. In the following description, the sum of the width W1 and the width W2 is simply referred to as "width (W1 + W2)". And, for example, the continuous ▲ mark in FIG. 3 indicates the frequency in the power transmission coil TC or the power receiving coil RC in which the width W1 and the width W2 are both 6 mm and the interval SPL and the interval SPT are both 2 mm. And the value obtained by multiplying the width (W1 + W2) by the impedance are shown. Further, for example, the continuous * mark indicates the frequency in the power transmission coil TC or the power receiving coil RC in which the width W1 is 7 mm, the width W2 is 3 mm, and the interval SPL and the interval SPT are both 3 mm. And the value obtained by multiplying the width (W1 + W2) by the impedance are shown. At this time, in the legend of FIG. 3, "(▲ mark, etc.) (value of width W2 (inner circumference side)) _ (value of interval SPL) _ (value of width W1 (outer circumference side)) _ (value of interval SPT) ) ”, Each structure is shown. Further, "12_4" indicated by a continuous "-" mark indicates a structure in which the winding line is a single wire having a width of 12 mm and the spacing between the winding lines is 4 mm.
 一方図4は、図3に示す送電コイルTCの各構造について、上記間隔SPLと上記間隔SPTの和(図4における横軸)と、幅(W1+W2)にインピーダンスを乗じた値(図4における縦軸)との関係を示している。 On the other hand, FIG. 4 shows the sum of the interval SPL and the interval SPT (horizontal axis in FIG. 4) and the value obtained by multiplying the width (W1 + W2) by the impedance (vertical in FIG. 4) for each structure of the power transmission coil TC shown in FIG. The relationship with the axis) is shown.
 ここで上述したように、実施形態の送電コイルTC又は受電コイルRCでは、電力伝送が85キロヘルツの伝送周波数で行われる。このとき、例えば10キロワットの電力を伝送する場合に、送電コイルTC又は受電コイルRCに40~50Arms(Ampere root mean square)程度の電流が流れることを想定する。この条件下において、伝送周波数が85キロヘルツの場合における上記インピーダンスが0.05オームであるとすると、送電コイルTC又は受電コイルRCにおける損失の割合は0.8%乃至1.25%となる。そして、送電コイルTC又は受電コイルRCにおける伝送効率を考慮すると、その損失は上記の値以下に抑えられるのが好ましい。更に、送電コイルTC又は受電コイルRC自体の軽量化と銅材料の有効利用の観点からは、上述した損失等に関する条件下では、上記インピーダンスと幅(W1+W2)との積が0.5オーム・ミリメートル以下であることが好ましい。そこで、図3及び図4に示される実験結果に基づき、伝送周波数が85キロヘルツである場合の幅(W1+W2)とインピーダンスとの積を、送電コイルTCの構造ごとに纏めると、以下の表1のようになる。なお、表1においては、送電コイルTC等のインピーダンスと幅(W1+W2)との積が0.5オーム・ミリメートル以上となる構造は、ハッチングで示されている。
Figure JPOXMLDOC01-appb-T000001
As described above, in the transmission coil TC or the power receiving coil RC of the embodiment, power transmission is performed at a transmission frequency of 85 kHz. At this time, for example, when transmitting a power of 10 kW, it is assumed that a current of about 40 to 50 Arms (Ampere root mean square) flows through the power transmission coil TC or the power reception coil RC. Under this condition, assuming that the impedance is 0.05 ohms when the transmission frequency is 85 kHz, the loss ratio in the transmission coil TC or the power receiving coil RC is 0.8% to 1.25%. Considering the transmission efficiency of the power transmission coil TC or the power reception coil RC, it is preferable that the loss is suppressed to the above value or less. Further, from the viewpoint of weight reduction of the power transmission coil TC or the power reception coil RC itself and effective utilization of the copper material, the product of the impedance and the width (W1 + W2) is 0.5 ohm mm under the above-mentioned conditions regarding loss and the like. The following is preferable. Therefore, based on the experimental results shown in FIGS. 3 and 4, the product of the width (W1 + W2) and the impedance when the transmission frequency is 85 kHz is summarized for each structure of the transmission coil TC in Table 1 below. Will be. In Table 1, the structure in which the product of the impedance and the width (W1 + W2) of the power transmission coil TC or the like is 0.5 ohm mm or more is shown by hatching.
