WO2022004267A1 - Hydrocarbon manufacturing system using catalytic hydrogenolysis of oil/fat - Google Patents

Hydrocarbon manufacturing system using catalytic hydrogenolysis of oil/fat Download PDF

Info

Publication number
WO2022004267A1
WO2022004267A1 PCT/JP2021/021266 JP2021021266W WO2022004267A1 WO 2022004267 A1 WO2022004267 A1 WO 2022004267A1 JP 2021021266 W JP2021021266 W JP 2021021266W WO 2022004267 A1 WO2022004267 A1 WO 2022004267A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
oils
fats
reaction
catalyst
Prior art date
Application number
PCT/JP2021/021266
Other languages
French (fr)
Japanese (ja)
Inventor
慶一 傳
裕一郎 東
興哲 松永
Original Assignee
株式会社レボインターナショナル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レボインターナショナル filed Critical 株式会社レボインターナショナル
Priority to JP2022533767A priority Critical patent/JPWO2022004267A1/ja
Publication of WO2022004267A1 publication Critical patent/WO2022004267A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a method for producing lower and higher hydrocarbons obtained by catalytic hydrocracking and hydrogenation of oils and fats of biomass raw material oil, and an apparatus for producing the hydrocarbon.
  • Biomass-derived liquid fuel is desired from the viewpoint of being renewable and reducing the amount of carbon dioxide emitted by carbon neutrality.
  • fatty acid methyl ester has been put into practical use as a diesel fuel as a fuel using biomass as a raw material.
  • glycerin of about 10% of the fat and oil as a raw material is produced as a by-product in the step of methyl esterifying the fat and oil, and it is difficult to completely remove the glycerin and the fuel quality is deteriorated.
  • fatty acid methyl ester has a problem because it has a high viscosity.
  • fatty acid methyl ester has an unsaturated bond group in the carbon chain and has poor oxidative stability. In this way, fatty acid methyl esters leave a problem in quality. Therefore, there is a demand for biomass-derived hydrocarbons that correspond to petroleum-derived light oil and the like.
  • Non-Patent Document 1 a catalyst in which a noble metal such as platinum is added to a zeolite-based solid acid catalyst is used as a decomposition catalyst, and naphtha, kerosene, light oil, etc. are produced by a reaction under high temperature and high pressure. There is. It is said that the addition of platinum to the catalyst suppresses carbon formation on the catalyst due to the lack of hydrogen in the above reactions with high-pressure hydrogen, and the catalyst life can be put to practical use. There are many technologies that basically follow this technology for biomass raw materials.
  • the catalyst is nickel and molybdenum supported on strongly acidic silica-alumina
  • the raw material fat is jatropha oil
  • an experiment is performed using a pressure-fixed bed type reactor (1 to 8 MPa).
  • the product is mainly limited to those having 15 to 17 carbon atoms as the carbon component of the raw material jatropha oil.
  • Non-Patent Document 3 1. 2. Manufacture Syngas by high-temperature gasification of Bymas and via Fisher Tropsch synthesis. 2. High-temperature thermal decomposition to produce crude oil and hydrogen treatment. 3. Alcohol is obtained from biomass by fermentation and then hydrogenated. There is hydrogen decomposition of fats and oils.
  • Patent Document 1 an example of hydrocracking of fats and oils using a catalyst prepared by special catalyst preparation is disclosed.
  • the contents of the disclosure include "optimization of reaction conditions (temperature, LHSV (liquid space velocity), hydrogen supply amount, pressure of 1 MPa or less, etc.) and optimization of catalyst preparation (molybdenum addition / sulfurization treatment) to produce a product. Is made up of low-grade to high-grade hydrocarbons, and if fractionated, kerosene-equivalent products and light oil-equivalent products can be obtained separately.
  • the catalyst used is a solid acid zeolite on which a metal is supported, which is on the conventional route.
  • all catalytic hydrocracking catalysts are composed of zeolite, a strongly acidic solid acid of silica-alumina, or a carrier having a strongly acidic catalytic function in which chloride is added to alumina, and a catalytic hydrocracking reaction.
  • carbon precipitation occurs remarkably at the acidic points on the catalyst surface, leaving a problem with the life of the activity.
  • high-pressure hydrogen is mainly used to prolong the catalyst life. Therefore, the current situation is that the development of a catalyst having an essentially longer catalyst life is desired.
  • the subject of the present invention is a hydrocarbon production system that imparts catalyst stability, a hydrocarbon production method, and a hydrocarbon production system that imparts catalyst stability in order to produce hydrocarbons equivalent to light oil and kerosene by catalytic hydrocracking of fats and oils. It is to provide a hydrocarbon production apparatus.
  • the present inventors have made the fats and oils, which are the raw materials of various hydrogenated substances, a carrier having no acidic point, which is a cause of deterioration, or a carrier having a very small amount of acidic point.
  • a metal catalyst with a carrier carrying a metal having a hydrogenating ability we have found a manufacturing system that realizes the addition of a hydrogenalytic decomposition function to the catalyst and the stabilization of the activity of the function in the presence of water.
  • the invention was completed. Since the obtained hydrocarbon is equivalent to kerosene or light oil, it has excellent low-temperature fluidity and oxidative stability.
  • the gist of the present invention relates to the following [1] to [7].
  • a hydrocarbon production system that produces hydrocarbons from fats and oils by catalytic hydrocracking reaction.
  • a fat supply line, a hydrogen gas supply line, and a water supply line were connected to a reaction section provided with a metal catalyst with a carrier, in which a metal having a hydrocarbonizing ability was supported on a neutral or weakly acidic metal oxide.
  • the hydrocarbon production system according to the above [1], wherein the hydrocarbon produced is a hydrocarbon having 5 to 20 carbon atoms.
  • the metal catalyst with a carrier is a catalyst composed of the following groups 1 and 2.
  • Group 1 Catalysts with alumina, zirconia and / or titania as carriers.
  • Group 2 A catalyst in which at least one selected from the group consisting of ruthenium, nickel, platinum, palladium, iridium, rhodium, gold and silver is supported on alumina, zirconia and / or titania.
  • Oils include rapeseed oil, cottonseed oil, palm oil, coconut oil, sunflower oil, soybean oil, oil palm oil, coconut oil, jatrofa oil, olive oil, waste cooking oil, dark oil, animal oil oils and fats, algae oils and fats.
  • a hydrocarbon production apparatus in which a catalyst which is a neutral or weakly acidic metal oxide carrying a metal having a hydrogenating ability is present in the reaction unit.
  • FIG. 1 is a diagram showing a manufacturing system and a manufacturing apparatus.
  • FIG. 2 is a diagram showing the stability and durability of the catalyst.
  • FIG. 3 is a diagram showing decomposition of an ester moiety and cleavage of a carbon chain.
  • the selection rate as an evaluation when divided into kerosene equivalent and light oil equivalent is shown. That is, among the produced C 5-20 hydrocarbons (HC), the selectivity of C 8-14 HC as equivalent to kerosene was shown.
  • the present invention proposes a hydrocarbon production system without a regeneration facility for catalyst activation and stabilization. Specifically, the following system can be mentioned.
  • a hydrocarbon production system that produces hydrocarbons from fats and oils by catalytic hydrocracking reaction.
  • a fat supply line, a hydrogen gas supply line, and a water supply line were connected to a reaction section provided with a metal catalyst with a carrier in which a metal having a hydrocarbonizing ability was supported on a neutral or weakly acidic metal oxide.
  • the hydrocarbon produced by this system is preferably a hydrocarbon having 5 to 20 carbon atoms, and more preferably a hydrocarbon having 8 to 20 carbon atoms.
  • the hydrocarbon production method of the present invention is carried out in the presence of a metal catalyst with a carrier.
  • Hydrogen supply pressure is 0.2-5MPa
  • the liquid space velocity of the supply liquid amount of fats and oils is set to 0.01 to 10.0 hr -1 .
  • the amount of water supplied to 100 parts by volume of fat and oil is 5 to 80 parts by volume, and the ratio of the flow rate of hydrogen to the flow rate of fat and oil is 50 to 1200 NL per liter of fat and oil, and the hydrogen, fat and water are used as the carrier.
  • It is a method of producing a hydrocarbon having 5 to 20 carbon atoms by supplying it to a reaction section equipped with a metal catalyst and performing catalytic hydrocracking of fats and oils.
  • the metal catalyst with a carrier is a production method in which the catalyst is composed of the following groups 1 and 2.
  • Group 1 Catalysts with alumina, zirconia and / or titania as carriers.
  • Group 2 A catalyst in which at least one selected from the group consisting of ruthenium, nickel, platinum, palladium, iridium, rhodium, gold and silver is supported on alumina, zirconia and / or titania.
  • the fats and oils in the present invention are selected from, but not limited to, rapeseed oil, cottonseed oil, palm oil, coconut oil, sunflower oil, soybean oil, rice oil, oil palm oil, coconut oil, jatrofa oil, and olive oil. It is preferable that the amount is one or more. Further, fats and oils from algae and animal oils are also preferable. Further, the used waste cooking oil of tempura oil is more preferable at present. Dark oils from the fat processing process, as well as animal oils, are also available. In addition, it can also be applied to biomass carbonization oil.
  • the hydrogen supply pressure during the treatment varies depending on the reaction requirements for obtaining the desired product and the accompanying measures for prolonging the catalyst life (suppressing carbon precipitation), but generally becomes the following hydrogen reaction pressure. It is 0.2 to 5.0 MPa, preferably 0.2 to 3.0 MPa, and more preferably 0.5 to 1.5 MPa.
  • the flow rate of the fat and oil is set to a liquid space velocity of 0.01 to 10.0 hr -1 based on the fat and oil. It is preferably 0.05 to 5.0 hr -1 , and more preferably 0.05 to 3.0 hr -1 .
  • the lower the liquid space velocity the more advantageous the reaction tends to be, but if it is less than the above lower limit, a reactor having an extremely large internal volume tends to be required, and an excessive capital investment tends to be required.
  • the temperature at the inlet of the reaction section when supplying fats and oils is preferably 25 to 250 ° C, preferably 100 to 200 ° C, and even more preferably 150 to 180 ° C.
  • the flow rate of the supplied water is preferably set to 5 to 80 parts by volume, more preferably 10 to 60 parts by volume, and further preferably 20 to 50 parts by volume with respect to 100 parts by volume of fat and oil. If it is 5 or less, the effect of adding water is unlikely to appear, and if it exceeds 80, it is disadvantageous in terms of calorific value.
  • the temperature at the inlet of the reaction part at the time of water supply is preferably 20 to 250 ° C. from the viewpoint of preheating efficiency and reaction efficiency. , 100 to 200 ° C, more preferably 150 to 180 ° C.
  • the oil / fat supply temperature is preferably within ⁇ 20 ° C, more preferably within ⁇ 10 ° C, and even more preferably within ⁇ 5 ° C.
  • the ratio of the hydrogen flow rate to the flow rate of fats and oils is set to 50 to 1200 NL (normal liter) of hydrogen per 1 L of fats and oils.
  • hydrogen is 200 to 1000 NL per 1 L of fat and oil. More preferably, it is 300 to 800 NL.
  • the ratio of hydrogen to fats and oils is less than the above lower limit, the reactivity tends to decrease or the activity tends to decrease rapidly.
  • the ratio exceeds the above upper limit, excessive capital investment such as hydrogen supply equipment tends to be required.
  • the reaction temperature is preferably 250 ° C to 500 ° C, more preferably 300 ° C to 450 ° C, and even more preferably 330 ° C to 400 ° C. At 250 ° C or lower, the reaction rate decreases, and at 500 ° C or higher, dehydrogenation or the like occurs and carbon precipitation is likely to occur.
  • the metal catalyst with a carrier is preferably filled in a reactor such as a known reaction tube.
  • a reactor such as a known reaction tube.
  • a fixed bed method can be adopted.
  • Hydrogen can adopt either a countercurrent or parallel flow form with respect to fats and oils.
  • a plurality of reactors may be used to combine countercurrent and parallel current.
  • the general format is downflow, and a gas-liquid double parallel flow format can be adopted.
  • the reactor may be used alone or in combination of two or more, and a structure in which the inside of one reactor is divided into a plurality of catalyst beds may be adopted.
  • the main component of the hydrocarbon produced by the production method of the present invention is one having 5 to 20 carbon atoms.
  • a dual catalyst in which a solid acid as a decomposition catalyst is used as a carrier and a metal catalyst such as a noble metal is added. That is, it is interpreted that hydrogenation decomposition, carbon chain cleavage, isomerization and cyclization isomerization by an acid catalyst are carried out, and hydrogenation and dehydrogenation by a metal catalyst are carried out.
  • the acid point of the solid acid is estimated as the place where carbon precipitation occurs. Therefore, in the catalyst of the present invention, a neutral carrier such as alumina is used while avoiding the use of solid acid.
  • a weakly acidic carrier with a trace amount of acidity may be used.
  • hydrogen is dissociated adsorbed on the carrier with a metal catalyst, oxonium ions by a coordination bond with the added water (H 3 O) + next (Non-Patent Document 4), moving the solid acid on the surface of the carrier Used in place of the acid point of. That is, when the water is adsorbed on the surface of the metal catalyst, it becomes an oxonium ion, and an active proton is generated and moves on the surface of the carrier to have the same reactivity as the Bronsted acid point of a solid acid.
  • the oxonium ion is classified as a strong acid and has pKa ⁇ -2 as compared with pKa ⁇ -3 to -5 of sulfuric acid, and therefore has an acid strength equivalent to that of the Bronsted acid point of a solid acid. That is, since it is equivalent to the acid point of a solid acid, it can be presumed that the carbon chain is converted into carbenium ion by the oxonium ion and the cleavage of the carbon chain proceeds in a chain reaction.
  • the oxonium ion has a hydrogenation resolution similar to that of the acid point of a solid acid, and can be applied to cleavage of a carbon chain of a general hydrocarbon, cyclization dehydrogenation reaction, dehydrogenation reaction, isomerization reaction and the like.
  • the substrate in the hydrogenation deoxidation of the ester site and the hydrogenation reaction of the unsaturated part, the substrate (ester part and unsaturated part) needs to be adsorbed on the solid surface, but it is easily adsorbed on the acidic point. Even with a neutral carrier, the substrate is adsorbed on the oxonium ions on the surface, and the atomized hydrogen spilled over from the metal surface promotes hydrogenation deoxidation and hydrogenation reaction at the ester moiety.
  • Oxonium ions have a large hydrogen donating effect and have a carbon-suppressing effect and do not cause carbon precipitation by themselves, but if the amount is small, carbon precipitation at the adsorption point of the substrate cannot be completely suppressed and the catalytic action deteriorates over time. .. Therefore, a sufficient amount of oxonium ion is required, and therefore a necessary and sufficient amount of added water is required.
  • a trace amount of aromatic compound may be produced as a by-product. When the reaction is carried out at a relatively low pressure, this aromatic compound may be adsorbed on the catalyst carrier and cause carbon precipitation. For the purpose of preventing such adsorption, it is effective and preferable to add 0.1 to 5% by mass of sodium hydroxide or ammonia to the added water.
  • Form of Metal Catalyst with Carrier it is a catalyst in which a metal having a function of dissociating hydrogen to generate atomic hydrogen and a hydride ability is supported on a neutral or weakly acidic porous metal oxide.
  • the metal is one or more selected from the group consisting of ruthenium, nickel, platinum, palladium, iridium, rhodium, gold, and silver, and the porous metal oxide of the carrier is composed of alumina, zirconia, and titania.
  • One or more of the more selected are metal catalysts with carriers.
  • a preferable combination of the carrier in the metal catalyst with a carrier and the metal to be supported is, for example, a combination in which the carrier is alumina and the metal contains nickel and ruthenium.
  • the mass ratio of nickel to ruthenium (Ni: Ru) is preferably 10: 1 to 500: 1, more preferably 20: 1 to 250: 1, and even more preferably 100: 1 to 140: 1.
  • the particle size is preferably 0.01 to 3.0 mm, more preferably 0.03 to 3.0 mm. If the particle size is smaller than 0.01 mm, the pressure loss of the catalyst layer becomes excessive, which is not preferable. Further, when the particle size is larger than 3 mm, a space is created between the catalysts so that fats and oils can pass through. However, since the surface area per unit volume is small due to the large particles, the contact efficiency tends to deteriorate, which is not preferable. In terms of handling (handling) of catalyst particles, those having a particle diameter of 0.5 to 3 mm are more preferably adopted. Practically, a catalyst having a diameter of 1 mm to 3 mm is recommended.
  • the air Before using this catalyst, it is preferable to calcin it in the air to reduce hydrogen. In order to oxidize and remove impurities mixed in the catalyst preparation, it is preferable to bake at 300 to 450 ° C. in air, more preferably 350 to 400 ° C.
  • the heat treatment time in the air is preferably 1 to 5 hours. It is important to reduce what is oxidized during the firing process.
  • the heat treatment time in hydrogen gas is preferably 1 to 5 hours, preferably 350 ° C. to 450 ° C.
  • the hydrocarbon of the present invention is characterized by being produced by the method for producing a hydrocarbon of the present invention.
  • the obtained hydrocarbon is a mixture of hydrocarbons corresponding to light oil or kerosene from the viewpoint of boiling point and carbon number.
  • the hydrocarbon production apparatus of the present invention is an apparatus for producing hydrocarbons by catalytic hydrogenation and decomposition of fats and oils, and is at least an oil / fat supply unit, a hydrogen gas supply unit, a water supply unit, a reaction unit, and a reaction unit. It is composed of a reaction product recovery unit, preferably further provided with means for adjusting the flow rate of fats and oils, the flow rate of added water, and the flow rate of hydrogen gas. There are catalysts that are weakly acidic metal oxides. In the reaction section, the supplied oil and fat and the supplied hydrogen gas are reacted by adding water in the presence of a metal catalyst with a carrier.
  • the hydrocarbon production apparatus of the present invention is further equipped with a hydrogen gas production apparatus, a product separation apparatus for distilling and separating the reaction termination product, and the like, if necessary.
  • the manufacturing apparatus of the present invention is composed of at least three parts: (1) water, oil and fat and hydrogen gas supply part, (2) reaction part and (3) reaction product recovery part. That is, in the manufacturing apparatus exemplified in FIG. 1, fats and oils and water are simultaneously supplied to the reaction section.
  • fats and oils and water are simultaneously supplied to the reaction section.
  • the water, fat and hydrogen gas supply section of (1) fat and oil are sent from line 1 to the upper part of the reaction tube 7 through the liquid supply pump 2, and hydrogen is sent from line 3 through the hydrogen gas flow rate control unit 4 to the upper part of the reaction tube 7 (preferably. Is supplied downstream of the oil supply point).
  • the added water is supplied from the water supply unit, that is, the line 13 through the added water supply pump 14.
  • Unreacted hydrogen gas and gaseous hydrocarbons are discharged from the condensate receiver 12 (the gaseous hydrocarbons are separated from the hydrogen gas by another device and used as fuel or the like).
  • the contents of the condensate receiver 12 are separated into hydrocarbons equivalent to light oil or kerosene and unreacted substances (high boiling point substances) by another distillation apparatus.
  • fats and oils, water and hydrogen need to coexist in the reaction section.
  • These three components may be connected to the reaction section via different lines, or as shown in FIG. 1, the fats and oils are supplied so that the fats and oils and water are mixed immediately before the entrance of the reaction section. After the line to supply water and the line to supply water are connected, they may be connected to the reaction section.
  • a metal catalyst with a carrier exists in the reaction section of the hydrocarbon production apparatus of the present invention. With such a catalyst, hydrogen gas and water can be supplied to produce a hydrocarbon equivalent to light oil or kerosene.
  • the hydrogen gas production apparatus is, for example, a steam reforming reaction apparatus (for example, a steam reforming reaction apparatus provided with a recycling raw material supply unit for a low boiling gas substance separated from a product in the hydrocarbon production apparatus of the present invention, or a city gas supply unit. , Equipment with a ruthenium-alumina catalyst).
  • a normal pressure or vacuum distillation column can be adopted as the product separation device for performing product separation.
  • Low boiling gaseous substances are recycled to hydrogen gas production equipment.
  • the light oil equivalent be recycled and supplied to the catalytic hydrocracking apparatus to be converted into kerosene equivalent.
  • the product separation device that is, the high boiling point discharged from the lower part of the distillation column, may be recovered as combustion fuel and supplied to the combustion / energy recovery device for use as a heat source required for the entire device.
  • Pretreatment of Alumina Prepared by adding purified water to 1 mol / L of nitric acid (60%) manufactured by Nacalai Tesque. 1 mol / L nitric acid 50 cc was mixed with 50 cc activated alumina and mixed in a 200 ml eggplant flask. The mixture was stirred for 4 hours using a rotary evaporator. After that, nitric acid-treated activated alumina was filtered, and washing and filtration were repeated 3 times with 50cc purified water. The catalyst carrier was a dryer set at 103 ° C. and dried for 3 hours to remove moisture.
  • Supporting metal A conventional impregnation method using 10 parts by mass of Ni and 0.1 part by mass of Ru (10.1 parts by mass in total) with respect to 100 parts by mass of activated alumina pretreated with nitrate in this way. Prepared a metal catalyst with a carrier.
  • Activated alumina Union Showa Co., Ltd., D-201 5 ⁇ 8 particle size 3 mm Nickel Nitrate (Nickel Nitrate (II) Hexahydrate, manufactured by Wako Pure Chemical Industries, Ltd.) Ruthenium nitrate
  • a hydrocarbon production apparatus As a hydrocarbon production apparatus, a fixed-bed flow reactor having a normal pressure as shown in FIG. 1 was used, a catalyst (50 cc) was filled inside the reaction tube 7, and a catalytic hydrocracking reaction of fats and oils was carried out. As the reactor, a reaction tube 7 having an inner diameter of 10.22 mm and a catalyst filling length of 291 mm was used, and a thermocouple was mainly installed in the catalyst layer, and the temperature of the catalyst layer was actually measured.
  • the temperature of the reactor was controlled by the electric heating furnace 8, and the reaction product was cooled by a room temperature water cooler, and then the condensed components were separated. Gas crotography analysis of the liquid component recovered in the condensate receiver (hydrocarbon) 12 was performed. The hydrogen flow rate was controlled by the flow rate control valve. Oils and fats as raw material oil and added water were supplied by a quantitative liquid pump.
  • Table 2 shows the activity evaluations of Examples and Comparative Examples.
  • HC (hydrocarbon) yield An index of the decomposition rate of the ester moiety.
  • C 5-20 was measured by gas chromatography.
  • the hydrocarbon obtained by the system or manufacturing method of the present invention can be used as a fuel equivalent to light oil or a fuel equivalent to kerosene.

