WO2022004032A1 - Gas shielded arc welding method, structure object production method, and shielding gas - Google Patents

Gas shielded arc welding method, structure object production method, and shielding gas Download PDF

Info

Publication number
WO2022004032A1
WO2022004032A1 PCT/JP2021/003997 JP2021003997W WO2022004032A1 WO 2022004032 A1 WO2022004032 A1 WO 2022004032A1 JP 2021003997 W JP2021003997 W JP 2021003997W WO 2022004032 A1 WO2022004032 A1 WO 2022004032A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
mass
gas
less
welding
Prior art date
Application number
PCT/JP2021/003997
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 迎井
真弓 阿部
正道 鈴木
崇功 上月
Original Assignee
株式会社神戸製鋼所
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, 川崎重工業株式会社 filed Critical 株式会社神戸製鋼所
Priority to AU2021299003A priority Critical patent/AU2021299003B2/en
Priority to CN202180042685.4A priority patent/CN115916445A/en
Priority to KR1020227040039A priority patent/KR20230003531A/en
Publication of WO2022004032A1 publication Critical patent/WO2022004032A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the present invention relates to a gas shielded arc welding method for welding using a shield gas containing Ar as a main component, a structure manufacturing method, and a shield gas.
  • a shield gas is used to protect the molten metal (hereinafter, also referred to as a molten pool) from the adverse effects of nitrogen and oxygen in the atmosphere.
  • the composition of the shield gas is variously optimized depending on the steel type of the welding wire and the welding base material (hereinafter, also simply referred to as “base material” or “work”) used, and the application of the structure to be manufactured.
  • base material also simply referred to as “base material” or “work”
  • Ar is mainly used for the purpose of suppressing the oxygen content of the weld metal after welding and ensuring excellent mechanical performance, especially toughness.
  • As a component it is common to use a mixed gas containing a small amount of O 2 or CO 2 as a shield gas.
  • Patent Document 1 discloses a flux-containing wire made of a metal oxide, a carbonate, a metal fluoride and a metal powder with a stainless steel or nickel alloy as an outer skin.
  • the flux-cored wire according to Reference 1 as a flux component, a TiO 2 5 ⁇ 10% by weight relative to the total wire weight, the SiO 2 0 ⁇ 1.5 wt%, the carbonate 0.1-1 wt% It is characterized by containing 1 to 30% by weight of a metal powder mixture having a metal fluoride content of 0.05 to 0.5% by weight in terms of the amount of fluorine and a silicon content of 0.1 to 1.5% by weight.
  • Patent Document 2 a mug for welding high Cr steel containing 8% by weight or more and 13% by weight or less of Cr using a solid wire containing 8% by weight or more and 13% by weight or less of Cr.
  • Welding shield gas is disclosed.
  • the shield gas for MAG welding has one layer and one pass, and the ratio of the thickness H1 of the pair of base materials and the groove distance W1 between these base materials is 0.4 or less. This is for welding a narrow groove having a tip angle ⁇ 1 of 10 ° or less.
  • Patent Document 2 is characterized in that the shield gas is composed of a three-kind mixed gas of carbon dioxide gas of 17% by volume or less, helium gas of 30% by volume or more and 80% by volume or less, and the balance of argon gas. It is disclosed that the penetration is improved.
  • Patent Document 1 assumes only a shield gas having an Ar gas of 80% or less, and does not consider the toughness of the weld metal. Further, the welding material used is limited to the flux-cored wire, and no consideration is given to the solid wire. For example, when a wire containing flux is used, the flux itself contains a large amount of an oxide having a low work function, and this oxide acts as a cathode point for emitting electrons, so that high arc stability can be obtained. On the other hand, when a solid wire is used, the higher the ratio of Ar in the shield gas, the more difficult it is for the cathode point to be formed on the surface of the molten metal, so that arc deflection occurs frequently and the arc becomes unstable. Therefore, when a solid wire is used, fusion failure is more likely to occur in a high Ar atmosphere than when a flux-cored wire is used.
  • the shield gas described in Patent Document 2 is composed of a three-kind mixed gas of carbon dioxide gas (CO 2 ), helium gas (He) and argon gas (Ar), and the content of He gas is 30 to 30.
  • the composition is 80% by volume, and He gas occupies most of the shield gas.
  • He gas is known to be in short supply worldwide these days, and since it is a high-cost gas, it cannot be said to be a gas that can be used for general purposes.
  • the welding condition to which the shield gas described in Patent Document 2 is applied is one layer and one pass, and the ratio of the thickness H1 of the pair of base materials and the groove distance W1 between these base materials is 0.4 or less.
  • the groove angle ⁇ 1 is limited to welding to narrow grooves of 10 ° or less. Therefore, there is a demand for the development of a welding method capable of performing welding without using He gas and without particularly limiting the welding conditions.
  • the present invention has been made in view of the above problems, and has Ar as a main component, which is a general-purpose gas, and has high arc stability regardless of conditions such as the type and shape of the welding material and the welding base material. It is an object of the present invention to provide a gas shielded arc welding method capable of suppressing fusion defects, a method for manufacturing a structure using the welding method, and a shield gas used in the welding method.
  • the present inventors have reduced the amount of molecular gas having oxygen atoms such as CO 2 and O 2, which is a shield gas containing Ar as a main component, and CO. It has been found that it is effective to use a shield gas in which the contents of 2 and H 2 and their relative ratios are appropriately controlled.
  • the above object of the present invention is achieved by the configuration of the following [1] according to the gas shielded arc welding method.
  • a gas shielded arc welding method in which a welding wire is used as an electrode and a shield gas is flowed through a welded region of a welding base material for welding.
  • the shield gas is based on the total volume of the shield gas.
  • CO 2 0.5% by volume or more and 2.0% by volume or less
  • H 2 0.5% by volume or more and 3.0% by volume or less
  • Contains The rest is Ar and unavoidable impurities
  • preferred embodiments of the present invention relating to the gas shielded arc welding method relate to the following [2] to [6].
  • the welding wire is used with respect to the total mass of the welding wire.
  • Cr 18% by mass or more and 28.5% by mass or less
  • Ni 8.0% by mass or more and 37.0% by mass or less
  • Contains The gas shielded arc welding method according to [1] or [2], which has a structure having a ferrite percentage of 15.3% or less based on a DeLong organization chart.
  • the welding wire is used with respect to the total mass of the welding wire.
  • C 0.20% by mass or less (including 0% by mass)
  • Si 1.00% by mass or less (including 0% by mass)
  • Mn 4.8% by mass or less (including 0% by mass)
  • P 0.03% by mass or less (including 0% by mass)
  • S 0.03% by mass or less (including 0% by mass)
  • Cu 4.0% by mass or less (including 0% by mass)
  • Mo 4.0% by mass or less (including 0% by mass)
  • Nb 1.0% by mass or less (including 0% by mass)
  • N 0.30% by mass or less (including 0% by mass)
  • the gas shielded arc welding method according to [3].
  • the welded region of the welding base material has a groove and has a groove.
  • the groove has one type of groove shape selected from V type, Les type, I type, K type, X type, J type and U type.
  • the gas shielded arc welding method according to any one of [1] to [4], wherein the groove angle of the groove is 0 to 90 °.
  • the gas flow rate Q of the shield gas is 10 to 30 (liters / minute) or less.
  • the protrusion length L of the welding wire is 10 to 30 (mm) or less, and the welding wire has a protrusion length L of 10 to 30 (mm) or less. Described in any one of [1] to [5], wherein the ratio of the gas flow rate Q (liters / minute) to the protrusion length L (mm) satisfies the following formula (4).
  • Gas shield arc welding method 0.5 ⁇ Q / L ⁇ 2.2 ... (4)
  • the shield gas is based on the total volume of the shield gas.
  • CO 2 0.5% by volume or more and 2.0% by volume or less
  • H 2 0.5% by volume or more and 3.0% by volume or less
  • Contains The rest is Ar and unavoidable impurities
  • the content of the CO 2 with respect to the total volume of the shield gas is [CO 2 ] by volume%
  • the content of the H 2 with respect to the total volume of the shield gas is [H 2 ] by volume
  • the following formula (1) is [H 2 ] by volume
  • a method for manufacturing a structure which is characterized by satisfying the formula (2). 1.30 ⁇ [CO 2 ] + [H 2 ] ⁇ 4.40 ... (1) 0.35 ⁇ [H 2 ] / ([CO 2 ] + [H 2 ]) ⁇ 0.74 ...
  • arc stability is high and fusion failure can be suppressed regardless of conditions such as the type and shape of the welding material and the welding base material. Further, according to the method for manufacturing a structure according to the present invention, it is possible to manufacture a good joint in which the occurrence of fusion defects is suppressed.
  • FIG. 1 is an organizational chart of DeLong when the vertical axis is nickel equivalent (%) and the horizontal axis is chromium equivalent (%).
  • FIG. 2 is a schematic view showing an example of a welding apparatus that can be used in the present invention.
  • FIG. 3 shows the test No. Sample No. in T1 It is a drawing substitute photograph which shows the cross section of the weld metal of B1 (welding current 150A).
  • FIG. 4 shows the test No. Sample No. in T16. It is a drawing substitute photograph which shows the cross section of the weld metal of B16 (welding current 150A).
  • FIG. 5 is a drawing substitute photograph showing the appearance of the bead of the test plate welded by the method of the present invention.
  • FIG. 6 is a drawing substitute photograph showing a cross section of the weld metal of the test plate welded by the method of the present invention.
  • the gas shielded arc welding method according to the present invention is a method in which a consumable electrode (hereinafter, also referred to as a welding wire) is supplied via a welding torch and welding is performed while the shield gas is allowed to flow in the welded region of the welding base material. Become. Since the present invention also relates to the shield gas used in the above welding method, first, the shield gas according to the present invention will be described.
  • the shield gas according to the present invention contains CO 2 (carbon dioxide) and H 2 (hydrogen), and the balance is composed of Ar (argon) and unavoidable impurities.
