WO2022004186A1 - Surface treatment method, film, and packaging bag using same - Google Patents

Surface treatment method, film, and packaging bag using same Download PDF

Info

Publication number
WO2022004186A1
WO2022004186A1 PCT/JP2021/019237 JP2021019237W WO2022004186A1 WO 2022004186 A1 WO2022004186 A1 WO 2022004186A1 JP 2021019237 W JP2021019237 W JP 2021019237W WO 2022004186 A1 WO2022004186 A1 WO 2022004186A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
film
treatment method
energy density
laser beam
Prior art date
Application number
PCT/JP2021/019237
Other languages
French (fr)
Japanese (ja)
Inventor
敬弘 赤羽根
義之 湯淺
和彰 大橋
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to JP2022533736A priority Critical patent/JPWO2022004186A1/ja
Publication of WO2022004186A1 publication Critical patent/WO2022004186A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances

Definitions

  • the present invention relates to a film surface treatment method and a film surface-treated by the method.
  • Thermoplastic polyester such as polyethylene terephthalate (PET) has excellent physical properties such as mechanical strength, creep resistance, impact resistance, and transparency, and is an excellent material for containers for foods. Or, a container made of a laminate using this is widely used as a food filling and sealed container.
  • PET polyethylene terephthalate
  • the polyester film can be biaxially stretched and crystallized after film formation to improve surface properties such as strength, heat resistance, various barrier properties, transparency and slipperiness, the stretched polyester can be improved. Films are used as various industrial films.
  • the stretched polyester film is attracting attention for its low adsorptivity, and since it has little adsorption and permeation of medicinal components and aroma components of its contents, it is particularly effective as an inner surface material for soft packaging materials containing anti-inflammatory analgesics and the like. Is
  • the stretched polyester film has a problem that the heat sealability is lowered due to the high melting point in the crystalline state.
  • the surface of the planned heat-sealing portion of the inner layer is irradiated with a laser beam having an infrared wavelength to modify the surface, thereby imparting heat-sealing properties.
  • the above-mentioned surface modification treatment is performed on the stretched polyester film to impart heat sealability to the treated portion
  • the treated portions are overlapped to form a roll film after the treatment
  • the overlapping portion of the treated portions is formed. It was confirmed that a roll film with a raised and flat surface may not be obtained.
  • the above-mentioned swelling can be a band-shaped swelling when the treated portion extends along the longitudinal direction of the roll film. Further, when the entire surface of the film is irradiated with the laser beam, partial unevenness is generated inside the treated portion, and the flatness of the roll film is also lowered in this case as well.
  • the present invention has been proposed to deal with such a problem, and makes it possible to obtain a flatter roll film when performing a surface treatment for imparting heat-sealing property to a stretched polyester film. That is the issue.
  • the present invention has the following configurations.
  • the scanning energy density defined in the present invention is the amount of energy per unit volume at an arbitrary point of the laser spot during scanning.
  • the calculation method is as follows. P: Laser output [W] D: Spot diameter where the scanning energy density is 1 / e 2 of the peak value [cm] V: Laser scanning speed [cm / sec]
  • a flatter roll film can be obtained when the surface treatment for imparting heat sealability to the stretched polyester film is performed.
  • Explanatory drawing explaining the surface treatment which imparts a heat seal property to a stretched polyester film Explanatory drawing showing the state of the modified part formed after the surface treatment ((a) is a scanning electron micrograph showing the surface state, (b) is a scanning electron micrograph of a cross section of the modified part, and (c) is a modified part. Schematic diagram of the cross section).
  • Explanatory drawing of light radiation pressure Explanatory drawing explaining the relationship between the scanning energy density distribution of laser light and the spot diameter at the point where 1 / e 2 (13.5%) is reached.
  • Explanatory drawing showing the mechanism of resin swelling generated at the peripheral edge of the laser light irradiation range ((a) shows the plasticized state of the resin in the irradiation range, (b) shows the flowing state of the resin, and (c) shows the swelling generation state. ing.).
  • a photograph showing the difference in the difference in the scanning energy density distribution of the laser beam and the raised state at the end of the modified portion (when (a) is the energy density difference of 26.4 J / cm 3 , (b) is the scanning energy density distribution. When the difference is 10.7 J / cm 3 ).
  • (A) is a schematic diagram showing the crystallinity distribution in the thickness direction at the end of the modified portion.
  • (B) is an explanatory diagram showing the relationship between the difference in the scanning energy density distribution of the laser beam and the difference in the crystallinity between the surface and the bottom at the end of the modified portion.
  • the film surface Fa is irradiated with laser light L.
  • the laser light L is spot light having an infrared wavelength (for example, a wavelength of 10.6 ⁇ m (far infrared rays)), and for example, a CO 2 laser light source or the like can be used as the light source S.
  • the laser beam L irradiates the film surface Fa with an irradiation range La of a set spot diameter, and when processing a predetermined range, the irradiation range La is moved (scanned) to move (scan) the entire surface of the film surface Fa or the entire surface of the film surface Fa. A part of the laser beam L is irradiated.
  • the temperature of the film surface Fa instantly rises due to local heating by light absorption, and the temperature drops immediately after the irradiation range La of the laser beam L has passed.
  • the crystallinity of the crystallized stretched polyester film is lowered.
  • the crystallinity before the treatment is 51%
  • the crystallinity after the treatment is 10% or less.
  • a modified portion Re having a reduced crystallinity is formed at a portion irradiated with the laser beam L, and the modified portion Re imparts heat-sealing property.
  • the modified portion Re is formed as a heat seal precursor portion in an appropriate range in the heat seal scheduled portion H of the film F.
  • the light radiation pressure increases according to the scanning energy density and acts in the direction perpendicular to the incident interface of the light.
  • the scanning energy density distribution of the laser beam L is close to the Gaussian distribution, which has the highest energy density at the center of the irradiation range La. Then, the light radiation pressure increases in the central portion of the irradiation range La and decreases in the peripheral portion of the irradiation range La according to the energy density distribution of the laser beam L.
  • the resin when the film surface Fa is irradiated with the laser beam L, the resin is plasticized within the irradiation range La as shown in FIG. 5 (a). However, as described above, the irradiation range La Since the light radiation pressure of No. 1 is high in the central portion of the irradiation range La and low in the peripheral portion of the irradiation range La, as shown in FIG. 5 (b), the resin is used from the central portion to the peripheral portion of the irradiation range La. It is expected that flow will occur. As shown in FIG. 5C, it can be explained that the flow of the resin causes the resin to swell in the peripheral portion of the irradiation range La of the laser beam L.
  • the above-mentioned findings if the difference in light radiation pressure in the irradiation range La of the laser beam L becomes small, the above-mentioned flow of the resin can be suppressed, and the swelling of the resin generated in the peripheral portion of the irradiation range La can be suppressed. can.
  • it is effective to reduce the difference in scanning energy density distribution within the irradiation range La of the laser beam L.
  • FIG. 4 shows the relationship between the difference in the scanning energy density distribution of the laser beam L and the spot diameter of the laser beam L. Assuming that the irradiation energy in the spot of the laser beam L is constant, the smaller the spot diameter, the higher the energy density at the center of the spot diameter, and the larger the difference in the energy density distribution. In this case, it was found that the difference in energy density distribution becomes smaller as the spot diameter becomes larger.
  • the difference in scanning energy density distribution is less than 100 J / cm 3
  • the smaller the difference in scanning energy density the more the swelling height h of the modified portion Re end is suppressed. be able to.
  • the difference in scanning energy density distribution is 100 J / cm 3 or more
  • the raised height h at the end of the modified portion Re reaches a plateau. Therefore, the difference between the scanning energy density distribution in the irradiation range La of the laser beam L for irradiating the surface treatment, by less than 0 J / cm 3 or more 100 J / cm 3, effective for reforming section Re end
  • the swelling height h can be suppressed to a range of 0 ⁇ m or more and less than 13.5 ⁇ m.
  • the raised height h of the modified portion Re end is the modified portion Re end when the film surface Fa other than the modified portion is used as a reference surface. The height of the apex of the swelling.
  • the difference in the scanning energy density distribution of the laser beam L is such that when the laser beam L is irradiated perpendicularly to the film surface Fa, the difference in the light radiation pressure is 0 from the definition of the light radiation pressure shown in FIG. It becomes ⁇ 180 nN ⁇ s / cm 3.
  • the difference in the light radiation pressure of the laser beam L is set to 0 nN ⁇ s / cm 3 or more and less than 180 nN ⁇ s / cm 3 , effectively suppressing the raised height h of the reformed portion Re end. Can be done.
  • FIG. 7 shows a micrograph showing the difference in the difference in the scanning energy density distribution of the laser beam L and the raised state of the modified portion Re end.
  • A is the case where the difference in scanning energy density distribution is 26.4 J / cm 3 , and in this case, the raised height of the modified end Re end is about 8 ⁇ m.
  • (b) is a case where the difference in scanning energy density distribution is 10.7 J / cm 3. In this case, the raised height of the modified portion Re end could be suppressed to about 1.1 ⁇ m.
  • the central scanning energy density peak value of the scanning energy density
  • the swelling at the end of the irradiation range becomes smaller when the spot diameter of the laser beam L is large. understood.
  • the smaller the spot diameter the larger the scanning energy density distribution gradient (the steeper slope), so the plasticized resin irradiates with a smaller scanning energy density. It is thought that it is easy to flow toward the end. In order to suppress this flow, it is more effective to reduce the scanning energy density distribution gradient.
  • the spot radius means the distance from the center of the spot diameter to the point where the scanning energy density becomes 1 / e 2 of the peak value.
  • the swelling height h of the modified portion Re end is suppressed as the scanning energy density distribution gradient is made smaller. Can be done.
  • the scanning energy density distribution gradient is 4000 J / cm 4 or more, the swelling height h at the end of the reformed portion Re reaches a plateau. Therefore, by setting the scanning energy density distribution gradient within the irradiation range La of the laser beam L to be irradiated in the surface treatment to 0 J / cm 4 or more and less than 4000 J / cm 4 , the reformed portion Re end is effectively raised.
  • the height h can be suppressed to a range of 0 ⁇ m or more and less than 13.5 ⁇ m.
  • the scanning energy density distribution gradient of the laser light L is such that the light radiation pressure distribution gradient is from 0 to 0 from the definition of the light radiation pressure shown in FIG. It becomes 360 nN ⁇ s / cm 4 .
  • the light radiation pressure distribution gradient of the laser beam L is set to 0 nN ⁇ s / cm 4 or more and less than 360 nN ⁇ s / cm 4 , effectively suppressing the swelling height h of the reformed portion Re end. Can be done.
  • FIG. 8A shows a schematic diagram.
  • FIG. 8B shows the results of measuring the difference in crystallinity between the surface and the bottom at the end of the modified portion Re by changing the difference in the scanning energy density distribution of the laser beam L.
  • the difference in scanning energy density distribution is 100 J / cm 3
  • the difference in crystallinity is 32.55%
  • the difference in scanning energy density distribution is increased
  • the difference in crystallinity is about 35. It reaches a plateau at%. From this, by setting the difference in crystallinity between the surface and the bottom of the modified portion Re end to 0% or more and less than 35%, the swelling of the modified portion Re end can be suppressed.
  • the stretched polyester film F according to the embodiment of the present invention is particularly useful in a stretched PET (polyethylene terephthalate) film. Since the stretched PET film has excellent low adhesion, for example, when a soft packaging material containing an anti-inflammatory analgesic as a content, the medicinal and aroma components of the content are less adsorbed and permeated, so that the efficacy and flavor are reduced. Can be maintained for a long time, eliminating the need to increase the amount of ingredients. In addition, it becomes possible to suppress delamination.
  • the modified portion Re when the modified portion Re is formed by the above-mentioned treatment method, a CO 2 laser having a wavelength of 10.6 ⁇ m is used to make the spot diameter of the laser beam 7 mm, so that the modified portion Re end portion is formed.
  • the raised height h can be suppressed to 8 ⁇ m or less.
  • a packaging bag can be manufactured by using the above-mentioned stretched polyester film.
  • the packaging bag can be manufactured by heat-sealing the above-mentioned reformed portions of one or more films.
  • the film may be a single layer, or a film having the above-mentioned modified portion formed therein is included on the surface, and a film having functions such as oxygen barrier property and water vapor barrier property, a metal foil layer, and the like are laminated. It may be a multilayer film.
  • the packaging bag thus obtained is stretched so that the innermost layer in contact with the contents generally has good stability against heat and light, and has little adsorption of medicinal ingredients and little interaction with medicinal ingredients. Since a polyester film can be used, it has excellent content resistance.
  • the present invention is not limited to this. Instead, an optical element such as a beam homogenizer can be used to make the scanning energy density distribution within the irradiation range La uniform.
  • the spot radius in this case is the distance from the center of the spot diameter of the laser beam L to the end of the irradiation range having the same energy density as the center.
  • L laser light
  • S light source
  • La irradiation range
  • F film
  • Fa film surface
  • Re modified part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

The present invention makes it possible to obtain a flatter roll film when performing a surface treatment that imparts heat sealability to a stretched polyester film. A surface treatment method according to the present invention irradiates a stretched polyester film entirely or partly with an infrared-wavelength laser beam, forming a heat seal precursor. The surface treatment method is characterized in that the variation in scanning energy density distribution in the irradiation range of the laser beam is from 0 J/cm3 to less than 100 J/cm3.