Abstract

The present invention relates to a hydrocarbon manufacturing system that uses a catalytic hydrogenolysis reaction to manufacture a hydrocarbon from an oil/fat, said hydrocarbon manufacturing system comprising a processing device that performs the oil/fat catalytic hydrogenolysis reaction and in which an oil/fat supply line, a hydrogen gas supply line, and a water supply line are connected to a reaction part, said reaction part being provided with a carrier-equipped metal catalyst that is obtained by supporting a metal that has a hydrogenation capability on a neutral or weakly acidic metal oxide. A hydrocarbon that is obtained using the system or manufacturing method of the present invention can be used as a fuel corresponding to diesel fuel or a fuel corresponding to kerosene.

Description

油脂の接触水素化分解による炭化水素製造システムHydrocarbon production system by catalytic hydrocracking of fats and oils
 本発明は、バイオマス原料油の油脂類を接触水素化分解及び水素添加することにより得られる低級および高級炭化水素の製造方法、及び該炭化水素の製造装置に関する。 The present invention relates to a method for producing lower and higher hydrocarbons obtained by catalytic hydrocracking and hydrogenation of oils and fats of biomass raw material oil, and an apparatus for producing the hydrocarbon.
 再生可能であり、かつカーボンニュートラルにより二酸化炭素を排出する量を低減する観点から、バイオマス由来の液体燃料が望まれている。 Biomass-derived liquid fuel is desired from the viewpoint of being renewable and reducing the amount of carbon dioxide emitted by carbon neutrality.
 現在バイオマスを原料とする燃料としては、脂肪酸メチルエステルがディーゼル燃料として実用化されている。しかしながら、脂肪酸メチルエステルは、油脂をメチルエステル化する工程において、副産物として原料である油脂の10%程度のグリセリンが生じ、このグリセリンの完全な除去が困難で燃料品質も低下する。また低温流動性の観点からも、脂肪酸メチルエステルは粘度が大きいので問題がある。また脂肪酸メチルエステルは、炭素鎖に不飽和結合基を持ち酸化安定性が悪い。このように脂肪酸メチルエステルは品質に問題を残している。従って、石油由来の軽油などに相当するバイオマス由来の炭化水素が要望されている。 Currently, fatty acid methyl ester has been put into practical use as a diesel fuel as a fuel using biomass as a raw material. However, in the fatty acid methyl ester, glycerin of about 10% of the fat and oil as a raw material is produced as a by-product in the step of methyl esterifying the fat and oil, and it is difficult to completely remove the glycerin and the fuel quality is deteriorated. Also, from the viewpoint of low temperature fluidity, fatty acid methyl ester has a problem because it has a high viscosity. In addition, fatty acid methyl ester has an unsaturated bond group in the carbon chain and has poor oxidative stability. In this way, fatty acid methyl esters leave a problem in quality. Therefore, there is a demand for biomass-derived hydrocarbons that correspond to petroleum-derived light oil and the like.
 翻って、石油中の炭化水素に対する接触水素化分解技術は、ほぼ完成の域にあり実用化がなされているのは周知である。非特許文献1によれば、分解触媒としてゼオライト系の固体酸触媒に白金などの貴金属を添加した触媒が用いられ、高温高圧下の反応で、ナフサ、灯油、軽油などが生成されるとされている。白金の触媒への添加で、上記諸反応で水素の不足に起因する触媒上の炭素生成が高圧水素で抑制され触媒寿命が実用に耐え得るとされている。バイオマス原料に対しても基本的に本技術を踏襲した技術が多い。 On the other hand, it is well known that the catalytic hydrocracking technology for hydrocarbons in petroleum is almost completed and has been put into practical use. According to Non-Patent Document 1, a catalyst in which a noble metal such as platinum is added to a zeolite-based solid acid catalyst is used as a decomposition catalyst, and naphtha, kerosene, light oil, etc. are produced by a reaction under high temperature and high pressure. There is. It is said that the addition of platinum to the catalyst suppresses carbon formation on the catalyst due to the lack of hydrogen in the above reactions with high-pressure hydrogen, and the catalyst life can be put to practical use. There are many technologies that basically follow this technology for biomass raw materials.
 例えば、非特許文献2では、触媒が強酸性のシリカ-アルミナに担持したニッケル、モリブデンであり、原料油脂がジャトロファ油で、加圧固定床式反応装置(1~8MPa)を用いて実験している。生成物は、原料のジャトロファ油の炭素成分の主として炭素数15~17のものに限られている。 For example, in Non-Patent Document 2, the catalyst is nickel and molybdenum supported on strongly acidic silica-alumina, the raw material fat is jatropha oil, and an experiment is performed using a pressure-fixed bed type reactor (1 to 8 MPa). There is. The product is mainly limited to those having 15 to 17 carbon atoms as the carbon component of the raw material jatropha oil.
 そのほか、散見される文献では、ゼオライトあるいはシリカアルミナの固体酸に金属が担持されてなる触媒で、水素化により油脂類の不飽和結合基を飽和化し酸素を除去し油脂類のエステル部位が分解されるものである。 In addition, in the scattered literature, a catalyst in which a metal is supported on a solid acid of zeolite or silica-alumina is used to saturate unsaturated bond groups of fats and oils by hydrogenation to remove oxygen and decompose ester sites of fats and oils. It is a thing.
 バイオマス原料由来の液体炭化水素燃料についての開発現状は、主として軽油相当の燃料目的としたものであるが、今後、灯油相当のジェット燃料の需要が見込まれるので、軽油相当の炭化水素(炭素数15~20)に限らず灯油相当(炭素数8~14)の低中級炭化水素を視野に入れなければならない。非特許文献3によれば、1.バイマスを高温ガス化による合成ガスを製造し、フィッシャートロップシュ合成を経由して製造する、2.高温熱分解し原油を製造し水素処理を行う、3.バイオマスから発酵によりアルコールを得て、後に水素処理を行う、4.油脂の水素分解などがある。 Development of liquid hydrocarbon fuel derived from biomass raw material The current situation is mainly for the purpose of fuel equivalent to light oil, but since demand for jet fuel equivalent to kerosene is expected in the future, hydrocarbon equivalent to light oil (15 carbon atoms). Not limited to ~ 20), low-intermediate hydrocarbons equivalent to kerosene (8 to 14 carbon atoms) must be taken into consideration. According to Non-Patent Document 3, 1. 2. Manufacture Syngas by high-temperature gasification of Bymas and via Fisher Tropsch synthesis. 2. High-temperature thermal decomposition to produce crude oil and hydrogen treatment. 3. Alcohol is obtained from biomass by fermentation and then hydrogenated. There is hydrogen decomposition of fats and oils.
 特許文献1によれば、特殊な触媒調製によって作成された触媒を用いて、油脂の水素化分解の実施例が開示されている。開示内容としては、「反応条件の最適化(温度、LHSV(液空間速度)、水素供給量、圧力1MPa以下など)及び触媒調製の最適化(モリブデン添加/硫化処理)を行うことで、生成物は低級から高級までの炭化水素を成し、分留すれば、灯油相当品、軽油相当品が別個に得られる」とされている。しかし用いた触媒は固体酸のゼオライトに金属が担持されたもので従来の路線にある。 According to Patent Document 1, an example of hydrocracking of fats and oils using a catalyst prepared by special catalyst preparation is disclosed. The contents of the disclosure include "optimization of reaction conditions (temperature, LHSV (liquid space velocity), hydrogen supply amount, pressure of 1 MPa or less, etc.) and optimization of catalyst preparation (molybdenum addition / sulfurization treatment) to produce a product. Is made up of low-grade to high-grade hydrocarbons, and if fractionated, kerosene-equivalent products and light oil-equivalent products can be obtained separately. " However, the catalyst used is a solid acid zeolite on which a metal is supported, which is on the conventional route.
 一般に、接触水素化分解触媒は、いずれもが、ゼオライト、シリカアルミナの強酸性の固体酸、あるいはアルミナに塩化物を添加した強酸性の触媒機能を持つ担体で構成されおり、接触水素化分解反応過程で触媒表面の酸性点に炭素の析出が顕著に起こり活性の寿命に問題が残る。対策として主として高圧水素が用いられ触媒寿命を長くすることが採用されている。そこで本質的により触媒寿命が長い触媒の開発が望まれているのが現状である。 In general, all catalytic hydrocracking catalysts are composed of zeolite, a strongly acidic solid acid of silica-alumina, or a carrier having a strongly acidic catalytic function in which chloride is added to alumina, and a catalytic hydrocracking reaction. During the process, carbon precipitation occurs remarkably at the acidic points on the catalyst surface, leaving a problem with the life of the activity. As a countermeasure, high-pressure hydrogen is mainly used to prolong the catalyst life. Therefore, the current situation is that the development of a catalyst having an essentially longer catalyst life is desired.
WO2017/208497WO2017 / 208497
 そこで、本発明の課題は、油脂を接触水素化分解することにより、軽油相当および灯油相当の炭化水素を製造するために、触媒の安定性を付与する炭化水素製造システム、炭化水素の製造方法および炭化水素製造装置を提供することである。 Therefore, the subject of the present invention is a hydrocarbon production system that imparts catalyst stability, a hydrocarbon production method, and a hydrocarbon production system that imparts catalyst stability in order to produce hydrocarbons equivalent to light oil and kerosene by catalytic hydrocracking of fats and oils. It is to provide a hydrocarbon production apparatus.
 本発明者らは、上記課題を解決すべく鋭意研究した結果、各種の炭化水素の原料となる油脂を、劣化の原因である酸性点のない中性、またはごく少量の酸性点をも持つ担体の選択、および水素化能を有する金属を担持した担体付き金属触媒の存在下、水の共存で該触媒への水素化分解機能付与および該機能の活性安定化を実現する製造システムを見出し、本発明を完成するに至った。得られた炭化水素は灯油又は軽油相当のものなので、低温流動性に優れ、酸化安定性を有する等の優れた特性を持つ。 As a result of diligent research to solve the above problems, the present inventors have made the fats and oils, which are the raw materials of various hydrogenated substances, a carrier having no acidic point, which is a cause of deterioration, or a carrier having a very small amount of acidic point. In the presence of a metal catalyst with a carrier carrying a metal having a hydrogenating ability, we have found a manufacturing system that realizes the addition of a hydrogenalytic decomposition function to the catalyst and the stabilization of the activity of the function in the presence of water. The invention was completed. Since the obtained hydrocarbon is equivalent to kerosene or light oil, it has excellent low-temperature fluidity and oxidative stability.
 即ち、本発明の要旨は、下記の[1]~[7]に関する。
[1] 接触水素化分解反応によって、油脂から炭化水素を製造する炭化水素製造システムであって、
 水素化能を有する金属が中性又は弱酸性の金属酸化物に担持されてなる、担体付き金属触媒を備えた反応部に、油脂供給ライン、水素ガス供給ライン及び水供給ラインが接続された、油脂の接触水素化分解反応を行う処理装置
を備える、炭化水素製造システム。
[2] 製造される炭化水素が、炭素数5~20の炭化水素である、前記[1]に記載の炭化水素製造システム。
[3] 担体付き金属触媒の存在下で、
  水素の供給圧力を0.2~5MPa、
  油脂の供給液量の液空間速度を0.01~10.0hr-1とし、
  油脂100体積部に対して水の供給量を5~80体積部とし、及び
  水素の流量と油脂の流量との比率を、油脂1Lあたり水素50~1200NLとして、前記水素、油脂及び水を前記担体付き金属触媒を備えた反応部に供給して、油脂の接触水素化分解を行って、炭素数5~20の炭化水素を製造する方法であって、
