WO2022004254A1 - Sandwich panel - Google Patents

Sandwich panel Download PDF

Info

Publication number
WO2022004254A1
WO2022004254A1 PCT/JP2021/020958 JP2021020958W WO2022004254A1 WO 2022004254 A1 WO2022004254 A1 WO 2022004254A1 JP 2021020958 W JP2021020958 W JP 2021020958W WO 2022004254 A1 WO2022004254 A1 WO 2022004254A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepreg
core layer
lignin
sandwich panel
resin
Prior art date
Application number
PCT/JP2021/020958
Other languages
French (fr)
Japanese (ja)
Inventor
政夫 上坂
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2021567026A priority Critical patent/JP7088424B2/en
Publication of WO2022004254A1 publication Critical patent/WO2022004254A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance

Definitions

  • the present invention relates to a sandwich panel.
  • the sandwich panel is composed of a hollow honeycomb core composed of a wall having a hexagonal cross section and a skin material such as a pair of prepregs joined to both sides of the honeycomb core.
  • Sandwich panels which are lightweight and highly rigid, are used, for example, in structural members for aircraft.
  • a method for manufacturing a sandwich panel As a general method, for example, there is a technique described in Patent Document 1. According to the same document, a plurality of cloths are impregnated with a phenol resin, and two laminated plates obtained by heat and pressure molding are impregnated with a phenol resin phenol resin phenol resin composition, heated, and cured. A sandwich panel can be obtained by arranging it on both sides of the honeycomb core and forming it under heat and pressure molding.
  • the present inventor has made both the core layer and the prepreg water-soluble as a binder resin. It was found that it is effective to include a phenol resin. That is, by using the water-soluble phenol resin, the phenol resin can be impregnated into the core layer and the prepreg without using an organic solvent, the impregnation property of the phenol resin becomes high, and the adhesion between the core layer and the prepreg becomes high.
  • the following first invention was completed by finding that it is possible to obtain a high degree of combustion resistance and good combustion resistance.
  • a sandwich panel comprising a core layer having a honeycomb structure and a cured product of a prepreg provided on both sides of the core layer.
  • a sandwich panel is provided in which both the core layer and the prepreg contain a water-soluble phenolic resin as a binder resin.
  • the present inventor has found that the impregnation property can be dramatically improved by using a specific water-soluble phenol resin, and by using this for at least one of the core layer and the prepreg, the core layer and the prepreg can be used.
  • the adhesion can be improved and good combustion resistance can be obtained, and the following second invention has been completed.
  • a sandwich panel comprising a core layer having a honeycomb structure and a cured product of a prepreg provided on both sides of the core layer.
  • the core layer and / or the prepreg contains a water-soluble phenolic resin as a binder resin, and the prepreg contains a water-soluble phenol resin.
  • a sandwich panel is provided in which the water-soluble phenol resin is a phenol resin synthesized by using one or more selected from lignin, lignin derivatives, lignin decomposition products and modified products thereof.
  • a sandwich panel having good adhesion and combustion resistance is provided.
  • FIG. 1 is a schematic view showing an example of a sandwich panel according to the present embodiment.
  • the sandwich panel 100 of the present embodiment includes a core layer 10 having a honeycomb structure, a cured product (resin plate 40) of a prepreg 20 (prepreg 21 on the upper surface and prepreg 22 on the lower surface) provided on both sides of the core layer 10.
  • a cured product resin plate 40
  • prepreg 20 prepreg 21 on the upper surface and prepreg 22 on the lower surface
  • both the core layer 10 and the prepreg 20 contain a water-soluble phenol resin as a binder resin.
  • a water-soluble phenol resin as a binder resin.
  • the water-soluble phenol resin of the present embodiment is a resin that can be dissolved or dispersed in water. As a result, the water solubility is increased, and the wettability with the core layer 10 and the prepreg 20 can be improved.
  • the water-soluble phenolic resin include lignin, lignin derivatives, lignin decomposition products, and phenolic resins using one or more selected from these modified products.
  • examples of the lignin modified product include those disclosed in Japanese Patent Publication No. 48-22340.
  • the lignin modification rate of the lignin-modified phenolic resin is preferably 10 to 60%, more preferably 20 to 50%.
  • the modification rate is preferably 10 to 60%, more preferably 20 to 50%.
  • the lignin-modified phenol resin is obtained by reacting lignins, which will be described later, phenols, and aldehydes in the presence of a catalyst. Further, the above-mentioned resole-type lignin-modified phenol resin can be obtained by reacting lignins, phenols and aldehydes in the presence of an alkaline catalyst.
  • the lignins used in the lignin-modified phenolic resin include at least one selected from lignin and lignin derivatives. Lignin, along with cellulose and hemicellulose, is a major component that forms the structure of plants and is one of the most abundant aromatic compounds in nature.
  • Examples of lignin include alkaline lignin such as kraft lignin, soda lignin, soda-anthraquinone lignin, pulp lignin containing lignin sulfonic acid; organosolv lignin; high temperature and high pressure water treatment lignin; explosive lignin; enzyme saccharified lignin; lignophenol; phenolized lignin.
  • lignin is not particularly limited, and examples thereof include woods and herbs that contain lignin and form xylem, such as conifers such as cedar, pine and hinoki, broad-leaved trees such as beech, birch, nara and zelkova, rice and wheat. Examples include grasses (herbs) such as corn and bamboo. Of these, lignin derived from coniferous trees is preferable from the viewpoint of mechanical properties of the cured prepreg product.
  • the "lignin derivative” refers to a compound having a unit structure constituting lignin or a structure similar to the unit structure constituting lignin.
  • the lignin derivative has a phenol derivative as a unit structure. Since this unit structure has chemically and biologically stable carbon-carbon bonds and carbon-oxygen-carbon bonds, it is resistant to chemical deterioration and biological decomposition.
  • Examples of the lignin derivative include guaicylpropane (ferulic acid) represented by the following formula (A), syringylpropane (sinapinic acid) represented by the formula (B), and 4-hydroxyphenylpropane represented by the formula (C). (Cumaric acid) and the like.
  • the composition of the lignin derivative depends on the biomass used as the raw material.
  • Lignin derivatives containing a guaiacylpropane structure are mainly extracted from conifers.
  • Lignin derivatives containing a guaiacyl propane structure and a syringyl propane structure are mainly extracted from hardwoods.
  • Lignin derivatives containing a guaiacyl propane structure, a syringyl propane structure and a 4-hydroxyphenyl propane structure are mainly extracted from herbs.
  • the lignin derivative is preferably obtained by decomposing biomass.
  • Biomass takes in and immobilizes carbon dioxide in the atmosphere in the process of photosynthesis, so biomass contributes to suppressing the increase in carbon dioxide in the atmosphere. It can contribute to the suppression of carbon dioxide.
  • the biomass include lignocellulosic biomass.
  • lignocellulosic biomass include leaves, bark, branches and wood of plants containing lignin, and processed products thereof.
  • plants containing lignin include the above-mentioned broad-leaved trees, coniferous trees, and gramineous plants.
  • Biomass decomposition methods include chemical treatment methods, hydrolysis treatment methods, steam explosion methods, supercritical water treatment methods, subcritical water treatment methods, mechanical treatment methods, cresol sulfate methods, pulp production methods, etc. Can be mentioned. From the viewpoint of environmental load, steam blasting method, sub-critical water treatment method, and mechanical treatment method are preferable. From the viewpoint of cost, the pulp production method is preferable. From the viewpoint of cost, it is preferable to use by-products of biomass utilization.
  • the lignin derivative examples include those obtained by decomposing lignocellulosic, which is a combination of lignin, cellulose and hemicellulose.
  • the lignin derivative may contain a lignin decomposition product, a cellulose decomposition product, a hemicellulose decomposition product, etc., which are mainly composed of a compound having a lignin skeleton.
  • the lignin derivative preferably has many reaction sites on which the curing agent acts by the electrophilic substitution reaction on the aromatic ring, and the fragrance containing a phenolic hydroxyl group is excellent in that the less steric damage near the reaction site is, the better the reactivity. It is preferable that at least one of the ortho-position and the para-position of the ring is unsubstituted, and lignin derived from coniferous trees or herbs, which contains a large amount of guaiacyl nucleus or 4-hydroxyphenyl nucleus structure as an aromatic unit of lignin, is preferable.
  • the lignin derivative may be one having a functional group in the lignin derivative (lignin secondary derivative).
  • the functional group of the lignin secondary derivative is not particularly limited, but for example, two or more of the same functional groups capable of reacting with each other or those capable of reacting with other functional groups are preferable.
  • Specific examples thereof include a vinyl group having a carbon-carbon unsaturated bond, an ethynyl group, a maleimide group, a cyanate group, an isocyanate group and the like, in addition to an epoxy group and a methylol group.
  • the core layer 10 for example, a sheet-like member formed by impregnating a base material for a core layer having a honeycomb structure with a binder resin can be used.
  • the core layer 10 can have high strength and light weight due to the honeycomb structure.
  • the honeycomb structure is a known structure, and is intended to be a structure in which a plurality of substantially regular hexagonal through holes penetrating from the upper surface to the lower surface are formed.
  • the binder resin of the core layer 10 contains the above-mentioned water-soluble phenol resin, but may contain other resins other than the above-mentioned water-soluble phenol resin as long as the effect of the present invention is not impaired, for example. , Thermosetting resin and the like.
  • the thermosetting resin include thermosetting resins such as phenol resins other than water-soluble, unsaturated polyester resins, and epoxy resins.
  • the phenolic resin includes a compound having one or more phenolic hydroxyl groups in the molecule, for example, novolak resin such as novolak type phenol, novolak type cresol, novolak type naphthol; bisphenol resin such as bisphenol F, bisphenol A; paraxylylene.
  • Phenolic aralkyl resins such as modified phenolic resins; resol-type phenolic resins such as dimethylene ether-type resol and methylol-type phenol; compounds obtained by further converting the above resins into methylols.
  • a binder resin is dissolved in a known organic solvent and used as a binder solution by impregnating the base material for the core layer.
  • Examples of the base material having the honeycomb structure of the core layer 10 include those obtained by molding aramid fiber, paper, balsa wood, plastic, aluminum, titanium, glass, an alloy thereof and the like into a honeycomb shape by a known method. From the viewpoint of heat resistance, it is preferable that the base material having the honeycomb structure of the core layer 10 contains aramid fibers.
  • the layer thickness of the core layer 10 is not particularly limited, but may be, for example, 1 mm or more and 50 mm or less, 3 mm or more and 40 mm or less, or 5 mm or more and 30 mm or less.
  • each core cell in the core layer 10 is not particularly limited, but can be, for example, 1 mm or more and 10 mm or less on one side.
  • the area of the surface (upper surface, lower surface) of the core layer 10 is not limited, but for example, it may have a surface area for one sandwich panel or a total surface area for a plurality of sandwich panels. good. This makes it possible to separate one sandwich panel 100 into individual pieces and cut out a plurality of panels to obtain the sandwich panel 100, thereby improving productivity.
  • the area of the surface (upper surface, lower surface) of the core layer 10 can be a large area, and may be, for example, 1 m 2 or more.
  • the core layer 10 may have various surface treatments on the inside and / or the outside from the viewpoint of improving corrosion resistance and heat resistance.
  • the prepreg 20 for example, a sheet member in a B stage state in which a binder resin is impregnated into a prepreg base material can be used.
  • the prepreg base material include a fiber base material.
  • the reaction rate calculated from the measurement result of DSC (Differential Scanning Calorimeter) for the binder resin impregnated in the prepreg substrate is more than 0% and 60% or less, preferably 0. It means that it is 5% or more and 55% or less, and more preferably 1% or more and 50% or less.
  • the binder resin of the prepreg 20 contains the above-mentioned water-soluble phenol resin, but may contain a resin other than the above-mentioned water-soluble phenol resin as long as the effect of the present invention is not impaired.
  • the above-mentioned water-soluble phenol resin is used.
  • the fiber base material aramid fiber, polyester fiber, polyphenylene sulfide fiber, carbon fiber, graphite fiber, glass fiber, silicon carbide fiber and the like can be used. From the viewpoint of high heat resistance, the fiber base material preferably contains glass fiber.