Figure JPOXMLDOC01-appb-T000001
 以上の図3及び図4並びに上記表1に示される結果から、実施形態の送電コイルTC及び受電コイルRCの構造として適切(即ち、電力伝送の周波数が85キロヘルツの場合に、インピーダンスと幅(W1+W2)との積が0.5オーム・ミリメートル未満)な構造は、以下の(i)から(vii)の七通りであることが判る。
(i)幅W2:4ミリメートル、間隔SPL:4ミリメートル、幅W1:4ミリメートル、間隔SPT:4ミリメートル
(ii)幅W2:6ミリメートル、間隔SPL:3ミリメートル、幅W1:4ミリメートル、間隔SPT:3ミリメートル
(iii)幅W2:3ミリメートル、間隔SPL:3ミリメートル、幅W1:3ミリメートル、間隔SPT:7ミリメートル
(iv)幅W2:8ミリメートル、間隔SPL:3ミリメートル、幅W1:2ミリメートル、間隔SPT:3ミリメートル
(v)幅W2:9ミリメートル、間隔SPL:3ミリメートル、幅W1:1ミリメートル、間隔SPT:3ミリメートル
(vi)幅W2:9.5ミリメートル、間隔SPL:3ミリメートル、幅W1:0.5ミリメートル、間隔SPT:3ミリメートル
(vii)幅W2:8ミリメートル、間隔SPL:3ミリメートル、幅W1:3ミリメートル、間隔SPT:2ミリメートル
From the results shown in FIGS. 3 and 4 above and Table 1 above, the impedance and width (W1 + W2) are suitable for the structure of the power transmission coil TC and the power reception coil RC of the embodiment (that is, when the power transmission frequency is 85 kHz. It can be seen that there are seven types of structures (i) to (vii) below in which the product with) is less than 0.5 ohm mm.
(I) Width W2: 4 mm, Spacing SPL: 4 mm, Width W1: 4 mm, Spacing SPT: 4 mm (ii) Width W2: 6 mm, Spacing SPL: 3 mm, Width W1: 4 mm, Spacing SPT: 3 mm (iii) width W2: 3 mm, spacing SPL: 3 mm, width W1: 3 mm, spacing SPT: 7 mm (iv) width W2: 8 mm, spacing SPL: 3 mm, width W1: 2 mm, spacing SPT: 3 mm (v) width W2: 9 mm, spacing SPL: 3 mm, width W1: 1 mm, spacing SPT: 3 mm (vi) width W2: 9.5 mm, spacing SPL: 3 mm, width W1: 0.5 mm, spacing SPT: 3 mm (vii) width W2: 8 mm, spacing SPL: 3 mm, width W1: 3 mm, spacing SPT: 2 mm
 ここで上述したように、伝送周波数が大きく(高く)なった場合に、インピーダンスが増加する原因として上記表皮効果及び上記近接効果があるわけであるが、当該近接効果に注目し、上記間隔SPLと間隔SPTの和と、幅(W1+W2)とインピーダンスとの積と、の関係を図4で確認すると、間隔SPLと間隔SPTの合計値が4.5ミリメートル付近未満で幅(W1+W2)とインピーダンスとの積が急激に上昇していることが判る。このことから、この伝送周波数(85キロヘルツ)では、間隔SPLと間隔SPTの合計値を4.5ミリメートル以下にすることが好ましいことが判る。なお、実施形態では、上記ピッチPTを16ミリメートルと統一したが、間隔SPL及びに間隔SPTによりインピーダンスが変動する原因は、主として近接効果によるものと推定されるため、上記ピッチPTが変化しても、同様の効果が得られると考えられる。 Here, as described above, when the transmission frequency becomes large (high), the skin effect and the proximity effect are the causes of the increase in impedance. However, paying attention to the proximity effect, the interval SPL When the relationship between the sum of the interval SPT and the product of the width (W1 + W2) and the impedance is confirmed in FIG. 4, when the total value of the interval SPL and the interval SPT is less than around 4.5 mm, the width (W1 + W2) and the impedance It can be seen that the product is rising sharply. From this, it can be seen that at this transmission frequency (85 kHz), it is preferable that the total value of the interval SPL and the interval SPT is 4.5 mm or less. In the embodiment, the pitch PT is unified to 16 mm, but the cause of the impedance fluctuation due to the interval SPL and the interval SPT is presumed to be mainly due to the proximity effect, so even if the pitch PT changes. , It is considered that the same effect can be obtained.