 該担体付き金属触媒が、下記の群1及び群2から構成される触媒である製造方法。
  群1:アルミナ、ジルコニア及び/又はチタニアを担体とする触媒。
  群2:アルミナ、ジルコニア及び/又はチタニアに、ルテニウム、ニッケル、白金、パラジウム、イリジウム、ロジウム、金及び銀からなる群より選択される1種以上が担持された触媒。
[4] 担体付き金属触媒の担体がアルミナであり、担持される金属がニッケル及びルテニウムを含み、ニッケルとルテニウムとの質量比がNi:Ru=10:1~500:1である、前記[3]に記載の方法。
[5] 油脂が、菜種油、綿実油、パーム油、ココナツ油、ヒマワリ油、大豆油、油ヤシ油、ココヤシ油、ジャトロファ油、オリーブ油、廃食用油、ダーク油、動物油の油脂類、藻中油脂およびバイオマス乾留油からなる群より選択される1種以上である、前記[3]又は[4]に記載の方法。
[6] 前記[3]~[5]のいずれか1項に記載の方法により製造された炭化水素であって、油脂が廃食用油及び/又はジャトロファ油である炭化水素。
[7] 油脂を接触水素化分解することにより炭化水素を製造するための装置であって、少なくとも、油脂供給部、水素ガス供給部、及び水供給部と、反応部並びに反応生成物回収部から構成され、
 該反応部には、水素化能を有する金属が担持された中性又は弱酸性の金属酸化物である触媒が存在する炭化水素製造装置。
That is, the gist of the present invention relates to the following [1] to [7].
[1] A hydrocarbon production system that produces hydrocarbons from fats and oils by catalytic hydrocracking reaction.
A fat supply line, a hydrogen gas supply line, and a water supply line were connected to a reaction section provided with a metal catalyst with a carrier, in which a metal having a hydrocarbonizing ability was supported on a neutral or weakly acidic metal oxide. A hydrocarbon production system equipped with a processing device that performs a catalytic hydrogenation decomposition reaction of fats and oils.
[2] The hydrocarbon production system according to the above [1], wherein the hydrocarbon produced is a hydrocarbon having 5 to 20 carbon atoms.
[3] In the presence of a metal catalyst with a carrier
Hydrogen supply pressure is 0.2-5MPa,
The liquid space velocity of the supply liquid amount of fats and oils is set to 0.01 to 10.0 hr -1 .
The amount of water supplied to 100 parts by volume of fat and oil is 5 to 80 parts by volume, and the ratio of the flow rate of hydrogen to the flow rate of fat and oil is 50 to 1200 NL per liter of fat and oil, and the hydrogen, fat and water are used as the carrier. It is a method of producing a hydrocarbon having 5 to 20 carbon atoms by supplying it to a reaction section equipped with a metal catalyst and performing catalytic hydrocracking of fats and oils.
A production method in which the metal catalyst with a carrier is a catalyst composed of the following groups 1 and 2.
Group 1: Catalysts with alumina, zirconia and / or titania as carriers.
Group 2: A catalyst in which at least one selected from the group consisting of ruthenium, nickel, platinum, palladium, iridium, rhodium, gold and silver is supported on alumina, zirconia and / or titania.
[4] The carrier of the metal catalyst with a carrier is alumina, the supported metal contains nickel and ruthenium, and the mass ratio of nickel to ruthenium is Ni: Ru = 10: 1 to 500: 1. ] The method described in.
[5] Oils include rapeseed oil, cottonseed oil, palm oil, coconut oil, sunflower oil, soybean oil, oil palm oil, coconut oil, jatrofa oil, olive oil, waste cooking oil, dark oil, animal oil oils and fats, algae oils and fats. The method according to the above [3] or [4], which is one or more selected from the group consisting of biomass dry distillate.
[6] A hydrocarbon produced by the method according to any one of [3] to [5] above, wherein the oil and fat is waste cooking oil and / or jatropha oil.
[7] A device for producing hydrocarbons by catalytic hydrocracking of fats and oils, from at least the fat and oil supply section, the hydrogen gas supply section, the water supply section, the reaction section, and the reaction product recovery section. Configured,
A hydrocarbon production apparatus in which a catalyst which is a neutral or weakly acidic metal oxide carrying a metal having a hydrogenating ability is present in the reaction unit.
 本発明によれば、本発明の処方にて油脂の接触水素化分解反応を実施することによって、所望の炭化水素を製造する経済的に有利な方法を提供できる。かかる方法によって炭化水素(灯油及び又は軽油相当品の燃料)を製造することができる。 According to the present invention, it is possible to provide an economically advantageous method for producing a desired hydrocarbon by carrying out a catalytic hydrogenation decomposition reaction of fats and oils according to the formulation of the present invention. Hydrocarbons (fuels equivalent to kerosene and / or light oil) can be produced by such a method.
図1は、製造システム且つ製造装置を示す図である。FIG. 1 is a diagram showing a manufacturing system and a manufacturing apparatus. 図2は、触媒の安定性および耐久性を示す図である。FIG. 2 is a diagram showing the stability and durability of the catalyst. 図3は、エステル部位の分解および炭素鎖の切断を示す図である。図3において、灯油相当、軽油相当に分けた場合の評価としての選択率を示した。即ち、生成したC5-20の炭化水素(HC)中、灯油相当としてC8-14のHCの選択率を示した。FIG. 3 is a diagram showing decomposition of an ester moiety and cleavage of a carbon chain. In FIG. 3, the selection rate as an evaluation when divided into kerosene equivalent and light oil equivalent is shown. That is, among the produced C 5-20 hydrocarbons (HC), the selectivity of C 8-14 HC as equivalent to kerosene was shown.
 石油原料系の技術を、本発明分野の各種油脂にそのまま適用するという考えもあるが、固体酸のゼオライトや白金など高価な成分の触媒への使用や、固体酸は炭素の析出が避けられないので、触媒安定化には、析出した炭素を酸化除去する再生装置をプロセス内に設置せねばならない。バイオマス原料を対象にする場合は地産地消型の燃料製造装置が重要なこともしばしばであるため、経済的に受容されるためには大きな問題となる。 There is also the idea of applying the petroleum raw material technology to various fats and oils in the field of the present invention as it is, but the use of solid acids in catalysts of expensive components such as zeolite and platinum, and the precipitation of carbon in solid acids are unavoidable. Therefore, in order to stabilize the catalyst, a regeneration device that oxidizes and removes the precipitated carbon must be installed in the process. When targeting biomass raw materials, locally produced and locally consumed fuel production equipment is often important, which poses a major problem for economic acceptance.
1.炭化水素製造システム
 本発明は、触媒の活性化および安定化のための再生設備を備えることない炭化水素製造システムを提案することである。具体的には、下記のシステムが挙げられる。
 接触水素化分解反応によって、油脂から炭化水素を製造する炭化水素製造システムであって、
 水素化能を有する金属が、中性又は弱酸性の金属酸化物に、担持されてなる担体付き金属触媒を備えた反応部に、油脂供給ライン、水素ガス供給ライン及び水供給ラインが接続された、油脂の接触水素化分解反応を行う処理装置
を備える、炭化水素製造システム。
1. 1. Hydrocarbon Production System The present invention proposes a hydrocarbon production system without a regeneration facility for catalyst activation and stabilization. Specifically, the following system can be mentioned.
A hydrocarbon production system that produces hydrocarbons from fats and oils by catalytic hydrocracking reaction.
A fat supply line, a hydrogen gas supply line, and a water supply line were connected to a reaction section provided with a metal catalyst with a carrier in which a metal having a hydrocarbonizing ability was supported on a neutral or weakly acidic metal oxide. , A hydrocarbon production system equipped with a processing device that performs a catalytic hydrogenation decomposition reaction of fats and oils.
 水供給ラインを接続し、反応時に水が存在することで、固体酸を使用しない担体付き金属触媒においても水素化分解が進行し、さらに触媒寿命を長くすることができるのが、本システムの特徴である。
 本システムによって製造される炭化水素は、好ましくは炭素数5~20の炭化水素、より好ましくは炭素数8~20の炭化水素である。
By connecting a water supply line and the presence of water during the reaction, hydrocracking proceeds even in a metal catalyst with a carrier that does not use a solid acid, and the catalyst life can be further extended. Is.
The hydrocarbon produced by this system is preferably a hydrocarbon having 5 to 20 carbon atoms, and more preferably a hydrocarbon having 8 to 20 carbon atoms.
2.炭化水素の製造方法
 本発明の炭化水素の製造方法は、担体付き金属触媒の存在下で、
  水素の供給圧力を0.2~5MPa、
  油脂の供給液量の液空間速度を0.01~10.0hr-1とし、
  油脂100体積部に対して水の供給量を5~80体積部とし、及び
  水素の流量と油脂の流量との比率を、油脂1Lあたり水素50~1200NLとして、前記水素、油脂及び水を前記担体付き金属触媒を備えた反応部に供給して、油脂の接触水素化分解を行って、炭素数5~20の炭化水素を製造する方法であって、
 該担体付き金属触媒が、下記の群1及び群2から構成される触媒である製造方法である。
  群1:アルミナ、ジルコニア及び/又はチタニアを担体とする触媒。
  群2:アルミナ、ジルコニア及び/又はチタニアに、ルテニウム、ニッケル、白金、パラジウム、イリジウム、ロジウム、金及び銀からなる群より選択される1種以上が担持された触媒。
2. 2. Hydrocarbon Production Method The hydrocarbon production method of the present invention is carried out in the presence of a metal catalyst with a carrier.
Hydrogen supply pressure is 0.2-5MPa,
The liquid space velocity of the supply liquid amount of fats and oils is set to 0.01 to 10.0 hr -1 .
The amount of water supplied to 100 parts by volume of fat and oil is 5 to 80 parts by volume, and the ratio of the flow rate of hydrogen to the flow rate of fat and oil is 50 to 1200 NL per liter of fat and oil, and the hydrogen, fat and water are used as the carrier. It is a method of producing a hydrocarbon having 5 to 20 carbon atoms by supplying it to a reaction section equipped with a metal catalyst and performing catalytic hydrocracking of fats and oils.
The metal catalyst with a carrier is a production method in which the catalyst is composed of the following groups 1 and 2.
Group 1: Catalysts with alumina, zirconia and / or titania as carriers.
Group 2: A catalyst in which at least one selected from the group consisting of ruthenium, nickel, platinum, palladium, iridium, rhodium, gold and silver is supported on alumina, zirconia and / or titania.
 本発明における油脂としては、限定されるわけではないが、菜種油、綿実油、パーム油、ココナツ油、ヒマワリ油、大豆油、米油、油ヤシ油、ココヤシ油、ジャトロファ油、オリーブ油の油脂類から選ばれる1種以上であることが好ましい。さらには藻類からの油脂や動物油も好ましい。また天ぷら油の使用済み廃食用油は、現状ではより好ましい。油脂加工プロセスから出るダーク油、さらには動物油も利用可能である。そのほか、バイオマス乾留油にも適用可能である。 The fats and oils in the present invention are selected from, but not limited to, rapeseed oil, cottonseed oil, palm oil, coconut oil, sunflower oil, soybean oil, rice oil, oil palm oil, coconut oil, jatrofa oil, and olive oil. It is preferable that the amount is one or more. Further, fats and oils from algae and animal oils are also preferable. Further, the used waste cooking oil of tempura oil is more preferable at present. Dark oils from the fat processing process, as well as animal oils, are also available. In addition, it can also be applied to biomass carbonization oil.