  • the heat resistance of the sandwich panel 100 can be further improved. Further, since the difference in linear expansion coefficient between the resin plate 40 and the core layer 10 can be reduced, the warp of the sandwich panel 100 can be suppressed.
  • the prepreg 20 is in a B stage state in which, for example, a binder resin is impregnated into a fiber base material.
  • a binder resin is impregnated into a fiber base material.
  • the binder resin is dissolved in an organic solvent and then impregnated with the fiber base material, the organic solvent remains in the prepreg in the B stage state, and the odor due to the residual solvent is present in the sandwich panel manufacturing process. There was a problem.
  • the prepreg 20 of the present embodiment uses a water-soluble phenol resin as the binder resin, the odor caused by the conventional organic solvent can be reduced.
  • the upper limit of the glass transition temperature (Tg) of the cured product of the prepreg 20 is, for example, 250 ° C. or lower, preferably 220 ° C. or lower, and more preferably 200 ° C. or lower. This makes it possible to carry out the heat and pressurization treatment under low temperature conditions.
  • the lower limit of the glass transition temperature (Tg) may be, for example, 110 ° C. or higher, or 120 ° C. or higher. This makes it possible to improve the thermal characteristics.
  • the binder resins used in the core layer 10 and the prepreg 20 may be the same or different from each other, but they can effectively improve the adhesion and the combustion resistance. It is preferably the same binder resin.
  • the resin plate 40 of the present embodiment is obtained by curing the prepreg 20 in the manufacturing process of the sandwich panel 100. The curing conditions are shown in the description of the manufacturing method of the sandwich panel 100.
  • a plurality of resin plates 40 may be laminated. Further, another functional layer may be interposed between the core layer 10 and the resin plate 40. For example, a thermoplastic sheet may be interposed to improve the adhesion.
  • the sandwich panel 100 of this embodiment can be suitably used for an aircraft panel.
  • the sandwich panel 100 can be used for the interior of an aircraft such as a toilet and a partition, and the equipment inside the aircraft such as a wagon housing.
  • Step 1 Preparation of Core Layer 10 and Prepreg 20
  • a base material for the core layer 10 is prepared.
  • the base material for the core layer 10 has a honeycomb structure and is preferably formed of aramid fibers.
  • a base material having a honeycomb structure is prepared, and the base material is impregnated with a binder solution containing a water-soluble phenol resin. Then, the base material is dried to obtain a core layer 10 using a water-soluble phenol resin as a binder resin.
  • a base material for prepreg 20 prepares a base material for prepreg 20.
  • the base material for the prepreg 20 include a fiber base material.
  • the base material for prepreg 20 is impregnated with a binder solution containing a water-soluble phenol resin. Then, the base material is dried to obtain prepreg 20 using a water-soluble phenol resin as a binder resin.
  • both the core layer 10 and the prepreg 20, as the impregnation method for example, a method of injecting and coating the base material using an injection device such as the binder solution spray nozzle, and a method of immersing the base material in the binder solution.
  • a method of applying the binder solution to the substrate by various coaters such as a knife coater and a comma coater, a method of transferring the binder solution to the substrate by a transfer roll, and the like. Of these, a method of immersing the base material in the binder solution is preferable.
  • the conditions for heating and drying are not particularly limited, but usually 100 to 220 ° C., preferably 120 to 190 ° C. for 2 to 10 minutes.
  • the binder solution containing the water-soluble phenol resin may contain other additives in addition to the water-soluble phenol resin.
  • the additive is not particularly limited, and examples thereof include fillers such as inorganic fillers, rubber, and thermoplastic resins.
  • a thermosetting resin other than the water-soluble phenol resin may be contained as long as the effect of the present invention is not impaired, and examples thereof include thermosetting resins such as phenol resin, unsaturated polyester resin and epoxy resin. Be done.
  • the content of the water-soluble phenol resin contained in the binder solution is not particularly limited, but is preferably 70 to 100% by mass, preferably 80% by mass or more, when the total solid content is 100% by mass. More preferred.
  • Step 2 Laminating the core layer and the prepreg
  • the prepreg 20 in the B stage state prepreg 21, 22
  • a laminate containing the core layer 10 and the prepreg 20 is formed.
  • the prepreg 20 can cover the entire surface (upper surface and lower surface) of the core layer 10.
  • the number of prepregs 20 to be laminated may be one or a plurality.
  • another functional layer may be arranged between the core layer 10 and the prepreg 20.
  • a foam layer made of a thermosetting resin can be used as the other functional layer.
  • a metal plate 30 (the upper side is a metal plate 31 and the lower side is a metal plate 32) is arranged on the upper and lower surfaces of the laminated body.
  • the core layer 10 and the prepreg 20 are heated and pressed while the metal plate 30 is in contact with the prepreg 20.
  • the prepreg 20 can be cured to form the resin plate 40 (the upper side is the resin plate 41 and the lower side is the resin plate 42).
  • the above heating and pressurization for example, conditions of 110 ° C. to 140 ° C., 30 minutes to 90 minutes, and 0.35 MPa to 2.0 MPa can be adopted.
  • the above heating and pressurizing step can be performed in the atmosphere. Therefore, productivity can be improved.
  • the resin constituting the prepreg 20 when the prepreg 20 is heated and pressed, a part of the resin constituting the prepreg 20 may move onto the inner wall surface of the honeycomb structure of the core layer 10.
  • the resin constituting the resin plate 40 is covered from the resin plate 40 to a part of the upper end portion or the lower end portion of the inner wall of the core layer 10. It will be formed continuously so that the adhesion can be improved.
  • the structure is such that the entire inside of the core layer 10 is not filled with the resin constituting the resin plate 40. Thereby, the sandwich panel 100 having a structure excellent in strength and light weight can be obtained.
  • a cushion layer may be arranged between the metal plate 30 and the prepreg 20 to heat and pressurize.
  • the cushion layer may be made of, for example, a paper material, a rubber material, or a composite material thereof.
  • both the core layer 10 and the prepreg 20 contain a water-soluble phenol resin
  • at least one of the core layer 10 and the prepreg 20 is a binder.
  • the resin contains a water-soluble phenol resin
  • the above-mentioned water-soluble phenol resin is made by using one or more selected from lignin, a lignin derivative, a lignin decomposition product and a modified product thereof. It has the same configuration and function as the sandwich panel 100 of the first embodiment.
  • the points different from the first embodiment will be described.
  • the water-soluble phenol form is made of one or more selected from lignin, lignin derivatives, lignin decomposition products and modified products thereof, whereby the water-soluble phenol resin is said to be water-soluble.
  • the impregnation property of the sex phenol resin can be dramatically improved, and as a result, by using it for at least one of the core layer 10 and the prepreg 20, the adhesion between the core layer and the prepreg can be improved and good combustion resistance can be obtained. Be done.
  • the water-soluble phenol form using one or more selected from the above-mentioned lignin, lignin derivative, lignin decomposition product and modified product thereof has adhesion and combustion resistance. It is preferable that it is used in the prepreg 20, and it is more preferable that it is used in the core layer 10 and the prepreg 20.
  • no water-soluble phenol resin is used as the binder solution, provided that at least one of the core layer 10 and the prepreg 20 contains the water-soluble phenol resin as the binder resin.
  • a solution may be used.
  • the binder solution that does not use the water-soluble phenol resin a known one can be used, and a solution obtained by dissolving a thermosetting resin other than the water-soluble phenol resin in a known organic solvent can be used.
  • the thermosetting resin include thermosetting resins such as phenol resins other than water-soluble, unsaturated polyester resins, and epoxy resins.
  • the phenolic resin includes a compound having one or more phenolic hydroxyl groups in the molecule, for example, novolak resin such as novolak type phenol, novolak type cresol, novolak type naphthol; bisphenol resin such as bisphenol F, bisphenol A; paraxylylene.
  • Phenolic aralkyl resins such as modified phenolic resins; resol-type phenolic resins such as dimethylene ether-type resol and methylol-type phenol; compounds obtained by further converting the above resins into methylols.
  • lignin used for the synthesis of lignin-modified phenolic resin was prepared by the following procedure. 1500 parts by mass of dried cedar wood flour with a water content of 50%, 5000 parts by mass of pure water, 180 parts by mass of sodium hydroxide, 120 parts by mass of sodium carbonate and 0.5 parts by mass of 9,10-anthraquinone as a cooking aid in a capacity of 10 L It was charged in a stainless steel autoclave facility and subjected to a cooking reaction at 170 ° C. for 3 hours with stirring. The post-reaction cooking liquor was cooled to room temperature, the pulp component was removed by a screen, and then the black liquor containing lignin was separated.
  • the separated black liquor was concentrated to a concentration of 20% with an evaporator to obtain a concentrated black liquor.
  • Dilute sulfuric acid was added to the concentrated black liquor to adjust the pH to 8, and the resulting precipitate was centrifuged. After washing twice with 500 parts by mass of water, the precipitate was suspended in 5 times the amount of water and readjusted to pH 2 with dilute sulfuric acid.
  • the precipitated lignin was centrifuged again, washed with a small amount of water, suction filtered, and freeze-dried to obtain 140 parts by mass of alkaline lignin in the form of a brown powder.
  • ⁇ Lignin-modified phenolic resin b The synthesis was carried out in the same manner as the lignin-modified phenol resin a except that 139 parts by mass of phenol was changed to 205 parts by mass of phenol and 139 parts by mass of alkaline lignin was changed to 67 parts by mass, and 654 parts by mass of lignin-modified phenol resin b was obtained.
  • the lignin denaturation rate based on the solid resin content was 20%, the non-volatile content was 52%, the pH was 7.8, and the viscosity of the solution resin was 0.68 Pa ⁇ s.
  • Binder solution The following binder solution was prepared.
  • -Binder solution A1 A water-soluble phenol resin (33304 manufactured by Durez) was used as the binder solution A1.
  • -Binder solution A2 The lignin-modified phenol resin b having a lignin modification rate of 20% obtained by the above synthesis method was used as a binder solution A2.
  • -Binder solution A3 The lignin-modified phenol resin a having a lignin modification rate of 42% obtained by the above synthesis method was used as a binder solution A3.
  • Binder solution B An organic solvent (methanol) -based phenol resin (23056 manufactured by Durez) was used as the binder solution B.
  • Example 1 Production of core layer A honeycomb core was prepared using aramid paper (“Nomex412” manufactured by DuPont, thickness 50 ⁇ m). A series of operations such as impregnating the obtained honeycomb core with the binder solution A for 5 minutes, taking out the honeycomb core, and drying at 80 ° C. for 45 minutes was repeated twice. Then, it was cured at 190 ° C. for 30 minutes to obtain a core layer having a thickness of 10 mm and a thickness of 48.1 kg / m 3. 2) Production of prepreg Glass fiber (# 7781, manufactured by HEXCEL) was impregnated with the binder solution A and dried at 150 ° C.
  • aramid paper Nomex412 manufactured by DuPont, thickness 50 ⁇ m.
  • a sheet-shaped prepreg (thickness 250 ⁇ m).
  • the prepreg was in the B stage state.
  • 3) Manufacture of sandwich panel A laminated body was obtained by arranging one prepreg on each side of the core layer. Subsequently, a SUS plate (thickness: 1.5 mm, Rz: 1.0 ⁇ m) was pressed against both sides of the obtained laminate, and heated and pressed at 0.7 MPa, 127 ° C. for 60 minutes using a mechanical press. The prepreg was cured to form a resin plate. Then, the SUS plate was separated from the resin plate to obtain a sandwich panel composed of a resin plate, a honeycomb core, and a resin plate. The glass transition temperature (Tg) of the cured product of the prepreg was 180 ° C.
  • Examples 2 to 4 Each sandwich panel was obtained in the same manner as in Example 1 except that the binder solution of the core layer and the binder solution of the prepreg were as shown in Table 1.
  • Adhesion Measurements were made in accordance with ASTM D1781 (Standard Test Method for Drum Peeling for Adhesives) and evaluated according to the following criteria: ⁇ : ⁇ 150N / 76mm ⁇ : ⁇ 100N / 76mm and ⁇ 150N / 76mm ⁇ :> 80N / 76mm and ⁇ 100N / 76mm ⁇ : ⁇ 80N / 76mm
  • the core layer and prepreg before laminating were each observed under a microscope at 50 times and evaluated according to the following criteria.
  • No voids are confirmed in the core layer and prepreg
  • Slight voids are present in at least one of the core layer and prepreg
  • Many voids are present in at least one of the core layer and prepreg
  • Core layer and prepreg There is a void on at least one side

Abstract

A sandwich panel (100) according to the present invention is provided with a core layer (10) that has a honeycomb structure, and a cured material (resin sheets (40)) of a prepreg (20) that is provided on both surfaces of the core layer (10), wherein both the core layer (10) and the prepreg (20) contain a water-soluble phenol resin as a binder.