  • the shield gas is used to protect the molten metal from the adverse effects of atmospheric nitrogen and oxygen, while the shield gas contains molecular gases having oxygen atoms such as CO 2 and O 2. If so, oxygen atoms contained in the shield gas enter the molten metal.
  • the shield gas according to the present invention contains Ar gas, which is a general-purpose inert gas, as a main component while minimizing the amount of molecular gas having an oxygen atom.
  • the shield gas which is dominated by Ar gas, has a problem that fusion failure occurs due to arc instability and decrease in arc force due to arc deflection.
  • the low oxygen content of the weld metal is maintained by appropriately controlling the contents of CO 2 gas and H 2 gas and using Ar gas of 95% by volume or more as the balance. While maintaining arc stability and arc force, it is possible to achieve suppression of fusion defects.
  • the CO 2 gas is a gas that contributes to arc stability
  • the H 2 gas is a gas that contributes to arc force.
  • ⁇ CO 2 0.5% by volume or more and 2.0% by volume or less>
  • CO 2 easily dissociates into atoms in the arc and takes dissociation heat from the arc, which contributes to the contraction effect of the arc.
  • the ratio of the potential gradient of CO 2 when air is 1 is 1.5.
  • the dissociated O oxygen atom
  • the dissociated O reacts with the deoxidizing element on the molten pool to form an oxide on the surface of the molten pool, and this oxide acts as a cathode point to suppress arc deflection and arc. Is stable.
  • the dissociated O enters the molten metal, the amount of oxygen in the weld metal may increase as a result, so that CO 2 in the shield gas needs to be appropriately controlled.
  • the CO 2 content in the shield gas is 0.5% by volume or more, preferably 0.6% by volume or more, and more preferably 0.9% by volume or more with respect to the total volume of the shield gas. ..
  • the CO 2 content in the shield gas shall be 2.0% by volume or less with respect to the total volume of the shield gas. Further, when the CO 2 content in the shield gas is preferably 1.5% by volume or less, more preferably 1.1% by volume or less with respect to the total volume of the shield gas, oxygen entering the molten metal is further suppressed. Therefore, more excellent toughness can be ensured.
  • the shield gas contains CO 2
  • C (carbon) or CO (carbon monoxide) is generated at the time of dissociation, and the action of reducing O adsorbed on the surface of the molten pool works.
  • CO 2 carbon
  • CO carbon monoxide
  • it is a molecular gas, it can suppress oxygen entering the molten metal as much as possible.
  • Such an effect of CO 2 cannot be replaced by a molecular gas having another oxygen atom, for example, O 2 which is mentioned as a general-purpose one for welding.
  • CO 2 is selected as a molecular gas having an oxygen atom that ensures arc stability while suppressing an increase in oxygen content of the weld metal and maintaining a good bead appearance.
  • H 2 is a molecule having a higher potential gradient than other molecules, and the ratio of the potential gradient of H 2 when air is 1 is set to 10. This is because the dissociation voltage of H 2 is extremely low, and a large amount of dissociation heat is taken away, which greatly contributes to the contraction effect of the arc.
  • H 2 has a reducing effect and also has an effect of suppressing oxygen entering the molten metal.
  • the H 2 content in the shield gas is 0.5% by volume or more, preferably 0.8% by volume or more, and more preferably 1.0% by volume or more with respect to the total volume of the shield gas. ..
  • the H 2 content in the shield gas is 3.0% by volume or less, preferably 2.8% by volume or less, based on the total volume of the shield gas.
  • Ar gas is also called an inert gas or a noble gas because Ar is a monatomic molecule and has a property of not forming a stable chemical bond.
  • Ar gas contains the above CO 2 and H 2 , and the balance is Ar and unavoidable impurities, and the Ar content is not particularly limited.
  • the Ar content in the shield gas is preferably 95% by volume or more, more preferably more than 95% by volume, and further preferably 96% by volume or more with respect to the total volume of the shield gas. ..
  • the Ar content in the shield gas is preferably 98.5% by volume or less, more preferably 98.1% by volume or less, based on the total volume of the shield gas.
  • the ratio of the potential gradient of Ar when air is 1 is 0.5.
  • Examples of the unavoidable impurities that can be contained in the shield gas according to the present invention include oxygen, nitrogen, water and the like. Of the above unavoidable impurities, the smaller the oxygen content, the better, and if the O 2 content in the shield gas is 0.02% by volume or less with respect to the total volume of the shield gas, the effect of the present invention is hindered. No. Further, the content of other unavoidable impurities is also better as it is smaller, and if the content of each component other than O 2 in the shield gas is 0.03% by volume or less with respect to the total volume of the shield gas, respectively. , Does not interfere with the effect of the present invention.
  • the total amount of unavoidable impurities contained in the shield gas is preferably 0.05% by volume or less, more preferably 0.03% by volume or less, based on the total volume of the shield gas. ..
  • both CO 2 and H 2 are components that contribute to the arc contraction effect and have the effect of improving the arc stability. Therefore, in the present invention, the optimum range of the total amount thereof is also limited. do.
  • the CO 2 content with respect to the total volume of the shield gas is [CO 2 ] by volume% and the H 2 content is [H 2 ] by volume%
  • [CO 2 ] + [H 2 ] is less than 1.30. If there is, one or both of the effect of suppressing fusion failure and the effect of improving arc stability due to the arc contraction effect cannot be obtained.
  • [CO 2 ] + [H 2 ] exceeds 4.40, the austerity effect of the arc becomes excessive and arc instability occurs.
  • the CO 2 content and the H 2 content shall satisfy the following formula (1).
  • the value obtained by [CO 2 ] + [H 2 ] is preferably 1.50 or more, more preferably 1.90 or more, and preferably 4.30 or less, 3.90. The following is more preferable.
  • the present invention also limits the optimum range for the ratio of the H 2 content to the total amount of the CO 2 content and the H 2 content. That is, the total amount of the CO 2 content and the H 2 content satisfies the above formula (1), and the ratio of H 2 to the total amount satisfies the following formula (2). Only in certain cases, the effect of suppressing fusion defects and the arc stability, which are the effects of the present invention, are exhibited.
  • the CO 2 content and the H 2 content shall satisfy the following formula (2).
  • the value obtained by [H 2 ] / ([CO 2 ] + [H 2 ]) is preferably 0.40 or more, more preferably 0.47 or more, and 0.70 or less. It is preferably 0.67 or less, and more preferably 0.67 or less.
  • the present invention by appropriately controlling the CO 2 content, H 2 content, and Ar content in the shield gas, the occurrence of fusion defects can be suppressed and the arc stability can be improved. Can be improved.
  • the effect of each of these gases on suppressing fusion defects and improving arc stability is determined by the potential gradient ratio when air is 1.
  • the value obtained by 0.5 ⁇ [Ar] + 1.5 ⁇ [CO 2 ] + 10 ⁇ [H 2 ] is more preferably 59.0 or more, further preferably 63.0 or more. It is more preferably 79.0 or less, and further preferably 78.0 or less.
  • the shield gas according to the present invention is a mixed gas in which the CO 2 content and the H 2 content are appropriately controlled and the balance is composed of Ar and unavoidable impurities. It is preferable to use a gas cylinder (hereinafter, also referred to as a gas cylinder) in which the gas is enclosed, or a method in which these gases are mixed and used using a gas mixer. A method of ejecting the mixed gas from one nozzle using a mixer is more preferable. On the other hand, in the method of mixing in the vicinity of the molten metal using the double shield gas method using two nozzles on the outside and the inside, the composition of the gas becomes non-uniform, and the effect of the present invention may not work. ..
  • the active gas is locally present, which may adversely affect the familiarity and glossiness. There can be sex. Therefore, it is desirable not to use the method of mixing in the vicinity of the molten metal because the effect of the present invention may not be fully exhibited.
  • the form of the welding wire used in the welding method according to the present invention is not particularly limited, and may be a solid wire or a flux-cored wire.
  • the solid wire is a wire-like wire having a solid wire cross section.
  • the surface of the solid wire may or may not be copper-plated, but it may be in either form.
  • the flux-cored wire is composed of a tubular outer skin and a flux filled inside the outer skin.
  • the flux-cored wire may be in either a seamless type having no seam on the outer skin or a seam type having a seam on the outer skin.
  • the flux-cored welding wire may or may not be copper-plated on the wire surface (outside of the outer skin).
  • the material of the outer skin is not particularly limited, and may be mild steel or stainless steel, and the composition with respect to the total mass of the weld wire can be selected according to the required characteristics of the welded structure, and is not particularly limited.
  • the total mass of the welding wire refers to the total mass of the components in the outer skin and the flux.
  • the outer skin include ordinary steel, SUH409L (JIS G 4312: 2001), SUS430, SUS304L, SUS316L, SUS310S (all JIS G 4305: 2012) and the like.
  • the welding wire is preferably austenitic stainless steel.
  • the Cr content and Ni content in the welding wire are both JIS Z3321: 2013 (stainless steel filler rod for welding, solid wire and steel strip) or JIS Z3323: 2007 (stainless steel arc welding flux-containing wire and wire and steel strip). It is preferably within the range specified by the filler rod). Specifically, the Cr content in the welding wire is preferably 18% by mass or more and 28.5% by mass or less with respect to the total mass of the welding wire.
  • the Ni content in the welding wire is preferably 8.0% by mass or more and 37.0% by mass or less with respect to the total mass of the welding wire.
  • FIG. 1 is an organizational chart of DeLong when the vertical axis is nickel equivalent (%) and the horizontal axis is chromium equivalent (%).
  • the weld wire has a structure of 15.3% or less in a ferrite percentage, and austenitic base material is used to shield the weld wire. Even when hydrogen is contained in the gas, it is preferable because it can suppress the occurrence of cracks in the weld metal.
  • the region exceeding the range of nickel equivalent and chromium equivalent shown in the DeLong organization chart shown in FIG. 1 is based on the straight line shown in the DeLong organization chart.
  • the weld wire has a structure consisting only of austenite, or a structure consisting of austenite and ferrite and having a structure having a ferrite percentage of 15.3% or less. It is preferable because it can further prevent cracking of the weld metal.
