JP2022071537A - Coil, power transmission device and power receiving device, and power transmission system - Google Patents

Coil, power transmission device and power receiving device, and power transmission system Download PDF

Info

Publication number
JP2022071537A
JP2022071537A JP2020180562A JP2020180562A JP2022071537A JP 2022071537 A JP2022071537 A JP 2022071537A JP 2020180562 A JP2020180562 A JP 2020180562A JP 2020180562 A JP2020180562 A JP 2020180562A JP 2022071537 A JP2022071537 A JP 2022071537A
Authority
JP
Japan
Prior art keywords
coil
thin film
winding
power transmission
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020180562A
Other languages
Japanese (ja)
Inventor
将人 岡部
Masahito Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2020180562A priority Critical patent/JP2022071537A/en
Publication of JP2022071537A publication Critical patent/JP2022071537A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide a coil and the like that can reduce the weight while reducing various costs as a coil for wireless power transmission, and can improve the transmission efficiency as a coil and prevent the operating temperature from rising.SOLUTION: In a power receiving loop coil RL1 used for non-contact type power transmission and composed of winding of a copper thin film wire RL11 and a copper thin film wire RL12, the thickness of a portion of a copper thin film wire RL11 and the copper thin film wire RL12 having relatively high density of a current flowing during power transmission is configured to be thicker than the thickness of a portion of the copper thin film wire RL11 and the copper thin film wire RL12 having relatively low density of the current.SELECTED DRAWING: Figure 2

Description

本発明は、コイル、送電装置及び受電装置並びに電力伝送システムの技術分野に属し、より詳細には、非接触型電力伝送用のコイル及び当該コイルを用いた非接触型の送電装置及び受電装置並びに電力伝送システムの技術分野に属する。 The present invention belongs to the technical fields of coils, power transmission devices and power receiving devices, and power transmission systems, and more specifically, coils for non-contact power transmission, non-contact power transmission devices and power receiving devices using the coils, and power receiving devices. It belongs to the technical field of power transmission systems.

近年、例えばリチウムイオン電池等からなる蓄電池を搭載した電気自動車が普及しつつある。このような電気自動車では、蓄電池に蓄えた電力を使ってモータを駆動して移動することとなるため、蓄電池への効率のよい充電が求められる。そこで、電気自動車に対して充電用プラグ等を物理的に接続することなくそれに搭載されている蓄電池を充電する方法として、互いに離隔して対向された受電コイルと送電コイルを用いる、いわゆるワイヤレス電力伝送に関する研究が行われている。ワイヤレス電力伝送の方式としては、一般には、電界結合方式、電磁誘導方式及び磁界共鳴方式等がある。これらの方式を、例えば送受電される電力の周波数、水平及び垂直それぞれの方向の位置自由度並びに伝送効率等の観点から比較した場合、電気自動車に搭載されている蓄電池を充電するためのワイヤレス電力伝送の方式としては、コンデンサを使った電界結合方式又はコイルを使った磁界共鳴方式が有望視されており、これらに対する研究開発も活発に行われている。このような背景技術を開示した先行技術文献としては、例えば下記特許文献1が挙げられる。この特許文献1には、1回巻き(1ターン)のループコイルと、5.5回巻き(5.5ターン)のオープンコイルと、を用いて磁界共鳴方式により電力伝送を行うコイルが開示されている。 In recent years, electric vehicles equipped with storage batteries such as lithium-ion batteries have become widespread. In such an electric vehicle, the electric power stored in the storage battery is used to drive and move the motor, so that the storage battery is required to be charged efficiently. Therefore, as a method of charging the storage battery mounted on an electric vehicle without physically connecting a charging plug or the like, so-called wireless power transmission using a power receiving coil and a power transmission coil that are separated from each other and opposed to each other is used. Is being researched. The wireless power transmission method generally includes an electric field coupling method, an electromagnetic induction method, a magnetic field resonance method, and the like. When these methods are compared from the viewpoints of, for example, the frequency of power transmitted and received, the degree of positional freedom in each of the horizontal and vertical directions, and the transmission efficiency, wireless power for charging the storage battery mounted on the electric vehicle is used. As a transmission method, an electric field coupling method using a capacitor or a magnetic field resonance method using a coil is promising, and research and development on these are being actively carried out. Examples of the prior art document that discloses such a background technique include the following Patent Document 1. Patent Document 1 discloses a coil that transmits power by a magnetic field resonance method using a one-turn (1 turn) loop coil and a 5.5-turn (5.5 turn) open coil. ing.

特開2011-200045号公報Japanese Unexamined Patent Publication No. 2011-2000

一方、電気自動車用の上述したワイヤレス電力伝送(非接触給電)では、最小でも3.7キロワットの高出力の電力を伝送すること(即ちコイルに流すこと)が必要とされる。よって、このような高出力の電力(電流)を流す結果として導体(コイル)の抵抗が高くなると、ジュール熱の発生によりコイルとしての損失が大きくなり、ワイヤレス電力伝送としての効率を低下させてしまうことになる。 On the other hand, the above-mentioned wireless power transmission (contactless power supply) for electric vehicles requires transmission of high output power of at least 3.7 kW (that is, flowing through a coil). Therefore, if the resistance of the conductor (coil) becomes high as a result of passing such high output power (current), the loss as a coil becomes large due to the generation of Joule heat, and the efficiency of wireless power transmission is lowered. It will be.

そこで、上記コイルとしての損失に起因する抵抗を低減するための手法として、コイル自体を撚り線(いわゆるリッツ線)を用いて構成することが考えられる。しかしながら、上記受電コイルが自家用車に搭載されること等を考慮したとき、上記撚り線を用いてコイルを構成することは、コイルとしての重量増加や高価格化を招来する。この問題点を解決するための従来技術としては、例えば銅からなる薄膜と当該薄膜間を絶縁する絶縁層とを積層したコア材を、いわゆるフォトリソグラフィ法を用いて上記コイルの形状にパターニング及びエッチングし、当該エッチング後のコア材を複数層重ねた上で層間を導通接続することにより、積層化されたコイルを製造することが考えられる。 Therefore, as a method for reducing the resistance caused by the loss of the coil, it is conceivable to configure the coil itself by using a stranded wire (so-called litz wire). However, considering that the power receiving coil is mounted on a private car, the configuration of the coil using the stranded wire leads to an increase in weight and a high price of the coil. As a conventional technique for solving this problem, for example, a core material obtained by laminating a thin film made of copper and an insulating layer that insulates between the thin films is patterned and etched into the shape of the coil by using a so-called photolithography method. Then, it is conceivable to manufacture a laminated coil by stacking a plurality of layers of the etched core material and conducting conduction connection between the layers.

他方、上記ワイヤレス電力伝送により送受電される電力の周波数は、それを担う機器ごとに例えば法律により予め定められており、上記電気自動車に対する電力伝送の場合には85キロヘルツの高周波とされている。ここで一般に、高周波の電流を導体に流すと、その電流密度は、導体の表面で高く、表面からその中心に向かうほど低くなることが知られている。またこの点については、電流の周波数が高くなるほど電流が表面へ集中することとなるので、この結果として、その導体の交流抵抗は高くなってしまう。この現象は、いわゆる「導体の表皮効果」として知られているところである。なお以下の説明において、高周波の電流を導体に流す際の当該導体における交流抵抗を、単に「インピーダンス」と称する。そして、上述したワイヤレス電力伝送において、高周波(例えば上記85キロヘルツ)の電流を用いつつ高出力の電力を伝送しようとすると、当該高出力の電力(電流)を流す結果として上記表皮効果によって導体(コイル)の抵抗が更に高くなることで、上記ジュール熱に起因するコイルとしての損失が大きくなり、この点でもワイヤレス電力伝送としての効率を低下させてしまう。 On the other hand, the frequency of the power transmitted and received by the wireless power transmission is predetermined by, for example, by law for each device responsible for the wireless power transmission, and is set to a high frequency of 85 kHz in the case of power transmission to the electric vehicle. Here, it is generally known that when a high-frequency current is passed through a conductor, the current density is high on the surface of the conductor and decreases toward the center of the conductor. Regarding this point, the higher the frequency of the current, the more the current concentrates on the surface, and as a result, the AC resistance of the conductor increases. This phenomenon is known as the so-called "skin effect of conductors". In the following description, the AC resistance in the conductor when a high frequency current is passed through the conductor is simply referred to as "impedance". Then, in the above-mentioned wireless power transmission, when an attempt is made to transmit a high-output power while using a high-frequency (for example, the above-mentioned 85 kilohertz) current, the conductor (coil) is caused by the above-mentioned skin effect as a result of passing the high-output power (current). ) Further increases, the loss as a coil due to the Joule heat increases, and this also reduces the efficiency of wireless power transmission.

また、上記表皮効果と同様にワイヤレス電力伝送としての効率を低下させてしまう電気的な現象としては、コイルとしての巻回において導体同士が近接することに起因する、いわゆる「導体の近接効果」が挙げられる。よって、この近接効果によるインピーダンスの上昇についても、対策を講じる必要がある。 Further, as an electrical phenomenon that reduces the efficiency of wireless power transmission as in the above skin effect, the so-called "conductor proximity effect" caused by the proximity of conductors in winding as a coil is Can be mentioned. Therefore, it is necessary to take measures against the increase in impedance due to this proximity effect.

そこで、薄膜を用いて且つ積層されたコイルとしての損失に起因する発熱等によるインピーダンスを低減するための手法として、薄膜自体を厚くしてその断面積を増やすことが考えられるが、この場合でも、撚り線を用いる場合と同様の重量増加や高価格化の問題が生じてしまう。 Therefore, as a method of using a thin film and reducing the impedance due to heat generation caused by the loss of the laminated coil, it is conceivable to thicken the thin film itself to increase its cross-sectional area. The same problems of weight increase and price increase as when using a stranded wire occur.

そこで本発明は、上記の問題点及び要請に鑑みて為されたもので、その課題の一例は、ワイヤレス電力伝送用のコイルとしての諸コストを低減しつつ軽量化することができると共に、コイルとしての伝送効率の向上と動作温度の上昇の防止が可能なコイル、当該コイルを用いた非接触型の送電装置及び受電装置並びに電力伝送システムを提供することにある。 Therefore, the present invention has been made in view of the above problems and requirements, and one example of the problem is that the coil can be reduced in weight while reducing various costs as a coil for wireless power transmission, and as a coil. It is an object of the present invention to provide a coil capable of improving the transmission efficiency and preventing an increase in the operating temperature, a non-contact type power transmission device and a power receiving device using the coil, and a power transmission system.

上記の課題を解決するために、請求項1に記載の発明は、非接触型の電力伝送に用いられるコイルにおいて、当該コイルにおける巻回方向に垂直且つ当該コイルの巻回面内の方向である第1方向の長さが、当該巻回面に垂直な方向である第2方向の長さより長い巻回線を備え、前記電力伝送の際に前記巻回線に流れる電流の密度が相対的に高い当該巻回線の部分の前記第2方向の長さが、当該密度が相対的に低い当該巻回線の部分の前記第2方向の長さよりも長いように構成される。 In order to solve the above problems, the invention according to claim 1 is a coil used for non-contact type power transmission, which is perpendicular to the winding direction of the coil and the direction in the winding surface of the coil. The winding line having a length in the first direction longer than the length in the second direction perpendicular to the winding surface is provided, and the density of the current flowing through the winding line during power transmission is relatively high. The length of the winding line portion in the second direction is configured to be longer than the length of the winding line portion having a relatively low density in the second direction.

請求項1に記載の発明によれば、第1方向の長さが第2方向の長さより長い巻回線において、電流の密度が相対的に高い巻回線の部分の第2方向の長さが、当該密度が相対的に低い巻回線の部分の第2方向の長さよりも長いので、軽量化及び低コスト化のための巻回線における、いわゆる表皮効果又は近接効果による交流抵抗を低減することができ、軽量化及び低コスト化と、伝送効率の向上及び動作温度の上昇の防止と、を両立させることができる。また、巻回線における第1方向の長さを増やすことなく交流抵抗を下げることができるので、コイル全体としての、特に平面視形状の小型化も可能となる。 According to the first aspect of the invention, in a winding line having a length in the first direction longer than the length in the second direction, the length of the winding line having a relatively high current density in the second direction is increased. Since the density is longer than the length of the portion of the winding line having a relatively low density in the second direction, it is possible to reduce the AC resistance due to the so-called skin effect or proximity effect in the winding line for weight reduction and cost reduction. It is possible to achieve both weight reduction and cost reduction, improvement of transmission efficiency, and prevention of an increase in operating temperature. Further, since the AC resistance can be reduced without increasing the length of the winding line in the first direction, it is possible to reduce the size of the coil as a whole, particularly the plan view shape.

上記の課題を解決するために、請求項2に記載の発明は、請求項1に記載のコイルにおいて、前記巻回線は導体からなる薄膜線の巻回により構成されており、前記第1方向としての当該薄膜線における幅方向の端部の少なくとも一方の前記第2方向の長さとしての厚さが、当該薄膜線における当該端部以外の部分の当該厚さよりも厚いように構成される。 In order to solve the above problems, the invention according to claim 2 comprises the coil according to claim 1, wherein the winding line is formed by winding a thin film wire made of a conductor, and as the first direction. The thickness of at least one of the widthwise ends of the thin film wire as the length in the second direction is configured to be thicker than the thickness of the portion other than the end portion of the thin film wire.

請求項2に記載の発明によれば、請求項1に記載の発明の作用に加えて、巻回線が導体からなる薄膜線の巻回により構成されており、当該薄膜線における幅方向の端部の少なくとも一方の厚さが当該薄膜線における当該端部以外の部分の厚さよりも厚いので、コイルとしての交流抵抗を効果的に低減することができる。 According to the invention of claim 2, in addition to the action of the invention of claim 1, the winding line is composed of a winding of a thin film wire made of a conductor, and the end portion in the thin film wire in the width direction. Since the thickness of at least one of the two is thicker than the thickness of the portion of the thin film wire other than the end portion, the AC resistance as the coil can be effectively reduced.