 一方、間隔SPLと間隔SPTの和を4.5ミリメートルとするとき、上記ピッチPTが狭すぎると、必要な電流を流すだけの銅薄膜線TL1の幅W1又は銅薄膜線TL2の幅W2が得られないため、巻回数の半分以上において必要な当該幅W1及び当該幅W2を確保するためには、上記ピッチPTを9ミリメートル以上とする必要がある。また、上記表1等において間隔SPLと間隔SPTとの関係を詳しく見てみると、間隔SPTは、間隔SPLと同じか、又は当該間隔SPL以上にすることが望ましい。即ち、間隔SPLと間隔SPTとの和の観点から見ると、図4に例示されるように、当該和が4.5ミリメートルより長ければ、実施形態の送電コイルTC及び受電コイルRCの構造として適切であることになる。 On the other hand, when the sum of the interval SPL and the interval SPT is 4.5 mm, if the pitch PT is too narrow, the width W1 of the copper thin film wire TL1 or the width W2 of the copper thin film wire TL2 for passing the required current can be obtained. Therefore, in order to secure the required width W1 and the width W2 at half or more of the number of turns, it is necessary to set the pitch PT to 9 mm or more. Further, looking at the relationship between the interval SPL and the interval SPT in detail in Table 1 and the like, it is desirable that the interval SPT is the same as or equal to or greater than the interval SPL. That is, from the viewpoint of the sum of the interval SPL and the interval SPT, as illustrated in FIG. 4, if the sum is longer than 4.5 mm, it is suitable as the structure of the power transmission coil TC and the power reception coil RC of the embodiment. Will be.
 以上説明したように、実施形態の送電コイルTC及び受電コイルRCを含む実施形態の電力伝送システムSを用いた電力伝送によれば、その巻回方向に並行する銅薄膜線TL1及び銅薄膜線TL2により巻回線TLを構成する場合に、一の巻回線TLを構成する銅薄膜線TL1と銅薄膜線TL2との巻回方向に垂直な方向の間隔SPLと、隣接する巻回線TLの当該垂直な方向の間隔SPTと、の和が、電力伝送の周波数たる85キロヘルツに対応した長さ4.5ミリメートルより長くなっている。よって、軽量化及び低コスト化のために並行する銅薄膜線TL1及び銅薄膜線TL2により巻回線TLを構成することに起因する、いわゆる表皮効果又は近接効果による送電コイルTC又は受電コイルRCとしてのインピーダンスを低減することができ、電力伝送システムSとしての軽量化及び低コスト化と、伝送効率の向上及び動作温度の上昇の防止と、を両立させることができる。 As described above, according to the power transmission using the power transmission system S of the embodiment including the power transmission coil TC and the power receiving coil RC of the embodiment, the copper thin film wire TL1 and the copper thin film wire TL2 parallel to the winding direction thereof. When the winding line TL is configured by The sum of the directional spacing SPT is longer than 4.5 millimeters in length, which corresponds to the power transmission frequency of 85 kilohertz. Therefore, as a power transmission coil TC or a power receiving coil RC due to the so-called skin effect or proximity effect, which is caused by forming a winding line TL with parallel copper thin film wires TL1 and copper thin film wires TL2 for weight reduction and cost reduction. Impedance can be reduced, and the weight and cost of the power transmission system S can be reduced, the transmission efficiency can be improved, and the operating temperature can be prevented from rising.