  • the welding wire that can be used in the present invention contains C, Si, Mn, P, S, Cu, Mo, Nb and N as optional elements in addition to the above-mentioned Cr and Ni. You may.
  • the steel grade of the welding wire suitable for combination with the shield gas according to the present invention is austenitic stainless steel. Therefore, the preferred range of the content of these arbitrary elements is JIS Z3321: 2013 (stainless steel filler rod for welding, solid wire and steel strip) or JIS Z3323: 2007 (wire and filler rod containing stainless steel arc welding flux). It is preferable that the content is not more than the maximum value of the content of each element specified in 1. Further, it is more preferable that the welding wire contains these optional elements and the balance is Fe and unavoidable impurities.
  • C 0.20% by mass or less (including 0% by mass)>
  • C is a component that affects the strength or corrosion resistance of the weld metal, and the lower the C content in the weld wire, the better the corrosion resistance. Therefore, the smaller the C content in the weld wire, the more preferably 0% by mass. May be.
  • the C content in the welded wire is 0.20 mass with respect to the total mass of the wire. % Or less is more preferable.
  • Si 1.00% by mass or less (including 0% by mass)>
  • Si is an element that is a component that improves the strength of the weld metal, but on the other hand, it is also a component that deteriorates the toughness, so the Si content in the weld wire may be 0% by mass.
  • the welding wire contains Si as an arbitrary element in order to adjust the mechanical performance of the obtained weld metal, specifically, the Si content in the welding wire is 1.00 mass with respect to the total mass of the wire. % Or less is more preferable.
  • Mn is a component that improves the strength of the weld metal, but in the present invention, the Mn content in the weld wire may be 0% by mass.
  • the Mn content in the welded wire is 4.8 mass with respect to the total weight of the wire. % Or less is more preferable.
  • Cu is a component that improves the strength and corrosion resistance of the weld metal, but in the present invention, the Cu content in the welded wire may be 0% by mass.
  • the total Cu content in the welded wire and plated is more preferably 4.0% by mass or less with respect to the total mass of the wire.
  • Mo 4.0% mass or less (including 0%)> Mo is a component that improves high-temperature strength and corrosion resistance, but on the other hand, it is also a component that promotes ⁇ embrittlement, so that the Mo content in the weld wire may be 0% by mass.
  • the welded wire contains Mo as an optional element in order to adjust the mechanical performance and corrosion resistance of the obtained weld metal, specifically, the Mo content in the welded wire is 4 with respect to the total mass of the welded wire. More preferably, it is 0.0% by mass or less.
  • Nb has the effect of stabilizing C by forming carbides, and is a component that suppresses the formation of Cr oxides and improves corrosion resistance.
  • the carbides referred to here also include complex compounds containing C such as charcoal sulfides and charcoal nitrides.
  • the Nb content in the welding wire is 0% by mass. You may.
  • the Nb content in the welding wire is 1.0% by mass with respect to the total mass of the welding wire.
  • Ti may be contained in the same range as Nb.
  • N 0.30% by mass or less (including 0%)>
  • N is a component that penetrates into the crystal structure and solid-solves to improve the strength and pitting corrosion resistance.
  • the N content in the weld wire may be 0% by mass.
  • the welded wire contains N as an optional element in order to adjust the mechanical performance and porcelain resistance of the obtained weld metal, specifically, the N content in the welded wire is relative to the total mass of the welded wire. It is preferably 0.30% by mass or less.
  • the welding wire that can be used in the gas shielded arc welding method according to the present invention contains V, Sn, Na, Co, Ca, Li, Sb, W, As and the like as unavoidable impurities in addition to the above elements. Will be done.
  • O is also contained as an impurity.
  • the welding device is not particularly limited as long as it is a welding device that performs gas shielded arc welding, and a welding device used for conventional gas shielded arc welding can be used.
  • a semi-automatic welding device, an automatic welding device using a mobile carriage, a welding robot system, and the like can be mentioned.
  • FIG. 2 is a schematic view showing an example of a welding apparatus that can be used in the present invention.
  • a welding torch 11 is attached to the tip thereof, and a robot 10 for moving the welding torch 11 along a welding line of a work W and a welding wire are supplied to the welding torch 11.
  • a wire supply unit (not shown)
  • a welding power supply unit 30 that supplies a current to the consumable electrode via the wire supply unit to generate an arc between the consumable electrode and the material to be welded.
  • the welding device includes a robot control unit 20 that controls the robot operation for moving the welding torch 11, and further includes a teaching pendant 40 that serves as an interface for inputting a command from the operator to the robot control unit 20. ..
  • the posture of the welding torch may be perpendicular to the base metal or may be tilted.
  • the angle formed by the vertical line with respect to the base metal and the torch is called the advance angle
  • the vertical line with respect to the base metal is tilted.
  • the angle formed by the torch is called the receding angle.
  • shield gas flow rate Q 10 to 30 (liters / minute)>
  • the shield gas flow rate Q contributes to the shielding property for protecting the molten metal from the atmosphere.
  • the shield gas flow rate Q is 10 (liters / minute) or more, sufficient shielding properties can be ensured.
  • the shield gas flow rate Q is 30 (liters / minute) or less, the gas flow suppresses turbulence and becomes a stable laminar flow. Therefore, from the viewpoint of ensuring the shielding property, the shield gas flow rate Q is preferably 10 to 30 (liters / minute), and from the viewpoint of further ensuring the familiarity and glossiness of the beads, the shield gas flow rate Q is 15. More preferably, it is ⁇ 25 (liters / minute).
  • the protruding length L of the weld wire also contributes to the shielding property for protecting the molten metal from the atmosphere.
  • the protruding length L of the welding wire is 30 mm or less, it is possible to suppress the change in the gas composition due to the entrainment of the atmosphere and secure sufficient shielding property. Further, when the protrusion length L of the welding wire is 10 mm or more, damage to the contact tip and the shield nozzle due to arc heat can be suppressed.
  • the protrusion length L of the welding wire is preferably 10 to 30 mm, and the arc stability is ensured after suppressing the thermal damage and ensuring the weldability for a long time.
  • the protrusion length L of the weld wire is more preferably 15 to 20 mm.
  • the shield gas flow rate Q and the protrusion length L of the welding wire it is preferable to appropriately control the shield gas flow rate Q and the protrusion length L of the welding wire, and control the ratio of the shield gas flow rate Q to the protrusion length L.
  • the Q / L is 0.5 or more, a more preferable shielding property can be secured, and when the Q / L is 2.2 or less, the gas flow can protect the arc region in a more stable laminar flow state. Therefore, the ratio of the shield gas flow rate Q to the protrusion length L preferably satisfies the following equation (4).
  • the groove shape of the welding base material is not particularly limited, but is selected from, for example, V type, Les type, I type, K type, X type, J type and U type. It can be one type of groove shape.
  • the groove angle is not limited, but the groove angle is preferably 0 ° or more because an I-shaped groove shape can be applied.
  • the groove angle is preferably 0 to 90 °.
  • the present invention also relates to a method for manufacturing a structure manufactured by gas shielded arc welding using a welding wire and a shield gas whose composition is controlled as described above. It is also preferable that the composition of the welding wire is controlled as described above.
  • Welding was performed according to the welding test method and welding conditions shown below, and the melting performance, familiarity, glossiness and droplet transfer were evaluated by the methods shown below.
  • the low current welding condition with a welding current of 100 A is a condition usually applied to difficult welding postures such as vertical welding and upward welding. Welding in such a posture usually has a very slow welding speed, so that the heat input to the weld is high, and thus fusion defect defects are unlikely to occur. In this embodiment, downward welding is simply used.
  • flank angle is 90 ° or more, which will be shaped like a fillet joint in the construction of the next pass, it is possible to melt the weld toe to create a joint without fusion defects. Therefore, if the value obtained by (bead width / bead height) is within the above range as a range in which defects can be prevented with a margin, it is accepted.
  • the glossiness was also evaluated as a sensory evaluation when the welding current was 100 A and when the welding current was 150 A.
  • the glossiness at each welding current is evaluated in three stages of 1 to 3, and the total of the glossiness score when the welding current is 100A and the glossiness score when the welding current is 150A is comprehensively evaluated. And said.
  • the evaluation criteria for glossiness are shown in Table 6 below, and the evaluation criteria for comprehensive evaluation of glossiness are shown in Table 7 below.
  • Test No. T1 to T13 have a melting performance because the composition of the shield gas is within the range of the present invention and the formulas (1) and (2) obtained by the CO 2 content and the H 2 content are satisfied. Excellent results were obtained in all of the items of arc stability, familiarity and glossiness.
  • FIG. 3 shows the test No. Sample No. in T1 It is a drawing substitute photograph which shows the cross section of the weld metal of B1 (welding current 150A).
  • FIG. 3 shows an example in which the melting performance test is passed. Test No. In T1 (Sample No. B1), the welding current was 150 A, the value obtained by (bead width / bead height) was 5.2, and the flank angle was 155 °. In the construction in which such a smooth bead toe is formed, it was judged that the resistance to the fusion defect is extremely good.
  • the test No. for T2 to T13 the test No. As with T1, excellent melting performance could be obtained.
  • T1 to T6 especially the test No. In T1 to T3, T5 and T6, since the protrusion length L of the weld wire is in the more preferable range of the present invention, excellent arc stability can be obtained without changing the gas composition due to the entrainment of the atmosphere. rice field.
  • the test No. T7, T8, T11 and T12 are excellent arcs because the values obtained by the formula (2) using the CO 2 content and the H 2 content in the shield gas exceed the more preferable lower limit value of the present invention. I was able to obtain stability.
  • the test No. In T14 the H 2 content in the shield gas exceeds the upper limit of the range of the present invention, and also exceeds the upper limits specified in the formulas (1) and (2) obtained by the CO 2 content and the H 2 content. Therefore, the arc stability was lowered.
  • the H 2 content in the shield gas is less than the lower limit of the range of the present invention, and is also less than the lower limit specified in the formulas (1) and (2) obtained by the CO 2 content and the H 2 content. Therefore, the melting performance was low.
  • FIG. 4 shows the test No. Sample No. in T16. It is a drawing substitute photograph which shows the cross section of the weld metal of B16 (welding current 150A).
