WO2022004118A1 - Roll - Google Patents

Roll Download PDF

Info

Publication number
WO2022004118A1
WO2022004118A1 PCT/JP2021/017232 JP2021017232W WO2022004118A1 WO 2022004118 A1 WO2022004118 A1 WO 2022004118A1 JP 2021017232 W JP2021017232 W JP 2021017232W WO 2022004118 A1 WO2022004118 A1 WO 2022004118A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll
convex
paper
convex portions
distance
Prior art date
Application number
PCT/JP2021/017232
Other languages
French (fr)
Japanese (ja)
Inventor
正明 八木
憲司 佐々木
直矢 今関
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to JP2022533704A priority Critical patent/JP7454047B2/en
Priority to CN202180040995.2A priority patent/CN115916675A/en
Publication of WO2022004118A1 publication Critical patent/WO2022004118A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/06Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers

Definitions

  • the present invention relates to a roll used for feeding paper.
  • Patent Document 1 discloses a paper feed transport roll having irregularities on its surface.
  • the coefficient of friction of the roll decreases due to wear of the convex portion of the surface and adhesion of paper dust to the surface. If the coefficient of friction of the roll decreases, problems may occur in the paper feed.
  • the roll according to one aspect of the present invention is a roll used for feeding paper, and has a surface that comes into contact with paper and has a plurality of protrusions and a plurality of grooves.
  • the surface roughness indicating the degree of unevenness of the surface is in the range of 50 micrometers or more and 80 micrometers or less, and the distance between the convex portions in the plurality of convex portions is in the range of 0.6 mm or more and 0.8 mm or less. Is.
  • FIG. 1 is an explanatory diagram illustrating a schematic configuration of a roll 10 according to an embodiment.
  • a three-axis Cartesian coordinate system having an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other is introduced.
  • the direction pointed by the arrow on the X axis is referred to as the + X direction
  • the direction opposite to the + X direction is referred to as the ⁇ X direction
  • the direction pointed by the arrow on the Y axis is referred to as the + Y direction
  • the direction opposite to the + Y direction is referred to as the ⁇ Y direction.
  • the direction pointed by the arrow on the Z axis is referred to as the + Z direction
  • the direction opposite to the + Z direction is referred to as the ⁇ Z direction.
  • the + X direction and the ⁇ X direction will be referred to as the X direction without particular distinction
  • the + Y direction and the ⁇ Y direction will be referred to as the Y direction without any particular distinction
  • the + Z direction and the ⁇ Z direction will be referred to.
  • the roll 10 is used for paper feeding such as feeding, for example.
  • the roll 10 may be any of a paper feed roll, a separation roll, and a transport roll used in office equipment such as copiers and printers.
  • the roll 10 is a paper feed roll.
  • the “perspective view” of FIG. 1 is a perspective view showing the entire roll 10.
  • the "schematic view of the surface” of FIG. 1 schematically shows a part of the roll 10 (a portion in contact with the paper PA) when the roll 10 is viewed from the + Z direction.
  • the paper PA is conveyed in the ⁇ X direction (the direction indicated by the arrow of the broken line).
  • the direction in which the paper PA is conveyed is also referred to as a transfer direction.
  • the roll 10 has a shaft connecting portion 12 provided with a shaft hole HL into which a rotating shaft member 16 is inserted, and a cylindrical shape provided around the shaft connecting portion 12. It has a rubber portion 14 of the above.
  • the shaft member 16 rotates, for example, with the central axis AX along the Z axis as a rotation axis. Therefore, the roll 10 connected to the shaft member 16 rotates as the shaft member 16 rotates.
  • the shaft member 16 may be included in the roll 10. Further, for example, the shaft member 16 and the shaft connecting portion 12 may be integrally formed with each other as a structure similar to the shaft connecting portion 12 into which the shaft member 16 is inserted.
  • the shaft connection portion 12 may be formed of, for example, a synthetic resin such as plastic harder than rubber, or may be formed of a metal material.
  • the rubber portion 14 is formed of, for example, an elastic material such as EPDM (ethylene propylene diene rubber).
  • EPDM ethylene propylene diene rubber
  • the hardness of EPDM may be in the range of 30 ° or more and 50 ° or less in Type A hardness conforming to JIS (Japanese Industrial Standards) K6253. In this case, for example, it is possible to achieve both the ability to control parameters by polishing (workability) and wear resistance.
  • the type A hardness indicates the hardness measured by the type A durometer based on JIS K6253 (corresponding to ISO 7619). In the following, the type A hardness conforming to JIS K6253 is also referred to as JIS A.
  • a method of increasing the wear resistance by increasing the hardness of the material itself of the rubber portion 14 can be considered.
  • increasing the hardness of the material itself of the rubber portion 14 reduces the nip width, which leads to a decrease in the initial friction coefficient. Therefore, when the hardness of the material itself of the rubber portion 14 is increased, the paper feeding efficiency tends to decrease.
  • a material such as urethane having high wear resistance and a small decrease in the coefficient of friction is used as the material of the rubber portion 14, the cost tends to be high. That is, in the present embodiment, by using EPDM as the material of the rubber portion 14, the cost of the roll 10 can be reduced as compared with the case where urethane is used as the material of the rubber portion 14.
  • a plurality of grooves 14cc and a plurality of convex portions 14cv are provided on the outer peripheral surface (surface of the roll 10) of the rubber portion 14. That is, the roll 10 is in contact with paper such as paper PA and has an uneven surface 14c having a plurality of convex portions 14cv and a plurality of grooves 14cc.
  • each of the plurality of convex portions 14cv and each of the plurality of grooves 14cc extend in the Z direction (longitudinal direction of the roll 10), and the convex portions 14cv and the grooves 14cc alternate. Are arranged in.
  • the "schematic surface diagram" shown in FIG. 1 is a schematic diagram for explaining the interval S of the convex portions 14cv and the surface roughness Rz, which will be described later, in an easy-to-understand manner, and the actual surface shape of the roll 10 is shown in the figure. It is not limited to the example shown in 1 "schematic surface diagram".
  • the side SD of the convex portion 14cv when the roll 10 is viewed from the + Z direction may be a curved line.
  • the side SD is a line connecting the apex P2 located in the transport direction with respect to the apex (vertex P1 in FIG. 1) of the convex portion 14cv when the roll 10 is viewed from the + Z direction, and the apex P1.
  • the apex P3 of one convex portion 14cv of the two convex portions 14cv is also the apex P2 of the other convex portion 14cv of the two convex portions 14cv.
  • the surface roughness Rz which indicates the degree of unevenness on the outer peripheral surface of the rubber portion 14, is in the range of 50 micrometers or more and 80 micrometers or less in the initial state.
  • the initial state is, for example, an unused state before the roll 10 is attached to office equipment.
  • the surface roughness Rz of the outer peripheral surface of the rubber portion 14 corresponds to the surface roughness Rz indicating the degree of unevenness on the surface (concave and convex surface 14c) of the roll 10.
  • the surface roughness Rz may be, for example, a ten-point average roughness conforming to JIS standard B0601 (1994).
  • the interval S of the convex portions 14cv in the plurality of convex portions 14cv included in the uneven surface 14c is in the range of 0.6 mm or more and 0.8 mm or less in the initial state.
  • the distance S between the convex portions 14cv in the plurality of convex portions 14cv is also referred to as the distance between the convex portions S.
  • the inter-convex distance S may be the distance between the top of one convex portion 14cv (vertex P1) and the top of the other convex portion 14cv (vertex P1) of two adjacent convex portions 14cv. good.
  • the distance S between the convex portions may be, for example, the average distance of the local peaks according to JIS standard B0601 (1994).
  • the ratio (S / Rz) of the distance S between the convex portions to the surface roughness Rz is in the range of 7.5 or more and 14 or less.
  • micrometer is also referred to as ⁇ m
  • millimeter is also referred to as mm.
  • the ratio (S / Rz) of the distance S between the convex portions to the surface roughness Rz is also referred to as a convex portion aspect ratio.
  • the height of the convex portion 14cv on the X-axis has the following relationship.
  • the height of the convex portion 14cv at one position on the X-axis is lower than the height of the convex portion 14cv at the other position located in the transport direction (-X direction in FIG. 1) with respect to one position.
  • the height of the convex portion 14cv at one position on the X-axis is higher than the height of the convex portion 14cv at the other position located in the transport direction (-X direction in FIG. 1) with respect to one position. (That is, in FIG.
  • the coefficient of friction between the paper PA and the surface of the roll 10 becomes smaller than that of the present embodiment.
  • the height of the convex portion 14cv at one position on the X-axis is higher than the height of the convex portion 14cv at the other position located in the transport direction with respect to one position. Therefore, the coefficient of friction between the paper PA and the surface of the roll 10 can be increased. As a result, in the present embodiment, it is possible to prevent the paper feed performance from deteriorating.
  • the paper passing is, for example, the paper PA passing through the roll 10 or the like.
  • FIG. 2 is an explanatory diagram for explaining the evaluation items and evaluation conditions of the paper passing evaluation.
  • the items shown in FIG. 2 are evaluated by a paper passing evaluation carried out in a paper passing environment where the temperature is 10 ° C. and the humidity is 20%.
  • the device used for the paper passing evaluation is a color printer (DocuPrint C5000d) manufactured by Fuji Xerox Co., Ltd.
  • the surface roughness Rz (unit: ⁇ m) is a ten-point average roughness conforming to JIS standard B0601 (1994).
  • the measuring device is a surf coder SE-500 manufactured by Kosaka Laboratory Co., Ltd.
  • the measurement conditions are a cutoff of 0.8, a measurement length of 8 mm, and a measurement speed of 0.1 mm / sec.
  • the measuring device for the distance S between protrusions (unit: mm) is a one-shot 3D shape measuring machine VR-3000 manufactured by KEYENCE CORPORATION.
  • the magnification on the monitor is 25 times, and the cutting level in HSC (high spot count) is 33%.
  • the average value (average value of the distance between the convex portions) of 11 vertical lines in one image ⁇ 2 places in one is calculated as the distance S between the convex portions.
  • 11 vertical lines are drawn at equal intervals for each image of the sample surface, and the HSC and the inter-convex distance are calculated for each vertical line.
  • the average value of the distances between the 11 convex portions is calculated as the interconvex distances for one image. Further, each product is photographed at two locations, and the average value of the distances between the convex portions for the two images is calculated as the distance between the convex portions S.
  • the high spot count is not particularly measured, but the high spot count is cut when the measurement curve is cut at an arbitrary height (cutting level is 33% under the measurement conditions shown in FIG. 2). It is the number of parts protruding above an arbitrary height per unit length.
  • the convex portion cross-sectional area AR (unit: mm ⁇ 2) is calculated by the convex portion distance S and the height of the convex portion 14 cv using the convex portion simplified model shown in FIG.
  • the sign ⁇ indicates a power.
  • Surface roughness Rz is used as the height of the convex portion 14 cv.
  • the height Rz0 of the convex portion 14cv in FIG. 2 indicates the surface roughness Rz in the initial state.
  • the convex portion cross-sectional area AR0 in FIG. 2 shows, for example, the cross-sectional area of the convex portion 14cv when the roll 10 in the initial state is cut in a plane parallel to the XY plane including the X-axis and the Y-axis.
  • the convex cross-sectional area AR0 indicates the convex cross-sectional area AR in the initial state.
  • the wear cross-sectional area ARa indicates the cross-sectional area of the portion of the convex cross-sectional area AR0 that has been worn by passing paper.
  • the wear width Wa indicates the width along the X-axis of the portion worn by the paper passing.
  • the coefficient of friction is a line counterclockwise on the roll 10 with a load of 2.5 N applied to the paper PA set between the roll 10 and the aluminum plate 102. It is measured by rotating at a speed of 300 mm / sec. For example, the measured value of the load cell 100 (force in the X direction applied to the paper PA) obtained when the roll 10 is rotated counterclockwise at a linear speed of 300 mm / sec and the load applied to the paper PA (2.5N). Based on this, the coefficient of friction between the paper PA and the surface of the roll 10 is calculated. As a measurement environment for the coefficient of friction, the temperature is 10 ° C. and the humidity is 20%.