 ここで、一の巻回線TLが銅薄膜線TL1及び銅薄膜線TL2により形成されており、一の巻回線TLにおいて、送電コイルTC又は受電コイルRCの内周側の銅薄膜線TL2の幅W2が、送電コイルTC又は受電コイルRCの外周側の銅薄膜線TL1の幅W1より広く形成してもよい(図3における、「6_3_4_3」、「7_3_3_3」、「8_3_2_3」、「9_3_1_3」、「9.5_3_0.5_3」及び「8_3_3_2」それぞれの場合)。この場合でも、送電コイルTC又は受電コイルRCとしてのインピーダンスを低減することができることで、軽量化及び低コスト化と、伝送効率の向上及び動作温度の上昇の防止と、をより両立させることができる。 Here, the one winding line TL is formed by the copper thin film wire TL1 and the copper thin film wire TL2, and in the one winding line TL, the width W2 of the copper thin film wire TL2 on the inner peripheral side of the power transmission coil TC or the power receiving coil RC. May be formed wider than the width W1 of the copper thin film wire TL1 on the outer peripheral side of the power transmission coil TC or the power reception coil RC ("6_3_4_3", "7_3_3_3", "8_3_2_3", "9_3_1_3", "9" in FIG. .5_3_0.5_3 "and" 8_3_3_2 "in each case). Even in this case, since the impedance of the power transmission coil TC or the power reception coil RC can be reduced, it is possible to further achieve both weight reduction and cost reduction, improvement of transmission efficiency, and prevention of an increase in operating temperature. ..
 また、巻回線TLが外側から内側に巻回する巻回線と内側から外側に巻回する巻回線とにより構成されているので、送電コイルTC又は受電コイルRCとしてのインピーダンスをより低減することができる。 Further, since the winding line TL is composed of a winding line wound from the outside to the inside and a winding line wound from the inside to the outside, the impedance as the power transmission coil TC or the power receiving coil RC can be further reduced. ..
 更に、電力伝送の周波数が85キロヘルツである場合に、上記間隔SPLと上記間隔SPTとの和が4.5ミリメートルより長いので、巻回線TLの構造を最適化して送電コイルTC又は受電コイルRCとしてのインピーダンスをより低減することができる。 Further, when the frequency of power transmission is 85 kHz, the sum of the interval SPL and the interval SPT is longer than 4.5 mm. Therefore, the structure of the winding line TL is optimized to be used as the transmission coil TC or the power receiving coil RC. Impedance can be further reduced.
 更にまた、上記間隔SPTが2ミリメートル以上である場合(図3における、「6_3_4_3」、「7_3_3_3」、「8_3_2_3」、「9_3_1_3」及び「9.5_3_0.5_3」及び「8_3_3_2」それぞれの場合)には、巻回線TLの構造を最適化して送電コイルTC又は受電コイルRCとしてのインピーダンスをより低減することができる。 Furthermore, when the interval SPT is 2 mm or more (in the case of "6_3_4_3", "7_3_3_3", "8_3_2_3", "9_3_1_3" and "9.5_3_0.5_3" and "8_3_3_2" in FIG. 3 respectively). Can optimize the structure of the winding line TL to further reduce the impedance as the transmission coil TC or the power receiving coil RC.
 なお、上述した実施形態の送電コイルTC又は受電コイルRCでは巻回線TLを一層構造としたが、これ以外に、相互に同様の構成を備える二以上の巻回線TLを、フィルムBF等の絶縁層を挟んで一方の面から見て同じ位置となるように二層以上積層した構造とし、それぞれの接続用端子O1及び接続用端子O2を送電部TR(送電装置Tの場合)又は受電部RV(受電装置Rの場合)に接続するように構成してもよい。この場合には、巻回線TLが積層構造とされているので、送電コイルTC又は受電コイルRCを構成する巻回線TLとしての断面積を増やすことで、送電コイルTC又は受電コイルRCとしてのインピーダンスを更に低減することができる。 In the power transmission coil TC or the power receiving coil RC of the above-described embodiment, the winding line TL has a single layer structure, but in addition to this, two or more winding line TLs having similar configurations to each other are provided with an insulating layer such as a film BF. The structure is such that two or more layers are stacked so that they are in the same position when viewed from one side, and each connection terminal O1 and connection terminal O2 are connected to the power transmission unit TR (in the case of the power transmission device T) or the power reception unit RV (in the case of the power transmission device T). In the case of the power receiving device R), it may be configured to be connected. In this case, since the winding line TL has a laminated structure, the impedance as the transmission coil TC or the power receiving coil RC can be increased by increasing the cross-sectional area of the winding line TL constituting the power transmission coil TC or the power receiving coil RC. It can be further reduced.
