WO2022004494A1 - Industrial vehicle - Google Patents
Industrial vehicle Download PDFInfo
- Publication number
- WO2022004494A1 WO2022004494A1 PCT/JP2021/023635 JP2021023635W WO2022004494A1 WO 2022004494 A1 WO2022004494 A1 WO 2022004494A1 JP 2021023635 W JP2021023635 W JP 2021023635W WO 2022004494 A1 WO2022004494 A1 WO 2022004494A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- industrial vehicle
- detection range
- obstacle
- detection
- main control
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 298
- 238000009795 derivation Methods 0.000 claims description 9
- 239000003550 marker Substances 0.000 description 40
- 238000000034 method Methods 0.000 description 40
- 230000008569 process Effects 0.000 description 25
- 230000006870 function Effects 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000007613 environmental effect Effects 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000004397 blinking Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241000283070 Equus zebra Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F9/00—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
- B66F9/06—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
- B66F9/075—Constructional features or details
- B66F9/20—Means for actuating or controlling masts, platforms, or forks
- B66F9/24—Electrical devices or systems
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- This disclosure relates to industrial vehicles.
- Patent Document 1 discloses a vehicle provided with an obstacle detection device for detecting an obstacle.
- the obstacle detection device disclosed in Patent Document 1 includes a stereo camera and a detection unit.
- the stereo camera is arranged so as to capture the surroundings of the vehicle.
- the detection unit detects the presence area of the obstacle from the image captured by the stereo camera. When an obstacle is detected by the detection unit, the vehicle speed is limited or an alarm is issued.
- Industrial vehicles such as forklifts and towing tractors may work in a narrow area where the industrial vehicle can be driven.
- an obstacle detection device is mounted on such an industrial vehicle, the obstacle is likely to appear in the detection range for determining the presence of the obstacle in the image captured by the stereo camera. Then, vehicle speed restrictions and warnings will be issued frequently. As a result, workability is reduced.
- the purpose of this disclosure is to provide an industrial vehicle that can suppress the deterioration of workability.
- the industrial vehicle that solves the above problems is detected by the sensor, the obstacle position detection unit that detects the position of the obstacle in the coordinate system in the real space from the detection result of the sensor, and the obstacle position detection unit.
- the control unit that issues at least one of an alarm and a vehicle speed limit when the obstacle exists in the detection range set in the coordinate system in the real space, and the control unit associated with the current position of the industrial vehicle. It is equipped with a detection range setting unit for setting the detection range.
- the detection range is associated with the current position of the industrial vehicle, the detection range is set according to the current position of the industrial vehicle. As a result, it is possible to prevent obstacles from constantly entering the detection range. Since frequent warnings and vehicle speed restrictions are suppressed, deterioration of workability is suppressed.
- the industrial vehicle is provided with a position derivation unit for deriving the current position and a storage device for storing a correspondence relationship between a restricted area set in an area where the industrial vehicle is used and the detection range.
- the detection range setting unit may set the detection range associated with the restricted area according to the correspondence relationship.
- the position derivation unit may receive a radio signal transmitted by a fixed machine installed in the area and derive the current position from the reception mode of the received radio signal.
- the detection range setting unit may set the detection range so that the detection range becomes wider as the passage width becomes wider.
- the schematic block diagram of the industrial vehicle in 1st Embodiment. The figure which shows an example of the 1st image taken by a stereo camera.
- the schematic diagram which shows the 2nd detection range when the industrial vehicle is a running state The schematic diagram which shows the 1st detection range when the industrial vehicle is a start state.
- the schematic diagram which shows the 2nd detection range when the industrial vehicle is a start state The schematic diagram which shows the environment where the industrial vehicle in 3rd Embodiment is used.
- the industrial vehicle 10 is used in a predetermined area A1 of indoors such as a warehouse, a factory, a public facility, and a commercial facility.
- a plurality of shelves S1, S2, S3, S4, S5 are provided in the area A1.
- the shelves S1, S2, S3, S4, and S5 are arranged side by side at intervals from each other. Assuming that each of the plurality of shelves S1, S2, S3, S4, S5 is the first shelf S1, the second shelf S2, the third shelf S3, the fourth shelf S4, and the fifth shelf S5, each shelf S1 to S5 is the first shelf.
- the shelves S1 ⁇ the second shelf S2 ⁇ the third shelf S3 ⁇ the fourth shelf S4 ⁇ the fifth shelf S5 are arranged in this order.
- the distance d1 between the first shelf S1 and the second shelf S2 and the distance d2 between the second shelf S2 and the third shelf S3 are the same as each other.
- the distance d3 between the third shelf S3 and the fourth shelf S4 and the distance d4 between the fourth shelf S4 and the fifth shelf S5 are the same as each other.
- the intervals d1 and d2 are shorter than the intervals d3 and d4.
- the shelves S1 to S5 support the shelf board by, for example, a support, and extend in one direction in a plan view.
- the dimension in one direction is longer than the direction orthogonal to the one direction.
- the extending direction of the shelves S1 to S5 and the arranging direction of the shelves S1 to S5 are orthogonal to each other.
- the intervals d1, d2, d3, d4 between the shelves S1 to S5 can be said to be the aisle width of the aisles P1, P2, P3, P4.
- the passage P1 between the first shelf S1 and the second shelf S2 and the passage P2 between the second shelf S2 and the third shelf S3 are referred to as first passages P1 and P2.
- the passage P3 between the third shelf S3 and the fourth shelf S4 and the passage P4 between the fourth shelf S4 and the fifth shelf S5 are referred to as second passages P3 and P4.
- the passage width of the first passages P1 and P2 is narrower than the passage width of the second passages P3 and P4.
- a truck yard TY which is a stop position for the truck T, is provided in the area A1. Pillar Pi exists in the truck yard TY.
- Cargo handling work is performed in the area A1 of the present embodiment.
- the cargo handling work includes a loading work of placing the load W on the truck T and the shelves S1 to S5, and a loading work of taking the load W from the truck T and the shelves S1 to S5.
- the industrial vehicle 10 of the present embodiment is a forklift used for cargo handling work.
- a plurality of fixed machine WTs are provided in the area A1.
- the fixed machine WT is provided at a position such as the ceiling of the area A1 that does not hinder the progress of the industrial vehicle 10.
- the fixed machine WT is provided at a predetermined position and does not move from this position.
- the fixed machine WT periodically transmits a radio signal.
- This radio signal includes identification information individually set for each fixed device WT.
- the radio signal may include position information indicating the position of the fixed machine WT.
- the industrial vehicle 10 includes a vehicle body 11, two drive wheels 12 arranged at the front lower portion of the vehicle body 11, two steering wheels 14 arranged at the rear lower portion of the vehicle body 11, and a cargo handling device. 20 and.
- the vehicle body 11 includes a head guard 15 provided above the driver's seat.
- the cargo handling device 20 includes a mast 21 erected on the front portion of the vehicle body 11, a pair of forks 22 provided so as to be able to move up and down together with the mast 21, and a lift cylinder 23 for raising and lowering the mast 21.
- the load W is loaded on the fork 22.
- the lift cylinder 23 is a hydraulic cylinder. When the mast 21 moves up and down due to the expansion and contraction of the lift cylinder 23, the fork 22 moves up and down accordingly.
- the industrial vehicle 10 of the present embodiment is operated by an operator to perform a traveling operation and a cargo handling operation.
- the industrial vehicle 10 has an accelerator pedal 16, a direction lever 17, a main control device 31, an auxiliary storage device 34, an accelerator sensor 35, a direction sensor 36, a positioning device 37, and traveling.
- the motor 41, the rotation speed sensor 42, the traveling control device 43, the obstacle detection device 51, and the bus 60 are provided.
- the main control device 31 includes a processor 32 and a storage unit 33.
- the processor 32 for example, a CPU: Central Processing Unit, a GPU: Graphics Processing Unit, and a DSP: Digital Signal Processor are used.
- the storage unit 33 includes RAM: RandomAccessMemory and ROM: ReadOnlyMemory.
- the storage unit 33 stores a program for operating the industrial vehicle 10. It can be said that the storage unit 33 stores a program code or a command configured to cause the processor 32 to execute the process.
- the storage unit 33 i.e., a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer.
- the main control device 31 may be configured by a hardware circuit such as ASIC: Application Specific Integrated Circuit or FPGA: Field Programmable Gate Array.
- the main control unit 31, which is a processing circuit may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs and FPGAs, or a combination thereof.
- auxiliary storage device 34 for example, a non-volatile storage device such as a hard disk drive, a solid state drive, or an EEPROM: Electrically Erasable Programmable Read Only Memory that can rewrite data is used.
- a non-volatile storage device such as a hard disk drive, a solid state drive, or an EEPROM: Electrically Erasable Programmable Read Only Memory that can rewrite data is used.
- the auxiliary storage device 34 stores an environmental map showing a map of the environment in which the industrial vehicle 10 is used.
- the environmental map is information on the physical structure of the surrounding environment of the industrial vehicle 10, such as the shape and size of the environment in which the industrial vehicle 10 is used. It can be said that the environmental map is data in which the environment in which the industrial vehicle 10 is used, that is, the area A1 shown in FIG. 1 is represented by the coordinates in the map coordinate system.
- the map coordinate system expresses the position related to the physical structure of the environment in which the industrial vehicle 10 is used by the coordinates with respect to the origin.
- the map coordinate system is a Cartesian coordinate system in which one of the axes orthogonal to each other in the horizontal direction is the X axis and the axis different from the X axis is the Y axis.
- the map coordinate system may include a Z-axis orthogonal to the X-axis and the Y-axis.
- the environmental map may be a two-dimensional map represented by horizontal coordinates or a three-dimensional map represented by horizontal and vertical coordinates.
- the coordinates in the map coordinate system are referred to as map coordinates.
- the accelerator sensor 35 detects the amount of operation of the accelerator pedal 16, that is, the accelerator opening degree.
- the accelerator sensor 35 outputs an electric signal corresponding to the accelerator opening degree to the main control device 31.
- the main control device 31 can recognize the accelerator opening degree by the electric signal from the accelerator sensor 35.
- the direction sensor 36 detects the operating direction of the direction lever 17 that indicates the traveling direction.
- the direction sensor 36 detects whether the direction lever 17 is operated in the direction instructing forward movement or the direction lever 17 is operated in the direction instructing reverse movement with reference to neutrality.
- the direction sensor 36 outputs an electric signal corresponding to the operation direction of the direction lever 17 to the main control device 31.
- the main control device 31 can recognize the operating direction of the direction lever 17 by an electric signal from the direction sensor 36.
- the main control device 31 can grasp whether the operator has instructed to move forward, has been instructed to move backward, or has not been instructed to move forward.
- the positioning device 37 as the position deriving unit derives the current position of the industrial vehicle 10.
- the current position of the industrial vehicle 10 is the position of the industrial vehicle 10 in the map coordinate system.
- the positioning device 37 receives the radio signal transmitted from the fixed machine WT, and derives the current position of the industrial vehicle 10 from the reception mode of the received radio signal.
- the reception mode includes the reception strength and propagation time of the radio signal.
- the positioning device 37 derives the current position of the industrial vehicle 10 by converting the reception intensity and the propagation time into a distance.
- the positioning device 37 estimates the distance from the fixed device WT to the positioning device 37 based on the reception strength of the radio signal.
- the positioning device 37 can determine which of the plurality of fixed machine WTs the received radio signal is transmitted from the fixed machine WT.
- the positioning device 37 can individually estimate the distance from the fixed device WT for each fixed device WT transmitting the wireless signal. If the correspondence between the map coordinates of each fixed machine WT and the identification information of each fixed machine WT can be grasped, the positioning device 37 can derive the current position of the industrial vehicle 10 by multipoint positioning.
- the correspondence between the map coordinates of each fixed machine WT and the identification information of each fixed machine WT may be stored in a storage medium included in the positioning device 37 or in a storage unit 33 of the main control device 31. Further, if the map coordinates of the fixed machine WT are included as the position information in the radio signal, the correspondence between the map coordinates of each fixed machine WT and the identification information of each fixed machine WT may not be stored.
- the radio signal includes a radio wave compliant with the Bluetooth (registered trademark) Low Energy standard and a radio wave compliant with the WI-FI (registered trademark) standard. Is used.
- the positioning device 37 estimates the distance from the fixed device WT to the positioning device 37 based on the propagation time of the radio signal.
- the propagation time is the time from the transmission of the radio signal by the fixed device WT to the reception of the radio signal by the positioning device 37. Similar to the case of utilizing the reception strength of the radio signal, the positioning device 37 can derive the current position of the industrial vehicle 10 by multipoint positioning.
- the propagation time may be measured by synchronizing the time between the positioning device 37 and the fixed device WT, or may be measured by using the phase difference of different frequencies.
- a radio wave of UWB: Ultra Wide Band or a radio wave compliant with the WI-FI standard is used as the radio signal.
- the positioning method using the propagation time of the radio signal is called the TOA: Time of Arrival method.
- the environmental map of the present embodiment is used to derive the current position of the industrial vehicle 10 from the map coordinates of the fixed machine WT. Therefore, the environment map of the present embodiment does not necessarily have to reflect the map coordinates of the structures such as the shelves S1 to S5.
- the traveling motor 41 is a driving device for traveling the industrial vehicle 10.
- the industrial vehicle 10 travels by rotating the drive wheels 12 by driving the traveling motor 41.
- the rotation speed sensor 42 detects the rotation speed of the traveling motor 41.
- As the rotation speed sensor 42 for example, a rotary encoder can be used.
- the rotation speed sensor 42 outputs an electric signal corresponding to the rotation speed of the traveling motor 41 to the traveling control device 43.
- the travel control device 43 is a motor driver that controls the rotation speed of the travel motor 41.
- the travel control device 43 can recognize the rotation speed and the rotation direction of the travel motor 41 from the electric signal of the rotation speed sensor 42.
- the obstacle detection device 51 includes a stereo camera 52 as a sensor, a position detection device 55 that detects the position of an obstacle from an image captured by the stereo camera 52, and an alarm device 58.
- the stereo camera 52 is arranged on the head guard 15.
- the stereo camera 52 is arranged so that the road surface on which the industrial vehicle 10 travels can be seen from above the industrial vehicle 10.
- the stereo camera 52 of the present embodiment images the rear of the industrial vehicle 10. Therefore, the obstacle detected by the position detection device 55 becomes an obstacle behind the industrial vehicle 10.
- the alarm device 58 and the position detection device 55 may be unitized with the stereo camera 52 and arranged on the head guard 15 together with the stereo camera 52. Further, the alarm device 58 and the position detection device 55 may be arranged at different positions from the head guard 15.
- the stereo camera 52 includes a first camera 53 and a second camera 54.
- the first camera 53 and the second camera 54 include those using a CCD image sensor and a CMOS image sensor.
- the first camera 53 and the second camera 54 are arranged so that their optical axes are parallel to each other.
- the first camera 53 and the second camera 54 are arranged side by side in the horizontal direction with each other. Assuming that the image captured by the first camera 53 is the first image and the image captured by the second camera 54 is the second image, the same obstacle appears laterally shifted in the first image and the second image. Become.
- the obstacle shown in the first image and the obstacle shown in the second image have the first camera 53 and the second camera 54 in the horizontal pixel [px]. There will be a gap depending on the distance between them.
- the first image and the second image are images represented by RGB signals.
- the position detection device 55 includes a processor 56 such as a CPU and a GPU, and a storage unit 57 including RAM and ROM.
- the storage unit 57 stores various programs for detecting obstacles from the image captured by the stereo camera 52. It can be said that the storage unit 57 stores a program code or a command configured to cause the processor 56 to execute the process.
- the storage 57 i.e., a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer.
- the position detection device 55 may be configured by a hardware circuit such as an ASIC or FPGA.
- the position detection device 55 which is a processing circuit, may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs and FPGAs, or a combination thereof.
- the position detection device 55 detects the position of an obstacle existing around the industrial vehicle 10 by repeating the following obstacle detection process at a predetermined control cycle.
- the position of the obstacle is the relative position between the industrial vehicle 10 and the obstacle.
- FIG. 4 is a first image I1 obtained by imaging the rear of the industrial vehicle 10. As can be seen from the first image I1, there is an obstacle behind the industrial vehicle 10. Obstacles include humans and non-human objects. For convenience of explanation, the coordinates on the first image I1 in which the obstacle exists are shown by the frame AA, but the frame AA does not exist in the actual first image I1.
- step S10 the position detection device 55 acquires an image of the same frame from each of the cameras 53 and 54 of the stereo camera 52.
- step S11 the position detection device 55 acquires a parallax image.
- the parallax image is an image in which the parallax [px] is associated with the pixels.
- the parallax is obtained by comparing the first image I1 and the second image and calculating the difference in the number of pixels between the first image I1 and the second image for the same feature point appearing in each image.
- the feature point is a part that can be recognized as a boundary, such as the edge of an obstacle.
- the feature points can be detected from the luminance information and the like.
- the position detection device 55 converts RGB to YCrCb using a RAM that temporarily stores each image.
- the position detection device 55 may perform distortion correction, edge enhancement processing, and the like.
- the position detection device 55 performs stereo processing for calculating the parallax by comparing the similarity between each pixel of the first image I1 and each pixel of the second image.
- stereo processing a method of calculating the parallax for each pixel may be used, or a block matching method of dividing each image into blocks containing a plurality of pixels and calculating the parallax for each block may be used. ..
- the position detection device 55 acquires a parallax image using the first image I1 as a reference image and the second image as a comparison image.
- the position detection device 55 extracts the pixels of the second image most similar to each pixel of the first image I1, and the difference between the pixels of the first image I1 and the number of pixels in the horizontal direction most similar to the pixels. Is calculated as the parallax. As a result, it is possible to acquire a parallax image in which parallax is associated with each pixel of the first image I1 which is a reference image.
- the parallax image does not necessarily require display, and indicates data in which parallax is associated with each pixel in the parallax image.
- the position detection device 55 may perform a process of removing the parallax on the road surface from the parallax image.
- the position detection device 55 derives the coordinates of the feature points in the world coordinate system, which is the coordinate system in the real space.
- the position detection device 55 derives the coordinates of the feature points in the camera coordinate system.
- the camera coordinate system is a coordinate system with the stereo camera 52 as the origin.
- the camera coordinate system is a three-axis Cartesian coordinate system in which the optical axis is the Z axis and the two axes orthogonal to the optical axis are the X axis and the Y axis, respectively.
- the coordinates of the feature points in the camera coordinate system can be represented by Z coordinate Zc, X coordinate Xc, and Y coordinate Yc in the camera coordinate system.
- the Z coordinate Zc, the X coordinate Xc, and the Y coordinate Yc can be derived using the following equations (1) to (3), respectively.
- B is the baseline length [mm]
- f is the focal length [mm]
- d is the parallax [px].
- xp is an arbitrary X coordinate in the parallax image, and x'is the X coordinate of the center coordinate of the parallax image.
- yp is an arbitrary Y coordinate in the parallax image, and y'is the Y coordinate of the center coordinate of the parallax image.
- the feature point in the camera coordinate system can be used.
- the coordinates are derived.
- the axis extending in the vehicle width direction of the industrial vehicle 10 in the horizontal direction is the X axis
- the axis extending in the horizontal direction perpendicular to the X axis is the Y axis.
- the 3-axis Cartesian coordinate system with the axis orthogonal to the X-axis and the Y-axis as the Z-axis is the world coordinate system.
- the Y-axis of the world coordinate system is an axis extending in the front-rear direction of the industrial vehicle 10, which is the traveling direction of the industrial vehicle 10.
- the Z axis of the world coordinate system is an axis extending in the vertical direction.
- the coordinates in the world coordinate system can be represented by X coordinate Xw, Y coordinate Yw and Z coordinate Zw.
- the position detection device 55 performs world coordinate conversion that converts camera coordinates into world coordinates using the following equation (4).
- World coordinates are coordinates in the world coordinate system.
- H in the equation (4) is the installation height [mm] of the stereo camera 52 in the world coordinate system
- ⁇ is the angle + 90 ° between the optical axes of the first camera 53 and the second camera 54 and the horizontal plane. The angle of.
- the origin of the world coordinate system is the coordinates where the X coordinate Xw and the Y coordinate Yw are the positions of the stereo camera 52 and the Z coordinate Zw is the position of the road surface.
- the position of the stereo camera 52 is, for example, an intermediate position between the lens of the first camera 53 and the lens of the second camera 54.
- the X coordinate Xw indicates the distance from the origin to the feature point in the vehicle width direction of the industrial vehicle 10.
- the Y coordinate Yw indicates the distance from the origin to the feature point with respect to the traveling direction of the industrial vehicle 10.
- the Z coordinate Zw indicates the height from the road surface to the feature point. Characteristic points are points that represent a part of the surface of an obstacle.
- the arrow X indicates the X axis of the world coordinate system
- the arrow Y indicates the Y axis of the world coordinate system
- the arrow Z indicates the Z axis of the world coordinate system.
- step S13 the position detection device 55 extracts obstacles by clustering the feature points.
- the position detection device 55 sets a set of feature points that are assumed to represent the same obstacle among the feature points that represent a part of the obstacle as one point cloud, and extracts the point cloud as an obstacle. do.
- the position detection device 55 performs clustering in which feature points located within a predetermined range are regarded as one point cloud from the world coordinates derived in step S12.
- the position detection device 55 regards the clustered point cloud as one obstacle.
- the feature point clustering performed in step S13 can be performed by various methods. That is, the clustering may be performed by any method as long as it can be regarded as an obstacle by forming a plurality of feature points into one point cloud.
- the position detection device 55 derives the position of the obstacle in the world coordinate system.
- the position detection device 55 derives the coordinates of the obstacle in the XY plane of the world coordinate system as the position of the obstacle in the world coordinate system.
- the position detection device 55 can recognize the world coordinates of an obstacle from the world coordinates of the feature points constituting the clustered point cloud.
- the X-coordinate Xw, Y-coordinate Yw, and Z-coordinate Zw of a plurality of feature points located at the ends of the clustered point group may be the X-coordinate Xw, Y-coordinate Yw, and Z-coordinate Zw of the obstacle.
- the X-coordinate Xw, Y-coordinate Yw, and Z-coordinate Zw of the feature point that is the center of the point group may be the X-coordinate Xw, Y-coordinate Yw, and Z-coordinate Zw of the obstacle. That is, the coordinates of the obstacle in the world coordinate system may represent the entire obstacle or may represent one point of the obstacle.
- the position detection device 55 projects the X-coordinate Xw, Y-coordinate Yw, and Z-coordinate Zw of the obstacle onto the XY plane of the world coordinate system, so that the X-coordinate Xw and Y-coordinate of the obstacle in the XY plane of the world coordinate system are projected.
- Derive Yw That is, the position detecting device 55 derives the X coordinate Xw and the Y coordinate Yw of the obstacle in the horizontal direction by removing the Z coordinate Zw from the X coordinate Xw, the Y coordinate Yw and the Z coordinate Zw of the obstacle.
- the three-dimensional coordinates represented by the X coordinate Xw, the Y coordinate Yw, and the Z coordinate Zw of the world coordinate system may be derived.
- the obstacle O shown in FIG. 6 indicates the position of the obstacle existing in the frame AA shown in the first image I1.
- the position of the obstacle O in the world coordinate system can be derived from the first image I1 and the second image.
- the position detection device 55 functions as an obstacle position detection unit.
- the alarm device 58 is a device that gives an alarm to a passenger of the industrial vehicle 10 or a person existing around the industrial vehicle 10.
- Examples of the alarm device 58 include a buzzer that gives an alarm by sound, a lamp that gives an alarm by light, a combination thereof, and the like.
- the display unit provided at a position visible to the passenger may be used as an alarm device, and the alarm may be issued by displaying the alarm on the display unit. In this way, the alarm device 58 can have any configuration.
- the main control device 31, the travel control device 43, and the obstacle detection device 51 are configured so that information can be acquired from each other by the bus 60.
- the main control device 31, the travel control device 43, and the obstacle detection device 51 acquire information from each other by communicating according to a communication protocol for a vehicle such as CAN: Controller Area Network or LIN: Local Interconnect Network. Is possible.
- the main control device 31 derives the vehicle speed and the traveling direction of the industrial vehicle 10 by acquiring the rotation speed and the rotation direction of the traveling motor 41 from the traveling control device 43.
- the vehicle speed of the industrial vehicle 10 can be derived by using the rotation speed and rotation direction of the traveling motor 41, the gear ratio, the outer diameter of the drive wheel 12, and the like.
- the traveling direction of the industrial vehicle 10 is either a forward direction or a reverse direction.
- the traveling direction of the industrial vehicle 10 can be derived from the rotation direction of the traveling motor 41.
- the main control device 31 can operate the alarm device 58 by transmitting an alarm command via the bus 60. More specifically, the obstacle detection device 51 includes an operating unit that activates the alarm device 58, and when the alarm command is received, the operating unit activates the alarm device 58.
- an alarm and a vehicle speed limit are performed using the alarm device 58 according to the positional relationship between the current position of the industrial vehicle 10 and the obstacle.
- the main control device 31 repeatedly performs the following controls in a predetermined control cycle to perform an alarm and limit the vehicle speed.
- step S21 the main control device 31 acquires information indicating the current position of the industrial vehicle 10 from the positioning device 37. As a result, the main control device 31 grasps the current position of the industrial vehicle 10.
- the main control device 31 determines whether or not the current position of the industrial vehicle 10 corresponds to the restricted area.
- the restricted area is an area set by the location of the area A1.
- three restricted areas LA1, LA2, and LA3 are set.
- the three restricted areas LA1, LA2, LA3 are a first restricted area LA1 including the first passages P1 and P2, a second restricted area LA2 including the second passages P3 and P4, and a third restricted area including a truck yard TY.
- the map coordinates of the restricted areas LA1, LA2, and LA3 are stored in the storage unit 33 or the auxiliary storage device 34 of the main control device 31.
- the main control device 31 is based on the information indicating the current position of the industrial vehicle 10 acquired in step S21 and the map coordinates of the restricted areas LA1, LA2, and LA3 stored in the storage unit 33 or the auxiliary storage device 34. It is possible to determine whether or not the current position of is corresponding to the restricted areas LA1, LA2, LA3. As shown in FIG. 7, when the determination result of step S22 is affirmative, the main control device 31 performs the process of step S23. If the determination result in step S22 is negative, the main control device 31 performs the process of step S24.