Description

表面処理方法並びにフィルム及びそれを用いた包装袋Surface treatment method and film and packaging bag using it
 本発明は、フィルムの表面処理方法及びその方法で表面処理されたフィルムに関するものである。 The present invention relates to a film surface treatment method and a film surface-treated by the method.
 ポリエチレンテレフタレート(PET)等の熱可塑性ポリエステルは、機械的強度、耐クリープ性、耐衝撃性、透明性等の物性に優れ、食品類に対する優れた容器用素材であり、これを延伸ブロー成形したボトルや、これを用いた積層体から成る容器は食品充填密封容器として広く用いられている。 Thermoplastic polyester such as polyethylene terephthalate (PET) has excellent physical properties such as mechanical strength, creep resistance, impact resistance, and transparency, and is an excellent material for containers for foods. Or, a container made of a laminate using this is widely used as a food filling and sealed container.
 また、ポリエステルフィルムは、成膜後に2軸延伸して結晶化させることで、強度や耐熱性、各種バリア性、透明性や滑り性などの表面特性などを向上させることができるので、この延伸ポリエステルフィルムは、各種の工業用フィルムとして用いられている。また、延伸ポリエステルフィルムは、低吸着性が注目されており、内容物の薬効成分や香気成分の吸着や透過が少ないので、消炎鎮痛剤などを内容物とする軟包材の内面材として特に有効である Further, since the polyester film can be biaxially stretched and crystallized after film formation to improve surface properties such as strength, heat resistance, various barrier properties, transparency and slipperiness, the stretched polyester can be improved. Films are used as various industrial films. In addition, the stretched polyester film is attracting attention for its low adsorptivity, and since it has little adsorption and permeation of medicinal components and aroma components of its contents, it is particularly effective as an inner surface material for soft packaging materials containing anti-inflammatory analgesics and the like. Is
 しかしながら、延伸ポリエステルフィルムは、結晶状態での融点が高くなることで、ヒートシール性が低くなることが課題になっている。この課題を解決するために、内面層のヒートシール予定部の表面に、赤外域波長のレーザー光を照射して、表面の改質処理を行うことで、ヒートシール性を付与することがなされている(下記特許文献1参照)。 However, the stretched polyester film has a problem that the heat sealability is lowered due to the high melting point in the crystalline state. In order to solve this problem, the surface of the planned heat-sealing portion of the inner layer is irradiated with a laser beam having an infrared wavelength to modify the surface, thereby imparting heat-sealing properties. (See Patent Document 1 below).
特公平7-80502号公報Special Fair 7-80502 Bulletin
 延伸ポリエステルフィルムに対して、前述した表面の改質処理を行って、処理箇所にヒートシール性を付与する際に、処理後に、処理箇所を重ねてロールフィルムを形成すると、処理箇所の重なり部分が盛り上がり、平坦な表面のロールフィルムが得られない場合があることが確認された。前述した盛り上がりは、ロールフィルムの長手方向に沿って処理箇所が延びている場合には、帯状の盛り上がりができる。また、フィルムの全面にレーザー光を照射した場合には、処理箇所の内部に部分的な凹凸が生じて、この場合にもロールフィルムの平坦性が低下する。 When the above-mentioned surface modification treatment is performed on the stretched polyester film to impart heat sealability to the treated portion, when the treated portions are overlapped to form a roll film after the treatment, the overlapping portion of the treated portions is formed. It was confirmed that a roll film with a raised and flat surface may not be obtained. The above-mentioned swelling can be a band-shaped swelling when the treated portion extends along the longitudinal direction of the roll film. Further, when the entire surface of the film is irradiated with the laser beam, partial unevenness is generated inside the treated portion, and the flatness of the roll film is also lowered in this case as well.
 本発明は、このような問題に対処するために提案されたものであり、延伸ポリエステルフィルムに対して、ヒートシール性を付与する表面処理を行うに際して、より平坦なロールフィルムが得られるようにすることを課題としている。 The present invention has been proposed to deal with such a problem, and makes it possible to obtain a flatter roll film when performing a surface treatment for imparting heat-sealing property to a stretched polyester film. That is the issue.
 このような課題を解決するために、本発明は、以下の構成を具備するものである。
 延伸ポリエステルフィルムに対して、全面的或いは部分的に赤外域波長のレーザー光を照射して、ヒートシール前駆部を形成する表面処理方法であって、レーザー光の照射範囲内の走査エネルギー密度分布の差が、0J/cm3以上100J/cm3未満であることを特徴とする表面処理方法。
 なお、本発明で定義している走査エネルギー密度とは、走査時のレーザースポットの任意の点における単位体積あたりのエネルギー量である。また、レーザー光Lのスポット径(=スポット直径)中心での走査エネルギー密度と、走査エネルギー密度がピーク値の1/e2となる点の走査エネルギー密度との差を「走査エネルギー密度分布の差」と称している。算出方法は以下の通りである。
 
Figure JPOXMLDOC01-appb-M000001
 P:レーザー出力 [W]
 D:走査エネルギー密度がピーク値の1/e2となるスポット直径 [cm]
 V:レーザー走査速度 [cm/秒]
 
In order to solve such a problem, the present invention has the following configurations.
A surface treatment method for forming a heat seal precursor by irradiating a stretched polyester film with laser light having an infrared wavelength wholly or partially, in which the scanning energy density is distributed within the irradiation range of the laser light. A surface treatment method characterized in that the difference is 0 J / cm 3 or more and less than 100 J / cm 3.
The scanning energy density defined in the present invention is the amount of energy per unit volume at an arbitrary point of the laser spot during scanning. The difference between the scanning energy density at the center of the spot diameter (= spot diameter) of the laser beam L and the scanning energy density at the point where the scanning energy density is 1 / e 2 of the peak value is "difference in scanning energy density distribution". ". The calculation method is as follows.