  • FIG. 3 is an explanatory diagram showing the result of the paper passing evaluation.
  • the first sample shown in FIG. 3 is the roll 10 of the present embodiment.
  • FIG. 3 also shows the results of paper passing evaluation using four samples from the first comparative sample to the fourth comparative sample as a comparative example of the present embodiment.
  • the four samples from the first comparison sample to the fourth comparison sample will also be described using the same reference numerals as those attached to the roll 10.
  • the material of the rubber portion 14 is EPDM, and the hardness of the rubber portion 14 is 35 ° in JIS A. Further, in the first sample, the surface roughness Rz in the initial state is 63 ⁇ m, the distance S between the convex portions in the initial state is 0.71 mm, and the convex portion aspect ratio (S / Rz) in the initial state is 11.3. Is.
  • the material and hardness of the rubber portion 14 are the same as those of the first sample.
  • the surface roughness Rz in the initial state is 32 ⁇ m
  • the distance S between the convex portions in the initial state is 0.85 mm
  • the convex portion aspect ratio (S / Rz) in the initial state is 26. It is 6.
  • the surface roughness Rz in the initial state is 35 ⁇ m
  • the distance S between the convex portions in the initial state is 0.7 mm
  • the convex portion aspect ratio (S / Rz) in the initial state is 20. be.
  • the material of the rubber portion 14 is the same as that of the first sample, but the hardness of the rubber portion 14 is 25 °, which is lower than the hardness of the rubber portion 14 of the first sample.
  • the surface roughness Rz in the initial state is 38 ⁇ m
  • the distance S between the convex portions in the initial state is 0.88 mm
  • the convex portion aspect ratio (S / Rz) in the initial state is 23. It is 2.
  • the surface roughness Rz in the initial state is 36 ⁇ m
  • the distance S between the convex portions in the initial state is 0.69 mm
  • the convex portion aspect ratio (S / Rz) in the initial state is 19. It is 2.
  • the convex cross-sectional area AR when 50,000 sheets of paper PA are passed is smaller than the convex cross-sectional area AR in the initial state. That is, the convex cross-sectional area AR is reduced by passing paper.
  • the convex cross-sectional area AR of the first sample is larger than the convex cross-sectional area AR of the other samples both in the initial state and when 50,000 sheets of paper PA are passed.
  • the coefficient of friction when 50,000 sheets of paper PA are passed is smaller than the coefficient of friction in the initial state. That is, the coefficient of friction is reduced by passing paper.
  • the coefficient of friction of the first sample is smaller than the coefficient of friction of the other samples in the initial state, but is larger than the coefficient of friction of the other samples when 50,000 sheets of paper PA are passed. That is, in the first sample, the decrease in the coefficient of friction due to paper passing is suppressed as compared with the other samples.
  • the numerical value shown in parentheses shows the reduction rate of the friction coefficient with respect to the friction coefficient in the initial state.
  • FIG. 4 is a diagram showing the evaluation result of the convex cross-sectional area AR.
  • the vertical axis of FIG. 4 indicates the convex cross-sectional area AR (mm ⁇ 2), and the horizontal axis indicates the number of sheets to be passed (k sheets).
  • the convex cross-sectional area AR of the first sample decreases as the number of sheets to be passed increases. Further, the convex cross-sectional area AR of the first sample is in the initial state (the number of sheets to be passed is 0), the number of sheets to be passed is 15,000, the number of sheets to be passed is 30,000, and the number of sheets to be passed is 50,000. It is larger than the convex cross-sectional area AR of the first comparative sample and the convex cross-sectional area AR of the second comparative sample. As shown in FIG. 4, in the first sample of the present embodiment, it is possible to maintain a state in which the convex cross-sectional area AR is large even if the number of sheets to be passed increases. As a result, in the present embodiment, as shown in FIG. 5, it is possible to suppress a decrease in the friction coefficient.
  • FIG. 5 is a diagram showing the evaluation result of the friction coefficient.
  • the vertical axis of FIG. 5 shows the coefficient of friction, and the horizontal axis shows the number of sheets to be passed (k sheets).
  • the coefficient of friction decreases as the number of sheets to be passed increases.
  • the friction coefficient of the first comparison sample is the largest and the friction coefficient of the first sample is the smallest among the first sample, the first comparison sample and the second comparison sample.
  • the friction coefficient of the first sample is the largest and the friction coefficient of the first comparison sample is the smallest among the first sample, the first comparison sample and the second comparison sample. That is, among the first sample, the first comparison sample, and the second comparison sample, the reduction rate of the friction coefficient of the first sample is the smallest.
  • the reduction rate of the friction coefficient of the first sample is -34.1%
  • the reduction rate of the friction coefficient of the second comparison sample is -55.9%
  • the reduction rate of the friction coefficient of the first comparison sample is -55.9%.
  • the rate is -66.0%.
  • the state in which the friction coefficient is large can be maintained even if the number of sheets to be passed increases. That is, in the present embodiment, it is possible to suppress a decrease in the coefficient of friction.
  • the surface roughness Rz Focusing on the surface roughness Rz, from the evaluation results of the first sample having a surface roughness Rz of 63 ⁇ m and the second comparative sample having a surface roughness Rz of 35 ⁇ m, the larger the surface roughness Rz, the lower the coefficient of friction. It turns out that it is suppressed. Therefore, the surface roughness Rz is preferably 50 ⁇ m or more, which is larger than 35 ⁇ m. Focusing on the inter-convex distance S, the distance between the convex portions is based on the evaluation results of the first comparative sample having the inter-convex distance S of 0.85 mm and the second comparative sample having the inter-convex distance S of 0.7 mm. It can be seen that the smaller S is, the more the decrease in the friction coefficient is suppressed. Therefore, the distance S between the convex portions is preferably 0.8 mm or less, which is smaller than 0.85 mm.
  • the roll 10 has a surface roughness Rz of 50 ⁇ m or more and 80 ⁇ m or less in the initial state, and a protrusion-to-convex distance S of 0.6 mm or more and 0.8 mm or less in the initial state. It is formed so that the first condition is satisfied. Further, in the combination of the surface roughness Rz and the inter-convex distance S satisfying the first condition, when focusing on suppressing the decrease in the friction coefficient, the surface roughness Rz is 50 ⁇ m and the inter-convex distance S is 0.8 mm. It is considered that a certain combination has the least effect of suppressing the decrease in the coefficient of friction.
  • the roll 10 is formed so that both the second condition in which the convex aspect ratio (S / Rz) is 7.5 or more and 14 or less and the first condition are satisfied. ..
  • FIG. 6 is an explanatory diagram for explaining the action of the roll 10 shown in FIG. Note that FIG. 6 shows a schematic view of the surface of the roll 10 and a schematic view of the surface of the first comparative sample described above. In the following, the first comparative sample is also referred to as roll 10Z.
  • the convex cross-sectional area AR is larger than the convex cross-sectional area AR of the roll 10Z.
  • the roll 10 can maintain a state in which the convex cross-sectional area AR is large even when the paper is passed. Therefore, in the roll 10, it is possible to suppress the decrease in the friction coefficient as compared with the roll 10Z.
  • the number of contact portions between the paper PA and the roll 10 per the predetermined length L is per predetermined length L. It is larger than the number of contact portions between the paper PA and the roll 10Z. That is, in the roll 10, the contact area between the paper PA and the rubber portion 14 is larger than that in the roll 10Z. As a result, in the roll 10, the pressure per unit area applied to the convex portion 14cv can be reduced as compared with the roll 10Z. Therefore, in the roll 10, it can be expected that the progress of wear due to the passing of the convex portion 14 cv (that is, the decrease rate of the convex portion 14 cv) is slower than that in the roll 10Z.
  • the roll 10 since the distance S between the convex portions is smaller than the distance S between the convex portions of the roll 10Z, the number of grooves 14cc per predetermined length L is larger than that of the roll 10Z. As a result, the roll 10 can improve the paper dust trapping effect of trapping the paper dust or the like in the groove 14 cc as compared with the roll 10Z. Since the surface roughness Rz of the roll 10 is larger than the surface roughness Rz of the roll 10Z, the volume of the groove 14cc (the volume of the space between the two convex portions 14cv adjacent to each other) is the volume of the groove 14cc of the roll 10Z. It will be larger than the volume.
  • the roll 10 compared to the roll 10Z, it is possible to suppress deterioration of the paper feed performance due to clogging of the groove 14cc with paper dust or the like. That is, in the roll 10, it is possible to improve the paper dust trapping effect and suppress the deterioration of the paper feed performance due to the paper dust or the like being clogged in the groove 14 cc.
  • the roll 10 used for feeding paper has a surface (concave and convex surface 14c) which is in contact with paper such as paper PA and has a plurality of convex portions 14cv and a plurality of grooves 14cc.
  • the surface roughness Rz which indicates the degree of surface unevenness, is in the range of 50 ⁇ m or more and 80 ⁇ m or less.
  • the distance S (distance S between convex portions) of the convex portions 14cv in the plurality of convex portions 14cv included in the uneven surface 14c is in the range of 0.6 mm or more and 0.8 mm or less.
  • a convex portion 14 cv having a large cross-sectional area AR) can be formed.
  • the ratio of the interval S of the plurality of convex portions 14cv to the surface roughness Rz is in the range of 7.5 or more and 14 or less. That is, in the present embodiment, the first condition that the surface roughness Rz is in the range of 50 ⁇ m or more and 80 ⁇ m or less and the interval S of the convex portions 14 cv is in the range of 0.6 mm or more and 0.8 mm or less, and the surface roughness Rz. The second condition that the ratio of the interval S of the convex portion 14 cv to the above is in the range of 7.5 or more and 14 or less is satisfied.
  • the combination of the surface roughness Rz satisfying the first condition and the interval S of the convex portions 14cv is considered to reduce the effect of suppressing the decrease in the friction coefficient (for example, the surface roughness Rz).
  • a combination in which the distance S between the convex portions 14 cv is 0.8 mm at 50 ⁇ m) is omitted.
  • the effect of suppressing the decrease in the coefficient of friction can be surely obtained.
  • the material (material of the rubber portion 14) forming the surface of the roll 10 is EPDM.
  • the cost of the roll 10 can be reduced as compared with the case where a high cost material such as urethane is used as the material forming the surface of the roll 10.
  • the hardness of EPDM forming the surface of the roll 10 is in the range of 30 ° or more and 50 ° or less in JIS A. Thereby, in the present embodiment, it is possible to achieve both the parameter control by polishing (workability) and the wear resistance.
  • the effect of suppressing the decrease in the coefficient of friction may be smaller than when both the first condition and the second condition are satisfied, but both the first condition and the second condition are available. It can be expected that the effect of suppressing the decrease in the coefficient of friction will be greater than in the case where it is not satisfied.
  • the material of the rubber portion 14 is EPDM
  • the present invention is not limited to such an embodiment.
  • the material of the rubber portion 14 may be an elastic material other than EPDM.
  • the material of the rubber portion 14 may be an elastic material such as VMQ (vinyl methyl silicone rubber) and FKM (fluororubber).
  • VMQ vinyl methyl silicone rubber
  • FKM fluororubber
  • a material containing urethane may be used as the material of the rubber portion 14.
  • the same effect as that of the above-described embodiment can be obtained.
  • the first modification and the second modification the case where the hardness of the rubber portion 14 is in the range of 30 ° or more and 50 ° or less in JIS A is exemplified, but the present invention is limited to such an embodiment. It's not something.
  • the hardness of the rubber portion 14 may be any hardness as long as it can achieve both workability and wear resistance.
  • the hardness of the rubber portion 14 may be 29 ° in JIS A or 51 ° in JIS A.
  • the third modification the same effect as that of the above-described embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)