 また、上述した実施形態の送電コイルTC又は受電コイルRCでは、巻回線TLを銅薄膜線TL1及び銅薄膜線TL2から構成したが、これ以外に、一の巻回線を三以上の銅薄膜線により構成し、それぞれの間隔及び巻回線同士の間隔を、電力伝送の周波数に対して最適化するように構成してもよい。この場合には、巻回線が三以上の銅薄膜線により構成されているので、送電コイル又は受電コイルを構成する巻回線としての断面積を更に増やすことで、送電コイル又は受電コイルとしてのインピーダンスを更に低減することができる。 Further, in the power transmission coil TC or the power receiving coil RC of the above-described embodiment, the winding line TL is composed of the copper thin film wire TL1 and the copper thin film wire TL2, but in addition to this, one winding line is formed by three or more copper thin film wires. It may be configured to optimize each interval and the interval between winding lines with respect to the frequency of power transmission. In this case, since the winding line is composed of three or more copper thin film wires, the impedance as the transmitting coil or the receiving coil can be increased by further increasing the cross-sectional area of the winding line constituting the transmitting coil or the receiving coil. It can be further reduced.
変形形態Deformation form
 次に、本発明の変形形態について説明する。上述した各実施形態の電力伝送システムの構成については、以下の(A)乃至(D)に示すような変形を加えてもよい。本発明では、当該各変形を加えても、上記電力伝送システムと同等の効果を奏し得る。 Next, a modified form of the present invention will be described. The configuration of the power transmission system of each of the above-described embodiments may be modified as shown in the following (A) to (D). In the present invention, even if each of the modifications is added, the same effect as that of the power transmission system can be obtained.
(A)第1変形形態
 先ず第1変形形態として、実施形態の送電コイルCL又は受電コイルRCでは、上記幅W1及び上記幅W2を巻回線TLの全周に渡って同じとしたが、これら以外に、送電コイルTC又は受電コイルRCの外周から内周にかけてこれらの幅を広くするように構成してもよい。この場合には、巻回線を構成する二本の銅薄膜線の幅を加算した幅も、送電コイルTC又は受電コイルRCの内周側ほど広くなることになる。
(A) First Modified Form First, as the first modified form, in the power transmission coil CL or the power receiving coil RC of the embodiment, the width W1 and the width W2 are the same over the entire circumference of the winding line TL, but other than these. In addition, the width of the power transmission coil TC or the power reception coil RC may be widened from the outer circumference to the inner circumference. In this case, the width obtained by adding the widths of the two copper thin film wires constituting the winding line also becomes wider toward the inner peripheral side of the power transmission coil TC or the power reception coil RC.
(B)第2変形形態
 次に第2変形形態として、上述した実施形態において送電コイルTC又は受電コイルRCを二層以上の巻回線TLにより構成する場合に、当該二層以上の巻回線TLの各巻回の送電コイルTC又は受電コイルRCの径方向の位置は、実施形態の場合のように当該二層以上の巻回線TL間で同一であってもよいし、異なっていてもよい。これらの場合のいずれでも、二層以上の巻回線TLが積層されていれば、上記電力伝送システムSと同等の効果を奏し得る。
(B) Second Modified Form Next, as the second modified form, when the power transmission coil TC or the power receiving coil RC is configured by the winding line TL having two or more layers in the above-described embodiment, the winding line TL having two or more layers is used. The radial position of the power transmission coil TC or the power reception coil RC of each winding may be the same or different between the two or more layers of winding line TL as in the case of the embodiment. In any of these cases, if two or more layers of winding lines TL are stacked, the same effect as that of the power transmission system S can be obtained.