  • FIG. 4 shows an example in which the melting performance test fails.
  • Test No. In T16 (Sample No. B16), the welding current was 150 A, the value obtained by (bead width / bead height) was 3.2, and the flank angle was 125 °.
  • Test No. No. 17 has a melting performance because the CO 2 content in the shield gas exceeds the upper limit of the range of the present invention and is less than the lower limit specified in the formula (2) obtained by the CO 2 content and the H 2 content. Became low.
  • Test No. Reference numeral 18 is that the H 2 content in the shield gas is less than the lower limit of the range of the present invention, and is also less than the lower limit specified in the formulas (1) and (2) obtained by the CO 2 content and the H 2 content. Therefore, the melting performance was low.
  • FIG. 5 is a drawing substitute photograph showing the appearance of the bead of the test plate welded by the method of the present invention.
  • FIG. 6 is a drawing substitute photograph showing a cross section of the weld metal of the test plate shown in FIG.
  • SUS304L having a plate thickness of 12 mm is used as a welding base material, the groove angle is 45 °, and the above test No. This is a three-layer, three-pass vertical welding performed under the conditions of T1.
  • the joint obtained by the method of the present invention was able to obtain sufficient penetration and a smooth bead shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

Provided is a gas shielded arc welding method with which arc stability is high and incomplete fusion can be suppressed, regardless of the conditions of a welding material, a welding base material, and the like. Also provided are a structure object production method using the welding method, and a shielding gas to be used in the welding method. The shielding gas to be used in the gas shielded arc welding contains, with respect to the total volume of the shielding gas, between 0.5 % by volume and 2.0 % by volume inclusive of CO2, and between 0.5 % by volume and 3.0 % by volume inclusive of H2, the remainder being Ar and unavoidable impurities. When [CO2] represents the CO2 content in percentage by volume with respect to the total volume of the shielding gas, and [H2] represents the H2 content in percentage by volume with respect to the total volume of the shielding gas, the shielding gas satisfies formula (1) and formula (2). (1): 1.30 ≤ [CO2] + [H2] ≤ 4.40 (2): 0.35 ≤ [H2]/([CO2] + [H2]) ≤ 0.74

Description

ガスシールドアーク溶接方法、構造物の製造方法及びシールドガスGas shield arc welding method, structure manufacturing method and shield gas
 本発明は、Arを主成分としたシールドガスを用いて溶接するガスシールドアーク溶接方法、構造物の製造方法及びシールドガスに関する。 The present invention relates to a gas shielded arc welding method for welding using a shield gas containing Ar as a main component, a structure manufacturing method, and a shield gas.
 ガスシールドアーク溶接では、大気中の窒素や酸素の悪影響から溶融金属(以下、溶融池ともいう)を保護するためにシールドガスを用いる。シールドガスの組成は、使用される溶接ワイヤ及び溶接母材(以下、単に「母材」または「ワーク」ともいう)の鋼種や、製造される構造物の用途によって種々最適化される。例えば、ステンレス鋼等の高合金鋼を溶接ワイヤとして使用した場合に、溶接後の溶接金属の酸素含有量を抑制し、優れた機械的性能、特に靱性を確保することを目的として、Arを主成分として、少量のO又はCOを含有する混合ガスをシールドガスとして使用することが一般的である。 In gas shielded arc welding, a shield gas is used to protect the molten metal (hereinafter, also referred to as a molten pool) from the adverse effects of nitrogen and oxygen in the atmosphere. The composition of the shield gas is variously optimized depending on the steel type of the welding wire and the welding base material (hereinafter, also simply referred to as “base material” or “work”) used, and the application of the structure to be manufactured. For example, when high alloy steel such as stainless steel is used as a welding wire, Ar is mainly used for the purpose of suppressing the oxygen content of the weld metal after welding and ensuring excellent mechanical performance, especially toughness. As a component, it is common to use a mixed gas containing a small amount of O 2 or CO 2 as a shield gas.
 このように、Arを主成分とした混合ガスをシールドガスとして使用する場合は、シールドガス中のArの含有量を増加させると、優れた靱性を確保することが可能である。その反面、溶込み性能が劣り、融合不良といった溶接欠陥が発生するという課題が生じる。これはArの電位傾度が低いという性質に起因しており、シールドガス中のArの比率が高くなるほど、アークが広がり易く、電流密度が小さくなり、溶融池を押し下げる力(以下、アーク力ともいう)が低下するためである。 As described above, when a mixed gas containing Ar as a main component is used as a shield gas, it is possible to secure excellent toughness by increasing the content of Ar in the shield gas. On the other hand, there is a problem that the penetration performance is inferior and welding defects such as poor fusion occur. This is due to the low potential gradient of Ar, and the higher the ratio of Ar in the shield gas, the easier it is for the arc to spread, the smaller the current density, and the force that pushes down the molten pool (hereinafter also referred to as the arc force). ) Decreases.
 このような課題を解決するために、特許文献1では、ステンレス鋼又はニッケル合金を外皮とし、金属酸化物、炭酸塩、金属弗化物及び金属粉からなるフラックス入りワイヤが開示されている、上記特許文献1に記載のフラックス入りワイヤは、フラックス成分として、ワイヤ全重量に対してTiOを5~10重量%、SiOを0~1.5重量%、炭酸塩を0.1~1重量%、金属弗化物をフッ素量換算で0.05~0.5重量%及び珪素量が0.1~1.5重量%の金属粉混合物を1~30重量%含有することを特徴としている。そして、上記フラックス入りワイヤを用いることにより、シールドガス組成を80%Ar+20%COとして溶接した場合であっても、100%COシールドガスを用いた場合と同様に溶接が可能であり、欠陥も発生しないことが開示されている。 In order to solve such a problem, Patent Document 1 discloses a flux-containing wire made of a metal oxide, a carbonate, a metal fluoride and a metal powder with a stainless steel or nickel alloy as an outer skin. the flux-cored wire according to Reference 1, as a flux component, a TiO 2 5 ~ 10% by weight relative to the total wire weight, the SiO 2 0 ~ 1.5 wt%, the carbonate 0.1-1 wt% It is characterized by containing 1 to 30% by weight of a metal powder mixture having a metal fluoride content of 0.05 to 0.5% by weight in terms of the amount of fluorine and a silicon content of 0.1 to 1.5% by weight. Then, by using the flux-cored wire, even when welding is performed with the shield gas composition set to 80% Ar + 20% CO 2 , welding is possible in the same manner as when 100% CO 2 shield gas is used, and defects are found. It is disclosed that it does not occur.
 また、特許文献2では、8重量%以上、13重量%以下のCrを含有する高Cr鋼を、8重量%以上、13重量%以下のCrを含有するソリッドワイヤを用いて溶接するためのマグ溶接用シールドガスが開示されている。上記マグ溶接用シールドガスは、具体的には、1層1パスで、一対の母材の厚さH1とこれら母材間の開先の間隔W1の比が0.4以下であり、この開先の角度θ1が10°以下の狭開先を溶接するためのものである。また、上記特許文献2には、上記シールドガスは、17容量%以下の炭酸ガス、30容量%以上、80容量%以下のヘリウムガス、残部がアルゴンガスの3種混合ガスからなることを特徴としており、溶込みが改善されることが開示されている。 Further, in Patent Document 2, a mug for welding high Cr steel containing 8% by weight or more and 13% by weight or less of Cr using a solid wire containing 8% by weight or more and 13% by weight or less of Cr. Welding shield gas is disclosed. Specifically, the shield gas for MAG welding has one layer and one pass, and the ratio of the thickness H1 of the pair of base materials and the groove distance W1 between these base materials is 0.4 or less. This is for welding a narrow groove having a tip angle θ1 of 10 ° or less. Further, Patent Document 2 is characterized in that the shield gas is composed of a three-kind mixed gas of carbon dioxide gas of 17% by volume or less, helium gas of 30% by volume or more and 80% by volume or less, and the balance of argon gas. It is disclosed that the penetration is improved.
日本国特開2001-25893号公報Japanese Patent Application Laid-Open No. 2001-25893 日本国特開2013-46932号公報Japanese Patent Application Laid-Open No. 2013-46932
 しかしながら、特許文献1では、Arガスが80%以下であるシールドガスのみを想定しており、溶接金属の靱性については考慮されていない。また、使用される溶接材料はフラックス入りワイヤに限定されており、ソリッドワイヤに関しては考慮されていない。
 例えば、フラックス入りワイヤを使用した場合は、フラックス自体が仕事関数の低い酸化物を多く含有し、この酸化物が電子を放出する陰極点として働くため、高いアーク安定性を得ることができる。
 これに対して、ソリッドワイヤを使用した場合は、シールドガス中のArの比率が高くなるほど、溶融金属表面に陰極点が形成されにくくなるため、アーク偏向が多発し、アークが不安定になる。したがって、ソリッドワイヤを使用した場合に、高Ar雰囲気においては、フラックス入りワイヤを使用した場合よりも融合不良が発生し易くなる。
However, Patent Document 1 assumes only a shield gas having an Ar gas of 80% or less, and does not consider the toughness of the weld metal. Further, the welding material used is limited to the flux-cored wire, and no consideration is given to the solid wire.
For example, when a wire containing flux is used, the flux itself contains a large amount of an oxide having a low work function, and this oxide acts as a cathode point for emitting electrons, so that high arc stability can be obtained.
On the other hand, when a solid wire is used, the higher the ratio of Ar in the shield gas, the more difficult it is for the cathode point to be formed on the surface of the molten metal, so that arc deflection occurs frequently and the arc becomes unstable. Therefore, when a solid wire is used, fusion failure is more likely to occur in a high Ar atmosphere than when a flux-cored wire is used.