- the main control device 31 sets a detection range corresponding to the restricted areas LA1, LA2, and LA3.
- detection range DAs having different sizes are set for each of the restricted areas LA1, LA2, and LA3.
- the detection range DA is a range for determining whether or not to perform an alarm and vehicle speed limitation.
- the detection range DA is defined by world coordinates.
- the detection range DA is defined by the X coordinate Xw and the Y coordinate Yw of the world coordinate system, but the detection range DA is defined by the Z coordinate Zw in addition to the X coordinate Xw and the Y coordinate Yw of the world coordinate system. May be done. It can be said that the detection range DA is set in the world coordinate system.
- the detection range DA is a range extending rearward from the industrial vehicle 10.
- the detection range DA of the present embodiment gradually widens as the distance from the industrial vehicle 10 rearward, and then becomes a constant width. This is because the horizontal angle of view of the stereo camera 52 limits the range in which obstacles can be detected in the vicinity of the industrial vehicle 10.
- the area of the detection range DA is the area of the detection range DA in the XY plane of the world coordinate system.
- the width of the detection range DA is the maximum dimension in the X-axis direction of the world coordinate system.
- the length of the detection range DA is the maximum dimension in the Y-axis direction of the world coordinate system.
- the storage unit 33 or the auxiliary storage device 34 of the main control device 31 stores the correspondence between the restricted areas LA1, LA2, LA3 and the detection range DA. More specifically, the storage unit 33 or the auxiliary storage device 34 of the main control device 31 stores world coordinates for defining the detection range DA, and the range represented by the world coordinates is referred to as the detection range DA. Become. Further, in the present embodiment, in addition to the restricted areas LA1, LA2, LA3, the detection range DA is set according to the state of the industrial vehicle 10. That is, it can be said that the detection range DA is set by the combination of the current position of the industrial vehicle 10 and the state of the industrial vehicle 10. The storage unit 33 or the auxiliary storage device 34 in which the correspondence between the restricted areas LA1, LA2, LA3 and the detection range DA is stored functions as a storage device.
- Examples of the state of the industrial vehicle 10 include a running state and a starting state.
- the traveling state is a state in which the industrial vehicle 10 is traveling.
- the starting state is a state in which the industrial vehicle 10 transitions from a running stopped state to a running state.
- Whether or not the industrial vehicle 10 is in a traveling state can be determined from the vehicle speed calculated by the main control device 31. If the vehicle speed of the industrial vehicle 10 is higher than the threshold value for travel determination, the main control device 31 can determine that the industrial vehicle 10 is in the traveling state. The main control device 31 can determine that the industrial vehicle 10 is in the traveling stopped state if the vehicle speed of the industrial vehicle 10 is equal to or less than the traveling determination threshold value.
- the travel determination threshold value is set, for example, in the range of 0 [km / h] to 0.5 [km / h].
- the starting state is a state on which at least the industrial vehicle 10 is in a stopped running state.
- the traveling stopped state may be set as the starting state, or the traveling stopped state and the state in which the direction lever 17 is instructed to move backward may be set as the starting state.
- the detection range DA associated with the first restricted area LA1 is referred to as the first detection range DA1
- the detection range DA associated with the second restricted area LA2 is referred to as the second detection range DA2 and the third limitation.
- the detection range DA associated with the area LA3 is referred to as a third detection range DA3.
- the detection range DA set when the industrial vehicle 10 is in a traveling state will be described.
- the width W1 of the first detection range DA1 associated with the first restricted area LA1 is narrower than the passage width of the first passage P1.
- the width W2 of the second detection range DA2 associated with the second restricted area LA2 is narrower than the passage width of the second passage P3.
- the width W2 of the second detection range DA2 is wider than the width W1 of the first detection range DA1.
- the length L1 of the first detection range DA1 and the length L2 of the second detection range DA2 are the same.
- the width of the detection range DA1 and DA2 is set wider as the passage width is wider. It can be said that it is.
- the detection range DA set when the industrial vehicle 10 is in the starting state will be described.
- the length L1 of the first detection range DA1 is set when the industrial vehicle 10 places the load W on the shelves S1 to S3 or when the load W is taken from the shelves S1 to S3.
- the shelves S1 to S3 located behind the 10 are set so as not to enter the first detection range DA1.
- the length L1 of the first detection range DA1 is set shorter than the value obtained by subtracting the length of the vehicle body 11 from the passage width of the first passage P1.
- the length L2 of the second detection range DA2 is the shelves S3 to S5 located behind the industrial vehicle 10 when the industrial vehicle 10 places the load W on the shelves S3 to S5 or when the load W is taken from the shelves S3 to S5. Is set not to enter the second detection range DA2.
- the length L2 of the second detection range DA2 is set shorter than the value obtained by subtracting the length of the vehicle body 11 from the passage width of the second passage P3.
- the length L2 of the second detection range DA2 is longer than the length L1 of the first detection range DA1.
- the width W1 of the first detection range DA1 and the width W2 of the second detection range DA2 are the same.
- the length of the detection range DA1 and DA2 is set longer as the passage width is wider. It can be said that it has been done.
- the detection ranges DA1 and DA2 are set so as to prevent the shelves S1 to S5 from entering the detection ranges DA1 and DA2 regardless of whether the industrial vehicle 10 is in the running state or the starting state. ..
- the wider the passage width the wider the widths W1 and W2 of the detection ranges DA1 and DA2.
- the wider the passage width the longer the lengths L1 and L2 of the detection ranges DA1 and DA2.
- the industrial vehicle 10 turns after traveling along the passages P1 to P4 along the shelves S1 to S5. Turn to the shelves S1 to S5. Then, the vehicle is stopped in order to carry out cargo handling work. After finishing the cargo handling work, the industrial vehicle 10 is in the starting state. As described above, when the industrial vehicle 10 is in the traveling state, the industrial vehicle 10 often travels in the extending direction of the shelves S1 to S5. When the industrial vehicle 10 is in the starting state, the industrial vehicle 10 finishes the unloading work or the unloading work and faces the shelves S1 to S5 located behind, that is, in the direction orthogonal to the extending direction of the shelves S1 to S5. Often try to progress.
- the main control device 31 makes different whether the widths W1 and W2 of the detection ranges DA1 and DA2 are changed or the lengths L1 and L2 are changed according to the traveling state and the starting state of the industrial vehicle 10. As a result, if the traveling direction of the industrial vehicle 10 is the extending direction of the shelves S1 to S5, the widths W1 and W2 of the detection ranges DA1 and DA2 are orthogonal to the traveling direction of the industrial vehicle 10 in the extending direction of the shelves S1 to S5. If so, it can be considered that the lengths L1 and L2 of the detection ranges DA1 and DA2 are changed.
- the first restricted area LA1 and the second restricted area LA2 have been described as an example, but as shown in FIG. 1, the third detection range DA3 associated with the third restricted area LA3 is also included in the third restricted area LA3.
- the first restricted area LA1 and the second restricted area LA2 are places where shelves S1 to S5 that can be obstacles are always present in the surroundings.
- the third restricted area LA3 is a place where it is less likely that an obstacle is always present in the surroundings as compared with the first restricted area LA1 and the second restricted area LA2. Therefore, the third detection range DA3 may be set wider than the detection ranges DA1 and DA2.
- the length L3 of the third detection range DA3 when the industrial vehicle 10 is in the traveling state may be longer than the length L1 of the first detection range DA1 when the industrial vehicle 10 is in the traveling state.
- the width W3 of the third detection range DA3 when the industrial vehicle 10 is in the traveling state may be wider than the width W1 of the first detection range DA1 when the industrial vehicle 10 is in the traveling state.
- the width and length of the detection range DA can be appropriately changed depending on the location.
- the width and length of the detection range DA differ depending on factors such as whether or not there are structures such as shelves S1 to S5 around, the size of the travelable area of the industrial vehicle 10, and the traffic volume of people and vehicles. You can set the value.
- the main control device 31 finishes the process of step S23, the main control device 31 performs the process of step S25. By performing the process of step S23, the main control device 31 functions as a detection range setting unit.
- step S24 the main control device 31 sets the default detection range DA.
- the default detection range DA is a detection range set when the current position of the industrial vehicle 10 does not correspond to the restricted areas LA1, LA2, and LA3.
- the default detection range DA can be arbitrarily set by the administrator of the industrial vehicle 10. Similar to the detection ranges DA1, DA2, DA3 associated with the restricted areas LA1, LA2, LA3, the default detection range DA may vary in size depending on the state of the industrial vehicle 10.
- the main control device 31 finishes the process of step S24, the main control device 31 performs the process of step S25.
- step S25 the main control device 31 determines whether or not an obstacle exists in the detection range DA.
- the main control device 31 can grasp the positional relationship between the obstacle existing around the industrial vehicle 10 and the industrial vehicle 10.
- the main control device 31 determines whether or not an obstacle exists in the detection range DA based on the world coordinates of the obstacle and the detection range DA set in step S23 or step S24. If the obstacle is located straddling the inside and outside of the detection range DA, it may be determined that the obstacle exists in the detection range DA, or the obstacle is in the detection range DA. It may be determined that it does not exist.
- the main control device 31 determines that the obstacle O exists in the detection range DA. As shown in FIG. 7, when the determination result of step S25 is affirmative, the main control device 31 performs the process of step S26. If the determination result in step S25 is negative, the main control device 31 performs the process of step S27.
- step S26 the main control device 31 gives an alarm and limits the vehicle speed.
- the main control device 31 gives an alarm by activating the alarm device 58.
- the main control device 31 sets a vehicle speed upper limit value and limits the vehicle speed by preventing the vehicle speed from exceeding the vehicle speed upper limit value.
- the vehicle speed upper limit is set to a value lower than the maximum reachable speed of the industrial vehicle 10.
- the vehicle speed upper limit value includes 0 [km / h]. That is, the vehicle speed limit includes the prohibition of traveling of the industrial vehicle 10.
- the warning and vehicle speed limit may be changed according to the distance to the obstacle.
- the main control device 31 may make the alarm stronger as the distance from the obstacle is closer. Increasing the warning means making it easier for the passengers of the industrial vehicle 10 and the people around the industrial vehicle 10 to recognize the approach of the industrial vehicle 10. If the alarm device 58 gives an alarm by sound, the sound may be louder as the distance from the obstacle is closer, and if the alarm device 58 gives an alarm by blinking light, the blinking speed may be increased. It may be faster.
- the main control device 31 may set the vehicle speed upper limit value lower as the distance from the obstacle is closer. By performing the processes of steps S25 and S26, the main control device 31 functions as a control unit.
- step S27 the main control device 31 cancels the warning and the vehicle speed limit. More specifically, the main control device 31 cancels the warning and the vehicle speed limit if the warning and the vehicle speed limit have been performed by the processing in the past control cycle, and if the warning and the vehicle speed limit have not been performed, this state. To maintain. While the obstacle is present in the detection range DA, the warning and the vehicle speed limit are performed by continuously affirming step S25. When there are no obstacles in the detection range DA, the warning and the vehicle speed limit are canceled by negating step S25.
- the obstacle detection process by the position detection device 55 may be performed only when the industrial vehicle 10 is moving backward or when the industrial vehicle 10 starts backward. That is, the obstacle detection process may not be performed when the industrial vehicle 10 is moving forward or when the industrial vehicle 10 starts forward. It can be determined from the detection result of the direction sensor 36 and the rotation direction of the traveling motor 41 that the industrial vehicle 10 is moving backward. It can be determined from the detection result of the direction sensor 36 that the industrial vehicle 10 starts backward. Similarly, the warning and the vehicle speed limit may be given only when the industrial vehicle 10 is moving backward or when the industrial vehicle 10 starts backward. That is, the warning and the vehicle speed limit may not be performed when the industrial vehicle 10 is moving forward or when the industrial vehicle 10 starts forward.
- Obstacle detection processing may be performed regardless of the traveling direction of the industrial vehicle 10, and the warning and the vehicle speed limit may be performed only when the industrial vehicle 10 is moving backward or when the industrial vehicle 10 starts backward.
- the position detection device 55 detects an obstacle existing behind the industrial vehicle 10 as in the present embodiment, at least the warning and the vehicle speed limit are performed when the traveling direction of the industrial vehicle 10 is behind. Just do it.
- the main control device 31 sets a detection range DA associated with the current position of the industrial vehicle 10.
- the main control device 31 gives an alarm and limits the vehicle speed when an obstacle detected by the position detection device 55 exists in the detection range DA.
- the main control device 31 issues an alarm and limits the vehicle speed even if an obstacle exists outside the detection range DA. Not performed. It can be said that the detection range DA limits the range in which the warning and the vehicle speed are limited.
- the detection range DA is excessively wide, warnings and vehicle speed restrictions will be frequently performed depending on the position of the industrial vehicle 10. For example, assuming that the second detection range DA2 is always set regardless of the position of the industrial vehicle 10, when the industrial vehicle 10 is traveling in the first passages P1 and P2, the second detection range DA2 is always set. There is a risk that shelves S1 to S3 will enter. If an alarm and a vehicle speed limit are always given while traveling in the first passages P1 and P2, the workability of the industrial vehicle 10 will deteriorate and the workability of the person working in the first passages P1 and P2 will be reduced. It causes a decline.
- the warning and the vehicle speed limit are always performed by the shelves S1 to S3 entering the second detection range DA2, the warning and the vehicle speed limitation are continued regardless of whether or not there is an obstacle obstructing the progress in the first passages P1 and P2. Then, an alarm and a vehicle speed limit will be given. As a result, even if an obstacle exists in the first passages P1 and P2, the passenger of the industrial vehicle 10 may not notice the existence of the obstacle.
- the industrial vehicle 10 may inevitably approach structures such as shelves S1 to S5 that may be obstacles due to the cargo handling work.
- the detection range DA is excessively widened as described above, there is a possibility that the structure will always enter the detection range DA, and the warning and the vehicle speed limit may be frequently performed to reduce the workability. If the detection range DA is excessively narrowed, the warning and the vehicle speed limitation due to the detection of the structure as an obstacle can be suppressed, but the obstacle that hinders the progress of the industrial vehicle 10 is difficult to enter the detection range DA. Therefore, the timing at which the warning and the vehicle speed limit are performed may be delayed.
- the detection range DA is set according to the current position of the industrial vehicle 10.
- the detection range DA is set so as to prevent structures such as shelves S1 to S5 existing in the restricted areas LA1, LA2, and LA3 from always entering the detection range DA. As a result, it is possible to prevent an obstacle from constantly entering the detection range DA.
- the main control device 31 determines whether or not the current position of the industrial vehicle 10 derived by the positioning device 37 corresponds to the restricted areas LA1, LA2, and LA3.
- the main control device 31 sets the detection ranges DA1, DA2, DA3 associated with the restricted areas LA1, LA2, LA3.
- a marker in the area A1 and set the detection range DA by reading this marker. In this case, it takes time and effort to provide the marker in the area A1. Further, it is necessary to provide a device for reading the marker on the industrial vehicle 10 and arrange the marker at a position where the device can read the marker, which causes restrictions on the arrangement.
- the positioning device 37 can derive the current position of the industrial vehicle 10 without reading the marker. Therefore, it is unlikely that the trouble of providing the marker in the area A1 and the restriction on the arrangement will occur.
- the positioning device 37 that utilizes the reception mode of the wireless signal it is necessary to provide the fixed device WT in the area A1, but if the positioning device 37 can receive the wireless signal, the position of the fixed device WT is free. .. Therefore, the fixed machine WT has less restrictions on placement than the marker.
- the fixed machine WT may be arranged as many as the positioning device 37 can perform multi-point positioning, and the time and effort for arranging the fixed machine WT is less than that of the marker.
- the positioning device 37 derives the current position of the industrial vehicle 10 according to the reception mode of the radio signal transmitted from the fixed device WT. Therefore, the current position of the industrial vehicle 10 can be derived even indoors.
- GNSS Since the current position of the industrial vehicle 10 can be derived even indoors where positioning cannot be performed using the Global Navigation Satellite System, even the industrial vehicle 10 used indoors can be detected according to the current position.
- the range DA can be set.
- the main control device 31 sets the detection range DA so that the detection range DA becomes wider as the passage width is wider.
- the detection range DA is constant, the wider the passage width, the more likely it is that a portion not included in the detection range DA, that is, a blind spot will occur.
- the traveling direction of the industrial vehicle 10 is orthogonal to the extending direction of the shelves S1 to S5, the shelves S1 to S5 are located in the length direction of the detection range DA, so the length of the detection range DA is adjusted. It is preferable to be able to detect obstacles existing in the passages P1 to P4 while suppressing the entry of the shelves S1 to S5 into the detection range DA.
- an appropriate detection range DA according to the situation of the industrial vehicle 10 is set.
- the current position of the industrial vehicle 10 is derived by using the positioning device 37
- the current position of the industrial vehicle 10 is derived by self-position estimation by the main control device 31. do.
- the industrial vehicle 10 of the second embodiment does not have to be provided with the positioning device 37.
- the main control device 31 performs self-position estimation for estimating self-position and posture.
- the self-position is the current position of the industrial vehicle 10.
- the posture is the orientation of the industrial vehicle 10 in the map coordinate system. More specifically, the posture is the inclination of the industrial vehicle 10 with respect to the X-axis or the Y-axis of the map coordinate system.
- the self-position estimation is performed by matching landmarks using at least the stereo camera 52.
- the main control device 31 estimates its own position by matching the map coordinates of the obstacle detected by the position detection device 55 with the landmarks on the environmental map. In the second embodiment, it is necessary to store the map coordinates of the structure existing in the area A1 as a landmark as an environmental map.
- the structure used as a landmark a structure whose position does not change with the passage of time or whose position does not easily change is used.
- the map coordinates of the shelves S1 to S5 and the pillar Pi can be used as landmarks.
- the map coordinates of the wall may be used.
- the environmental map may be created by mapping by SLAM: Simultaneous Localization and Mapping, or may be created in advance if the physical structure of the area A1 is known in advance.
- the self-position estimation may be performed by combining a method using landmarks with an odometry that estimates the self-movement amount using the rotation speed of the traveling motor 41.
- the detection result of the rotation speed sensor 42 can be used as the rotation speed of the traveling motor 41.
- the detection result of the rotation speed sensor 42 can be acquired from the travel control device 43 via the bus 60.
- the main control device 31 derives the current position of the industrial vehicle 10 by self-position estimation, and sets the detection range DA associated with the current position of the industrial vehicle 10.
- the detection range DA can be set by the same method as in the first embodiment.
- the main control device 31 functions as a position derivation unit.
- the detection range DA since the posture of the industrial vehicle 10 can be estimated, the detection range DA according to the posture of the industrial vehicle 10 is set in addition to the current position of the industrial vehicle 10 and the situation of the industrial vehicle 10. You may. For example, the detection range DA can be changed according to the presence of an obstacle existing in the direction in which the industrial vehicle 10 faces. If a known structure such as shelves S1 to S5 exists in the direction facing the industrial vehicle 10, the detection range DA may be set so that the structure does not enter the detection range DA.
- the width of the detection range DA is changed, and if the direction of the industrial vehicle 10 is orthogonal to the extending direction of the shelves S1 to S5, the detection range DA is changed.
- the length of may be changed.
- the main control device 31 derives the current position of the industrial vehicle 10 by self-position estimation.
- Self-position estimation can be performed using a stereo camera 52 provided for detecting an obstacle. Therefore, the positioning device 37 can be omitted.
- markers M1, M2, and M3 are provided in the area A1.
- the markers M1, M2, and M3 include an AR marker, a QR code (registered trademark), which is an identification image including a plurality of rectangles or dots arranged two-dimensionally, a one-dimensional code including a barcode, and a color code.
- Various markers such as a multidimensional code including can be used.
- the markers M1, M2, and M3 are provided in each of the first restricted area LA1, the second restricted area LA2, and the third restricted area LA3.
- the marker M1 provided in the first restricted area LA1 is the first marker M1
- the marker M2 provided in the second restricted area LA2 is the second marker M2
- the marker M3 provided in the third restricted area LA3 is the third marker M3.
- the first marker M1, the second marker M2, and the third marker M3 have different patterns such as shapes and colors. In other words, the information associated with each of the first marker M1, the second marker M2, and the third marker M3 is different.
- the industrial vehicle 10 includes an image pickup device for reading the markers M1, M2, and M3.
- the stereo camera 52 may also be used, or an image pickup device for reading the markers M1, M2, and M3 may be provided separately from the stereo camera 52.
- the markers M1, M2, and M3 are arranged at positions that can be read by the image pickup apparatus. Since the angle of view of the image pickup apparatus is predetermined, the positions of the markers M1, M2, and M3 are determined in consideration of this angle of view.
- the first marker M1 when the industrial vehicle 10 is located in the first restricted area LA1, the second marker M2 when the industrial vehicle 10 is located in the second restricted area LA2, and the industrial vehicle 10 are the third.
- the positions of the markers M1, M2, and M3 are determined so that the third marker M3 is imaged when the marker is located in the restricted area LA3.
- the markers M1, M2 and M3 are attached to structures located in the restricted areas LA1, LA2 and LA3 such as shelves S1 to S5, walls, pillars Pi and floors.
- the main control device 31 reads information from the markers M1, M2, and M3 imaged by the image pickup device by the image recognition function.
- Examples of the information associated with the markers M1, M2, and M3 include position information or information indicating the detection range DA.
- the first marker M1 as an example, when the position information is associated with the first marker M1, the information indicating that it is the first restricted area LA1 is associated with the position information.
- the main control device 31 recognizes that the current position of the industrial vehicle 10 is the first restricted area LA1 from the position information associated with the first marker M1, and sets the first detection range DA1.
- the information indicating the detection range DA is associated with the first marker M1
- the information indicating the first detection range DA1 is associated with the first marker M1.
- the information indicating the first detection range DA1 may be the world coordinates defining the first detection range DA1.
- the main control device 31 sets the first detection range DA1 from the information indicating the detection range DA associated with the first marker M1.
- the first marker M1 is arranged so as to be imaged by the image pickup device when the industrial vehicle 10 is located in the first restricted area LA1, the first marker M1 is imaged by the image pickup device. If so, it can be said that the industrial vehicle 10 is located in the first restricted area LA1. That is, the first detection range DA1 associated with the first restricted area LA1 is set without deriving the current position of the industrial vehicle 10. When the first detection range DA1 is set by reading the first marker M1, it can be said that it is not necessary to store the environment map. Further, the industrial vehicle 10 does not have to be equipped with the positioning device 37.
- the restricted areas LA1, LA2, LA3 and the detection range DA1, DA2 are associated with the storage unit 33 and the auxiliary storage device 34 of the main control device 31. , It is not necessary to memorize the correspondence with DA3.
- the first marker M1 has been described, but the same can be said for the second marker M2 and the third marker M3.
- the image pickup device may take an image of the markers M1, M2 and M3 even from outside the restricted areas LA1, LA2 and LA3.
- the detection ranges DA1, DA2 associated with the restricted areas LA1, LA2, LA3 in which the markers M1, M2, M3 are arranged are arranged.
- DA3 may be set.
- the main control device 31 sets the detection range DA by reading the information associated with the markers M1, M2, and M3 by image recognition. By setting the detection range DA using the markers M1, M2, and M3, the detection range DA associated with the current position of the industrial vehicle 10 can be set without deriving the current position of the industrial vehicle 10. Can be done.
- the detection ranges DA1, DA2, and DA3 associated with the restricted areas LA1, LA2, and LA3 can be arbitrarily set by the manager of the industrial vehicle 10.
- the detection range DA may be widened in a place where moving objects including vehicles and people frequently pass while there are few structures such as shelves S1 to S5.
- the length L1 of the first detection range DA1 and the length L2 of the second detection range DA2 when the industrial vehicle 10 is in a traveling state may be different.
- the width W1 of the first detection range DA1 and the width W2 of the second detection range DA2 when the industrial vehicle 10 is in the starting state may be different.
- the state of the industrial vehicle 10 may include a cargo handling work state.
- the main control device 31 may set a detection range DA different from the traveling state and the starting state.
- the main control device 31 may have a longer detection range DA when the industrial vehicle 10 is in the cargo handling work state than when the industrial vehicle 10 is in the traveling state.
- the detection range DA may be any as long as it is associated with the current position of the industrial vehicle 10, and the width of the detection range DA may not change depending on the state of the industrial vehicle 10.
- the detection range DA may have any shape.
- the detection range DA may be a range extending from the industrial vehicle 10 in a circular shape or a fan shape.
- the main control device 31 may increase the length of the detection range DA as the speed of the industrial vehicle 10 increases.
- the detection range DA may be set by the position detection device 55.
- the position detection device 55 may consider that the obstacle existing outside the detection range DA is not an obstacle. That is, the position detection device 55 does not have to transmit the world coordinates of the obstacle outside the detection range DA to the main control device 31 even when the obstacle exists outside the detection range DA.
- the positioning device 37 of the first embodiment may derive the current position of the industrial vehicle 10 by using the incident angle of the radio signal.
- the positioning device 37 derives the incident angle of the radio signal transmitted from the fixed device WT.
- the positioning device 37 derives the current position of the industrial vehicle 10 from the incident angles of the plurality of radio signals. It can be said that the reception mode of the radio signal includes the incident angle of the radio signal.
- the wireless signal a radio wave or a sound wave conforming to the WI-FI standard can be used.
- the positioning method using the incident angle of the radio signal is called the AOA: Angle of Arrival method.
- the positioning device 37 may be of a method other than the above as long as it uses a wireless signal such as a radio wave arrival time difference method.
- the current position of the industrial vehicle 10 may be derived by a positioning device provided in the area A1.
- the industrial vehicle 10 includes a radio transmission unit that transmits a radio signal to the fixed machine WT provided in the area A1.
- the positioning device provided in the area A1 derives the current position of the industrial vehicle 10 from the reception mode of the radio signal in the fixed machine WT. In other words, the relationship between the transmission and reception of the radio signal is reversed between the fixed machine WT and the industrial vehicle 10.
- the positioning device provided in the area A1 can derive the current position of the industrial vehicle 10 by the same method as that described in the first embodiment and the above-described modification. In this case, the positioning device provided in the area A1 transmits information indicating the current position of the industrial vehicle 10 to the industrial vehicle 10. As a result, the main control device 31 can recognize the current position of the industrial vehicle 10.
- the positioning device 37 may perform positioning using GNSS.