(C)第3変形形態
 次に第3変形形態として、上記実施形態における接続用端子O1及び接続用端子O2と送電コイルTC(又は受電コイルRC)との接続態様については、実施形態の構成、即ち、巻回線TLの両端部がその最外周部で接続用端子O1及び接続用端子O2にそれぞれ接続されている構成の他に、巻回線の巻回としては最外周部から最内周部に向けて一方向(例えば反時計方向)に巻回させ、最外周部にある端部を例えば接続用端子O1に接続すると共に、最内周部から絶縁層を挟んだ積層構造(図2参照)又はジャンパ線等により最外周部に引き出した巻回線の端部を例えば接続用端子O2に接続するように構成してもよい。
(C) Third Modified Form Next, as the third modified form, the connection mode between the connection terminal O1 and the connection terminal O2 and the power transmission coil TC (or the power receiving coil RC) in the above embodiment is the configuration of the embodiment. That is, in addition to the configuration in which both ends of the winding line TL are connected to the connection terminal O1 and the connection terminal O2 at the outermost peripheral portion thereof, the winding of the winding line is from the outermost peripheral portion to the innermost peripheral portion. A laminated structure in which an insulating layer is sandwiched from the innermost peripheral portion while being wound in one direction (for example, counterclockwise) to connect the end portion on the outermost peripheral portion to, for example, the connection terminal O1 (see FIG. 2). Alternatively, the end of the winding line drawn out to the outermost peripheral portion by a jumper wire or the like may be configured to be connected to, for example, the connection terminal O2.
(D)第4変形形態
 最後に第4変形形態として、電力伝送システムSでは、送電コイルTCと受電コイルRCとを同一の構造とする場合について説明したが、これ以外に、電力伝送システムを構成する送電コイル又は受電コイルのいずれか一方のみが、実施形態の送電コイルTC又は受電コイルRCと同一の構造を有するものであってもよい。
(D) Fourth Modified Form Finally, as the fourth modified form, the case where the power transmission coil TC and the power receiving coil RC have the same structure in the power transmission system S has been described, but other than this, a power transmission system is configured. Only one of the power transmission coil and the power reception coil may have the same structure as the power transmission coil TC or the power reception coil RC of the embodiment.
 以上それぞれ説明したように、本発明は非接触の電力伝送の分野に利用することが可能であり、特に電気自動車に搭載された蓄電池を充電するための電力伝送の分野に適用すれば特に顕著な効果が得られる。 As described above, the present invention can be used in the field of non-contact power transmission, and is particularly remarkable when applied in the field of power transmission for charging a storage battery mounted on an electric vehicle. The effect is obtained.
 S  電力伝送システム
 R  受電装置
 T  送電装置
 RV  受電部
 RC  受電コイル
 TR  送電部
 TC  送電コイル
 TL  巻回線
 TL1、TL2  銅薄膜線
 O1、O2  接続用端子
 BF  フィルム
S power transmission system R power transmission device T power transmission device RV power reception unit RC power reception coil TR power transmission unit TC power transmission coil TL winding line TL1, TL2 copper thin film wire O1, O2 connection terminal BF film

Claims (10)

  1.  非接触型電力伝送用のコイルにおいて、
     当該コイルを構成する巻回線が、当該巻回線の巻回方向に並行し且つそれぞれが薄膜導体からなる複数の並行巻回線により構成されており、
     一の前記巻回線を構成する前記並行巻回線の前記巻回方向に垂直な方向の間隔と、隣接する前記巻回線の当該垂直な方向の間隔と、の和が、少なくとも前記コイルによる電力伝送の周波数に対応した閾値長さより長いことを特徴とするコイル。
    In coils for non-contact power transmission
    The winding line constituting the coil is composed of a plurality of parallel winding lines parallel to the winding direction of the winding line and each of which is composed of a thin film conductor.