Description

サンドイッチパネルSandwich panel
 本発明は、サンドイッチパネルに関する。 The present invention relates to a sandwich panel.
 サンドイッチパネルは、断面が六角形の壁で構成された中空状のハニカムコアと、このハニカムコアの両面に接合された一対のプリプレグ等の表皮材とで構成されている。軽量で高剛性な特徴をもつサンドイッチパネルは、例えば航空機用の構造部材などに使用されている。 The sandwich panel is composed of a hollow honeycomb core composed of a wall having a hexagonal cross section and a skin material such as a pair of prepregs joined to both sides of the honeycomb core. Sandwich panels, which are lightweight and highly rigid, are used, for example, in structural members for aircraft.
 サンドイッチパネルの製造方法としては、各種の手法が開示されている。一般的な手法として、例えば、特許文献1に記載の技術がある。同文献によれば、複数のクロスにフェノール樹脂を含浸させて、加熱加圧成型により得られる積層板2枚を、フェノール樹脂フェノール樹脂フェノール樹脂組成物を含浸させ、加熱し、硬化させて得られるハニカムコアの両面に配置し、加熱加圧成型にすることによってサンドイッチパネルが得られる。 Various methods are disclosed as a method for manufacturing a sandwich panel. As a general method, for example, there is a technique described in Patent Document 1. According to the same document, a plurality of cloths are impregnated with a phenol resin, and two laminated plates obtained by heat and pressure molding are impregnated with a phenol resin phenol resin phenol resin composition, heated, and cured. A sandwich panel can be obtained by arranging it on both sides of the honeycomb core and forming it under heat and pressure molding.
特開2018-199267号公報Japanese Unexamined Patent Publication No. 2018-199267
 特許文献1に開示されるような従来のサンドイッチパネルの製造方法の多くは、フェノール樹脂をあらかじめ有機溶剤に溶解させ液状にしてから、ハニカムコアおよびプリプレグ用基材にフェノール樹脂を含浸させていた。そのため、有機溶剤による安全性や作業環境への影響が問題となり、さらに地球温暖化や大気汚染の一因となることが指摘されるようになった。
 一方で、近年、航空機用途のサンドイッチパネルにおける密着性、耐燃焼性等に対する要求はますます高まっている。
In many of the conventional methods for producing sandwich panels as disclosed in Patent Document 1, the phenol resin is previously dissolved in an organic solvent to make it liquid, and then the honeycomb core and the base material for prepreg are impregnated with the phenol resin. Therefore, it has been pointed out that the safety of organic solvents and the impact on the working environment have become problems, and that they also contribute to global warming and air pollution.
On the other hand, in recent years, there have been increasing demands for adhesion, combustion resistance, etc. in sandwich panels for aircraft applications.
 本発明者は、従来のサンドイッチパネルで得られた性能を維持しつつ、有機溶剤を用いずに生産性を高める観点から鋭意検討を行った結果、コア層およびプリプレグがともに、バインダー樹脂として水溶性フェノール樹脂を含むことが有効であるという知見を得た。すなわち、水溶性フェノール樹脂を用いることにより、有機溶剤を用いなくともフェノール樹脂をコア層およびプリプレグに含浸させることができ、また、フェノール樹脂の含浸性が高くなり、コア層とプリプレグとの密着性を高くできるとともに、良好な耐燃焼性が得られることを見出し、以下の第1の発明を完成させた。 As a result of diligent studies from the viewpoint of increasing productivity without using an organic solvent while maintaining the performance obtained by the conventional sandwich panel, the present inventor has made both the core layer and the prepreg water-soluble as a binder resin. It was found that it is effective to include a phenol resin. That is, by using the water-soluble phenol resin, the phenol resin can be impregnated into the core layer and the prepreg without using an organic solvent, the impregnation property of the phenol resin becomes high, and the adhesion between the core layer and the prepreg becomes high. The following first invention was completed by finding that it is possible to obtain a high degree of combustion resistance and good combustion resistance.
 本発明によれば、
 ハニカム構造を有するコア層と、前記コア層の両面に設けられたプリプレグの硬化物と、を備えるサンドイッチパネルであって、
 前記コア層および前記プリプレグがともに、バインダー樹脂として水溶性フェノール樹脂を含む、サンドイッチパネルが提供される。
According to the present invention
A sandwich panel comprising a core layer having a honeycomb structure and a cured product of a prepreg provided on both sides of the core layer.
A sandwich panel is provided in which both the core layer and the prepreg contain a water-soluble phenolic resin as a binder resin.
 また、本発明者は、特定の水溶性フェノール樹脂を用いることで含浸性を飛躍的に向上できることを知見し、これを、コア層およびプリプレグの少なくとも一方に用いることで、コア層とプリプレグとの密着性を高くできるとともに、良好な耐燃焼性が得られることを見出し、以下の第2の発明を完成させた。 Further, the present inventor has found that the impregnation property can be dramatically improved by using a specific water-soluble phenol resin, and by using this for at least one of the core layer and the prepreg, the core layer and the prepreg can be used. We have found that the adhesion can be improved and good combustion resistance can be obtained, and the following second invention has been completed.
 本発明によれば、
 ハニカム構造を有するコア層と、前記コア層の両面に設けられたプリプレグの硬化物と、を備えるサンドイッチパネルであって、
 前記コア層および/または前記プリプレグが、バインダー樹脂として水溶性フェノール樹脂を含み、
 前記水溶性フェノール樹脂が、リグニン、リグニン誘導体、リグニン分解物およびこれらの変性物の中から選ばれる1種または2種以上を用いて合成されるフェノール樹脂である、サンドイッチパネルが提供される。
According to the present invention
A sandwich panel comprising a core layer having a honeycomb structure and a cured product of a prepreg provided on both sides of the core layer.
The core layer and / or the prepreg contains a water-soluble phenolic resin as a binder resin, and the prepreg contains a water-soluble phenol resin.
A sandwich panel is provided in which the water-soluble phenol resin is a phenol resin synthesized by using one or more selected from lignin, lignin derivatives, lignin decomposition products and modified products thereof.
 本発明によれば、密着性、耐燃焼性が良好なサンドイッチパネルが提供される。 According to the present invention, a sandwich panel having good adhesion and combustion resistance is provided.
本実施形態に係るサンドイッチパネルの一例を示す概略図である。It is a schematic diagram which shows an example of the sandwich panel which concerns on this embodiment. 本実施形態に係るサンドイッチパネルの製造方法の一例を示す工程断面図である。It is a process sectional view which shows an example of the manufacturing method of the sandwich panel which concerns on this embodiment.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all drawings, similar components are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
In the present specification, the notation "a to b" in the description of the numerical range means a or more and b or less unless otherwise specified. For example, "1 to 5% by mass" means "1% by mass or more and 5% by mass or less".
<第1実施形態>
 図1は、本実施形態に係るサンドイッチパネルの一例を示す概略図である。
 本実施形態のサンドイッチパネル100は、ハニカム構造を有するコア層10と、コア層10の両面に設けられたプリプレグ20(上面をプリプレグ21、下面をプリプレグ22)の硬化物(樹脂板40)と、を備える。
<First Embodiment>
FIG. 1 is a schematic view showing an example of a sandwich panel according to the present embodiment.
The sandwich panel 100 of the present embodiment includes a core layer 10 having a honeycomb structure, a cured product (resin plate 40) of a prepreg 20 (prepreg 21 on the upper surface and prepreg 22 on the lower surface) provided on both sides of the core layer 10. To prepare for.
 本実施形態において、コア層10、プリプレグ20はいずれもバインダー樹脂として水溶性フェノール樹脂を含む。これにより、水溶性フェノール樹脂と、コア層10、プリプレグ20との良好な濡れ性が得られ、水溶性フェノール樹脂がコア層10、プリプレグ20に対して良好に含浸できるようになる。そのため、コア層10、プリプレグ20内でのボイドの発生を効果的に抑制でき、透明性も向上できる。また、得られるサンドイッチパネル100において、コア層10と、樹脂板40との密着性を高くできるとともに、良好な耐燃焼性が得られる。密着性と、耐燃焼性との関係性の詳細は明らかではないが、耐燃焼性試験においてサンドイッチパネル100の一方の面の樹脂板40に炎をあてた際、コア層10のハニカム構造内の空気が膨張するため、コア層10と樹脂板40との間の密着性が十分ではない場合はわずかな隙間が生じてしまい、そこから炎が広がると推測される。そのため、コア層10と樹脂板40との密着性を高めることで、耐燃焼性を向上できると考えられる。 In the present embodiment, both the core layer 10 and the prepreg 20 contain a water-soluble phenol resin as a binder resin. As a result, good wettability between the water-soluble phenol resin and the core layer 10 and the prepreg 20 can be obtained, and the water-soluble phenol resin can be satisfactorily impregnated into the core layer 10 and the prepreg 20. Therefore, the generation of voids in the core layer 10 and the prepreg 20 can be effectively suppressed, and the transparency can be improved. Further, in the obtained sandwich panel 100, the adhesion between the core layer 10 and the resin plate 40 can be improved, and good combustion resistance can be obtained. Although the details of the relationship between the adhesion and the combustion resistance are not clear, when the resin plate 40 on one surface of the sandwich panel 100 is exposed to flame in the combustion resistance test, the inside of the honeycomb structure of the core layer 10 is formed. Since the air expands, if the adhesion between the core layer 10 and the resin plate 40 is not sufficient, a slight gap is formed, and it is presumed that the flame spreads from there. Therefore, it is considered that the combustion resistance can be improved by improving the adhesion between the core layer 10 and the resin plate 40.
[水溶性フェノール樹脂]
 本実施形態の水溶性フェノール樹脂とは、水に溶解または分散できる樹脂である。これにより、水溶性が高まり、コア層10およびプリプレグ20との濡れ性が向上できる。
 水溶性フェノール樹脂としては、リグニン、リグニン誘導体、リグニン分解物およびこれらの変性物の中から選ばれる1種または2種以上を用いてなるフェノール樹脂が挙げられる。例えば、リグニン変性物としては、例えば、特公昭48-22340号公報に開示されるものが挙げられる。
 なかでも、良好な密着性を得る観点から、水溶性が高く、リグニン成分の両親媒性によりプリプレグ基材への含浸性とコア層やプリプレグとの良好な濡れ性の両立が期待でき、従来のフェノール樹脂と同等の熱硬化性を有する、レゾール型のリグニン変性フェノール樹脂が好ましい。
[Water-soluble phenolic resin]
The water-soluble phenol resin of the present embodiment is a resin that can be dissolved or dispersed in water. As a result, the water solubility is increased, and the wettability with the core layer 10 and the prepreg 20 can be improved.
Examples of the water-soluble phenolic resin include lignin, lignin derivatives, lignin decomposition products, and phenolic resins using one or more selected from these modified products. For example, examples of the lignin modified product include those disclosed in Japanese Patent Publication No. 48-22340.
Above all, from the viewpoint of obtaining good adhesion, it is highly water-soluble, and it can be expected that both impregnation into the prepreg base material and good wettability with the core layer and prepreg can be expected due to the phenol formaldehyde of the lignin component. A resol-type lignin-modified phenol resin having the same thermosetting property as the phenol resin is preferable.
[リグニン変性フェノール樹脂]
 リグニン変性フェノール樹脂のリグニン変性率は、10~60%が好ましく、20~50%がより好ましい。変性率を上記下限値以上とすることで良好な含浸性や濡れ性を保持し、変性率を上記上限値以下とすることで、好適な樹脂粘度が得られ、熱硬化性を良好にできる。
[Lignin-modified phenolic resin]
The lignin modification rate of the lignin-modified phenolic resin is preferably 10 to 60%, more preferably 20 to 50%. By setting the modification rate to the above lower limit value or more, good impregnation property and wettability are maintained, and by setting the modification rate to the above upper limit value or less, a suitable resin viscosity can be obtained and the thermosetting property can be improved.
 リグニン変性フェノール樹脂は、後述するリグニン類と、フェノール類と、アルデヒド類とを、触媒の存在下で反応させて得られる。また、上記のレゾール型のリグニン変性フェノール樹脂は、リグニン類と、フェノール類と、アルデヒド類とを、アルカリ触媒の存在下で反応させることにより得られる。 The lignin-modified phenol resin is obtained by reacting lignins, which will be described later, phenols, and aldehydes in the presence of a catalyst. Further, the above-mentioned resole-type lignin-modified phenol resin can be obtained by reacting lignins, phenols and aldehydes in the presence of an alkaline catalyst.
[リグニン類]
 リグニン変性フェノール樹脂に用いるリグニン類は、リグニンおよびリグニン誘導体から選択される少なくとも1つを含む。
 リグニンは、セルロース及びヘミセルロースとともに、植物体の構造を形成する主要成分であり、また、自然界に最も豊富に存在する芳香属化合物の1つである。リグニンとしては、クラフトリグニン、ソーダリグニン、ソーダ-アントラキノンリグニン等のアルカリリグニンやリグニンスルホン酸を含むパルプリグニン;オルガノソルブリグニン;高温高圧水処理リグニン;爆砕リグニン;酵素糖化リグニン;リグノフェノール;フェノール化リグニン;等が挙げられる。
 リグニンの由来は特に限定されず、リグニンを含み木質部が形成される木材や草本類等が挙げられ、スギ、マツ及びヒノキ等の針葉樹、ブナ、白樺、ナラ及びケヤキ等の広葉樹、イネ、ムギ、トウモロコシ及びタケ等のイネ科植物(草本類)が挙げられる。なかでも、プリプレグ硬化物の機械物性の観点から針葉樹由来のリグニンが好ましい。
[Lignins]
The lignins used in the lignin-modified phenolic resin include at least one selected from lignin and lignin derivatives.
Lignin, along with cellulose and hemicellulose, is a major component that forms the structure of plants and is one of the most abundant aromatic compounds in nature. Examples of lignin include alkaline lignin such as kraft lignin, soda lignin, soda-anthraquinone lignin, pulp lignin containing lignin sulfonic acid; organosolv lignin; high temperature and high pressure water treatment lignin; explosive lignin; enzyme saccharified lignin; lignophenol; phenolized lignin. ; Etc. can be mentioned.
The origin of lignin is not particularly limited, and examples thereof include woods and herbs that contain lignin and form xylem, such as conifers such as cedar, pine and hinoki, broad-leaved trees such as beech, birch, nara and zelkova, rice and wheat. Examples include grasses (herbs) such as corn and bamboo. Of these, lignin derived from coniferous trees is preferable from the viewpoint of mechanical properties of the cured prepreg product.