- GNSS includes GPS, GLONASS, IRNSS, and QZSS.
- the positioning device 37 receives the satellite signal transmitted from the GNSS satellite and derives the current position of the industrial vehicle 10 from the received satellite signal. In this case, the industrial vehicle 10 is used outdoors. Further, by using the positioning device 37 of the first embodiment and the positioning device 37 for positioning using GNSS together, the current position of the industrial vehicle 10 can be derived regardless of whether it is indoors or outdoors. You may do so.
- the self-position estimation may be performed by using dead reckoning using an acceleration sensor or a gyro sensor, or may be performed by using the above-mentioned GNSS. Further, the self-position estimation may be performed by combining these self-position estimations with the self-position estimation described in the second embodiment.
- the detection range DA may be set from the color of the road surface.
- the walking zone is painted in blue to recognize that it is a walking zone
- the danger zone is a zebra zone in which yellow and black are alternately arranged to recognize that it is a danger zone. In some cases.
- the detection range DA corresponding to the current position of the industrial vehicle 10 is set by setting the detection range DA in association with the road surface color. ..
- the size of the detection range DA may be set so that the person can be detected quickly.
- the industrial vehicle 10 includes an image pickup device arranged so as to image the road surface.
- the image pickup apparatus include a CCD image sensor and a device using a CMOS image sensor.
- the storage unit 33 or the auxiliary storage device 34 of the main control device 31 stores a correspondence relationship in which the color and the detection range DA are associated with each other.
- the main control device 31 detects the color of the road surface from the image captured by the image pickup device.
- the main control device 31 sets a detection range DA associated with the color of the road surface.
- the position detection device 55 may perform a process of determining whether the detected obstacle is a human or a non-human obstacle after the process of step S14. Whether or not an obstacle is a person can be determined by various methods. For example, the position detection device 55 determines whether or not an obstacle is a person by performing a person detection process on an image captured by one of the two cameras 53 and 54 of the stereo camera 52. .. The position detection device 55 converts the coordinates of the obstacle in the world coordinate system obtained in step S14 into the camera coordinates, and converts the camera coordinates into the coordinates of the image captured by the cameras 53 and 54. For example, the position detection device 55 converts the coordinates of an obstacle in the world coordinate system into the coordinates of the first image.
- the position detection device 55 performs a person detection process on the coordinates of the obstacle in the first image.
- the human detection process is performed using, for example, feature quantity extraction and a human determination device that has been machine-learned in advance.
- the feature amount extraction include a method of extracting the feature amount of a local region in an image such as HOG: Histogram of Oriented Gradients feature amount and Haar-Like feature amount.
- the human judgment device for example, a machine learning using a supervised learning model is used.
- a supervised learning model for example, a support vector machine, a neural network, naive bays, deep learning, a decision tree, or the like can be adopted.
- image-specific components such as human shape elements and appearance elements extracted from the image are used.
- the shape element include the size and contour of a person.
- the appearance element include light source information, texture information, camera information, and the like.
- the light source information includes information on reflectance, shading, and the like.
- the texture information includes color information and the like.
- the camera information includes information on image quality, resolution, angle of view, and the like.
- the processing performed by the main control device 31 may be changed depending on whether or not the obstacle is a person.
- the main control device 31 may make the alarm stronger than when the obstacle is not a person.
- the main control device 31 may set the vehicle speed upper limit value lower than when the obstacle is not a person.
- the main control device 31 may issue either an alarm or a vehicle speed limit when an obstacle exists in the detection range DA. If the main control device 31 does not give an alarm, the industrial vehicle 10 may not be equipped with the alarm device 58.
- the obstacle detection device 51 may detect the position of an obstacle existing in the forward direction in the traveling direction of the industrial vehicle 10.
- the stereo camera 52 is arranged so as to face the front of the industrial vehicle 10.
- the detection range DA extends forward from the industrial vehicle 10. Further, when the traveling direction of the industrial vehicle 10 is the forward direction, the warning and the vehicle speed limitation are performed.
- the obstacle detection device 51 may be capable of detecting the position of an obstacle existing in both the reverse direction and the forward direction in the traveling direction of the industrial vehicle 10.
- one obstacle detection device 51 may be able to detect obstacles existing in both the reverse direction and the forward direction of the traveling direction of the industrial vehicle 10, or may be combined with the obstacle detection device 51 for the forward direction.
- An obstacle detection device 51 for the reverse direction may be provided.
- the obstacle detection device 51 may use a TOF: Time of Flight camera, LIDAR: Laser Imaging Detection and Ranging, millimeter wave radar, or the like as the sensor instead of the stereo camera 52.
- the TOF camera includes a camera and a light source that irradiates light, and derives the distance in the depth direction for each pixel of the image captured by the camera from the time until the reflected light of the light emitted from the light source is received. It is a thing.
- LIDAR is a rangefinder that can recognize the surrounding environment by irradiating a laser while changing the irradiation angle and receiving the reflected light reflected from the part hit by the laser.
- the millimeter wave radar is capable of recognizing the surrounding environment by irradiating the surroundings with radio waves in a predetermined frequency band.
- the stereo camera 52, the TOF camera, the LIDAR, and the millimeter-wave radar are sensors capable of deriving three-dimensional coordinates in the world coordinate system.
- the obstacle detection device 51 preferably includes a sensor capable of measuring three-dimensional coordinates.
- the obstacle detection device 51 may include a combination of a plurality of sensors such as a stereo camera 52 and LIDAR.
- the obstacle detection device 51 derives the coordinates of a two-axis Cartesian coordinate system in which one axis in the horizontal direction is the X axis and the axis in the direction orthogonal to the X axis is the Y axis. It may be equipped with a sensor capable of That is, as the sensor, a sensor that can derive two-dimensional coordinates that are the horizontal coordinates of the obstacle may be used. As this type of sensor, for example, a two-dimensional LIDAR that irradiates a laser while changing the irradiation angle in the horizontal direction can be used.
- the senor may be a combination of each of the above-mentioned sensors and a monocular camera.
- the detection result of the sensor may be used to detect the world coordinates of the obstacle, and the image captured by the monocular camera may be used to determine whether or not the obstacle detected by the sensor is a person.
- the stereo camera 52 may include three or more cameras.
- the world coordinate system is not limited to the orthogonal coordinate system and may be a polar coordinate system.
- conversion from camera coordinates to world coordinates may be performed by table data.
- the table data is table data in which the combination of the Y coordinate Yc and the Z coordinate Zc corresponds to the Y coordinate Yw, and the table data in which the combination of the Y coordinate Yc and the Z coordinate Zc corresponds to the Z coordinate Zw.
- the alarm device 58 may be provided by a device other than the obstacle detection device 51. ⁇ In each embodiment, the alarm device 58 may be directly operated by the main control device 31.
- the industrial vehicle 10 may be driven by driving an engine which is a driving device.
- the travel control device 43 is a device that controls the fuel injection amount to the engine and the like.
- the industrial vehicle 10 may be one that operates automatically, or may be one that can switch between automatic operation and manual operation.
- the industrial vehicle 10 may be remotely controlled by an operator who is not on the industrial vehicle 10.
- the industrial vehicle 10 may include one device having a function of the main control device 31 and a function of the position detection device 55. That is, the functions of the main control device 31 and the functions of the position detection device 55 may be integrated into one device.
- the obstacle position detection unit may be composed of a plurality of devices.
- the main control device 31, the travel control device 43, and the obstacle detection device 51 may be configured so that information on each other can be acquired by a radio.
- the information stored in the auxiliary storage device 34 may be stored in a storage medium other than the auxiliary storage device 34, such as the storage unit 33 of the main control device 31 or the storage unit 57 of the position detection device 55. good. In this case, the industrial vehicle 10 does not have to be provided with the auxiliary storage device 34.
- the industrial vehicle 10 may be a towing vehicle used for transporting a load or the like, an order picker used for picking work, a towing tractor, or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- General Physics & Mathematics (AREA)
- Transportation (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Chemical & Material Sciences (AREA)
- Civil Engineering (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Forklifts And Lifting Vehicles (AREA)
- Traffic Control Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
An industrial vehicle (10) is provided with an obstacle detecting device (51), and a main control device (31). The obstacle detecting device (51) is provided with a sensor (52), and a position detecting device (55). The position detecting device (55) detects the position of an obstacle in a world coordinate system. The main control device (31) issues a warning and restricts the vehicle speed if an obstacle is present in a detection range (DA) set in the world coordinate system. The main control device (31) sets the detection range (DA) associated with the current position of the industrial vehicle (10).
Description
本開示は、産業車両に関する。
This disclosure relates to industrial vehicles.
障害物を検出するための障害物検出装置を備える車両が特許文献1に開示されている。特許文献1に開示の障害物検出装置は、ステレオカメラと、検出部と、を備える。ステレオカメラは、車両の周囲を撮像するように配置されている。検出部は、ステレオカメラによって撮像された画像から障害物の存在領域を検出している。検出部により障害物が検出されると、車速制限や警報が行われる。
Patent Document 1 discloses a vehicle provided with an obstacle detection device for detecting an obstacle. The obstacle detection device disclosed in Patent Document 1 includes a stereo camera and a detection unit. The stereo camera is arranged so as to capture the surroundings of the vehicle. The detection unit detects the presence area of the obstacle from the image captured by the stereo camera. When an obstacle is detected by the detection unit, the vehicle speed is limited or an alarm is issued.
フォークリフトやトーイングトラクタ等の産業車両は、産業車両を走行させられる領域が狭い領域で作業を行う場合がある。このような産業車両に障害物検出装置が搭載される場合、ステレオカメラによって撮像される画像には障害物の存在を判定する検知範囲内に障害物が写りやすい。すると、車速制限や警報が頻繁に行われることになる。結果として、作業性の低下を招く。
Industrial vehicles such as forklifts and towing tractors may work in a narrow area where the industrial vehicle can be driven. When an obstacle detection device is mounted on such an industrial vehicle, the obstacle is likely to appear in the detection range for determining the presence of the obstacle in the image captured by the stereo camera. Then, vehicle speed restrictions and warnings will be issued frequently. As a result, workability is reduced.
本開示の目的は、作業性の低下を抑制できる産業車両を提供することにある。
The purpose of this disclosure is to provide an industrial vehicle that can suppress the deterioration of workability.
上記課題を解決する産業車両は、センサと、前記センサの検出結果から実空間上の座標系での障害物の位置を検出する障害物位置検出部と、前記障害物位置検出部により検出された前記障害物が、前記実空間上の座標系に設定された検知範囲に存在している場合に警報及び車速制限の少なくともいずれかを行う制御部と、産業車両の現在位置に対応付けられた前記検知範囲を設定する検知範囲設定部と、を備える。
The industrial vehicle that solves the above problems is detected by the sensor, the obstacle position detection unit that detects the position of the obstacle in the coordinate system in the real space from the detection result of the sensor, and the obstacle position detection unit. The control unit that issues at least one of an alarm and a vehicle speed limit when the obstacle exists in the detection range set in the coordinate system in the real space, and the control unit associated with the current position of the industrial vehicle. It is equipped with a detection range setting unit for setting the detection range.
障害物位置検出部によって検出された障害物が検知範囲に存在している場合に警報及び車速制限の少なくともいずれかが行われる。検知範囲は、産業車両の現在位置に対応付けられているため、産業車両の現在位置に応じた検知範囲が設定されることになる。これにより、検知範囲に常に障害物が入り込むことを抑制することができる。頻繁に警報や車速制限が行われることが抑制されるため、作業性の低下が抑制される。
When an obstacle detected by the obstacle position detection unit is present in the detection range, at least one of the warning and the vehicle speed limit is issued. Since the detection range is associated with the current position of the industrial vehicle, the detection range is set according to the current position of the industrial vehicle. As a result, it is possible to prevent obstacles from constantly entering the detection range. Since frequent warnings and vehicle speed restrictions are suppressed, deterioration of workability is suppressed.
上記産業車両について、前記現在位置を導出する位置導出部と、前記産業車両が用いられる区域に設定された制限エリアと前記検知範囲とを対応付けた対応関係が記憶された記憶装置と、を備え、前記検知範囲設定部は、前記位置導出部により導出された前記現在位置が前記制限エリアに該当する場合、前記対応関係によって前記制限エリアに対応付けられた前記検知範囲を設定してもよい。
The industrial vehicle is provided with a position derivation unit for deriving the current position and a storage device for storing a correspondence relationship between a restricted area set in an area where the industrial vehicle is used and the detection range. When the current position derived by the position derivation unit corresponds to the restricted area, the detection range setting unit may set the detection range associated with the restricted area according to the correspondence relationship.
上記産業車両について、前記位置導出部は、前記区域に設置された固定機が送信した無線信号を受信し、受信した前記無線信号の受信態様から前記現在位置を導出してもよい。
上記産業車両について、前記検知範囲設定部は、通路幅が広い位置ほど前記検知範囲が広くなるように前記検知範囲を設定してもよい。 For the industrial vehicle, the position derivation unit may receive a radio signal transmitted by a fixed machine installed in the area and derive the current position from the reception mode of the received radio signal.
For the industrial vehicle, the detection range setting unit may set the detection range so that the detection range becomes wider as the passage width becomes wider.
上記産業車両について、前記検知範囲設定部は、通路幅が広い位置ほど前記検知範囲が広くなるように前記検知範囲を設定してもよい。 For the industrial vehicle, the position derivation unit may receive a radio signal transmitted by a fixed machine installed in the area and derive the current position from the reception mode of the received radio signal.
For the industrial vehicle, the detection range setting unit may set the detection range so that the detection range becomes wider as the passage width becomes wider.
本発明によれば、作業性の低下を抑制できる。
According to the present invention, deterioration of workability can be suppressed.
(第1実施形態)
以下、産業車両の第1実施形態について説明する。
図1に示すように、産業車両10は、倉庫、工場、公共施設、商用施設などの屋内のうち予め定められた区域A1で用いられる。区域A1には、複数の棚S1,S2,S3,S4,S5が設けられている。棚S1,S2,S3,S4,S5は、互いに間隔を空けて並んで配置されている。複数の棚S1,S2,S3,S4,S5のそれぞれを第1棚S1、第2棚S2、第3棚S3、第4棚S4、第5棚S5とすると、各棚S1~S5は第1棚S1→第2棚S2→第3棚S3→第4棚S4→第5棚S5の順に整列して並んでいる。第1棚S1と第2棚S2との間隔d1と、第2棚S2と第3棚S3との間隔d2は互いに同一である。第3棚S3と第4棚S4との間隔d3と、第4棚S4と第5棚S5との間隔d4は互いに同一である。間隔d1,d2は、間隔d3,d4より短い。棚S1~S5は、例えば、支柱によって棚板を支持しているものであり、平面視において一方向に延びている。棚S1~S5を平面視した場合、一方向への寸法は、当該一方向に直交する方向に比べて長いといえる。棚S1~S5の延びる方向と、棚S1~S5の並ぶ方向とは互いに直交している。隣接する棚S1~S5の間は、産業車両10の通過可能な通路P1,P2,P3,P4となっている。棚S1~S5の間隔d1,d2,d3,d4は、通路P1,P2,P3,P4の通路幅といえる。第1棚S1と第2棚S2の間の通路P1、及び第2棚S2と第3棚S3の間の通路P2を第1通路P1,P2と称する。第3棚S3と第4棚S4との間の通路P3、及び第4棚S4と第5棚S5との間の通路P4を第2通路P3,P4と称する。第1通路P1,P2の通路幅は、第2通路P3,P4の通路幅よりも狭い。 (First Embodiment)
Hereinafter, the first embodiment of the industrial vehicle will be described.
As shown in FIG. 1, theindustrial vehicle 10 is used in a predetermined area A1 of indoors such as a warehouse, a factory, a public facility, and a commercial facility. A plurality of shelves S1, S2, S3, S4, S5 are provided in the area A1. The shelves S1, S2, S3, S4, and S5 are arranged side by side at intervals from each other. Assuming that each of the plurality of shelves S1, S2, S3, S4, S5 is the first shelf S1, the second shelf S2, the third shelf S3, the fourth shelf S4, and the fifth shelf S5, each shelf S1 to S5 is the first shelf. The shelves S1 → the second shelf S2 → the third shelf S3 → the fourth shelf S4 → the fifth shelf S5 are arranged in this order. The distance d1 between the first shelf S1 and the second shelf S2 and the distance d2 between the second shelf S2 and the third shelf S3 are the same as each other. The distance d3 between the third shelf S3 and the fourth shelf S4 and the distance d4 between the fourth shelf S4 and the fifth shelf S5 are the same as each other. The intervals d1 and d2 are shorter than the intervals d3 and d4. The shelves S1 to S5 support the shelf board by, for example, a support, and extend in one direction in a plan view. When the shelves S1 to S5 are viewed in a plan view, it can be said that the dimension in one direction is longer than the direction orthogonal to the one direction. The extending direction of the shelves S1 to S5 and the arranging direction of the shelves S1 to S5 are orthogonal to each other. Between the adjacent shelves S1 to S5, there are passages P1, P2, P3, and P4 through which the industrial vehicle 10 can pass. The intervals d1, d2, d3, d4 between the shelves S1 to S5 can be said to be the aisle width of the aisles P1, P2, P3, P4. The passage P1 between the first shelf S1 and the second shelf S2 and the passage P2 between the second shelf S2 and the third shelf S3 are referred to as first passages P1 and P2. The passage P3 between the third shelf S3 and the fourth shelf S4 and the passage P4 between the fourth shelf S4 and the fifth shelf S5 are referred to as second passages P3 and P4. The passage width of the first passages P1 and P2 is narrower than the passage width of the second passages P3 and P4.
以下、産業車両の第1実施形態について説明する。
図1に示すように、産業車両10は、倉庫、工場、公共施設、商用施設などの屋内のうち予め定められた区域A1で用いられる。区域A1には、複数の棚S1,S2,S3,S4,S5が設けられている。棚S1,S2,S3,S4,S5は、互いに間隔を空けて並んで配置されている。複数の棚S1,S2,S3,S4,S5のそれぞれを第1棚S1、第2棚S2、第3棚S3、第4棚S4、第5棚S5とすると、各棚S1~S5は第1棚S1→第2棚S2→第3棚S3→第4棚S4→第5棚S5の順に整列して並んでいる。第1棚S1と第2棚S2との間隔d1と、第2棚S2と第3棚S3との間隔d2は互いに同一である。第3棚S3と第4棚S4との間隔d3と、第4棚S4と第5棚S5との間隔d4は互いに同一である。間隔d1,d2は、間隔d3,d4より短い。棚S1~S5は、例えば、支柱によって棚板を支持しているものであり、平面視において一方向に延びている。棚S1~S5を平面視した場合、一方向への寸法は、当該一方向に直交する方向に比べて長いといえる。棚S1~S5の延びる方向と、棚S1~S5の並ぶ方向とは互いに直交している。隣接する棚S1~S5の間は、産業車両10の通過可能な通路P1,P2,P3,P4となっている。棚S1~S5の間隔d1,d2,d3,d4は、通路P1,P2,P3,P4の通路幅といえる。第1棚S1と第2棚S2の間の通路P1、及び第2棚S2と第3棚S3の間の通路P2を第1通路P1,P2と称する。第3棚S3と第4棚S4との間の通路P3、及び第4棚S4と第5棚S5との間の通路P4を第2通路P3,P4と称する。第1通路P1,P2の通路幅は、第2通路P3,P4の通路幅よりも狭い。 (First Embodiment)
Hereinafter, the first embodiment of the industrial vehicle will be described.
As shown in FIG. 1, the
区域A1には、トラックTの停車位置となるトラックヤードTYが設けられている。トラックヤードTYには、柱Piが存在している。本実施形態の区域A1では、荷役作業が行われる。荷役作業は、トラックTや棚S1~S5に荷Wを置く荷置き作業、及びトラックTや棚S1~S5から荷Wを取る荷取り作業を含む。本実施形態の産業車両10は、荷役作業に用いられるフォークリフトである。
A truck yard TY, which is a stop position for the truck T, is provided in the area A1. Pillar Pi exists in the truck yard TY. Cargo handling work is performed in the area A1 of the present embodiment. The cargo handling work includes a loading work of placing the load W on the truck T and the shelves S1 to S5, and a loading work of taking the load W from the truck T and the shelves S1 to S5. The industrial vehicle 10 of the present embodiment is a forklift used for cargo handling work.
区域A1には、複数の固定機WTが設けられている。固定機WTは、区域A1の天井等、産業車両10の進行を阻害しない位置に設けられている。固定機WTは、予め定められた位置に設けられており、この位置から移動しない。固定機WTは、周期的に無線信号を送信している。この無線信号には、固定機WT毎に個別に設定された識別情報が含まれている。無線信号には、固定機WTの位置を示す位置情報が含まれ得る。
A plurality of fixed machine WTs are provided in the area A1. The fixed machine WT is provided at a position such as the ceiling of the area A1 that does not hinder the progress of the industrial vehicle 10. The fixed machine WT is provided at a predetermined position and does not move from this position. The fixed machine WT periodically transmits a radio signal. This radio signal includes identification information individually set for each fixed device WT. The radio signal may include position information indicating the position of the fixed machine WT.
図2に示すように、産業車両10は、車体11と、車体11の前下部に配置された2つの駆動輪12と、車体11の後下部に配置された2つの操舵輪14と、荷役装置20と、を備える。車体11は、運転席の上部に設けられたヘッドガード15を備える。
As shown in FIG. 2, the industrial vehicle 10 includes a vehicle body 11, two drive wheels 12 arranged at the front lower portion of the vehicle body 11, two steering wheels 14 arranged at the rear lower portion of the vehicle body 11, and a cargo handling device. 20 and. The vehicle body 11 includes a head guard 15 provided above the driver's seat.
荷役装置20は、車体11の前部に立設されたマスト21と、マスト21とともに昇降可能に設けられた一対のフォーク22と、マスト21を昇降動作させるリフトシリンダ23と、を備える。フォーク22には、荷Wが積載される。リフトシリンダ23は油圧シリンダである。リフトシリンダ23の伸縮によってマスト21が昇降すると、これに伴いフォーク22が昇降する。本実施形態の産業車両10は、操作者による操作によって走行動作及び荷役動作が行われるものである。
The cargo handling device 20 includes a mast 21 erected on the front portion of the vehicle body 11, a pair of forks 22 provided so as to be able to move up and down together with the mast 21, and a lift cylinder 23 for raising and lowering the mast 21. The load W is loaded on the fork 22. The lift cylinder 23 is a hydraulic cylinder. When the mast 21 moves up and down due to the expansion and contraction of the lift cylinder 23, the fork 22 moves up and down accordingly. The industrial vehicle 10 of the present embodiment is operated by an operator to perform a traveling operation and a cargo handling operation.
図3に示すように、産業車両10は、アクセルペダル16と、ディレクションレバー17と、主制御装置31と、補助記憶装置34と、アクセルセンサ35と、ディレクションセンサ36と、測位装置37と、走行用モータ41と、回転数センサ42と、走行制御装置43と、障害物検出装置51と、バス60と、を備える。
As shown in FIG. 3, the industrial vehicle 10 has an accelerator pedal 16, a direction lever 17, a main control device 31, an auxiliary storage device 34, an accelerator sensor 35, a direction sensor 36, a positioning device 37, and traveling. The motor 41, the rotation speed sensor 42, the traveling control device 43, the obstacle detection device 51, and the bus 60 are provided.
主制御装置31は、プロセッサ32と、記憶部33と、を備える。プロセッサ32としては、例えば、CPU:Central Processing Unit、GPU:Graphics Processing Unit、DSP:Digital Signal Processorが用いられる。記憶部33は、RAM:Random Access Memory及びROM:Read Only Memoryを含む。記憶部33には、産業車両10を動作させるためのプログラムが記憶されている。記憶部33は、処理をプロセッサ32に実行させるように構成されたプログラムコードまたは指令を格納しているといえる。記憶部33、即ち、コンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。主制御装置31は、ASIC:Application Specific Integrated CircuitやFPGA:Field Programmable Gate Array等のハードウェア回路によって構成されていてもよい。処理回路である主制御装置31は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASICやFPGA等の1つ以上のハードウェア回路、或いは、それらの組み合わせを含み得る。
The main control device 31 includes a processor 32 and a storage unit 33. As the processor 32, for example, a CPU: Central Processing Unit, a GPU: Graphics Processing Unit, and a DSP: Digital Signal Processor are used. The storage unit 33 includes RAM: RandomAccessMemory and ROM: ReadOnlyMemory. The storage unit 33 stores a program for operating the industrial vehicle 10. It can be said that the storage unit 33 stores a program code or a command configured to cause the processor 32 to execute the process. The storage unit 33, i.e., a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer. The main control device 31 may be configured by a hardware circuit such as ASIC: Application Specific Integrated Circuit or FPGA: Field Programmable Gate Array. The main control unit 31, which is a processing circuit, may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs and FPGAs, or a combination thereof.
補助記憶装置34としては、例えば、ハードディスクドライブ、ソリッドステートドライブ、EEPROM:Electrically Erasable Programmable Read Only Memory等の、データを書き換え可能な不揮発性記憶装置が用いられる。
As the auxiliary storage device 34, for example, a non-volatile storage device such as a hard disk drive, a solid state drive, or an EEPROM: Electrically Erasable Programmable Read Only Memory that can rewrite data is used.
補助記憶装置34には、産業車両10が用いられる環境の地図を示す環境地図が記憶されている。環境地図とは、産業車両10の用いられる環境の形状、広さなど、産業車両10の周辺環境の物理的構造に関する情報である。環境地図は、産業車両10の用いられる環境、即ち、図1に示す区域A1を地図座標系での座標で表したデータといえる。地図座標系は、原点を基準とした座標で産業車両10の用いられる環境の物理的構造に関する位置を表現したものである。地図座標系は、水平方向に互いに直交する軸の1つをX軸、X軸とは異なる軸をY軸とする直交座標系である。地図座標系は、X軸及びY軸に直交するZ軸を備えていてもよい。環境地図は、水平方向での座標で表された2次元マップでもよいし、水平方向及び鉛直方向の座標で表された3次元マップであってもよいといえる。以下の説明において、地図座標系での座標を地図座標と称する。
The auxiliary storage device 34 stores an environmental map showing a map of the environment in which the industrial vehicle 10 is used. The environmental map is information on the physical structure of the surrounding environment of the industrial vehicle 10, such as the shape and size of the environment in which the industrial vehicle 10 is used. It can be said that the environmental map is data in which the environment in which the industrial vehicle 10 is used, that is, the area A1 shown in FIG. 1 is represented by the coordinates in the map coordinate system. The map coordinate system expresses the position related to the physical structure of the environment in which the industrial vehicle 10 is used by the coordinates with respect to the origin. The map coordinate system is a Cartesian coordinate system in which one of the axes orthogonal to each other in the horizontal direction is the X axis and the axis different from the X axis is the Y axis. The map coordinate system may include a Z-axis orthogonal to the X-axis and the Y-axis. It can be said that the environmental map may be a two-dimensional map represented by horizontal coordinates or a three-dimensional map represented by horizontal and vertical coordinates. In the following description, the coordinates in the map coordinate system are referred to as map coordinates.