 炭化水素の製造の際の反応操作の一例を説明する。
 処理する際の水素の供給圧力は、所望の生成物を得るための反応要件とそれに伴う触媒寿命長期化(炭素析出抑制)対策で変動するが、概ね次の水素反応圧となる。0.2~5.0MPaであり、好ましくは0.2~3.0MPa、より好ましくは0.5~1.5MPaである。
An example of the reaction operation in the production of hydrocarbon will be described.
The hydrogen supply pressure during the treatment varies depending on the reaction requirements for obtaining the desired product and the accompanying measures for prolonging the catalyst life (suppressing carbon precipitation), but generally becomes the following hydrogen reaction pressure. It is 0.2 to 5.0 MPa, preferably 0.2 to 3.0 MPa, and more preferably 0.5 to 1.5 MPa.
 原料の油脂の流量を所定の値に設定する。具体的には前記油脂の流量を油脂基準で液空間速度0.01~10.0hr-1に設定する。好ましくは0.05~5.0hr-1であり、より好ましくは0.05~3.0hr-1である。本発明において、液空間速度は低いほど反応に有利な傾向にあるが、上記の下限値未満の場合は、極めて大きな内容積の反応器が必要となり過大な設備投資が必要となる傾向があり、他方、液空間速度が上記の上限値を超える場合は、反応が十分に進行しなくなる傾向がある。
 なお、油脂の供給時の反応部入り口温度としては、予熱効率及び反応効率の観点から、25~250℃が好ましく、100~200℃が好ましく、150~180℃が更に好ましい。
Set the flow rate of raw material fats and oils to a predetermined value. Specifically, the flow rate of the fat and oil is set to a liquid space velocity of 0.01 to 10.0 hr -1 based on the fat and oil. It is preferably 0.05 to 5.0 hr -1 , and more preferably 0.05 to 3.0 hr -1 . In the present invention, the lower the liquid space velocity, the more advantageous the reaction tends to be, but if it is less than the above lower limit, a reactor having an extremely large internal volume tends to be required, and an excessive capital investment tends to be required. On the other hand, when the liquid space velocity exceeds the above upper limit value, the reaction tends not to proceed sufficiently.
From the viewpoint of preheating efficiency and reaction efficiency, the temperature at the inlet of the reaction section when supplying fats and oils is preferably 25 to 250 ° C, preferably 100 to 200 ° C, and even more preferably 150 to 180 ° C.
 本発明においては、所定の反応条件のもと、油脂に対して所定の量の水分を供給することが重要視される。供給される水分の流量は、油脂100体積部に対して、好ましくは5~80体積部、より好ましくは10~60体積部、更に好ましくは20~50体積部に設定する。5以下では水分の添加効果が現れにくく、80を超えると熱量的に不利になる
 なお、水の供給時の反応部入り口温度としては、予熱効率及び反応効率の観点から、20~250℃が好ましく、100~200℃が好ましく、150~180℃が更に好ましい。油脂の供給温度の±20℃以内が好ましく、±10℃以内がより好ましく、±5℃以内が更に好ましい。
In the present invention, it is important to supply a predetermined amount of water to fats and oils under predetermined reaction conditions. The flow rate of the supplied water is preferably set to 5 to 80 parts by volume, more preferably 10 to 60 parts by volume, and further preferably 20 to 50 parts by volume with respect to 100 parts by volume of fat and oil. If it is 5 or less, the effect of adding water is unlikely to appear, and if it exceeds 80, it is disadvantageous in terms of calorific value. The temperature at the inlet of the reaction part at the time of water supply is preferably 20 to 250 ° C. from the viewpoint of preheating efficiency and reaction efficiency. , 100 to 200 ° C, more preferably 150 to 180 ° C. The oil / fat supply temperature is preferably within ± 20 ° C, more preferably within ± 10 ° C, and even more preferably within ± 5 ° C.
 水素流量と油脂の流量の比率は、油脂1Lあたり水素を50~1200NL(ノルマルリットル)に設定する。好ましくは、油脂1Lあたり水素を200~1000NLとする。より好ましくは300~800NLである。水素と油脂との比率が上記の下限値に満たない場合には反応性が低下したり活性が急速に低下したりする傾向がある。他方、当該比率が上記の上限値を超える場合には、水素供給機等の過大な設備投資が必要となる傾向がある。 The ratio of the hydrogen flow rate to the flow rate of fats and oils is set to 50 to 1200 NL (normal liter) of hydrogen per 1 L of fats and oils. Preferably, hydrogen is 200 to 1000 NL per 1 L of fat and oil. More preferably, it is 300 to 800 NL. When the ratio of hydrogen to fats and oils is less than the above lower limit, the reactivity tends to decrease or the activity tends to decrease rapidly. On the other hand, if the ratio exceeds the above upper limit, excessive capital investment such as hydrogen supply equipment tends to be required.
 反応温度は、250℃~500℃が好ましく、より好ましくは300℃~450℃であり、さらに好ましくは330℃~400℃である。250℃以下では反応速度が低下し、500℃以上では脱水素などが生じ炭素析出が起きやすい。 The reaction temperature is preferably 250 ° C to 500 ° C, more preferably 300 ° C to 450 ° C, and even more preferably 330 ° C to 400 ° C. At 250 ° C or lower, the reaction rate decreases, and at 500 ° C or higher, dehydrogenation or the like occurs and carbon precipitation is likely to occur.
 担体付き金属触媒は、公知の反応管等の反応器に充填されることが好ましい。
 反応器の形式としては、固定床方式を採用することができる。水素は油脂に対して向流又は並流のいずれの形式を採用することができる。また、複数の反応器を用いて、向流、並流を組み合せた形式としてもよい。一般的な形式としては、ダウンフローであり、気液双並流形式を採用することができる。また、反応器は単独または複数を組み合せてもよく、一つの反応器内部を複数の触媒床に区分した構造を採用してもよい。
The metal catalyst with a carrier is preferably filled in a reactor such as a known reaction tube.
As the type of reactor, a fixed bed method can be adopted. Hydrogen can adopt either a countercurrent or parallel flow form with respect to fats and oils. In addition, a plurality of reactors may be used to combine countercurrent and parallel current. The general format is downflow, and a gas-liquid double parallel flow format can be adopted. Further, the reactor may be used alone or in combination of two or more, and a structure in which the inside of one reactor is divided into a plurality of catalyst beds may be adopted.
 本発明の製造方法によって製造される炭化水素は、炭素数5~20のものが主成分である。 The main component of the hydrocarbon produced by the production method of the present invention is one having 5 to 20 carbon atoms.
3.炭化水素製造システム作用機構
 従来の知見によれば、油脂のトリグリセライド部位は水素化分解金属触媒で水素ガスの下、脱炭酸反応、水素化脱水反応により分解される。石油由来の炭素鎖の開裂、環化脱水素反応、脱水素反応および異性化反応など、ガソリン、灯油および軽油への燃料改質で要求される反応は、固体酸のブレンステッド酸点により生起されるカルベニームイオンによって進行するとされている。
3. 3. Hydrocarbon production system Action mechanism According to the conventional knowledge, the triglyceride moiety of fats and oils is decomposed by a decarbonation reaction and a hydrogenation dehydration reaction under hydrogen gas with a hydrogenation decomposition metal catalyst. The reactions required for fuel reforming into gasoline, kerosene and gas oil, such as petroleum-derived carbon chain cleavage, cyclization dehydrogenation, dehydrogenation and isomerization reactions, are triggered by the Bronsted acid sites of solid acids. It is said to be promoted by Calvenim ion.
 従来の概念では、分解触媒としての固体酸を担体として貴金属などの金属触媒と添加した二元触媒が使用されている。すなわち酸触媒による水素化分解、炭素鎖の開裂、異性化および環化異性化などが、金属触媒による水素化、脱水素化などが行われるとの解釈である。 In the conventional concept, a dual catalyst is used in which a solid acid as a decomposition catalyst is used as a carrier and a metal catalyst such as a noble metal is added. That is, it is interpreted that hydrogenation decomposition, carbon chain cleavage, isomerization and cyclization isomerization by an acid catalyst are carried out, and hydrogenation and dehydrogenation by a metal catalyst are carried out.
 一方、炭素析出が起こる場所としては、固体酸の酸点が推定されている。そこで本発明の触媒では固体酸の使用を避けてアルミナなどの中性担体を使用する。酸点が微量の弱酸性の担体を使用してもよい。 On the other hand, the acid point of the solid acid is estimated as the place where carbon precipitation occurs. Therefore, in the catalyst of the present invention, a neutral carrier such as alumina is used while avoiding the use of solid acid. A weakly acidic carrier with a trace amount of acidity may be used.
 本発明においては、担体付き金属触媒に水素が解離吸着し、添加された水分との配位結合によりオキソニウムイオン(HO)となり(非特許文献4)、担体表面に移動し固体酸の酸点の代わりに使用される。すなわち、水分は金属触媒表面で吸着するときはオキソニウムイオンとなり、まさしく活性プロトンが発生しており担体表面を移動して、固体酸のブレンステッド酸点と同様の反応性を有することになる。オキソニウムイオンは強酸に部類され、硫酸のpKa≒-3~-5に比してpKa≒-2であり、したがって固体酸のブレンステッド酸点と同等の酸強度を有している。すなわち固体酸の酸点と等価なのでオキソニウムイオンにより炭素鎖がカルベニウムイオンに変換され連鎖的に炭素鎖の開裂が進行すると推定できる。すなわち、該オキソニウムイオンは固体酸の酸点と同様水素化分解能を有し、一般炭化水素の炭素鎖の開裂、環化脱水素反応、脱水素反応および異性化反応などにも適用できる。 In the present invention, hydrogen is dissociated adsorbed on the carrier with a metal catalyst, oxonium ions by a coordination bond with the added water (H 3 O) + next (Non-Patent Document 4), moving the solid acid on the surface of the carrier Used in place of the acid point of. That is, when the water is adsorbed on the surface of the metal catalyst, it becomes an oxonium ion, and an active proton is generated and moves on the surface of the carrier to have the same reactivity as the Bronsted acid point of a solid acid. The oxonium ion is classified as a strong acid and has pKa≈-2 as compared with pKa≈-3 to -5 of sulfuric acid, and therefore has an acid strength equivalent to that of the Bronsted acid point of a solid acid. That is, since it is equivalent to the acid point of a solid acid, it can be presumed that the carbon chain is converted into carbenium ion by the oxonium ion and the cleavage of the carbon chain proceeds in a chain reaction. That is, the oxonium ion has a hydrogenation resolution similar to that of the acid point of a solid acid, and can be applied to cleavage of a carbon chain of a general hydrocarbon, cyclization dehydrogenation reaction, dehydrogenation reaction, isomerization reaction and the like.
 ところで、エステル部位の水素化脱酸素や不飽和部の水添反応では基質(エステル部位および不飽和部)の固体表面への吸着が必要であるが、酸性点に吸着しやすい。中性の担体であっても表面のオキソニウムイオンに基質が吸着し、金属表面からスピルオーバーした原子状水素によってエステル部位の水素化脱酸素および水添反応が進行する。 By the way, in the hydrogenation deoxidation of the ester site and the hydrogenation reaction of the unsaturated part, the substrate (ester part and unsaturated part) needs to be adsorbed on the solid surface, but it is easily adsorbed on the acidic point. Even with a neutral carrier, the substrate is adsorbed on the oxonium ions on the surface, and the atomized hydrogen spilled over from the metal surface promotes hydrogenation deoxidation and hydrogenation reaction at the ester moiety.