 本実施形態において、「リグニン誘導体」とは、リグニンを構成する単位構造、又はリグニンを構成する単位構造に類似する構造を有する化合物をいう。リグニン誘導体は、フェノール誘導体を単位構造とする。この単位構造は化学的及び生物学的に安定な炭素-炭素結合や炭素-酸素-炭素結合を有するため、化学的な劣化や生物的分解を受け難い。 In the present embodiment, the "lignin derivative" refers to a compound having a unit structure constituting lignin or a structure similar to the unit structure constituting lignin. The lignin derivative has a phenol derivative as a unit structure. Since this unit structure has chemically and biologically stable carbon-carbon bonds and carbon-oxygen-carbon bonds, it is resistant to chemical deterioration and biological decomposition.
 リグニン誘導体としては、以下の式(A)で表わされるグアイアシルプロパン(フェルラ酸)、式(B)で表わされるシリンギルプロパン(シナピン酸)、及び式(C)で表わされる4-ヒドロキシフェニルプロパン(クマル酸)等が挙げられる。リグニン誘導体の組成は、原料となるバイオマスによって異なる。針葉樹類からは主にグアイアシルプロパン構造を含むリグニン誘導体が抽出される。広葉樹類からは主にグアイアシルプロパン構造及びシリンギルプロパン構造を含むリグニン誘導体が抽出される。草本類からは主にグアイアシルプロパン構造、シリンギルプロパン構造及び4-ヒドロキシフェニルプロパン構造を含むリグニン誘導体が抽出される。 Examples of the lignin derivative include guaicylpropane (ferulic acid) represented by the following formula (A), syringylpropane (sinapinic acid) represented by the formula (B), and 4-hydroxyphenylpropane represented by the formula (C). (Cumaric acid) and the like. The composition of the lignin derivative depends on the biomass used as the raw material. Lignin derivatives containing a guaiacylpropane structure are mainly extracted from conifers. Lignin derivatives containing a guaiacyl propane structure and a syringyl propane structure are mainly extracted from hardwoods. Lignin derivatives containing a guaiacyl propane structure, a syringyl propane structure and a 4-hydroxyphenyl propane structure are mainly extracted from herbs.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 リグニン誘導体は、バイオマスを分解して得られたものが好ましい。バイオマスは光合成の過程で大気中の二酸化炭素を取り込み固定化したものであることから、バイオマスは大気中の二酸化炭素の増加抑制に寄与しており、バイオマスを工業的に利用することによって、地球温暖化の抑制に寄与することができる。バイオマスとしては、リグノセルロース系バイオマスが挙げられる。リグノセルロース系バイオマスとしては、リグニンを含有する植物の葉、樹皮、枝及び木材、並びにこれらの加工品等が挙げられる。リグニンを含有する植物としては、上述の広葉樹、針葉樹、及びイネ科植物等が挙げられる。 The lignin derivative is preferably obtained by decomposing biomass. Biomass takes in and immobilizes carbon dioxide in the atmosphere in the process of photosynthesis, so biomass contributes to suppressing the increase in carbon dioxide in the atmosphere. It can contribute to the suppression of carbon dioxide. Examples of the biomass include lignocellulosic biomass. Examples of lignocellulosic biomass include leaves, bark, branches and wood of plants containing lignin, and processed products thereof. Examples of plants containing lignin include the above-mentioned broad-leaved trees, coniferous trees, and gramineous plants.
 バイオマスの分解方法としては、薬品処理する方法、加水分解処理する方法、水蒸気爆砕法、超臨界水処理法、亜臨界水処理法、機械的に処理する方法、硫酸クレゾール法、パルプ製造法等が挙げられる。環境負荷の観点からは、水蒸気爆砕法、亜臨界水処理法、機械的に処理する方法が好ましい。コストの観点からは、パルプ製造法が好ましい。またコストの観点からは、バイオマス利用の副生成物を用いることが好ましい。 Biomass decomposition methods include chemical treatment methods, hydrolysis treatment methods, steam explosion methods, supercritical water treatment methods, subcritical water treatment methods, mechanical treatment methods, cresol sulfate methods, pulp production methods, etc. Can be mentioned. From the viewpoint of environmental load, steam blasting method, sub-critical water treatment method, and mechanical treatment method are preferable. From the viewpoint of cost, the pulp production method is preferable. From the viewpoint of cost, it is preferable to use by-products of biomass utilization.
 リグニン誘導体としては、リグニンとセルロースとヘミセルロースとが結合したリグノセルロースを分解したもの等が挙げられる。リグニン誘導体は、リグニン骨格を有する化合物を主成分とするリグニン分解物、セルロース分解物及びヘミセルロース分解物等を含み得る。 Examples of the lignin derivative include those obtained by decomposing lignocellulosic, which is a combination of lignin, cellulose and hemicellulose. The lignin derivative may contain a lignin decomposition product, a cellulose decomposition product, a hemicellulose decomposition product, etc., which are mainly composed of a compound having a lignin skeleton.
 リグニン誘導体は、芳香環への親電子置換反応によって硬化剤が作用する反応サイトを多く有することが好ましく、反応サイト近傍の立体障害が少ない方が反応性に優れる点から、フェノール性水酸基を含む芳香環のオルト位及びパラ位の少なくとも一方が無置換であることが好ましく、リグニンの芳香族単位としてグアイアシル核や4-ヒドロキシフェニル核の構造を多く含む、針葉樹や草本類由来のリグニンが好ましい。 The lignin derivative preferably has many reaction sites on which the curing agent acts by the electrophilic substitution reaction on the aromatic ring, and the fragrance containing a phenolic hydroxyl group is excellent in that the less steric damage near the reaction site is, the better the reactivity. It is preferable that at least one of the ortho-position and the para-position of the ring is unsubstituted, and lignin derived from coniferous trees or herbs, which contains a large amount of guaiacyl nucleus or 4-hydroxyphenyl nucleus structure as an aromatic unit of lignin, is preferable.
 また、リグニン誘導体は、上記基本構造の他、リグニン誘導体に官能基を有するもの(リグニン二次誘導体)であってもよい。 In addition to the above basic structure, the lignin derivative may be one having a functional group in the lignin derivative (lignin secondary derivative).
 リグニン二次誘導体が有する官能基としては、特に限定されないが、例えば2個以上の同じ官能基が互いに反応し得るもの、又は他の官能基と反応し得るものが好適である。具体的には、エポキシ基、メチロール基の他、炭素-炭素不飽和結合を有するビニル基、エチニル基、マレイミド基、シアネート基、イソシアネート基等が挙げられる。 The functional group of the lignin secondary derivative is not particularly limited, but for example, two or more of the same functional groups capable of reacting with each other or those capable of reacting with other functional groups are preferable. Specific examples thereof include a vinyl group having a carbon-carbon unsaturated bond, an ethynyl group, a maleimide group, a cyanate group, an isocyanate group and the like, in addition to an epoxy group and a methylol group.
[コア層]
 コア層10は、例えば、ハニカム構造を備えるコア層用基材に、バインダー樹脂を含浸してなるシート状の部材を用いることができる。コア層10は、ハニカム構造により、高強度と軽量性を有することができる。
 なお、ハニカム構造とは、公知の構造であり、上面から下面に亘って貫通する略正六角性の貫通孔が複数形成された構造を意図する。
[Core layer]
As the core layer 10, for example, a sheet-like member formed by impregnating a base material for a core layer having a honeycomb structure with a binder resin can be used. The core layer 10 can have high strength and light weight due to the honeycomb structure.
The honeycomb structure is a known structure, and is intended to be a structure in which a plurality of substantially regular hexagonal through holes penetrating from the upper surface to the lower surface are formed.
 本実施形態において、コア層10のバインダー樹脂は、上記水溶性フェノール樹脂を含むものであるが、本発明の効果が損なわれない範囲において、上記水溶性フェノール樹脂以外の他の樹脂を含んでもよく、たとえば、熱硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、水溶性以外のフェノール樹脂、不飽和ポリエステル樹脂またはエポキシ樹脂等の熱硬化性樹脂が挙げられる。フェノール樹脂としては、分子内にフェノール性水酸基を1つ以上有する化合物が含まれ、例えば、ノボラック型フェノール、ノボラック型クレゾール、ノボラック型ナフトールなどのノボラック樹脂;ビスフェノールF、ビスフェノールAなどのビスフェノール樹脂;パラキシリレン変性フェノール樹脂などのフェノールアラルキル樹脂;ジメチレンエーテル型レゾール、メチロール型フェノール等のレゾール型フェノール樹脂;上記樹脂等をさらにメチロール化させた化合物なでが挙げられる。かかるバインダー樹脂は、公知の有機溶剤に溶解し、バインダー溶液として、コア層用基材に含浸させて用いられる。 In the present embodiment, the binder resin of the core layer 10 contains the above-mentioned water-soluble phenol resin, but may contain other resins other than the above-mentioned water-soluble phenol resin as long as the effect of the present invention is not impaired, for example. , Thermosetting resin and the like. Examples of the thermosetting resin include thermosetting resins such as phenol resins other than water-soluble, unsaturated polyester resins, and epoxy resins. The phenolic resin includes a compound having one or more phenolic hydroxyl groups in the molecule, for example, novolak resin such as novolak type phenol, novolak type cresol, novolak type naphthol; bisphenol resin such as bisphenol F, bisphenol A; paraxylylene. Phenolic aralkyl resins such as modified phenolic resins; resol-type phenolic resins such as dimethylene ether-type resol and methylol-type phenol; compounds obtained by further converting the above resins into methylols. Such a binder resin is dissolved in a known organic solvent and used as a binder solution by impregnating the base material for the core layer.
 コア層10のハニカム構造を備える基材としては、例えば、アラミド繊維、紙、バルサ材、プラスチック、アルミニウム、チタン、ガラス及びその合金等を公知の方法によりハニカム状に成型したものが挙げられる。耐熱性の観点から、コア層10のハニカム構造を備える基材としては、アラミド繊維を含むことが好ましい。 Examples of the base material having the honeycomb structure of the core layer 10 include those obtained by molding aramid fiber, paper, balsa wood, plastic, aluminum, titanium, glass, an alloy thereof and the like into a honeycomb shape by a known method. From the viewpoint of heat resistance, it is preferable that the base material having the honeycomb structure of the core layer 10 contains aramid fibers.
 コア層10の層厚としては、特に限定されないが、例えば、1mm以上50mm以下でもよく、3mm以上40mm以下でもよく、5mm以上30mm以下でもよい。 The layer thickness of the core layer 10 is not particularly limited, but may be, for example, 1 mm or more and 50 mm or less, 3 mm or more and 40 mm or less, or 5 mm or more and 30 mm or less.
 コア層10中の各コアセルサイズは、特に限定されないが、例えば、1辺が1mm以上10mm以下とすることができる。 The size of each core cell in the core layer 10 is not particularly limited, but can be, for example, 1 mm or more and 10 mm or less on one side.
 コア層10の表面(上面、下面)の面積は限定されないが、例えば、サンドイッチパネル100一つ分の表面を有していてもよいし、サンドイッチパネル複数分を合計した表面積を有していてもよい。これにより、1枚のサンドイッチパネル100を個片化して、複数のパネルを切り出して得ることが可能になり、生産性を向上させることができる。たとえば、コア層10の表面(上面、下面)の面積は、大面積とすることができ、例えば、1m以上であってもよい。 The area of the surface (upper surface, lower surface) of the core layer 10 is not limited, but for example, it may have a surface area for one sandwich panel or a total surface area for a plurality of sandwich panels. good. This makes it possible to separate one sandwich panel 100 into individual pieces and cut out a plurality of panels to obtain the sandwich panel 100, thereby improving productivity. For example, the area of the surface (upper surface, lower surface) of the core layer 10 can be a large area, and may be, for example, 1 m 2 or more.
 また、コア層10は、内部および/または外部について、耐食性や耐熱性を向上させる観点から、各種の表面処理がされたものであってもよい。 Further, the core layer 10 may have various surface treatments on the inside and / or the outside from the viewpoint of improving corrosion resistance and heat resistance.
[プリプレグ]
 プリプレグ20としては、例えば、バインダー樹脂をプリプレグ用基材に含浸してなる、Bステージ状態のシート部材を用いることができる。プリプレグ用基材としては、例えば、繊維基材が挙げられる。
 Bステージ状態とは、プリプレグ用基材に含浸されたバインダー樹脂について、DSC(示差走査熱量計)の測定結果から算出される反応率が、0%を超え60%以下であり、好ましくは0.5%以上55%以下であり、さらに好ましくは1%以上50%以下の状態であることを意味する。
[Prepreg]
As the prepreg 20, for example, a sheet member in a B stage state in which a binder resin is impregnated into a prepreg base material can be used. Examples of the prepreg base material include a fiber base material.
In the B stage state, the reaction rate calculated from the measurement result of DSC (Differential Scanning Calorimeter) for the binder resin impregnated in the prepreg substrate is more than 0% and 60% or less, preferably 0. It means that it is 5% or more and 55% or less, and more preferably 1% or more and 50% or less.
 本実施形態において、プリプレグ20のバインダー樹脂は、上記水溶性フェノール樹脂を含むものであるが、本発明の効果が損なわれない範囲において、上記水溶性フェノール樹脂以外の他の樹脂を含んでもよい。上述の水溶性フェノール樹脂が用いられる。 In the present embodiment, the binder resin of the prepreg 20 contains the above-mentioned water-soluble phenol resin, but may contain a resin other than the above-mentioned water-soluble phenol resin as long as the effect of the present invention is not impaired. The above-mentioned water-soluble phenol resin is used.
 上記繊維基材としては、アラミド繊維、ポリエステル繊維、ポリフェニレンスルフィド繊維、炭素繊維、黒鉛繊維、ガラス繊維、および炭化珪素繊維等を用いることができる。高い耐熱性の観点から、上記繊維基材は、ガラス繊維を含むことが好ましい。 As the fiber base material, aramid fiber, polyester fiber, polyphenylene sulfide fiber, carbon fiber, graphite fiber, glass fiber, silicon carbide fiber and the like can be used. From the viewpoint of high heat resistance, the fiber base material preferably contains glass fiber.
 繊維基材を含有することにより、サンドイッチパネル100の耐熱性を一層向上させることができる。また、樹脂板40とコア層10との線膨張係数差を小さくできるので、サンドイッチパネル100の反りを抑制することができる。 By containing the fiber base material, the heat resistance of the sandwich panel 100 can be further improved. Further, since the difference in linear expansion coefficient between the resin plate 40 and the core layer 10 can be reduced, the warp of the sandwich panel 100 can be suppressed.