アクセルセンサ35は、アクセルペダル16の操作量、即ち、アクセル開度を検出する。アクセルセンサ35は、アクセル開度に応じた電気信号を主制御装置31に出力する。主制御装置31は、アクセルセンサ35からの電気信号によりアクセル開度を認識可能である。
The accelerator sensor 35 detects the amount of operation of the accelerator pedal 16, that is, the accelerator opening degree. The accelerator sensor 35 outputs an electric signal corresponding to the accelerator opening degree to the main control device 31. The main control device 31 can recognize the accelerator opening degree by the electric signal from the accelerator sensor 35.
ディレクションセンサ36は、進行方向を指示するディレクションレバー17の操作方向を検出する。ディレクションセンサ36は、中立を基準として、前進を指示する方向にディレクションレバー17が操作されているか、後進を指示する方向にディレクションレバー17が操作されているかを検出する。ディレクションセンサ36は、ディレクションレバー17の操作方向に応じた電気信号を主制御装置31に出力する。主制御装置31は、ディレクションセンサ36からの電気信号によりディレクションレバー17の操作方向を認識可能である。主制御装置31は、操作者により前進が指示されているか、後進が指示されているか、いずれも指示されていないかを把握することができる。
The direction sensor 36 detects the operating direction of the direction lever 17 that indicates the traveling direction. The direction sensor 36 detects whether the direction lever 17 is operated in the direction instructing forward movement or the direction lever 17 is operated in the direction instructing reverse movement with reference to neutrality. The direction sensor 36 outputs an electric signal corresponding to the operation direction of the direction lever 17 to the main control device 31. The main control device 31 can recognize the operating direction of the direction lever 17 by an electric signal from the direction sensor 36. The main control device 31 can grasp whether the operator has instructed to move forward, has been instructed to move backward, or has not been instructed to move forward.
位置導出部としての測位装置37は、産業車両10の現在位置を導出する。産業車両10の現在位置とは、地図座標系における産業車両10の位置である。測位装置37は、固定機WTから送信されている無線信号を受信して、受信した無線信号の受信態様から産業車両10の現在位置を導出する。受信態様には、無線信号の受信強度及び伝搬時間が含まれる。測位装置37は、受信強度や伝搬時間を距離に換算することで、産業車両10の現在位置を導出する。
The positioning device 37 as the position deriving unit derives the current position of the industrial vehicle 10. The current position of the industrial vehicle 10 is the position of the industrial vehicle 10 in the map coordinate system. The positioning device 37 receives the radio signal transmitted from the fixed machine WT, and derives the current position of the industrial vehicle 10 from the reception mode of the received radio signal. The reception mode includes the reception strength and propagation time of the radio signal. The positioning device 37 derives the current position of the industrial vehicle 10 by converting the reception intensity and the propagation time into a distance.
無線信号の受信強度を利用して産業車両10の現在位置を導出する場合、測位装置37は、無線信号の受信強度に基づき固定機WTから測位装置37までの距離を推定する。ここで、無線信号に含まれる識別情報から、測位装置37は受信した無線信号が複数の固定機WTのうちいずれの固定機WTから送信されたものかを判別することができる。測位装置37は、無線信号を送信している固定機WT毎に個別に固定機WTからの距離を推定することができる。各固定機WTの地図座標と、各固定機WTの識別情報との対応関係を把握できていれば、測位装置37は多点測位により、産業車両10の現在位置を導出することができる。各固定機WTの地図座標と各固定機WTの識別情報との対応関係は、測位装置37が備える記憶媒体や主制御装置31の記憶部33に記憶されていてもよい。また、無線信号に固定機WTの地図座標が位置情報として含まれていれば、各固定機WTの地図座標と各固定機WTの識別情報との対応関係は記憶されていなくてもよい。無線信号の受信強度を利用して産業車両10の現在位置を導出する場合、無線信号としては、Bluetooth(登録商標)Low Energy規格に準拠した電波やWI-FI(登録商標)規格に準拠した電波が用いられる。
When deriving the current position of the industrial vehicle 10 using the reception strength of the radio signal, the positioning device 37 estimates the distance from the fixed device WT to the positioning device 37 based on the reception strength of the radio signal. Here, from the identification information included in the radio signal, the positioning device 37 can determine which of the plurality of fixed machine WTs the received radio signal is transmitted from the fixed machine WT. The positioning device 37 can individually estimate the distance from the fixed device WT for each fixed device WT transmitting the wireless signal. If the correspondence between the map coordinates of each fixed machine WT and the identification information of each fixed machine WT can be grasped, the positioning device 37 can derive the current position of the industrial vehicle 10 by multipoint positioning. The correspondence between the map coordinates of each fixed machine WT and the identification information of each fixed machine WT may be stored in a storage medium included in the positioning device 37 or in a storage unit 33 of the main control device 31. Further, if the map coordinates of the fixed machine WT are included as the position information in the radio signal, the correspondence between the map coordinates of each fixed machine WT and the identification information of each fixed machine WT may not be stored. When deriving the current position of the industrial vehicle 10 using the reception strength of the radio signal, the radio signal includes a radio wave compliant with the Bluetooth (registered trademark) Low Energy standard and a radio wave compliant with the WI-FI (registered trademark) standard. Is used.
無線信号の伝搬時間を利用して産業車両10の現在位置を導出する場合、測位装置37は、無線信号の伝搬時間に基づき固定機WTから測位装置37までの距離を推定する。伝搬時間とは、固定機WTによる無線信号の送信から測位装置37による無線信号の受信までの時間である。無線信号の受信強度を利用する場合と同様に、測位装置37は多点測位により、産業車両10の現在位置を導出することができる。伝搬時間は、測位装置37と固定機WTとで時刻同期を行うことで計測できるようにしてもよいし、異なる周波数の位相差を利用して計測できるようにしてもよい。無線信号の伝搬時間を利用して産業車両10の現在位置を導出する場合、無線信号としては、UWB:Ultra Wide Bandの電波やWI-FI規格に準拠した電波が用いられる。このように、無線信号の伝搬時間を利用した測位方式は、TOA:Time of Arrival方式といわれる。
When deriving the current position of the industrial vehicle 10 using the propagation time of the radio signal, the positioning device 37 estimates the distance from the fixed device WT to the positioning device 37 based on the propagation time of the radio signal. The propagation time is the time from the transmission of the radio signal by the fixed device WT to the reception of the radio signal by the positioning device 37. Similar to the case of utilizing the reception strength of the radio signal, the positioning device 37 can derive the current position of the industrial vehicle 10 by multipoint positioning. The propagation time may be measured by synchronizing the time between the positioning device 37 and the fixed device WT, or may be measured by using the phase difference of different frequencies. When the current position of the industrial vehicle 10 is derived by using the propagation time of the radio signal, a radio wave of UWB: Ultra Wide Band or a radio wave compliant with the WI-FI standard is used as the radio signal. As described above, the positioning method using the propagation time of the radio signal is called the TOA: Time of Arrival method.
上記したように、本実施形態の環境地図は、固定機WTの地図座標から産業車両10の現在位置を導出するために用いられる。このため、本実施形態の環境地図には、必ずしも、棚S1~S5などの構造物の地図座標が反映されていなくてもよい。
As described above, the environmental map of the present embodiment is used to derive the current position of the industrial vehicle 10 from the map coordinates of the fixed machine WT. Therefore, the environment map of the present embodiment does not necessarily have to reflect the map coordinates of the structures such as the shelves S1 to S5.
走行用モータ41は、産業車両10を走行させるための駆動装置である。走行用モータ41の駆動により、駆動輪12が回転することで産業車両10は走行する。
回転数センサ42は、走行用モータ41の回転数を検出する。回転数センサ42としては、例えば、ロータリエンコーダを用いることができる。回転数センサ42は、走行用モータ41の回転数に応じた電気信号を走行制御装置43に出力する。 The travelingmotor 41 is a driving device for traveling the industrial vehicle 10. The industrial vehicle 10 travels by rotating the drive wheels 12 by driving the traveling motor 41.
Therotation speed sensor 42 detects the rotation speed of the traveling motor 41. As the rotation speed sensor 42, for example, a rotary encoder can be used. The rotation speed sensor 42 outputs an electric signal corresponding to the rotation speed of the traveling motor 41 to the traveling control device 43.
回転数センサ42は、走行用モータ41の回転数を検出する。回転数センサ42としては、例えば、ロータリエンコーダを用いることができる。回転数センサ42は、走行用モータ41の回転数に応じた電気信号を走行制御装置43に出力する。 The traveling
The
走行制御装置43は、走行用モータ41の回転数を制御するモータドライバである。走行制御装置43は、回転数センサ42の電気信号から、走行用モータ41の回転数、及び回転方向を認識可能である。
The travel control device 43 is a motor driver that controls the rotation speed of the travel motor 41. The travel control device 43 can recognize the rotation speed and the rotation direction of the travel motor 41 from the electric signal of the rotation speed sensor 42.
障害物検出装置51は、センサとしてのステレオカメラ52と、ステレオカメラ52によって撮像された画像から障害物の位置を検出する位置検出装置55と、警報装置58と、を備える。図2に示すように、ステレオカメラ52は、ヘッドガード15に配置されている。ステレオカメラ52は、産業車両10の上方から産業車両10の走行する路面を鳥瞰できるように配置されている。本実施形態のステレオカメラ52は、産業車両10の後方を撮像する。従って、位置検出装置55で検出される障害物は、産業車両10の後方の障害物となる。警報装置58及び位置検出装置55は、ステレオカメラ52とユニット化されて、ステレオカメラ52とともにヘッドガード15に配置されていてもよい。また、警報装置58及び位置検出装置55は、ヘッドガード15とは異なる位置に配置されていてもよい。
The obstacle detection device 51 includes a stereo camera 52 as a sensor, a position detection device 55 that detects the position of an obstacle from an image captured by the stereo camera 52, and an alarm device 58. As shown in FIG. 2, the stereo camera 52 is arranged on the head guard 15. The stereo camera 52 is arranged so that the road surface on which the industrial vehicle 10 travels can be seen from above the industrial vehicle 10. The stereo camera 52 of the present embodiment images the rear of the industrial vehicle 10. Therefore, the obstacle detected by the position detection device 55 becomes an obstacle behind the industrial vehicle 10. The alarm device 58 and the position detection device 55 may be unitized with the stereo camera 52 and arranged on the head guard 15 together with the stereo camera 52. Further, the alarm device 58 and the position detection device 55 may be arranged at different positions from the head guard 15.
図3に示すように、ステレオカメラ52は、第1カメラ53と、第2カメラ54と、を備える。第1カメラ53及び第2カメラ54としては、例えば、CCDイメージセンサや、CMOSイメージセンサを用いたものが挙げられる。第1カメラ53及び第2カメラ54は、互いの光軸が平行となるように配置されている。本実施形態において、第1カメラ53及び第2カメラ54は、互いに水平方向に並んで配置されている。第1カメラ53によって撮像された画像を第1画像、第2カメラ54によって撮像された画像を第2画像とすると、第1画像と第2画像では同一障害物が横方向にずれて写ることになる。詳細にいえば、同一障害物を撮像した場合、第1画像に写る障害物と、第2画像に写る障害物では、横方向の画素[px]に第1カメラ53と第2カメラ54との間の距離に応じたずれが生じることになる。第1画像及び第2画像は、画素数が同じであり、例えば、640×480[px]=VGAの画像が用いられる。第1画像及び第2画像は、RGB信号で表される画像である。
As shown in FIG. 3, the stereo camera 52 includes a first camera 53 and a second camera 54. Examples of the first camera 53 and the second camera 54 include those using a CCD image sensor and a CMOS image sensor. The first camera 53 and the second camera 54 are arranged so that their optical axes are parallel to each other. In the present embodiment, the first camera 53 and the second camera 54 are arranged side by side in the horizontal direction with each other. Assuming that the image captured by the first camera 53 is the first image and the image captured by the second camera 54 is the second image, the same obstacle appears laterally shifted in the first image and the second image. Become. More specifically, when the same obstacle is imaged, the obstacle shown in the first image and the obstacle shown in the second image have the first camera 53 and the second camera 54 in the horizontal pixel [px]. There will be a gap depending on the distance between them. The first image and the second image have the same number of pixels, and for example, an image of 640 × 480 [px] = VGA is used. The first image and the second image are images represented by RGB signals.
位置検出装置55は、CPUやGPU等のプロセッサ56と、RAM及びROMを含む記憶部57と、を備える。記憶部57には、ステレオカメラ52によって撮像された画像から障害物を検出するための種々のプログラムが記憶されている。記憶部57は、処理をプロセッサ56に実行させるように構成されたプログラムコードまたは指令を格納しているといえる。記憶部57、即ち、コンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。位置検出装置55は、ASICやFPGA等のハードウェア回路によって構成されていてもよい。処理回路である位置検出装置55は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、ASICやFPGA等の1つ以上のハードウェア回路、或いは、それらの組み合わせを含み得る。
The position detection device 55 includes a processor 56 such as a CPU and a GPU, and a storage unit 57 including RAM and ROM. The storage unit 57 stores various programs for detecting obstacles from the image captured by the stereo camera 52. It can be said that the storage unit 57 stores a program code or a command configured to cause the processor 56 to execute the process. The storage 57, i.e., a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer. The position detection device 55 may be configured by a hardware circuit such as an ASIC or FPGA. The position detection device 55, which is a processing circuit, may include one or more processors operating according to a computer program, one or more hardware circuits such as ASICs and FPGAs, or a combination thereof.
位置検出装置55は、以下の障害物検出処理を所定の制御周期で繰り返し行うことで、産業車両10の周囲に存在する障害物の位置を検出する。障害物の位置とは、産業車両10と障害物との相対的な位置である。
The position detection device 55 detects the position of an obstacle existing around the industrial vehicle 10 by repeating the following obstacle detection process at a predetermined control cycle. The position of the obstacle is the relative position between the industrial vehicle 10 and the obstacle.
以下の説明では、一例として、図4に示す環境をステレオカメラ52によって撮像した場合の障害物検出処理について説明する。図4は、産業車両10の後方を撮像することで得られた第1画像I1である。第1画像I1から把握できるように、産業車両10の後方には、障害物が存在している。障害物は、人、及び人以外の物体を含む。なお、説明の便宜上、障害物が存在する第1画像I1上の座標を枠AAで示しているが、実際の第1画像I1には枠AAは存在しない。
In the following description, as an example, an obstacle detection process when the environment shown in FIG. 4 is imaged by the stereo camera 52 will be described. FIG. 4 is a first image I1 obtained by imaging the rear of the industrial vehicle 10. As can be seen from the first image I1, there is an obstacle behind the industrial vehicle 10. Obstacles include humans and non-human objects. For convenience of explanation, the coordinates on the first image I1 in which the obstacle exists are shown by the frame AA, but the frame AA does not exist in the actual first image I1.
図5に示すように、ステップS10において、位置検出装置55は、ステレオカメラ52の各カメラ53,54から同一フレームの画像を取得する。
次に、ステップS11において、位置検出装置55は、視差画像を取得する。視差画像は、画素に対して視差[px]を対応付けた画像である。視差は、第1画像I1と、第2画像とを比較し、各画像に写る同一特徴点について第1画像I1と第2画像の画素数の差を算出することで得られる。なお、特徴点とは、障害物のエッジなど、境目として認識可能な部分である。特徴点は、輝度情報などから検出することができる。位置検出装置55は、各画像を一時的に格納するRAMを用いて、RGBからYCrCbへの変換を行う。なお、位置検出装置55は、歪み補正、エッジ強調処理などを行ってもよい。位置検出装置55は、第1画像I1の各画素と第2画像の各画素との類似度を比較して視差を算出するステレオ処理を行う。なお、ステレオ処理としては、画素毎に視差を算出する手法を用いてもよいし、各画像を複数の画素を含むブロックに分割してブロック毎の視差を算出するブロックマッチング法を用いてもよい。位置検出装置55は、第1画像I1を基準画像、第2画像を比較画像として視差画像を取得する。位置検出装置55は、第1画像I1の画素毎に、最も類似する第2画像の画素を抽出し、第1画像I1の画素と、当該画素に最も類似する画素の横方向の画素数の差を視差として算出する。これにより、基準画像である第1画像I1の各画素に視差が対応付けられた視差画像を取得することができる。視差画像とは、必ずしも表示を要するものではなく、視差画像における各画素に視差が対応付けられたデータのことを示す。なお、位置検出装置55は、視差画像から路面の視差を除去する処理を行ってもよい。 As shown in FIG. 5, in step S10, theposition detection device 55 acquires an image of the same frame from each of the cameras 53 and 54 of the stereo camera 52.
Next, in step S11, theposition detection device 55 acquires a parallax image. The parallax image is an image in which the parallax [px] is associated with the pixels. The parallax is obtained by comparing the first image I1 and the second image and calculating the difference in the number of pixels between the first image I1 and the second image for the same feature point appearing in each image. The feature point is a part that can be recognized as a boundary, such as the edge of an obstacle. The feature points can be detected from the luminance information and the like. The position detection device 55 converts RGB to YCrCb using a RAM that temporarily stores each image. The position detection device 55 may perform distortion correction, edge enhancement processing, and the like. The position detection device 55 performs stereo processing for calculating the parallax by comparing the similarity between each pixel of the first image I1 and each pixel of the second image. As the stereo processing, a method of calculating the parallax for each pixel may be used, or a block matching method of dividing each image into blocks containing a plurality of pixels and calculating the parallax for each block may be used. .. The position detection device 55 acquires a parallax image using the first image I1 as a reference image and the second image as a comparison image. The position detection device 55 extracts the pixels of the second image most similar to each pixel of the first image I1, and the difference between the pixels of the first image I1 and the number of pixels in the horizontal direction most similar to the pixels. Is calculated as the parallax. As a result, it is possible to acquire a parallax image in which parallax is associated with each pixel of the first image I1 which is a reference image. The parallax image does not necessarily require display, and indicates data in which parallax is associated with each pixel in the parallax image. The position detection device 55 may perform a process of removing the parallax on the road surface from the parallax image.
次に、ステップS11において、位置検出装置55は、視差画像を取得する。視差画像は、画素に対して視差[px]を対応付けた画像である。視差は、第1画像I1と、第2画像とを比較し、各画像に写る同一特徴点について第1画像I1と第2画像の画素数の差を算出することで得られる。なお、特徴点とは、障害物のエッジなど、境目として認識可能な部分である。特徴点は、輝度情報などから検出することができる。位置検出装置55は、各画像を一時的に格納するRAMを用いて、RGBからYCrCbへの変換を行う。なお、位置検出装置55は、歪み補正、エッジ強調処理などを行ってもよい。位置検出装置55は、第1画像I1の各画素と第2画像の各画素との類似度を比較して視差を算出するステレオ処理を行う。なお、ステレオ処理としては、画素毎に視差を算出する手法を用いてもよいし、各画像を複数の画素を含むブロックに分割してブロック毎の視差を算出するブロックマッチング法を用いてもよい。位置検出装置55は、第1画像I1を基準画像、第2画像を比較画像として視差画像を取得する。位置検出装置55は、第1画像I1の画素毎に、最も類似する第2画像の画素を抽出し、第1画像I1の画素と、当該画素に最も類似する画素の横方向の画素数の差を視差として算出する。これにより、基準画像である第1画像I1の各画素に視差が対応付けられた視差画像を取得することができる。視差画像とは、必ずしも表示を要するものではなく、視差画像における各画素に視差が対応付けられたデータのことを示す。なお、位置検出装置55は、視差画像から路面の視差を除去する処理を行ってもよい。 As shown in FIG. 5, in step S10, the
Next, in step S11, the
次に、ステップS12において、位置検出装置55は、実空間上の座標系であるワールド座標系における特徴点の座標を導出する。まず、位置検出装置55は、カメラ座標系における特徴点の座標を導出する。カメラ座標系は、ステレオカメラ52を原点とする座標系である。カメラ座標系は、光軸をZ軸とし、光軸に直交する2つの軸のそれぞれをX軸、Y軸とする3軸直交座標系である。カメラ座標系における特徴点の座標は、カメラ座標系におけるZ座標Zc、X座標Xc及びY座標Ycで表わすことができる。Z座標Zc、X座標Xc及びY座標Ycは、それぞれ、以下の(1)式~(3)式を用いて導出することができる。
Next, in step S12, the position detection device 55 derives the coordinates of the feature points in the world coordinate system, which is the coordinate system in the real space. First, the position detection device 55 derives the coordinates of the feature points in the camera coordinate system. The camera coordinate system is a coordinate system with the stereo camera 52 as the origin. The camera coordinate system is a three-axis Cartesian coordinate system in which the optical axis is the Z axis and the two axes orthogonal to the optical axis are the X axis and the Y axis, respectively. The coordinates of the feature points in the camera coordinate system can be represented by Z coordinate Zc, X coordinate Xc, and Y coordinate Yc in the camera coordinate system. The Z coordinate Zc, the X coordinate Xc, and the Y coordinate Yc can be derived using the following equations (1) to (3), respectively.
xpを視差画像中の特徴点のX座標とし、ypを視差画像中の特徴点のY座標とし、dを特徴点の座標に対応付けられた視差とすることで、カメラ座標系における特徴点の座標が導出される。
By setting xx as the X coordinate of the feature point in the parallax image, yp as the Y coordinate of the feature point in the parallax image, and d as the parallax associated with the coordinates of the feature point, the feature point in the camera coordinate system can be used. The coordinates are derived.
ここで、産業車両10が水平面に位置している状態で、水平方向のうち産業車両10の車幅方向に延びる軸をX軸、水平方向のうちX軸に直交する方向に延びる軸をY軸、X軸及びY軸に直交する軸をZ軸とする3軸直交座標系をワールド座標系とする。ワールド座標系のY軸は、産業車両10の進行方向である産業車両10の前後方向に延びる軸である。ワールド座標系のZ軸は、鉛直方向に延びる軸である。ワールド座標系における座標は、X座標Xw、Y座標Yw及びZ座標Zwで表わすことができる。
Here, in a state where the industrial vehicle 10 is located on a horizontal plane, the axis extending in the vehicle width direction of the industrial vehicle 10 in the horizontal direction is the X axis, and the axis extending in the horizontal direction perpendicular to the X axis is the Y axis. , The 3-axis Cartesian coordinate system with the axis orthogonal to the X-axis and the Y-axis as the Z-axis is the world coordinate system. The Y-axis of the world coordinate system is an axis extending in the front-rear direction of the industrial vehicle 10, which is the traveling direction of the industrial vehicle 10. The Z axis of the world coordinate system is an axis extending in the vertical direction. The coordinates in the world coordinate system can be represented by X coordinate Xw, Y coordinate Yw and Z coordinate Zw.
位置検出装置55は、以下の(4)式を用いてカメラ座標をワールド座標に変換するワールド座標変換を行う。ワールド座標とは、ワールド座標系における座標である。
The position detection device 55 performs world coordinate conversion that converts camera coordinates into world coordinates using the following equation (4). World coordinates are coordinates in the world coordinate system.
本実施形態において、ワールド座標系の原点は、X座標Xw及びY座標Ywをステレオカメラ52の位置とし、Z座標Zwを路面の位置とする座標である。ステレオカメラ52の位置とは、例えば、第1カメラ53のレンズと、第2カメラ54のレンズとの中間位置である。
In the present embodiment, the origin of the world coordinate system is the coordinates where the X coordinate Xw and the Y coordinate Yw are the positions of the stereo camera 52 and the Z coordinate Zw is the position of the road surface. The position of the stereo camera 52 is, for example, an intermediate position between the lens of the first camera 53 and the lens of the second camera 54.
ワールド座標変換で得られたワールド座標のうちX座標Xwは、産業車両10の車幅方向に対する原点から特徴点までの距離を示す。Y座標Ywは、産業車両10の進行方向に対する原点から特徴点までの距離を示す。Z座標Zwは、路面から特徴点までの高さを示す。特徴点は、障害物の表面の一部を表す点である。なお、図中の矢印Xはワールド座標系のX軸、矢印Yはワールド座標系のY軸、矢印Zはワールド座標系のZ軸を示す。
Of the world coordinates obtained by the world coordinate conversion, the X coordinate Xw indicates the distance from the origin to the feature point in the vehicle width direction of the industrial vehicle 10. The Y coordinate Yw indicates the distance from the origin to the feature point with respect to the traveling direction of the industrial vehicle 10. The Z coordinate Zw indicates the height from the road surface to the feature point. Characteristic points are points that represent a part of the surface of an obstacle. In the figure, the arrow X indicates the X axis of the world coordinate system, the arrow Y indicates the Y axis of the world coordinate system, and the arrow Z indicates the Z axis of the world coordinate system.
次に、ステップS13において、位置検出装置55は、特徴点をクラスタ化することで障害物の抽出を行う。位置検出装置55は、障害物の一部を表す点である特徴点のうち同一障害物を表していると想定される特徴点の集合を1つの点群とし、当該点群を障害物として抽出する。位置検出装置55は、ステップS12で導出されたワールド座標から、所定範囲内に位置する特徴点を1つの点群とみなすクラスタ化を行う。位置検出装置55は、クラスタ化された点群を1つの障害物とみなす。なお、ステップS13で行われる特徴点のクラスタ化は種々の手法で行うことができる。即ち、クラスタ化は、複数の特徴点を1つの点群とすることで障害物とみなすことができれば、どのような手法で行われてもよい。
Next, in step S13, the position detection device 55 extracts obstacles by clustering the feature points. The position detection device 55 sets a set of feature points that are assumed to represent the same obstacle among the feature points that represent a part of the obstacle as one point cloud, and extracts the point cloud as an obstacle. do. The position detection device 55 performs clustering in which feature points located within a predetermined range are regarded as one point cloud from the world coordinates derived in step S12. The position detection device 55 regards the clustered point cloud as one obstacle. The feature point clustering performed in step S13 can be performed by various methods. That is, the clustering may be performed by any method as long as it can be regarded as an obstacle by forming a plurality of feature points into one point cloud.