Abstract

This roll, which is used in feeding sheets, has a surface that comes into contact with paper and has a plurality of protrusions and a plurality of grooves. The surface roughness representing the degree of protrusions and grooves on the surface is within the range of 50 to 80 μm (inclusive), and the pitch of the plurality of protrusions is within the range of 0.6-0.8 millimeters (inclusive).

Description

ロールroll
 本発明は、紙送りに用いられるロールに関する。 The present invention relates to a roll used for feeding paper.
 複写機及びプリンター等の事務機器は、例えば、給紙等の紙送りに用いられるロールを有する。この種のロールでは、搬送力が大きく、かつ、耐摩耗性が高いことが求められる。例えば、特許文献1には、表面に凹凸が形成された給紙搬送用ロールが開示されている。 Office equipment such as copiers and printers have rolls used for paper feeding such as paper feeding, for example. This type of roll is required to have a large carrying force and a high wear resistance. For example, Patent Document 1 discloses a paper feed transport roll having irregularities on its surface.
特開2002-96938号公報Japanese Unexamined Patent Publication No. 2002-96938
 ところで、ロールが、ある程度使用された場合、ロールの摩擦係数は、表面の凸部の摩耗、及び、表面への紙粉の付着等により、低下する。ロールの摩擦係数が低下した場合、紙送りに不具合が発生する場合がある。 By the way, when the roll is used to some extent, the coefficient of friction of the roll decreases due to wear of the convex portion of the surface and adhesion of paper dust to the surface. If the coefficient of friction of the roll decreases, problems may occur in the paper feed.
 以上の事情を考慮して、本発明は、ロールの摩擦係数の低下を抑制することを目的とする。 In consideration of the above circumstances, it is an object of the present invention to suppress a decrease in the friction coefficient of the roll.
 以上の課題を解決するために、本発明の一態様に係るロールは、紙送りに用いられるロールであって、紙と接触し、複数の凸部と複数の溝とを有する表面を有し、前記表面の凹凸の程度を示す表面粗さは、50マイクロメートル以上80マイクロメートル以下の範囲であり、前記複数の凸部における凸部の間隔は、0.6ミリメートル以上0.8ミリメートル以下の範囲である。 In order to solve the above problems, the roll according to one aspect of the present invention is a roll used for feeding paper, and has a surface that comes into contact with paper and has a plurality of protrusions and a plurality of grooves. The surface roughness indicating the degree of unevenness of the surface is in the range of 50 micrometers or more and 80 micrometers or less, and the distance between the convex portions in the plurality of convex portions is in the range of 0.6 mm or more and 0.8 mm or less. Is.
実施形態に係るロールの概略的な構成を例示する説明図である。It is explanatory drawing which illustrates the schematic structure of the roll which concerns on embodiment. 通紙評価の評価項目と評価条件とを説明するための説明図である。It is explanatory drawing for demonstrating the evaluation item and the evaluation condition of the paper passing evaluation. 通紙評価の結果を示す図である。It is a figure which shows the result of the paper passing evaluation. 凸部断面積の評価結果を示す図である。It is a figure which shows the evaluation result of the convex part cross-sectional area. 摩擦係数の評価結果を示す図である。It is a figure which shows the evaluation result of the friction coefficient. 図1に示したロールの作用を説明するための説明図である。It is explanatory drawing for demonstrating the action of the roll shown in FIG.
 以下、本発明を実施するための形態について図面を参照して説明する。ただし、各図において、各部の寸法及び縮尺は、実際のものと適宜に異ならせてある。また、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, in each figure, the dimensions and scale of each part are appropriately different from the actual ones. Further, since the embodiments described below are suitable specific examples of the present invention, various technically preferable limitations are attached, but the scope of the present invention particularly limits the present invention in the following description. Unless otherwise stated, it is not limited to these forms.
[1.実施形態]
 以下、本発明の実施形態を説明する。先ず、図1を参照しながら、実施形態に係るロール10の概要の一例について説明する。
[1. Embodiment]
Hereinafter, embodiments of the present invention will be described. First, an example of an outline of the roll 10 according to the embodiment will be described with reference to FIG.
 図1は、実施形態に係るロール10の概略的な構成を例示する説明図である。 FIG. 1 is an explanatory diagram illustrating a schematic configuration of a roll 10 according to an embodiment.
 本実施形態では、説明の便宜上、互いに直交するX軸、Y軸及びZ軸を有する3軸の直交座標系を導入する。以下では、X軸の矢印の指す方向は+X方向と称され、+X方向の反対方向は-X方向と称される。Y軸の矢印の指す方向は+Y方向と称され、+Y方向の反対方向は-Y方向と称される。また、Z軸の矢印の指す方向は+Z方向と称され、+Z方向の反対方向は-Z方向と称される。また、以下では、+X方向及び-X方向を、特に区別することなく、X方向と称し、+Y方向及び-Y方向を、特に区別することなく、Y方向と称し、+Z方向及び-Z方向を、特に区別することなく、Z方向と称する場合がある。 In this embodiment, for convenience of explanation, a three-axis Cartesian coordinate system having an X-axis, a Y-axis, and a Z-axis that are orthogonal to each other is introduced. In the following, the direction pointed by the arrow on the X axis is referred to as the + X direction, and the direction opposite to the + X direction is referred to as the −X direction. The direction pointed by the arrow on the Y axis is referred to as the + Y direction, and the direction opposite to the + Y direction is referred to as the −Y direction. Further, the direction pointed by the arrow on the Z axis is referred to as the + Z direction, and the direction opposite to the + Z direction is referred to as the −Z direction. Further, in the following, the + X direction and the −X direction will be referred to as the X direction without particular distinction, and the + Y direction and the −Y direction will be referred to as the Y direction without any particular distinction, and the + Z direction and the −Z direction will be referred to. , It may be referred to as the Z direction without particular distinction.
 ロール10は、例えば、給紙等の紙送りに用いられる。例えば、ロール10は、複写機及びプリンター等の事務機器に用いられる給紙ロール、分離ロール及び搬送ロールのいずれかであってもよい。本実施形態では、ロール10が給紙ロールである場合を想定する。図1の「斜視図」は、ロール10の全体を示す斜視図である。また、図1の「表面の模式図」は、ロール10を+Z方向から見た場合のロール10の一部(用紙PAと接触する部分)を模式的に示している。なお、図1の「表面の模式図」では、用紙PAが-X方向(破線の矢印の指す方向)に搬送される場合を想定する。以下では、用紙PAが搬送される方向は、搬送方向とも称される。 The roll 10 is used for paper feeding such as feeding, for example. For example, the roll 10 may be any of a paper feed roll, a separation roll, and a transport roll used in office equipment such as copiers and printers. In this embodiment, it is assumed that the roll 10 is a paper feed roll. The “perspective view” of FIG. 1 is a perspective view showing the entire roll 10. Further, the "schematic view of the surface" of FIG. 1 schematically shows a part of the roll 10 (a portion in contact with the paper PA) when the roll 10 is viewed from the + Z direction. In the "schematic surface diagram" of FIG. 1, it is assumed that the paper PA is conveyed in the −X direction (the direction indicated by the arrow of the broken line). Hereinafter, the direction in which the paper PA is conveyed is also referred to as a transfer direction.
 図1の「斜視図」に示すように、ロール10は、回転する軸部材16が挿入される軸孔HLが設けられた軸接続部分12と、軸接続部分12の周辺に設けられた円筒形状のゴム部14とを有する。軸部材16は、例えば、Z軸に沿う中心軸AXを回転軸として回転する。従って、軸部材16に接続されたロール10は、軸部材16が回転することにより、回転する。なお、軸部材16は、ロール10に含まれてもよい。また、例えば、軸部材16が挿入された軸接続部分12と同様な構造体として、軸部材16と軸接続部分12とが互いに一体に形成されてもよい。 As shown in the "perspective view" of FIG. 1, the roll 10 has a shaft connecting portion 12 provided with a shaft hole HL into which a rotating shaft member 16 is inserted, and a cylindrical shape provided around the shaft connecting portion 12. It has a rubber portion 14 of the above. The shaft member 16 rotates, for example, with the central axis AX along the Z axis as a rotation axis. Therefore, the roll 10 connected to the shaft member 16 rotates as the shaft member 16 rotates. The shaft member 16 may be included in the roll 10. Further, for example, the shaft member 16 and the shaft connecting portion 12 may be integrally formed with each other as a structure similar to the shaft connecting portion 12 into which the shaft member 16 is inserted.
 軸接続部分12は、例えば、ゴムより硬いプラスチック等の合成樹脂により形成されてもよいし、金属材料により形成されてもよい。ゴム部14は、例えば、EPDM(エチレンプロピレンジエンゴム)等の弾性材料により形成される。例えば、EPDMの硬度は、JIS(Japanese Industrial Standards) K6253に準拠するタイプA硬度で30°以上50°以下の範囲であってもよい。この場合、例えば、研磨によるパラメータ制御が可能であること(加工性)と耐摩耗性との両立をはかることができる。なお、タイプA硬度は、JIS K6253(ISO 7619に対応)に基づいて、タイプAデュロメーターにより測定された硬度を示す。以下では、JIS K6253に準拠するタイプA硬度は、JISAとも称される。 The shaft connection portion 12 may be formed of, for example, a synthetic resin such as plastic harder than rubber, or may be formed of a metal material. The rubber portion 14 is formed of, for example, an elastic material such as EPDM (ethylene propylene diene rubber). For example, the hardness of EPDM may be in the range of 30 ° or more and 50 ° or less in Type A hardness conforming to JIS (Japanese Industrial Standards) K6253. In this case, for example, it is possible to achieve both the ability to control parameters by polishing (workability) and wear resistance. The type A hardness indicates the hardness measured by the type A durometer based on JIS K6253 (corresponding to ISO 7619). In the following, the type A hardness conforming to JIS K6253 is also referred to as JIS A.
 ここで、ゴム部14の材料自体の硬度を高くすることにより、耐摩耗性を高くする手法が考えられる。しかしながら、ゴム部14の材料自体の高硬度化は、ニップ幅が低下するため、初期の摩擦係数の低下に繋がる。このため、ゴム部14の材料自体の硬度を高くした場合、給紙効率が低下する傾向がある。また、耐摩耗性が高く、かつ、摩擦係数の低下が小さいウレタン等の材料をゴム部14の材料として採用した場合、コストが高くなる傾向がある。すなわち、本実施形態では、ゴム部14の材料としてEPDMを使用することにより、ゴム部14の材料としてウレタンを使用する場合に比べて、ロール10のコストを低減することができる。 Here, a method of increasing the wear resistance by increasing the hardness of the material itself of the rubber portion 14 can be considered. However, increasing the hardness of the material itself of the rubber portion 14 reduces the nip width, which leads to a decrease in the initial friction coefficient. Therefore, when the hardness of the material itself of the rubber portion 14 is increased, the paper feeding efficiency tends to decrease. Further, when a material such as urethane having high wear resistance and a small decrease in the coefficient of friction is used as the material of the rubber portion 14, the cost tends to be high. That is, in the present embodiment, by using EPDM as the material of the rubber portion 14, the cost of the roll 10 can be reduced as compared with the case where urethane is used as the material of the rubber portion 14.
 また、図1の「表面の模式図」に示すように、ゴム部14の外周面(ロール10の表面)には、複数の溝14ccと複数の凸部14cvとが、設けられている。すなわち、ロール10は、用紙PA等の紙と接触し、複数の凸部14cvと複数の溝14ccとを有する凹凸表面14cを有する。例えば、図1に示す凹凸表面14cでは、複数の凸部14cvの各々と複数の溝14ccの各々とはZ方向(ロール10の長手方向)に延在し、凸部14cvと溝14ccとが交互に配列されている。なお、図1に示す「表面の模式図」は、後述する凸部14cvの間隔S及び表面粗さRz等を分かり易く説明するための模式図であり、ロール10の実際の表面形状は、図1の「表面の模式図」に示す例に限定されない。例えば、ロール10を+Z方向から見た場合の凸部14cvの辺SDは、曲線であってもよい。辺SDは、ロール10を+Z方向から見た場合の凸部14cvの頂上(図1の頂点P1)に対して搬送方向に位置する頂点P2と、頂点P1とを結ぶ線である。なお、互いに隣接する2つの凸部14cvに着目した場合、2つの凸部14cvの一方の凸部14cvの頂点P3は、2つの凸部14cvの他方の凸部14cvの頂点P2でもある。 Further, as shown in the "schematic surface diagram" of FIG. 1, a plurality of grooves 14cc and a plurality of convex portions 14cv are provided on the outer peripheral surface (surface of the roll 10) of the rubber portion 14. That is, the roll 10 is in contact with paper such as paper PA and has an uneven surface 14c having a plurality of convex portions 14cv and a plurality of grooves 14cc. For example, in the uneven surface 14c shown in FIG. 1, each of the plurality of convex portions 14cv and each of the plurality of grooves 14cc extend in the Z direction (longitudinal direction of the roll 10), and the convex portions 14cv and the grooves 14cc alternate. Are arranged in. The "schematic surface diagram" shown in FIG. 1 is a schematic diagram for explaining the interval S of the convex portions 14cv and the surface roughness Rz, which will be described later, in an easy-to-understand manner, and the actual surface shape of the roll 10 is shown in the figure. It is not limited to the example shown in 1 "schematic surface diagram". For example, the side SD of the convex portion 14cv when the roll 10 is viewed from the + Z direction may be a curved line. The side SD is a line connecting the apex P2 located in the transport direction with respect to the apex (vertex P1 in FIG. 1) of the convex portion 14cv when the roll 10 is viewed from the + Z direction, and the apex P1. When focusing on the two convex portions 14cv adjacent to each other, the apex P3 of one convex portion 14cv of the two convex portions 14cv is also the apex P2 of the other convex portion 14cv of the two convex portions 14cv.