上記の課題を解決するために、請求項3に記載の発明は、請求項1又は請求項2に記載のコイルにおいて、前記巻回線が、前記巻回方向に並行し且つそれぞれが薄膜導体からなる複数の並行巻回線により構成されており、巻回における内周側の前記並行巻回線である内周巻回線の前記第1方向の長さとしての幅が、当該巻回における外周側の前記並行巻回線である外周巻回線の当該幅より広く、前記内周巻回線の少なくとも一部の前記第2方向の長さとしての厚さが、前記外周巻回線の当該厚さよりも厚いように構成される。 In order to solve the above problems, the invention according to claim 3 comprises the coil according to claim 1 or 2, wherein the winding line is parallel to the winding direction and each of them is a thin film conductor. It is composed of a plurality of parallel winding lines, and the width as the length of the inner peripheral winding line, which is the parallel winding line on the inner peripheral side in the winding, as the length in the first direction is the parallel on the outer peripheral side in the winding. It is configured so that it is wider than the width of the outer peripheral winding line, which is a winding line, and the thickness of at least a part of the inner winding line as the length in the second direction is thicker than the thickness of the outer peripheral winding line. To.

請求項3に記載の発明によれば、請求項1又は請求項2に記載の発明の作用に加えて、巻回線が複数の並行巻回線により構成されており、内周巻回線の幅が外周巻回線の幅より広く、内周巻回線の少なくとも一部の厚さが外周巻回線の厚さよりも厚いので、並行巻回線の構成を併用することで、コイルとしての交流抵抗をより効果的に低減することができる。 According to the invention of claim 3, in addition to the action of the invention of claim 1 or 2, the winding line is composed of a plurality of parallel winding lines, and the width of the inner winding line is the outer circumference. Since it is wider than the winding line and at least a part of the inner winding line is thicker than the outer winding line, the AC resistance as a coil can be made more effective by using the parallel winding line configuration together. Can be reduced.

上記の課題を解決するために、請求項4に記載の発明は、請求項1又は請求項2に記載のコイルにおいて、前記巻回線が、前記巻回方向に並行し且つそれぞれが薄膜導体からなる複数の並行巻回線により構成されており、巻回における内周側の前記並行巻回線である内周巻回線の前記第1方向の長さとしての幅が、当該巻回における外周側の前記並行巻回線である外周巻回線の当該幅より広く、前記外周巻回線の前記第2方向の長さとしての厚さ及び前記内周巻回線の内周側端部の当該厚さが、前記内周巻回線の外周側端部の当該厚さよりも厚いように構成される。 In order to solve the above problems, the invention according to claim 4 comprises the coil according to claim 1 or 2, wherein the winding line is parallel to the winding direction and each of them is a thin film conductor. It is composed of a plurality of parallel winding lines, and the width as the length of the inner peripheral winding line, which is the parallel winding line on the inner peripheral side in the winding, as the length in the first direction is the parallel on the outer peripheral side in the winding. The width of the outer peripheral winding line, which is a winding line, is wider than the width of the outer peripheral winding line, and the thickness of the outer peripheral winding line as the length in the second direction and the thickness of the inner peripheral side end of the inner peripheral winding line are the inner circumference. It is configured to be thicker than the thickness of the outer peripheral end of the winding line.

請求項4に記載の発明によれば、請求項1又は請求項2に記載の発明の作用に加えて、巻回線が複数の並行巻回線により構成されており、内周巻回線の幅が外周巻回線の幅より広く、外周巻回線の厚さ及び内周巻回線の内周側端部の厚さが、内周巻回線の外周側端部の厚さよりも厚いので、並行巻回線の構成を併用することで、コイルとしての交流抵抗をより効果的に低減することができる。 According to the invention of claim 4, in addition to the action of the invention of claim 1 or 2, the winding line is composed of a plurality of parallel winding lines, and the width of the inner winding line is the outer circumference. The configuration of the parallel winding line is wider than the width of the winding line, and the thickness of the outer peripheral winding line and the thickness of the inner peripheral side end of the inner winding line are thicker than the thickness of the outer peripheral side end of the inner winding line. By using the above in combination, the AC resistance as a coil can be reduced more effectively.

上記の課題を解決するために、請求項5に記載の発明は、請求項1又は請求項2に記載のコイルにおいて、前記巻回線が、前記巻回方向に並行する複数の並行巻回線により構成されており、巻回における外周側の前記並行巻回線である外周巻回線の断面形状が円又は前記第1方向の長径を有する楕円であり、前記巻回における内周側の前記並行巻回線であり且つ薄膜導体からなる内周巻回線の前記第1方向の長さとしての幅が、前記断面形状が前記円である場合の直径又は当該断面形状が前記楕円である場合の長径より長く、前記断面形状が前記円である場合の直径又は当該断面形状が前記楕円である場合の短径及び前記内周巻回線の内周側端部の前記第2方向の長さとしての厚さが、前記内周巻回線の外周側端部の当該厚さより長いように構成される。 In order to solve the above problems, the invention according to claim 5 comprises the coil according to claim 1 or 2, wherein the winding line is composed of a plurality of parallel winding lines parallel to each other in the winding direction. The cross-sectional shape of the outer peripheral winding line, which is the parallel winding line on the outer peripheral side in the winding, is a circle or an ellipse having a major axis in the first direction, and the parallel winding line on the inner peripheral side in the winding. The width of the inner winding line made of a thin film conductor as the length in the first direction is longer than the diameter when the cross-sectional shape is the circle or the major axis when the cross-sectional shape is the ellipse. The diameter when the cross-sectional shape is the circle, the short diameter when the cross-sectional shape is the ellipse, and the thickness of the inner peripheral side end of the inner peripheral winding line as the length in the second direction are described above. It is configured to be longer than the thickness of the outer peripheral end of the inner winding line.

請求項5に記載の発明によれば、請求項1又は請求項2に記載の発明の作用に加えて、巻回線が複数の並行巻回線により構成されており、外周巻回線の断面形状が円又は第1方向の長径を有する楕円であり、内周巻回線の幅が、外周巻回線の断面形状が円である場合の直径又は当該断面形状が楕円である場合の長径より長く、当該断面形状が円である場合の直径又は当該断面形状が楕円である場合の短径及び内周巻回線の内周側端部の厚さが、内周巻回線の外周側端部の厚さより長いので、並行巻回線の構成を併用することで、コイルとしての交流抵抗をより効果的に低減することができる。 According to the invention of claim 5, in addition to the operation of the invention of claim 1 or 2, the winding line is composed of a plurality of parallel winding lines, and the cross-sectional shape of the outer peripheral winding line is circular. Alternatively, it is an ellipse having a major axis in the first direction, and the width of the inner winding line is longer than the diameter when the cross-sectional shape of the outer peripheral winding line is a circle or the major axis when the cross-sectional shape is an ellipse. Since the diameter when is a circle or the diameter when the cross-sectional shape is elliptical and the thickness of the inner peripheral side end of the inner winding line is longer than the thickness of the outer peripheral side end of the inner winding line. By using the parallel winding line configuration together, the AC resistance as a coil can be reduced more effectively.

上記の課題を解決するために、請求項6に記載の発明は、請求項1又は請求項2に記載のコイルにおいて、前記巻回線が、前記巻回方向に並行し且つそれぞれが薄膜導体からなる複数の並行巻回線により構成されており、巻回における内周側の前記並行巻回線である内周巻回線の前記第1方向の長さとしての幅が、当該巻回における外周側の前記並行巻回線である外周巻回線の当該幅より広く、前記外周巻回線の前記第2方向の長さとしての厚さの前記第1方向の平均値が、対応する前記巻回方向の位置の前記内周巻回線の当該厚さの前記第1方向の平均値よりも厚いように構成される。 In order to solve the above problems, the invention according to claim 6 comprises the coil according to claim 1 or 2, wherein the winding line is parallel to the winding direction and each of them is a thin film conductor. It is composed of a plurality of parallel winding lines, and the width as the length of the inner peripheral winding line, which is the parallel winding line on the inner peripheral side in the winding, as the length in the first direction is the parallel on the outer peripheral side in the winding. The width of the outer peripheral winding line, which is the winding line, is wider than the width, and the average value of the thickness of the outer peripheral winding line as the length in the second direction in the first direction is within the position of the corresponding winding direction. It is configured to be thicker than the average value of the thickness of the circumferential line in the first direction.

請求項6に記載の発明によれば、請求項1又は請求項2に記載の発明の作用に加えて、巻回線が複数の並行巻回線により構成されており、内周巻回線の幅が外周巻回線の幅より広く、外周巻回線の厚さの幅方向の平均値が、対応する巻回方向の位置の内周巻回線の厚さの幅方向の平均値よりも厚いので、並行巻回線の構成を併用することで、コイルとしての交流抵抗をより効果的に低減することができる。 According to the invention of claim 6, in addition to the action of the invention of claim 1 or 2, the winding line is composed of a plurality of parallel winding lines, and the width of the inner winding line is the outer circumference. A parallel winding line because it is wider than the width of the winding line and the average value in the width direction of the thickness of the outer winding line is thicker than the average value in the width direction of the thickness of the inner winding line at the corresponding winding direction position. By using the above configurations together, the AC resistance as a coil can be reduced more effectively.

上記の課題を解決するために、請求項7に記載の発明は、送電装置と、当該送電装置から離隔した受電装置と、により構成され、前記送電装置から非接触で前記受電装置に電力を伝送する電力伝送システムに含まれる前記送電装置において、請求項1から請求項6のいずれか一項に記載の前記コイルである送電コイルであって、前記受電装置に対向して配置される送電コイルと、伝送すべき電力を前記送電コイルに出力する出力手段と、を備える。 In order to solve the above problems, the invention according to claim 7 is composed of a power transmission device and a power receiving device separated from the power transmission device, and transmits power from the power transmission device to the power receiving device in a non-contact manner. The power transmission coil included in the power transmission system, which is the coil according to any one of claims 1 to 6, is a power transmission coil arranged to face the power receiving device. , An output means for outputting electric power to be transmitted to the power transmission coil.

上記の課題を解決するために、請求項8に記載の発明は、送電装置と、当該送電装置から離隔した受電装置と、により構成され、前記送電装置から非接触で前記受電装置に電力を伝送する電力伝送システムに含まれる前記受電装置において、請求項1から請求項6のいずれか一項に記載の前記コイルである受電コイルであって、前記送電装置に対向して配置される受電コイルと、当該受電コイルに接続された入力手段と、を備える。 In order to solve the above problems, the invention according to claim 8 is composed of a power transmission device and a power receiving device separated from the power transmission device, and transmits power from the power transmission device to the power receiving device in a non-contact manner. In the power receiving device included in the power transmission system, the power receiving coil which is the coil according to any one of claims 1 to 6 and which is arranged to face the power transmission device. , And an input means connected to the power receiving coil.

上記の課題を解決するために、請求項9に記載の発明は、請求項7に記載の送電装置と、当該送電装置から離隔し、且つ前記送電コイルに対向して配置される受電装置であって、前記送電装置から送信された電力を受電する受電装置と、を備える。 In order to solve the above problems, the invention according to claim 9 is a power transmission device according to claim 7 and a power receiving device that is separated from the power transmission device and is arranged so as to face the power transmission coil. A power receiving device for receiving the electric power transmitted from the power transmitting device is provided.

上記の課題を解決するために、請求項10に記載の発明は、送電装置と、請求項8に記載の受電装置であって、前記送電装置から離隔し且つ前記受電コイルが当該送電装置に対向して配置され、前記送電装置から送信された電力を受電する受電装置と、を備える。 In order to solve the above problems, the invention according to claim 10 is the power transmission device and the power receiving device according to claim 8, which are separated from the power transmission device and the power receiving coil faces the power transmission device. It is provided with a power receiving device for receiving the electric power transmitted from the power transmitting device.

請求項7から請求項10のいずれか一項に記載の発明によれば、電力伝送システムを構成する送電装置に備えられた送電コイル又は受電装置に備えられた受電コイルの少なくともいずれか一方が請求項1から請求項6のいずれか一項に記載のコイルであるので、当該送電コイル又は当該受電コイルを対向させて非接触型の電力伝送を行った場合に、上記表皮効果又は近接効果による交流抵抗を低減することができ、軽量化及び低コスト化と、伝送効率の向上及び動作温度の上昇の防止と、を両立させることができる。また、巻回線における第1方向の長さを増やすことなく交流抵抗を下げることができるので、コイル全体としての、特に平面視形状の小型化も可能となる。 According to the invention according to any one of claims 7 to 10, at least one of the transmission coil provided in the power transmission device constituting the power transmission system and the power receiving coil provided in the power receiving device is claimed. Since it is the coil according to any one of items 1 to 6, when the transmission coil or the power receiving coil is opposed to each other to perform non-contact power transmission, alternating current due to the skin effect or proximity effect is performed. The resistance can be reduced, and both weight reduction and cost reduction, improvement of transmission efficiency, and prevention of an increase in operating temperature can be achieved at the same time. Further, since the AC resistance can be reduced without increasing the length of the winding line in the first direction, it is possible to reduce the size of the coil as a whole, particularly the plan view shape.

本発明によれば、第1方向の長さが第2方向の長さより長い巻回線において、電流の密度が相対的に高い巻回線の部分の第2方向の長さが、当該密度が相対的に低い巻回線の部分の第2方向の長さよりも長くなっている。 According to the present invention, in a winding line in which the length in the first direction is longer than the length in the second direction, the length in the second direction of the portion of the winding line having a relatively high current density is relative to the density. It is longer than the length of the lower winding line portion in the second direction.