 また、特許文献2に記載のシールドガスは、炭酸ガス(CO)、ヘリウムガス(He)及びアルゴンガス(Ar)の3種混合ガスからなるものであるが、Heガスの含有量は30~80容量%であり、シールドガスの大半をHeガスが占める組成となる。
 しかしながらHeガスは、近時、世界的な供給不足であることが知られており、高コストなガスであるため、汎用的に使用できるガスであるとは言えない。また、特許文献2に記載のシールドガスが適用される溶接条件は1層1パスであり、一対の母材の厚さH1とこれら母材間の開先の間隔W1の比が0.4以下、この開先の角度θ1が10°以下の狭開先に対する溶接用として限定されている。したがって、Heガスを使用することなく、また、溶接条件を特に限定することなく溶接を実施することができる溶接方法の開発が要求されている。
The shield gas described in Patent Document 2 is composed of a three-kind mixed gas of carbon dioxide gas (CO 2 ), helium gas (He) and argon gas (Ar), and the content of He gas is 30 to 30. The composition is 80% by volume, and He gas occupies most of the shield gas.
However, He gas is known to be in short supply worldwide these days, and since it is a high-cost gas, it cannot be said to be a gas that can be used for general purposes. Further, the welding condition to which the shield gas described in Patent Document 2 is applied is one layer and one pass, and the ratio of the thickness H1 of the pair of base materials and the groove distance W1 between these base materials is 0.4 or less. , The groove angle θ1 is limited to welding to narrow grooves of 10 ° or less. Therefore, there is a demand for the development of a welding method capable of performing welding without using He gas and without particularly limiting the welding conditions.
 本発明はかかる問題点に鑑みてなされたものであって、汎用的なガスであるArを主成分とし、溶接材料及び溶接母材の種類や形状等の条件を問わず、アーク安定性が高く、かつ融合不良を抑制できるガスシールドアーク溶接方法、該溶接方法を利用した構造物の製造方法及び該溶接方法に使用されるシールドガスを提供することを目的とする。 The present invention has been made in view of the above problems, and has Ar as a main component, which is a general-purpose gas, and has high arc stability regardless of conditions such as the type and shape of the welding material and the welding base material. It is an object of the present invention to provide a gas shielded arc welding method capable of suppressing fusion defects, a method for manufacturing a structure using the welding method, and a shield gas used in the welding method.
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、Arを主成分とするシールドガスであって、COやO等の酸素原子を有する分子性ガスを低減するとともに、CO及びHの含有量及びこれらの相対的な比率が適切に制御されたシールドガスを使用することが効果的であることを見出した。 As a result of diligent research to solve the above problems, the present inventors have reduced the amount of molecular gas having oxygen atoms such as CO 2 and O 2, which is a shield gas containing Ar as a main component, and CO. It has been found that it is effective to use a shield gas in which the contents of 2 and H 2 and their relative ratios are appropriately controlled.
 すなわち、本発明の上記目的は、ガスシールドアーク溶接方法に係る下記[1]の構成により達成される。 That is, the above object of the present invention is achieved by the configuration of the following [1] according to the gas shielded arc welding method.
[1] 溶接ワイヤを電極として使用し、シールドガスを溶接母材の被溶接領域に流しながら溶接するガスシールドアーク溶接方法であって、
 前記シールドガスは、シールドガス全体積に対し、
 CO:0.5体積%以上2.0体積%以下、及び、
 H:0.5体積%以上3.0体積%以下、
を含有し、
 残部がAr及び不可避的不純物であり、
 前記シールドガス全体積に対する前記COの含有量を体積%で[CO]とし、前記シールドガス全体積に対する前記Hの含有量を体積%で[H]としたとき、下記式(1)及び式(2)を満たすことを特徴とするガスシールドアーク溶接方法。
 1.30≦[CO]+[H]≦4.40・・・(1)
 0.35≦[H]/([CO]+[H])≦0.74・・・(2)
[1] A gas shielded arc welding method in which a welding wire is used as an electrode and a shield gas is flowed through a welded region of a welding base material for welding.
The shield gas is based on the total volume of the shield gas.
CO 2 : 0.5% by volume or more and 2.0% by volume or less, and
H 2 : 0.5% by volume or more and 3.0% by volume or less,
Contains,
The rest is Ar and unavoidable impurities,
When the content of the CO 2 with respect to the total volume of the shield gas is [CO 2 ] by volume% and the content of the H 2 with respect to the total volume of the shield gas is [H 2 ] by volume, the following formula (1). ) And the gas shielded arc welding method, which is characterized by satisfying the formula (2).
1.30 ≤ [CO 2 ] + [H 2 ] ≤ 4.40 ... (1)
0.35 ≤ [H 2 ] / ([CO 2 ] + [H 2 ]) ≤ 0.74 ... (2)
 また、ガスシールドアーク溶接方法に係る本発明の好ましい実施形態は、下記[2]~[6]に関する。 Further, preferred embodiments of the present invention relating to the gas shielded arc welding method relate to the following [2] to [6].
[2] 前記シールドガス全体積に対する前記Arの含有量を体積%で[Ar]としたとき、下記式(3)を満たすことを特徴とする[1]に記載のガスシールドアーク溶接方法。
 57.0≦0.5×[Ar]+1.5×[CO]+10×[H]≦80.0・・・(3)
[2] The gas shielded arc welding method according to [1], wherein the content of Ar with respect to the total volume of the shield gas is [Ar] in% by volume, and the following formula (3) is satisfied.
57.0 ≤ 0.5 x [Ar] +1.5 x [CO 2 ] +10 x [H 2 ] ≤ 80.0 ... (3)
[3] 前記溶接ワイヤは、溶接ワイヤ全質量に対し、
 Cr:18質量%以上28.5質量%以下、及び、
 Ni:8.0質量%以上37.0質量%以下、
を含有し、
 DeLongの組織図に基づくフェライト百分率で15.3%以下の組織を有することを特徴とする[1]又は[2]に記載のガスシールドアーク溶接方法。
[3] The welding wire is used with respect to the total mass of the welding wire.
Cr: 18% by mass or more and 28.5% by mass or less, and
Ni: 8.0% by mass or more and 37.0% by mass or less,
Contains,
The gas shielded arc welding method according to [1] or [2], which has a structure having a ferrite percentage of 15.3% or less based on a DeLong organization chart.
[4] 前記溶接ワイヤは、前記溶接ワイヤ全質量に対し、
 C:0.20質量%以下(0質量%を含む)、
 Si:1.00質量%以下(0質量%を含む)、
 Mn:4.8質量%以下(0質量%を含む)、
 P:0.03質量%以下(0質量%を含む)、
 S:0.03質量%以下(0質量%を含む)、
 Cu:4.0質量%以下(0質量%を含む)、
 Mo:4.0質量%以下(0質量%を含む)、
 Nb:1.0質量%以下(0質量%を含む)、及び、
 N:0.30質量%以下(0質量%を含む)、
であることを特徴とする[3]に記載のガスシールドアーク溶接方法。
[4] The welding wire is used with respect to the total mass of the welding wire.
C: 0.20% by mass or less (including 0% by mass),
Si: 1.00% by mass or less (including 0% by mass),
Mn: 4.8% by mass or less (including 0% by mass),
P: 0.03% by mass or less (including 0% by mass),
S: 0.03% by mass or less (including 0% by mass),
Cu: 4.0% by mass or less (including 0% by mass),
Mo: 4.0% by mass or less (including 0% by mass),
Nb: 1.0% by mass or less (including 0% by mass), and
N: 0.30% by mass or less (including 0% by mass),
The gas shielded arc welding method according to [3].
[5] 前記溶接母材の被溶接領域は開先を有し、
 前記開先は、V形、レ形、I形、K形、X形、J形及びU形から選択された1種の開先形状を有し、
 前記開先の開先角度は0~90°であることを特徴とする[1]~[4]のいずれか1つに記載のガスシールドアーク溶接方法。
[5] The welded region of the welding base material has a groove and has a groove.
The groove has one type of groove shape selected from V type, Les type, I type, K type, X type, J type and U type.
The gas shielded arc welding method according to any one of [1] to [4], wherein the groove angle of the groove is 0 to 90 °.
[6] 前記シールドガスのガス流量Qが10~30(リットル/分)以下、
 前記溶接ワイヤの突出し長さLが10~30(mm)以下であり、
 前記ガス流量Q(リットル/分)と前記突出し長さL(mm)との比が、下記式(4)を満足することを特徴とする[1]~[5]のいずれか1つに記載のガスシールドアーク溶接方法。
 0.5≦Q/L≦2.2・・・(4)
[6] The gas flow rate Q of the shield gas is 10 to 30 (liters / minute) or less.
The protrusion length L of the welding wire is 10 to 30 (mm) or less, and the welding wire has a protrusion length L of 10 to 30 (mm) or less.
Described in any one of [1] to [5], wherein the ratio of the gas flow rate Q (liters / minute) to the protrusion length L (mm) satisfies the following formula (4). Gas shield arc welding method.
0.5 ≤ Q / L ≤ 2.2 ... (4)
 また、本発明の上記目的は、構造物の製造方法に係る下記[7]の構成により達成される。 Further, the above object of the present invention is achieved by the configuration of the following [7] relating to the method for manufacturing a structure.
[7] 溶接ワイヤ及びシールドガスを用いたガスシールドアーク溶接により製造される構造物の製造方法であって、
 前記シールドガスは、シールドガス全体積に対し、
 CO:0.5体積%以上2.0体積%以下、及び、
 H:0.5体積%以上3.0体積%以下、
を含有し、
 残部がAr及び不可避的不純物であり、
 前記シールドガス全体積に対する前記COの含有量を体積%で[CO]とし、前記シールドガス全体積に対する前記Hの含有量を体積%で[H]としたとき、下記式(1)及び式(2)を満たすことを特徴とする構造物の製造方法。
 1.30≦[CO]+[H]≦4.40・・・(1)
 0.35≦[H]/([CO]+[H])≦0.74・・・(2)
[7] A method for manufacturing a structure manufactured by gas shielded arc welding using a welding wire and a shield gas.
The shield gas is based on the total volume of the shield gas.
CO 2 : 0.5% by volume or more and 2.0% by volume or less, and
H 2 : 0.5% by volume or more and 3.0% by volume or less,
Contains,
The rest is Ar and unavoidable impurities,
When the content of the CO 2 with respect to the total volume of the shield gas is [CO 2 ] by volume% and the content of the H 2 with respect to the total volume of the shield gas is [H 2 ] by volume, the following formula (1). ) And a method for manufacturing a structure, which is characterized by satisfying the formula (2).