 ゴム部14の外周面の凹凸の程度を示す表面粗さRzは、初期状態において、50マイクロメートル以上80マイクロメートル以下の範囲である。初期状態は、例えば、ロール10が事務機器に取り付けられる前の未使用の状態である。なお、ゴム部14の外周面の表面粗さRzは、ロール10の表面(凹凸表面14c)の凹凸の程度を示す表面粗さRzに該当する。表面粗さRzは、例えば、JIS規格B0601(1994)に準拠する十点平均粗さであってもよい。 The surface roughness Rz, which indicates the degree of unevenness on the outer peripheral surface of the rubber portion 14, is in the range of 50 micrometers or more and 80 micrometers or less in the initial state. The initial state is, for example, an unused state before the roll 10 is attached to office equipment. The surface roughness Rz of the outer peripheral surface of the rubber portion 14 corresponds to the surface roughness Rz indicating the degree of unevenness on the surface (concave and convex surface 14c) of the roll 10. The surface roughness Rz may be, for example, a ten-point average roughness conforming to JIS standard B0601 (1994).
 また、凹凸表面14cに含まれる複数の凸部14cvにおける凸部14cvの間隔Sは、初期状態において、0.6ミリメートル以上0.8ミリメートル以下の範囲である。以下では、複数の凸部14cvにおける凸部14cvの間隔Sは、凸部間距離Sとも称される。例えば、凸部間距離Sは、互いに隣接する2つの凸部14cvの一方の凸部14cvの頂上(頂点P1)と他方の凸部14cvの頂上(頂点P1)との間の距離であってもよい。すなわち、凸部間距離Sは、例えば、JIS規格B0601(1994)に準拠する局部山頂の平均間隔であってもよい。また、表面粗さRzに対する凸部間距離Sの比率(S/Rz)は、7.5以上14以下の範囲である。以下では、マイクロメートルはμmとも表記され、ミリメートルはmmとも表記される。また、以下では、表面粗さRzに対する凸部間距離Sの比率(S/Rz)は、凸部アスペクト比とも称される。 Further, the interval S of the convex portions 14cv in the plurality of convex portions 14cv included in the uneven surface 14c is in the range of 0.6 mm or more and 0.8 mm or less in the initial state. In the following, the distance S between the convex portions 14cv in the plurality of convex portions 14cv is also referred to as the distance between the convex portions S. For example, the inter-convex distance S may be the distance between the top of one convex portion 14cv (vertex P1) and the top of the other convex portion 14cv (vertex P1) of two adjacent convex portions 14cv. good. That is, the distance S between the convex portions may be, for example, the average distance of the local peaks according to JIS standard B0601 (1994). Further, the ratio (S / Rz) of the distance S between the convex portions to the surface roughness Rz is in the range of 7.5 or more and 14 or less. In the following, micrometer is also referred to as μm, and millimeter is also referred to as mm. Further, in the following, the ratio (S / Rz) of the distance S between the convex portions to the surface roughness Rz is also referred to as a convex portion aspect ratio.
 ここで、複数の凸部14cvのうちの一の凸部14cvに着目した場合、X軸上の凸部14cvの高さ(辺SDの軌跡)には、以下の関係がある。例えば、X軸上の一の位置における凸部14cvの高さは、一の位置に対して搬送方向(図1では、-X方向)に位置する他の位置における凸部14cvの高さより低い。なお、X軸上の一の位置における凸部14cvの高さが、一の位置に対して搬送方向(図1では、-X方向)に位置する他の位置における凸部14cvの高さより高い場合(すなわち、図1において、用紙PAが+X方向に搬送される場合)、本実施形態に比べて、用紙PAとロール10の表面との摩擦係数が小さくなる。換言すれば、本実施形態では、X軸上の一の位置における凸部14cvの高さが、一の位置に対して搬送方向に位置する他の位置における凸部14cvの高さより高い場合に比べて、用紙PAとロール10の表面との摩擦係数を大きくすることができる。この結果、本実施形態では、給紙性能が低下することを抑制することができる。 Here, when focusing on the convex portion 14cv of one of the plurality of convex portions 14cv, the height of the convex portion 14cv on the X-axis (trajectory of the side SD) has the following relationship. For example, the height of the convex portion 14cv at one position on the X-axis is lower than the height of the convex portion 14cv at the other position located in the transport direction (-X direction in FIG. 1) with respect to one position. When the height of the convex portion 14cv at one position on the X-axis is higher than the height of the convex portion 14cv at the other position located in the transport direction (-X direction in FIG. 1) with respect to one position. (That is, in FIG. 1, when the paper PA is conveyed in the + X direction), the coefficient of friction between the paper PA and the surface of the roll 10 becomes smaller than that of the present embodiment. In other words, in the present embodiment, the height of the convex portion 14cv at one position on the X-axis is higher than the height of the convex portion 14cv at the other position located in the transport direction with respect to one position. Therefore, the coefficient of friction between the paper PA and the surface of the roll 10 can be increased. As a result, in the present embodiment, it is possible to prevent the paper feed performance from deteriorating.
 次に、図2から図5までの図面を参照しながら、ロール10を用いた通紙評価の結果について説明する。通紙は、例えば、用紙PAがロール10等を通過することである。 Next, the result of the paper passing evaluation using the roll 10 will be described with reference to the drawings of FIGS. 2 to 5. The paper passing is, for example, the paper PA passing through the roll 10 or the like.
 図2は、通紙評価の評価項目と評価条件とを説明するための説明図である。 FIG. 2 is an explanatory diagram for explaining the evaluation items and evaluation conditions of the paper passing evaluation.
 図2に示す項目は、温度が10℃であり、かつ、湿度が20%である通紙環境において実施される通紙評価により、評価される。なお、通紙評価に用いた機器は、富士ゼロックス株式会社製のカラープリンター(DocuPrint C5000d)である。 The items shown in FIG. 2 are evaluated by a paper passing evaluation carried out in a paper passing environment where the temperature is 10 ° C. and the humidity is 20%. The device used for the paper passing evaluation is a color printer (DocuPrint C5000d) manufactured by Fuji Xerox Co., Ltd.
 表面粗さRz(単位はμm)は、上述したように、JIS規格B0601(1994)に準拠する十点平均粗さである。測定装置は、株式会社小坂研究所製のサーフコーダSE-500である。測定条件としては、カットオフが0.8で、測定長が8mmで、測定速度が0.1mm/secである。 As described above, the surface roughness Rz (unit: μm) is a ten-point average roughness conforming to JIS standard B0601 (1994). The measuring device is a surf coder SE-500 manufactured by Kosaka Laboratory Co., Ltd. The measurement conditions are a cutoff of 0.8, a measurement length of 8 mm, and a measurement speed of 0.1 mm / sec.
 凸部間距離S(単位はmm)の測定装置は、株式会社キーエンス製のワンショット3D形状測定機VR-3000である。測定条件としては、モニタ上倍率が25倍で、HSC(ハイスポットカウント)における切断レベルが33%である。例えば、1画像11本垂直線×1本内2か所の平均値(凸部間距離の平均値)が、凸部間距離Sとして算出される。具体的には、凸部間距離Sの測定では、サンプル表面の1画像につき11本の垂直線が等間隔で引かれ、垂直線の1本毎にHSC及び凸部間距離が算出される。そして、11本の凸部間距離の平均値が1画像分の凸部間距離として算出される。さらに、製品1本につき、2か所撮影され、2画像分の凸部間距離の平均値が凸部間距離Sとして算出される。なお、本評価では、ハイスポットカウントは特に測定されないが、ハイスポットカウントは、測定曲線を任意の高さ(図2に示す測定条件では、切断レベルが33%)で切断したときに、切断した任意の高さより上に突出している部分の単位長さ当たりの数である。 The measuring device for the distance S between protrusions (unit: mm) is a one-shot 3D shape measuring machine VR-3000 manufactured by KEYENCE CORPORATION. As the measurement conditions, the magnification on the monitor is 25 times, and the cutting level in HSC (high spot count) is 33%. For example, the average value (average value of the distance between the convex portions) of 11 vertical lines in one image × 2 places in one is calculated as the distance S between the convex portions. Specifically, in the measurement of the inter-convex distance S, 11 vertical lines are drawn at equal intervals for each image of the sample surface, and the HSC and the inter-convex distance are calculated for each vertical line. Then, the average value of the distances between the 11 convex portions is calculated as the interconvex distances for one image. Further, each product is photographed at two locations, and the average value of the distances between the convex portions for the two images is calculated as the distance between the convex portions S. In this evaluation, the high spot count is not particularly measured, but the high spot count is cut when the measurement curve is cut at an arbitrary height (cutting level is 33% under the measurement conditions shown in FIG. 2). It is the number of parts protruding above an arbitrary height per unit length.
 凸部断面積AR(単位はmm^2)は、図2に示す凸部簡易モデルを用いて、凸部間距離S及び凸部14cvの高さにより算出される。なお、符号^はべき乗を示す。凸部14cvの高さとして、表面粗さRzが使用される。図2の凸部14cvの高さRz0は、初期状態の表面粗さRzを示す。また、図2の凸部断面積AR0は、例えば、X軸及びY軸を含むXY平面に平行な平面で初期状態のロール10を切断した場合の凸部14cvの断面積を示す。すなわち、凸部断面積AR0は、初期状態の凸部断面積ARを示す。摩耗断面積ARaは、凸部断面積AR0のうち、通紙により摩耗した部分の断面積を示す。摩耗幅Waは、通紙により摩耗した部分のX軸に沿う幅を示す。 The convex portion cross-sectional area AR (unit: mm ^ 2) is calculated by the convex portion distance S and the height of the convex portion 14 cv using the convex portion simplified model shown in FIG. The sign ^ indicates a power. Surface roughness Rz is used as the height of the convex portion 14 cv. The height Rz0 of the convex portion 14cv in FIG. 2 indicates the surface roughness Rz in the initial state. Further, the convex portion cross-sectional area AR0 in FIG. 2 shows, for example, the cross-sectional area of the convex portion 14cv when the roll 10 in the initial state is cut in a plane parallel to the XY plane including the X-axis and the Y-axis. That is, the convex cross-sectional area AR0 indicates the convex cross-sectional area AR in the initial state. The wear cross-sectional area ARa indicates the cross-sectional area of the portion of the convex cross-sectional area AR0 that has been worn by passing paper. The wear width Wa indicates the width along the X-axis of the portion worn by the paper passing.
 摩擦係数は、測定方法概略図に示すように、ロール10とアルミ板102との間にセットされた用紙PAに対して2.5Nの荷重をかけた状態で、ロール10を反時計回りに線速度300mm/secで回転させることにより、測定される。例えば、ロール10を反時計回りに線速度300mm/secで回転させた場合に得られるロードセル100の測定値(用紙PAにかかるX方向の力)と用紙PAにかかる荷重(2.5N)とに基づいて、用紙PAとロール10の表面との摩擦係数が算出される。なお、摩擦係数の測定環境としては、温度が10℃であり、かつ、湿度が20%である。 As shown in the schematic diagram of the measurement method, the coefficient of friction is a line counterclockwise on the roll 10 with a load of 2.5 N applied to the paper PA set between the roll 10 and the aluminum plate 102. It is measured by rotating at a speed of 300 mm / sec. For example, the measured value of the load cell 100 (force in the X direction applied to the paper PA) obtained when the roll 10 is rotated counterclockwise at a linear speed of 300 mm / sec and the load applied to the paper PA (2.5N). Based on this, the coefficient of friction between the paper PA and the surface of the roll 10 is calculated. As a measurement environment for the coefficient of friction, the temperature is 10 ° C. and the humidity is 20%.
 図3は、通紙評価の結果を示す説明図である。 FIG. 3 is an explanatory diagram showing the result of the paper passing evaluation.
 図3に示す第1サンプルは、本実施形態のロール10である。なお、図3は、本実施形態の比較例として、第1比較サンプルから第4比較サンプルまでの4個のサンプルを用いた通紙評価の結果も示している。なお、以下では、説明の便宜上、第1比較サンプルから第4比較サンプルまでの4個のサンプルも、ロール10に付した符号と同じ符号を用いて説明される。 The first sample shown in FIG. 3 is the roll 10 of the present embodiment. Note that FIG. 3 also shows the results of paper passing evaluation using four samples from the first comparative sample to the fourth comparative sample as a comparative example of the present embodiment. In the following, for convenience of explanation, the four samples from the first comparison sample to the fourth comparison sample will also be described using the same reference numerals as those attached to the roll 10.