 反応過程初期にわずかに生起した生成水によって、水を添加しなくても酸性を示しわずかながら反応は進行し、続いて生成水効果が加速し触媒作用が発現する。しかしながら、生成水は油脂に対して高々10部程度であってその触媒効果は十分でない。 Slightly generated water generated at the beginning of the reaction process showed acidity without addition of water, and the reaction proceeded slightly, followed by acceleration of the produced water effect and catalytic action. However, the amount of produced water is at most about 10 parts with respect to fats and oils, and its catalytic effect is not sufficient.
 オキソニウムイオンは、水素供与作用が大きくて炭素抑制効果がありそれ自体に炭素析出を起こさないが、その量が少ないと基質の吸着点の炭素析出を抑制しきれず経時的に触媒作用が劣化する。従って十分なオキソニウムイオンが必要でありそのために、必要十分な量の添加水が必要である。なお、副生物として微量の芳香族化合物が生成することがある。比較的低圧で反応を行う場合、この芳香族化合物が触媒担体に吸着されて、炭素析出の原因となる場合がある。かかる吸着の防止を目的として、添加水に水酸化ナトリウム又はアンモニアを0.1~5質量%加えることが効果的であり、好ましい。 Oxonium ions have a large hydrogen donating effect and have a carbon-suppressing effect and do not cause carbon precipitation by themselves, but if the amount is small, carbon precipitation at the adsorption point of the substrate cannot be completely suppressed and the catalytic action deteriorates over time. .. Therefore, a sufficient amount of oxonium ion is required, and therefore a necessary and sufficient amount of added water is required. In addition, a trace amount of aromatic compound may be produced as a by-product. When the reaction is carried out at a relatively low pressure, this aromatic compound may be adsorbed on the catalyst carrier and cause carbon precipitation. For the purpose of preventing such adsorption, it is effective and preferable to add 0.1 to 5% by mass of sodium hydroxide or ammonia to the added water.
4.担体付き金属触媒の形態
 本発明においては、水素を解離して原子状水素を生成する機能および水素化能を有する金属を中性または弱酸性の多孔質金属酸化物に担持されてなる触媒であって、金属がルテニウム、ニッケル、白金、パラジウム、イリジウム、ロジウム、金、及び銀からなる群より選択される1種以上のもので、担体の多孔質金属酸化物がアルミナ、ジルコニア、チタニアからなる群より選択される1種以上のものが担体付き金属触媒である。
4. Form of Metal Catalyst with Carrier In the present invention, it is a catalyst in which a metal having a function of dissociating hydrogen to generate atomic hydrogen and a hydride ability is supported on a neutral or weakly acidic porous metal oxide. The metal is one or more selected from the group consisting of ruthenium, nickel, platinum, palladium, iridium, rhodium, gold, and silver, and the porous metal oxide of the carrier is composed of alumina, zirconia, and titania. One or more of the more selected are metal catalysts with carriers.
 比較的高圧の水素の効果で炭素析出の一定の抑制が可能な場合は、担体の多孔質金属酸化物にゼオライトまたはシリカの粉末を分散固着して酸性を付与することも本発明の製造システムの適用範囲である。 When it is possible to suppress carbon precipitation to a certain extent by the effect of hydrogen at a relatively high pressure, it is also possible to disperse and fix zeolite or silica powder on the porous metal oxide of the carrier to impart acidity in the production system of the present invention. It is the scope of application.
 担体付き金属触媒における担体と、担持される金属との好ましい組み合わせとしては、例えば、担体がアルミナであり、金属がニッケル及びルテニウムを含む、という組み合わせである。この場合、ニッケルとルテニウムとの質量比(Ni:Ru)は、10:1~500:1が好ましく、20:1~250:1がより好ましく、100:1~140:1がさらに好ましい。 A preferable combination of the carrier in the metal catalyst with a carrier and the metal to be supported is, for example, a combination in which the carrier is alumina and the metal contains nickel and ruthenium. In this case, the mass ratio of nickel to ruthenium (Ni: Ru) is preferably 10: 1 to 500: 1, more preferably 20: 1 to 250: 1, and even more preferably 100: 1 to 140: 1.
 粒径としては、0.01~3.0mmのものが好ましく、0.03~3.0mmのものがより好ましい。粒子サイズが0.01mmより小さくなると、触媒層の圧力損失が過大になり好ましくない。また粒子サイズが3mmより大きくなると、触媒間に空間ができるので、油脂が通ることができるが、粒子が大きい分、単位体積当りの表面積が小さいので、接触効率が悪くなる傾向にあり好ましくない。触媒粒子の取り扱い(ハンドリング)の点で、0.5~3mm粒子径のものがより好ましく採用される。
 実用的には1mm~3mm径の触媒が推奨される。
The particle size is preferably 0.01 to 3.0 mm, more preferably 0.03 to 3.0 mm. If the particle size is smaller than 0.01 mm, the pressure loss of the catalyst layer becomes excessive, which is not preferable. Further, when the particle size is larger than 3 mm, a space is created between the catalysts so that fats and oils can pass through. However, since the surface area per unit volume is small due to the large particles, the contact efficiency tends to deteriorate, which is not preferable. In terms of handling (handling) of catalyst particles, those having a particle diameter of 0.5 to 3 mm are more preferably adopted.
Practically, a catalyst having a diameter of 1 mm to 3 mm is recommended.
 本触媒は使用前には、空気焼成し、水素還元を行うことが好ましい。
 触媒調製中に混入する不純物を酸化除去するために、空気中で300~450℃で焼成することが好ましく、350~400℃がより好ましい。この空気中での熱処理時間は1~5時間行うのが好ましい。
 焼成過程で酸化されたものを還元することは重要である。水素ガス中での熱処理時間は1~5時間行うのが好ましく350℃~450℃が好ましい。
Before using this catalyst, it is preferable to calcin it in the air to reduce hydrogen.
In order to oxidize and remove impurities mixed in the catalyst preparation, it is preferable to bake at 300 to 450 ° C. in air, more preferably 350 to 400 ° C. The heat treatment time in the air is preferably 1 to 5 hours.
It is important to reduce what is oxidized during the firing process. The heat treatment time in hydrogen gas is preferably 1 to 5 hours, preferably 350 ° C. to 450 ° C.
5.炭化水素及び炭化水素製造装置
 本発明の炭化水素は、本発明の炭化水素の製造方法によって製造されたことを特徴とする。得られた炭化水素は、沸点や炭素数の観点から軽油又は灯油に相当する炭化水素の混合物である。
5. Hydrocarbons and Hydrocarbon Production Equipment The hydrocarbon of the present invention is characterized by being produced by the method for producing a hydrocarbon of the present invention. The obtained hydrocarbon is a mixture of hydrocarbons corresponding to light oil or kerosene from the viewpoint of boiling point and carbon number.
 本発明の炭化水素製造装置は、油脂を接触水素化分解することにより炭化水素を製造するための装置であって、少なくとも、油脂供給部、水素ガス供給部、及び水供給部と、反応部並びに反応生成物回収部から構成され、好ましくはさらに油脂の流量および添加水の流量と水素ガスの流量を調節する手段を備え、反応部には、水素化能を有する金属が担持された中性又は弱酸性の金属酸化物である触媒が存在する。反応部においては、供給された油脂と供給された水素ガスを、担体付き金属触媒の存在下、水を添加して反応させる。水素、油脂及び水を、担体付き金属触媒を備えた反応部に供給することにより、油脂の接触水素化分解を行って、炭素数数5~20の炭化水素が製造される。さらに、本発明の炭化水素製造装置には、必要に応じて、水素ガス製造装置や反応終了物を蒸留分離する生成物分離装置等がさらに備えられていることが好ましい。 The hydrocarbon production apparatus of the present invention is an apparatus for producing hydrocarbons by catalytic hydrogenation and decomposition of fats and oils, and is at least an oil / fat supply unit, a hydrogen gas supply unit, a water supply unit, a reaction unit, and a reaction unit. It is composed of a reaction product recovery unit, preferably further provided with means for adjusting the flow rate of fats and oils, the flow rate of added water, and the flow rate of hydrogen gas. There are catalysts that are weakly acidic metal oxides. In the reaction section, the supplied oil and fat and the supplied hydrogen gas are reacted by adding water in the presence of a metal catalyst with a carrier. By supplying hydrogen, fats and oils and water to a reaction section provided with a metal catalyst with a carrier, the fats and oils are catalytically hydrolyzed to produce a hydrocarbon having 5 to 20 carbon atoms. Further, it is preferable that the hydrocarbon production apparatus of the present invention is further equipped with a hydrogen gas production apparatus, a product separation apparatus for distilling and separating the reaction termination product, and the like, if necessary.
 以下、図1を参照しつつ本発明の炭化水素製造装置をより具体的に説明する。
 本発明の製造装置は、(1)水、油脂及び水素ガス供給部、(2)反応部並びに(3)反応生成物回収部の少なくとも三部から構成される。即ち、図1に例示される製造装置では、油脂と水は同時に反応部に供給される。(1)の水、油脂及び水素ガス供給部では、油脂はライン1から液供給ポンプ2を通して反応管7の上部に、水素はライン3から水素ガス流量調節ユニット4を通して反応管7の上部(好ましくは油脂供給箇所の下流)に供給される。添加水は水供給部、即ちライン13から添加水供給ポンプ14を通して供給される。即ち、反応部へは、油脂と水とが反応部入り口直前で混在されて供給される。(2)の反応部では、内部中央に温度計5が設置された反応管7においては、温度計6を備えた電気加熱炉8で加熱および温度調節が行われる。(3)の反応生成物回収部では、反応管7の下部から排出される気液混合物は凝縮器9で冷却され、次いで気液分離装置10に導かれる。凝縮物受器11で水分が回収される。生成炭化水素および未反応物は冷却機能を備えた凝縮物受器12に蓄えられる。凝縮物受器12からは未反応水素ガスおよびガス状の炭化水素が排出される(ガス状炭化水素は別の装置で水素ガスと分離され、燃料などとして使用される。)。凝縮物受器12の内容物は別の蒸留装置で、軽油又は灯油相当の炭化水素と未反応物(高沸点物)に分離される。
Hereinafter, the hydrocarbon production apparatus of the present invention will be described more specifically with reference to FIG.
The manufacturing apparatus of the present invention is composed of at least three parts: (1) water, oil and fat and hydrogen gas supply part, (2) reaction part and (3) reaction product recovery part. That is, in the manufacturing apparatus exemplified in FIG. 1, fats and oils and water are simultaneously supplied to the reaction section. In the water, fat and hydrogen gas supply section of (1), fat and oil are sent from line 1 to the upper part of the reaction tube 7 through the liquid supply pump 2, and hydrogen is sent from line 3 through the hydrogen gas flow rate control unit 4 to the upper part of the reaction tube 7 (preferably. Is supplied downstream of the oil supply point). The added water is supplied from the water supply unit, that is, the line 13 through the added water supply pump 14. That is, fats and oils and water are mixed and supplied to the reaction section immediately before the entrance of the reaction section. In the reaction section of (2), in the reaction tube 7 in which the thermometer 5 is installed in the center of the inside, heating and temperature control are performed in the electric heating furnace 8 equipped with the thermometer 6. In the reaction product recovery unit (3), the gas-liquid mixture discharged from the lower part of the reaction tube 7 is cooled by the condenser 9 and then guided to the gas-liquid separation device 10. Moisture is recovered by the condensate receiver 11. The produced hydrocarbons and unreacted substances are stored in the condensate receiver 12 having a cooling function. Unreacted hydrogen gas and gaseous hydrocarbons are discharged from the condensate receiver 12 (the gaseous hydrocarbons are separated from the hydrogen gas by another device and used as fuel or the like). The contents of the condensate receiver 12 are separated into hydrocarbons equivalent to light oil or kerosene and unreacted substances (high boiling point substances) by another distillation apparatus.