次に、ステップS14において、位置検出装置55は、ワールド座標系における障害物の位置を導出する。位置検出装置55は、ワールド座標系における障害物の位置として、ワールド座標系のXY平面における障害物の座標を導出する。位置検出装置55は、クラスタ化された点群を構成する特徴点のワールド座標から障害物のワールド座標を認識できる。例えば、クラスタ化された点群のうち端に位置する複数の特徴点のX座標Xw、Y座標Yw及びZ座標Zwを障害物のX座標Xw、Y座標Yw及びZ座標Zwとしてもよいし、点群の中心となる特徴点のX座標Xw、Y座標Yw及びZ座標Zwを障害物のX座標Xw、Y座標Yw及びZ座標Zwとしてもよい。即ち、ワールド座標系の障害物の座標は、障害物全体を表すものであってもよいし、障害物の一点を表すものであってもよい。
Next, in step S14, the position detection device 55 derives the position of the obstacle in the world coordinate system. The position detection device 55 derives the coordinates of the obstacle in the XY plane of the world coordinate system as the position of the obstacle in the world coordinate system. The position detection device 55 can recognize the world coordinates of an obstacle from the world coordinates of the feature points constituting the clustered point cloud. For example, the X-coordinate Xw, Y-coordinate Yw, and Z-coordinate Zw of a plurality of feature points located at the ends of the clustered point group may be the X-coordinate Xw, Y-coordinate Yw, and Z-coordinate Zw of the obstacle. The X-coordinate Xw, Y-coordinate Yw, and Z-coordinate Zw of the feature point that is the center of the point group may be the X-coordinate Xw, Y-coordinate Yw, and Z-coordinate Zw of the obstacle. That is, the coordinates of the obstacle in the world coordinate system may represent the entire obstacle or may represent one point of the obstacle.
位置検出装置55は、障害物のX座標Xw、Y座標Yw及びZ座標Zwをワールド座標系のXY平面に投影することで、ワールド座標系におけるXY平面での障害物のX座標Xw及びY座標Ywを導出する。即ち、位置検出装置55は、障害物のX座標Xw、Y座標Yw及びZ座標ZwからZ座標Zwを除去することで、水平方向における障害物のX座標Xw及びY座標Ywを導出する。なお、ワールド座標系における障害物の位置として、ワールド座標系のX座標Xw、Y座標Yw、Z座標Zwで表される3次元座標が導出されるようにしてもよい。
The position detection device 55 projects the X-coordinate Xw, Y-coordinate Yw, and Z-coordinate Zw of the obstacle onto the XY plane of the world coordinate system, so that the X-coordinate Xw and Y-coordinate of the obstacle in the XY plane of the world coordinate system are projected. Derive Yw. That is, the position detecting device 55 derives the X coordinate Xw and the Y coordinate Yw of the obstacle in the horizontal direction by removing the Z coordinate Zw from the X coordinate Xw, the Y coordinate Yw and the Z coordinate Zw of the obstacle. As the position of the obstacle in the world coordinate system, the three-dimensional coordinates represented by the X coordinate Xw, the Y coordinate Yw, and the Z coordinate Zw of the world coordinate system may be derived.
図6に示す障害物Oは、第1画像I1に示す枠AAに存在する障害物の位置を示している。ステップS10~ステップS14の処理を行うことで、第1画像I1及び第2画像から、ワールド座標系における障害物Oの位置を導出することができる。位置検出装置55は、障害物位置検出部として機能している。
The obstacle O shown in FIG. 6 indicates the position of the obstacle existing in the frame AA shown in the first image I1. By performing the processes of steps S10 to S14, the position of the obstacle O in the world coordinate system can be derived from the first image I1 and the second image. The position detection device 55 functions as an obstacle position detection unit.
警報装置58は、産業車両10の搭乗者や産業車両10の周囲に存在する人に対して警報を行う装置である。警報装置58としては、例えば、音による警報を行うブザー、光による警報を行うランプ、あるいは、これらの組み合わせ等を挙げることができる。産業車両10の搭乗者に警報を行う場合には、搭乗者の視認可能な位置に設けられた表示部を警報装置として用いて、表示部への警報の表示により警報を行ってもよい。このように、警報装置58は、任意の構成とすることができる。
The alarm device 58 is a device that gives an alarm to a passenger of the industrial vehicle 10 or a person existing around the industrial vehicle 10. Examples of the alarm device 58 include a buzzer that gives an alarm by sound, a lamp that gives an alarm by light, a combination thereof, and the like. When issuing an alarm to the passenger of the industrial vehicle 10, the display unit provided at a position visible to the passenger may be used as an alarm device, and the alarm may be issued by displaying the alarm on the display unit. In this way, the alarm device 58 can have any configuration.
図3に示すように、主制御装置31、走行制御装置43及び障害物検出装置51は、バス60によって互いに情報を取得可能に構成されている。主制御装置31、走行制御装置43及び障害物検出装置51は、CAN:Controller Area NetworkやLIN:Local Interconnect Networkなどの車両用の通信プロトコルに従った通信を行うことで、互いに情報を取得することが可能である。
As shown in FIG. 3, the main control device 31, the travel control device 43, and the obstacle detection device 51 are configured so that information can be acquired from each other by the bus 60. The main control device 31, the travel control device 43, and the obstacle detection device 51 acquire information from each other by communicating according to a communication protocol for a vehicle such as CAN: Controller Area Network or LIN: Local Interconnect Network. Is possible.
主制御装置31は、走行制御装置43から走行用モータ41の回転数及び回転方向を取得することで産業車両10の車速及び進行方向を導出する。産業車両10の車速は、走行用モータ41の回転数及び回転方向、ギヤ比、駆動輪12の外径等を用いることで導出可能である。産業車両10の進行方向とは、前進方向及び後進方向のいずれかである。産業車両10の進行方向は、走行用モータ41の回転方向から導出可能である。
The main control device 31 derives the vehicle speed and the traveling direction of the industrial vehicle 10 by acquiring the rotation speed and the rotation direction of the traveling motor 41 from the traveling control device 43. The vehicle speed of the industrial vehicle 10 can be derived by using the rotation speed and rotation direction of the traveling motor 41, the gear ratio, the outer diameter of the drive wheel 12, and the like. The traveling direction of the industrial vehicle 10 is either a forward direction or a reverse direction. The traveling direction of the industrial vehicle 10 can be derived from the rotation direction of the traveling motor 41.
主制御装置31は、バス60を介して警報指令を送信することで、警報装置58を作動させることができる。詳細にいえば、障害物検出装置51は、警報装置58を作動させる作動部を備え、警報指令を受信すると作動部は警報装置58を作動させる。
The main control device 31 can operate the alarm device 58 by transmitting an alarm command via the bus 60. More specifically, the obstacle detection device 51 includes an operating unit that activates the alarm device 58, and when the alarm command is received, the operating unit activates the alarm device 58.
産業車両10では、産業車両10の現在位置と障害物との位置関係に応じて、警報装置58を用いた警報及び車速制限が行われる。主制御装置31は、所定の制御周期で以下の制御を繰り返し行うことで、警報及び車速制限を行う。
In the industrial vehicle 10, an alarm and a vehicle speed limit are performed using the alarm device 58 according to the positional relationship between the current position of the industrial vehicle 10 and the obstacle. The main control device 31 repeatedly performs the following controls in a predetermined control cycle to perform an alarm and limit the vehicle speed.
図7に示すように、ステップS21において、主制御装置31は、測位装置37から産業車両10の現在位置を示す情報を取得する。これにより、主制御装置31は産業車両10の現在位置を把握する。
As shown in FIG. 7, in step S21, the main control device 31 acquires information indicating the current position of the industrial vehicle 10 from the positioning device 37. As a result, the main control device 31 grasps the current position of the industrial vehicle 10.
次に、ステップS22において、主制御装置31は、産業車両10の現在位置が制限エリアに該当するか否かを判定する。制限エリアとは、区域A1の場所によって設定されたエリアである。図1に示す例では、3つの制限エリアLA1,LA2,LA3が設定されている。3つの制限エリアLA1,LA2,LA3は、第1通路P1,P2を含む第1制限エリアLA1と、第2通路P3,P4を含む第2制限エリアLA2と、トラックヤードTYを含む第3制限エリアLA3とを含む。主制御装置31の記憶部33あるいは補助記憶装置34には、各制限エリアLA1,LA2,LA3の地図座標が記憶されている。主制御装置31は、ステップS21で取得した産業車両10の現在位置を示す情報と、記憶部33あるいは補助記憶装置34に記憶された各制限エリアLA1,LA2,LA3の地図座標から、産業車両10の現在位置が制限エリアLA1,LA2,LA3に該当するか否かを判定することができる。図7に示すように、ステップS22の判定結果が肯定の場合、主制御装置31は、ステップS23の処理を行う。ステップS22の判定結果が否定の場合、主制御装置31は、ステップS24の処理を行う。
Next, in step S22, the main control device 31 determines whether or not the current position of the industrial vehicle 10 corresponds to the restricted area. The restricted area is an area set by the location of the area A1. In the example shown in FIG. 1, three restricted areas LA1, LA2, and LA3 are set. The three restricted areas LA1, LA2, LA3 are a first restricted area LA1 including the first passages P1 and P2, a second restricted area LA2 including the second passages P3 and P4, and a third restricted area including a truck yard TY. Includes LA3. The map coordinates of the restricted areas LA1, LA2, and LA3 are stored in the storage unit 33 or the auxiliary storage device 34 of the main control device 31. The main control device 31 is based on the information indicating the current position of the industrial vehicle 10 acquired in step S21 and the map coordinates of the restricted areas LA1, LA2, and LA3 stored in the storage unit 33 or the auxiliary storage device 34. It is possible to determine whether or not the current position of is corresponding to the restricted areas LA1, LA2, LA3. As shown in FIG. 7, when the determination result of step S22 is affirmative, the main control device 31 performs the process of step S23. If the determination result in step S22 is negative, the main control device 31 performs the process of step S24.
ステップS23において、主制御装置31は、制限エリアLA1,LA2,LA3に対応した検知範囲を設定する。図1に示す例では、制限エリアLA1,LA2,LA3毎に、異なる大きさの検知範囲DAが設定される。検知範囲DAとは、警報及び車速制限を行うか否かを判定するための範囲である。検知範囲DAは、ワールド座標で規定される。本実施形態では、ワールド座標系のX座標Xw及びY座標Ywにより検知範囲DAを規定しているが、ワールド座標系のX座標Xw及びY座標Ywに加えてZ座標Zwにより検知範囲DAは規定されてもよい。検知範囲DAは、ワールド座標系に設定されるといえる。検知範囲DAは、産業車両10から後方に拡がる範囲である。本実施形態の検知範囲DAは、産業車両10から後方に離れるにつれて徐々に幅が広くなり、その後一定幅となる。これは、ステレオカメラ52の水平画角によって産業車両10の近傍では、障害物を検出できる範囲が制限されるためである。なお、検知範囲DAの広さとは、ワールド座標系のXY平面での検知範囲DAの面積である。検知範囲DAの幅とは、ワールド座標系のX軸方向の最大寸法である。検知範囲DAの長さは、ワールド座標系のY軸方向の最大寸法である。
In step S23, the main control device 31 sets a detection range corresponding to the restricted areas LA1, LA2, and LA3. In the example shown in FIG. 1, detection range DAs having different sizes are set for each of the restricted areas LA1, LA2, and LA3. The detection range DA is a range for determining whether or not to perform an alarm and vehicle speed limitation. The detection range DA is defined by world coordinates. In the present embodiment, the detection range DA is defined by the X coordinate Xw and the Y coordinate Yw of the world coordinate system, but the detection range DA is defined by the Z coordinate Zw in addition to the X coordinate Xw and the Y coordinate Yw of the world coordinate system. May be done. It can be said that the detection range DA is set in the world coordinate system. The detection range DA is a range extending rearward from the industrial vehicle 10. The detection range DA of the present embodiment gradually widens as the distance from the industrial vehicle 10 rearward, and then becomes a constant width. This is because the horizontal angle of view of the stereo camera 52 limits the range in which obstacles can be detected in the vicinity of the industrial vehicle 10. The area of the detection range DA is the area of the detection range DA in the XY plane of the world coordinate system. The width of the detection range DA is the maximum dimension in the X-axis direction of the world coordinate system. The length of the detection range DA is the maximum dimension in the Y-axis direction of the world coordinate system.
図8に示すように、主制御装置31の記憶部33あるいは補助記憶装置34には、制限エリアLA1,LA2,LA3と検知範囲DAとの対応関係が記憶されている。詳細にいえば、主制御装置31の記憶部33あるいは補助記憶装置34には、検知範囲DAを規定するためのワールド座標が記憶されており、このワールド座標で表される範囲が検知範囲DAとなる。また、本実施形態では、制限エリアLA1,LA2,LA3に加えて、産業車両10の状態に応じて検知範囲DAが設定される。即ち、検知範囲DAは、産業車両10の現在位置と産業車両10の状態との組み合わせによって設定されるといえる。制限エリアLA1,LA2,LA3と検知範囲DAとの対応関係が記憶された記憶部33あるいは補助記憶装置34が記憶装置として機能している。
As shown in FIG. 8, the storage unit 33 or the auxiliary storage device 34 of the main control device 31 stores the correspondence between the restricted areas LA1, LA2, LA3 and the detection range DA. More specifically, the storage unit 33 or the auxiliary storage device 34 of the main control device 31 stores world coordinates for defining the detection range DA, and the range represented by the world coordinates is referred to as the detection range DA. Become. Further, in the present embodiment, in addition to the restricted areas LA1, LA2, LA3, the detection range DA is set according to the state of the industrial vehicle 10. That is, it can be said that the detection range DA is set by the combination of the current position of the industrial vehicle 10 and the state of the industrial vehicle 10. The storage unit 33 or the auxiliary storage device 34 in which the correspondence between the restricted areas LA1, LA2, LA3 and the detection range DA is stored functions as a storage device.
産業車両10の状態としては、例えば、走行状態と、発進状態と、を挙げることができる。走行状態とは、産業車両10が走行している状態である。発進状態とは、産業車両10が走行停止状態から走行状態に遷移する状態である。産業車両10が走行状態か否かは、主制御装置31により算出される車速から判定することができる。主制御装置31は、産業車両10の車速が走行判定用閾値よりも高ければ、産業車両10は走行状態であると判定できる。主制御装置31は、産業車両10の車速が走行判定用閾値以下であれば産業車両10は走行停止状態であると判定できる。走行判定用閾値は、例えば、0[km/h]~0.5[km/h]の範囲内で設定される。発進状態は、少なくとも産業車両10が走行停止状態であることを条件とする状態である。例えば、走行停止状態を発進状態としてもよいし、走行停止状態、かつ、ディレクションレバー17により後進が指示されている状態を発進状態としてもよい。以下の説明において、適宜、第1制限エリアLA1に対応付けられた検知範囲DAを第1検知範囲DA1、第2制限エリアLA2に対応付けられた検知範囲DAを第2検知範囲DA2、第3制限エリアLA3に対応付けられた検知範囲DAを第3検知範囲DA3と称する。
Examples of the state of the industrial vehicle 10 include a running state and a starting state. The traveling state is a state in which the industrial vehicle 10 is traveling. The starting state is a state in which the industrial vehicle 10 transitions from a running stopped state to a running state. Whether or not the industrial vehicle 10 is in a traveling state can be determined from the vehicle speed calculated by the main control device 31. If the vehicle speed of the industrial vehicle 10 is higher than the threshold value for travel determination, the main control device 31 can determine that the industrial vehicle 10 is in the traveling state. The main control device 31 can determine that the industrial vehicle 10 is in the traveling stopped state if the vehicle speed of the industrial vehicle 10 is equal to or less than the traveling determination threshold value. The travel determination threshold value is set, for example, in the range of 0 [km / h] to 0.5 [km / h]. The starting state is a state on which at least the industrial vehicle 10 is in a stopped running state. For example, the traveling stopped state may be set as the starting state, or the traveling stopped state and the state in which the direction lever 17 is instructed to move backward may be set as the starting state. In the following description, the detection range DA associated with the first restricted area LA1 is referred to as the first detection range DA1, and the detection range DA associated with the second restricted area LA2 is referred to as the second detection range DA2 and the third limitation. The detection range DA associated with the area LA3 is referred to as a third detection range DA3.
第1制限エリアLA1及び第2制限エリアLA2を例に挙げて、産業車両10が走行状態の場合に設定される検知範囲DAについて説明する。
図9及び図10に示すように、第1制限エリアLA1に対応付けられた第1検知範囲DA1の幅W1は、第1通路P1の通路幅よりも狭い。第2制限エリアLA2に対応付けられた第2検知範囲DA2の幅W2は、第2通路P3の通路幅よりも狭い。第2検知範囲DA2の幅W2は、第1検知範囲DA1の幅W1よりも広い。なお、産業車両10が走行状態の場合、第1検知範囲DA1の長さL1と第2検知範囲DA2の長さL2とは同一である。第2制限エリアLA2に存在する第2通路P3は、第1制限エリアLA1に存在する第1通路P1より通路幅が広いため、通路幅が広い位置ほど検知範囲DA1,DA2の幅は広く設定されているといえる。 Taking the first restricted area LA1 and the second restricted area LA2 as examples, the detection range DA set when theindustrial vehicle 10 is in a traveling state will be described.
As shown in FIGS. 9 and 10, the width W1 of the first detection range DA1 associated with the first restricted area LA1 is narrower than the passage width of the first passage P1. The width W2 of the second detection range DA2 associated with the second restricted area LA2 is narrower than the passage width of the second passage P3. The width W2 of the second detection range DA2 is wider than the width W1 of the first detection range DA1. When theindustrial vehicle 10 is in a traveling state, the length L1 of the first detection range DA1 and the length L2 of the second detection range DA2 are the same. Since the second passage P3 existing in the second restricted area LA2 has a wider passage width than the first passage P1 existing in the first restricted area LA1, the width of the detection range DA1 and DA2 is set wider as the passage width is wider. It can be said that it is.
図9及び図10に示すように、第1制限エリアLA1に対応付けられた第1検知範囲DA1の幅W1は、第1通路P1の通路幅よりも狭い。第2制限エリアLA2に対応付けられた第2検知範囲DA2の幅W2は、第2通路P3の通路幅よりも狭い。第2検知範囲DA2の幅W2は、第1検知範囲DA1の幅W1よりも広い。なお、産業車両10が走行状態の場合、第1検知範囲DA1の長さL1と第2検知範囲DA2の長さL2とは同一である。第2制限エリアLA2に存在する第2通路P3は、第1制限エリアLA1に存在する第1通路P1より通路幅が広いため、通路幅が広い位置ほど検知範囲DA1,DA2の幅は広く設定されているといえる。 Taking the first restricted area LA1 and the second restricted area LA2 as examples, the detection range DA set when the
As shown in FIGS. 9 and 10, the width W1 of the first detection range DA1 associated with the first restricted area LA1 is narrower than the passage width of the first passage P1. The width W2 of the second detection range DA2 associated with the second restricted area LA2 is narrower than the passage width of the second passage P3. The width W2 of the second detection range DA2 is wider than the width W1 of the first detection range DA1. When the
第1制限エリアLA1及び第2制限エリアLA2を例に挙げて、産業車両10が発進状態の場合に設定される検知範囲DAについて説明する。
図11及び図12に示すように、第1検知範囲DA1の長さL1は、産業車両10が棚S1~S3に荷Wを置く際や棚S1~S3から荷Wを取る際に、産業車両10の後方に位置する棚S1~S3が第1検知範囲DA1に入り込まないように設定されている。例えば、第1検知範囲DA1の長さL1は、第1通路P1の通路幅から車体11の長さを減算した値よりも短く設定されている。第2検知範囲DA2の長さL2は、産業車両10が棚S3~S5に荷Wを置く際や棚S3~S5から荷Wを取る際に、産業車両10の後方に位置する棚S3~S5が第2検知範囲DA2に入り込まないように設定されている。例えば、第2検知範囲DA2の長さL2は、第2通路P3の通路幅から車体11の長さを減算した値よりも短く設定されている。第2検知範囲DA2の長さL2は、第1検知範囲DA1の長さL1よりも長い。なお、産業車両10が発進状態の場合、第1検知範囲DA1の幅W1と第2検知範囲DA2の幅W2とは同一である。第2制限エリアLA2に存在する第2通路P3は、第1制限エリアLA1に存在する第1通路P1より通路幅が広いため、通路幅が広い位置ほど検知範囲DA1,DA2の長さは長く設定されているといえる。 Taking the first restricted area LA1 and the second restricted area LA2 as examples, the detection range DA set when theindustrial vehicle 10 is in the starting state will be described.
As shown in FIGS. 11 and 12, the length L1 of the first detection range DA1 is set when theindustrial vehicle 10 places the load W on the shelves S1 to S3 or when the load W is taken from the shelves S1 to S3. The shelves S1 to S3 located behind the 10 are set so as not to enter the first detection range DA1. For example, the length L1 of the first detection range DA1 is set shorter than the value obtained by subtracting the length of the vehicle body 11 from the passage width of the first passage P1. The length L2 of the second detection range DA2 is the shelves S3 to S5 located behind the industrial vehicle 10 when the industrial vehicle 10 places the load W on the shelves S3 to S5 or when the load W is taken from the shelves S3 to S5. Is set not to enter the second detection range DA2. For example, the length L2 of the second detection range DA2 is set shorter than the value obtained by subtracting the length of the vehicle body 11 from the passage width of the second passage P3. The length L2 of the second detection range DA2 is longer than the length L1 of the first detection range DA1. When the industrial vehicle 10 is in the starting state, the width W1 of the first detection range DA1 and the width W2 of the second detection range DA2 are the same. Since the second passage P3 existing in the second restricted area LA2 has a wider passage width than the first passage P1 existing in the first restricted area LA1, the length of the detection range DA1 and DA2 is set longer as the passage width is wider. It can be said that it has been done.
図11及び図12に示すように、第1検知範囲DA1の長さL1は、産業車両10が棚S1~S3に荷Wを置く際や棚S1~S3から荷Wを取る際に、産業車両10の後方に位置する棚S1~S3が第1検知範囲DA1に入り込まないように設定されている。例えば、第1検知範囲DA1の長さL1は、第1通路P1の通路幅から車体11の長さを減算した値よりも短く設定されている。第2検知範囲DA2の長さL2は、産業車両10が棚S3~S5に荷Wを置く際や棚S3~S5から荷Wを取る際に、産業車両10の後方に位置する棚S3~S5が第2検知範囲DA2に入り込まないように設定されている。例えば、第2検知範囲DA2の長さL2は、第2通路P3の通路幅から車体11の長さを減算した値よりも短く設定されている。第2検知範囲DA2の長さL2は、第1検知範囲DA1の長さL1よりも長い。なお、産業車両10が発進状態の場合、第1検知範囲DA1の幅W1と第2検知範囲DA2の幅W2とは同一である。第2制限エリアLA2に存在する第2通路P3は、第1制限エリアLA1に存在する第1通路P1より通路幅が広いため、通路幅が広い位置ほど検知範囲DA1,DA2の長さは長く設定されているといえる。 Taking the first restricted area LA1 and the second restricted area LA2 as examples, the detection range DA set when the
As shown in FIGS. 11 and 12, the length L1 of the first detection range DA1 is set when the
上記したように、産業車両10が走行状態であっても発進状態であっても、検知範囲DA1,DA2に棚S1~S5が入り込むことを抑制するように検知範囲DA1,DA2は設定されている。産業車両10が走行状態の場合、通路幅が広いほど検知範囲DA1,DA2の幅W1,W2は広くなる。産業車両10が発進状態の場合、通路幅が広いほど検知範囲DA1,DA2の長さL1,L2は長くなる。これにより、産業車両10が走行状態か発進状態かに関わらず、通路幅が広いほど検知範囲DA1,DA2は広くなるといえる。
As described above, the detection ranges DA1 and DA2 are set so as to prevent the shelves S1 to S5 from entering the detection ranges DA1 and DA2 regardless of whether the industrial vehicle 10 is in the running state or the starting state. .. When the industrial vehicle 10 is in a traveling state, the wider the passage width, the wider the widths W1 and W2 of the detection ranges DA1 and DA2. When the industrial vehicle 10 is in the starting state, the wider the passage width, the longer the lengths L1 and L2 of the detection ranges DA1 and DA2. As a result, it can be said that the wider the passage width, the wider the detection ranges DA1 and DA2, regardless of whether the industrial vehicle 10 is in the running state or the starting state.
ここで、産業車両10が荷置き作業及び荷取り作業を含む荷役作業を行う際の動作を考えると、産業車両10は棚S1~S5に沿って通路P1~P4を走行した後に、旋回することで棚S1~S5を向く。そして、荷役作業を行うために走行停止状態となる。荷役作業を終えた後には、産業車両10は発進状態となる。このように、産業車両10が走行状態のときには、産業車両10は棚S1~S5の延びる方向に進行している場合が多い。産業車両10が発進状態のときには、産業車両10は荷取り作業又は荷置き作業を終えて、後方に位置する棚S1~S5に向けて、即ち、棚S1~S5の延びる方向に直交する方向に進行しようとする場合が多い。主制御装置31は、産業車両10の走行状態と発進状態に合わせて検知範囲DA1,DA2の幅W1,W2を変更するか長さL1,L2を変更するかを異ならせている。これにより、産業車両10の進行方向が棚S1~S5の延びる方向であれば検知範囲DA1,DA2の幅W1,W2が、産業車両10の進行方向が棚S1~S5の延びる方向に直交する方向であれば検知範囲DA1,DA2の長さL1,L2が変更されると捉えることができる。
Here, considering the operation when the industrial vehicle 10 performs cargo handling work including loading work and loading work, the industrial vehicle 10 turns after traveling along the passages P1 to P4 along the shelves S1 to S5. Turn to the shelves S1 to S5. Then, the vehicle is stopped in order to carry out cargo handling work. After finishing the cargo handling work, the industrial vehicle 10 is in the starting state. As described above, when the industrial vehicle 10 is in the traveling state, the industrial vehicle 10 often travels in the extending direction of the shelves S1 to S5. When the industrial vehicle 10 is in the starting state, the industrial vehicle 10 finishes the unloading work or the unloading work and faces the shelves S1 to S5 located behind, that is, in the direction orthogonal to the extending direction of the shelves S1 to S5. Often try to progress. The main control device 31 makes different whether the widths W1 and W2 of the detection ranges DA1 and DA2 are changed or the lengths L1 and L2 are changed according to the traveling state and the starting state of the industrial vehicle 10. As a result, if the traveling direction of the industrial vehicle 10 is the extending direction of the shelves S1 to S5, the widths W1 and W2 of the detection ranges DA1 and DA2 are orthogonal to the traveling direction of the industrial vehicle 10 in the extending direction of the shelves S1 to S5. If so, it can be considered that the lengths L1 and L2 of the detection ranges DA1 and DA2 are changed.