 本実施形態において、プリプレグ20は、例えば、バインダー樹脂を繊維基材に含浸してなる、Bステージ状態である。従来、バインダー樹脂を有機溶剤に溶解したのちに、繊維基材を含浸していたため、Bステージ状態のプリプレグにおいては、有機溶媒が残留しており、サンドイッチパネルの製造過程において、かかる残留溶剤による臭気の問題があった。これに対し、本実施形態のプリプレグ20は、バインダー樹脂として水溶性フェノール樹脂を用いているため、従来の有機溶剤による臭気を低減することができる。 In the present embodiment, the prepreg 20 is in a B stage state in which, for example, a binder resin is impregnated into a fiber base material. Conventionally, since the binder resin is dissolved in an organic solvent and then impregnated with the fiber base material, the organic solvent remains in the prepreg in the B stage state, and the odor due to the residual solvent is present in the sandwich panel manufacturing process. There was a problem. On the other hand, since the prepreg 20 of the present embodiment uses a water-soluble phenol resin as the binder resin, the odor caused by the conventional organic solvent can be reduced.
 プリプレグ20の硬化物のガラス転移温度(Tg)の上限値としては、例えば、250℃以下であり、好ましくは220℃以下であり、さらに好ましくは200℃以下である。これにより、低温条件にて加熱加圧処理を実施することが可能である。一方で、上記ガラス転移温度(Tg)の下限値としては、例えば、110℃以上でもよく、120℃以上でもよい。これにより、熱時特性を向上させることができる。 The upper limit of the glass transition temperature (Tg) of the cured product of the prepreg 20 is, for example, 250 ° C. or lower, preferably 220 ° C. or lower, and more preferably 200 ° C. or lower. This makes it possible to carry out the heat and pressurization treatment under low temperature conditions. On the other hand, the lower limit of the glass transition temperature (Tg) may be, for example, 110 ° C. or higher, or 120 ° C. or higher. This makes it possible to improve the thermal characteristics.
 本実施形態において、コア層10、プリプレグ20で用いられるバインダー樹脂は、互いに同じであっても、異なっていてもよいが、効果的に密着性を向上し、耐燃焼性を高める点から、互いに同じバインダー樹脂であることが好ましい。 In the present embodiment, the binder resins used in the core layer 10 and the prepreg 20 may be the same or different from each other, but they can effectively improve the adhesion and the combustion resistance. It is preferably the same binder resin.
[樹脂板]
 本実施形態の樹脂板40は、サンドイッチパネル100の製造過程において、プリプレグ20を硬化することによって得られるものである。硬化条件は、サンドイッチパネル100の製造方法の説明において示す。
[Resin plate]
The resin plate 40 of the present embodiment is obtained by curing the prepreg 20 in the manufacturing process of the sandwich panel 100. The curing conditions are shown in the description of the manufacturing method of the sandwich panel 100.
 樹脂板40は、複数が積層したものであってもよい。また、コア層10と樹脂板40との間に、他の機能層が介在していてもよい。例えば、密着性を高めるため、熱可塑性シートが介在してもよい。 A plurality of resin plates 40 may be laminated. Further, another functional layer may be interposed between the core layer 10 and the resin plate 40. For example, a thermoplastic sheet may be interposed to improve the adhesion.
[用途]
 本実施形態のサンドイッチパネル100は、航空機用パネルに好適に用いることができる。例えば、サンドイッチパネル100は、トイレやパーテーション等の航空機の内装や、ワゴンの筐体等の航空機内の備品に用いることができる。
[Use]
The sandwich panel 100 of this embodiment can be suitably used for an aircraft panel. For example, the sandwich panel 100 can be used for the interior of an aircraft such as a toilet and a partition, and the equipment inside the aircraft such as a wagon housing.
[サンドイッチパネルの製造方法]
 次に、本実施形態のサンドイッチパネル100の製造方法について説明する。
[Manufacturing method of sandwich panel]
Next, a method for manufacturing the sandwich panel 100 of the present embodiment will be described.
(工程1)コア層10およびプリプレグ20の作製
 コア層10用基材を準備する。コア層10用基材は、ハニカム構造を有するものであり、アラミド繊維から形成されることが好ましい。
 ハニカム構造を備える基材を準備し、水溶性フェノール樹脂を含むバインダー溶液を当該基材に含浸させる。その後、基材を乾燥させ、水溶性フェノール樹脂をバインダー樹脂としたコア層10が得られる。
(Step 1) Preparation of Core Layer 10 and Prepreg 20 A base material for the core layer 10 is prepared. The base material for the core layer 10 has a honeycomb structure and is preferably formed of aramid fibers.
A base material having a honeycomb structure is prepared, and the base material is impregnated with a binder solution containing a water-soluble phenol resin. Then, the base material is dried to obtain a core layer 10 using a water-soluble phenol resin as a binder resin.
 一方で、プリプレグ20用基材を準備する。プリプレグ20用基材としては、繊維基材が挙げられる。水溶性フェノール樹脂を含むバインダー溶液を当該プリプレグ20用基材に含浸させる。その後、基材を乾燥させ、水溶性フェノール樹脂をバインダー樹脂としたプリプレグ20が得られる。 On the other hand, prepare a base material for prepreg 20. Examples of the base material for the prepreg 20 include a fiber base material. The base material for prepreg 20 is impregnated with a binder solution containing a water-soluble phenol resin. Then, the base material is dried to obtain prepreg 20 using a water-soluble phenol resin as a binder resin.
 コア層10およびプリプレグ20いずれにおいても、含浸方法としては、例えば、このバインダー溶液スプレーノズルなどの噴射装置を用いて基材に噴射して塗工する方法、バインダー溶液中に基材を浸漬する方法、ナイフコーター、コンマコーター等の各種コーターによりバインダー溶液を基材に塗工する方法、あるいは、転写ロールによりバインダー溶液を基材に転写する方法、などが挙げられる。なかでも、バインダー溶液中に基材を浸漬する方法が好ましい。
 また、加熱乾燥する条件としては特に限定されないが、通常100~220℃、好ましくは120~190℃で2~10分間行う。
In both the core layer 10 and the prepreg 20, as the impregnation method, for example, a method of injecting and coating the base material using an injection device such as the binder solution spray nozzle, and a method of immersing the base material in the binder solution. , A method of applying the binder solution to the substrate by various coaters such as a knife coater and a comma coater, a method of transferring the binder solution to the substrate by a transfer roll, and the like. Of these, a method of immersing the base material in the binder solution is preferable.
The conditions for heating and drying are not particularly limited, but usually 100 to 220 ° C., preferably 120 to 190 ° C. for 2 to 10 minutes.
 水溶性フェノール樹脂を含むバインダー溶液としては、水溶性フェノール樹脂以外に、他の添加剤を含むことができる。添加剤としては、特に限定されないが、例えば、無機充填材などの充填材、ゴム、熱可塑性樹脂などが挙げられる。
 また、本発明の効果が損なわれない範囲において、水溶性フェノール樹脂以外の他の熱硬化性樹脂を含んでもよく、例えば、フェノール樹脂、不飽和ポリエステル樹脂またはエポキシ樹脂等の熱硬化性樹脂が挙げられる。
 バインダー溶液中に含まれる水溶性フェノール樹脂の含有量は、特に限定されないが、全固形分を100質量%としたとき、70~100質量%であることが好ましく、80質量%以上であることがより好ましい。
The binder solution containing the water-soluble phenol resin may contain other additives in addition to the water-soluble phenol resin. The additive is not particularly limited, and examples thereof include fillers such as inorganic fillers, rubber, and thermoplastic resins.
Further, a thermosetting resin other than the water-soluble phenol resin may be contained as long as the effect of the present invention is not impaired, and examples thereof include thermosetting resins such as phenol resin, unsaturated polyester resin and epoxy resin. Be done.
The content of the water-soluble phenol resin contained in the binder solution is not particularly limited, but is preferably 70 to 100% by mass, preferably 80% by mass or more, when the total solid content is 100% by mass. More preferred.
(工程2)コア層およびプリプレグの積層
 次に、図2(a)に示すように、コア層10の上面側と下面側のそれぞれの開口面上に、Bステージ状態のプリプレグ20(プリプレグ21,22)を配置する。これにより、コア層10とプリプレグ20を含む積層体が形成される。プリプレグ20は、コア層10の表面(上面および下面)の全体を覆うことができる。本実施形態において、積層するプリプレグ20は、1枚でもよく、複数枚でもよい。また、コア層10とプリプレグ20との間に、他の機能層を配置してもよい。他の機能層としては、例えば、熱硬化性樹脂で構成された発泡層を用いることができる。
(Step 2) Laminating the core layer and the prepreg Next, as shown in FIG. 2A, the prepreg 20 in the B stage state (prepreg 21, 22) is placed. As a result, a laminate containing the core layer 10 and the prepreg 20 is formed. The prepreg 20 can cover the entire surface (upper surface and lower surface) of the core layer 10. In the present embodiment, the number of prepregs 20 to be laminated may be one or a plurality. Further, another functional layer may be arranged between the core layer 10 and the prepreg 20. As the other functional layer, for example, a foam layer made of a thermosetting resin can be used.
 続いて、図2(a)に示すように、上記積層体の上下面に、金属板30(上側を金属板31、下側を金属板32とする)を配置する。 Subsequently, as shown in FIG. 2A, a metal plate 30 (the upper side is a metal plate 31 and the lower side is a metal plate 32) is arranged on the upper and lower surfaces of the laminated body.
 続いて、図2(b)に示すように、金属板30をプリプレグ20に当接しながら、コア層10とプリプレグ20を加熱加圧する。これにより、プリプレグ20の硬化処理を行い、樹脂板40(上側が樹脂板41、下側が樹脂板42)を形成することができる。
 上記の加熱加圧は、例えば、110℃~140℃、30分~90分、0.35MPa~2.0MPaの条件を採用することができる。
Subsequently, as shown in FIG. 2B, the core layer 10 and the prepreg 20 are heated and pressed while the metal plate 30 is in contact with the prepreg 20. As a result, the prepreg 20 can be cured to form the resin plate 40 (the upper side is the resin plate 41 and the lower side is the resin plate 42).
For the above heating and pressurization, for example, conditions of 110 ° C. to 140 ° C., 30 minutes to 90 minutes, and 0.35 MPa to 2.0 MPa can be adopted.
 また、上記の加熱加圧工程は、大気下で行うことができる。このため、生産性を向上させることができる。 Further, the above heating and pressurizing step can be performed in the atmosphere. Therefore, productivity can be improved.
 また、プリプレグ20の加熱加圧時に、プリプレグ20を構成する樹脂の一部が、コア層10のハニカム構造の内壁面上に移動してもよい。これにより、コア層10の両表面に樹脂板40が接合した構造において、樹脂板40を構成する樹脂が、樹脂板40からコア層10の内壁の上端部または下端部の一部に亘って被覆するように連続して形成されることになり、密着性が向上できる。ただし、樹脂板40を構成する樹脂によって、コア層10の内部全体が充填されない構造とする。これにより、強度と軽量に優れた構造のサンドイッチパネル100を得ることができる。 Further, when the prepreg 20 is heated and pressed, a part of the resin constituting the prepreg 20 may move onto the inner wall surface of the honeycomb structure of the core layer 10. As a result, in the structure in which the resin plates 40 are joined to both surfaces of the core layer 10, the resin constituting the resin plate 40 is covered from the resin plate 40 to a part of the upper end portion or the lower end portion of the inner wall of the core layer 10. It will be formed continuously so that the adhesion can be improved. However, the structure is such that the entire inside of the core layer 10 is not filled with the resin constituting the resin plate 40. Thereby, the sandwich panel 100 having a structure excellent in strength and light weight can be obtained.
 本実施形態において、サンドイッチパネル100の製造方法において、金属板30を用いる例を挙げて説明したが、これに限られるものではない。また、例えば、金属板30と、プリプレグ20との間にクッション層を配置して、加熱加圧してもよい。クッション層としては、例えば、紙材、ゴム材またはこれらの複合材料で構成されていてもよい。 In the present embodiment, an example in which the metal plate 30 is used in the method for manufacturing the sandwich panel 100 has been described, but the present invention is not limited to this. Further, for example, a cushion layer may be arranged between the metal plate 30 and the prepreg 20 to heat and pressurize. The cushion layer may be made of, for example, a paper material, a rubber material, or a composite material thereof.
<第2実施形態>
 第1実施形態のサンドイッチパネル100は、コア層10およびプリプレグ20がともに水溶性フェノール樹脂を含むのに対し、第2実施形態のサンドイッチパネル100は、コア層10およびプリプレグ20の少なくとも一方が、バインダー樹脂として水溶性フェノール樹脂を含み、上記水溶性フェノール樹脂が、リグニン、リグニン誘導体、リグニン分解物およびこれらの変性物の中から選ばれる1種または2種以上を用いてなる点で異なる以外は、第1実施形態のサンドイッチパネル100と共通する構成・作用を有する。
 以下、第1実施形態と異なる点について、説明する。
<Second Embodiment>
In the sandwich panel 100 of the first embodiment, both the core layer 10 and the prepreg 20 contain a water-soluble phenol resin, whereas in the sandwich panel 100 of the second embodiment, at least one of the core layer 10 and the prepreg 20 is a binder. Except for the fact that the resin contains a water-soluble phenol resin, and the above-mentioned water-soluble phenol resin is made by using one or more selected from lignin, a lignin derivative, a lignin decomposition product and a modified product thereof. It has the same configuration and function as the sandwich panel 100 of the first embodiment.
Hereinafter, the points different from the first embodiment will be described.
 第2実施形態のサンドイッチパネル100においては、水溶性フェノール樹脂が、リグニン、リグニン誘導体、リグニン分解物およびこれらの変性物の中から選ばれる1種または2種以上を用いてなることで、当該水溶性フェノール樹脂の含浸性が飛躍的に向上でき、その結果、コア層10およびプリプレグ20の少なくとも一方に用いることで、コア層とプリプレグとの密着性を高くできるとともに、良好な耐燃焼性が得られる。
 また、第2実施形態において、上記のリグニン、リグニン誘導体、リグニン分解物およびこれらの変性物の中から選ばれる1種または2種以上を用いてなる水溶性フェノール樹脂は、密着性と耐燃焼性を得る観点から、プリプレグ20において用いられていることが好ましく、コア層10およびプリプレグ20において用いられていることがより好ましい。
In the sandwich panel 100 of the second embodiment, the water-soluble phenol form is made of one or more selected from lignin, lignin derivatives, lignin decomposition products and modified products thereof, whereby the water-soluble phenol resin is said to be water-soluble. The impregnation property of the sex phenol resin can be dramatically improved, and as a result, by using it for at least one of the core layer 10 and the prepreg 20, the adhesion between the core layer and the prepreg can be improved and good combustion resistance can be obtained. Be done.