従って、軽量化及び低コスト化のための巻回線における、いわゆる表皮効果又は近接効果による交流抵抗を低減することができ、軽量化及び低コスト化と、伝送効率の向上及び動作温度の上昇の防止と、を両立させることができる。また、巻回線における第1方向の長さを増やすことなく交流抵抗を下げることができるので、コイル全体としての、特に平面視形状の小型化も可能となる。 Therefore, it is possible to reduce the AC resistance due to the so-called skin effect or proximity effect in the winding line for weight reduction and cost reduction, and it is possible to reduce the weight and cost, improve the transmission efficiency, and prevent the operating temperature from rising. And, can be compatible. Further, since the AC resistance can be reduced without increasing the length of the winding line in the first direction, it is possible to reduce the size of the coil as a whole, particularly the plan view shape.

実施形態の電力伝送システムの概要構成を示すブロック図である。It is a block diagram which shows the outline structure of the power transmission system of an embodiment. 実施形態の受電コイルの構造を示す平面図である。It is a top view which shows the structure of the power receiving coil of an embodiment. 実施形態の受電コイルを用いた電力伝送時における当該受電コイルにおける電流密度の分布を例示する図である。It is a figure which illustrates the distribution of the current density in the power receiving coil at the time of power transmission using the power receiving coil of an embodiment. 実施形態の送電コイル等の構造を示す断面図であり、(a)は当該送電コイルの構造を示す断面図であり、(b)は第1変形形態の送電コイルの構造を示す断面図であり、(c)は第2変形形態の送電コイルの構造を示す断面図であり、(d)は第3変形形態の送電コイルの構造を示す断面図である。It is sectional drawing which shows the structure of the transmission coil of embodiment, (a) is the sectional view which shows the structure of the said transmission coil, (b) is the sectional view which shows the structure of the transmission coil of 1st modification. , (C) is a cross-sectional view showing the structure of the transmission coil of the second modified form, and (d) is a cross-sectional view showing the structure of the transmission coil of the third modified form. 実施形態の送電コイルの製造方法を示す図あり、(a)は当該製造方法の第1例に用いられる銅条の断面を例示する図であり、(b)は当該製造方法の第2例に用いられる銅張積層板等の断面を例示する図である。There is a figure which shows the manufacturing method of the power transmission coil of an embodiment, (a) is the figure which illustrates the cross section of the copper strip used in the 1st example of the manufacturing method, (b) is the figure which exemplifies the 2nd example of the manufacturing method. It is a figure which illustrates the cross section of the copper-clad laminated board used. 実施形態の送電コイル及び受電コイルの構造による効果としての周波数とインピーダンスとの関係を示す図である。It is a figure which shows the relationship between the frequency and impedance as an effect by the structure of the power transmission coil and the power reception coil of an embodiment. 実施形態の送電コイル及び受電コイルの構造による効果としての周波数とインピーダンス比との関係を示す図である。It is a figure which shows the relationship between the frequency and the impedance ratio as an effect by the structure of the power transmission coil and the power reception coil of an embodiment.

次に、本発明を実施するための形態について、図1乃至図5を用いて説明する。なお、以下に説明する実施形態及び変形形態は、電気自動車に搭載されている充電池を充電するための電力を、当該充電池を備えた電気自動車に対して磁界共鳴方式により非接触で電送する電力伝送システムに対して、本発明を適用した場合の実施形態及び変形形態である。 Next, a mode for carrying out the present invention will be described with reference to FIGS. 1 to 5. In the embodiments and modifications described below, the electric power for charging the rechargeable battery mounted on the electric vehicle is transmitted to the electric vehicle equipped with the rechargeable battery in a non-contact manner by a magnetic field resonance method. It is an embodiment and a modification when this invention is applied to a power transmission system.

ここで、実施形態及び変形形態の磁界共鳴方式による電力伝送システムは、電力を送る後述の送電コイルと、当該送電コイルから離隔して向き合うように(即ち対向するように)配置され且つ送電コイルから送られた電力を受電する後述の受電コイルと、を備える。 Here, the electric power transmission system by the magnetic field resonance method of the embodiment and the modified form is arranged so as to face (that is, face each other) away from the power transmission coil described later, which is to send power, and from the power transmission coil. It is provided with a power receiving coil, which will be described later, for receiving the transmitted power.

(I)実施形態の電力伝送システムの全体構成及び動作について
先ず、実施形態の電力伝送システムの全体構成及び動作について、図1を用いて説明する。なお図1は、実施形態の電力伝送システムの概要構成を示すブロック図である。
(I) Overall configuration and operation of the power transmission system of the embodiment
First, the overall configuration and operation of the power transmission system of the embodiment will be described with reference to FIG. Note that FIG. 1 is a block diagram showing an outline configuration of the power transmission system of the embodiment.

図1に示すように、実施形態の電力伝送システムSは、受電部RV及び上記受電コイルRCを備えた受電装置Rと、送電部TR及び上記送電コイルTCを備えた送電装置Tと、により構成されている。このとき受電装置Rは上記電気自動車に搭載され、且つ当該電気自動車に搭載されている図示しない蓄電池に接続されている。一方送電装置Tは、当該電気自動車が移動又は停車する位置の地面に設置されている。そして、当該蓄電池を充電する場合、受電装置Rの受電コイルRCと送電装置Tの送電コイルTCとが対向するように電気自動車が運転又は停車される。なお、実施形態の電力伝送システムSによる上記蓄電池の充電に際しては、停車している電気自動車に搭載されている受電装置Rに対して、その停車位置の下方の地面に設置された送電装置Tの送電コイルTCを介して、当該送電装置Tから電力を伝送するように構成することができる。またこの他、移動中の電気自動車に搭載されている受電装置Rに対して、その電気自動車が移動している道路の一定距離の区間に設置された複数の送電装置Tの送電コイルTCを介して、当該送電装置Tから連続的に電力を伝送するように構成してもよい。このとき、送電部TRが本発明の「出力手段」の一例に相当し、受電部RVが本発明の「入力手段」の一例に相当する。 As shown in FIG. 1, the power transmission system S of the embodiment includes a power receiving device R including a power receiving unit RV and the power receiving coil RC, and a power transmission device T including a power transmission unit TR and the power transmission coil TC. Has been done. At this time, the power receiving device R is mounted on the electric vehicle and is connected to a storage battery (not shown) mounted on the electric vehicle. On the other hand, the power transmission device T is installed on the ground where the electric vehicle moves or stops. Then, when charging the storage battery, the electric vehicle is operated or stopped so that the power receiving coil RC of the power receiving device R and the power transmission coil TC of the power transmission device T face each other. When charging the storage battery by the power transmission system S of the embodiment, the power transmission device T installed on the ground below the stop position of the power receiving device R mounted on the stopped electric vehicle is used. It can be configured to transmit electric power from the power transmission device T via the power transmission coil TC. In addition, for the power receiving device R mounted on the moving electric vehicle, via the power transmission coil TC of a plurality of power transmission devices T installed in a certain distance section of the road on which the electric vehicle is moving. Therefore, it may be configured to continuously transmit electric power from the power transmission device T. At this time, the power transmission unit TR corresponds to an example of the "output means" of the present invention, and the power receiving unit RV corresponds to an example of the "input means" of the present invention.

一方図1に示すように、送電コイルTCは、送電ループコイルTL1及び送電ループコイルTL2が積層されて構成されている。また受電コイルRCは、受電ループコイルRL2及び受電ループコイルRL1が積層されて構成されている。そして、送電コイルTCの送電ループコイルTL1及び送電ループコイルTL2には、受電装置Rに送電すべき電力が送電部TRから入力される。これにより送電コイルTCは、当該電力を磁界共鳴方式により受電コイルRCに送電する。他方受電コイルRCの受電ループコイルRL2及び受電ループコイルRL1は、送電コイルTCに対向するように配置され、磁界共鳴方式により送電コイルTCから受電した上記電力を受電部RVに出力する。このとき、送電ループコイルTL1及び送電ループコイルTL2又は受電ループコイルRL2及び受電ループコイルRL1が本発明の「コイル」の一例にそれぞれ相当する。 On the other hand, as shown in FIG. 1, the power transmission coil TC is configured by stacking the power transmission loop coil TL1 and the power transmission loop coil TL2. Further, the power receiving coil RC is configured by laminating a power receiving loop coil RL2 and a power receiving loop coil RL1. Then, the electric power to be transmitted to the power receiving device R is input from the power transmission unit TR to the power transmission loop coil TL1 and the power transmission loop coil TL2 of the power transmission coil TC. As a result, the power transmission coil TC transmits the electric power to the power reception coil RC by the magnetic field resonance method. On the other hand, the power receiving loop coil RL2 and the power receiving loop coil RL1 of the power receiving coil RC are arranged so as to face the power transmission coil TC, and the power received from the power transmission coil TC by the magnetic field resonance method is output to the power receiving unit RV. At this time, the power transmission loop coil TL1 and the power transmission loop coil TL2 or the power reception loop coil RL2 and the power reception loop coil RL1 correspond to an example of the "coil" of the present invention, respectively.

以上の構成において、送電装置Tの送電部TRは、例えば電力伝送システムSが用いられる国における電波法等の法規等に対応しつつ、受電装置Rに伝送すべき上記電力を送電コイルTCに出力する。これにより送電コイルTCは、出力された電力を磁界共鳴方式により受電コイルRCに送電する。このときに対応すべき法規等は、例えば人体への影響を考慮して漏洩磁界が予め決められた所定のレベル以下になるように規制している。また、全ての送電装置Tと受電装置Rとの間における相互接続利用が可能となるためには、結果的に、両者が予め決められた所定範囲の周波数を利用する必要があり、このため上記所定範囲の周波数又は周波数帯域は、上記法規等としてのISO(International Organization for Standardization)又はIEC(International Electrotechnical Commission)等の国際機関の推奨に従う必要がある。また、送電コイルTCと受電コイルRCとの間の所定の位置ずれも考慮した伝送効率の下限値も上記国際機関により規定されているため、電力伝送システムSとしても高い電力の伝送効率が要求される。 In the above configuration, the power transmission unit TR of the power transmission device T outputs the above power to be transmitted to the power reception device R to the power transmission coil TC while complying with the regulations such as the Radio Law in the country where the power transmission system S is used. do. As a result, the power transmission coil TC transmits the output power to the power reception coil RC by the magnetic field resonance method. The laws and regulations that should be dealt with at this time regulate the leakage magnetic field so that it is below a predetermined level, for example, in consideration of the influence on the human body. Further, in order to be able to use the interconnection between all the power transmitting devices T and the power receiving devices R, as a result, it is necessary for both to use a frequency in a predetermined range, which is the above. The frequency or frequency band in the predetermined range must follow the recommendations of international organizations such as ISO (International Organization for Standardization) or IEC (International Electrotechnical Commission) as the above-mentioned regulations. Further, since the lower limit value of the transmission efficiency considering the predetermined positional deviation between the power transmission coil TC and the power reception coil RC is also defined by the above-mentioned international organization, the power transmission system S is also required to have high power transmission efficiency. To.

そして、上記磁界共鳴方式により送電コイルTCからの上記電力を受電した受電装置Rの受電コイルRCを構成する受電ループコイルRL1及び受電ループコイルRL2は、当該受電した電力を受電部RVに出力する。これにより受電部RVは、当該電力に対応した出力(例えば、上記85キロヘルツの高周波電力となる)を、例えば図示しない電力変換ユニットによりDC(直流)電流に変換し、電気自動車の蓄電池に出力する。以上の受電装置R1の構成により、当該蓄電池には必要量の電力が充電される。 Then, the power receiving loop coil RL1 and the power receiving loop coil RL2 constituting the power receiving coil RC of the power receiving device R that has received the power from the power transmission coil TC by the magnetic field resonance method output the received power to the power receiving unit RV. As a result, the power receiving unit RV converts the output corresponding to the electric power (for example, the high frequency power of 85 kilohertz) into a DC (direct current) current by a power conversion unit (not shown) and outputs the output to the storage battery of the electric vehicle. .. With the above configuration of the power receiving device R1, the storage battery is charged with a required amount of electric power.

(II)送電コイルTC(受電コイルRC)の構成について
次に、上述した実施形態の電力伝送システムSに用いられる、実施形態の送電コイルTC及び受電コイルRCの構成について、図2乃至図4を用いて説明する。なお、実施形態の送電コイルTCと受電コイルRCとは、その大きさを除き、基本的に同じ構成を備える。即ち、上記受電ループコイルRL1の構成と上記送電ループコイルTL1の構成とは基本的に同一である。また、上記受電ループコイルRL2の構成と上記送電ループコイルTL2の構成とは基本的に同一である。更に、上記受電ループコイルRL1と上記受電ループコイルRL2との受電コイルRC内における位置関係と、上記送電ループコイルTL1と上記送電ループコイルTL2との送電コイルTC内における位置関係と、は基本的に同一である。よって以下の説明では、受電コイルRCについて、その構造を説明する。また、図2は実施形態の受電コイルRCの構造を示す平面図であり、図3は当該受電コイルを用いた電力伝送時における当該受電コイルにおける電流密度の分布を例示する図であり、図4は当該受電コイル等の構造を示す断面図である。このとき図2は、受電装置Rにおいて、受電部RV側から受電コイルRCを見た場合(図1参照)の平面図である。
(II) Configuration of power transmission coil TC (power receiving coil RC)
Next, the configurations of the power transmission coil TC and the power reception coil RC of the embodiment used in the power transmission system S of the above-described embodiment will be described with reference to FIGS. 2 to 4. The power transmission coil TC and the power reception coil RC of the embodiment basically have the same configuration except for their sizes. That is, the configuration of the power receiving loop coil RL1 and the configuration of the power transmission loop coil TL1 are basically the same. Further, the configuration of the power receiving loop coil RL2 and the configuration of the power transmission loop coil TL2 are basically the same. Further, the positional relationship between the power receiving loop coil RL1 and the power receiving loop coil RL2 in the power receiving coil RC and the positional relationship between the power transmission loop coil TL1 and the power transmission loop coil TL2 in the power transmission coil TC are basically. It is the same. Therefore, in the following description, the structure of the power receiving coil RC will be described. Further, FIG. 2 is a plan view showing the structure of the power receiving coil RC of the embodiment, and FIG. 3 is a diagram illustrating the distribution of the current density in the power receiving coil at the time of power transmission using the power receiving coil. Is a cross-sectional view showing the structure of the power receiving coil and the like. At this time, FIG. 2 is a plan view of the power receiving device R when the power receiving coil RC is viewed from the power receiving unit RV side (see FIG. 1).