Figure JPOXMLDOC01-appb-M000001
P: Laser output [W]
D: Spot diameter where the scanning energy density is 1 / e 2 of the peak value [cm]
V: Laser scanning speed [cm / sec]
 このような特徴を有する表面処理方法及びそれによって処理されたフィルムによると、延伸ポリエステルフィルムに対して、ヒートシール性を付与する表面処理を行うに際して、より平坦なロールフィルムを得ることができる。 According to the surface treatment method having such characteristics and the film treated by the surface treatment method, a flatter roll film can be obtained when the surface treatment for imparting heat sealability to the stretched polyester film is performed.
延伸ポリエステルフィルムにヒートシール性を付与する表面処理を説明する説明図。Explanatory drawing explaining the surface treatment which imparts a heat seal property to a stretched polyester film. 表面処理後に形成された改質部の状態を示す説明図((a)が表面状態を示す走査電子顕微鏡写真、(b)が改質部断面の走査電子顕微鏡写真、(c)が改質部断面の模式図)。Explanatory drawing showing the state of the modified part formed after the surface treatment ((a) is a scanning electron micrograph showing the surface state, (b) is a scanning electron micrograph of a cross section of the modified part, and (c) is a modified part. Schematic diagram of the cross section). 光放射圧の説明図。Explanatory drawing of light radiation pressure. レーザー光の走査エネルギー密度分布と1/e2(13.5%)になる地点のスポット径の関係を説明する説明図。Explanatory drawing explaining the relationship between the scanning energy density distribution of laser light and the spot diameter at the point where 1 / e 2 (13.5%) is reached. レーザー光照射範囲周縁部に生じる樹脂の盛り上がりメカニズムを示した説明図((a)は照射範囲の樹脂の可塑化状態、(b)は樹脂の流動状態、(c)は盛り上がりの生成状態を示している。)。Explanatory drawing showing the mechanism of resin swelling generated at the peripheral edge of the laser light irradiation range ((a) shows the plasticized state of the resin in the irradiation range, (b) shows the flowing state of the resin, and (c) shows the swelling generation state. ing.). レーザー光の走査エネルギー密度分布の差と改質部端部の盛り上がり高さの測定結果を示した説明図。An explanatory diagram showing the measurement results of the difference in the scanning energy density distribution of the laser beam and the height of the swelling at the end of the modified portion. レーザー光の走査エネルギー密度分布勾配と改質部端部の盛り上がり高さの測定結果を示した説明図。An explanatory diagram showing the measurement results of the scanning energy density distribution gradient of the laser beam and the swelling height at the edge of the modified portion. レーザー光の走査エネルギー密度分布の差の違いと改質部端部の盛り上がり状態を示した写真((a)がエネルギー密度差26.4J/cm3の場合、(b)が走査エネルギー密度分布の差10.7J/cm3の場合)。A photograph showing the difference in the difference in the scanning energy density distribution of the laser beam and the raised state at the end of the modified portion (when (a) is the energy density difference of 26.4 J / cm 3 , (b) is the scanning energy density distribution. When the difference is 10.7 J / cm 3 ). (a)が改質部端部における厚さ方向の結晶化度分布を示した模式図。(b)がレーザー光の走査エネルギー密度分布の差と改質部端部における表面と底の結晶化度の差との関係を示した説明図。(A) is a schematic diagram showing the crystallinity distribution in the thickness direction at the end of the modified portion. (B) is an explanatory diagram showing the relationship between the difference in the scanning energy density distribution of the laser beam and the difference in the crystallinity between the surface and the bottom at the end of the modified portion.
 以下、図面を参照して本発明の実施形態を説明する。図1に示すように、延伸ポリエステルフィルム(以下、フィルム)Fに対する表面処理は、フィルム表面Faにレーザー光Lを照射する。レーザー光Lは、赤外域波長(一例として、波長10.6μm(遠赤外線))のスポット光であり、例えば、光源Sとして、CO2レーザー光源などを用いることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, in the surface treatment of the stretched polyester film (hereinafter, film) F, the film surface Fa is irradiated with laser light L. The laser light L is spot light having an infrared wavelength (for example, a wavelength of 10.6 μm (far infrared rays)), and for example, a CO 2 laser light source or the like can be used as the light source S.
 レーザー光Lは、設定されたスポット径の照射範囲Laでフィルム表面Faに照射され、所定の範囲を処理する際には、照射範囲Laを移動(走査)させることで、フィルム表面Faの全面又は一部にレーザー光Lを照射する。レーザー光Lが照射されると、フィルム表面Faは、瞬時に光吸収による局所加熱で温度が上昇し、レーザー光Lの照射範囲Laが通過した後は、直ぐに温度が低下する。 The laser beam L irradiates the film surface Fa with an irradiation range La of a set spot diameter, and when processing a predetermined range, the irradiation range La is moved (scanned) to move (scan) the entire surface of the film surface Fa or the entire surface of the film surface Fa. A part of the laser beam L is irradiated. When the laser beam L is irradiated, the temperature of the film surface Fa instantly rises due to local heating by light absorption, and the temperature drops immediately after the irradiation range La of the laser beam L has passed.
 このようにフィルム表面Faにレーザー光Lが照射される表面処理がなされると、結晶化している延伸ポリエステルフィルムは、結晶化度が低下する。例えば、処理前の結晶化度が51%であるとすると、処理後の結晶化度は10%以下になる。レーザー光Lが照射された箇所には、結晶化度が低下した改質部Reが形成され、その改質部Reによってヒートシール性が付与されることになる。改質部Reは、フィルムFのヒートシール予定部Hの中に適宜の範囲でヒートシール前駆部として形成される。 When the surface treatment of the film surface Fa is irradiated with the laser beam L in this way, the crystallinity of the crystallized stretched polyester film is lowered. For example, if the crystallinity before the treatment is 51%, the crystallinity after the treatment is 10% or less. A modified portion Re having a reduced crystallinity is formed at a portion irradiated with the laser beam L, and the modified portion Re imparts heat-sealing property. The modified portion Re is formed as a heat seal precursor portion in an appropriate range in the heat seal scheduled portion H of the film F.
 レーザー光Lの照射で結晶化度が低下した改質部Reには、図2に示すように、部分的な盛り上がりが生じることが確認された。この盛り上がりは、図2(c)に模式的に示すように、改質部Reのエッジにおいて最も顕著な盛り上がり高さh(例えば、8μm程度)になるが、この高さh自体は、目視による観察では認識できない程度の盛り上がりである。しかしながら、このような改質部Reが形成されたフィルムFを、改質部Reが重なるように数千枚重ねてロールフィルムを形成すると、改質部Reが重ねられた箇所の表面には、目視可能な程度の盛り上がり部が形成され、ロールフィルムの平坦性が損なわれてしまうことになる。 As shown in FIG. 2, it was confirmed that a partial swelling occurred in the modified portion Re whose crystallinity decreased by irradiation with the laser beam L. As schematically shown in FIG. 2C, this swelling becomes the most remarkable swelling height h (for example, about 8 μm) at the edge of the reforming portion Re, and this height h itself is visually observed. The excitement is unrecognizable by observation. However, when a roll film is formed by stacking thousands of films F on which the modified portion Re is formed so as to overlap the modified portions Re, the surface of the portion where the modified portions Re are overlapped is formed on the surface. A visible raised portion is formed, and the flatness of the roll film is impaired.