Further, in the second embodiment, the water-soluble phenol form using one or more selected from the above-mentioned lignin, lignin derivative, lignin decomposition product and modified product thereof has adhesion and combustion resistance. It is preferable that it is used in the prepreg 20, and it is more preferable that it is used in the core layer 10 and the prepreg 20.
 第2実施形態のサンドイッチパネル100の製造工程においては、コア層10およびプリプレグ20の少なくとも一方が、バインダー樹脂として水溶性フェノール樹脂を含むことを条件に、バインダー溶液として、水溶性フェノール樹脂を用いない溶液を用いてもよい。
 水溶性フェノール樹脂を用いないバインダー溶液としては、公知のものを用いることができ、水溶性フェノール樹脂以外の他の熱硬化性樹脂を、公知の有機溶剤に溶解したものを用いることができる。熱硬化性樹脂としては、例えば、水溶性以外のフェノール樹脂、不飽和ポリエステル樹脂またはエポキシ樹脂等の熱硬化性樹脂が挙げられる。フェノール樹脂としては、分子内にフェノール性水酸基を1つ以上有する化合物が含まれ、例えば、ノボラック型フェノール、ノボラック型クレゾール、ノボラック型ナフトールなどのノボラック樹脂;ビスフェノールF、ビスフェノールAなどのビスフェノール樹脂;パラキシリレン変性フェノール樹脂などのフェノールアラルキル樹脂;ジメチレンエーテル型レゾール、メチロール型フェノール等のレゾール型フェノール樹脂;上記樹脂等をさらにメチロール化させた化合物なでが挙げられる。
In the manufacturing process of the sandwich panel 100 of the second embodiment, no water-soluble phenol resin is used as the binder solution, provided that at least one of the core layer 10 and the prepreg 20 contains the water-soluble phenol resin as the binder resin. A solution may be used.
As the binder solution that does not use the water-soluble phenol resin, a known one can be used, and a solution obtained by dissolving a thermosetting resin other than the water-soluble phenol resin in a known organic solvent can be used. Examples of the thermosetting resin include thermosetting resins such as phenol resins other than water-soluble, unsaturated polyester resins, and epoxy resins. The phenolic resin includes a compound having one or more phenolic hydroxyl groups in the molecule, for example, novolak resin such as novolak type phenol, novolak type cresol, novolak type naphthol; bisphenol resin such as bisphenol F, bisphenol A; paraxylylene. Phenolic aralkyl resins such as modified phenolic resins; resol-type phenolic resins such as dimethylene ether-type resol and methylol-type phenol; compounds obtained by further converting the above resins into methylols.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above with reference to the drawings, these are examples of the present invention, and various configurations other than the above can be adopted.
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the description of these Examples.
[リグニンの調製]
 まず、リグニン変性フェノール樹脂の合成に用いるリグニンを以下の手順により調製した。
 含水率50%の乾燥スギ木粉1500質量部、純水5000質量部、水酸化ナトリウム180質量部、炭酸ナトリウム120質量部および蒸解助剤として9,10-アントラキノン0.5質量部を容量10Lのステンレススチール製オートクレーブ設備に仕込み、撹拌下、170℃で3時間蒸解反応を行った。反応後の蒸解液を室温まで冷却し、パルプ成分をスクリーンで除去した後、リグニンを含む黒液を分離した。分離した黒色をエバポレーターで濃度20%まで濃縮し濃縮黒液を得た。濃縮黒液に希硫酸を加えてpH8に調整して、生じた沈澱を遠心分離した。500質量部の水で2回洗浄した後、沈澱を5倍量の水に懸濁し、希硫酸でpH2に再調整した。沈澱したリグニンを再度遠心分離し、少量の水で洗浄した後、吸引濾過、凍結乾燥を行い、褐色粉末状のアルカリリグニン140質量部を得た。
[Preparation of lignin]
First, lignin used for the synthesis of lignin-modified phenolic resin was prepared by the following procedure.
1500 parts by mass of dried cedar wood flour with a water content of 50%, 5000 parts by mass of pure water, 180 parts by mass of sodium hydroxide, 120 parts by mass of sodium carbonate and 0.5 parts by mass of 9,10-anthraquinone as a cooking aid in a capacity of 10 L It was charged in a stainless steel autoclave facility and subjected to a cooking reaction at 170 ° C. for 3 hours with stirring. The post-reaction cooking liquor was cooled to room temperature, the pulp component was removed by a screen, and then the black liquor containing lignin was separated. The separated black liquor was concentrated to a concentration of 20% with an evaporator to obtain a concentrated black liquor. Dilute sulfuric acid was added to the concentrated black liquor to adjust the pH to 8, and the resulting precipitate was centrifuged. After washing twice with 500 parts by mass of water, the precipitate was suspended in 5 times the amount of water and readjusted to pH 2 with dilute sulfuric acid. The precipitated lignin was centrifuged again, washed with a small amount of water, suction filtered, and freeze-dried to obtain 140 parts by mass of alkaline lignin in the form of a brown powder.
[リグニン変性フェノール樹脂の合成]
 次に、調製したアルカリリグニンを用いて以下の手順によりリグニン変性フェノール樹脂を合成した。
・リグニン変性フェノール樹脂a
 撹拌機、冷却管及び温度計を備えた四口フラスコに、フェノール139質量部、20%水酸化ナトリウム水溶液32質量部、純水166質量部を仕込み、撹拌しながらアルカリリグニン139質量部をフラスコ内に添加して60℃で均一に溶解させた後、反応液に37%ホルマリン180質量部を30分間かけて滴下した。撹拌を続けながら90℃で60分、70℃で40分反応させた後、室温まで冷却してリグニン変性フェノール樹脂aを653重量部得た。固形樹脂分ベースのリグニン変性率は42%、不揮発分51%、pH7.5、溶液樹脂粘度は0.71Pa・sであった。
[Synthesis of lignin-modified phenolic resin]
Next, using the prepared alkaline lignin, a lignin-modified phenol resin was synthesized by the following procedure.
・ Lignin-modified phenolic resin a
In a four-necked flask equipped with a stirrer, a cooling tube and a thermometer, 139 parts by mass of phenol, 32 parts by mass of a 20% sodium hydroxide aqueous solution, and 166 parts by mass of pure water were charged, and 139 parts by mass of alkaline lignin was placed in the flask while stirring. After adding to the reaction solution and uniformly dissolving at 60 ° C., 180 parts by mass of 37% formalin was added dropwise to the reaction solution over 30 minutes. After reacting at 90 ° C. for 60 minutes and 70 ° C. for 40 minutes while continuing stirring, the mixture was cooled to room temperature to obtain 653 parts by weight of the lignin-modified phenol resin a. The lignin denaturation rate based on the solid resin content was 42%, the non-volatile content was 51%, the pH was 7.5, and the viscosity of the solution resin was 0.71 Pa · s.
・リグニン変性フェノール樹脂b
 上記フェノール139質量部をフェノール205質量部、アルカリリグニン139質量部を67質量部に変更した以外は、リグニン変性フェノール樹脂aと同様に合成を行い、リグニン変性フェノール樹脂bを654重量部得た。固形樹脂分ベースのリグニン変性率は20%、不揮発分52%、pH7.8、溶液樹脂粘度は0.68Pa・sであった。
・ Lignin-modified phenolic resin b
The synthesis was carried out in the same manner as the lignin-modified phenol resin a except that 139 parts by mass of phenol was changed to 205 parts by mass of phenol and 139 parts by mass of alkaline lignin was changed to 67 parts by mass, and 654 parts by mass of lignin-modified phenol resin b was obtained. The lignin denaturation rate based on the solid resin content was 20%, the non-volatile content was 52%, the pH was 7.8, and the viscosity of the solution resin was 0.68 Pa · s.
[バインダー溶液]
 以下のバインダー溶液を用意した。
・バインダー溶液A1
 水溶性フェノール樹脂(Durez製 33304)をバインダー溶液A1とした。
・バインダー溶液A2
 上記の合成方法で得られたリグニン変性率20%のリグニン変性フェノール樹脂bを、バインダー溶液A2とした。
・バインダー溶液A3
 上記の合成方法で得られたリグニン変性率42%のリグニン変性フェノール樹脂aを、バインダー溶液A3とした。
・バインダー溶液B
 有機溶剤(メタノール)系フェノール樹脂(Durez製 23056)をバインダー溶液Bとした。
[Binder solution]
The following binder solution was prepared.
-Binder solution A1
A water-soluble phenol resin (33304 manufactured by Durez) was used as the binder solution A1.
-Binder solution A2
The lignin-modified phenol resin b having a lignin modification rate of 20% obtained by the above synthesis method was used as a binder solution A2.
-Binder solution A3
The lignin-modified phenol resin a having a lignin modification rate of 42% obtained by the above synthesis method was used as a binder solution A3.
・ Binder solution B
An organic solvent (methanol) -based phenol resin (23056 manufactured by Durez) was used as the binder solution B.
<実施例1>
1)コア層の製造
 アラミドペーパー(Dupon製「Nomex412」、厚さ50μm)を使用してハニカムコアを作成した。得られたハニカムコアをバインダー溶液Aに5分間含浸させ、ハニカムコアを取り出し、80℃で45分の乾燥する、といった一連の作業を2回繰り返した。その後、190℃で30分の条件で硬化させ、厚さ10mm、48.1kg/mのコア層を得た。
2)プリプレグの製造
 ガラス繊維(#7781、HEXCEL社製)にバインダー溶液Aを含浸させて、150℃、3分乾燥して、シート状のプリプレグ(厚み250μm)を得た。当該プリプレグはBステージ状態であった。
3)サンドイッチパネルの製造
 コア層の両面にプリプレグを1枚ずつ配置して積層体を得た。続いて、得られた積層体の両面にSUS板(厚み:1.5mm、Rz:1.0μm)を押し当て、機械プレスを用い、0.7MPa、127℃、60分で加熱加圧して、当該プリプレグを硬化させて樹脂板を形成した。その後、樹脂板から、SUS板を分離して、樹脂板、ハニカムコア、樹脂板からなるサンドイッチパネルを得た。
 なお、当該プリプレグの硬化物のガラス転移温度(Tg)は180℃だった。
<Example 1>
1) Production of core layer A honeycomb core was prepared using aramid paper (“Nomex412” manufactured by DuPont, thickness 50 μm). A series of operations such as impregnating the obtained honeycomb core with the binder solution A for 5 minutes, taking out the honeycomb core, and drying at 80 ° C. for 45 minutes was repeated twice. Then, it was cured at 190 ° C. for 30 minutes to obtain a core layer having a thickness of 10 mm and a thickness of 48.1 kg / m 3.
2) Production of prepreg Glass fiber (# 7781, manufactured by HEXCEL) was impregnated with the binder solution A and dried at 150 ° C. for 3 minutes to obtain a sheet-shaped prepreg (thickness 250 μm). The prepreg was in the B stage state.
3) Manufacture of sandwich panel A laminated body was obtained by arranging one prepreg on each side of the core layer. Subsequently, a SUS plate (thickness: 1.5 mm, Rz: 1.0 μm) was pressed against both sides of the obtained laminate, and heated and pressed at 0.7 MPa, 127 ° C. for 60 minutes using a mechanical press. The prepreg was cured to form a resin plate. Then, the SUS plate was separated from the resin plate to obtain a sandwich panel composed of a resin plate, a honeycomb core, and a resin plate.
The glass transition temperature (Tg) of the cured product of the prepreg was 180 ° C.
<実施例2~4、参考例>
 コア層のバインダー溶液、プリプレグのバインダー溶液を表1に示すものとした以外は、実施例1と同様にして、各サンドイッチパネルを得た。
<Examples 2 to 4, reference example>
Each sandwich panel was obtained in the same manner as in Example 1 except that the binder solution of the core layer and the binder solution of the prepreg were as shown in Table 1.
 得られたコア層、プリプレグ、サンドイッチパネルについて、以下の評価を行った。評価結果を表1に示す。 The following evaluations were made on the obtained core layer, prepreg, and sandwich panel. The evaluation results are shown in Table 1.
(密着性)
 ASTM D1781(接着剤のためのドラムのはく離のための標準試験法)に準拠して測定を行い、下記の基準で評価した。
◎:≧150N/76mm
○:≧100N/76mm、かつ<150N/76mm
△:>80N/76mm、かつ<100N/76mm
×:≦80N/76mm
(Adhesion)
Measurements were made in accordance with ASTM D1781 (Standard Test Method for Drum Peeling for Adhesives) and evaluated according to the following criteria:
⊚: ≧ 150N / 76mm
◯: ≧ 100N / 76mm and <150N / 76mm
Δ:> 80N / 76mm and <100N / 76mm
×: ≦ 80N / 76mm
(耐燃焼性)
 FAR 25.853 (d)(航空機用部材の燃焼試験;ヒートリリース)に準拠して測定を行い、下記の基準で評価した。
◎:≦35kW/m/35kW・min/m
○:≦45kW/m/45kW・min/m、かつ>35kW/m/35kW・min/m
△:≦65kW/m/65kW・min/m、かつ>45kW/m/45kW・min/m
×:>65kW/m/65kW・min/m
(Combustion resistance)
Measurements were made in accordance with FAR 25.853 (d) (combustion test of aircraft components; heat release) and evaluated according to the following criteria.
◎: ≦ 35kW / m 2 / 35kW · min / m 2
○: ≦ 45kW / m 2 / 45kW · min / m 2, cutlet> 35kW / m 2 / 35kW · min / m 2
△: ≦ 65kW / m 2 / 65kW · min / m 2, cutlet> 45kW / m 2 / 45kW · min / m 2
×:> 65kW / m 2 / 65kW · min / m 2
(含浸性)
 積層前のコア層、プリプレグをそれぞれ50倍の顕微鏡観察で観察し、下記の基準で評価した。
◎:コア層、プリプレグともに空隙が確認されない
○:コア層、プリプレグの少なくともいずれかに空隙が僅かに存在する
△:コア層、プリプレグの少なくともいずれかに空隙多数存在する
×:コア層、プリプレグの少なくともいずれかに空隙が一面に存在する
(Impregnability)
The core layer and prepreg before laminating were each observed under a microscope at 50 times and evaluated according to the following criteria.
⊚: No voids are confirmed in the core layer and prepreg ○: Slight voids are present in at least one of the core layer and prepreg Δ: Many voids are present in at least one of the core layer and prepreg ×: Core layer and prepreg There is a void on at least one side
(臭気性)
 積層前のプリプレグを鼻に近づけて臭いをかぎ、下記の基準で評価した。
◎:無臭
○:僅かに臭いを感じる
△:臭いを感じる
×:強く臭いを感じる
(Odorous)
The prepreg before laminating was brought close to the nose to smell it, and the evaluation was made according to the following criteria.
◎: Odorless ○: Slightly odor △: Smell ×: Strong odor
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この出願は、2020年6月30日に出願された日本出願特願2020-112637号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese Application Japanese Patent Application No. 202-112637 filed on June 30, 2020, and incorporates all of its disclosures herein.
10 コア層
20 プリプレグ
21 プリプレグ
22 プリプレグ
30 金属板
31 金属板
32 金属板
40 樹脂板
41 樹脂板
42 樹脂板
100 サンドイッチパネル
10 Core layer 20 Prepreg 21 Prepreg 22 Prepreg 30 Metal plate 31 Metal plate 32 Metal plate 40 Resin plate 41 Resin plate 42 Resin plate 100 Sandwich panel