図2にその平面図を示すように、実施形態の受電コイルRCは、後述の並行する二本の例えば銅薄膜線RL11及び銅薄膜線RL12により構成されている受電ループコイルRL1と、図2において図示されない受電ループコイルRL2と、が、絶縁性のフィルムBF(詳細は後述する)を介して図2の紙面方向に積層されて構成される(図1参照)。また受電ループコイルRL2は、後述の並行する二本の例えば銅薄膜線RL21及び銅薄膜線RL22により構成されている。更に、受電ループコイルRL1を構成する銅薄膜線RL11及び銅薄膜線RL12の巻回の中心と、受電ループコイルRL2を構成する銅薄膜線RL21及び銅薄膜線RL22の巻回の中心とは、相互に同一とされている。以上の構成において、銅薄膜線RL11及び銅薄膜線RL12並びに銅薄膜線RL21及び銅薄膜線RL22が、本発明の「並行巻回線」の一例にそれぞれ相当する。なお実施形態では、受電ループコイルRL1と受電ループコイルRL2との間の絶縁のためにフィルムBFを用いているが、これらの他に、ガラスエポキシ材料等の絶縁性の材料を用いることもできる。また、受電コイルRCとして発生した熱を効率良く放熱するため、例えばセラミック粒子等を分散した薄膜化材料を用いることもできる。更に適切な空隙保持材を用いて、必要な空隙を介して積層するように構成してもよい。 As shown in the plan view of FIG. 2, the power receiving coil RC of the embodiment includes a power receiving loop coil RL1 composed of two parallel parallel copper thin film wires RL11 and a copper thin film wire RL12, which will be described later, and FIG. A power receiving loop coil RL2 (not shown) is laminated with an insulating film BF (details will be described later) in the direction of the paper surface of FIG. 2 (see FIG. 1). Further, the power receiving loop coil RL2 is composed of two parallel parallel copper thin film wires RL21 and a copper thin film wire RL22, which will be described later. Further, the center of winding of the copper thin film wire RL11 and the copper thin film wire RL12 constituting the power receiving loop coil RL1 and the winding center of the copper thin film wire RL21 and the copper thin film wire RL22 constituting the power receiving loop coil RL2 are mutual. Is the same as. In the above configuration, the copper thin film wire RL11 and the copper thin film wire RL12, and the copper thin film wire RL21 and the copper thin film wire RL22 correspond to an example of the "parallel winding line" of the present invention, respectively. In the embodiment, the film BF is used for the insulation between the power receiving loop coil RL1 and the power receiving loop coil RL2, but in addition to these, an insulating material such as a glass epoxy material can also be used. Further, in order to efficiently dissipate the heat generated as the power receiving coil RC, for example, a thin film material in which ceramic particles or the like are dispersed can be used. Further, an appropriate void holding material may be used so as to be laminated through the required voids.

図2に示すように、受電コイルRCの受電ループコイルRL1は、同じ層内を相互に並行して巻回されている銅薄膜線RL11及び銅薄膜線RL12により構成されており、その最外周部の一辺に、銅薄膜線RL11及び銅薄膜線RL12を接続すると共に受電ループコイルRL1を送電部TRに接続するための外部接続端子O1及び外部接続端子O2を有している。そして受電ループコイルRL1は、並行する銅薄膜線RL11及び銅薄膜線RL12が並行して六回転(6ターン)巻回されて構成されており、銅薄膜線RL11及び銅薄膜線RL12それぞれの両端部(図2に示す場合は右辺部の中央)が上記外部接続端子O1及び上記外部接続端子O2とされている。また、受電ループコイルRL1の全周に渡って、銅薄膜線RL11の幅<銅薄膜線RL12の幅とされている。更に、銅薄膜線RL11及び銅薄膜線RL12それぞれの厚さは、受電ループコイルRL1の全周に渡って均一且つ相互に同一の厚さとされている。更にまた、受電ループコイルRL1としては、図2におけるその上辺部、下辺部、左辺部及び右辺部それぞれに直線部が設けられており、それぞれの直線部が、略同心円弧状の曲線部により接続されている。また、銅薄膜線RL11と銅薄膜線RL12との交差部分は、絶縁層を挟んだ積層構造(図2参照)又はジャンパ線を用いる方法等により、当該銅薄膜線RL11と銅薄膜線RL12との間は絶縁されつつ、相互に交差されている。 As shown in FIG. 2, the power receiving loop coil RL1 of the power receiving coil RC is composed of a copper thin film wire RL11 and a copper thin film wire RL12 wound in parallel with each other in the same layer, and the outermost peripheral portion thereof. One side has an external connection terminal O1 and an external connection terminal O2 for connecting the copper thin film wire RL11 and the copper thin film wire RL12 and connecting the power receiving loop coil RL1 to the transmission unit TR. The power receiving loop coil RL1 is composed of parallel copper thin film wires RL11 and copper thin film wires RL12 wound six times (6 turns) in parallel, and both ends of each of the copper thin film wires RL11 and the copper thin film wires RL12. (In the case shown in FIG. 2, the center of the right side portion) is the external connection terminal O1 and the external connection terminal O2. Further, the width of the copper thin film wire RL11 <the width of the copper thin film wire RL12 is set over the entire circumference of the power receiving loop coil RL1. Further, the thickness of each of the copper thin film wire RL11 and the copper thin film wire RL12 is set to be uniform and the same thickness over the entire circumference of the power receiving loop coil RL1. Furthermore, the power receiving loop coil RL1 is provided with a straight line portion on each of the upper side portion, the lower side portion, the left side portion, and the right side portion in FIG. 2, and each straight line portion is connected by a substantially concentric arcuate curved portion. ing. Further, at the intersection of the copper thin film wire RL11 and the copper thin film wire RL12, the copper thin film wire RL11 and the copper thin film wire RL12 can be formed by a laminated structure sandwiching an insulating layer (see FIG. 2) or a method using a jumper wire. They are isolated from each other and intersect each other.

これに加えて、実施形態の受電ループコイルRL1では、それを用いた電力伝送時の銅薄膜線RL11及び銅薄膜線RL12それぞれにおける電流密度の分布に対応して、当該電流密度が高い部分について、銅薄膜線RL11又は銅薄膜線RL12の膜厚が厚くされている。 In addition to this, in the power receiving loop coil RL1 of the embodiment, the portion having a high current density corresponds to the distribution of the current densities in each of the copper thin film wire RL11 and the copper thin film wire RL12 at the time of power transmission using the power receiving loop coil RL1. The thickness of the copper thin film wire RL11 or the copper thin film wire RL12 is increased.

即ち、平面形状が実施形態の銅薄膜線RL11及び銅薄膜線RL12と同一の幅で平坦な銅薄膜線L1及び銅薄膜線L2が巻回されてなる従来のループコイルLにおいて、実施形態の電力伝送システムSと同様の電力伝送にそれが用いられる際の電流密度の分布は、本願の発明者らのシミュレーション結果を図3に例示するように、内周側で幅の広い銅薄膜線L2の内周側縁部、及び外周側で幅の狭い銅薄膜線L1の全体において、それぞれ電流密度が高くなることが判明した(図3における色の濃い部分参照)。そこで、実施形態の銅薄膜線RL11及び銅薄膜線RL12において、内周側で幅の広い銅薄膜線RL12の内周側縁部に沿って、銅薄膜線RL12と同じ銅材料からなり且つ幅が銅薄膜線RL12よりも狭い銅薄膜線RL12aが積層されている。これにより、当該内周側縁部の厚さが銅薄膜線RL12aの厚さだけ増えることになり、結果的に、上記電流密度が高くなる傾向にある銅薄膜線RL12の部分(図3参照)のインピーダンスを低減してその損失を抑制している。 That is, in the conventional loop coil L in which the copper thin film wire L1 and the copper thin film wire L2 having a flat shape having the same width as the copper thin film wire RL11 and the copper thin film wire RL12 of the embodiment are wound, the power of the embodiment is used. The distribution of the current density when it is used for power transmission similar to the transmission system S is that of the wide copper thin film wire L2 on the inner peripheral side, as illustrated in FIG. 3 by the simulation results of the inventors of the present application. It was found that the current densities were high in the entire copper thin film wire L1 having a narrow width on the inner peripheral side edge portion and the outer peripheral side (see the dark part in FIG. 3). Therefore, in the copper thin film wire RL11 and the copper thin film wire RL12 of the embodiment, the copper thin film wire RL12 is made of the same copper material as the copper thin film wire RL12 and has a width along the inner peripheral side edge portion of the copper thin film wire RL12 having a wide width on the inner peripheral side. Copper thin film wire RL12a, which is narrower than the copper thin film wire RL12, is laminated. As a result, the thickness of the inner peripheral side edge portion increases by the thickness of the copper thin film wire RL12a, and as a result, the portion of the copper thin film wire RL12 in which the current density tends to increase (see FIG. 3). The impedance of the film is reduced to suppress the loss.

一方、フィルムBFを介して受電ループコイルRL1に積層されている実施形態の受電ループコイルRL2は、上記銅薄膜線RL11と同じ平面形状及び断面形状の銅薄膜線RL21と、上記銅薄膜線RL12及び銅薄膜線RL12aと同じ平面形状及び断面形状の銅薄膜線RL22及び銅薄膜線22aとが並行して巻回されて構成されている。また、受電ループコイルRL2の最外周部には、受電ループコイルRL1の外部接続端子O1及び外部接続端子O2と同様の外部接続端子O1及び外部接続端子O2とされている。そして受電ループコイルRL2は、受電ループコイルRL1に対して、受電コイルRCの中心軸に沿った方向の天地を逆に(即ち、受電ループコイルRL1を裏返した状態となるように)、且つ受電ループコイルRL1と同心となるように、フィルムBFに積層されている。この結果、受電ループコイルRL1及び受電ループコイルRL2それぞれの巻回の中心から見て、受電ループコイルRL1の銅薄膜線RL12及び銅薄膜線RL12a並びに銅薄膜線RL11は、受電ループコイルRL2の銅薄膜線RL22及び銅薄膜線RL22a並びに銅薄膜線RL21と同じ位置となるように積層されている。また、受電ループコイルRL1の外部接続端子O1と受電ループコイルRL2の外部接続端子O1、及び受電ループコイルRL1の外部接続端子O2と受電ループコイルRL2の外部接続端子O2は、それぞれ別個に受電部RVに接続されてもよいし、フィルムBFを介して層間接続された上で受電部RVに接続されてもよい。 On the other hand, the power receiving loop coil RL2 of the embodiment laminated on the power receiving loop coil RL1 via the film BF includes the copper thin film wire RL21 having the same plane shape and cross-sectional shape as the copper thin film wire RL11, and the copper thin film wire RL12 and the copper thin film wire RL12. The copper thin film wire RL22 and the copper thin film wire 22a having the same plane shape and cross-sectional shape as the copper thin film wire RL12a are wound in parallel. Further, on the outermost peripheral portion of the power receiving loop coil RL2, an external connection terminal O1 and an external connection terminal O2 similar to the external connection terminal O1 and the external connection terminal O2 of the power receiving loop coil RL1 are provided. Then, the power receiving loop coil RL2 has the power receiving loop coil RL1 turned upside down in the direction along the central axis of the power receiving coil RC (that is, the power receiving loop coil RL1 is turned upside down) and the power receiving loop. It is laminated on the film BF so as to be concentric with the coil RL1. As a result, when viewed from the center of winding of each of the power receiving loop coil RL1 and the power receiving loop coil RL2, the copper thin film wire RL12 and the copper thin film wire RL12a and the copper thin film wire RL11 of the power receiving loop coil RL1 are the copper thin film of the power receiving loop coil RL2. The wires RL22, the copper thin film wire RL22a, and the copper thin film wire RL21 are laminated so as to be at the same positions. Further, the external connection terminal O1 of the power receiving loop coil RL1 and the external connection terminal O1 of the power receiving loop coil RL2, and the external connection terminal O2 of the power receiving loop coil RL1 and the external connection terminal O2 of the power receiving loop coil RL2 are separately connected to each other. It may be connected to the power receiving unit RV after being interconnected between layers via the film BF.