 改質部Reにこのような盛り上がりが生じる原因を鋭意検討した結果、レーザー光Lの照射によってフィルム面Faに加わる光放射圧が、加熱されて可塑化した樹脂を流動させることによる、という知見を得た。 As a result of diligently investigating the cause of such swelling in the reformed portion Re, it was found that the light radiation pressure applied to the film surface Fa by the irradiation of the laser beam L causes the heated and plasticized resin to flow. Obtained.
 光放射圧は、図3に示すように、走査エネルギー密度に応じて高くなり、光の入射界面に対して垂直方向に作用する。一方、レーザー光Lの走査エネルギー密度分布は、図4に示すように、照射範囲Laの中心で最も高いエネルギー密度になるガウシアン分布に近い分布になることが一般に知られている。そうすると、光放射圧は、レーザー光Lのエネルギー密度分布に従って、照射範囲Laの中心部で高くなり、照射範囲Laの周縁部で低くなる。 As shown in FIG. 3, the light radiation pressure increases according to the scanning energy density and acts in the direction perpendicular to the incident interface of the light. On the other hand, as shown in FIG. 4, it is generally known that the scanning energy density distribution of the laser beam L is close to the Gaussian distribution, which has the highest energy density at the center of the irradiation range La. Then, the light radiation pressure increases in the central portion of the irradiation range La and decreases in the peripheral portion of the irradiation range La according to the energy density distribution of the laser beam L.
 図5に示すように、フィルム表面Faにレーザー光Lを照射すると、図5(a)に示すように、照射範囲Laの範囲内において樹脂が可塑化するが、前述したように、照射範囲Laの光放射圧は、照射範囲Laの中心部で高く、照射範囲Laの周縁部で低くなるので、図5(b)に示すように、照射範囲Laの中心部から周縁部に向けて樹脂の流動が起きることが想定される。この樹脂の流動によって、図5(c)に示すように、レーザー光Lの照射範囲La周縁部に樹脂の盛り上がりが生じることを説明することができる。 As shown in FIG. 5, when the film surface Fa is irradiated with the laser beam L, the resin is plasticized within the irradiation range La as shown in FIG. 5 (a). However, as described above, the irradiation range La Since the light radiation pressure of No. 1 is high in the central portion of the irradiation range La and low in the peripheral portion of the irradiation range La, as shown in FIG. 5 (b), the resin is used from the central portion to the peripheral portion of the irradiation range La. It is expected that flow will occur. As shown in FIG. 5C, it can be explained that the flow of the resin causes the resin to swell in the peripheral portion of the irradiation range La of the laser beam L.
 前述した知見によると、レーザー光Lの照射範囲Laにおける光放射圧の差が小さくなれば、前述した樹脂の流動を抑えることができ、照射範囲Laの周縁部に生じる樹脂の盛り上がりを抑えることができる。光放射圧の差を小さくするためには、レーザー光Lの照射範囲La内での走査エネルギー密度分布の差を小さくすることが有効である。 According to the above-mentioned findings, if the difference in light radiation pressure in the irradiation range La of the laser beam L becomes small, the above-mentioned flow of the resin can be suppressed, and the swelling of the resin generated in the peripheral portion of the irradiation range La can be suppressed. can. In order to reduce the difference in light radiation pressure, it is effective to reduce the difference in scanning energy density distribution within the irradiation range La of the laser beam L.
 また、発明者らによる種々検討の結果、エネルギー密度分布の差を小さくするためには、レーザー出力、レーザー走査速度、レーザー光Lのスポット径の3つの要素が関係していることがわかった。
 例として、図4にレーザー光Lの走査エネルギー密度分布の差とレーザー光Lのスポット径との関係を示す。レーザー光Lのスポット内での照射エネルギーが一定であるとすると、スポット径が小さくなるほど、スポット径中心部のエネルギー密度が高くなり、エネルギー密度分布の差は大きくなる。この場合では、エネルギー密度分布の差はスポット径が大きいほうが小さくなることがわかった。
In addition, as a result of various studies by the inventors, it was found that three factors, laser output, laser scanning speed, and spot diameter of laser beam L, are involved in reducing the difference in energy density distribution.
As an example, FIG. 4 shows the relationship between the difference in the scanning energy density distribution of the laser beam L and the spot diameter of the laser beam L. Assuming that the irradiation energy in the spot of the laser beam L is constant, the smaller the spot diameter, the higher the energy density at the center of the spot diameter, and the larger the difference in the energy density distribution. In this case, it was found that the difference in energy density distribution becomes smaller as the spot diameter becomes larger.
 一つのレーザー光Lのスポット径を光学的に変えることで、レーザー光Lの照射範囲Laでの走査エネルギー密度分布の差を変えた場合で、レーザー光Lによる表面処理によって生じる改質部Re端部の盛り上がり高さを測定したところ、図6-1に示すような、測定結果を得た。 When the difference in the scanning energy density distribution in the irradiation range La of the laser beam L is changed by optically changing the spot diameter of one laser beam L, the modified portion Re end generated by the surface treatment by the laser beam L When the raised height of the portion was measured, the measurement result as shown in FIG. 6-1 was obtained.
 図6-1から明らかなように、走査エネルギー密度分布の差が100J/cm3未満の場合には、走査エネルギー密度の差を小さくする程、改質部Re端部の盛り上がり高さhを抑えることができる。そして、走査エネルギー密度分布の差が100J/cm3以上では、改質部Re端部の盛り上がり高さhは頭打ちになる。よって、表面処理において照射するレーザー光Lの照射範囲La内での走査エネルギー密度分布の差を、0J/cm3以上100J/cm3未満にすることで、効果的に改質部Re端部の盛り上がり高さhを0μm以上13.5μm未満の範囲に抑えることができる。なお、改質部Re端部の盛り上がり高さhとは、図1及び図2(c)に示すように、改質部以外のフィルム表面Faを基準面とした場合の改質部Re端部の盛り上がりの頂点部分の高さをいう。 As is clear from FIG. 6-1 when the difference in scanning energy density distribution is less than 100 J / cm 3 , the smaller the difference in scanning energy density, the more the swelling height h of the modified portion Re end is suppressed. be able to. When the difference in scanning energy density distribution is 100 J / cm 3 or more, the raised height h at the end of the modified portion Re reaches a plateau. Therefore, the difference between the scanning energy density distribution in the irradiation range La of the laser beam L for irradiating the surface treatment, by less than 0 J / cm 3 or more 100 J / cm 3, effective for reforming section Re end The swelling height h can be suppressed to a range of 0 μm or more and less than 13.5 μm. As shown in FIGS. 1 and 2 (c), the raised height h of the modified portion Re end is the modified portion Re end when the film surface Fa other than the modified portion is used as a reference surface. The height of the apex of the swelling.