第1制限エリアLA1と第2制限エリアLA2を例に挙げて説明したが、図1に示すように、第3制限エリアLA3についても第3制限エリアLA3に対応付けられた第3検知範囲DA3が設定される。第1制限エリアLA1及び第2制限エリアLA2は、障害物となり得る棚S1~S5が常に周囲に存在している場所である。これに対し、第3制限エリアLA3は、第1制限エリアLA1や第2制限エリアLA2に比べて、障害物が常に周囲に存在している状況が生じにくい場所である。このため、第3検知範囲DA3は、検知範囲DA1,DA2よりも広く設定してもよい。例えば、産業車両10が走行状態の場合の第3検知範囲DA3の長さL3は、産業車両10が走行状態の場合の第1検知範囲DA1の長さL1より長くてもよい。同様に、産業車両10が走行状態の場合の第3検知範囲DA3の幅W3は、産業車両10が走行状態の場合の第1検知範囲DA1の幅W1より広くてもよい。上記したように、検知範囲DAの幅や長さは、場所によって適宜変更することができる。検知範囲DAの幅及び長さは、周囲に棚S1~S5等の構造物が存在するか否か、産業車両10の走行可能な領域の大きさ、人や車両の交通量などの要因によって異なる値を設定することができる。図7に示すように、主制御装置31は、ステップS23の処理を終えると、ステップS25の処理を行う。ステップS23の処理を行うことで、主制御装置31は、検知範囲設定部として機能している。
The first restricted area LA1 and the second restricted area LA2 have been described as an example, but as shown in FIG. 1, the third detection range DA3 associated with the third restricted area LA3 is also included in the third restricted area LA3. Set. The first restricted area LA1 and the second restricted area LA2 are places where shelves S1 to S5 that can be obstacles are always present in the surroundings. On the other hand, the third restricted area LA3 is a place where it is less likely that an obstacle is always present in the surroundings as compared with the first restricted area LA1 and the second restricted area LA2. Therefore, the third detection range DA3 may be set wider than the detection ranges DA1 and DA2. For example, the length L3 of the third detection range DA3 when the industrial vehicle 10 is in the traveling state may be longer than the length L1 of the first detection range DA1 when the industrial vehicle 10 is in the traveling state. Similarly, the width W3 of the third detection range DA3 when the industrial vehicle 10 is in the traveling state may be wider than the width W1 of the first detection range DA1 when the industrial vehicle 10 is in the traveling state. As described above, the width and length of the detection range DA can be appropriately changed depending on the location. The width and length of the detection range DA differ depending on factors such as whether or not there are structures such as shelves S1 to S5 around, the size of the travelable area of the industrial vehicle 10, and the traffic volume of people and vehicles. You can set the value. As shown in FIG. 7, when the main control device 31 finishes the process of step S23, the main control device 31 performs the process of step S25. By performing the process of step S23, the main control device 31 functions as a detection range setting unit.
ステップS24において、主制御装置31は、デフォルトの検知範囲DAを設定する。デフォルトの検知範囲DAとは、産業車両10の現在位置が制限エリアLA1,LA2,LA3に該当していない場合に設定される検知範囲である。デフォルトの検知範囲DAは、産業車両10の管理者が任意に設定することができる。制限エリアLA1,LA2,LA3に対応付けられた検知範囲DA1,DA2,DA3と同様に、デフォルトの検知範囲DAは産業車両10の状態によって広さが変動してもよい。主制御装置31は、ステップS24の処理を終えると、ステップS25の処理を行う。
In step S24, the main control device 31 sets the default detection range DA. The default detection range DA is a detection range set when the current position of the industrial vehicle 10 does not correspond to the restricted areas LA1, LA2, and LA3. The default detection range DA can be arbitrarily set by the administrator of the industrial vehicle 10. Similar to the detection ranges DA1, DA2, DA3 associated with the restricted areas LA1, LA2, LA3, the default detection range DA may vary in size depending on the state of the industrial vehicle 10. When the main control device 31 finishes the process of step S24, the main control device 31 performs the process of step S25.
ステップS25において、主制御装置31は、検知範囲DAに障害物が存在しているか否かを判定する。主制御装置31は、位置検出装置55から障害物のワールド座標を取得することで、産業車両10の周囲に存在する障害物と、産業車両10との位置関係を把握可能である。主制御装置31は、障害物のワールド座標と、ステップS23あるいはステップS24で設定された検知範囲DAとに基づき、検知範囲DAに障害物が存在しているか否かを判定する。なお、障害物が検知範囲DAの内外に跨がって位置している場合、検知範囲DAに障害物が存在していると判定されるようにしてもよいし、検知範囲DAに障害物が存在していないと判定されるようにしてもよい。
In step S25, the main control device 31 determines whether or not an obstacle exists in the detection range DA. By acquiring the world coordinates of the obstacle from the position detection device 55, the main control device 31 can grasp the positional relationship between the obstacle existing around the industrial vehicle 10 and the industrial vehicle 10. The main control device 31 determines whether or not an obstacle exists in the detection range DA based on the world coordinates of the obstacle and the detection range DA set in step S23 or step S24. If the obstacle is located straddling the inside and outside of the detection range DA, it may be determined that the obstacle exists in the detection range DA, or the obstacle is in the detection range DA. It may be determined that it does not exist.
図6に示すようにワールド座標系における障害物Oの位置が検出された場合を例に挙げて説明する。図6に示す例では、検知範囲DAに2つの障害物Oが存在している。従って、主制御装置31は検知範囲DAに障害物Oが存在していると判定する。図7に示すように、ステップS25の判定結果が肯定の場合、主制御装置31は、ステップS26の処理を行う。ステップS25の判定結果が否定の場合、主制御装置31は、ステップS27の処理を行う。
As shown in FIG. 6, the case where the position of the obstacle O in the world coordinate system is detected will be described as an example. In the example shown in FIG. 6, there are two obstacles O in the detection range DA. Therefore, the main control device 31 determines that the obstacle O exists in the detection range DA. As shown in FIG. 7, when the determination result of step S25 is affirmative, the main control device 31 performs the process of step S26. If the determination result in step S25 is negative, the main control device 31 performs the process of step S27.
ステップS26において、主制御装置31は、警報及び車速制限を行う。主制御装置31は、警報装置58を作動させることで、警報を行う。また、主制御装置31は、車速上限値を設定し、車速が車速上限値を上回らないようにすることで、車速制限を行う。車速上限値は、産業車両10の到達し得る最高速度よりも低い値に設定される。車速上限値は、0[km/h]を含む。即ち、車速制限には、産業車両10の走行禁止を含む。
In step S26, the main control device 31 gives an alarm and limits the vehicle speed. The main control device 31 gives an alarm by activating the alarm device 58. Further, the main control device 31 sets a vehicle speed upper limit value and limits the vehicle speed by preventing the vehicle speed from exceeding the vehicle speed upper limit value. The vehicle speed upper limit is set to a value lower than the maximum reachable speed of the industrial vehicle 10. The vehicle speed upper limit value includes 0 [km / h]. That is, the vehicle speed limit includes the prohibition of traveling of the industrial vehicle 10.
警報及び車速制限は、障害物との距離に応じて変更してもよい。例えば、主制御装置31は、障害物との距離が近いほど、警報を強くしてもよい。警報を強くするとは、産業車両10の搭乗者や産業車両10の周囲の人に産業車両10の接近を認識させやすくすることである。警報装置58が音による警報を行うものであれば、障害物との距離が近いほど音を大きくしてもよいし、警報装置58が光の点滅によって警報を行うものであれば、点滅速度を速くしてもよい。主制御装置31は、障害物との距離が近いほど、車速上限値を低く設定してもよい。ステップS25及びステップS26の処理を行うことで、主制御装置31は、制御部として機能している。
The warning and vehicle speed limit may be changed according to the distance to the obstacle. For example, the main control device 31 may make the alarm stronger as the distance from the obstacle is closer. Increasing the warning means making it easier for the passengers of the industrial vehicle 10 and the people around the industrial vehicle 10 to recognize the approach of the industrial vehicle 10. If the alarm device 58 gives an alarm by sound, the sound may be louder as the distance from the obstacle is closer, and if the alarm device 58 gives an alarm by blinking light, the blinking speed may be increased. It may be faster. The main control device 31 may set the vehicle speed upper limit value lower as the distance from the obstacle is closer. By performing the processes of steps S25 and S26, the main control device 31 functions as a control unit.
ステップS27において、主制御装置31は、警報及び車速制限を解除する。詳細にいえば、主制御装置31は、過去の制御周期での処理により警報及び車速制限が行われていれば警報及び車速制限を解除し、警報及び車速制限が行われていなければ、この状態を維持する。検知範囲DAに障害物が存在している間にはステップS25が継続して肯定になることで警報及び車速制限が行われる。検知範囲DAに障害物が存在しなくなると、ステップS25が否定になることで警報及び車速制限が解除される。
In step S27, the main control device 31 cancels the warning and the vehicle speed limit. More specifically, the main control device 31 cancels the warning and the vehicle speed limit if the warning and the vehicle speed limit have been performed by the processing in the past control cycle, and if the warning and the vehicle speed limit have not been performed, this state. To maintain. While the obstacle is present in the detection range DA, the warning and the vehicle speed limit are performed by continuously affirming step S25. When there are no obstacles in the detection range DA, the warning and the vehicle speed limit are canceled by negating step S25.
なお、位置検出装置55による障害物検出処理は、産業車両10が後進している場合や産業車両10が後方に発進する場合にのみ行われてもよい。即ち、障害物検出処理は、産業車両10が前進している場合や産業車両10が前方に発進する場合には行われなくてもよい。産業車両10が後進していることは、ディレクションセンサ36の検出結果や走行用モータ41の回転方向から判断することができる。産業車両10が後方に発進することは、ディレクションセンサ36の検出結果から判断することができる。同様に、警報及び車速制限は、産業車両10が後進している場合や産業車両10が後方に発進する場合にのみ行われてもよい。即ち、警報及び車速制限は、産業車両10が前進している場合や産業車両10が前方に発進する場合には行われなくてもよい。産業車両10の進行方向に関わらず障害物検出処理を行い、警報及び車速制限は産業車両10が後進している場合や産業車両10が後方に発進する場合にのみ行われるようにしてもよい。本実施形態のように、位置検出装置55が産業車両10の後方に存在する障害物を検出する場合、少なくとも、産業車両10の進行方向が後方の場合に警報及び車速制限が行われるようにすればよい。
Note that the obstacle detection process by the position detection device 55 may be performed only when the industrial vehicle 10 is moving backward or when the industrial vehicle 10 starts backward. That is, the obstacle detection process may not be performed when the industrial vehicle 10 is moving forward or when the industrial vehicle 10 starts forward. It can be determined from the detection result of the direction sensor 36 and the rotation direction of the traveling motor 41 that the industrial vehicle 10 is moving backward. It can be determined from the detection result of the direction sensor 36 that the industrial vehicle 10 starts backward. Similarly, the warning and the vehicle speed limit may be given only when the industrial vehicle 10 is moving backward or when the industrial vehicle 10 starts backward. That is, the warning and the vehicle speed limit may not be performed when the industrial vehicle 10 is moving forward or when the industrial vehicle 10 starts forward. Obstacle detection processing may be performed regardless of the traveling direction of the industrial vehicle 10, and the warning and the vehicle speed limit may be performed only when the industrial vehicle 10 is moving backward or when the industrial vehicle 10 starts backward. When the position detection device 55 detects an obstacle existing behind the industrial vehicle 10 as in the present embodiment, at least the warning and the vehicle speed limit are performed when the traveling direction of the industrial vehicle 10 is behind. Just do it.
第1実施形態の作用について説明する。
主制御装置31は、産業車両10の現在位置に対応付けられた検知範囲DAを設定する。主制御装置31は、位置検出装置55によって検出された障害物が検知範囲DAに存在している場合には警報及び車速制限を行う。一方で、主制御装置31は、位置検出装置55によって検出された障害物が検知範囲DAに存在していない場合には、検知範囲DA外に障害物が存在していても警報及び車速制限を行わない。検知範囲DAは、警報及び車速制限を行う範囲を制限しているといえる。 The operation of the first embodiment will be described.
Themain control device 31 sets a detection range DA associated with the current position of the industrial vehicle 10. The main control device 31 gives an alarm and limits the vehicle speed when an obstacle detected by the position detection device 55 exists in the detection range DA. On the other hand, when the obstacle detected by the position detection device 55 does not exist in the detection range DA, the main control device 31 issues an alarm and limits the vehicle speed even if an obstacle exists outside the detection range DA. Not performed. It can be said that the detection range DA limits the range in which the warning and the vehicle speed are limited.
主制御装置31は、産業車両10の現在位置に対応付けられた検知範囲DAを設定する。主制御装置31は、位置検出装置55によって検出された障害物が検知範囲DAに存在している場合には警報及び車速制限を行う。一方で、主制御装置31は、位置検出装置55によって検出された障害物が検知範囲DAに存在していない場合には、検知範囲DA外に障害物が存在していても警報及び車速制限を行わない。検知範囲DAは、警報及び車速制限を行う範囲を制限しているといえる。 The operation of the first embodiment will be described.
The
仮に、検知範囲DAが過剰に広い場合、産業車両10の位置によっては警報及び車速制限が頻繁に行われることになる。例えば、産業車両10の位置に関わらず、第2検知範囲DA2が常に設定されるとすると、産業車両10が第1通路P1,P2を走行している場合には、第2検知範囲DA2に常に棚S1~S3が入り込むおそれがある。第1通路P1,P2を走行している場合に常に警報及び車速制限が行われると、産業車両10の作業性の低下や、第1通路P1,P2で作業を行っている人の作業性の低下を招く。更に、棚S1~S3が第2検知範囲DA2に入り込むことで警報及び車速制限が常に行われると、第1通路P1,P2に進行を阻害する障害物が存在しているか否かに関わらず継続して警報及び車速制限が行われることになる。結果として、第1通路P1,P2に障害物が存在している場合であっても、産業車両10の搭乗者が障害物の存在に気付けないおそれがある。産業車両10は、荷役作業を行う関係上、必然的に棚S1~S5など障害物となり得る構造物に近付くことがある。このため、上記したように検知範囲DAを過剰に広くすると、検知範囲DAに常に構造物が入り込むおそれがあり、警報及び車速制限が頻繁に行われることで作業性が低下するおそれがある。検知範囲DAを過剰に狭くすると、構造物を障害物として検出することによる警報や車速制限を抑制し得る一方で、産業車両10の進行を阻害する障害物が検知範囲DAに入りにくい。このため、警報や車速制限が行われるタイミングが遅くなるおそれがある。
If the detection range DA is excessively wide, warnings and vehicle speed restrictions will be frequently performed depending on the position of the industrial vehicle 10. For example, assuming that the second detection range DA2 is always set regardless of the position of the industrial vehicle 10, when the industrial vehicle 10 is traveling in the first passages P1 and P2, the second detection range DA2 is always set. There is a risk that shelves S1 to S3 will enter. If an alarm and a vehicle speed limit are always given while traveling in the first passages P1 and P2, the workability of the industrial vehicle 10 will deteriorate and the workability of the person working in the first passages P1 and P2 will be reduced. It causes a decline. Further, when the warning and the vehicle speed limit are always performed by the shelves S1 to S3 entering the second detection range DA2, the warning and the vehicle speed limitation are continued regardless of whether or not there is an obstacle obstructing the progress in the first passages P1 and P2. Then, an alarm and a vehicle speed limit will be given. As a result, even if an obstacle exists in the first passages P1 and P2, the passenger of the industrial vehicle 10 may not notice the existence of the obstacle. The industrial vehicle 10 may inevitably approach structures such as shelves S1 to S5 that may be obstacles due to the cargo handling work. Therefore, if the detection range DA is excessively widened as described above, there is a possibility that the structure will always enter the detection range DA, and the warning and the vehicle speed limit may be frequently performed to reduce the workability. If the detection range DA is excessively narrowed, the warning and the vehicle speed limitation due to the detection of the structure as an obstacle can be suppressed, but the obstacle that hinders the progress of the industrial vehicle 10 is difficult to enter the detection range DA. Therefore, the timing at which the warning and the vehicle speed limit are performed may be delayed.
本実施形態では、産業車両10の現在位置に応じた検知範囲DAが設定される。この検知範囲DAは、制限エリアLA1,LA2,LA3に存在する棚S1~S5等の構造物が検知範囲DAに常に入り込むことを抑制できるように設定されている。これにより、検知範囲DAに常に障害物が入り込むことを抑制することができる。
In the present embodiment, the detection range DA is set according to the current position of the industrial vehicle 10. The detection range DA is set so as to prevent structures such as shelves S1 to S5 existing in the restricted areas LA1, LA2, and LA3 from always entering the detection range DA. As a result, it is possible to prevent an obstacle from constantly entering the detection range DA.
第1実施形態の効果について説明する。
(1-1)産業車両10の現在位置に応じた検知範囲DAが設定されることで、検知範囲DAに常に障害物が入り込むことを抑制できる。頻繁に警報や車速制限が行われることが抑制されるため、作業性の低下が抑制される。 The effect of the first embodiment will be described.
(1-1) By setting the detection range DA according to the current position of theindustrial vehicle 10, it is possible to prevent an obstacle from always entering the detection range DA. Since frequent warnings and vehicle speed restrictions are suppressed, deterioration of workability is suppressed.
(1-1)産業車両10の現在位置に応じた検知範囲DAが設定されることで、検知範囲DAに常に障害物が入り込むことを抑制できる。頻繁に警報や車速制限が行われることが抑制されるため、作業性の低下が抑制される。 The effect of the first embodiment will be described.
(1-1) By setting the detection range DA according to the current position of the
(1-2)主制御装置31は、測位装置37によって導出された産業車両10の現在位置が制限エリアLA1,LA2,LA3に該当するか否かを判定している。主制御装置31は、産業車両10の現在位置が制限エリアLA1,LA2,LA3に該当する場合には、制限エリアLA1,LA2,LA3に対応付けられた検知範囲DA1,DA2,DA3を設定している。区域A1にマーカーを設けて、このマーカーを読み取ることで検知範囲DAを設定することも考えられる。この場合、区域A1にマーカーを設けることによる手間が生じる。また、産業車両10にマーカーを読み取る装置を設けて、この装置がマーカーを読み取ることができる位置にマーカーを配置する必要があり、配置上の制約が生じる。これに対し、測位装置37は、マーカーを読み取ることなく、産業車両10の現在位置を導出することができる。従って、区域A1にマーカーを設ける手間や、配置上の制約が生じにくい。無線信号の受信態様を利用する測位装置37を用いる場合、区域A1に固定機WTを設ける必要はあるものの、無線信号を測位装置37に受信させることができれば固定機WTの配置位置は自由である。このため、固定機WTはマーカーに比べて配置上の制約が少ない。また、固定機WTは、測位装置37で多点測位をできる数だけ配置すればよく、マーカーに比べて配置する手間も少ない。
(1-2) The main control device 31 determines whether or not the current position of the industrial vehicle 10 derived by the positioning device 37 corresponds to the restricted areas LA1, LA2, and LA3. When the current position of the industrial vehicle 10 corresponds to the restricted areas LA1, LA2, LA3, the main control device 31 sets the detection ranges DA1, DA2, DA3 associated with the restricted areas LA1, LA2, LA3. There is. It is also conceivable to provide a marker in the area A1 and set the detection range DA by reading this marker. In this case, it takes time and effort to provide the marker in the area A1. Further, it is necessary to provide a device for reading the marker on the industrial vehicle 10 and arrange the marker at a position where the device can read the marker, which causes restrictions on the arrangement. On the other hand, the positioning device 37 can derive the current position of the industrial vehicle 10 without reading the marker. Therefore, it is unlikely that the trouble of providing the marker in the area A1 and the restriction on the arrangement will occur. When the positioning device 37 that utilizes the reception mode of the wireless signal is used, it is necessary to provide the fixed device WT in the area A1, but if the positioning device 37 can receive the wireless signal, the position of the fixed device WT is free. .. Therefore, the fixed machine WT has less restrictions on placement than the marker. Further, the fixed machine WT may be arranged as many as the positioning device 37 can perform multi-point positioning, and the time and effort for arranging the fixed machine WT is less than that of the marker.
(1-3)測位装置37は、固定機WTから送信された無線信号の受信態様によって産業車両10の現在位置を導出する。従って、屋内であっても産業車両10の現在位置を導出することができる。GNSS:Global Navigation Satellite Systemを用いて測位を行うことができない屋内であっても産業車両10の現在位置を導出できるため、屋内で使用される産業車両10であっても、現在位置に応じた検知範囲DAを設定することができる。
(1-3) The positioning device 37 derives the current position of the industrial vehicle 10 according to the reception mode of the radio signal transmitted from the fixed device WT. Therefore, the current position of the industrial vehicle 10 can be derived even indoors. GNSS: Since the current position of the industrial vehicle 10 can be derived even indoors where positioning cannot be performed using the Global Navigation Satellite System, even the industrial vehicle 10 used indoors can be detected according to the current position. The range DA can be set.
(1-4)主制御装置31は、通路幅が広い位置ほど検知範囲DAが広くなるように検知範囲DAを設定する。検知範囲DAを一定にした場合、通路幅が広いほど検知範囲DAに含まれない部分、即ち、死角が生じ易い。通路幅が広いほど検知範囲DAを広くすることで、死角が生じることを抑制できる。
(1-4) The main control device 31 sets the detection range DA so that the detection range DA becomes wider as the passage width is wider. When the detection range DA is constant, the wider the passage width, the more likely it is that a portion not included in the detection range DA, that is, a blind spot will occur. By widening the detection range DA as the passage width is wider, it is possible to suppress the occurrence of blind spots.
(1-5)産業車両10の進行方向が棚S1~S5の延びる方向であれば検知範囲DAの幅、産業車両10の進行方向が棚S1~S5の延びる方向に直交する方向であれば検知範囲DAの長さがそれぞれ変更される。産業車両10が棚S1~S5の延びる方向に進行している場合、棚S1~S5は検知範囲DAの幅方向に位置しているため、検知範囲DAの幅を調整して、検知範囲DAに棚S1~S5が入り込むことを抑制しつつ通路P1~P4に存在する障害物を検出できるようにすることが好ましい。産業車両10の進行方向が棚S1~S5の延びる方向に直交する方向の場合、棚S1~S5は検知範囲DAの長さ方向に位置しているため、検知範囲DAの長さを調整して、検知範囲DAに棚S1~S5が入り込むことを抑制しつつ通路P1~P4に存在する障害物を検出できるようにすることが好ましい。上記したように検知範囲DAを変更することで、産業車両10の状況に応じた適切な検知範囲DAが設定される。
(1-5) Detection if the traveling direction of the industrial vehicle 10 is the direction in which the shelves S1 to S5 extend, the width of the detection range DA, and if the traveling direction of the industrial vehicle 10 is orthogonal to the extending direction of the shelves S1 to S5, detection The length of each range DA is changed. When the industrial vehicle 10 is traveling in the extending direction of the shelves S1 to S5, the shelves S1 to S5 are located in the width direction of the detection range DA, so the width of the detection range DA is adjusted to the detection range DA. It is preferable to be able to detect obstacles existing in the passages P1 to P4 while suppressing the entry of the shelves S1 to S5. When the traveling direction of the industrial vehicle 10 is orthogonal to the extending direction of the shelves S1 to S5, the shelves S1 to S5 are located in the length direction of the detection range DA, so the length of the detection range DA is adjusted. It is preferable to be able to detect obstacles existing in the passages P1 to P4 while suppressing the entry of the shelves S1 to S5 into the detection range DA. By changing the detection range DA as described above, an appropriate detection range DA according to the situation of the industrial vehicle 10 is set.
(第2実施形態)
以下、産業車両の第2実施形態について説明する。第1実施形態と同様な部分については説明を省略し、第1実施形態との相違点について説明する。 (Second Embodiment)
Hereinafter, the second embodiment of the industrial vehicle will be described. The description of the same parts as those of the first embodiment will be omitted, and the differences from the first embodiment will be described.
以下、産業車両の第2実施形態について説明する。第1実施形態と同様な部分については説明を省略し、第1実施形態との相違点について説明する。 (Second Embodiment)
Hereinafter, the second embodiment of the industrial vehicle will be described. The description of the same parts as those of the first embodiment will be omitted, and the differences from the first embodiment will be described.
第1実施形態では、測位装置37を用いて産業車両10の現在位置を導出していたのに対し、第2実施形態では、主制御装置31による自己位置推定によって産業車両10の現在位置を導出する。第2実施形態の産業車両10は、測位装置37を備えていなくてもよい。
In the first embodiment, the current position of the industrial vehicle 10 is derived by using the positioning device 37, whereas in the second embodiment, the current position of the industrial vehicle 10 is derived by self-position estimation by the main control device 31. do. The industrial vehicle 10 of the second embodiment does not have to be provided with the positioning device 37.