1.30 ≤ [CO 2 ] + [H 2 ] ≤ 4.40 ... (1)
0.35 ≤ [H 2 ] / ([CO 2 ] + [H 2 ]) ≤ 0.74 ... (2)
 また、本発明の上記目的は、シールドガスに係る下記[8]の構成により達成される。 Further, the above object of the present invention is achieved by the configuration of the following [8] relating to the shield gas.
[8] ガスシールドアーク溶接に用いられるシールドガスであって、
 シールドガス全体積に対し、
 CO:0.5体積%以上2.0体積%以下、及び、
 H:0.5体積%以上3.0体積%以下、
を含有し、
 残部がAr及び不可避的不純物であり、
 前記シールドガス全体積に対する前記COの含有量を体積%で[CO]とし、前記シールドガス全体積に対する前記Hの含有量を体積%で[H]としたとき、下記式(1)及び式(2)を満たすことを特徴とするシールドガス。
 1.30≦[CO]+[H]≦4.40・・・(1)
 0.35≦[H]/([CO]+[H])≦0.74・・・(2)
[8] Gas shield gas used for arc welding, which is a shield gas.
For the total volume of shield gas
CO 2 : 0.5% by volume or more and 2.0% by volume or less, and
H 2 : 0.5% by volume or more and 3.0% by volume or less,
Contains,
The rest is Ar and unavoidable impurities,
When the content of the CO 2 with respect to the total volume of the shield gas is [CO 2 ] by volume% and the content of the H 2 with respect to the total volume of the shield gas is [H 2 ] by volume, the following formula (1). ) And the shield gas characterized by satisfying the formula (2).
1.30 ≤ [CO 2 ] + [H 2 ] ≤ 4.40 ... (1)
0.35 ≤ [H 2 ] / ([CO 2 ] + [H 2 ]) ≤ 0.74 ... (2)
 本発明に係るガスシールドアーク溶接方法によれば、溶接材料及び溶接母材の種類や形状等の条件を問わず、アーク安定性が高く、かつ融合不良を抑制することができる。また、本発明に係る構造物の製造方法によれば、融合不良の発生が抑制された良好な継手を製造することができる。 According to the gas shielded arc welding method according to the present invention, arc stability is high and fusion failure can be suppressed regardless of conditions such as the type and shape of the welding material and the welding base material. Further, according to the method for manufacturing a structure according to the present invention, it is possible to manufacture a good joint in which the occurrence of fusion defects is suppressed.
図1は、縦軸をニッケル当量(%)とし、横軸をクロム当量(%)とした場合の、DeLongの組織図である。FIG. 1 is an organizational chart of DeLong when the vertical axis is nickel equivalent (%) and the horizontal axis is chromium equivalent (%). 図2は、本発明において使用することができる溶接装置の例を示す模式図である。FIG. 2 is a schematic view showing an example of a welding apparatus that can be used in the present invention. 図3は、試験No.T1における試料No.B1(溶接電流150A)の溶接金属の断面を示す図面代用写真である。FIG. 3 shows the test No. Sample No. in T1 It is a drawing substitute photograph which shows the cross section of the weld metal of B1 (welding current 150A). 図4は、試験No.T16における試料No.B16(溶接電流150A)の溶接金属の断面を示す図面代用写真である。FIG. 4 shows the test No. Sample No. in T16. It is a drawing substitute photograph which shows the cross section of the weld metal of B16 (welding current 150A). 図5は、本発明方法により溶接を実施した試験板のビード外観を示す図面代用写真である。FIG. 5 is a drawing substitute photograph showing the appearance of the bead of the test plate welded by the method of the present invention. 図6は、本発明方法により溶接を実施した試験板の溶接金属の断面を示す図面代用写真である。FIG. 6 is a drawing substitute photograph showing a cross section of the weld metal of the test plate welded by the method of the present invention.
 以下、本発明を実施するための形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。また、明細書中、「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 Hereinafter, embodiments for carrying out the present invention will be described in detail. The present invention is not limited to the embodiments described below. Further, in the specification, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
[ガスシールドアーク溶接方法]
 本発明に係るガスシールドアーク溶接方法は、溶接トーチを介して消耗式電極(以下、溶接ワイヤともいう)を送給し、シールドガスを溶接母材の被溶接領域に流しながら溶接を行う方法となる。本発明は、上記溶接方法において使用されるシールドガスにも関するものであるため、まず、本発明に係るシールドガスについて説明する。
[Gas shield arc welding method]
The gas shielded arc welding method according to the present invention is a method in which a consumable electrode (hereinafter, also referred to as a welding wire) is supplied via a welding torch and welding is performed while the shield gas is allowed to flow in the welded region of the welding base material. Become. Since the present invention also relates to the shield gas used in the above welding method, first, the shield gas according to the present invention will be described.
[シールドガス]
 本発明に係るシールドガスは、CO(二酸化炭素)及びH(水素)を含有し、残部がAr(アルゴン)及び不可避的不純物から構成される。上述の通り、シールドガスは、大気中の窒素や酸素の悪影響から溶融金属を保護するために用いられるが、その一方で、シールドガスにCOやOといった酸素原子を有する分子性ガスが含まれる場合、シールドガスに含まれる酸素原子が溶融金属中に入る。本発明の前提である優れた溶接金属の靱性を確保するためには、溶接金属の低酸素化が条件となる。したがって、本発明に係るシールドガスは、酸素原子を有する分子性ガスを極力少なくして、汎用的な不活性ガスであるArガスを主成分としている。
[Shielding gas]
The shield gas according to the present invention contains CO 2 (carbon dioxide) and H 2 (hydrogen), and the balance is composed of Ar (argon) and unavoidable impurities. As mentioned above, the shield gas is used to protect the molten metal from the adverse effects of atmospheric nitrogen and oxygen, while the shield gas contains molecular gases having oxygen atoms such as CO 2 and O 2. If so, oxygen atoms contained in the shield gas enter the molten metal. In order to secure the excellent toughness of the weld metal, which is the premise of the present invention, it is a condition that the weld metal has low oxygen. Therefore, the shield gas according to the present invention contains Ar gas, which is a general-purpose inert gas, as a main component while minimizing the amount of molecular gas having an oxygen atom.
 さらに、前述したとおり、Arガスが大部分を占めるシールドガスは、アーク偏向によるアーク不安定及びアーク力低下によって、融合不良が発生するという課題がある。これに対して、本発明では、COガス及びHガスの含有量を適正に制御するとともに、残部を、例えば95体積%以上のArガスとすることにより、溶接金属の低酸素性を維持しつつ、アーク安定性及びアーク力を保持し、融合不良の抑制を達成することができる。
 なお、後述する通り、COガスはアーク安定性に寄与するガスとなり、Hガスはアーク力に寄与するガスとなる。以下、各ガス組成と適正範囲について詳細に説明する。
Further, as described above, the shield gas, which is dominated by Ar gas, has a problem that fusion failure occurs due to arc instability and decrease in arc force due to arc deflection. On the other hand, in the present invention, the low oxygen content of the weld metal is maintained by appropriately controlling the contents of CO 2 gas and H 2 gas and using Ar gas of 95% by volume or more as the balance. While maintaining arc stability and arc force, it is possible to achieve suppression of fusion defects.
As will be described later, the CO 2 gas is a gas that contributes to arc stability, and the H 2 gas is a gas that contributes to arc force. Hereinafter, each gas composition and an appropriate range will be described in detail.
<CO:0.5体積%以上2.0体積%以下>
 COはアーク中で原子状に解離しやすく、アークから解離熱を奪うことから、アークの緊縮効果に寄与する。なお、空気を1としたときのCOの電位傾度の比は1.5とされている。また、解離したO(酸素原子)が、溶融池上の脱酸元素と反応し、溶融池表面で酸化物を形成して、この酸化物が陰極点として働くことで、アーク偏向を抑制し、アークが安定する。しかし、解離したOが溶融金属中に入ると、結果として溶接金属の酸素量が増加する可能性があるため、シールドガス中のCOは適切に制御する必要がある。
 CO含有量が0.5体積%未満であると、主にアーク安定効果を確保することができない。したがって、シールドガス中のCO含有量は、シールドガス全体積に対して、0.5体積%以上とし、好ましくは0.6体積%以上であり、より好ましくは0.9体積%以上である。
<CO 2 : 0.5% by volume or more and 2.0% by volume or less>
CO 2 easily dissociates into atoms in the arc and takes dissociation heat from the arc, which contributes to the contraction effect of the arc. The ratio of the potential gradient of CO 2 when air is 1 is 1.5. In addition, the dissociated O (oxygen atom) reacts with the deoxidizing element on the molten pool to form an oxide on the surface of the molten pool, and this oxide acts as a cathode point to suppress arc deflection and arc. Is stable. However, when the dissociated O enters the molten metal, the amount of oxygen in the weld metal may increase as a result, so that CO 2 in the shield gas needs to be appropriately controlled.
If the CO 2 content is less than 0.5% by volume, the arc stabilizing effect cannot be mainly ensured. Therefore, the CO 2 content in the shield gas is 0.5% by volume or more, preferably 0.6% by volume or more, and more preferably 0.9% by volume or more with respect to the total volume of the shield gas. ..
 一方、CO含有量が2.0体積%を超えて、過度に含まれると、溶融金属中への酸素の混入、及び過度なアーク緊縮によって、溶滴移行がグロビュール移行形態となり、その結果、アークが不安定となりやすい。したがって、シールドガス中のCO含有量は、シールドガス全体積に対して、2.0体積%以下とする。また、シールドガス中のCO含有量は、シールドガス全体積に対して、好ましくは1.5体積%以下とし、より好ましくは1.1体積%以下とすると、溶融金属へ入る酸素を更に抑制することができることから、より優れた靱性を確保できる。 On the other hand, if the CO 2 content exceeds 2.0% by volume and is excessively contained, the droplet transfer becomes a globule transfer form due to the mixing of oxygen into the molten metal and excessive arc contraction, and as a result, The arc tends to be unstable. Therefore, the CO 2 content in the shield gas shall be 2.0% by volume or less with respect to the total volume of the shield gas. Further, when the CO 2 content in the shield gas is preferably 1.5% by volume or less, more preferably 1.1% by volume or less with respect to the total volume of the shield gas, oxygen entering the molten metal is further suppressed. Therefore, more excellent toughness can be ensured.