 このようなレーザー光Lの走査エネルギー密度分布の差は、レーザー光Lをフィルム表面Faに垂直に照射する場合には、図3に示す光放射圧の定義から、光放射圧の差は、0~180nN・s/cm3になる。これにより、レーザー光Lの光放射圧の差を、0nN・s/cm3以上180nN・s/cm3未満にすることで、効果的に改質部Re端部の盛り上がり高さhを抑えることができる。 The difference in the scanning energy density distribution of the laser beam L is such that when the laser beam L is irradiated perpendicularly to the film surface Fa, the difference in the light radiation pressure is 0 from the definition of the light radiation pressure shown in FIG. It becomes ~ 180 nN · s / cm 3. As a result, the difference in the light radiation pressure of the laser beam L is set to 0 nN · s / cm 3 or more and less than 180 nN · s / cm 3 , effectively suppressing the raised height h of the reformed portion Re end. Can be done.
 図7には、レーザー光Lの走査エネルギー密度分布の差の違いと改質部Re端部の盛り上がり状態を示した顕微鏡写真を示す。(a)が走査エネルギー密度分布の差26.4J/cm3の場合であり、この場合には、改質部Re端部の盛り上がり高さは、8μm程度になる。これに対して、(b)は、走査エネルギー密度分布の差が10.7J/cm3の場合である。この場合には、改質部Re端部の盛り上がり高さを1.1μm程度に抑えることができた。 FIG. 7 shows a micrograph showing the difference in the difference in the scanning energy density distribution of the laser beam L and the raised state of the modified portion Re end. (A) is the case where the difference in scanning energy density distribution is 26.4 J / cm 3 , and in this case, the raised height of the modified end Re end is about 8 μm. On the other hand, (b) is a case where the difference in scanning energy density distribution is 10.7 J / cm 3. In this case, the raised height of the modified portion Re end could be suppressed to about 1.1 μm.
 さらに、発明者らによる鋭意検討の結果、中心走査エネルギー密度(走査エネルギー密度のピーク値)が同一の場合でも、レーザー光Lのスポット径が大きいときに照射範囲端部の盛り上がりが小さくなることがわかった。これは走査エネルギー密度の分布で説明でき、中心走査エネルギー密度が同一の場合、スポット径が小さいほど走査エネルギー密度分布勾配が大きい(傾斜が急)ため、可塑化した樹脂が走査エネルギー密度が小さな照射端部に向かって流動しやすいためと考えられる。この流動を抑えるためには走査エネルギー密度分布勾配を小さくすることがより効果的である。
 なお、本発明で定義している走査エネルギー密度分布勾配は、走査エネルギー密度分布勾配=走査エネルギー密度分布の差/スポット半径から算出した。ここで、スポット半径とは、スポット径中心から、走査エネルギー密度がピーク値の1/e2となる点までの距離をいう。
Furthermore, as a result of diligent studies by the inventors, even when the central scanning energy density (peak value of the scanning energy density) is the same, the swelling at the end of the irradiation range becomes smaller when the spot diameter of the laser beam L is large. understood. This can be explained by the distribution of scanning energy density. When the central scanning energy density is the same, the smaller the spot diameter, the larger the scanning energy density distribution gradient (the steeper slope), so the plasticized resin irradiates with a smaller scanning energy density. It is thought that it is easy to flow toward the end. In order to suppress this flow, it is more effective to reduce the scanning energy density distribution gradient.
The scanning energy density distribution gradient defined in the present invention was calculated from the scanning energy density distribution gradient = the difference in the scanning energy density distribution / the spot radius. Here, the spot radius means the distance from the center of the spot diameter to the point where the scanning energy density becomes 1 / e 2 of the peak value.
 一つのレーザー光Lのスポット径を光学的に変えることで、レーザー光Lの照射範囲Laでの走査エネルギー密度分布勾配を変えた場合において、レーザー光Lによる表面処理によって生じる改質部Re端部の盛り上がり高さを測定したところ、図6-2に示すような、測定結果が得られた。 When the scanning energy density distribution gradient in the irradiation range La of the laser beam L is changed by optically changing the spot diameter of one laser beam L, the modified portion Re end generated by the surface treatment by the laser beam L When the height of the swelling was measured, the measurement results as shown in FIG. 6-2 were obtained.
 図6-2から明らかなように、走査エネルギー密度分布勾配が4000J/cm4未満の場合には、走査エネルギー密度分布勾配を小さくする程、改質部Re端部の盛り上がり高さhを抑えることができる。そして、走査エネルギー密度分布勾配が4000J/cm4以上では、改質部Re端部の盛り上がり高さhは頭打ちになる。よって、表面処理において照射するレーザー光Lの照射範囲La内での走査エネルギー密度分布勾配を、0J/cm4以上4000J/cm4未満にすることで、効果的に改質部Re端部の盛り上がり高さhを0μm以上13.5μm未満の範囲に抑えることができる。 As is clear from FIG. 6-2, when the scanning energy density distribution gradient is less than 4000 J / cm 4 , the swelling height h of the modified portion Re end is suppressed as the scanning energy density distribution gradient is made smaller. Can be done. When the scanning energy density distribution gradient is 4000 J / cm 4 or more, the swelling height h at the end of the reformed portion Re reaches a plateau. Therefore, by setting the scanning energy density distribution gradient within the irradiation range La of the laser beam L to be irradiated in the surface treatment to 0 J / cm 4 or more and less than 4000 J / cm 4 , the reformed portion Re end is effectively raised. The height h can be suppressed to a range of 0 μm or more and less than 13.5 μm.
 このようなレーザー光Lの走査エネルギー密度分布勾配は、レーザー光Lをフィルム表面Faに垂直に照射する場合には、図3に示す光放射圧の定義から、光放射圧分布勾配は、0~360nN・s/cm4になる。これにより、レーザー光Lの光放射圧分布勾配を、0nN・s/cm4以上360nN・s/cm4未満にすることで、効果的に改質部Re端部の盛り上がり高さhを抑えることができる。 When the laser light L is irradiated perpendicularly to the film surface Fa, the scanning energy density distribution gradient of the laser light L is such that the light radiation pressure distribution gradient is from 0 to 0 from the definition of the light radiation pressure shown in FIG. It becomes 360 nN · s / cm 4 . As a result, the light radiation pressure distribution gradient of the laser beam L is set to 0 nN · s / cm 4 or more and less than 360 nN · s / cm 4 , effectively suppressing the swelling height h of the reformed portion Re end. Can be done.
 次に、改質部Reにおける結晶化度に着目する。改質部Re端部は走査エネルギー分布密度が小さく、結晶化度の低下が起こりにくい。そこへ可塑化した樹脂が押しやられてくることで、改質部Re端部では表面と底部で結晶化度の違い(分布)ができると考えられる。図8(a)に模式図を示すが、改質部Reの端部に盛り上がりができると、盛り上がりの上層部では、結晶化度が十分に低下しているが、その下層では、結晶化度が高いまま残っていることが確認された。この場合、改質部Reの端部における厚さ方向の結晶化度分布は、改質部Re端部の表面と底とで、結晶化度の差が大きくなる。 Next, pay attention to the crystallinity in the modified part Re. The scanning energy distribution density is small at the modified portion Re end, and the crystallinity is unlikely to decrease. It is considered that the plasticized resin is pushed there, and a difference (distribution) in crystallinity is formed between the surface and the bottom at the Re end of the modified portion. FIG. 8A shows a schematic diagram. When a swelling is formed at the end of the modified portion Re, the crystallinity is sufficiently lowered in the upper layer of the swelling, but the crystallinity is sufficiently lowered in the lower layer. Was confirmed to remain high. In this case, in the crystallization degree distribution in the thickness direction at the end portion of the modified portion Re, the difference in crystallization degree becomes large between the surface and the bottom of the modified portion Re end portion.