上記受電ループコイルRL1及び上記受電ループコイルRL2についてより具体的には、図2におけるそのα-β断面を図4(a)に示すように、受電ループコイルRL1及び受電ループコイルRL2は、フィルムBFを挟んで線対称となる断面形状を有している。そして、上記銅薄膜線RL12の外周側及び上記銅薄膜線RL11並びに上記銅薄膜線RL22の外周側及び上記銅薄膜線RL21は同じ厚さとされており、銅薄膜線RL12の内周側縁部及び銅薄膜線RL22の内周側縁部に、それぞれ、銅薄膜線RL12よりも幅が狭い銅薄膜線RL12a及び銅薄膜線RL22よりも幅が狭い銅薄膜線RL22aが積層されている。これらにより、銅薄膜線RL12の内周側縁部及び銅薄膜線RL22の内周側縁部それぞれの厚さが、積層されている銅薄膜線RL12a及び銅薄膜線RL22baそれぞれの厚さだけ増えることになり、上記電流密度が高くなる傾向にある銅薄膜線RL12及び銅薄膜線RL22それぞれの部分(図3参照)のインピーダンスを低減してその損失を抑制している。 More specifically, as shown in FIG. 4A, the α-β cross section of the power receiving loop coil RL1 and the power receiving loop coil RL2 is a film BF. It has a cross-sectional shape that is line-symmetrical across. The outer peripheral side of the copper thin film wire RL12, the copper thin film wire RL11, the outer peripheral side of the copper thin film wire RL22, and the copper thin film wire RL21 have the same thickness. A copper thin film wire RL12a having a width narrower than that of the copper thin film wire RL12 and a copper thin film wire RL22a having a width narrower than that of the copper thin film wire RL22 are laminated on the inner peripheral side edge portion of the copper thin film wire RL22, respectively. As a result, the thickness of each of the inner peripheral side edge portion of the copper thin film wire RL12 and the inner peripheral side edge portion of the copper thin film wire RL22 increases by the thickness of each of the laminated copper thin film wire RL12a and the copper thin film wire RL22ba. Therefore, the impedance of each portion (see FIG. 3) of the copper thin film wire RL12 and the copper thin film wire RL22, which tend to have a high current density, is reduced to suppress the loss.

なお、受電ループコイルRL1の断面構造については、複数の変形形態の断面構造が採用し得る。 As for the cross-sectional structure of the power receiving loop coil RL1, a plurality of modified cross-sectional structures can be adopted.

即ち第1変形形態として、図2におけるα-β断面に相当するその断面を図4(b)に示すように、実施形態の銅薄膜線RL11及び銅薄膜線RL21に代えて、銅薄膜線RL12に銅薄膜線RL12aを加えた厚さに対応した厚さを有する銅薄膜線RL11a、及び銅薄膜線RL22に銅薄膜線RL22aを加えた厚さに対応した厚さを有する銅薄膜線RL12aをフィルムBFの両面の外周側に備えた受電ループコイルRL1a及び受電ループコイルRL2aであってもよい。 That is, as the first modified form, as shown in FIG. 4B, the cross section corresponding to the α-β cross section in FIG. 2 is replaced with the copper thin film wire RL11 and the copper thin film wire RL21 of the embodiment, and the copper thin film wire RL12 is used. RL11a, a copper thin film wire having a thickness corresponding to the thickness of the copper thin film wire RL12a, and RL12a, a copper thin film wire having a thickness corresponding to the thickness of the copper thin film wire RL22 plus the copper thin film wire RL22a. The power receiving loop coil RL1a and the power receiving loop coil RL2a provided on the outer peripheral sides of both sides of the BF may be used.

また第2変形形態として、図4(b)に示す断面構造の受電ループコイルRL1a及び受電ループコイルRL2aに適用した場合の図2におけるα-β断面に相当するその断面を図4(c)に示すように、銅薄膜線RL12及び銅薄膜線RL22それぞれの外周側縁部に、銅薄膜線RL12aの厚さに対応した厚さを有する銅薄膜線RL12b、及び銅薄膜線RL22aの厚さに対応した厚さを有する銅薄膜線RL22bを更に積層した受電ループコイルRL1b及び受電ループコイルRL2bであってもよい。更に、図4(c)に例示する厚さの銅薄膜線RL12b及び銅薄膜線RL22bを、実施形態の受電ループコイルRL1(図4(a)参照)の銅薄膜線RL12及び銅薄膜線RL22それぞれの外周側縁部に積層した断面構造であってもよい。 Further, as a second modification, the cross section corresponding to the α-β cross section in FIG. 2 when applied to the power receiving loop coil RL1a and the power receiving loop coil RL2a having the cross-sectional structure shown in FIG. 4 (b) is shown in FIG. 4 (c). As shown, the outer peripheral side edges of the copper thin film wire RL12 and the copper thin film wire RL22 correspond to the thickness of the copper thin film wire RL12b and the copper thin film wire RL22a having a thickness corresponding to the thickness of the copper thin film wire RL12a. It may be a power receiving loop coil RL1b and a power receiving loop coil RL2b in which a copper thin film wire RL22b having a thickened thickness is further laminated. Further, the copper thin film wire RL12b and the copper thin film wire RL22b having the thicknesses exemplified in FIG. 4C are used, and the copper thin film wire RL12 and the copper thin film wire RL22 of the power receiving loop coil RL1 (see FIG. 4A) of the embodiment are respectively used. It may have a cross-sectional structure laminated on the outer peripheral side edge portion of the above.

更にまた、第3変形形態として、図2におけるα-β断面に相当するその断面を図4(d)に示すように、実施形態の銅薄膜線RL11及び銅薄膜線RL21に代えて、銅薄膜線RL12に銅薄膜線RL12aを加えた厚さに対応した直径の円形断面形状を有する銅線RLS1、及び銅薄膜線RL22に銅薄膜線RL22aを加えた厚さに対応した直径の円形断面形状を有する銅線RSL2をフィルムBFの両面の外周側に備えた受電ループコイルRL1c及び受電ループコイルRL2cであってもよい。このとき、銅線RLS1及び銅線RSL2のいずれか一方又は双方は、図4(d)における上下方向に当該銅線RLS1及び銅線RSL2を押し潰した楕円の断面形状を有する銅線であってもよい。 Furthermore, as a third modified form, as shown in FIG. 4 (d), the cross section corresponding to the α-β cross section in FIG. 2 is replaced with the copper thin film wire RL11 and the copper thin film wire RL21 of the embodiment, and the copper thin film is used. A copper wire RLS1 having a circular cross-sectional shape having a diameter corresponding to the thickness of the wire RL12 plus the copper thin film wire RL12a, and a circular cross-sectional shape having a diameter corresponding to the thickness of the copper thin film wire RL22 plus the copper thin film wire RL22a. The power receiving loop coil RL1c and the power receiving loop coil RL2c may be provided with the copper wire RSL2 provided on both outer peripheral sides of the film BF. At this time, either one or both of the copper wire RLS1 and the copper wire RSL2 is a copper wire having an elliptical cross-sectional shape obtained by crushing the copper wire RLS1 and the copper wire RSL2 in the vertical direction in FIG. 4 (d). May be good.

(III)受電コイルRC及び送電コイルTCの製造方法について
次に、実施形態の受電コイルRCの製造方法について、図5を用いてその概要を説明する。なお、以下に説明する三つの製造方法は、受電コイルRCと同様の構成を備える送電コイルTCの製造方法としても採用することができる。
(III) Manufacturing method of power receiving coil RC and power transmission coil TC
Next, the outline of the method of manufacturing the power receiving coil RC of the embodiment will be described with reference to FIG. The three manufacturing methods described below can also be adopted as a manufacturing method for the power transmission coil TC having the same configuration as the power receiving coil RC.

当該製造方法の第1例としては、下記(a)-1乃至(a)-4の各工程を含む製造方法を用いることができる。
(a)-1:材料たる銅を用いた「溶融押し出し法」により、銅薄膜線RL12に銅薄膜線RL12aを積層した断面形状及び銅薄膜線RL22に銅薄膜線RL22aを積層した断面形状、並びに銅薄膜線RL11及び銅薄膜線RL12それぞれの断面形状に相当する断面形状(図5(a)参照)をそれぞれに有する銅条M1及び銅条M2を製造する。
(a)-2:上記(a)-1で製造された銅条M1及び銅条M2を、実施形態の銅薄膜線RL11及び銅薄膜線RL12、並びに銅薄膜線RL21及び銅薄膜線RL22にそれぞれ対応するフィルムBFの両面の位置に例えば接着し、実施形態の受電ループコイルRL1とする。
(a)-3:銅薄膜線RL11及び銅薄膜線RL12並びに銅薄膜線RL21及び銅薄膜線RL22それぞれにおける交差部分(図2参照)の当該交差を形成する。
(a)-4:外部接続端子O1及び外部接続端子O2と、受電部RV(受電装置Rの場合)又は送電部TR(送電装置Tの場合)とを接続する。
As a first example of the manufacturing method, a manufacturing method including each of the following steps (a) -1 to (a) -4 can be used.
(A) -1: A cross-sectional shape in which the copper thin film wire RL12a is laminated on the copper thin film wire RL12, a cross-sectional shape in which the copper thin film wire RL22a is laminated on the copper thin film wire RL22, and a cross-sectional shape in which the copper thin film wire RL22a is laminated by the "melt extruding method" using copper as a material. Copper strips M1 and copper strips M2 each having a cross-sectional shape (see FIG. 5A) corresponding to the cross-sectional shapes of the copper thin film wire RL11 and the copper thin film wire RL12 are manufactured.
(A) -2: The copper strips M1 and copper strips M2 manufactured in (a) -1 above are applied to the copper thin film wire RL11 and the copper thin film wire RL12, and the copper thin film wire RL21 and the copper thin film wire RL22, respectively. For example, it is adhered to the positions on both sides of the corresponding film BF to form the power receiving loop coil RL1 of the embodiment.
(A) -3: The intersection (see FIG. 2) at each of the copper thin film wire RL11 and the copper thin film wire RL12 and the copper thin film wire RL21 and the copper thin film wire RL22 is formed.
(A) -4: The external connection terminal O1 and the external connection terminal O2 are connected to the power receiving unit RV (in the case of the power receiving device R) or the power transmission unit TR (in the case of the power transmission device T).

このとき、図4(d)に例示する第3変形形態の受電ループコイルRL1c及び受電ループコイルRL2cを製造する場合は、銅線RLS1及び銅線RSL2に相当する銅材としての銅線を当該銅線RLS1及び銅線RSL2に対応するフィルムBFの位置に例えば接着すればよい。また、断面形状が楕円である銅線RLS1及び銅線RSL2を製造する場合は、対応する断面形状となるように押しつぶされた上記銅材を用いればよい。 At this time, in the case of manufacturing the power receiving loop coil RL1c and the power receiving loop coil RL2c of the third modified form exemplified in FIG. 4D, the copper wire as the copper material corresponding to the copper wire RLS1 and the copper wire RSL2 is used as the copper. For example, it may be adhered to the position of the film BF corresponding to the wire RLS1 and the copper wire RSL2. Further, when the copper wire RLS1 and the copper wire RSL2 having an elliptical cross-sectional shape are manufactured, the copper material crushed so as to have the corresponding cross-sectional shape may be used.

更に、製造方法の第1例を用いる場合は、受電ループコイルRL1及び受電ループコイルRL2それぞれにおける曲線部については、銅薄膜線RL12a及び銅薄膜線RL22aを積層した状態で特に銅条M1を曲げることが難しい場合がある。この場合には、受電ループコイルRL1及び受電ループコイルRL2それぞれにおける直線部のみについて、銅薄膜線RL12a及び銅薄膜線RL22aを積層すればよい。 Further, when the first example of the manufacturing method is used, the copper strip M1 is particularly bent in a state where the copper thin film wire RL12a and the copper thin film wire RL22a are laminated for the curved portion in each of the power receiving loop coil RL1 and the power receiving loop coil RL2. May be difficult. In this case, the copper thin film wire RL12a and the copper thin film wire RL22a may be laminated only on the linear portion of each of the power receiving loop coil RL1 and the power receiving loop coil RL2.

一方、当該製造方法の第2例としては、下記(b)-1乃至(b)-7の各工程を含む製造方法を用いることができる。
(b)-1:フィルムBFの両面全体に銅薄膜を形成する。
(b)-2:上記(b)-1で形成された銅薄膜(両面)の表面にそれぞれレジストを塗布する。
(b)-3:上記(b)-2で塗布したレジストを、それぞれの面について、銅薄膜線RL11及び銅薄膜線RL12並びに銅薄膜線RL21及び銅薄膜線RL22それぞれの形状にパターニングする。
(b)-4:上記(b)-3のパターニング後にエッチング処理を施し、銅薄膜線RL11及び銅薄膜線RL12並びに銅薄膜線RL21及び銅薄膜線RL22を形成する(なお、図2に示す交差部分において層間接続される部分は、上記(b)-2乃至上記(b)-4を当該層ごとに繰り返す)
(b)-5:銅薄膜線RL12aが積層される銅薄膜線RL12以外の当該銅薄膜線RL12の部分、及び銅薄膜線RL22aが積層される銅薄膜線RL22以外の当該銅薄膜線RL22の部分に、再度レジストを塗布する。
(b)-6:上記(b)-5でレジストが塗布されたフィルムBFの面それぞれに対して選択的に電気メッキ処理を施し、銅薄膜線RL12a及び銅薄膜線RL22aを形成し、受電ループコイルRL1及び受電ループコイルRL2を含む受電コイルRCとする。
(b)-7:外部接続端子O1及び外部接続端子O2と受電部RV(受電装置Rの場合)又は送電部TR(送電装置Tの場合)とを接続する。
On the other hand, as a second example of the manufacturing method, a manufacturing method including each of the following steps (b) -1 to (b) -7 can be used.
(B) -1: A copper thin film is formed on both sides of the film BF.
(B) -2: A resist is applied to the surfaces of the copper thin films (both sides) formed in (b) -1 above.
(B) -3: The resist applied in (b) -2 is patterned on each surface into the shapes of the copper thin film wire RL11 and the copper thin film wire RL12, and the copper thin film wire RL21 and the copper thin film wire RL22, respectively.
(B) -4: After the patterning of (b) -3, the etching process is performed to form the copper thin film wire RL11 and the copper thin film wire RL12, and the copper thin film wire RL21 and the copper thin film wire RL22 (note that the intersection shown in FIG. 2). In the portion to be interconnected between layers, the above (b) -2 to the above (b) -4 are repeated for each layer).
(B) -5: A portion of the copper thin film wire RL12 other than the copper thin film wire RL12 on which the copper thin film wire RL12a is laminated, and a portion of the copper thin film wire RL22 other than the copper thin film wire RL22 on which the copper thin film wire RL22a is laminated. Apply the resist again.
(B) -6: The surfaces of the film BF coated with the resist in (b) -5 above are selectively electroplated to form the copper thin film wire RL12a and the copper thin film wire RL22a, and the power receiving loop is formed. The power receiving coil RC including the coil RL1 and the power receiving loop coil RL2.
(B) -7: The external connection terminal O1 and the external connection terminal O2 are connected to the power receiving unit RV (in the case of the power receiving device R) or the power transmission unit TR (in the case of the power transmission device T).