 本発明においては、反応部において、油脂、水及び水素が共存する必要がある。これらの三成分は、それぞれ別のラインを経て反応部に接続していてもよく、あるいは、図1に示されるように、油脂と水とが反応部入り口直前で混在するように、油脂を供給するラインと水を供給するラインとが連結された後、反応部に接続してもよい。 In the present invention, fats and oils, water and hydrogen need to coexist in the reaction section. These three components may be connected to the reaction section via different lines, or as shown in FIG. 1, the fats and oils are supplied so that the fats and oils and water are mixed immediately before the entrance of the reaction section. After the line to supply water and the line to supply water are connected, they may be connected to the reaction section.
 本発明の炭化水素製造装置の反応部には、担体付き金属触媒が存在する。かかる触媒によって、水素ガスと水を供給して、軽油相当又は灯油相当の炭化水素を製造することができる。 A metal catalyst with a carrier exists in the reaction section of the hydrocarbon production apparatus of the present invention. With such a catalyst, hydrogen gas and water can be supplied to produce a hydrocarbon equivalent to light oil or kerosene.
 水素ガス製造装置は、例えば、本発明の炭化水素製造装置において生成物から分離された低沸点ガス状物のリサイクル原料供給部、または都市ガスの供給部を備えた、水蒸気改質反応装置(例えば、ルテニウム-アルミナ触媒を有する装備)が挙げられる。 The hydrogen gas production apparatus is, for example, a steam reforming reaction apparatus (for example, a steam reforming reaction apparatus provided with a recycling raw material supply unit for a low boiling gas substance separated from a product in the hydrocarbon production apparatus of the present invention, or a city gas supply unit. , Equipment with a ruthenium-alumina catalyst).
 生成物分離を行うための生成物分離装置は、例えば常圧または減圧蒸留塔を採用することができる。低沸点ガス状物質は水素ガス製造装置にリサイクルされる。また、軽油相当分は、灯油相当分が多く所望される場合は接触水素化分解装置にリサイクル供給されて灯油相当分に変換するのが推奨されえる。 As the product separation device for performing product separation, for example, a normal pressure or vacuum distillation column can be adopted. Low boiling gaseous substances are recycled to hydrogen gas production equipment. Further, if a large amount of gas oil equivalent is desired, it is recommended that the light oil equivalent be recycled and supplied to the catalytic hydrocracking apparatus to be converted into kerosene equivalent.
 生成物分離装置、すなわち蒸留塔下部から排出される高沸点物は、燃焼用燃料として回収し、全体装置に必要な熱源に利用するために燃焼、エネルギー回収装置に供給してもよい。 The product separation device, that is, the high boiling point discharged from the lower part of the distillation column, may be recovered as combustion fuel and supplied to the combustion / energy recovery device for use as a heat source required for the entire device.
 以下、本発明を実施例等に基づいてさらに詳細に説明するが、本発明はかかる実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and the like, but the present invention is not limited to such Examples.
[触媒の調製] [Catalyst preparation]
アルミナの前処理
 ナカライテスク社製 硝酸(60%) を1mol/L になるよう精製水を加えて調製した。50cc活性アルミナに対し、1mol/L硝酸50cc混合し200mlナスフラスコで混合した。ロータリーエバポレーターを使用し4時間攪拌した。のちに硝酸処理活性アルミナをろ過し50cc精製水で3回洗浄・ろ過を繰り返した。乾燥機を103℃に設定し3時間乾燥水分除去したものを触媒担体とした。
Pretreatment of Alumina Prepared by adding purified water to 1 mol / L of nitric acid (60%) manufactured by Nacalai Tesque. 1 mol / L nitric acid 50 cc was mixed with 50 cc activated alumina and mixed in a 200 ml eggplant flask. The mixture was stirred for 4 hours using a rotary evaporator. After that, nitric acid-treated activated alumina was filtered, and washing and filtration were repeated 3 times with 50cc purified water. The catalyst carrier was a dryer set at 103 ° C. and dried for 3 hours to remove moisture.
金属の担持
 このようにして硝酸前処理を行った活性アルミナ100質量部に対して、Niを10質量部、Ruを0.1質量部(計10.1質量部)用いて通常の含侵法により、担体付き金属触媒を調製した。
Supporting metal A conventional impregnation method using 10 parts by mass of Ni and 0.1 part by mass of Ru (10.1 parts by mass in total) with respect to 100 parts by mass of activated alumina pretreated with nitrate in this way. Prepared a metal catalyst with a carrier.
活性アルミナ:ユニオン昭和株式会社製、D-201 5×8 粒径3mm
硝酸ニッケル(硝酸ニッケル(II)六水和物、和光純薬株式会社製)
硝酸ルテニウム
Activated alumina: Union Showa Co., Ltd., D-201 5 × 8 particle size 3 mm
Nickel Nitrate (Nickel Nitrate (II) Hexahydrate, manufactured by Wako Pure Chemical Industries, Ltd.)
Ruthenium nitrate
 実験ごとに毎回次の処理を行った。
空気焼成:400℃ 4hr
水素還元:350℃ 4hr
The following treatment was performed for each experiment.
Air firing: 400 ° C 4hr
Hydrogen reduction: 350 ° C 4hr
[炭化水素製造装置]
 炭化水素製造装置として、図1に示すような構成の常圧の固定床流通式反応装置を用い、反応管7内部に触媒(50cc)を充填し、油脂類の接触水素化分解反応を行った、反応器としては内径10.22mm、触媒充填長さ291mmの反応管7を用い、触媒層には熱電対を中心に設置し、触媒層の温度を実測した。
[Hydrocarbon production equipment]
As a hydrocarbon production apparatus, a fixed-bed flow reactor having a normal pressure as shown in FIG. 1 was used, a catalyst (50 cc) was filled inside the reaction tube 7, and a catalytic hydrocracking reaction of fats and oils was carried out. As the reactor, a reaction tube 7 having an inner diameter of 10.22 mm and a catalyst filling length of 291 mm was used, and a thermocouple was mainly installed in the catalyst layer, and the temperature of the catalyst layer was actually measured.
 反応器は、電気加熱炉8により温度調節を行い、反応生成物は、常温水冷却器で冷却した後、凝縮成分の分離を行った。凝縮物受器(炭化水素)12に回収された液体成分のガスクロトグラフィー分析を行った。水素流量は、流量制御弁で制御した。原料油である油脂類および添加水の供給は定量液体ポンプで行った。 The temperature of the reactor was controlled by the electric heating furnace 8, and the reaction product was cooled by a room temperature water cooler, and then the condensed components were separated. Gas crotography analysis of the liquid component recovered in the condensate receiver (hydrocarbon) 12 was performed. The hydrogen flow rate was controlled by the flow rate control valve. Oils and fats as raw material oil and added water were supplied by a quantitative liquid pump.
実施例及び比較例
[反応条件]
原料:(株)レボインターナショナル所有廃食用油(使用済みてんぷら油)
触媒:活性アルミナ3mmφ担体、Ni 10質量%、 Ru 0.1質量%
反応温度:350℃、
運転方法:32時間連続運転
廃食油供給量:0.11 mL/分
水素(ガス)の供給圧力:0.8MPaゲージ圧
水素供給量   86.7 NmL/分
LHSV=0.13(油脂供給量L/Hr/触媒L)
供給時の油脂の温度= 25℃
供給時の水の温度=  20℃
添加水量は表1のとおりである。
Examples and Comparative Examples [Reaction conditions]
Ingredients: Waste cooking oil owned by Revo International Co., Ltd. (used tempura oil)
Catalyst: Activated alumina 3 mmφ carrier, Ni 10% by mass, Ru 0.1% by mass
Reaction temperature: 350 ° C,
Operation method: 32 hours continuous operation Waste cooking oil supply amount: 0.11 mL / minute Hydrogen (gas) supply pressure: 0.8 MPa gauge pressure Hydrogen supply amount 86.7 NmL / min LHSV = 0.13 (oil and fat supply amount L) / Hr / catalyst L)
Oil and fat temperature at the time of supply = 25 ° C
Water temperature at supply = 20 ° C
The amount of added water is as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[反応結果]
 表2に実施例及び比較例の活性評価を示す。
  HC(炭化水素)収率:エステル部位の分解率の指標となる。ガスクロマトグラフィーにてC5-20を測定した。
  比重(25℃):エステル部位の分解で脱酸素により比重が低減する。
[Reaction result]
Table 2 shows the activity evaluations of Examples and Comparative Examples.
HC (hydrocarbon) yield: An index of the decomposition rate of the ester moiety. C 5-20 was measured by gas chromatography.
Relative density (25 ° C): Deoxidation of the ester site reduces the specific density.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[製造システムの評価]
 表2および図2~3から、添加水を加え、また添加水が増加することで、明らかに活性の向上および安定化を達成できていることが認められる。
 活性:エステル部位の分解で炭化水素に変換され、灯油相当成分が観察されているので、低級~中級の炭化水素が生成され、開裂機能も確認できた。
 活性の向上:明らかに添加水の増加に従って活性の向上が確認できた。
 活性の安定性:添加水の多い場合には、32hrの経過後もその触媒の初期活性を保持できることが確認できた。
[Evaluation of manufacturing system]
From Table 2 and FIGS. 2 to 3, it can be seen that the activity is clearly improved and stabilized by adding the added water and increasing the added water.
Activity: Since the ester site was decomposed into hydrocarbons and kerosene-equivalent components were observed, low-to-intermediate hydrocarbons were produced and the cleavage function was confirmed.
Improvement of activity: It was clearly confirmed that the activity was improved as the added water increased.
Stability of activity: It was confirmed that the initial activity of the catalyst can be maintained even after the lapse of 32 hours when the amount of added water is large.
 本発明のシステム又は製造方法で得られた炭化水素は、軽油相当の燃料又は灯油相当の燃料として用いることができる。 The hydrocarbon obtained by the system or manufacturing method of the present invention can be used as a fuel equivalent to light oil or a fuel equivalent to kerosene.
 1   ライン
 2   油脂供給ポンプ
 3   ライン
 4   水素ガス流量調節ユニット
 5   温度計
 6   温度計
 7   反応管
 8   電気加熱炉
 9   凝縮器
10   気液分離装置(水分分離器)
11   凝縮物受器(水分)
12   凝縮物受器(炭化水素)
13   ライン
14   添加水供給ポンプ
1 line 2 oil supply pump 3 line 4 hydrogen gas flow rate control unit 5 thermometer 6 thermometer 7 reaction tube 8 electric heating furnace 9 condenser 10 gas-liquid separator (moisture separator)
11 Condensation receiver (moisture)
12 Condensation receiver (hydrocarbon)
13 Line 14 Additive water supply pump