Claims (11)

  1.  ハニカム構造を有するコア層と、前記コア層の両面に設けられたプリプレグの硬化物と、を備えるサンドイッチパネルであって、
     前記コア層および前記プリプレグがともに、バインダー樹脂として水溶性フェノール樹脂を含む、サンドイッチパネル。
    A sandwich panel comprising a core layer having a honeycomb structure and a cured product of a prepreg provided on both sides of the core layer.
    A sandwich panel in which both the core layer and the prepreg contain a water-soluble phenolic resin as a binder resin.
  2.  前記水溶性フェノール樹脂は、リグニン、リグニン誘導体、リグニン分解物およびこれらの変性物の中から選ばれる1種または2種以上を用いて合成されるフェノール樹脂である、請求項1に記載のサンドイッチパネル。 The sandwich panel according to claim 1, wherein the water-soluble phenol resin is a phenol resin synthesized by using one or more selected from lignin, lignin derivatives, lignin decomposition products and modified products thereof. ..
  3.  ハニカム構造を有するコア層と、前記コア層の両面に設けられたプリプレグの硬化物と、を備えるサンドイッチパネルであって、
     前記コア層および/または前記プリプレグが、バインダー樹脂として水溶性フェノール樹脂を含み、
     前記水溶性フェノール樹脂が、リグニン、リグニン誘導体、リグニン分解物およびこれらの変性物の中から選ばれる1種または2種以上を用いて合成されるフェノール樹脂である、サンドイッチパネル。
    A sandwich panel comprising a core layer having a honeycomb structure and a cured product of a prepreg provided on both sides of the core layer.
    The core layer and / or the prepreg contains a water-soluble phenolic resin as a binder resin, and the prepreg contains a water-soluble phenol resin.
    A sandwich panel, wherein the water-soluble phenol resin is a phenol resin synthesized by using one or more selected from lignin, lignin derivatives, lignin decomposition products and modified products thereof.
  4.  前記プリプレグがバインダー樹脂として前記水溶性フェノール樹脂を含む、請求項3に記載のサンドイッチパネル。 The sandwich panel according to claim 3, wherein the prepreg contains the water-soluble phenol resin as a binder resin.
  5.  前記プリプレグは、繊維基材に前記バインダー樹脂が含浸されたものである、請求項1乃至4いずれか一項に記載のサンドイッチパネル。 The sandwich panel according to any one of claims 1 to 4, wherein the prepreg is a fiber base material impregnated with the binder resin.
  6.  前記コア層は、ハニカム構造を有するアラミド繊維からなる基材に前記バインダー樹脂が含浸されたものである、請求項1乃至5いずれか一項に記載のサンドイッチパネル。 The sandwich panel according to any one of claims 1 to 5, wherein the core layer is a base material made of aramid fibers having a honeycomb structure impregnated with the binder resin.
  7.  前記コア層の層厚が、1mm以上50mm以下である、、請求項1乃至6いずれか一項に記載のサンドイッチパネル。 The sandwich panel according to any one of claims 1 to 6, wherein the core layer has a layer thickness of 1 mm or more and 50 mm or less.
  8.  前記プリプレグの硬化物のガラス転移温度(Tg)が、110℃以上250℃以下である、請求項1乃至7いずれか一項に記載のサンドイッチパネル。 The sandwich panel according to any one of claims 1 to 7, wherein the glass transition temperature (Tg) of the cured product of the prepreg is 110 ° C. or higher and 250 ° C. or lower.
  9.  航空機用パネルに用いられるものである、請求項1乃至8いずれか一項に記載のサンドイッチパネル。 The sandwich panel according to any one of claims 1 to 8, which is used for an aircraft panel.
  10.  ハニカム構造を有するコア層と、前記コア層の両面に設けられたプリプレグの硬化物と、を備えるサンドイッチパネルの製造方法であって、
     前記コア層を構成するコア層用基材に水溶性フェノール樹脂を含むバインダー溶液を含浸させて前記コア層を準備工程と、
     前記プリプレグを構成するプリプレグ用材に水溶性フェノール樹脂を含むバインダー溶液を含浸させて前記プリプレグを準備する工程と、
    を順不同に含み、
     前記バインダー溶液が含浸された前記コア層の上面側と下面側のそれぞれの開口面上に、前記プリプレグを配置し、加熱加圧により、一体化する工程と、
    を含む、サンドイッチパネルの製造方法。
    A method for manufacturing a sandwich panel comprising a core layer having a honeycomb structure and a cured product of a prepreg provided on both sides of the core layer.
    The core layer is prepared by impregnating the base material for the core layer constituting the core layer with a binder solution containing a water-soluble phenol resin.
    A step of impregnating a prepreg material constituting the prepreg with a binder solution containing a water-soluble phenol resin to prepare the prepreg, and a step of preparing the prepreg.
    In no particular order,
    A step of arranging the prepreg on the opening surfaces of the upper surface side and the lower surface side of the core layer impregnated with the binder solution and integrating them by heating and pressurizing.
    How to make sandwich panels, including.
  11.  ハニカム構造を有するコア層と、前記コア層の両面に設けられたプリプレグの硬化物と、を備えるサンドイッチパネルの製造方法であって、
     前記コア層を構成するコア層用基材に水溶性フェノール樹脂を含むバインダー溶液を含浸させて前記コア層を準備する工程、および、前記プリプレグを構成するプリプレグ用材に水溶性フェノール樹脂を含むバインダー溶液を含浸させて前記プリプレグを準備する工程、のうち少なくともいずれか一つの工程と、
     前記バインダー溶液が含浸された前記コア層の上面側と下面側のそれぞれの開口面上に前記プリプレグを配置し、加熱加圧により、一体化する工程と、
    を含み、
     前記水溶性フェノール樹脂が、リグニン、リグニン誘導体、リグニン分解物およびこれらの変性物の中から選ばれる1種または2種以上を用いて合成されるフェノール樹脂である、サンドイッチパネルの製造方法。
    A method for manufacturing a sandwich panel comprising a core layer having a honeycomb structure and a cured product of a prepreg provided on both sides of the core layer.
    The step of impregnating the core layer base material constituting the core layer with a binder solution containing a water-soluble phenol resin to prepare the core layer, and the binder solution containing a water-soluble phenol resin in the prepreg material constituting the prepreg. And at least one of the steps of preparing the prepreg by impregnating with
    A step of arranging the prepreg on the opening surfaces of the upper surface side and the lower surface side of the core layer impregnated with the binder solution and integrating them by heating and pressurizing.
    Including
    A method for producing a sandwich panel, wherein the water-soluble phenol resin is a phenol resin synthesized by using one or more selected from lignin, lignin derivatives, lignin decomposition products and modified products thereof.
PCT/JP2021/020958 2020-06-30 2021-06-02 Sandwich panel WO2022004254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021567026A JP7088424B2 (en) 2020-06-30 2021-06-02 Sandwich panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-112637 2020-06-30
JP2020112637 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022004254A1 true WO2022004254A1 (en) 2022-01-06