以上説明した製造方法の第2例の場合、工程数自体は多くなるが、必要な部分(即ち銅薄膜線RL12a及び銅薄膜線RL22aがそれぞれ積層される部分)の増膜を効率良く行うことが可能になる。 In the case of the second example of the manufacturing method described above, although the number of steps itself is large, it is possible to efficiently increase the film thickness of the necessary portion (that is, the portion where the copper thin film wire RL12a and the copper thin film wire RL22a are laminated). It will be possible.

最後に、当該製造方法の第3例としては、一般的なプリント基板の製造工程、即ち下記(c)-1乃至(c)-6の各工程を含む製造方法等を用いることができる。このとき、当該製造工程に用いられる材料としては、例えば図5(b)に例示するような、ガラスエポキシ基板EPの両面に銅Cが予め積層された銅張積層板100を用いることができる。以下の説明では、当該銅張積層板100を、単に「CCL(Copper Clad Laminate)」100と称する。
(c)-1:上記CCL100における両面の銅Cの表面にそれぞれレジストを塗布する。
(c)-2:上記(c)-1で塗布したレジストを、それぞれの面について、銅薄膜線RL11及び銅薄膜線RL12並びに銅薄膜線RL21及び銅薄膜線RL22それぞれの形状にパターニングする。
(c)-3:上記(c)-2のパターニング後にエッチング処理を施し、銅薄膜線RL11及び銅薄膜線RL12並びに銅薄膜線RL21及び銅薄膜線RL22を形成する。
(c)-4:銅薄膜線RL12aが積層される銅薄膜線RL12の位置に、当該銅薄膜線RL12aとなる銅条C1を例えば溶接する。また、銅薄膜線RL22aが積層される銅薄膜線RL22の位置に、当該銅薄膜線RL22aとなる銅条C2を例えば溶接する。これらにより銅薄膜線RL12a及び銅薄膜線RL22aを形成し、受電ループコイルRL1及び受電ループコイルRL2を含む受電コイルRCとする。
(c)-5:外部接続端子O1及び外部接続端子O2と受電部RV(受電装置Rの場合)又は送電部TR(送電装置Tの場合)とを接続する。
Finally, as a third example of the manufacturing method, a general printed circuit board manufacturing process, that is, a manufacturing method including each of the following steps (c) -1 to (c) -6 can be used. At this time, as the material used in the manufacturing process, for example, a copper-clad laminate 100 in which copper C is preliminarily laminated on both surfaces of the glass epoxy substrate EP, as illustrated in FIG. 5B, can be used. In the following description, the copper-clad laminate 100 is simply referred to as "CCL (Copper Clad Laminate)" 100.
(C) -1: A resist is applied to the surfaces of copper C on both sides of the CCL100.
(C) -2: The resist applied in (c) -1 above is patterned on each surface into the shapes of the copper thin film wire RL11 and the copper thin film wire RL12, and the copper thin film wire RL21 and the copper thin film wire RL22, respectively.
(C) -3: After the patterning of (c) -2 above, etching treatment is performed to form the copper thin film wire RL11 and the copper thin film wire RL12, and the copper thin film wire RL21 and the copper thin film wire RL22.
(C) -4: Copper strip C1 to be the copper thin film wire RL12a is welded, for example, to the position of the copper thin film wire RL12 on which the copper thin film wire RL12a is laminated. Further, for example, the copper strip C2 to be the copper thin film wire RL22a is welded to the position of the copper thin film wire RL22 on which the copper thin film wire RL22a is laminated. As a result, the copper thin film wire RL12a and the copper thin film wire RL22a are formed to form a power receiving coil RC including a power receiving loop coil RL1 and a power receiving loop coil RL2.
(C) -5: The external connection terminal O1 and the external connection terminal O2 are connected to the power receiving unit RV (in the case of the power receiving device R) or the power transmission unit TR (in the case of the power transmission device T).

次に、図2及び図4(a)に示す構成を基本とする実施形態の受電コイルRC又は送電コイルTCを用いた電力伝送システムSの電力伝送における周波数を種々の値に変更してインピーダンス等を計測した実験結果(シミュレーション結果)について、従来例の受電コイル及び送電コイルを用いた電力伝送における当該インピーダンス等との対比において、図6及び図7を用いて説明する。なお、図6は実施形態の受電コイルRC及び送電コイルTCの構造による効果としての周波数とインピーダンスとの関係を示す図であり、図7は当該効果としての周波数とインピーダンス比(交流/直流)との関係を示す図である。 Next, the frequency in the power transmission of the power transmission system S using the power receiving coil RC or the power transmission coil TC of the embodiment based on the configuration shown in FIGS. 2 and 4A is changed to various values to obtain impedance and the like. The experimental results (simulation results) obtained by measuring the above will be described with reference to FIGS. 6 and 7 in comparison with the impedance and the like in the power transmission using the power receiving coil and the transmitting coil of the conventional example. Note that FIG. 6 is a diagram showing the relationship between frequency and impedance as an effect due to the structure of the power receiving coil RC and the power transmitting coil TC of the embodiment, and FIG. 7 is a diagram showing the frequency and impedance ratio (AC / DC) as the effect. It is a figure which shows the relationship of.

このとき、図7の縦軸に示すインピーダンス比は、図7の横軸に示される各周波数におけるインピーダンスを、電力伝送システムSを用いた電力伝送において直流に相当する周波数である1キロヘルツにおけるインピーダンスで除した値である。ここで、上記1キロヘルツにおけるインピーダンスは、一般に、受電ループコイル又は送電ループコイルを構成する銅薄膜線の断面積に比例するものであり、よって当該インピーダンスは、受電コイル又は送電コイルの重量に対応(比例)したパラメータであるとも言える。従って、図7の縦軸をインピーダンス比として周波数との関係を検討することで、各周波数において、より少ない材料でインピーダンスを抑制することができる受電ループコイル又は送電ループコイルがいずれであるか、を客観的に判定することができる。 At this time, the impedance ratio shown on the vertical axis of FIG. 7 is the impedance at each frequency shown on the horizontal axis of FIG. 7 at 1 kHz, which is a frequency corresponding to direct current in power transmission using the power transmission system S. It is the value divided. Here, the impedance at 1 kHz is generally proportional to the cross-sectional area of the copper thin film wire constituting the power receiving loop coil or the power transmission loop coil, so that the impedance corresponds to the weight of the power receiving coil or the power transmission coil ( It can be said that it is a proportional parameter. Therefore, by examining the relationship with the frequency with the vertical axis of FIG. 7 as the impedance ratio, it is possible to determine which of the power receiving loop coil and the power transmission loop coil can suppress the impedance with less material at each frequency. It can be judged objectively.

また、インピーダンス等の計測結果が図6及び図7に示されている、実施形態の受電コイルRC及び送電コイルTC、第1変形形態(図4(a)参照)の受電コイル及び送電コイル、並びに上記従来例の受電コイル及び送電コイルそれぞれの構造上の諸元は、以下の通りである。 Further, the power receiving coil RC and the power transmission coil TC of the embodiment, the power receiving coil and the power transmission coil of the first modified form (see FIG. 4A), whose measurement results of impedance and the like are shown in FIGS. The structural specifications of each of the power receiving coil and the power transmitting coil of the above-mentioned conventional example are as follows.

(I)実施形態の受電コイルRC(送電コイルTC)の構造上の諸元
・全体形状:縦280ミリメートル×横280ミリメートル
・銅薄膜線RL12aの厚さ+銅薄膜線RL12の厚さ:0.5ミリメートル
・銅薄膜線RL22aの厚さ+銅薄膜線RL22の厚さ:0.5ミリメートル
・銅薄膜線RL12のみの厚さ及び銅薄膜線RL11の厚さ、並びに銅薄膜線RL22のみの厚さ及び銅薄膜線RL21の厚さ:0.2ミリメートル
・銅薄膜線RL12の幅及び銅薄膜線RL22の幅:6.5ミリメートル
・銅薄膜線RL11の幅及び銅薄膜線RL21の幅:2.0ミリメートル
・フィルムBFの厚さ:0.2ミリメートル
・平面形状:図2参照
(I) Structural specifications of the power receiving coil RC (power transmission coil TC) of the embodiment
-Overall shape: length 280 mm x width 280 mm-Thickness of copper thin film wire RL12a + thickness of copper thin film wire RL12: 0.5 mm-Thickness of copper thin film wire RL22a + thickness of copper thin film wire RL22: 0 .5 mm-thickness of copper thin film wire RL12 only and thickness of copper thin film wire RL11, and thickness of copper thin film wire RL22 only and thickness of copper thin film wire RL21: 0.2 mm-width of copper thin film wire RL12 And the width of the copper thin film wire RL22: 6.5 mm ・ The width of the copper thin film wire RL11 and the width of the copper thin film wire RL21: 2.0 mm ・ The thickness of the film BF: 0.2 mm ・ Plane shape: see FIG.

(II)第1変形形態の受電コイル(送電コイル)の構造上の諸元
・全体形状:縦280ミリメートル×横280ミリメートル
・銅薄膜線RL12aの厚さ+銅薄膜線RL12の厚さ:0.5ミリメートル
・銅薄膜線RL22aの厚さ+銅薄膜線RL22の厚さ:0.5ミリメートル
・銅薄膜線RL12のみの厚さ及び銅薄膜線RL22のみの厚さ:0.2ミリメートル
・銅薄膜線RL11aの厚さ及び銅薄膜線RL21aの厚さ:0.5ミリメートル
・銅薄膜線RL12の幅及び銅薄膜線RL22の幅:6.5ミリメートル
・銅薄膜線RL11aの幅及び銅薄膜線RL21aの幅:2.0ミリメートル
・フィルムBFの厚さ:0.2ミリメートル
・平面形状:図2参照
(II) Structural specifications of the power receiving coil (power transmission coil) of the first modified form
-Overall shape: length 280 mm x width 280 mm-Thickness of copper thin film wire RL12a + thickness of copper thin film wire RL12: 0.5 mm-Thickness of copper thin film wire RL22a + thickness of copper thin film wire RL22: 0 .5 mm-Thickness of copper thin film wire RL12 only and thickness of copper thin film wire RL22 only: 0.2 mm-Thickness of copper thin film wire RL11a and thickness of copper thin film wire RL21a: 0.5 mm-Copper thin film Width of wire RL12 and width of copper thin film wire RL22: 6.5 mm ・ Width of copper thin film wire RL11a and width of copper thin film wire RL21a: 2.0 mm ・ Thickness of film BF: 0.2 mm ・ Plane shape: See Figure 2.

(III)従来例の受電コイル(送電コイル)の構造上の諸元
・全体形状:縦280ミリメートル×横280ミリメートル
・内周側銅薄膜線の厚さ(均一):0.5ミリメートル
・外周側銅薄膜線の厚さ(均一):0.5ミリメートル
・内周側銅薄膜線の幅:6.5ミリメートル
・外周側銅薄膜線の幅:2.0ミリメートル
・層間絶縁層の厚さ:0.2ミリメートル
・平面形状:厚さ均一の内周側銅薄膜線及び外周側銅薄膜線が並行して五回転(5ターン)
(III) Structural specifications of the conventional power receiving coil (power transmission coil)
-Overall shape: length 280 mm x width 280 mm-Thickness of copper thin film wire on the inner circumference side (uniform): 0.5 mm-Thickness of copper thin film wire on the outer circumference side (uniform): 0.5 mm-Inner circumference side Width of copper thin film wire: 6.5 mm ・ Width of outer peripheral side copper thin film wire: 2.0 mm ・ Thickness of interlayer insulating layer: 0.2 mm ・ Plane shape: Uniform thickness of inner peripheral side copper thin film wire and The copper thin film wire on the outer peripheral side rotates five times in parallel (5 turns)

このとき、従来例の受電コイル(送電コイル)における内周側銅薄膜線の断面積は、例えば実施形態の受電コイルRC(送電コイルTC)における銅薄膜線RL12aと銅薄膜線RL12とを合わせた断面積より広く、また、銅薄膜線RL22aと銅薄膜線RL22とを合わせた断面積より広い。更に、従来例の受電コイル(送電コイル)における外周側銅薄膜線の断面積は、例えば実施形態の受電コイルRC(送電コイルTC)における銅薄膜線RL11の断面積より広く、また、銅薄膜線RL21の断面積より広い。 At this time, the cross-sectional area of the inner peripheral side copper thin film wire in the conventional power receiving coil (transmission coil) is, for example, the combination of the copper thin film wire RL12a and the copper thin film wire RL12 in the power receiving coil RC (transmission coil TC) of the embodiment. It is wider than the cross-sectional area and wider than the combined cross-sectional area of the copper thin film wire RL22a and the copper thin film wire RL22. Further, the cross-sectional area of the outer peripheral side copper thin film wire in the conventional power receiving coil (transmission coil) is wider than the cross-sectional area of the copper thin film wire RL11 in the power receiving coil RC (transmission coil TC) of the embodiment, and the copper thin film wire is further formed. It is wider than the cross-sectional area of RL21.