Claims (7)

  1.  接触水素化分解反応によって、油脂から炭化水素を製造する炭化水素製造システムであって、
     水素化能を有する金属が中性又は弱酸性の金属酸化物に担持されてなる、担体付き金属触媒を備えた反応部に、油脂供給ライン、水素ガス供給ライン及び水供給ラインが接続された、油脂の接触水素化分解反応を行う処理装置
    を備える、炭化水素製造システム。
    A hydrocarbon production system that produces hydrocarbons from fats and oils by catalytic hydrocracking reaction.
    A fat supply line, a hydrogen gas supply line, and a water supply line were connected to a reaction section provided with a metal catalyst with a carrier, in which a metal having a hydrocarbonizing ability was supported on a neutral or weakly acidic metal oxide. A hydrocarbon production system equipped with a processing device that performs a catalytic hydrogenation decomposition reaction of fats and oils.
  2.  製造される炭化水素が、炭素数5~20の炭化水素である、請求項1に記載の炭化水素製造システム。 The hydrocarbon production system according to claim 1, wherein the hydrocarbon produced is a hydrocarbon having 5 to 20 carbon atoms.
  3.  担体付き金属触媒の存在下で、
      水素の供給圧力を0.2~5MPa、
      油脂の供給液量の液空間速度を0.01~10.0hr-1とし、
      油脂100体積部に対して水の供給量を5~80体積部とし、及び
      水素の流量と油脂の流量との比率を、油脂1Lあたり水素50~1200NLとして、前記水素、油脂及び水を前記担体付き金属触媒を備えた反応部に供給して、油脂の接触水素化分解を行って、炭素数5~20の炭化水素を製造する方法であって、
     該担体付き金属触媒が、下記の群1及び群2から構成される触媒である製造方法。
      群1:アルミナ、ジルコニア及び/又はチタニアを担体とする触媒。
      群2:アルミナ、ジルコニア及び/又はチタニアに、ルテニウム、ニッケル、白金、パラジウム、イリジウム、ロジウム、金及び銀からなる群より選択される1種以上が担持された触媒。
    In the presence of a metal catalyst with a carrier
    Hydrogen supply pressure is 0.2-5MPa,
    The liquid space velocity of the supply liquid amount of fats and oils is set to 0.01 to 10.0 hr -1 .
    The amount of water supplied to 100 parts by volume of fat and oil is 5 to 80 parts by volume, and the ratio of the flow rate of hydrogen to the flow rate of fat and oil is 50 to 1200 NL per liter of fat and oil, and the hydrogen, fat and water are used as the carrier. It is a method of producing a hydrocarbon having 5 to 20 carbon atoms by supplying it to a reaction section equipped with a metal catalyst and performing catalytic hydrocracking of fats and oils.
    A production method in which the metal catalyst with a carrier is a catalyst composed of the following groups 1 and 2.
    Group 1: Catalysts with alumina, zirconia and / or titania as carriers.
    Group 2: A catalyst in which at least one selected from the group consisting of ruthenium, nickel, platinum, palladium, iridium, rhodium, gold and silver is supported on alumina, zirconia and / or titania.
  4.  担体付き金属触媒の担体がアルミナであり、担持される金属がニッケル及びルテニウムを含み、ニッケルとルテニウムとの質量比がNi:Ru=10:1~500:1である、請求項3に記載の方法。 The third aspect of claim 3, wherein the carrier of the metal catalyst with a carrier is alumina, the supported metal contains nickel and ruthenium, and the mass ratio of nickel to ruthenium is Ni: Ru = 10: 1 to 500: 1. Method.
  5.  油脂が、菜種油、綿実油、パーム油、ココナツ油、ヒマワリ油、大豆油、油ヤシ油、ココヤシ油、ジャトロファ油、オリーブ油、廃食用油、ダーク油、動物油の油脂類、藻中油脂およびバイオマス乾留油からなる群より選択される1種以上である、請求項3又は4に記載の方法。 Fats and oils are rapeseed oil, cottonseed oil, palm oil, coconut oil, sunflower oil, soybean oil, oil palm oil, coconut oil, jatrofa oil, olive oil, waste cooking oil, dark oil, animal oil fats and oils, algae fats and oils, and biomass dry distillate oil. The method according to claim 3 or 4, wherein the method is one or more selected from the group consisting of.
  6.  請求項3~5のいずれか1項に記載の方法により製造された炭化水素であって、油脂が廃食用油及び/又はジャトロファ油である炭化水素。 A hydrocarbon produced by the method according to any one of claims 3 to 5, wherein the oil and fat is waste cooking oil and / or jatropha oil.
  7.  油脂を接触水素化分解することにより炭化水素を製造するための装置であって、少なくとも、油脂供給部、水素ガス供給部、及び水供給部と、反応部並びに反応生成物回収部から構成され、
     該反応部には、水素化能を有する金属が担持された中性又は弱酸性の金属酸化物である触媒が存在する炭化水素製造装置。
    It is a device for producing hydrocarbons by catalytic hydrogenation and decomposition of fats and oils, and is composed of at least a fats and oils supply unit, a hydrogen gas supply unit, a water supply unit, a reaction unit, and a reaction product recovery unit.
    A hydrocarbon production apparatus in which a catalyst which is a neutral or weakly acidic metal oxide carrying a metal having a hydrogenating ability is present in the reaction unit.
PCT/JP2021/021266 2020-06-29 2021-06-03 Hydrocarbon manufacturing system using catalytic hydrogenolysis of oil/fat WO2022004267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022533767A JPWO2022004267A1 (en) 2020-06-29 2021-06-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020112003 2020-06-29
JP2020-112003 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022004267A1 true WO2022004267A1 (en) 2022-01-06