 第1サンプルでは、ゴム部14の材料はEPDMであり、ゴム部14の硬度はJISAで35°である。また、第1サンプルでは、初期状態の表面粗さRzは63μmであり、初期状態の凸部間距離Sは0.71mmであり、初期状態の凸部アスペクト比(S/Rz)は11.3である。 In the first sample, the material of the rubber portion 14 is EPDM, and the hardness of the rubber portion 14 is 35 ° in JIS A. Further, in the first sample, the surface roughness Rz in the initial state is 63 μm, the distance S between the convex portions in the initial state is 0.71 mm, and the convex portion aspect ratio (S / Rz) in the initial state is 11.3. Is.
 第1比較サンプル及び第2比較サンプルでは、ゴム部14の材料及び硬度は、第1サンプルと同じである。なお、第1比較サンプルでは、初期状態の表面粗さRzは32μmであり、初期状態の凸部間距離Sは0.85mmであり、初期状態の凸部アスペクト比(S/Rz)は26.6である。また、第2比較サンプルでは、初期状態の表面粗さRzは35μmであり、初期状態の凸部間距離Sは0.7mmであり、初期状態の凸部アスペクト比(S/Rz)は20である。 In the first comparative sample and the second comparative sample, the material and hardness of the rubber portion 14 are the same as those of the first sample. In the first comparative sample, the surface roughness Rz in the initial state is 32 μm, the distance S between the convex portions in the initial state is 0.85 mm, and the convex portion aspect ratio (S / Rz) in the initial state is 26. It is 6. Further, in the second comparative sample, the surface roughness Rz in the initial state is 35 μm, the distance S between the convex portions in the initial state is 0.7 mm, and the convex portion aspect ratio (S / Rz) in the initial state is 20. be.
 第3比較サンプル及び第4比較サンプルでは、ゴム部14の材料は第1サンプルと同じであるが、ゴム部14の硬度は、第1サンプルのゴム部14の硬度より低い25°である。また、第3比較サンプルでは、初期状態の表面粗さRzは38μmであり、初期状態の凸部間距離Sは0.88mmであり、初期状態の凸部アスペクト比(S/Rz)は23.2である。また、第4比較サンプルでは、初期状態の表面粗さRzは36μmであり、初期状態の凸部間距離Sは0.69mmであり、初期状態の凸部アスペクト比(S/Rz)は19.2である。 In the third comparative sample and the fourth comparative sample, the material of the rubber portion 14 is the same as that of the first sample, but the hardness of the rubber portion 14 is 25 °, which is lower than the hardness of the rubber portion 14 of the first sample. Further, in the third comparative sample, the surface roughness Rz in the initial state is 38 μm, the distance S between the convex portions in the initial state is 0.88 mm, and the convex portion aspect ratio (S / Rz) in the initial state is 23. It is 2. Further, in the fourth comparative sample, the surface roughness Rz in the initial state is 36 μm, the distance S between the convex portions in the initial state is 0.69 mm, and the convex portion aspect ratio (S / Rz) in the initial state is 19. It is 2.
 なお、第3比較サンプル及び第4比較サンプルでは、用紙PAを30000枚通紙した場合における摩擦係数が測定不能となったため、通紙枚数が30000枚までの評価結果が図3に示されている。 In the third comparison sample and the fourth comparison sample, since the friction coefficient when 30,000 sheets of paper PA were passed could not be measured, the evaluation results up to 30,000 sheets of paper were shown in FIG. ..
 用紙PAを50000枚通紙した場合の凸部断面積ARは、初期状態の凸部断面積ARより小さい。すなわち、凸部断面積ARは、通紙により減少する。なお、第1サンプルの凸部断面積ARは、初期状態においても、用紙PAを50000枚通紙した場合においても、他のサンプルの凸部断面積ARより大きい。 The convex cross-sectional area AR when 50,000 sheets of paper PA are passed is smaller than the convex cross-sectional area AR in the initial state. That is, the convex cross-sectional area AR is reduced by passing paper. The convex cross-sectional area AR of the first sample is larger than the convex cross-sectional area AR of the other samples both in the initial state and when 50,000 sheets of paper PA are passed.
 用紙PAを50000枚通紙した場合の摩擦係数は、初期状態の摩擦係数より小さい。すなわち、摩擦係数は、通紙により減少する。なお、第1サンプルの摩擦係数は、初期状態においては他のサンプルの摩擦係数より小さいが、用紙PAを50000枚通紙した場合においては、他のサンプルの摩擦係数より大きい。すなわち、第1サンプルでは、他のサンプルに比べて、通紙による摩擦係数の低下が抑制される。なお、図3の摩擦係数の各通紙枚数において、カッコ内に示した数値は、初期状態の摩擦係数に対する摩擦係数の減少率を示している。 The coefficient of friction when 50,000 sheets of paper PA are passed is smaller than the coefficient of friction in the initial state. That is, the coefficient of friction is reduced by passing paper. The coefficient of friction of the first sample is smaller than the coefficient of friction of the other samples in the initial state, but is larger than the coefficient of friction of the other samples when 50,000 sheets of paper PA are passed. That is, in the first sample, the decrease in the coefficient of friction due to paper passing is suppressed as compared with the other samples. In addition, in each number of sheets of the friction coefficient of FIG. 3, the numerical value shown in parentheses shows the reduction rate of the friction coefficient with respect to the friction coefficient in the initial state.
 図4は、凸部断面積ARの評価結果を示す図である。図4の縦軸は、凸部断面積AR(mm^2)を示し、横軸は通紙枚数(k枚)を示す。 FIG. 4 is a diagram showing the evaluation result of the convex cross-sectional area AR. The vertical axis of FIG. 4 indicates the convex cross-sectional area AR (mm ^ 2), and the horizontal axis indicates the number of sheets to be passed (k sheets).
 第1サンプルの凸部断面積ARは、通紙枚数の増加に伴い、減少する。また、第1サンプルの凸部断面積ARは、初期状態(通紙枚数が0枚)、通紙枚数が15000枚、通紙枚数が30000枚、及び、通紙枚数が50000枚の場合において、第1比較サンプルの凸部断面積AR及び第2比較サンプルの凸部断面積ARより大きい。図4に示すように、本実施形態の第1サンプルでは、通紙枚数が増加しても、凸部断面積ARが大きい状態を維持することができる。これにより、本実施形態では、図5に示すように、摩擦係数の低下を抑制することができる。 The convex cross-sectional area AR of the first sample decreases as the number of sheets to be passed increases. Further, the convex cross-sectional area AR of the first sample is in the initial state (the number of sheets to be passed is 0), the number of sheets to be passed is 15,000, the number of sheets to be passed is 30,000, and the number of sheets to be passed is 50,000. It is larger than the convex cross-sectional area AR of the first comparative sample and the convex cross-sectional area AR of the second comparative sample. As shown in FIG. 4, in the first sample of the present embodiment, it is possible to maintain a state in which the convex cross-sectional area AR is large even if the number of sheets to be passed increases. As a result, in the present embodiment, as shown in FIG. 5, it is possible to suppress a decrease in the friction coefficient.
 図5は、摩擦係数の評価結果を示す図である。図5の縦軸は、摩擦係数を示し、横軸は通紙枚数(k枚)を示す。 FIG. 5 is a diagram showing the evaluation result of the friction coefficient. The vertical axis of FIG. 5 shows the coefficient of friction, and the horizontal axis shows the number of sheets to be passed (k sheets).
 摩擦係数は、通紙枚数の増加に伴い、減少する。初期状態(通紙枚数が0枚)では、第1サンプル、第1比較サンプル及び第2比較サンプルのうち、第1比較サンプルの摩擦係数が最も大きく、第1サンプルの摩擦係数が最も小さい。そして、通紙枚数が50000枚の場合では、第1サンプル、第1比較サンプル及び第2比較サンプルのうち、第1サンプルの摩擦係数が最も大きく、第1比較サンプルの摩擦係数が最も小さい。すなわち、第1サンプル、第1比較サンプル及び第2比較サンプルのうち、第1サンプルの摩擦係数の減少率が最も小さい。例えば、第1サンプルの摩擦係数の減少率は、-34.1%であり、第2比較サンプルの摩擦係数の減少率は、-55.9%であり、第1比較サンプルの摩擦係数の減少率は、-66.0%である。 The coefficient of friction decreases as the number of sheets to be passed increases. In the initial state (the number of sheets to be passed is 0), the friction coefficient of the first comparison sample is the largest and the friction coefficient of the first sample is the smallest among the first sample, the first comparison sample and the second comparison sample. When the number of sheets to be passed is 50,000, the friction coefficient of the first sample is the largest and the friction coefficient of the first comparison sample is the smallest among the first sample, the first comparison sample and the second comparison sample. That is, among the first sample, the first comparison sample, and the second comparison sample, the reduction rate of the friction coefficient of the first sample is the smallest. For example, the reduction rate of the friction coefficient of the first sample is -34.1%, the reduction rate of the friction coefficient of the second comparison sample is -55.9%, and the reduction rate of the friction coefficient of the first comparison sample is -55.9%. The rate is -66.0%.
 このように、本実施形態の第1サンプルでは、通紙枚数が増加しても、摩擦係数が大きい状態を維持することができる。すなわち、本実施形態では、摩擦係数の低下を抑制することができる。 As described above, in the first sample of the present embodiment, the state in which the friction coefficient is large can be maintained even if the number of sheets to be passed increases. That is, in the present embodiment, it is possible to suppress a decrease in the coefficient of friction.
 表面粗さRzに着目すると、表面粗さRzが63μmの第1サンプルと表面粗さRzが35μmの第2比較サンプルとの評価結果から、表面粗さRzが大きい方が、摩擦係数の低下が抑制されることが分かる。このため、表面粗さRzは、35μmより大きい50μm以上であることが好ましい。また、凸部間距離Sに着目すると、凸部間距離Sが0.85mmの第1比較サンプルと凸部間距離Sが0.7mmの第2比較サンプルとの評価結果から、凸部間距離Sが小さい方が、摩擦係数の低下が抑制されることが分かる。このため、凸部間距離Sは、0.85mmより小さい0.8mm以下であることが好ましい。 Focusing on the surface roughness Rz, from the evaluation results of the first sample having a surface roughness Rz of 63 μm and the second comparative sample having a surface roughness Rz of 35 μm, the larger the surface roughness Rz, the lower the coefficient of friction. It turns out that it is suppressed. Therefore, the surface roughness Rz is preferably 50 μm or more, which is larger than 35 μm. Focusing on the inter-convex distance S, the distance between the convex portions is based on the evaluation results of the first comparative sample having the inter-convex distance S of 0.85 mm and the second comparative sample having the inter-convex distance S of 0.7 mm. It can be seen that the smaller S is, the more the decrease in the friction coefficient is suppressed. Therefore, the distance S between the convex portions is preferably 0.8 mm or less, which is smaller than 0.85 mm.
 従って、本実施形態では、ロール10は、初期状態の表面粗さRzが50μm以上80μm以下の範囲で、かつ、初期状態の凸部間距離Sが0.6mm以上0.8mm以下の範囲である第1条件が満たされるように、形成される。また、第1条件を満たす表面粗さRz及び凸部間距離Sの組み合わせにおいて、摩擦係数の低下の抑制に着目した場合、表面粗さRzが50μmで、凸部間距離Sが0.8mmである組み合わせが、摩擦係数の低下を抑制する効果が最も小さくなると考えられる。このため、第1条件の他に、凸部アスペクト比(S/Rz)が16(=0.8mm/50μm)より小さい14以下である条件を加えることにより、摩擦係数の低下を抑制する効果を確実に得ることができると考えられる。従って、本実施形態では、凸部アスペクト比(S/Rz)が7.5以上14以下の範囲である第2条件と、第1条件との両方が満たされるように、ロール10が形成される。 Therefore, in the present embodiment, the roll 10 has a surface roughness Rz of 50 μm or more and 80 μm or less in the initial state, and a protrusion-to-convex distance S of 0.6 mm or more and 0.8 mm or less in the initial state. It is formed so that the first condition is satisfied. Further, in the combination of the surface roughness Rz and the inter-convex distance S satisfying the first condition, when focusing on suppressing the decrease in the friction coefficient, the surface roughness Rz is 50 μm and the inter-convex distance S is 0.8 mm. It is considered that a certain combination has the least effect of suppressing the decrease in the coefficient of friction. Therefore, in addition to the first condition, by adding a condition that the convex aspect ratio (S / Rz) is 14 or less, which is smaller than 16 (= 0.8 mm / 50 μm), the effect of suppressing the decrease in the friction coefficient can be obtained. It is considered that it can be surely obtained. Therefore, in the present embodiment, the roll 10 is formed so that both the second condition in which the convex aspect ratio (S / Rz) is 7.5 or more and 14 or less and the first condition are satisfied. ..
 図6は、図1に示したロール10の作用を説明するための説明図である。なお、図6は、ロール10の表面の模式図と、上述した第1比較サンプルの表面の模式図とを示している。以下では、第1比較サンプルは、ロール10Zとも称される。 FIG. 6 is an explanatory diagram for explaining the action of the roll 10 shown in FIG. Note that FIG. 6 shows a schematic view of the surface of the roll 10 and a schematic view of the surface of the first comparative sample described above. In the following, the first comparative sample is also referred to as roll 10Z.