そして、図6に示すように、周波数と単純なインピーダンスとの関係を見ると、実施形態の受電コイルRC(送電コイルTC)におけるインピーダンス及び第1変形形態の受電コイル(送電コイル)におけるインピーダンスが、共に従来例の受電コイル(送電コイル)におけるインピーダンスを上回っている。これは、従来例の受電コイル(送電コイル)を構成する銅薄膜線の断面積が、銅薄膜線RL12等の断面積(図4(a)及び図4(b)参照)よりも大きいことに起因すると考えられる。これに対し、図7に示すように、周波数とインピーダンス比との関係を見ると、実施形態の受電コイルRC(送電コイルTC)におけるインピーダンス比及び第1変形形態の受電コイル(送電コイル)におけるインピーダンス比は、共に従来例の受電コイル(送電コイル)におけるインピーダンス比を下回っている。以上の結果により、実施形態の受電コイルRC(送電コイルTC)及び第1変形形態の受電コイル(送電コイル)の方が、各周波数において、従来例の受電コイル(送電コイル)に対して、より少ない材料でインピーダンスを抑制することができることが判る。 Then, as shown in FIG. 6, looking at the relationship between the frequency and the simple impedance, the impedance in the power receiving coil RC (transmission coil TC) of the embodiment and the impedance in the power receiving coil (transmission coil) of the first modified form are Both of them exceed the impedance of the conventional power receiving coil (transmission coil). This is because the cross-sectional area of the copper thin film wire constituting the power receiving coil (power transmission coil) of the conventional example is larger than the cross-sectional area of the copper thin film wire RL12 or the like (see FIGS. 4 (a) and 4 (b)). It is thought to be caused. On the other hand, as shown in FIG. 7, looking at the relationship between the frequency and the impedance ratio, the impedance ratio in the power receiving coil RC (transmission coil TC) of the embodiment and the impedance in the power receiving coil (transmission coil) of the first modified form. Both ratios are lower than the impedance ratio of the conventional power receiving coil (transmission coil). Based on the above results, the power receiving coil RC (power transmission coil TC) of the embodiment and the power receiving coil (power transmission coil) of the first modified form are more than the power receiving coil (power transmission coil) of the conventional example at each frequency. It can be seen that the impedance can be suppressed with a small amount of material.

以上説明したように、実施形態の受電コイルRC及び送電コイルTCの構造によれば、受電ループコイルRL1及び受電ループコイルRL2において、電力伝送時の電流の密度が相対的に高い部分の厚さが、当該密度が相対的に低い部分の厚さよりも厚いので(図2乃至図4(a)参照)、軽量化及び低コスト化のための受電ループコイルRL1及び受電ループコイルRL2における、いわゆる表皮効果又は近接効果によるインピーダンスを低減することができ、軽量化及び低コスト化と、伝送効率の向上及び動作温度の上昇の防止と、を両立させることができる。また、銅薄膜線RL11等の幅を増やすことなくインピーダンスを下げることができるので、受電コイルRC全体及び送電コイルTC全体としての、特に平面視形状の小型化も可能となる。 As described above, according to the structure of the power receiving coil RC and the power transmitting coil TC of the embodiment, the thickness of the portion of the power receiving loop coil RL1 and the power receiving loop coil RL2 in which the current density at the time of power transmission is relatively high is increased. Since the density is thicker than the thickness of the relatively low portion (see FIGS. 2 to 4 (a)), the so-called skin effect in the power receiving loop coil RL1 and the power receiving loop coil RL2 for weight reduction and cost reduction. Alternatively, the impedance due to the proximity effect can be reduced, and both weight reduction and cost reduction, improvement of transmission efficiency, and prevention of an increase in operating temperature can be achieved at the same time. Further, since the impedance can be lowered without increasing the width of the copper thin film wire RL11 or the like, it is possible to reduce the size of the entire power receiving coil RC and the entire power transmission coil TC, especially in a plan view.

更に、銅薄膜線RL12aの部分の厚さ及び銅薄膜線RL22aの部分の厚さが他の部分の厚さよりも厚いので(図4(a)参照)、受電ループコイルRL1及び受電ループコイルRL2としてのインピーダンスを効果的に低減することができる。 Further, since the thickness of the portion of the copper thin film wire RL12a and the thickness of the portion of the copper thin film wire RL22a are thicker than the thickness of the other portions (see FIG. 4A), the power receiving loop coil RL1 and the power receiving loop coil RL2 are used. Impedance can be effectively reduced.

更に、第1変形形態の受電コイル又は送電コイルの構造によれば、銅薄膜線RL12aの部分の厚さ、銅薄膜線RL22aの部分の厚さ並びに銅薄膜線RL11aの厚さ及び銅薄膜線RL21aの厚さが、それぞれ以外の他の部分より厚いので(図4(b)参照)、第1変形形態の受電コイル又は送電コイルの構造の場合でも、受電コイル又は送電コイルとしてのインピーダンスをより効果的に低減することができる。 Further, according to the structure of the power receiving coil or the transmitting coil of the first modified form, the thickness of the portion of the copper thin film wire RL12a, the thickness of the portion of the copper thin film wire RL22a, the thickness of the copper thin film wire RL11a and the copper thin film wire RL21a. Since the thickness of is thicker than the other parts (see FIG. 4B), the impedance as the power receiving coil or the power transmitting coil is more effective even in the case of the structure of the power receiving coil or the power transmitting coil of the first modified form. Can be reduced.

更にまた、第2変形形態の受電コイル又は送電コイルの構造によれば、銅薄膜線RL12aの部分の厚さ及び銅薄膜線RL22aの部分の厚さ、銅薄膜線RL12bの部分の厚さ及び銅薄膜線RL22bの厚さ、並びに銅薄膜線RL11aの厚さ及び銅薄膜線RL21aの厚さが、それぞれ以外の他の部分より厚いので(図4(c)参照)、第2変形形態の受電コイル又は送電コイルの構造の場合でも、受電コイル又は送電コイルとしてのインピーダンスをより効果的に低減することができる。 Furthermore, according to the structure of the power receiving coil or the transmitting coil of the second modified form, the thickness of the portion of the copper thin film wire RL12a and the thickness of the portion of the copper thin film wire RL22a, the thickness of the portion of the copper thin film wire RL12b and copper. Since the thickness of the thin film wire RL22b, the thickness of the copper thin film wire RL11a, and the thickness of the copper thin film wire RL21a are thicker than the other parts (see FIG. 4C), the power receiving coil of the second modified form is used. Alternatively, even in the case of the structure of the transmission coil, the impedance as the power receiving coil or the transmission coil can be reduced more effectively.

また、第3変形形態の受電コイル又は送電コイルの構造によれば、銅薄膜線RL12aの部分の厚さ及び銅薄膜線RL22aの部分の厚さが他の部分よりも厚く、更に銅線RLS1及び銅線RSL2の直径が当該他の部分の厚さよりも長いので(図4(d)参照)、第3変形形態の受電コイル又は送電コイルの構造の場合でも、受電コイル又は送電コイルとしてのインピーダンスをより効果的に低減することができる。なおこの点は、銅線RLS1又は銅線RSL2の断面形状が楕円である場合も同様である。 Further, according to the structure of the power receiving coil or the transmitting coil of the third modified form, the thickness of the portion of the copper thin film wire RL12a and the thickness of the portion of the copper thin film wire RL22a are thicker than those of the other portions, and the copper wire RLS1 and Since the diameter of the copper wire RSL2 is longer than the thickness of the other portion (see FIG. 4D), even in the case of the structure of the power receiving coil or the power transmitting coil of the third modified form, the impedance as the power receiving coil or the power transmitting coil can be obtained. It can be reduced more effectively. This point is the same when the cross-sectional shape of the copper wire RLS1 or the copper wire RSL2 is elliptical.

なお、より一般的に、上述した実施形態の受電コイルRC又は送電コイルTCの構造に代えて、並行して巻回されている銅薄膜線により受電ループコイル又は送電ループコイルが構成されている場合において、外周側の銅薄膜線の厚さの当該外周側の銅薄膜線内における平均値が、内周側の銅薄膜線の厚さの当該内周側の銅薄膜線内における平均値よりも厚いように構成してもよい。このとき、上述した第1変形形態乃至第3変形形態はこの構成に含まれることになる。この場合でも、受電コイル又は送電コイルとしてのインピーダンスをより効果的に低減することができる。 More generally, when the power receiving loop coil or the power transmitting loop coil is configured by copper thin film wires wound in parallel instead of the structure of the power receiving coil RC or the power transmitting coil TC of the above-described embodiment. The average value of the thickness of the copper thin film wire on the outer peripheral side in the copper thin film wire on the outer peripheral side is larger than the average value of the thickness of the copper thin film wire on the inner peripheral side in the copper thin film wire on the inner peripheral side. It may be configured to be thick. At this time, the above-mentioned first modified form to the third modified form are included in this configuration. Even in this case, the impedance as the power receiving coil or the power transmitting coil can be reduced more effectively.

[変形形態]
次に、本発明の他の変形形態について説明する。上述した実施形態及び各変形形態の電力伝送システムの構成については、以下の(A)乃至(D)に示すような変形を加えてもよい。本発明では、当該各変形を加えても、上記電力伝送システムSと同等の効果を奏し得る。
[Transformation]
Next, another modified form of the present invention will be described. The configurations of the power transmission system of the above-described embodiment and each modification may be modified as shown in the following (A) to (D). In the present invention, even if each of the modifications is added, the same effect as that of the power transmission system S can be obtained.

(A)第4変形形態
先ず、第4変形形態として、実施形態の例えば受電ループコイルRL1を構成する銅薄膜線RL11及び銅薄膜線RL12が、受電コイルRCにおける異なる層内に形成されていてもよい。
(A) Fourth modified form
First, as a fourth modification, the copper thin film wire RL11 and the copper thin film wire RL12 constituting, for example, the power receiving loop coil RL1 of the embodiment may be formed in different layers in the power receiving coil RC.

(B)第5変形形態
次に、第5変形形態として、実施形態の受電部RV側から見た受電ループコイルRL1及び受電ループコイルRL2の順番を入れ替えてもよい。
(B) Fifth modified form
Next, as the fifth modification, the order of the power receiving loop coil RL1 and the power receiving loop coil RL2 as seen from the power receiving unit RV side of the embodiment may be changed.

(C)第6変形形態
次に、第6変形形態として、実施形態の例えば受電ループコイルRL1では、それを構成する銅薄膜線RL11及び銅薄膜線RL12の幅をその全周に渡って同じとしたが、これ以外に、銅薄膜線RL11及び銅薄膜線RL12の幅が、その外周から内周にかけて広くなっていてもよい。この場合には、並行する二本の銅薄膜線の幅を加算した幅も、受電コイルRCの内周側ほど広くなることになる。
(C) Sixth modified form
Next, as the sixth modification, in the power receiving loop coil RL1 of the embodiment, for example, the widths of the copper thin film wire RL11 and the copper thin film wire RL12 constituting the same are set to be the same over the entire circumference thereof. The width of the copper thin film wire RL11 and the copper thin film wire RL12 may be widened from the outer periphery to the inner circumference thereof. In this case, the width obtained by adding the widths of the two parallel copper thin film wires also becomes wider toward the inner peripheral side of the power receiving coil RC.

(D)第7変形形態
次に、第7変形形態として、実施形態の受電ループコイルRL1においては、銅薄膜線RL11及び銅薄膜線RL12の巻回方向(反時計方向)を全周に渡って同じとしたが、これ以外に、最内周部において折り返されて反対の巻回方向(時計方向)となるように構成してもよい。
(D) Seventh variant
Next, as the seventh modification, in the power receiving loop coil RL1 of the embodiment, the winding direction (counterclockwise direction) of the copper thin film wire RL11 and the copper thin film wire RL12 is the same over the entire circumference, but other than this. In addition, it may be configured so that it is folded back at the innermost peripheral portion and is in the opposite winding direction (clockwise direction).

(E)第8変形形態
次に、第8変形形態として、上記実施形態における外部接続端子O1及び外部接続端子O2と受電コイルRCとの接続態様については、実施形態の構成、即ち、受電ループコイルRL1等の両端部がその最外周部で外部接続端子O1及び外部接続端子O2にそれぞれ接続されている構成の他に、受電ループコイルRL1等の巻回としては最外周部から最内周部に向けて一方向(例えば反時計方向)に巻回させ、最外周部にある端部を例えば外部接続端子O1に接続すると共に、最内周部から絶縁層を挟んだ積層構造(図2参照)又はジャンパ線等により最外周部に引き出した巻回線の端部を例えば外部接続端子O2に接続するように構成してもよい。
(E) Eighth variant
Next, as an eighth modification, regarding the connection mode between the external connection terminal O1 and the external connection terminal O2 and the power receiving coil RC in the above embodiment, the configuration of the embodiment, that is, both ends of the power receiving loop coil RL1 and the like are the same. In addition to the configuration in which the outermost peripheral portion is connected to the external connection terminal O1 and the external connection terminal O2, respectively, the winding of the power receiving loop coil RL1 or the like is performed in one direction from the outermost peripheral portion to the innermost peripheral portion (for example, counterclockwise). It is wound in a clockwise direction), and the end portion on the outermost peripheral portion is connected to, for example, the external connection terminal O1, and the outermost circumference is formed by a laminated structure (see FIG. 2) sandwiching an insulating layer from the innermost peripheral portion or a jumper wire or the like. The end of the winding line drawn out to the portion may be configured to be connected to, for example, the external connection terminal O2.

(F)第9変形形態
最後に、第9変形形態として、電力伝送システムSでは、送電コイルTCと受電コイルRCとを同一の構造とする場合について説明したが、これ以外に、電力伝送システムを構成する送電コイル又は受電コイルのいずれか一方のみが、実施形態の送電コイルTC又は受電コイルRCと同一の構造を有するものであってもよい。
(F) Ninth modified form
Finally, as a ninth modification, the case where the power transmission coil TC and the power receiving coil RC have the same structure in the power transmission system S has been described, but in addition to this, the power transmission coil or the power receiving coil constituting the power transmission system has been described. Only one of the above may have the same structure as the power transmission coil TC or the power reception coil RC of the embodiment.