    The sum of the interval in the direction perpendicular to the winding direction of the parallel winding line constituting the winding line and the interval in the vertical direction of the adjacent winding line is at least the sum of the power transmission by the coil. A coil characterized by being longer than the threshold length corresponding to the frequency.
  2.  請求項1に記載のコイルにおいて、
     一の前記巻回線は二の前記並行巻回線により構成されており、
     一の前記巻回線において、前記コイルの内周側の前記並行巻回線の幅が、当該コイルの外周側の前記並行巻回線の幅より広いことを特徴とするコイル。
    In the coil according to claim 1,
    One said winding line is composed of two said parallel winding lines.
    One coil, characterized in that the width of the parallel winding line on the inner peripheral side of the coil is wider than the width of the parallel winding line on the outer peripheral side of the coil in the winding line.
  3.  請求項1又は請求項2に記載のコイルにおいて、
     前記巻回線は、当該コイルの外周側から内周側に向けて巻回された前記並行巻回線により構成される外内巻回線と、前記内周側から前記外周側に向けて巻回された前記並行巻回線により構成される内外巻回線と、により構成されていることを特徴とするコイル。
    In the coil according to claim 1 or 2.
    The winding line is an outer inner winding line composed of the parallel winding line wound from the outer peripheral side to the inner peripheral side of the coil, and wound from the inner peripheral side toward the outer peripheral side. A coil characterized by being composed of an inner / outer winding line configured by the parallel winding line and an inner / outer winding line.
  4.  請求項1から請求項3のいずれか一項に記載のコイルにおいて、
     前記巻回線が積層構造とされていることを特徴とするコイル。
    In the coil according to any one of claims 1 to 3.
    A coil characterized in that the winding line has a laminated structure.
  5.  請求項1から請求項4のいずれか一項に記載のコイルにおいて、
     前記周波数が85キロヘルツである場合に、
     前記巻回線の巻回における前記垂直な方向の前記閾値長さが4.5ミリメートルであることを特徴とするコイル。
    In the coil according to any one of claims 1 to 4.
    If the frequency is 85 kHz
    A coil characterized in that the threshold length in the vertical direction in winding the winding line is 4.5 mm.
  6.  請求項5に記載のコイルにおいて、
     隣接する前記巻回線の前記垂直な方向の間隔が2ミリメートル以上であることを特徴とするコイル。
    In the coil according to claim 5,
    A coil characterized in that the distance between adjacent winding lines in the vertical direction is 2 mm or more.
  7.  送電装置と、当該送電装置から離隔した受電装置と、により構成され、前記送電装置から非接触で前記受電装置に電力を伝送する電力伝送システムに含まれる前記送電装置において、
     請求項1から請求項6のいずれか一項に記載の前記コイルである送電コイルであって、前記受電装置に対向して配置される送電コイルと、
     伝送すべき電力を前記送電コイルに出力する出力手段と、
     を備えることを特徴とする送電装置。
    In the power transmission device included in the power transmission system, which is composed of a power transmission device and a power reception device separated from the power transmission device, and transmits power from the power transmission device to the power reception device in a non-contact manner.
    The power transmission coil according to any one of claims 1 to 6, wherein the power transmission coil is arranged so as to face the power receiving device.
    An output means that outputs the power to be transmitted to the power transmission coil,
    A power transmission device characterized by being equipped with.
  8.  送電装置と、当該送電装置から離隔した受電装置と、により構成され、前記送電装置から非接触で前記受電装置に電力を伝送する電力伝送システムに含まれる前記受電装置において、
     請求項1から請求項6のいずれか一項に記載の前記コイルである受電コイルであって、前記送電装置に対向して配置される受電コイルと、
     当該受電コイルに接続された入力手段と、
     を備えることを特徴とする受電装置。
    In the power receiving device included in the power transmission system, which is composed of a power transmitting device and a power receiving device separated from the power transmitting device, and transmits power from the power transmitting device to the power receiving device in a non-contact manner.
    A power receiving coil which is the coil according to any one of claims 1 to 6 and which is arranged so as to face the power transmission device.
    The input means connected to the power receiving coil and
    A power receiving device characterized by being provided with.