主制御装置31は、自己位置及び姿勢を推定する自己位置推定を行う。自己位置とは、産業車両10の現在位置である。姿勢とは、地図座標系での産業車両10の向きである。詳細にいえば、姿勢とは、地図座標系のX軸あるいはY軸に対する産業車両10の傾きである。本実施形態において、自己位置推定は、少なくともステレオカメラ52を用いたランドマークのマッチングにより行われる。主制御装置31は、位置検出装置55により検出された障害物の地図座標と、環境地図のランドマークとのマッチングを行うことで、自己位置を推定する。第2実施形態では、環境地図として、区域A1に存在する構造物の地図座標をランドマークとして記憶する必要がある。ランドマークとして用いる構造物としては、時間経過によって位置が変動しない、あるいは、位置が変動しにくいものが用いられる。図1に挙げた区域A1であれば、例えば、棚S1~S5や柱Piの地図座標をランドマークとして用いることができる。また、ランドマークとしては、壁の地図座標を用いてもよい。環境地図は、SLAM:Simultaneous Localization and Mappingによるマッピングにより作成されてもよいし、区域A1の物理的構造が予めわかっていれば事前に作成されてもよい。
The main control device 31 performs self-position estimation for estimating self-position and posture. The self-position is the current position of the industrial vehicle 10. The posture is the orientation of the industrial vehicle 10 in the map coordinate system. More specifically, the posture is the inclination of the industrial vehicle 10 with respect to the X-axis or the Y-axis of the map coordinate system. In the present embodiment, the self-position estimation is performed by matching landmarks using at least the stereo camera 52. The main control device 31 estimates its own position by matching the map coordinates of the obstacle detected by the position detection device 55 with the landmarks on the environmental map. In the second embodiment, it is necessary to store the map coordinates of the structure existing in the area A1 as a landmark as an environmental map. As the structure used as a landmark, a structure whose position does not change with the passage of time or whose position does not easily change is used. In the area A1 shown in FIG. 1, for example, the map coordinates of the shelves S1 to S5 and the pillar Pi can be used as landmarks. Further, as the landmark, the map coordinates of the wall may be used. The environmental map may be created by mapping by SLAM: Simultaneous Localization and Mapping, or may be created in advance if the physical structure of the area A1 is known in advance.
自己位置推定は、ランドマークを用いた手法に加えて、走行用モータ41の回転数を用いて自己移動量を推定するオドメトリを組み合わせて行われてもよい。走行用モータ41の回転数は、回転数センサ42の検出結果を用いることができる。回転数センサ42の検出結果は、バス60を介して走行制御装置43から取得することができる。
The self-position estimation may be performed by combining a method using landmarks with an odometry that estimates the self-movement amount using the rotation speed of the traveling motor 41. As the rotation speed of the traveling motor 41, the detection result of the rotation speed sensor 42 can be used. The detection result of the rotation speed sensor 42 can be acquired from the travel control device 43 via the bus 60.
主制御装置31は、自己位置推定により産業車両10の現在位置を導出し、産業車両10の現在位置に対応付けられた検知範囲DAを設定する。検知範囲DAの設定は、第1実施形態と同様の手法で行うことができる。第2実施形態では、主制御装置31が位置導出部として機能している。
The main control device 31 derives the current position of the industrial vehicle 10 by self-position estimation, and sets the detection range DA associated with the current position of the industrial vehicle 10. The detection range DA can be set by the same method as in the first embodiment. In the second embodiment, the main control device 31 functions as a position derivation unit.
また、第2実施形態では、産業車両10の姿勢を推定することができるため、産業車両10の現在位置、産業車両10の状況に加えて、産業車両10の姿勢に応じた検知範囲DAを設定してもよい。例えば、産業車両10が向く方向に存在する障害物の存在に応じて、検知範囲DAを変更することができる。産業車両10の向く方向に棚S1~S5などの既知の構造物が存在していれば、当該構造物が検知範囲DAに入り込まないように検知範囲DAを設定してもよい。また、産業車両10が棚S1~S5の延びる方向を向いていれば検知範囲DAの幅が変更され、産業車両10の向きが棚S1~S5の延びる方向に直交する方向であれば検知範囲DAの長さが変更されるようにしてもよい。
Further, in the second embodiment, since the posture of the industrial vehicle 10 can be estimated, the detection range DA according to the posture of the industrial vehicle 10 is set in addition to the current position of the industrial vehicle 10 and the situation of the industrial vehicle 10. You may. For example, the detection range DA can be changed according to the presence of an obstacle existing in the direction in which the industrial vehicle 10 faces. If a known structure such as shelves S1 to S5 exists in the direction facing the industrial vehicle 10, the detection range DA may be set so that the structure does not enter the detection range DA. Further, if the industrial vehicle 10 faces the extending direction of the shelves S1 to S5, the width of the detection range DA is changed, and if the direction of the industrial vehicle 10 is orthogonal to the extending direction of the shelves S1 to S5, the detection range DA is changed. The length of may be changed.
第2実施形態の効果について説明する。
(2-1)主制御装置31は、自己位置推定によって産業車両10の現在位置を導出している。障害物を検出するために設けられたステレオカメラ52を用いて自己位置推定を行うことができる。従って、測位装置37を省略することができる。 The effect of the second embodiment will be described.
(2-1) Themain control device 31 derives the current position of the industrial vehicle 10 by self-position estimation. Self-position estimation can be performed using a stereo camera 52 provided for detecting an obstacle. Therefore, the positioning device 37 can be omitted.
(2-1)主制御装置31は、自己位置推定によって産業車両10の現在位置を導出している。障害物を検出するために設けられたステレオカメラ52を用いて自己位置推定を行うことができる。従って、測位装置37を省略することができる。 The effect of the second embodiment will be described.
(2-1) The
(2-2)自己位置推定を行うことで、産業車両10の姿勢を導出することができる。従って、産業車両10の姿勢に応じた検知範囲DAを設定することができる。
(第3実施形態)
以下、産業車両の第3実施形態について説明する。第1実施形態と同様な部分については説明を省略し、第1実施形態との相違点について説明する。 (2-2) The attitude of theindustrial vehicle 10 can be derived by performing self-position estimation. Therefore, the detection range DA can be set according to the posture of the industrial vehicle 10.
(Third Embodiment)
Hereinafter, a third embodiment of the industrial vehicle will be described. The description of the same parts as those of the first embodiment will be omitted, and the differences from the first embodiment will be described.
(第3実施形態)
以下、産業車両の第3実施形態について説明する。第1実施形態と同様な部分については説明を省略し、第1実施形態との相違点について説明する。 (2-2) The attitude of the
(Third Embodiment)
Hereinafter, a third embodiment of the industrial vehicle will be described. The description of the same parts as those of the first embodiment will be omitted, and the differences from the first embodiment will be described.
図13に示すように、区域A1にはマーカーM1,M2,M3が設けられている。マーカーM1,M2,M3としては、2次元的に配列された複数の矩形又は複数のドットを含む識別画像であるARマーカーやQRコード(登録商標)、バーコードを含む1次元コード、カラーコードを含む多次元コード等、種々のマーカーを用いることができる。マーカーM1,M2,M3は、第1制限エリアLA1、第2制限エリアLA2、及び第3制限エリアLA3のそれぞれに設けられている。第1制限エリアLA1に設けられたマーカーM1を第1マーカーM1、第2制限エリアLA2に設けられたマーカーM2を第2マーカーM2、第3制限エリアLA3に設けられたマーカーM3を第3マーカーM3とする。第1マーカーM1、第2マーカーM2及び第3マーカーM3はそれぞれ形状や色彩などの模様が異なる。言い換えれば、第1マーカーM1、第2マーカーM2及び第3マーカーM3のそれぞれで紐付けられた情報が異なる。
As shown in FIG. 13, markers M1, M2, and M3 are provided in the area A1. The markers M1, M2, and M3 include an AR marker, a QR code (registered trademark), which is an identification image including a plurality of rectangles or dots arranged two-dimensionally, a one-dimensional code including a barcode, and a color code. Various markers such as a multidimensional code including can be used. The markers M1, M2, and M3 are provided in each of the first restricted area LA1, the second restricted area LA2, and the third restricted area LA3. The marker M1 provided in the first restricted area LA1 is the first marker M1, the marker M2 provided in the second restricted area LA2 is the second marker M2, and the marker M3 provided in the third restricted area LA3 is the third marker M3. And. The first marker M1, the second marker M2, and the third marker M3 have different patterns such as shapes and colors. In other words, the information associated with each of the first marker M1, the second marker M2, and the third marker M3 is different.
産業車両10は、マーカーM1,M2,M3を読み取るための撮像装置を備える。撮像装置としては、ステレオカメラ52を兼用してもよいし、ステレオカメラ52とは別にマーカーM1,M2,M3を読み取るための撮像装置を設けてもよい。
The industrial vehicle 10 includes an image pickup device for reading the markers M1, M2, and M3. As the image pickup device, the stereo camera 52 may also be used, or an image pickup device for reading the markers M1, M2, and M3 may be provided separately from the stereo camera 52.
マーカーM1,M2,M3は、撮像装置が読み取り可能な位置に配置されている。撮像装置の画角は予め定まっているため、この画角を考慮して、マーカーM1,M2,M3の位置は定められている。産業車両10が第1制限エリアLA1に位置している場合には第1マーカーM1、産業車両10が第2制限エリアLA2に位置している場合には第2マーカーM2、産業車両10が第3制限エリアLA3に位置している場合には第3マーカーM3がそれぞれ撮像されるようにマーカーM1,M2,M3の位置は定められている。マーカーM1,M2,M3は、棚S1~S5、壁、柱Pi、床など、各制限エリアLA1,LA2,LA3に位置している構造物に取り付けられる。
The markers M1, M2, and M3 are arranged at positions that can be read by the image pickup apparatus. Since the angle of view of the image pickup apparatus is predetermined, the positions of the markers M1, M2, and M3 are determined in consideration of this angle of view. The first marker M1 when the industrial vehicle 10 is located in the first restricted area LA1, the second marker M2 when the industrial vehicle 10 is located in the second restricted area LA2, and the industrial vehicle 10 are the third. The positions of the markers M1, M2, and M3 are determined so that the third marker M3 is imaged when the marker is located in the restricted area LA3. The markers M1, M2 and M3 are attached to structures located in the restricted areas LA1, LA2 and LA3 such as shelves S1 to S5, walls, pillars Pi and floors.
主制御装置31は、撮像装置によって撮像されたマーカーM1,M2,M3から、画像認識機能によって情報を読み取る。マーカーM1,M2,M3に紐付けられた情報としては、位置情報、あるいは、検知範囲DAを示す情報を挙げることができる。第1マーカーM1を例に挙げて説明すると、第1マーカーM1に位置情報が紐付けられる場合、位置情報としては、第1制限エリアLA1であることを示す情報が紐付けられる。主制御装置31は、第1マーカーM1に紐付けられた位置情報から、産業車両10の現在位置が第1制限エリアLA1であることを認識し、第1検知範囲DA1を設定する。第1マーカーM1に検知範囲DAを示す情報が紐付けられる場合、第1検知範囲DA1を示す情報が第1マーカーM1に紐付けられる。第1検知範囲DA1を示す情報としては、第1検知範囲DA1を規定するワールド座標であってもよい。主制御装置31は、第1マーカーM1に紐付けられた検知範囲DAを示す情報から、第1検知範囲DA1を設定する。
The main control device 31 reads information from the markers M1, M2, and M3 imaged by the image pickup device by the image recognition function. Examples of the information associated with the markers M1, M2, and M3 include position information or information indicating the detection range DA. Explaining the first marker M1 as an example, when the position information is associated with the first marker M1, the information indicating that it is the first restricted area LA1 is associated with the position information. The main control device 31 recognizes that the current position of the industrial vehicle 10 is the first restricted area LA1 from the position information associated with the first marker M1, and sets the first detection range DA1. When the information indicating the detection range DA is associated with the first marker M1, the information indicating the first detection range DA1 is associated with the first marker M1. The information indicating the first detection range DA1 may be the world coordinates defining the first detection range DA1. The main control device 31 sets the first detection range DA1 from the information indicating the detection range DA associated with the first marker M1.
上記したように、第1マーカーM1は、産業車両10が第1制限エリアLA1に位置している場合に撮像装置に撮像されるように配置されているため、撮像装置により第1マーカーM1が撮像されている場合、産業車両10は第1制限エリアLA1に位置しているといえる。即ち、産業車両10の現在位置を導出しなくても、第1制限エリアLA1に対応付けられた第1検知範囲DA1が設定される。第1マーカーM1の読み取りにより第1検知範囲DA1を設定する場合には、環境地図を記憶しておく必要がないといえる。また、産業車両10は測位装置37を備えていなくてもよい。更に、第1マーカーM1に検知範囲DAを示す情報が紐付けられている場合には、主制御装置31の記憶部33や補助記憶装置34に制限エリアLA1,LA2,LA3と検知範囲DA1,DA2,DA3との対応関係を記憶しておく必要がない。一例として、第1マーカーM1を挙げて説明したが、第2マーカーM2及び第3マーカーM3についても同様のことがいえる。
As described above, since the first marker M1 is arranged so as to be imaged by the image pickup device when the industrial vehicle 10 is located in the first restricted area LA1, the first marker M1 is imaged by the image pickup device. If so, it can be said that the industrial vehicle 10 is located in the first restricted area LA1. That is, the first detection range DA1 associated with the first restricted area LA1 is set without deriving the current position of the industrial vehicle 10. When the first detection range DA1 is set by reading the first marker M1, it can be said that it is not necessary to store the environment map. Further, the industrial vehicle 10 does not have to be equipped with the positioning device 37. Further, when the information indicating the detection range DA is associated with the first marker M1, the restricted areas LA1, LA2, LA3 and the detection range DA1, DA2 are associated with the storage unit 33 and the auxiliary storage device 34 of the main control device 31. , It is not necessary to memorize the correspondence with DA3. As an example, the first marker M1 has been described, but the same can be said for the second marker M2 and the third marker M3.
なお、マーカーM1,M2,M3の配置位置によっては、制限エリアLA1,LA2,LA3外からであっても撮像装置によるマーカーM1,M2,M3の撮像が行われるおそれがある。この場合、産業車両10の現在位置が制限エリアLA1,LA2,LA3外にも関わらず、マーカーM1,M2,M3が配置された制限エリアLA1,LA2,LA3に対応付けられた検知範囲DA1,DA2,DA3が設定されるおそれがある。主制御装置31は、撮像装置によって撮像されるマーカーM1,M2,M3の大きさ、即ち、マーカーM1,M2,M3の画素数が予め定められた閾値未満の場合には、マーカーM1,M2,M3に紐付けられた情報を読み取らないようにしてもよい。これにより、産業車両10の現在位置が制限エリアLA1,LA2,LA3外にも関わらず、マーカーM1,M2,M3が配置された制限エリアLA1,LA2,LA3に対応付けられた検知範囲DA1,DA2,DA3が設定されることを抑制できる。
Depending on the arrangement position of the markers M1, M2 and M3, the image pickup device may take an image of the markers M1, M2 and M3 even from outside the restricted areas LA1, LA2 and LA3. In this case, although the current position of the industrial vehicle 10 is outside the restricted areas LA1, LA2, LA3, the detection ranges DA1, DA2 associated with the restricted areas LA1, LA2, LA3 in which the markers M1, M2, M3 are arranged are arranged. , DA3 may be set. When the size of the markers M1, M2 and M3 imaged by the image pickup device, that is, the number of pixels of the markers M1, M2 and M3 is less than a predetermined threshold value, the main control device 31 causes the markers M1, M2 and M2. The information associated with M3 may not be read. As a result, even though the current position of the industrial vehicle 10 is outside the restricted areas LA1, LA2, LA3, the detection ranges DA1, DA2 associated with the restricted areas LA1, LA2, LA3 in which the markers M1, M2, M3 are arranged are arranged. , DA3 can be suppressed from being set.
第3実施形態の効果について説明する。
(3-1)主制御装置31は、画像認識によりマーカーM1,M2,M3に紐付けられた情報を読み取ることで、検知範囲DAの設定を行う。マーカーM1,M2,M3を用いて検知範囲DAの設定を行うことで、産業車両10の現在位置を導出しなくても、産業車両10の現在位置に対応付けられた検知範囲DAを設定することができる。 The effect of the third embodiment will be described.
(3-1) Themain control device 31 sets the detection range DA by reading the information associated with the markers M1, M2, and M3 by image recognition. By setting the detection range DA using the markers M1, M2, and M3, the detection range DA associated with the current position of the industrial vehicle 10 can be set without deriving the current position of the industrial vehicle 10. Can be done.
(3-1)主制御装置31は、画像認識によりマーカーM1,M2,M3に紐付けられた情報を読み取ることで、検知範囲DAの設定を行う。マーカーM1,M2,M3を用いて検知範囲DAの設定を行うことで、産業車両10の現在位置を導出しなくても、産業車両10の現在位置に対応付けられた検知範囲DAを設定することができる。 The effect of the third embodiment will be described.
(3-1) The
各実施形態は、以下のように変更して実施することができる。各実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
○各実施形態において、制限エリアLA1,LA2,LA3に対応付けられた検知範囲DA1,DA2,DA3は、産業車両10の管理者が任意に設定することができる。例えば、棚S1~S5などの構造物が少ない一方で車両や人を含む移動体が頻繁に通行する場所では検知範囲DAを広くしてもよい。 Each embodiment can be modified and implemented as follows. Each embodiment and the following modifications can be implemented in combination with each other within a technically consistent range.
○ In each embodiment, the detection ranges DA1, DA2, and DA3 associated with the restricted areas LA1, LA2, and LA3 can be arbitrarily set by the manager of theindustrial vehicle 10. For example, the detection range DA may be widened in a place where moving objects including vehicles and people frequently pass while there are few structures such as shelves S1 to S5.
○各実施形態において、制限エリアLA1,LA2,LA3に対応付けられた検知範囲DA1,DA2,DA3は、産業車両10の管理者が任意に設定することができる。例えば、棚S1~S5などの構造物が少ない一方で車両や人を含む移動体が頻繁に通行する場所では検知範囲DAを広くしてもよい。 Each embodiment can be modified and implemented as follows. Each embodiment and the following modifications can be implemented in combination with each other within a technically consistent range.
○ In each embodiment, the detection ranges DA1, DA2, and DA3 associated with the restricted areas LA1, LA2, and LA3 can be arbitrarily set by the manager of the
○各実施形態において、産業車両10が走行状態の場合における第1検知範囲DA1の長さL1と、第2検知範囲DA2の長さL2とは異なっていてもよい。同様に、産業車両10が発進状態の場合における第1検知範囲DA1の幅W1と第2検知範囲DA2の幅W2とは異なっていてもよい。
○ In each embodiment, the length L1 of the first detection range DA1 and the length L2 of the second detection range DA2 when the industrial vehicle 10 is in a traveling state may be different. Similarly, the width W1 of the first detection range DA1 and the width W2 of the second detection range DA2 when the industrial vehicle 10 is in the starting state may be different.
○各実施形態において、産業車両10の状態には、荷役作業状態が含まれていてもよい。主制御装置31は、産業車両10が荷役作業状態の場合、走行状態や発進状態とは異なる検知範囲DAを設定してもよい。例えば、主制御装置31は、産業車両10が荷役作業状態の場合、産業車両10が走行状態の場合に比べて、検知範囲DAの長さを長くしてもよい。
○ In each embodiment, the state of the industrial vehicle 10 may include a cargo handling work state. When the industrial vehicle 10 is in the cargo handling work state, the main control device 31 may set a detection range DA different from the traveling state and the starting state. For example, the main control device 31 may have a longer detection range DA when the industrial vehicle 10 is in the cargo handling work state than when the industrial vehicle 10 is in the traveling state.
○各実施形態において、検知範囲DAは、産業車両10の現在位置に対応付けられたものであればよく、産業車両10の状態によって検知範囲DAの広さは変わらなくてもよい。
○ In each embodiment, the detection range DA may be any as long as it is associated with the current position of the industrial vehicle 10, and the width of the detection range DA may not change depending on the state of the industrial vehicle 10.
○各実施形態において、検知範囲DAはどのような形状であってもよい。例えば、検知範囲DAは、産業車両10から円状や扇状に広がる範囲であってもよい。
○各実施形態において、主制御装置31は、産業車両10の速度が速いほど検知範囲DAの長さを長くしてもよい。 ○ In each embodiment, the detection range DA may have any shape. For example, the detection range DA may be a range extending from theindustrial vehicle 10 in a circular shape or a fan shape.
○ In each embodiment, themain control device 31 may increase the length of the detection range DA as the speed of the industrial vehicle 10 increases.
○各実施形態において、主制御装置31は、産業車両10の速度が速いほど検知範囲DAの長さを長くしてもよい。 ○ In each embodiment, the detection range DA may have any shape. For example, the detection range DA may be a range extending from the
○ In each embodiment, the
○各実施形態において、検知範囲DAの設定は位置検出装置55で行われてもよい。この場合、位置検出装置55は、検知範囲DA外に存在する障害物は障害物ではないとみなしてもよい。即ち、位置検出装置55は、検知範囲DA外に障害物が存在している場合であっても、検知範囲DA外の障害物のワールド座標を主制御装置31に送信しなくてもよい。
○ In each embodiment, the detection range DA may be set by the position detection device 55. In this case, the position detection device 55 may consider that the obstacle existing outside the detection range DA is not an obstacle. That is, the position detection device 55 does not have to transmit the world coordinates of the obstacle outside the detection range DA to the main control device 31 even when the obstacle exists outside the detection range DA.
○第1実施形態の測位装置37は、無線信号の入射角を利用して産業車両10の現在位置を導出するものであってもよい。測位装置37は、固定機WTから送信された無線信号の入射角を導出する。測位装置37は、複数の無線信号の入射角から、産業車両10の現在位置を導出する。無線信号の受信態様には、無線信号の入射角を含むといえる。この場合、無線信号としては、WI-FI規格に準拠した電波や音波などを用いることができる。このように、無線信号の入射角を利用した測位方式は、AOA:Angle of Arrival方式といわれる。なお、測位装置37は、電波到達時間差方式等、無線信号を利用したものであれば、上記したもの以外の方式のものであってもよい。
○ The positioning device 37 of the first embodiment may derive the current position of the industrial vehicle 10 by using the incident angle of the radio signal. The positioning device 37 derives the incident angle of the radio signal transmitted from the fixed device WT. The positioning device 37 derives the current position of the industrial vehicle 10 from the incident angles of the plurality of radio signals. It can be said that the reception mode of the radio signal includes the incident angle of the radio signal. In this case, as the wireless signal, a radio wave or a sound wave conforming to the WI-FI standard can be used. As described above, the positioning method using the incident angle of the radio signal is called the AOA: Angle of Arrival method. The positioning device 37 may be of a method other than the above as long as it uses a wireless signal such as a radio wave arrival time difference method.
○第1実施形態において、産業車両10の現在位置は、区域A1に設けられた測位装置によって導出されてもよい。この場合、産業車両10は、区域A1に設けられた固定機WTに無線信号を送信する無線送信部を備える。区域A1に設けられた測位装置は、固定機WTでの無線信号の受信態様から産業車両10の現在位置を導出する。言い換えれば、無線信号の送信と受信の関係が固定機WTと産業車両10で逆になる。第1実施形態や上記変形例で記載した方式と同様の方式で区域A1に設けられた測位装置は産業車両10の現在位置を導出することができる。この場合、区域A1に設けられた測位装置は、産業車両10の現在位置を示す情報を産業車両10に送信する。これにより、主制御装置31は、産業車両10の現在位置を認識することができる。
○ In the first embodiment, the current position of the industrial vehicle 10 may be derived by a positioning device provided in the area A1. In this case, the industrial vehicle 10 includes a radio transmission unit that transmits a radio signal to the fixed machine WT provided in the area A1. The positioning device provided in the area A1 derives the current position of the industrial vehicle 10 from the reception mode of the radio signal in the fixed machine WT. In other words, the relationship between the transmission and reception of the radio signal is reversed between the fixed machine WT and the industrial vehicle 10. The positioning device provided in the area A1 can derive the current position of the industrial vehicle 10 by the same method as that described in the first embodiment and the above-described modification. In this case, the positioning device provided in the area A1 transmits information indicating the current position of the industrial vehicle 10 to the industrial vehicle 10. As a result, the main control device 31 can recognize the current position of the industrial vehicle 10.
○第1実施形態において、測位装置37は、GNSSを用いて測位を行うものであってもよい。GNSSは、GPS、GLONASS、IRNSS、及びQZSSを含む。測位装置37は、GNSS衛星から送信される衛星信号を受信して、受信した衛星信号から産業車両10の現在位置を導出する。この場合、産業車両10は、屋外で使用される。また、測位装置37として、第1実施形態の測位装置37と、GNSSを用いて測位を行うものを併用することで、屋内であっても屋外であっても産業車両10の現在位置を導出できるようにしてもよい。
○ In the first embodiment, the positioning device 37 may perform positioning using GNSS. GNSS includes GPS, GLONASS, IRNSS, and QZSS. The positioning device 37 receives the satellite signal transmitted from the GNSS satellite and derives the current position of the industrial vehicle 10 from the received satellite signal. In this case, the industrial vehicle 10 is used outdoors. Further, by using the positioning device 37 of the first embodiment and the positioning device 37 for positioning using GNSS together, the current position of the industrial vehicle 10 can be derived regardless of whether it is indoors or outdoors. You may do so.
○第2実施形態において、自己位置推定は、加速度センサやジャイロセンサを用いたデッドレコニングを用いて行われてもよいし、上記したGNSSを用いて行われてもよい。また、これらの自己位置推定と、第2実施形態に記載した自己位置推定とを組み合わせて自己位置推定は行われてもよい。
○ In the second embodiment, the self-position estimation may be performed by using dead reckoning using an acceleration sensor or a gyro sensor, or may be performed by using the above-mentioned GNSS. Further, the self-position estimation may be performed by combining these self-position estimations with the self-position estimation described in the second embodiment.