 ロール10では、表面粗さRzがロール10Zの表面粗さRzより大きいため、凸部断面積ARがロール10Zの凸部断面積ARより大きくなる。これにより、ロール10では、通紙が行われた場合においても、凸部断面積ARが大きい状態を維持することができる。このため、ロール10では、ロール10Zに比べて、摩擦係数が低下することを抑制することができる。 In the roll 10, since the surface roughness Rz is larger than the surface roughness Rz of the roll 10Z, the convex cross-sectional area AR is larger than the convex cross-sectional area AR of the roll 10Z. As a result, the roll 10 can maintain a state in which the convex cross-sectional area AR is large even when the paper is passed. Therefore, in the roll 10, it is possible to suppress the decrease in the friction coefficient as compared with the roll 10Z.
 また、ロール10では、凸部間距離Sがロール10Zの凸部間距離Sより小さいため、所定の長さL当たりの用紙PAとロール10との接触部分の数が、所定の長さL当たりの用紙PAとロール10Zとの接触部分の数より多くなる。すなわち、ロール10では、ロール10Zに比べて、用紙PAとゴム部14との接触面積が大きくなる。これにより、ロール10では、ロール10Zに比べて、凸部14cvに加わる単位面積当たりの圧力を小さくすることができる。このため、ロール10では、ロール10Zに比べて、凸部14cvの通紙による摩耗の進行(すなわち、凸部14cvの減少速度)を遅くすることが期待できる。 Further, in the roll 10, since the distance S between the convex portions is smaller than the distance S between the convex portions of the roll 10Z, the number of contact portions between the paper PA and the roll 10 per the predetermined length L is per predetermined length L. It is larger than the number of contact portions between the paper PA and the roll 10Z. That is, in the roll 10, the contact area between the paper PA and the rubber portion 14 is larger than that in the roll 10Z. As a result, in the roll 10, the pressure per unit area applied to the convex portion 14cv can be reduced as compared with the roll 10Z. Therefore, in the roll 10, it can be expected that the progress of wear due to the passing of the convex portion 14 cv (that is, the decrease rate of the convex portion 14 cv) is slower than that in the roll 10Z.
 また、ロール10では、凸部間距離Sがロール10Zの凸部間距離Sより小さいため、所定の長さL当たりの溝14ccの数が、ロール10Zに比べて多くなる。これにより、ロール10では、ロール10Zに比べて、溝14ccに紙粉等をトラップする紙粉トラップ効果を向上させることができる。なお、ロール10では、表面粗さRzがロール10Zの表面粗さRzより大きいため、溝14ccの体積(互いに隣接する2つの凸部14cvの間の空間の体積)は、ロール10Zの溝14ccの体積より大きくなる。これにより、ロール10では、ロール10Zに比べて、紙粉等が溝14ccに詰まることによる紙送り性能の低下を抑制することができる。すなわち、ロール10では、紙粉トラップ効果を向上させつつ、紙粉等が溝14ccに詰まることによる紙送り性能の低下を抑制することができる。 Further, in the roll 10, since the distance S between the convex portions is smaller than the distance S between the convex portions of the roll 10Z, the number of grooves 14cc per predetermined length L is larger than that of the roll 10Z. As a result, the roll 10 can improve the paper dust trapping effect of trapping the paper dust or the like in the groove 14 cc as compared with the roll 10Z. Since the surface roughness Rz of the roll 10 is larger than the surface roughness Rz of the roll 10Z, the volume of the groove 14cc (the volume of the space between the two convex portions 14cv adjacent to each other) is the volume of the groove 14cc of the roll 10Z. It will be larger than the volume. As a result, in the roll 10, compared to the roll 10Z, it is possible to suppress deterioration of the paper feed performance due to clogging of the groove 14cc with paper dust or the like. That is, in the roll 10, it is possible to improve the paper dust trapping effect and suppress the deterioration of the paper feed performance due to the paper dust or the like being clogged in the groove 14 cc.
 以上、本実施形態では、紙送りに用いられるロール10は、用紙PA等の紙と接触し、複数の凸部14cvと複数の溝14ccとを有する表面(凹凸表面14c)を有する。表面の凹凸の程度を示す表面粗さRzは、50μm以上80μm以下の範囲である。また、凹凸表面14cに含まれる複数の凸部14cvにおける凸部14cvの間隔S(凸部間距離S)は、0.6mm以上0.8mm以下の範囲である。 As described above, in the present embodiment, the roll 10 used for feeding paper has a surface (concave and convex surface 14c) which is in contact with paper such as paper PA and has a plurality of convex portions 14cv and a plurality of grooves 14cc. The surface roughness Rz, which indicates the degree of surface unevenness, is in the range of 50 μm or more and 80 μm or less. Further, the distance S (distance S between convex portions) of the convex portions 14cv in the plurality of convex portions 14cv included in the uneven surface 14c is in the range of 0.6 mm or more and 0.8 mm or less.
 このように、本実施形態では、表面粗さRzが50μm以上80μm以下の範囲で、かつ、凸部14cvの間隔Sが0.6mm以上0.8mm以下の範囲であるため、断面積(凸部断面積AR)が大きな凸部14cvを形成することができる。これにより、本実施形態では、通紙が行われた場合においても、凸部14cvの断面積(凸部断面積AR)が大きい状態を維持することができる。この結果、本実施形態では、ロール10の摩擦係数が低下することを抑制することができる。 As described above, in the present embodiment, since the surface roughness Rz is in the range of 50 μm or more and 80 μm or less and the interval S of the convex portions 14 cv is in the range of 0.6 mm or more and 0.8 mm or less, the cross-sectional area (convex portion). A convex portion 14 cv having a large cross-sectional area AR) can be formed. Thereby, in the present embodiment, it is possible to maintain a state in which the cross-sectional area of the convex portion 14 cv (convex cross-sectional area AR) is large even when the paper is passed. As a result, in the present embodiment, it is possible to prevent the friction coefficient of the roll 10 from decreasing.
 また、本実施形態では、表面粗さRzに対する、複数の凸部14cvの間隔Sの比率は、7.5以上14以下の範囲である。すなわち、本実施形態では、表面粗さRzが50μm以上80μm以下の範囲で、かつ、凸部14cvの間隔Sが0.6mm以上0.8mm以下の範囲である第1条件と、表面粗さRzに対する凸部14cvの間隔Sの比率が7.5以上14以下の範囲である第2条件とが満たされる。 Further, in the present embodiment, the ratio of the interval S of the plurality of convex portions 14cv to the surface roughness Rz is in the range of 7.5 or more and 14 or less. That is, in the present embodiment, the first condition that the surface roughness Rz is in the range of 50 μm or more and 80 μm or less and the interval S of the convex portions 14 cv is in the range of 0.6 mm or more and 0.8 mm or less, and the surface roughness Rz. The second condition that the ratio of the interval S of the convex portion 14 cv to the above is in the range of 7.5 or more and 14 or less is satisfied.
 これにより、本実施形態では、第1条件を満たす表面粗さRz及び凸部14cvの間隔Sの組み合わせから、摩擦係数の低下を抑制する効果が小さくなると考えられる組み合わせ(例えば、表面粗さRzが50μmで、凸部14cvの間隔Sが0.8mmである組み合わせ等)が、省かれる。この結果、本実施形態では、摩擦係数の低下を抑制する効果を確実に得ることができる。 As a result, in the present embodiment, the combination of the surface roughness Rz satisfying the first condition and the interval S of the convex portions 14cv is considered to reduce the effect of suppressing the decrease in the friction coefficient (for example, the surface roughness Rz). A combination in which the distance S between the convex portions 14 cv is 0.8 mm at 50 μm) is omitted. As a result, in the present embodiment, the effect of suppressing the decrease in the coefficient of friction can be surely obtained.
 また、本実施形態では、ロール10の表面を形成する材料(ゴム部14の材料)は、EPDMである。これにより、本実施形態では、ロール10の表面を形成する材料にウレタン等のコストの高い材料を使用する場合に比べて、ロール10のコストを低減することができる。 Further, in the present embodiment, the material (material of the rubber portion 14) forming the surface of the roll 10 is EPDM. Thereby, in the present embodiment, the cost of the roll 10 can be reduced as compared with the case where a high cost material such as urethane is used as the material forming the surface of the roll 10.
 また、本実施形態では、ロール10の表面を形成するEPDMの硬度は、JISAで30°以上50°以下の範囲である。これにより、本実施形態では、研磨によるパラメータ制御が可能であること(加工性)と耐摩耗性との両立をはかることができる。 Further, in the present embodiment, the hardness of EPDM forming the surface of the roll 10 is in the range of 30 ° or more and 50 ° or less in JIS A. Thereby, in the present embodiment, it is possible to achieve both the parameter control by polishing (workability) and the wear resistance.
[2.変形例]
 以上に例示した実施形態は多様に変形され得る。前述の実施形態に適用され得る具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を、相互に矛盾しない範囲で併合してもよい。
[2. Modification example]
The embodiments exemplified above can be variously modified. Specific embodiments that may be applied to the above-described embodiments are illustrated below. Two or more embodiments arbitrarily selected from the following examples may be merged to the extent that they do not contradict each other.
[第1変形例]
 上述した実施形態では、凸部アスペクト比(S/Rz)が7.5以上14以下の範囲である第2条件が満たされる場合を例示したが、本発明はこのような態様に限定されるものではない。例えば、初期状態の表面粗さRzが50μm以上80μm以下の範囲で、かつ、初期状態の凸部間距離Sが0.6mm以上0.8mm以下の範囲である第1条件が満たされていれば、第2条件は、満たされていなくてもよい。この場合、第1条件と第2条件との両方が満たされている場合に比べて摩擦係数の低下を抑制する効果が小さくなる可能性はあるが、第1条件と第2条件とのいずれも満たされていない場合に比べて、摩擦係数の低下を抑制する効果が大きくなることが期待できる。
[First modification]
In the above-described embodiment, the case where the second condition in which the convex aspect ratio (S / Rz) is in the range of 7.5 or more and 14 or less is satisfied has been exemplified, but the present invention is limited to such an embodiment. is not it. For example, if the first condition that the surface roughness Rz in the initial state is in the range of 50 μm or more and 80 μm or less and the distance S between the convex portions in the initial state is in the range of 0.6 mm or more and 0.8 mm or less is satisfied. , The second condition may not be satisfied. In this case, the effect of suppressing the decrease in the coefficient of friction may be smaller than when both the first condition and the second condition are satisfied, but both the first condition and the second condition are available. It can be expected that the effect of suppressing the decrease in the coefficient of friction will be greater than in the case where it is not satisfied.
[第2変形例]
 上述した実施形態及び第1変形例では、ゴム部14の材料がEPDMである場合を例示したが、本発明はこのような態様に限定されるものではない。例えば、ゴム部14の材料は、EPDM以外の弾性材料であってもよい。具体的には、ゴム部14の材料は、VMQ(ビニルメチルシリコーンゴム)及びFKM(フッ素ゴム)等の弾性材料であってもよい。また、例えば、コストが高くなることが許容される場合、ゴム部14の材料として、ウレタンを含む材料が使用されてもよい。第2変形例においても、上述した実施形態と同様の効果を得ることができる。
[Second modification]
In the above-described embodiment and the first modification, the case where the material of the rubber portion 14 is EPDM is exemplified, but the present invention is not limited to such an embodiment. For example, the material of the rubber portion 14 may be an elastic material other than EPDM. Specifically, the material of the rubber portion 14 may be an elastic material such as VMQ (vinyl methyl silicone rubber) and FKM (fluororubber). Further, for example, when it is permissible to increase the cost, a material containing urethane may be used as the material of the rubber portion 14. Also in the second modification, the same effect as that of the above-described embodiment can be obtained.
[第3変形例]
 上述した実施形態、第1変形例及び第2変形例では、ゴム部14の硬度がJISAで30°以上50°以下の範囲である場合を例示したが、本発明はこのような態様に限定されるものではない。ゴム部14の硬度は、加工性と耐摩耗性との両立をはかることができる硬度であればよい。例えば、ゴム部14の硬度は、JISAで29°であってもよいし、JISAで51°であってもよい。第3変形例においても、上述した実施形態と同様の効果を得ることができる。
[Third modification example]
In the above-described embodiment, the first modification and the second modification, the case where the hardness of the rubber portion 14 is in the range of 30 ° or more and 50 ° or less in JIS A is exemplified, but the present invention is limited to such an embodiment. It's not something. The hardness of the rubber portion 14 may be any hardness as long as it can achieve both workability and wear resistance. For example, the hardness of the rubber portion 14 may be 29 ° in JIS A or 51 ° in JIS A. Also in the third modification, the same effect as that of the above-described embodiment can be obtained.
 10、10Z…ロール、12…軸接続部分、14…ゴム部、14c…凹凸表面、14cc…溝、14cv…凸部、16…軸部材、100…ロードセル、102…アルミ板、AR…凸部断面積、HL…軸孔、PA…用紙、Rz…表面粗さ、S…凸部間距離。 10, 10Z ... Roll, 12 ... Shaft connection part, 14 ... Rubber part, 14c ... Concavo-convex surface, 14cc ... Groove, 14cv ... Convex part, 16 ... Shaft member, 100 ... Load cell, 102 ... Aluminum plate, AR ... Convex part break Area, HL ... shaft hole, PA ... paper, Rz ... surface roughness, S ... distance between convex parts.