 この知見によると、改質部Re端部の表面と底の結晶化度の差が大きい場合には、改質部Re端部に比較的大きな盛り上がりが生じていると言え、改質部Re端部の表面と底の結晶化度の差が小さい場合には、改質部Re端部の盛り上がりが小さいと言える。これによると、改質部Reを重ねてロールフィルムを形成する際に、個々の改質部Re端部における表面と底の結晶化度の差を小さくすることで、ロールフィルムの盛り上がり部を抑えることができる。 According to this finding, when the difference in crystallinity between the surface and the bottom of the modified portion Re end is large, it can be said that a relatively large bulge is generated at the modified portion Re end, and it can be said that the modified portion Re end has a relatively large swelling. When the difference in crystallinity between the surface and the bottom of the portion is small, it can be said that the swelling of the modified portion Re end is small. According to this, when the modified portions Re are overlapped to form a roll film, the difference in crystallinity between the surface and the bottom of each modified portion Re end is reduced to suppress the raised portion of the roll film. be able to.
 レーザー光Lの走査エネルギー密度分布の差を変えて、改質部Re端部における表面と底の結晶化度の差を測定した結果を、図8(b)に示す。図から明らかなように、レーザー光Lの走査エネルギー密度分布の差が100J/cm3未満の場合には、走査エネルギー密度分布の差を小さくする程、改質部Re端部における結晶化度の差を小さくすることができる。 FIG. 8B shows the results of measuring the difference in crystallinity between the surface and the bottom at the end of the modified portion Re by changing the difference in the scanning energy density distribution of the laser beam L. As is clear from the figure, when the difference in the scanning energy density distribution of the laser beam L is less than 100 J / cm 3 , the smaller the difference in the scanning energy density distribution, the higher the degree of crystallization at the modified portion Re end. The difference can be reduced.
 この際、走査エネルギー密度分布の差が100J/cm3での結晶化度の差は32.55%であり、走査エネルギー密度分布の差を大きくした場合に、結晶化度の差は、約35%で頭打ちになる。このことから、改質部Re端部の表面と底の結晶化度の差を、0%以上35%未満にすることで、改質部Re端部の盛り上がりを抑えることができる。 At this time, when the difference in scanning energy density distribution is 100 J / cm 3 , the difference in crystallinity is 32.55%, and when the difference in scanning energy density distribution is increased, the difference in crystallinity is about 35. It reaches a plateau at%. From this, by setting the difference in crystallinity between the surface and the bottom of the modified portion Re end to 0% or more and less than 35%, the swelling of the modified portion Re end can be suppressed.
 本発明の実施形態にかかる延伸ポリエステルフィルムFは、延伸PET(polyethylene terephthalate)フィルムにおいて特に有用である。延伸PETフィルムは、低収着性に優れるため、例えば、消炎鎮痛剤を内容物とする軟包材とする場合に、内容物の薬効成分や香気成分の吸着や透過が少ないので、効能・風味を長時間維持することができ、成分増量が不要になる。また、デラミネーションを抑制することが可能になる。 The stretched polyester film F according to the embodiment of the present invention is particularly useful in a stretched PET (polyethylene terephthalate) film. Since the stretched PET film has excellent low adhesion, for example, when a soft packaging material containing an anti-inflammatory analgesic as a content, the medicinal and aroma components of the content are less adsorbed and permeated, so that the efficacy and flavor are reduced. Can be maintained for a long time, eliminating the need to increase the amount of ingredients. In addition, it becomes possible to suppress delamination.
 延伸PETフィルムは、前述した処理方法によって改質部Reを形成するに際して、波長10.6μmのCO2レーザーを用いて、レーザー光のスポット径を7mmにすることで、改質部Re端部の盛り上がり高さhを8μm以下に抑えることができる。このフィルムを、改質部Reを重ねて1000回巻き以上のロールフィルムにすると、盛り上がり部を抑えた、比較的平坦なロールフィルムを得ることができる。 In the stretched PET film, when the modified portion Re is formed by the above-mentioned treatment method, a CO 2 laser having a wavelength of 10.6 μm is used to make the spot diameter of the laser beam 7 mm, so that the modified portion Re end portion is formed. The raised height h can be suppressed to 8 μm or less. When this film is made into a roll film by stacking the modified portions Re and winding 1000 times or more, a relatively flat roll film with suppressed bulging portions can be obtained.
 また、上述した延伸ポリエステルフィルムを用いて、包装袋を製造することができる。包装袋は、1枚以上のフィルムの上述した改質部どうしをヒートシールすることによって製造することができる。この場合、フィルムは単層であってもよいし、上述した改質部が形成されたフィルムを表面に含み、酸素バリア性や水蒸気バリア性等の機能を有するフィルムや金属箔層等を積層した多層フィルムであってもよい。このようにして得られた包装袋は、内容物に接する最内層に、一般的に熱や光に対する安定性がよく、薬効成分の吸着や、薬効成分との相互作用が少ないとされる、延伸ポリエステルフィルムを用いることができるため、耐内容物性に優れたものとなっている。 Further, a packaging bag can be manufactured by using the above-mentioned stretched polyester film. The packaging bag can be manufactured by heat-sealing the above-mentioned reformed portions of one or more films. In this case, the film may be a single layer, or a film having the above-mentioned modified portion formed therein is included on the surface, and a film having functions such as oxygen barrier property and water vapor barrier property, a metal foil layer, and the like are laminated. It may be a multilayer film. The packaging bag thus obtained is stretched so that the innermost layer in contact with the contents generally has good stability against heat and light, and has little adsorption of medicinal ingredients and little interaction with medicinal ingredients. Since a polyester film can be used, it has excellent content resistance.
 なお、前述の説明では、レーザー光Lの照射範囲La内の走査エネルギー密度分布の差を低くする手法として、レーザー光Lのスポット径を大きくする例を説明したが、これに限定されるものではなく、ビームホモジナイザーなどの光学素子を用いて、照射範囲La内の走査エネルギー密度分布を均一化することができる。なお、この場合におけるスポット半径については、レーザー光Lのスポット径の中心から、中心と等しいエネルギー密度を有する照射範囲の端部までの距離とする。 In the above description, as a method of reducing the difference in the scanning energy density distribution in the irradiation range La of the laser beam L, an example of increasing the spot diameter of the laser beam L has been described, but the present invention is not limited to this. Instead, an optical element such as a beam homogenizer can be used to make the scanning energy density distribution within the irradiation range La uniform. The spot radius in this case is the distance from the center of the spot diameter of the laser beam L to the end of the irradiation range having the same energy density as the center.
L:レーザー光,S:光源,La:照射範囲,
F:フィルム,Fa:フィルム表面,Re:改質部
L: laser light, S: light source, La: irradiation range,
F: film, Fa: film surface, Re: modified part