○第1実施形態において、測位装置37により産業車両10の現在位置を導出するのに代えて、路面の色彩から検知範囲DAを設定してもよい。産業車両10が用いられる環境には複数の路面色が存在している場合がある。例えば、工場では、人の通行する歩行帯や危険地帯では、他の位置と路面色を異ならせることで、その位置がどのような場所であるかを路面色によって表現している場合がある。歩行帯は、歩行帯であることを認識させるために青色で塗装されていたり、危険地帯は、危険地帯であることを認識させるために黄色と黒とを交互に配置したゼブラゾーンとなっている場合がある。このように、路面色が位置に対応付けられている環境では、路面色に対応付けて検知範囲DAを設定することで、産業車両10の現在位置に応じた検知範囲DAが設定されるといえる。例えば、歩行帯は、人が存在していることが多いため、人をいち早く検出できるように検知範囲DAの大きさを設定してもよい。
○ In the first embodiment, instead of deriving the current position of the industrial vehicle 10 by the positioning device 37, the detection range DA may be set from the color of the road surface. There may be a plurality of road surface colors in the environment in which the industrial vehicle 10 is used. For example, in a factory, in a walking zone or a dangerous zone where people pass, the road surface color may be used to express what kind of place the position is by making the road surface color different from other positions. The walking zone is painted in blue to recognize that it is a walking zone, and the danger zone is a zebra zone in which yellow and black are alternately arranged to recognize that it is a danger zone. In some cases. In this way, in an environment where the road surface color is associated with the position, it can be said that the detection range DA corresponding to the current position of the industrial vehicle 10 is set by setting the detection range DA in association with the road surface color. .. For example, since a person is often present in the walking zone, the size of the detection range DA may be set so that the person can be detected quickly.
路面の色彩を検出するため、産業車両10は、路面を撮像するように配置された撮像装置を備える。撮像装置としては、例えば、CCDイメージセンサや、CMOSイメージセンサを用いたものが挙げられる。主制御装置31の記憶部33あるいは補助記憶装置34には、色彩と検知範囲DAとを対応付けた対応関係が記憶される。主制御装置31は、撮像装置によって撮像された画像から、路面の色彩を検出する。主制御装置31は、路面の色彩に対応付けられた検知範囲DAを設定する。
In order to detect the color of the road surface, the industrial vehicle 10 includes an image pickup device arranged so as to image the road surface. Examples of the image pickup apparatus include a CCD image sensor and a device using a CMOS image sensor. The storage unit 33 or the auxiliary storage device 34 of the main control device 31 stores a correspondence relationship in which the color and the detection range DA are associated with each other. The main control device 31 detects the color of the road surface from the image captured by the image pickup device. The main control device 31 sets a detection range DA associated with the color of the road surface.
○各実施形態において、位置検出装置55は、ステップS14の処理を行った後に、検出した障害物が人か人以外の障害物かを判定する処理を行ってもよい。障害物が人か否かの判定は、種々の方法で行うことができる。例えば、位置検出装置55は、ステレオカメラ52の2つのカメラ53,54のうちいずれかで撮像された画像に対して、人検出処理を行うことで、障害物が人か否かの判定を行う。位置検出装置55は、ステップS14で得られたワールド座標系における障害物の座標をカメラ座標に変換し、当該カメラ座標をカメラ53,54によって撮像された画像の座標に変換する。例えば、位置検出装置55は、ワールド座標系における障害物の座標を第1画像の座標に変換する。位置検出装置55は、第1画像における障害物の座標に対して、人検出処理を行う。人検出処理は、例えば、特徴量抽出と、事前に機械学習を行った人判定器と、を用いて行われる。特徴量抽出としては、例えば、HOG:Histogram of Oriented Gradients特徴量、Haar-Like特徴量などの画像における局所領域の特徴量を抽出する手法が挙げられる。人判定器としては、例えば、教師有り学習モデルによる機械学習を行ったものが用いられる。教師有り学習モデルとしては、例えば、サポートベクタマシン、ニューラルネットワーク、ナイーブベイズ、ディープラーニング、決定木等を採用することが可能である。機械学習に用いる教師データとしては、画像から抽出された人の形状要素や、外観要素などの画像固有成分が用いられる。形状要素として、例えば、人の大きさや輪郭などが挙げられる。外観要素としては、例えば、光源情報、テクスチャ情報、カメラ情報などが挙げられる。光源情報には、反射率や、陰影等に関する情報が含まれる。テクスチャ情報には、カラー情報等が含まれる。カメラ情報には、画質、解像度、画角等に関する情報が含まれる。
○ In each embodiment, the position detection device 55 may perform a process of determining whether the detected obstacle is a human or a non-human obstacle after the process of step S14. Whether or not an obstacle is a person can be determined by various methods. For example, the position detection device 55 determines whether or not an obstacle is a person by performing a person detection process on an image captured by one of the two cameras 53 and 54 of the stereo camera 52. .. The position detection device 55 converts the coordinates of the obstacle in the world coordinate system obtained in step S14 into the camera coordinates, and converts the camera coordinates into the coordinates of the image captured by the cameras 53 and 54. For example, the position detection device 55 converts the coordinates of an obstacle in the world coordinate system into the coordinates of the first image. The position detection device 55 performs a person detection process on the coordinates of the obstacle in the first image. The human detection process is performed using, for example, feature quantity extraction and a human determination device that has been machine-learned in advance. Examples of the feature amount extraction include a method of extracting the feature amount of a local region in an image such as HOG: Histogram of Oriented Gradients feature amount and Haar-Like feature amount. As the human judgment device, for example, a machine learning using a supervised learning model is used. As a supervised learning model, for example, a support vector machine, a neural network, naive bays, deep learning, a decision tree, or the like can be adopted. As the teacher data used for machine learning, image-specific components such as human shape elements and appearance elements extracted from the image are used. Examples of the shape element include the size and contour of a person. Examples of the appearance element include light source information, texture information, camera information, and the like. The light source information includes information on reflectance, shading, and the like. The texture information includes color information and the like. The camera information includes information on image quality, resolution, angle of view, and the like.
このように、障害物が人か否かを判定する場合、障害物が人か否かに応じて主制御装置31で行われる処理を変更してもよい。主制御装置31は、検知範囲DAに存在する障害物が人の場合には、障害物が人ではない場合に比べて警報を強くしてもよい。主制御装置31は、検知範囲DAに存在する障害物が人の場合には、障害物が人ではない場合に比べて車速上限値を低く設定してもよい。
In this way, when determining whether or not an obstacle is a person, the processing performed by the main control device 31 may be changed depending on whether or not the obstacle is a person. When the obstacle existing in the detection range DA is a person, the main control device 31 may make the alarm stronger than when the obstacle is not a person. When the obstacle existing in the detection range DA is a person, the main control device 31 may set the vehicle speed upper limit value lower than when the obstacle is not a person.
○各実施形態において、主制御装置31は、検知範囲DAに障害物が存在している場合に警報及び車速制限のいずれかを行ってもよい。主制御装置31が警報を行わない場合、産業車両10は警報装置58を備えていなくてもよい。
○ In each embodiment, the main control device 31 may issue either an alarm or a vehicle speed limit when an obstacle exists in the detection range DA. If the main control device 31 does not give an alarm, the industrial vehicle 10 may not be equipped with the alarm device 58.
○各実施形態において、障害物検出装置51は、産業車両10の進行方向のうち前進方向に存在する障害物の位置を検出するものであってもよい。この場合、ステレオカメラ52は、産業車両10の前方を向いて配置される。障害物検出装置51により産業車両10の前進方向に存在する障害物の位置を検出する場合、検知範囲DAは産業車両10から前方に拡がる。また、産業車両10の進行方向が前進方向の場合に、警報及び車速制限が行われることになる。
○ In each embodiment, the obstacle detection device 51 may detect the position of an obstacle existing in the forward direction in the traveling direction of the industrial vehicle 10. In this case, the stereo camera 52 is arranged so as to face the front of the industrial vehicle 10. When the obstacle detection device 51 detects the position of an obstacle existing in the forward direction of the industrial vehicle 10, the detection range DA extends forward from the industrial vehicle 10. Further, when the traveling direction of the industrial vehicle 10 is the forward direction, the warning and the vehicle speed limitation are performed.
障害物検出装置51としては、産業車両10の進行方向のうち後進方向及び前進方向の両方に存在する障害物の位置を検出できるものであってもよい。この場合、1つの障害物検出装置51により産業車両10の進行方向のうち後進方向及び前進方向の両方に存在する障害物を検出可能にしてもよいし、前進方向用の障害物検出装置51と、後進方向用の障害物検出装置51を設けてもよい。産業車両10の進行方向のうち後進方向及び前進方向の両方に存在する障害物の位置を検出する場合、産業車両10の進行方向が前進方向の場合には、前進方向に存在する障害物によって警報及び車速制限が行われることになる。産業車両10の進行方向が後進方向の場合には、後進方向に存在する障害物によって警報及び車速制限が行われることになる。
The obstacle detection device 51 may be capable of detecting the position of an obstacle existing in both the reverse direction and the forward direction in the traveling direction of the industrial vehicle 10. In this case, one obstacle detection device 51 may be able to detect obstacles existing in both the reverse direction and the forward direction of the traveling direction of the industrial vehicle 10, or may be combined with the obstacle detection device 51 for the forward direction. , An obstacle detection device 51 for the reverse direction may be provided. When detecting the position of an obstacle existing in both the reverse direction and the forward direction in the traveling direction of the industrial vehicle 10, if the traveling direction of the industrial vehicle 10 is the forward direction, an alarm is given by the obstacle existing in the forward direction. And the vehicle speed will be limited. When the traveling direction of the industrial vehicle 10 is the reverse direction, the warning and the vehicle speed limitation are performed by the obstacle existing in the reverse direction.
○各実施形態において、障害物検出装置51は、センサとしてステレオカメラ52に代えて、TOF:Time of Flightカメラ、LIDAR:Laser Imaging Detection and Ranging、ミリ波レーダー等を用いてもよい。TOFカメラは、カメラと、光を照射する光源と、を備え、光源から照射された光の反射光を受光するまでの時間からカメラによって撮像された画像の画素毎に奥行き方向の距離を導出するものである。LIDARは、照射角度を変更しながらレーザーを照射し、レーザーが当たった部分から反射された反射光を受光することで周辺環境を認識可能な距離計である。ミリ波レーダーとは、所定の周波数帯域の電波を周囲に照射することで周辺環境を認識可能なものである。ステレオカメラ52、TOFカメラ、LIDAR、及びミリ波レーダーは、ワールド座標系における3次元座標を導出することができるセンサである。障害物検出装置51としては、3次元座標を計測することができるセンサを備えることが好ましい。なお、障害物検出装置51は、ステレオカメラ52とLIDAR等、複数のセンサを組み合わせたものを備えていてもよい。
○ In each embodiment, the obstacle detection device 51 may use a TOF: Time of Flight camera, LIDAR: Laser Imaging Detection and Ranging, millimeter wave radar, or the like as the sensor instead of the stereo camera 52. The TOF camera includes a camera and a light source that irradiates light, and derives the distance in the depth direction for each pixel of the image captured by the camera from the time until the reflected light of the light emitted from the light source is received. It is a thing. LIDAR is a rangefinder that can recognize the surrounding environment by irradiating a laser while changing the irradiation angle and receiving the reflected light reflected from the part hit by the laser. The millimeter wave radar is capable of recognizing the surrounding environment by irradiating the surroundings with radio waves in a predetermined frequency band. The stereo camera 52, the TOF camera, the LIDAR, and the millimeter-wave radar are sensors capable of deriving three-dimensional coordinates in the world coordinate system. The obstacle detection device 51 preferably includes a sensor capable of measuring three-dimensional coordinates. The obstacle detection device 51 may include a combination of a plurality of sensors such as a stereo camera 52 and LIDAR.
障害物検出装置51は、ステレオカメラ52に代えて、水平方向のうち一方向の軸をX軸、X軸に直交する方向の軸をY軸とする2軸直交座標系の座標を導出することができるセンサを備えていてもよい。即ち、センサとしては、障害物の水平方向の座標である2次元座標を導出することができるものを用いてもよい。この種のセンサとしては、例えば、水平方向への照射角度を変更しながらレーザーの照射を行う2次元のLIDAR等を用いることができる。
Instead of the stereo camera 52, the obstacle detection device 51 derives the coordinates of a two-axis Cartesian coordinate system in which one axis in the horizontal direction is the X axis and the axis in the direction orthogonal to the X axis is the Y axis. It may be equipped with a sensor capable of That is, as the sensor, a sensor that can derive two-dimensional coordinates that are the horizontal coordinates of the obstacle may be used. As this type of sensor, for example, a two-dimensional LIDAR that irradiates a laser while changing the irradiation angle in the horizontal direction can be used.
また、センサは、上記した各センサと、単眼カメラとの組み合わせであってもよい。この場合、センサの検出結果は障害物のワールド座標を検出することに用い、単眼カメラによって撮像された画像はセンサにより検出された障害物が人か否かを判定するのに用いてもよい。
Further, the sensor may be a combination of each of the above-mentioned sensors and a monocular camera. In this case, the detection result of the sensor may be used to detect the world coordinates of the obstacle, and the image captured by the monocular camera may be used to determine whether or not the obstacle detected by the sensor is a person.
○各実施形態において、ステレオカメラ52は、3つ以上のカメラを備えていてもよい。
○各実施形態において、ワールド座標系は、直交座標系に限られず、極座標系としてもよい。 ○ In each embodiment, thestereo camera 52 may include three or more cameras.
○ In each embodiment, the world coordinate system is not limited to the orthogonal coordinate system and may be a polar coordinate system.
○各実施形態において、ワールド座標系は、直交座標系に限られず、極座標系としてもよい。 ○ In each embodiment, the
○ In each embodiment, the world coordinate system is not limited to the orthogonal coordinate system and may be a polar coordinate system.
○各実施形態において、カメラ座標からワールド座標への変換はテーブルデータによって行われてもよい。テーブルデータは、Y座標YcとZ座標Zcの組み合わせにY座標Ywを対応させたテーブルデータと、Y座標YcとZ座標Zcとの組み合わせにZ座標Zwを対応させたテーブルデータである。これらのテーブルデータを位置検出装置55の記憶部57に記憶しておくことで、カメラ座標系におけるY座標YcとZ座標Zcから、ワールド座標系におけるY座標Yw及びZ座標Zwを求めることができる。なお、実施形態では、カメラ座標系におけるX座標Xcと、ワールド座標系におけるX座標Xwとは一致するため、X座標Xwを求めるためのテーブルデータは記憶されない。
○ In each embodiment, conversion from camera coordinates to world coordinates may be performed by table data. The table data is table data in which the combination of the Y coordinate Yc and the Z coordinate Zc corresponds to the Y coordinate Yw, and the table data in which the combination of the Y coordinate Yc and the Z coordinate Zc corresponds to the Z coordinate Zw. By storing these table data in the storage unit 57 of the position detection device 55, the Y coordinate Yw and the Z coordinate Zw in the world coordinate system can be obtained from the Y coordinate Yc and the Z coordinate Zc in the camera coordinate system. .. In the embodiment, since the X coordinate Xc in the camera coordinate system and the X coordinate Xw in the world coordinate system match, the table data for obtaining the X coordinate Xw is not stored.
○各実施形態において、警報装置58は、障害物検出装置51以外が備えていてもよい。
○各実施形態において、警報装置58は、主制御装置31が直接作動させるようにしてもよい。 ○ In each embodiment, thealarm device 58 may be provided by a device other than the obstacle detection device 51.
○ In each embodiment, thealarm device 58 may be directly operated by the main control device 31.
○各実施形態において、警報装置58は、主制御装置31が直接作動させるようにしてもよい。 ○ In each embodiment, the
○ In each embodiment, the
○各実施形態において、産業車両10は、駆動装置であるエンジンの駆動によって走行するものでもよい。この場合、走行制御装置43は、エンジンへの燃料噴射量などを制御する装置となる。
○ In each embodiment, the industrial vehicle 10 may be driven by driving an engine which is a driving device. In this case, the travel control device 43 is a device that controls the fuel injection amount to the engine and the like.
○各実施形態において産業車両10は、自動で動作するものであってもよいし、自動での動作と手動での動作とを切り替えられるものでもよい。
○各実施形態において、産業車両10は、産業車両10に搭乗していない操作者により遠隔操作されるものであってもよい。 -In each embodiment, theindustrial vehicle 10 may be one that operates automatically, or may be one that can switch between automatic operation and manual operation.
○ In each embodiment, theindustrial vehicle 10 may be remotely controlled by an operator who is not on the industrial vehicle 10.
○各実施形態において、産業車両10は、産業車両10に搭乗していない操作者により遠隔操作されるものであってもよい。 -In each embodiment, the
○ In each embodiment, the
○各実施形態において、産業車両10は、主制御装置31の機能と位置検出装置55の機能とを備える1つの装置を備えていてもよい。即ち、主制御装置31の機能と位置検出装置55の機能を1つの装置に集約してもよい。
○ In each embodiment, the industrial vehicle 10 may include one device having a function of the main control device 31 and a function of the position detection device 55. That is, the functions of the main control device 31 and the functions of the position detection device 55 may be integrated into one device.
○各実施形態において、障害物位置検出部は、複数の装置によって構成されていてもよい。
○各実施形態において、主制御装置31、走行制御装置43及び障害物検出装置51は、無線機によって互いの情報を取得可能に構成されていてもよい。 -In each embodiment, the obstacle position detection unit may be composed of a plurality of devices.
○ In each embodiment, themain control device 31, the travel control device 43, and the obstacle detection device 51 may be configured so that information on each other can be acquired by a radio.
○各実施形態において、主制御装置31、走行制御装置43及び障害物検出装置51は、無線機によって互いの情報を取得可能に構成されていてもよい。 -In each embodiment, the obstacle position detection unit may be composed of a plurality of devices.
○ In each embodiment, the
○各実施形態において、補助記憶装置34に記憶される情報は、主制御装置31の記憶部33や位置検出装置55の記憶部57等、補助記憶装置34以外の記憶媒体に記憶されていてもよい。この場合、産業車両10は補助記憶装置34を備えていなくてもよい。
○ In each embodiment, the information stored in the auxiliary storage device 34 may be stored in a storage medium other than the auxiliary storage device 34, such as the storage unit 33 of the main control device 31 or the storage unit 57 of the position detection device 55. good. In this case, the industrial vehicle 10 does not have to be provided with the auxiliary storage device 34.
○各実施形態において、産業車両10としては、荷等の搬送に用いられる牽引車、ピッキング作業に用いられるオーダーピッカー、トーイングトラクタ等どのようなものであってもよい。
○ In each embodiment, the industrial vehicle 10 may be a towing vehicle used for transporting a load or the like, an order picker used for picking work, a towing tractor, or the like.
A1…区域
DA…検知範囲
LA1,LA2,LA3…制限エリア
WT…固定機
10…産業車両
31…制御部、検知範囲設定部、位置導出部として機能する主制御装置
33…記憶装置としての記憶部
34…記憶装置としての補助記憶装置
37…位置導出部としての測位装置
52…センサとしてのステレオカメラ
55…障害物位置検出部としての位置検出装置。
A1 ... Area DA ... Detection range LA1, LA2, LA3 ... Restricted area WT ... Fixedmachine 10 ... Industrial vehicle 31 ... Control unit, detection range setting unit, main control device 33 that functions as a position derivation unit 33 ... Storage unit as a storage device 34 ... Auxiliary storage device as a storage device 37 ... Positioning device as a position derivation unit 52 ... Stereo camera as a sensor 55 ... Position detection device as an obstacle position detection unit.
DA…検知範囲
LA1,LA2,LA3…制限エリア
WT…固定機
10…産業車両
31…制御部、検知範囲設定部、位置導出部として機能する主制御装置
33…記憶装置としての記憶部
34…記憶装置としての補助記憶装置
37…位置導出部としての測位装置
52…センサとしてのステレオカメラ
55…障害物位置検出部としての位置検出装置。
A1 ... Area DA ... Detection range LA1, LA2, LA3 ... Restricted area WT ... Fixed
Claims (4)
- センサと、
前記センサの検出結果から実空間上の座標系での障害物の位置を検出する障害物位置検出部と、
前記障害物位置検出部により検出された前記障害物が、前記実空間上の座標系に設定された検知範囲に存在している場合に警報及び車速制限の少なくともいずれかを行う制御部と、
産業車両の現在位置に対応付けられた前記検知範囲を設定する検知範囲設定部と、を備える産業車両。 With the sensor
An obstacle position detection unit that detects the position of an obstacle in a coordinate system in real space from the detection result of the sensor, and an obstacle position detection unit.
A control unit that issues at least one of an alarm and a vehicle speed limit when the obstacle detected by the obstacle position detection unit exists in the detection range set in the coordinate system in the real space.
An industrial vehicle including a detection range setting unit for setting the detection range associated with the current position of the industrial vehicle. - 前記現在位置を導出する位置導出部と、
前記産業車両が用いられる区域に設定された制限エリアと前記検知範囲とを対応付けた対応関係が記憶された記憶装置と、を備え、
前記検知範囲設定部は、前記位置導出部により導出された前記現在位置が前記制限エリアに該当する場合、前記対応関係によって前記制限エリアに対応付けられた前記検知範囲を設定する請求項1に記載の産業車両。 The position derivation unit that derives the current position and
A storage device for storing a correspondence relationship between a restricted area set in an area where the industrial vehicle is used and the detection range is provided.
The first aspect of claim 1 is that when the current position derived by the position derivation unit corresponds to the restricted area, the detection range setting unit sets the detection range associated with the restricted area by the correspondence relationship. Industrial vehicle. - 前記位置導出部は、前記区域に設置された固定機が送信した無線信号を受信し、受信した前記無線信号の受信態様から前記現在位置を導出する請求項2に記載の産業車両。 The industrial vehicle according to claim 2, wherein the position derivation unit receives a radio signal transmitted by a fixed machine installed in the area, and derives the current position from the reception mode of the received radio signal.
- 前記検知範囲設定部は、通路幅が広い位置ほど前記検知範囲が広くなるように前記検知範囲を設定する請求項1~請求項3のうちいずれか一項に記載の産業車両。
The industrial vehicle according to any one of claims 1 to 3, wherein the detection range setting unit sets the detection range so that the wider the passage width is, the wider the detection range is.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020114171A JP7552101B2 (en) | 2020-07-01 | 2020-07-01 | Industrial Vehicles |
JP2020-114171 | 2020-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022004494A1 true WO2022004494A1 (en) | 2022-01-06 |
Family
ID=79316164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/023635 WO2022004494A1 (en) | 2020-07-01 | 2021-06-22 | Industrial vehicle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7552101B2 (en) |
WO (1) | WO2022004494A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11661060B1 (en) * | 2022-07-06 | 2023-05-30 | Hyster-Yale Group, Inc. | Direction-of-travel-based inhibition of speed control based on truck-to-truck proximity detection |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023146316A (en) | 2022-03-29 | 2023-10-12 | 株式会社豊田自動織機 | industrial vehicle |
WO2024185611A1 (en) * | 2023-03-08 | 2024-09-12 | コニカミノルタ株式会社 | System, device, method, and program for detecting object approaching mobile body |
EP4443262A1 (en) * | 2023-04-06 | 2024-10-09 | Kabushiki Kaisha Toyota Jidoshokki | Mobile unit control system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05204449A (en) * | 1992-01-27 | 1993-08-13 | Tsudakoma Corp | Collision prevention sensor control device for unmanned carrier |
JPH096433A (en) * | 1995-06-19 | 1997-01-10 | Kawasaki Heavy Ind Ltd | Automated guided vehicle and its non-contact type obstacle detecting method |
JP2002215238A (en) * | 2001-01-16 | 2002-07-31 | Hokuyo Automatic Co | Obstruction detection sensor for unmanned carrier |
JP2015191592A (en) * | 2014-03-28 | 2015-11-02 | ヤンマー株式会社 | Autonomous travel work vehicle |
JP2017120510A (en) * | 2015-12-28 | 2017-07-06 | 株式会社ダイフク | Article conveyance facility |
-
2020
- 2020-07-01 JP JP2020114171A patent/JP7552101B2/en active Active
-
2021
- 2021-06-22 WO PCT/JP2021/023635 patent/WO2022004494A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05204449A (en) * | 1992-01-27 | 1993-08-13 | Tsudakoma Corp | Collision prevention sensor control device for unmanned carrier |
JPH096433A (en) * | 1995-06-19 | 1997-01-10 | Kawasaki Heavy Ind Ltd | Automated guided vehicle and its non-contact type obstacle detecting method |
JP2002215238A (en) * | 2001-01-16 | 2002-07-31 | Hokuyo Automatic Co | Obstruction detection sensor for unmanned carrier |
JP2015191592A (en) * | 2014-03-28 | 2015-11-02 | ヤンマー株式会社 | Autonomous travel work vehicle |
JP2017120510A (en) * | 2015-12-28 | 2017-07-06 | 株式会社ダイフク | Article conveyance facility |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11661060B1 (en) * | 2022-07-06 | 2023-05-30 | Hyster-Yale Group, Inc. | Direction-of-travel-based inhibition of speed control based on truck-to-truck proximity detection |
EP4303171A1 (en) * | 2022-07-06 | 2024-01-10 | Hyster-Yale Group, Inc. | Direction-of-travel-based inhibition of speed control based on truck-to-truck proximity detection |
Also Published As
Publication number | Publication date |
---|---|
JP7552101B2 (en) | 2024-09-18 |
JP2022012369A (en) | 2022-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022004494A1 (en) | Industrial vehicle | |
CN108572663B (en) | Target tracking | |
US10444357B2 (en) | System and method for optimizing active measurements in 3-dimensional map generation | |
US9121717B1 (en) | Collision avoidance for vehicle control | |
JP6385745B2 (en) | Mining work vehicle | |
US20150070498A1 (en) | Image Display System | |
WO2021111839A1 (en) | Industrial vehicle | |
CN113085896B (en) | Auxiliary automatic driving system and method for modern rail cleaning vehicle | |
US11858493B2 (en) | Method of sharing and using sensor data | |
KR20200020465A (en) | Apparatus and method for acquiring conversion information of coordinate system | |
JP2021093124A (en) | Industrial vehicle | |
JP5968178B2 (en) | Image processing apparatus for remote control, remote control system, and image processing method for remote control | |
JP7396227B2 (en) | Forklift notification device | |
WO2022004495A1 (en) | Obstacle detection device and obstacle detection method | |
CN115848355A (en) | Parking system using surface structured light and method of operating the same | |
WO2022050036A1 (en) | Industrial vehicle | |
JP2022094178A (en) | Industrial vehicle | |
US11383700B2 (en) | Vehicle travel control device and vehicle travel control method for parking | |
KR20210138819A (en) | Image output type remote automatic parking device | |
US10264431B2 (en) | Work site perception system | |
US11884265B1 (en) | Parking assistance method and parking assistance device | |
JP7501414B2 (en) | Surveillance Equipment | |
CN118355655A (en) | Information processing device, mobile body, information processing method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21831581 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21831581 Country of ref document: EP Kind code of ref document: A1 |