 なお、シールドガスがCOを含有する場合は、解離の際にC(炭素)又はCO(一酸化炭素)が発生し、溶融池表面に吸着したOを還元する作用が働くため、酸素原子を有する分子性ガスでありながら、溶融金属へ入る酸素を極力抑制することができる。このようなCOの効果は、他の酸素原子を有する分子性ガス、例えば、溶接に汎用的なものとして挙げられるOでは代替ができない。これは、シールドガスがOを含有する場合に、Oの解離後に、Oは還元されずに溶融池表面に吸着し、溶融金属中に酸素が入るからであり、その結果、溶接金属の酸素量が多くなったり、溶接後のビード表面の光沢性が悪くなったりするという弊害が発生する。したがって、本発明においては、溶接金属の酸素量増加抑制及び良好なビード外観を維持しつつ、アーク安定性を確保する酸素原子を有する分子性ガスとして、COが選択される。 When the shield gas contains CO 2 , C (carbon) or CO (carbon monoxide) is generated at the time of dissociation, and the action of reducing O adsorbed on the surface of the molten pool works. Although it is a molecular gas, it can suppress oxygen entering the molten metal as much as possible. Such an effect of CO 2 cannot be replaced by a molecular gas having another oxygen atom, for example, O 2 which is mentioned as a general-purpose one for welding. This is because when the shielding gas contains O 2, after dissociation of O 2, O is adsorbed on the molten pool surface without being reduced, is because oxygen from entering into the molten metal, as a result, the weld metal There are adverse effects such as an increase in the amount of oxygen and deterioration of the glossiness of the bead surface after welding. Therefore, in the present invention, CO 2 is selected as a molecular gas having an oxygen atom that ensures arc stability while suppressing an increase in oxygen content of the weld metal and maintaining a good bead appearance.
<H:0.5体積%以上3.0体積%以下>
 Hは、他の分子と比較しても電位傾度が高い分子であり、空気を1としたときのHの電位傾度の比は10とされている。これはHの解離電圧が極端に低いことが要因であり、多量の解離熱を奪うため、アークの緊縮効果に大きく寄与する。また、Hは還元効果もあり、溶融金属中に入る酸素を抑制する効果もある。H含有量が0.5体積%未満であると、アーク緊縮効果が得られず、電流密度が低下し、アーク力が減少するため、融合不良が発生する。したがって、シールドガス中のH含有量は、シールドガス全体積に対して、0.5体積%以上とし、好ましくは0.8体積%以上であり、より好ましくは1.0体積%以上である。
<H 2 : 0.5% by volume or more and 3.0% by volume or less>
H 2 is a molecule having a higher potential gradient than other molecules, and the ratio of the potential gradient of H 2 when air is 1 is set to 10. This is because the dissociation voltage of H 2 is extremely low, and a large amount of dissociation heat is taken away, which greatly contributes to the contraction effect of the arc. In addition, H 2 has a reducing effect and also has an effect of suppressing oxygen entering the molten metal. When containing H 2 content is less than 0.5% by volume, the arc austerity effect can not be obtained, the current density decreases, because the arc force decreases, fusion failure. Therefore, the H 2 content in the shield gas is 0.5% by volume or more, preferably 0.8% by volume or more, and more preferably 1.0% by volume or more with respect to the total volume of the shield gas. ..
 一方、H含有量が3.0体積%を超えると、アークの緊縮効果が過度に働くことによって、溶滴移行がグロビュール移行形態となる。グロビュール移行は、アーク力で溶滴が押し上げられ、ワイヤ径以上の粗大な溶滴が不定期に離脱する現象であり、このためアークは不安定となる。したがって、シールドガス中のH含有量は、シールドガス全体積に対して、3.0体積%以下とし、好ましくは2.8体積%以下である。 On the other hand, when the H 2 content exceeds 3.0% by volume, the austerity effect of the arc works excessively, so that the droplet transfer becomes a globule transfer form. Globule transition is a phenomenon in which droplets are pushed up by an arc force and coarse droplets having a wire diameter or larger are irregularly separated, so that the arc becomes unstable. Therefore, the H 2 content in the shield gas is 3.0% by volume or less, preferably 2.8% by volume or less, based on the total volume of the shield gas.
<残部:Ar及び不可避的不純物>
(Ar:95体積%以上98.5体積%以下)
 Arは単原子分子であり、安定な化学結合を形成しない特性を有するため、Arガスは不活性ガスや希ガスとも呼ばれる。溶接においては、シールドガス中に含まれるArガス、すなわち不活性ガスの割合が大きいほど、シールドガスから溶融金属中に入る酸素等を抑制することができ、溶接金属の低酸素化を図ることができる。したがって、本発明に係るシールドガスは、上記CO及びHを含有し、残部がAr及び不可避的不純物であるものとし、Ar含有量については特に制限されない。なお、Ar含有量が95体積%以上であると、溶接金属の酸素量を低くして、優れた靱性を確保することができる。したがって、シールドガス中のAr含有量は、シールドガス全体積に対して、95体積%以上であることが好ましく、95体積%超であることがより好ましく、96体積%以上であることが更に好ましい。
<Remaining: Ar and unavoidable impurities>
(Ar: 95% by volume or more and 98.5% by volume or less)
Ar gas is also called an inert gas or a noble gas because Ar is a monatomic molecule and has a property of not forming a stable chemical bond. In welding, the larger the proportion of Ar gas, that is, the inert gas contained in the shield gas, the more oxygen and the like entering the molten metal from the shield gas can be suppressed, and the welding metal can be reduced in oxygen. can. Therefore, the shield gas according to the present invention contains the above CO 2 and H 2 , and the balance is Ar and unavoidable impurities, and the Ar content is not particularly limited. When the Ar content is 95% by volume or more, the oxygen content of the weld metal can be lowered and excellent toughness can be ensured. Therefore, the Ar content in the shield gas is preferably 95% by volume or more, more preferably more than 95% by volume, and further preferably 96% by volume or more with respect to the total volume of the shield gas. ..
 一方、Ar含有量が98.5体積%以下であると、アークの電位傾度、すなわち単位距離当たりの電圧が低くなることを防止することができ、適正アーク電圧時において、アーク長及びアークの広がりを適正に保ち、電流密度を大きくすることができる。その結果、アーク力の低下を抑制し、融合不良の発生を防止することができる。また、陰極点が不安定となることによるアークの偏向を防止することができ、アークが安定化する。したがって、シールドガス中のAr含有量は、シールドガス全体積に対して、98.5体積%以下であることが好ましく、98.1体積%以下であることがより好ましい。
 なお、空気を1としたときのArの電位傾度の比は0.5となる。
On the other hand, when the Ar content is 98.5% by volume or less, it is possible to prevent the potential gradient of the arc, that is, the voltage per unit distance from becoming low, and the arc length and the spread of the arc at an appropriate arc voltage. Can be maintained properly and the current density can be increased. As a result, it is possible to suppress a decrease in arc force and prevent the occurrence of fusion failure. In addition, it is possible to prevent the deflection of the arc due to the instability of the cathode point, and the arc is stabilized. Therefore, the Ar content in the shield gas is preferably 98.5% by volume or less, more preferably 98.1% by volume or less, based on the total volume of the shield gas.
The ratio of the potential gradient of Ar when air is 1 is 0.5.
(不可避的不純物)
 本発明に係るシールドガスに含有され得る不可避的不純物としては、酸素、窒素及び水等が挙げられる。上記不可避的不純物のうち、酸素の含有量は少ないほどよく、シールドガス中のO含有量は、シールドガス全体積に対して、0.02体積%以下であれば、本発明の効果を妨げない。また、その他の不可避的不純物の含有量についても、少ないほどよく、シールドガス中のO以外の各成分の含有量は、シールドガス全体積に対して、それぞれ0.03体積%以下であれば、本発明の効果を妨げない。なお、シールドガスに含有される不可避的不純物の合計量は、シールドガス全体積に対して、好ましくは、0.05体積%以下であり、さらに好ましくは0.03体積%以下に制限できるとよい。
(Inevitable impurities)
Examples of the unavoidable impurities that can be contained in the shield gas according to the present invention include oxygen, nitrogen, water and the like. Of the above unavoidable impurities, the smaller the oxygen content, the better, and if the O 2 content in the shield gas is 0.02% by volume or less with respect to the total volume of the shield gas, the effect of the present invention is hindered. No. Further, the content of other unavoidable impurities is also better as it is smaller, and if the content of each component other than O 2 in the shield gas is 0.03% by volume or less with respect to the total volume of the shield gas, respectively. , Does not interfere with the effect of the present invention. The total amount of unavoidable impurities contained in the shield gas is preferably 0.05% by volume or less, more preferably 0.03% by volume or less, based on the total volume of the shield gas. ..
<1.30≦[CO]+[H]≦4.40>
 上述の通り、COとHは、いずれもアーク緊縮効果に寄与するとともに、アーク安定性を向上させる効果を有する成分であるため、本発明においては、これらの合計量についても最適範囲を限定する。
 シールドガス全体積に対するCO含有量を体積%で[CO]とし、H含有量を体積%で[H]としたとき、[CO]+[H]が1.30未満であると、アーク緊縮効果による融合不良抑制効果及びアーク安定性の向上効果のいずれか一方又は両方の効果を得ることができない。
 一方、[CO]+[H]が4.40を超えると、アークの緊縮効果が過剰になり、アーク不安定が発生する。
<1.30 ≤ [CO 2 ] + [H 2 ] ≤ 4.40>
As described above , both CO 2 and H 2 are components that contribute to the arc contraction effect and have the effect of improving the arc stability. Therefore, in the present invention, the optimum range of the total amount thereof is also limited. do.