Claims (4)

  1.  紙送りに用いられるロールであって、
     紙と接触し、複数の凸部と複数の溝とを有する表面を有し、
     前記表面の凹凸の程度を示す表面粗さは、50マイクロメートル以上80マイクロメートル以下の範囲であり、
     前記複数の凸部における凸部の間隔は、0.6ミリメートル以上0.8ミリメートル以下の範囲である、
     ことを特徴とするロール。
    A roll used for paper feeding,
    It has a surface that comes in contact with paper and has multiple protrusions and multiple grooves.
    The surface roughness indicating the degree of unevenness of the surface is in the range of 50 micrometers or more and 80 micrometers or less.
    The distance between the convex portions in the plurality of convex portions is in the range of 0.6 mm or more and 0.8 mm or less.
    A roll characterized by that.
  2.  前記表面粗さに対する、前記凸部の間隔の比率は、7.5以上14以下の範囲である、
     ことを特徴とする請求項1に記載のロール。
    The ratio of the distance between the convex portions to the surface roughness is in the range of 7.5 or more and 14 or less.
    The roll according to claim 1.
  3.  前記表面を形成する材料は、EPDM(エチレンプロピレンジエンゴム)である、
     ことを特徴とする請求項1又は2に記載のロール。
    The material forming the surface is EPDM (ethylene propylene diene rubber).
    The roll according to claim 1 or 2, wherein the roll is characterized by the above.
  4.  前記EPDMの硬度は、JIS(Japanese Industrial Standards) K6253に準拠するタイプA硬度で30°以上50°以下の範囲である、
     ことを特徴とする請求項3に記載のロール。
    The hardness of EPDM is a type A hardness conforming to JIS (Japanese Industrial Standards) K6253 and is in the range of 30 ° or more and 50 ° or less.
    The roll according to claim 3.
PCT/JP2021/017232 2020-07-03 2021-04-30 Roll WO2022004118A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022533704A JP7454047B2 (en) 2020-07-03 2021-04-30 roll
CN202180040995.2A CN115916675A (en) 2020-07-03 2021-04-30 Roller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020115464 2020-07-03
JP2020-115464 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022004118A1 true WO2022004118A1 (en) 2022-01-06