Family

ID=79315911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021266 WO2022004267A1 (en) 2020-06-29 2021-06-03 Hydrocarbon manufacturing system using catalytic hydrogenolysis of oil/fat

Country Status (2)

Country Link
JP (1) JPWO2022004267A1 (en)
WO (1) WO2022004267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085337A1 (en) * 2021-11-09 2023-05-19 国立大学法人東京農工大学 Bio-jet fuel production method and bio-jet fuel production catalyst used in said method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200295A (en) * 1991-06-26 1993-08-10 Elf France Hydroreaning catalyst containing sulfide of ruthenium and at least one kind of sulfide of other metal on fire-resistant oxide carrier and hydrorefining process using said catalyst
JP2010500465A (en) * 2006-08-16 2010-01-07 バイオイーコン インターナショナル ホールディング エヌ.ブイ. Process for producing linear alkane by hydrotreating a mixture of triglyceride and vacuum gas oil
JP2010540700A (en) * 2007-09-20 2010-12-24 ユーオーピー エルエルシー Production of diesel fuel from renewable feedstock with reduced hydrogen consumption
JP2015531430A (en) * 2012-12-11 2015-11-02 シェブロン ラムマス グローバル,リミティド ライアビリティ カンパニー Conversion of oils containing triacylglycerides to hydrocarbons.
WO2017208497A1 (en) * 2016-06-01 2017-12-07 株式会社レボインターナショナル Method for producing hydrocarbon liquid fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05200295A (en) * 1991-06-26 1993-08-10 Elf France Hydroreaning catalyst containing sulfide of ruthenium and at least one kind of sulfide of other metal on fire-resistant oxide carrier and hydrorefining process using said catalyst
JP2010500465A (en) * 2006-08-16 2010-01-07 バイオイーコン インターナショナル ホールディング エヌ.ブイ. Process for producing linear alkane by hydrotreating a mixture of triglyceride and vacuum gas oil
JP2010540700A (en) * 2007-09-20 2010-12-24 ユーオーピー エルエルシー Production of diesel fuel from renewable feedstock with reduced hydrogen consumption
JP2015531430A (en) * 2012-12-11 2015-11-02 シェブロン ラムマス グローバル,リミティド ライアビリティ カンパニー Conversion of oils containing triacylglycerides to hydrocarbons.
WO2017208497A1 (en) * 2016-06-01 2017-12-07 株式会社レボインターナショナル Method for producing hydrocarbon liquid fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085337A1 (en) * 2021-11-09 2023-05-19 国立大学法人東京農工大学 Bio-jet fuel production method and bio-jet fuel production catalyst used in said method

Also Published As

Publication number Publication date
JPWO2022004267A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP4832871B2 (en) Hydrorefining method
EP2264129B1 (en) Process for hydrotreating biomass oil diluted in a refinery stream of petroleum hydrocarbons
AU2009293731B2 (en) Process for producing hydrocarbon oil
CN101214451B (en) Novel composite solid acid catalyst and application
EP2474599A1 (en) Fuel oil base and aviation fuel composition containing same
US20120203040A1 (en) Process for the Production of Paraffinic Hydrocarbons
Ishihara et al. Dehydrocyclization-cracking reaction of soybean oil using zeolite-metal oxide composite-supported PtNiMo sulfided catalysts
JP5005451B2 (en) Method for producing hydrocarbon oil
WO2010032748A1 (en) Process for producing hydrocarbon oil
JP2007308564A (en) Hydrogenation purification method
Yu et al. Hydrogen production from steam reforming of kerosene over Ni–La and Ni–La–K/cordierite catalysts
Li et al. Catalytic methanotreating of vegetable oil: A pathway to Second-generation biodiesel
JP6650031B2 (en) Method for producing hydrocarbon liquid fuel
WO2022004267A1 (en) Hydrocarbon manufacturing system using catalytic hydrogenolysis of oil/fat
WO2014190436A1 (en) Process and system for producing a fatty acid alkyl ester
JP5123635B2 (en) Method for producing gasoline base material and gasoline
CN110964563A (en) Hydrofining method for preparing mixed alcohol crude product from synthesis gas
RU2603967C1 (en) Method for selective production of fraction alkanes, suitable for petrol and diesel fuel
Loe et al. Upgrading of Lipids to Fuel‐like Hydrocarbons and Terminal Olefins via Decarbonylation/Decarboxylation
CN110964568B (en) Method for removing sulfur and arene by diesel oil ultra-deep hydrogenation
WO2020090141A1 (en) Method for producing liquid hydrocarbon fuel
WO2010032749A1 (en) Process for producing hydrocarbon oil
Agbaba Sener Cu-based catalysts for the conversion of acetylene and ethanol
Naji et al. Biofuel production via catalytic cracking of waste cooking oil using sulfonated activated carbon supported La/Ce bimetallic catalysts
Li et al. Vapor-phase deoxydehydration of 1, 2-propanediol to form propylene over Cu-loaded H3PO4/SiO2-Al2O3 catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533767

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832557

Country of ref document: EP

Kind code of ref document: A1