以上それぞれ説明したように、本発明は非接触の電力伝送の分野に利用することが可能であり、特に電気自動車に搭載された蓄電池を充電するための電力伝送の分野に適用すれば特に顕著な効果が得られる。 As described above, the present invention can be used in the field of non-contact power transmission, and is particularly remarkable when applied in the field of power transmission for charging a storage battery mounted on an electric vehicle. The effect is obtained.

100 銅張積層板
S 電力伝送システム
RV 受電部
RC 受電コイル
R 受電装置
TR 送電部
TC 送電コイル
T 送電装置
BF フィルム
L ループコイル
TL1、TL2 送電ループコイル
RL1、RL1a、RL1b、RL1c、RL2、RL2a、RL2b、RL2c 受電ループコイル
RL11、RL11a、RL12、RL12a、RL21、RL21a、RL22、RL22a、L1、L2 銅薄膜線
RLS1、RLS2 銅線
O1、O2 外部接続端子
M1、M2、C1、C2 銅条
EP ガラスエポキシ基板
C 銅
100 Copper-clad laminate S Power transmission system RV Power receiving unit RC Power receiving coil R Power receiving device TR Transmission unit TC Transmission coil T Transmission device BF film L Loop coil TL1, TL2 Transmission loop coil RL1, RL1a, RL1b, RL1c, RL2, RL2a RL2b, RL2c Power receiving loop coil RL11, RL11a, RL12, RL12a, RL21, RL21a, RL22, RL22a, L1, L2 Copper thin film wire RLS1, RLS2 Copper wire O1, O2 External connection terminal M1, M2, C1, C2 Copper strip EP Epoxy substrate C copper

Claims (10)

非接触型の電力伝送に用いられるコイルにおいて、
当該コイルにおける巻回方向に垂直且つ当該コイルの巻回面内の方向である第1方向の長さが、当該巻回面に垂直な方向である第2方向の長さより長い巻回線を備え、
前記電力伝送の際に前記巻回線に流れる電流の密度が相対的に高い当該巻回線の部分の前記第2方向の長さが、当該密度が相対的に低い当該巻回線の部分の前記第2方向の長さよりも長いことを特徴とするコイル。
In coils used for non-contact power transmission
The coil is provided with a winding line whose length in the first direction perpendicular to the winding direction of the coil and in the direction in the winding surface of the coil is longer than the length in the second direction perpendicular to the winding surface.
The length of the portion of the winding line in which the density of the current flowing through the winding line during power transmission is relatively high in the second direction is the length of the portion of the winding line in which the density is relatively low. A coil characterized by being longer than the length in the direction.
請求項1に記載のコイルにおいて、
前記巻回線は導体からなる薄膜線の巻回により構成されており、
前記第1方向としての当該薄膜線における幅方向の端部の少なくとも一方の前記第2方向の長さとしての厚さが、当該薄膜線における当該端部以外の部分の当該厚さよりも厚いことを特徴とするコイル。
In the coil according to claim 1,
The winding line is composed of winding of a thin film wire made of a conductor.
The thickness of at least one of the widthwise ends of the thin film line as the first direction as the length of the second direction is thicker than the thickness of the portion other than the end of the thin film line. Characterized coil.
請求項1又は請求項2に記載のコイルにおいて、
前記巻回線が、前記巻回方向に並行し且つそれぞれが薄膜導体からなる複数の並行巻回線により構成されており、
巻回における内周側の前記並行巻回線である内周巻回線の前記第1方向の長さとしての幅が、当該巻回における外周側の前記並行巻回線である外周巻回線の当該幅より広く、
前記内周巻回線の少なくとも一部の前記第2方向の長さとしての厚さが、前記外周巻回線の当該厚さよりも厚いことを特徴とするコイル。
In the coil according to claim 1 or 2.
The winding line is composed of a plurality of parallel winding lines parallel to the winding direction and each of which is a thin film conductor.
The width of the inner peripheral winding line, which is the parallel winding line on the inner peripheral side in the winding, as the length in the first direction is larger than the width of the outer peripheral winding line, which is the parallel winding line on the outer peripheral side in the winding. Wide,
A coil characterized in that the thickness of at least a part of the inner winding line as a length in the second direction is thicker than the thickness of the outer peripheral winding line.
請求項1又は請求項2に記載のコイルにおいて、
前記巻回線が、前記巻回方向に並行し且つそれぞれが薄膜導体からなる複数の並行巻回線により構成されており、
巻回における内周側の前記並行巻回線である内周巻回線の前記第1方向の長さとしての幅が、当該巻回における外周側の前記並行巻回線である外周巻回線の当該幅より広く、
前記外周巻回線の前記第2方向の長さとしての厚さ及び前記内周巻回線の内周側端部の当該厚さが、前記内周巻回線の外周側端部の当該厚さよりも厚いことを特徴とするコイル。
In the coil according to claim 1 or 2.
The winding line is composed of a plurality of parallel winding lines parallel to the winding direction and each of which is a thin film conductor.
The width of the inner peripheral winding line, which is the parallel winding line on the inner peripheral side in the winding, as the length in the first direction is larger than the width of the outer peripheral winding line, which is the parallel winding line on the outer peripheral side in the winding. Wide,
The thickness of the outer peripheral winding line as the length in the second direction and the thickness of the inner peripheral side end portion of the inner peripheral winding line are thicker than the thickness of the outer peripheral side end portion of the inner peripheral winding line. A coil characterized by that.
請求項1又は請求項2に記載のコイルにおいて、
前記巻回線が、前記巻回方向に並行する複数の並行巻回線により構成されており、
巻回における外周側の前記並行巻回線である外周巻回線の断面形状が円又は前記第1方向の長径を有する楕円であり、
前記巻回における内周側の前記並行巻回線であり且つ薄膜導体からなる内周巻回線の前記第1方向の長さとしての幅が、前記断面形状が前記円である場合の直径又は当該断面形状が前記楕円である場合の長径より長く、
前記断面形状が前記円である場合の直径又は当該断面形状が前記楕円である場合の短径及び前記内周巻回線の内周側端部の前記第2方向の長さとしての厚さが、前記内周巻回線の外周側端部の当該厚さより長いことを特徴とするコイル。
In the coil according to claim 1 or 2.
The winding line is composed of a plurality of parallel winding lines parallel to each other in the winding direction.
The cross-sectional shape of the outer peripheral winding line, which is the parallel winding line on the outer peripheral side in winding, is a circle or an ellipse having a major axis in the first direction.
The width as the length in the first direction of the parallel winding line on the inner peripheral side in the winding and the inner peripheral winding line made of a thin film conductor is the diameter when the cross-sectional shape is the circle or the cross section. Longer than the major axis when the shape is the ellipse,
The diameter when the cross-sectional shape is the circle, the short diameter when the cross-sectional shape is the ellipse, and the thickness of the inner peripheral side end of the inner winding line as the length in the second direction. A coil characterized by being longer than the thickness of the outer peripheral end of the inner winding line.
請求項1又は請求項2に記載のコイルにおいて、
前記巻回線が、前記巻回方向に並行し且つそれぞれが薄膜導体からなる複数の並行巻回線により構成されており、
巻回における内周側の前記並行巻回線である内周巻回線の前記第1方向の長さとしての幅が、当該巻回における外周側の前記並行巻回線である外周巻回線の当該幅より広く、
前記外周巻回線の前記第2方向の長さとしての厚さの前記第1方向の平均値が、対応する前記巻回方向の位置の前記内周巻回線の当該厚さの前記第1方向の平均値よりも厚いことを特徴とするコイル。
In the coil according to claim 1 or 2.
The winding line is composed of a plurality of parallel winding lines parallel to the winding direction and each of which is a thin film conductor.
The width of the inner peripheral winding line, which is the parallel winding line on the inner peripheral side in the winding, as the length in the first direction is larger than the width of the outer peripheral winding line, which is the parallel winding line on the outer peripheral side in the winding. Wide,
The average value of the thickness of the outer peripheral winding line as the length in the second direction in the first direction is the thickness of the inner winding line at the corresponding winding direction position in the first direction. A coil characterized by being thicker than the average value.
送電装置と、当該送電装置から離隔した受電装置と、により構成され、前記送電装置から非接触で前記受電装置に電力を伝送する電力伝送システムに含まれる前記送電装置において、
請求項1から請求項6のいずれか一項に記載の前記コイルである送電コイルであって、前記受電装置に対向して配置される送電コイルと、
伝送すべき電力を前記送電コイルに出力する出力手段と、
を備えることを特徴とする送電装置。
In the power transmission device included in the power transmission system, which is composed of a power transmission device and a power reception device separated from the power transmission device, and transmits power from the power transmission device to the power reception device in a non-contact manner.
The power transmission coil according to any one of claims 1 to 6, wherein the power transmission coil is arranged so as to face the power receiving device.
An output means that outputs the power to be transmitted to the power transmission coil,
A power transmission device characterized by being equipped with.
送電装置と、当該送電装置から離隔した受電装置と、により構成され、前記送電装置から非接触で前記受電装置に電力を伝送する電力伝送システムに含まれる前記受電装置において、
請求項1から請求項6のいずれか一項に記載の前記コイルである受電コイルであって、前記送電装置に対向して配置される受電コイルと、
当該受電コイルに接続された入力手段と、
を備えることを特徴とする受電装置。
In the power receiving device included in the power transmission system, which is composed of a power transmitting device and a power receiving device separated from the power transmitting device, and transmits power from the power transmitting device to the power receiving device in a non-contact manner.
A power receiving coil which is the coil according to any one of claims 1 to 6 and which is arranged so as to face the power transmission device.
The input means connected to the power receiving coil and
A power receiving device characterized by being provided with.
請求項7に記載の送電装置と、
当該送電装置から離隔し、且つ前記送電コイルに対向して配置される受電装置であって、前記送電装置から送信された電力を受電する受電装置と、
を備えることを特徴とする非接触型の電力伝送システム。
The power transmission device according to claim 7 and
A power receiving device that is separated from the power transmission device and is arranged so as to face the power transmission coil and that receives power transmitted from the power transmission device.
A non-contact power transmission system characterized by being equipped with.
送電装置と、
請求項8に記載の受電装置であって、前記送電装置から離隔し且つ前記受電コイルが当該送電装置に対向して配置され、前記送電装置から送信された電力を受電する受電装置と、
を備えることを特徴とする非接触型の電力伝送システム。
Power transmission equipment and
2.
A non-contact power transmission system characterized by being equipped with.
JP2020180562A 2020-10-28 2020-10-28 Coil, power transmission device and power receiving device, and power transmission system Pending JP2022071537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020180562A JP2022071537A (en) 2020-10-28 2020-10-28 Coil, power transmission device and power receiving device, and power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020180562A JP2022071537A (en) 2020-10-28 2020-10-28 Coil, power transmission device and power receiving device, and power transmission system

Publications (1)

Publication Number Publication Date
JP2022071537A true JP2022071537A (en) 2022-05-16

Family

ID=81593718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020180562A Pending JP2022071537A (en) 2020-10-28 2020-10-28 Coil, power transmission device and power receiving device, and power transmission system

Country Status (1)

Country Link
JP (1) JP2022071537A (en)

Similar Documents

Publication Publication Date Title
US10158256B2 (en) Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency
US20220123593A1 (en) Wireless Power Transfer Based on Magnetic Induction
US20210151250A1 (en) Coil Module, Wireless Charging Transmitting Apparatus, Wireless Charging Receiving Apparatus, Wireless Charging System, and Mobile Terminal
WO2011030539A1 (en) Electromagnetic induction coil unit and electromagnetic induction device
KR101474149B1 (en) Shield part, method of fabricating the same, and contactless power transmission device having the shield part
JPH08280139A (en) Management of heat using geometric arrangement of hybrid spiral/helical coil
JP6676018B2 (en) Wireless power transmission equipment
TW201320121A (en) Planar coil, coil module including planar coil, power receiving device including planar coil, and contactless electric power transmission apparatus including planar coil
US20210321529A1 (en) Power transfer apparatus, power transmission apparatus, power reception apparatus, and power transfer system
JP2022071537A (en) Coil, power transmission device and power receiving device, and power transmission system
JPH11186086A (en) Manufacture of spiral coil for noncontact power transmitter
JP2022022950A (en) Coil, power transmission device and power receiving device, and power transmission system
WO2022004674A1 (en) Coil, power-sending device, power-receiving device, and power transmission system
US20230307951A1 (en) Coil, power transmission device, power reception device, and power transmission system
JP2022072731A (en) Coil device, power transmission device and power receiving device, and power transmission system
WO2020145400A1 (en) Coil, power-sending device, power-receiving device, and power transmission system
JP2022072736A (en) Coil and its manufacturing method, power transmission device and power receiving device, and power transmission system
JP2022012461A (en) Coil, power transmission device and power receiving device, and power transmission system
JP7148842B2 (en) Coil pair, power transmitting device, power receiving device, and power transmission system
JP2022025277A (en) Coil and its manufacturing method, power transmission device and power receiving device, and power transmission system
WO2019172331A1 (en) Coil, coil pair, power transmitting device and power receiving device, and power transmission system
JP7196436B2 (en) Coil pair, power transmitting device, power receiving device, and power transmission system
US20230142295A1 (en) Coil and coil pair, power transmission apparatus and power reception apparatus, and power transmission system
JP2020092225A (en) Coil pair, power transmission device, power reception device and power transmission system
JP2020150056A (en) Coil and coil pair, power transmission device and power receiving device, and manufacturing method of power transmission system and coil