  9.  請求項7に記載の送電装置と、
     当該送電装置から離隔し、且つ前記送電コイルに対向して配置される受電装置であって、前記送電装置から送信された電力を受電する受電装置と、
      を備えることを特徴とする非接触型の電力伝送システム。
    The power transmission device according to claim 7 and
    A power receiving device that is separated from the power transmission device and is arranged so as to face the power transmission coil and that receives power transmitted from the power transmission device.
    A non-contact power transmission system characterized by being equipped with.
  10.  送電装置と、
     請求項8に記載の受電装置であって、前記送電装置から離隔し且つ前記受電コイルが当該送電装置に対向して配置され、前記送電装置から送信された電力を受電する受電装置と、
     を備えることを特徴とする非接触型の電力伝送システム。
    Power transmission device and
    2.
    A non-contact power transmission system characterized by being equipped with.
PCT/JP2021/024415 2020-06-29 2021-06-28 Coil, power-sending device, power-receiving device, and power transmission system WO2022004674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020111373A JP2022010678A (en) 2020-06-29 2020-06-29 Coil, power transmission device and power receiving device, and power transmission system
JP2020-111373 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022004674A1 true WO2022004674A1 (en) 2022-01-06

Family

ID=79316268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024415 WO2022004674A1 (en) 2020-06-29 2021-06-28 Coil, power-sending device, power-receiving device, and power transmission system

Country Status (2)

Country Link
JP (1) JP2022010678A (en)
WO (1) WO2022004674A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190363565A1 (en) * 2018-05-25 2019-11-28 Apple Inc. Wireless charging systems for electronic devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190363565A1 (en) * 2018-05-25 2019-11-28 Apple Inc. Wireless charging systems for electronic devices

Also Published As

Publication number Publication date
JP2022010678A (en) 2022-01-17

Similar Documents

Publication Publication Date Title
US20220123593A1 (en) Wireless Power Transfer Based on Magnetic Induction
US20210151250A1 (en) Coil Module, Wireless Charging Transmitting Apparatus, Wireless Charging Receiving Apparatus, Wireless Charging System, and Mobile Terminal
US20140197694A1 (en) Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency
CN107912075A (en) vehicle wireless power transmission module
JPH08280139A (en) Management of heat using geometric arrangement of hybrid spiral/helical coil
US11452240B2 (en) Power transfer apparatus, power transmission apparatus, power reception apparatus, and power transfer system
JP6676018B2 (en) Wireless power transmission equipment
CN103098573A (en) A magnetic shield
WO2022004674A1 (en) Coil, power-sending device, power-receiving device, and power transmission system
CN209729695U (en) A kind of high-power wireless charge coil structure
US10881002B2 (en) Capacitor module, resonator, wireless power transmission device, wireless power reception device, and wireless power transmission system
JP7264150B2 (en) Coil, coil pair, power transmitting device, power receiving device, and power transmission system
JP2022071537A (en) Coil, power transmission device and power receiving device, and power transmission system
WO2022004676A1 (en) Coil, power transmission device, power reception device, and power transmission system
JP7167677B2 (en) Coil pair, power transmitting device, power receiving device, and power transmission system
JP2022072736A (en) Coil and its manufacturing method, power transmission device and power receiving device, and power transmission system
JP2022012461A (en) Coil, power transmission device and power receiving device, and power transmission system
JP2022025277A (en) Coil and its manufacturing method, power transmission device and power receiving device, and power transmission system
JP2022072731A (en) Coil device, power transmission device and power receiving device, and power transmission system
WO2020145400A1 (en) Coil, power-sending device, power-receiving device, and power transmission system
CN207474253U (en) A kind of multi-layer FPC loop construction for wireless charging
JP2022022950A (en) Coil, power transmission device and power receiving device, and power transmission system
JP6365110B2 (en) Coil unit
JP2021012939A (en) Coil pair, power transmission and power receiving devices, and power transmission system
JP2020150056A (en) Coil and coil pair, power transmission device and power receiving device, and manufacturing method of power transmission system and coil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834187

Country of ref document: EP

Kind code of ref document: A1