Claims (11)

  1.  延伸ポリエステルフィルムに対して、全面的或いは部分的に赤外域波長のレーザー光を照射して、ヒートシール前駆部を形成する表面処理方法であって、
     レーザー光の照射範囲内の走査エネルギー密度分布の差が、0J/cm3以上100J/cm3未満であることを特徴とする表面処理方法。
    A surface treatment method for forming a heat seal precursor by irradiating a stretched polyester film with laser light having an infrared wavelength wholly or partially.
    The surface treatment method difference scanning energy density distribution in the irradiation range of the laser beam, characterized in that it is less than 0 J / cm 3 or more 100 J / cm 3.
  2.  前記照射範囲内の中心部と端部における光放射圧の差が、0nN・s/cm3以上180nN・s/cm3未満であることを特徴とする請求項1記載の表面処理方法。 The surface treatment method according to claim 1, wherein the difference in light radiation pressure between the central portion and the end portion within the irradiation range is 0 nN · s / cm 3 or more and less than 180 nN · s / cm 3.
  3.  前記照射範囲内の走査エネルギー密度分布勾配が、0J/cm4以上4000J/cm4未満であることを特徴とする請求項1又は2記載の表面処理方法。 The surface treatment method according to claim 1 or 2, wherein the scanning energy density distribution gradient within the irradiation range is 0 J / cm 4 or more and less than 4000 J / cm 4.
  4.  前記照射範囲内の光放射圧分布勾配が0N・s/cm4以上360N・s/cm4未満であることを特徴とする請求項1~3のいずれか1項記載の表面処理方法。 The surface treatment method according to any one of claims 1 to 3, wherein the light radiation pressure distribution gradient within the irradiation range is 0 N · s / cm 4 or more and less than 360 N · s / cm 4.
  5.  前記レーザー光が照射される被照射物は、延伸ポリエステルフィルム単体である請求項1~4のいずれか1項記載の表面処理方法。 The surface treatment method according to any one of claims 1 to 4, wherein the object to be irradiated with the laser beam is a stretched polyester film alone.
  6.  前記レーザー光が照射される被照射物は、延伸ポリエステルフィルムとアルミニウム層の積層体である請求項1~4のいずれか1項記載の表面処理方法。 The surface treatment method according to any one of claims 1 to 4, wherein the object to be irradiated with the laser beam is a laminate of a stretched polyester film and an aluminum layer.
  7.  前記延伸ポリエステルフィルムは、延伸ポリエチレンテレフタレートフィルムである請求項1~6のいずれか1項記載の表面処理方法。 The surface treatment method according to any one of claims 1 to 6, wherein the stretched polyester film is a stretched polyethylene terephthalate film.
  8.  前記レーザー光は、CO2レーザー光である請求項1~7のいずれか1項記載の表面処理方法。 The surface treatment method according to any one of claims 1 to 7, wherein the laser light is CO 2 laser light.
  9.  延伸ポリエステルフィルムであって、
     全面的或いは部分的に形成された非晶化又は低結晶化された改質部を有し、
     前記改質部の表面と底の結晶化度の差が、0%以上35%未満であるフィルム。
    It is a stretched polyester film
    It has a fully or partially formed amorphous or low crystallized modified portion.
    A film in which the difference in crystallinity between the surface and the bottom of the modified portion is 0% or more and less than 35%.
  10.  前記改質部の端部の盛り上がり高さが0μm以上13.5μm未満である請求項9に記載のフィルム。 The film according to claim 9, wherein the raised height of the end portion of the modified portion is 0 μm or more and less than 13.5 μm.
  11. 請求項9または請求項10に記載のフィルムを含み、前記改質部どうしがヒートシールされている包装袋。 A packaging bag containing the film according to claim 9 or 10, wherein the reforming portions are heat-sealed.
PCT/JP2021/019237 2020-06-29 2021-05-20 Surface treatment method, film, and packaging bag using same WO2022004186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022533736A JPWO2022004186A1 (en) 2020-06-29 2021-05-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-111539 2020-06-29
JP2020111539 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022004186A1 true WO2022004186A1 (en) 2022-01-06