Family

ID=79315272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017232 WO2022004118A1 (en) 2020-07-03 2021-04-30 Roll

Country Status (3)

Country Link
JP (1) JP7454047B2 (en)
CN (1) CN115916675A (en)
WO (1) WO2022004118A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042806B1 (en) * 2006-09-08 2008-02-06 東海ゴム工業株式会社 Paper feed roller
JP2008143609A (en) * 2006-12-06 2008-06-26 Konica Minolta Business Technologies Inc Sheet conveying device and image forming device
JP2014034428A (en) * 2012-08-07 2014-02-24 Sumitomo Rubber Ind Ltd Paper feed roller and image formation device
JP2017061358A (en) * 2015-09-24 2017-03-30 ヤマウチ株式会社 Paper feed roller
JP2017197304A (en) * 2016-04-25 2017-11-02 株式会社Pfu roller
JP2019163146A (en) * 2018-03-20 2019-09-26 株式会社Pfu Document conveying device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4042806B1 (en) * 2006-09-08 2008-02-06 東海ゴム工業株式会社 Paper feed roller
JP2008143609A (en) * 2006-12-06 2008-06-26 Konica Minolta Business Technologies Inc Sheet conveying device and image forming device
JP2014034428A (en) * 2012-08-07 2014-02-24 Sumitomo Rubber Ind Ltd Paper feed roller and image formation device
JP2017061358A (en) * 2015-09-24 2017-03-30 ヤマウチ株式会社 Paper feed roller
JP2017197304A (en) * 2016-04-25 2017-11-02 株式会社Pfu roller
JP2019163146A (en) * 2018-03-20 2019-09-26 株式会社Pfu Document conveying device

Also Published As

Publication number Publication date
JPWO2022004118A1 (en) 2022-01-06
JP7454047B2 (en) 2024-03-21
CN115916675A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
US9817328B2 (en) Charging member, process cartridge, and image forming apparatus
US8467697B2 (en) Cleaning member for image forming apparatus, charging device, unit for image forming apparatus, process cartridge, and image forming apparatus
JP5968032B2 (en) Developing device, process cartridge, image forming apparatus
WO2022004118A1 (en) Roll
US8891999B2 (en) Cleaning member and charging device, unit for image forming apparatus and process cartridge, and image forming apparatus
KR20170126985A (en) Continuous glass processing apparatus and method for processing flexible glass ribbon
EP2846193B1 (en) Electrophotographic image-forming device provided with end sealant
JP2012018250A (en) Image forming device
US10423118B1 (en) Cleaning member and image forming apparatus
JP5693789B2 (en) End seal material for electrophotographic image forming apparatus
JP6186809B2 (en) Polishing roller, fixing device, and image forming apparatus
US9753412B2 (en) Roller having elastic layers for transferring a print image
JP6769063B2 (en) Charging member, charging device, process cartridge, and image forming device
CN102774680B (en) Output mechanism and image processing system
US9367020B1 (en) Cleaning member, process cartridge, and image forming apparatus
JP2016164307A (en) Sliding member, sliding device having the same, and electrophotographic-type image forming apparatus having the same
JP2014055057A (en) Paper feed roller
JP6855807B2 (en) Cleaning member, charging device, transfer device, unit for image forming device, process cartridge, and image forming device
JP2017134209A (en) Cleaning member, charging device, transfer device, unit for image forming apparatus, process cartridge, and image forming apparatus
JP2014164293A (en) Polishing roller, fixing device, and image forming apparatus
US20230264907A1 (en) Paper feeding roller and paper feeding device
JP2018052628A (en) Image formation apparatus and recording medium supply apparatus
EP2650243B1 (en) Sheet separation pad and image forming apparatus
JP2012053391A (en) Cleaning member for image-forming device, electrification unit, process cartridge, and image-forming device
US8254821B2 (en) Cleaning apparatus, image forming apparatus including the same, and process cartridge including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832650

Country of ref document: EP

Kind code of ref document: A1