Family

ID=79315950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020958 WO2022004254A1 (en) 2020-06-30 2021-06-02 Sandwich panel

Country Status (2)

Country Link
JP (1) JP7088424B2 (en)
WO (1) WO2022004254A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158022A (en) * 1987-09-04 1989-06-21 Oji Paper Co Ltd Lignin-phenolic resin composition
JPH07266475A (en) * 1994-03-21 1995-10-17 Ciba Geigy Ag Production of honeycomb product
JPH1143546A (en) * 1997-07-30 1999-02-16 Toray Ind Inc Cloth prepreg and honeycomb structure
JP2013018822A (en) * 2011-07-08 2013-01-31 Hitachi Ltd Epoxidized lignin resin or epoxidized lignophenol resin, resin composition, varnish and cured product thereof
WO2018047772A1 (en) * 2016-09-09 2018-03-15 出光興産株式会社 Method for producing lignin-containing resin composition and lignin-containing resin molded article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003276005A (en) * 2002-03-27 2003-09-30 Ecotec Kk Molded fibrous panel having compressed skin structure, treated with lignophenolic derivative
JP2005065750A (en) * 2003-08-27 2005-03-17 Takasago Internatl Corp Product containing deodorant
TW200827092A (en) * 2006-10-18 2008-07-01 Tsudakoma Ind Co Ltd Processing head for machine tool
JP5354882B2 (en) * 2006-12-01 2013-11-27 トヨタ車体株式会社 Method for producing lignin-modified novolac phenolic resin
JP7215046B2 (en) * 2018-09-28 2023-01-31 住友ベークライト株式会社 Method for producing resin material containing phenol-modified lignin resin, and method for producing structure using the same
JP2020050814A (en) * 2018-09-28 2020-04-02 住友ベークライト株式会社 Resin material comprising phenol-modified lignin resin, phenol-modified lignin resin composition using the same, and structure body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158022A (en) * 1987-09-04 1989-06-21 Oji Paper Co Ltd Lignin-phenolic resin composition
JPH07266475A (en) * 1994-03-21 1995-10-17 Ciba Geigy Ag Production of honeycomb product
JPH1143546A (en) * 1997-07-30 1999-02-16 Toray Ind Inc Cloth prepreg and honeycomb structure
JP2013018822A (en) * 2011-07-08 2013-01-31 Hitachi Ltd Epoxidized lignin resin or epoxidized lignophenol resin, resin composition, varnish and cured product thereof
WO2018047772A1 (en) * 2016-09-09 2018-03-15 出光興産株式会社 Method for producing lignin-containing resin composition and lignin-containing resin molded article

Also Published As

Publication number Publication date
JP7088424B2 (en) 2022-06-21
JPWO2022004254A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
US11453810B2 (en) Method for increasing the reactivity of lignin
US9469795B2 (en) Use of low molecular weight lignin together with lignin for the production of a phenol-formaldehyde binder composition
US10259903B2 (en) Method for increasing the reactivity of lignin
EP2694593B1 (en) A method for producing a binder composition, a binder composition, an adhesive composition, and uses of the binder composition
CN112004904A (en) Adhesive formulations containing lignin
Shahid et al. Characterization of phenol-formaldehyde resins modified with crude bio-oil prepared from Ziziphus mauritiana endocarps
Maree et al. Lignin phenol formaldehyde resins synthesised using South African spent pulping liquor
JP7088424B2 (en) Sandwich panel
Meng et al. In Situ Lignin Adhesion for High-Performance Bamboo Composites
Mao et al. Preparation, properties, and bonding utilization of pyrolysis bio-oil
JP2009286979A (en) Lignin derivative resin composition and substrate using the same
Xu et al. Lignin-based phenol–formaldehyde (LPF) resins/adhesives
WO2016098667A1 (en) Impregnated sheet, laminated sheet, and resin composition
Xu Production of bio-phenols and phenolic resins/adhesives from agricultural and forest biomass
WO2016098666A1 (en) Impregnated sheet, laminated sheet, and resin composition
JP2023101115A (en) Method of manufacturing sandwich panels and sandwich panels
Akram et al. Development of Waterproof Cum Heat Resistant, Montmorillonite Clay Modified High-Pressure Plywood Composite from Renewable-Nonedible Agricultural Wastes–An Industrial Case Study of ‘Flask to Reactor’Approach
CN112805348B (en) Method for preparing resin
JP2022147272A (en) Method for producing kraft lignin-containing phenolic resin
JP2024005406A (en) Method for producing prepreg and method for producing sandwich panel
JP2015187087A (en) Lignin derivative, resin composition, and production method of lignin derivative
Gavrilović-Grmuša et al. Green alternatives for formaldehyde based adhesives in wood industry
JPS5920327A (en) Production of phenolic resin laminated sheet
JPS58183251A (en) Manufacture of laminated board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021567026

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832482

Country of ref document: EP

Kind code of ref document: A1