Family

ID=79315926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019237 WO2022004186A1 (en) 2020-06-29 2021-05-20 Surface treatment method, film, and packaging bag using same

Country Status (2)

Country Link
JP (1) JPWO2022004186A1 (en)
WO (1) WO2022004186A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139900A (en) * 1996-11-06 1998-05-26 Kishimoto Akira Processing of resin surface
JP2016056231A (en) * 2014-09-05 2016-04-21 凸版印刷株式会社 Biaxially-oriented polyester film surface treatment method, biaxially-oriented polyester film, packaging bag using the same, and process for producing packaging bag
JP2018030243A (en) * 2016-08-22 2018-03-01 凸版印刷株式会社 Heat seal method
JP2018188593A (en) * 2017-05-11 2018-11-29 凸版印刷株式会社 Film processing method
JP2020037219A (en) * 2018-09-04 2020-03-12 東洋製罐グループホールディングス株式会社 Method of manufacturing heat-sealable film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139900A (en) * 1996-11-06 1998-05-26 Kishimoto Akira Processing of resin surface
JP2016056231A (en) * 2014-09-05 2016-04-21 凸版印刷株式会社 Biaxially-oriented polyester film surface treatment method, biaxially-oriented polyester film, packaging bag using the same, and process for producing packaging bag
JP2018030243A (en) * 2016-08-22 2018-03-01 凸版印刷株式会社 Heat seal method
JP2018188593A (en) * 2017-05-11 2018-11-29 凸版印刷株式会社 Film processing method
JP2020037219A (en) * 2018-09-04 2020-03-12 東洋製罐グループホールディングス株式会社 Method of manufacturing heat-sealable film

Also Published As

Publication number Publication date
JPWO2022004186A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP6048452B2 (en) Method for imparting heat sealability to biaxially stretched polyester film, biaxially stretched polyester film imparted with heat sealability, and package using the same
US5158499A (en) Laser scoring of packaging substrates
WO2015190110A1 (en) Method for imparting heat sealability to biaxially oriented polyester film, and method for producing packaging container
NO328119B1 (en) Packaging comprising a multilayer polyolefin film, process for making such and a multilayer oriented polyolefin film.
JP3463486B2 (en) Processing method of resin surface
JPH0483637A (en) Manufacture of cylindrical member for paper container
JP6094619B2 (en) Surface treatment method for biaxially stretched polyester film
WO2022004186A1 (en) Surface treatment method, film, and packaging bag using same
JP6048464B2 (en) Method for imparting heat sealability to biaxially stretched polyester film
JP6094647B2 (en) Packaging film and packaging bag
JP3536644B2 (en) Easy-open packaging materials and packaging bags
JP6036870B2 (en) Biaxially stretched polyester film and packaging bag using the same
JP7205116B2 (en) Method for producing heat-sealable film
JP6776539B2 (en) Heat seal method
JP6855703B2 (en) Heat seal method
JP7287450B1 (en) Stretched film made of polyester and its modification treatment method
KR20080063905A (en) Multilayered aliphatic polyester film
WO2018074059A1 (en) Bonding method
JP2012218176A (en) Method for manufacturing resin-coated metal body
JP6094636B2 (en) Film heat sealing method and packaging bag manufacturing method
JP6048537B1 (en) Film, packaging bag and method for imparting heat sealability to film
JPH10139049A (en) Easily tearable packaging bag, and its manufacture
JP2020152401A (en) Manufacturing method of package and manufacturing method of packaging product
JP2020189893A (en) Stretched film
WO2019035409A1 (en) Heat-sealable polyester stretched film and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833688

Country of ref document: EP

Kind code of ref document: A1