When the CO 2 content with respect to the total volume of the shield gas is [CO 2 ] by volume% and the H 2 content is [H 2 ] by volume%, [CO 2 ] + [H 2 ] is less than 1.30. If there is, one or both of the effect of suppressing fusion failure and the effect of improving arc stability due to the arc contraction effect cannot be obtained.
On the other hand, when [CO 2 ] + [H 2 ] exceeds 4.40, the austerity effect of the arc becomes excessive and arc instability occurs.
 したがって、CO含有量及びH含有量は、下記式(1)を満足するものとする。なお、[CO]+[H]により得られる値は1.50以上であることが好ましく、1.90以上であることがより好ましく、4.30以下であることが好ましく、3.90以下であることがより好ましい。 Therefore, the CO 2 content and the H 2 content shall satisfy the following formula (1). The value obtained by [CO 2 ] + [H 2 ] is preferably 1.50 or more, more preferably 1.90 or more, and preferably 4.30 or less, 3.90. The following is more preferable.
 1.30≦[CO]+[H]≦4.40・・・(1) 1.30 ≤ [CO 2 ] + [H 2 ] ≤ 4.40 ... (1)
<0.35≦[H]/([CO]+[H])≦0.74>
 Hはアーク緊縮効果に大きく寄与するため、本発明においては、CO含有量とH含有量との合計量に対するH含有量の比率についても、最適範囲を限定する。すなわち、CO含有量とH含有量との合計量が、上記式(1)を満足するものであるとともに、この合計量に対するHの比率が、下記式(2)を満足するものである場合においてのみ、本発明の効果である融合不良抑制とアーク安定性をともに満たす効果を発揮する。
<0.35 ≤ [H 2 ] / ([CO 2 ] + [H 2 ]) ≤ 0.74>
Since H 2 greatly contributes to the arc austerity effect, the present invention also limits the optimum range for the ratio of the H 2 content to the total amount of the CO 2 content and the H 2 content. That is, the total amount of the CO 2 content and the H 2 content satisfies the above formula (1), and the ratio of H 2 to the total amount satisfies the following formula (2). Only in certain cases, the effect of suppressing fusion defects and the arc stability, which are the effects of the present invention, are exhibited.
 CO含有量とH含有量との合計量に対するH含有量の比率が0.35未満であると、アーク緊縮効果が小さく、融合不良が発生する虞がある。
 一方、上記比率が0.74を超えると、COのアーク安定効果が発揮されない上に、過度なアーク緊縮効果により、溶滴移行がグロビュール移行形態となるため、より一層アークが不安定となる。したがって、CO含有量及びH含有量は、下記式(2)を満足するものとする。なお、[H]/([CO]+[H])により得られる値は0.40以上であることが好ましく、0.47以上であることがより好ましく、0.70以下であることが好ましく、0.67以下であることがより好ましい。
If the ratio of the H 2 content to the total amount of the CO 2 content and the H 2 content is less than 0.35, the arc austerity effect is small and fusion failure may occur.
On the other hand, when the above ratio exceeds 0.74, the arc stabilizing effect of CO 2 is not exhibited, and the droplet transfer becomes a globule transfer form due to the excessive arc contraction effect, so that the arc becomes more unstable. .. Therefore, the CO 2 content and the H 2 content shall satisfy the following formula (2). The value obtained by [H 2 ] / ([CO 2 ] + [H 2 ]) is preferably 0.40 or more, more preferably 0.47 or more, and 0.70 or less. It is preferably 0.67 or less, and more preferably 0.67 or less.
 0.35≦[H]/([CO]+[H])≦0.74・・・(2) 0.35 ≤ [H 2 ] / ([CO 2 ] + [H 2 ]) ≤ 0.74 ... (2)
<57.0≦0.5×[Ar]+1.5×[CO]+10×[H]≦80.0>
 上述の通り、本発明においては、シールドガス中のCO含有量、H含有量及びAr含有量を適切に制御することにより、融合不良の発生を抑制することができるとともに、アーク安定性を向上させることができる。これらの各ガスの、融合不良抑制及びアーク安定性の向上に対する影響は、空気を1としたときの電位傾度比によって決定される。
<57.0 ≤ 0.5 x [Ar] + 1.5 x [CO 2 ] + 10 x [H 2 ] ≤ 80.0>
As described above, in the present invention, by appropriately controlling the CO 2 content, H 2 content, and Ar content in the shield gas, the occurrence of fusion defects can be suppressed and the arc stability can be improved. Can be improved. The effect of each of these gases on suppressing fusion defects and improving arc stability is determined by the potential gradient ratio when air is 1.
 シールドガス全体積に対するAr含有量を体積%で[Ar]とし、CO含有量を体積%で[CO]とし、H含有量を体積%で[H]としたとき、0.5×[Ar]+1.5×[CO]+10×[H]により得られる値が57.0以上、80.0以下の範囲であると、アーク緊縮効果、アーク安定効果を両立して得ることができる。
 したがって、本発明においては、下記式(3)を満足することが好ましい。なお、0.5×[Ar]+1.5×[CO]+10×[H]により得られる値は59.0以上であることがより好ましく、63.0以上であることが更に好ましく、79.0以下であることがより好ましく、78.0以下であることが更に好ましい。
0.5 when the Ar content with respect to the total volume of the shield gas is [Ar] by volume, the CO 2 content is [CO 2 ] by volume, and the H 2 content is [H 2] by volume. × [Ar] + 1.5 × [ CO 2] + 10 × [H 2] value obtained by 57.0 above, with the range of 80.0 or less, obtained by both arc stringency effect, the arc stabilizing effect be able to.
Therefore, in the present invention, it is preferable to satisfy the following formula (3). The value obtained by 0.5 × [Ar] + 1.5 × [CO 2 ] + 10 × [H 2 ] is more preferably 59.0 or more, further preferably 63.0 or more. It is more preferably 79.0 or less, and further preferably 78.0 or less.
 57.0≦0.5×[Ar]+1.5×[CO]+10×[H]≦80.0・・・(3) 57.0 ≤ 0.5 x [Ar] +1.5 x [CO 2 ] +10 x [H 2 ] ≤ 80.0 ... (3)
 本発明に係るシールドガスは、CO含有量及びH含有量が適切に制御され、残部がAr及び不可避的不純物で構成された混合ガスとなるが、その使用においては、あらかじめ製造した混合ガスを封入した気体用のボンベ(以降、ガスボンベともいう)を用いる方法、又はガス混合器を用いて、これらのガスを混合して用いる方法が好ましく、本発明の効果を得るためには、ガスボンベや混合器を用いて、混合されたガスを一つのノズルから噴出する方法がより好ましい。
 一方、外側と内側の二つのノズルを用いた2重シールドガス方式を用いて、溶融金属近傍で混合する方法は、ガスの組成が不均一になり、本発明の効果が作用しない可能性がある。また、2重シールドガス方式において、例えば、外側をAr、内側をCOやHガスとするときは、活性ガスが局所的に存在することになるため、なじみや光沢性に悪影響を及ぼす可能性がありうる。よって、溶融金属近傍で混合する方法は、本発明の効果が存分に発揮されない可能性があるため、用いないことが望ましい。
The shield gas according to the present invention is a mixed gas in which the CO 2 content and the H 2 content are appropriately controlled and the balance is composed of Ar and unavoidable impurities. It is preferable to use a gas cylinder (hereinafter, also referred to as a gas cylinder) in which the gas is enclosed, or a method in which these gases are mixed and used using a gas mixer. A method of ejecting the mixed gas from one nozzle using a mixer is more preferable.
On the other hand, in the method of mixing in the vicinity of the molten metal using the double shield gas method using two nozzles on the outside and the inside, the composition of the gas becomes non-uniform, and the effect of the present invention may not work. .. Further, in the double shield gas method, for example, when the outside is Ar and the inside is CO 2 or H 2 gas, the active gas is locally present, which may adversely affect the familiarity and glossiness. There can be sex. Therefore, it is desirable not to use the method of mixing in the vicinity of the molten metal because the effect of the present invention may not be fully exhibited.
 次に、本発明に係るガスシールドアーク溶接方法において使用されるシールドガスと組み合わせて用いられる溶接ワイヤの好ましい形態について説明する。 Next, a preferable form of the welding wire used in combination with the shield gas used in the gas shielded arc welding method according to the present invention will be described.
[溶接ワイヤ]
 本発明に係る溶接方法において使用される溶接ワイヤの形態は、特に問わず、ソリッドワイヤでもよいし、フラックス入りワイヤでもよい。
 ソリッドワイヤは、ワイヤ断面が中実である針金状のワイヤとなる。ソリッドワイヤはその表面に銅めっきを施すものと施さないものがあるが、どちらの形態であってもよい。
[Welding wire]
The form of the welding wire used in the welding method according to the present invention is not particularly limited, and may be a solid wire or a flux-cored wire.
The solid wire is a wire-like wire having a solid wire cross section. The surface of the solid wire may or may not be copper-plated, but it may be in either form.
 フラックス入りワイヤは、筒状を呈する外皮と、その外皮の内側に充填されたフラックスとで構成される。なお、フラックス入りワイヤは、外皮に継目のないシームレスタイプ、外皮に継目のあるシームタイプのいずれの形態であってもよい。また、フラックス入り溶接ワイヤは、ワイヤ表面(外皮の外側)に銅メッキを施されていても施されていなくてもよい。外皮の材質は特に問わず、軟鋼であってもステンレス鋼であってもよく、溶接ワイヤ全質量に対する組成は、要求される溶接構造物の特性によって選択することができ、特に制限はない。 The flux-cored wire is composed of a tubular outer skin and a flux filled inside the outer skin. The flux-cored wire may be in either a seamless type having no seam on the outer skin or a seam type having a seam on the outer skin. Further, the flux-cored welding wire may or may not be copper-plated on the wire surface (outside of the outer skin). The material of the outer skin is not particularly limited, and may be mild steel or stainless steel, and the composition with respect to the total mass of the weld wire can be selected according to the required characteristics of the welded structure, and is not particularly limited.
 以下、本発明において使用することができる溶接ワイヤの好ましい形態を詳細に説明する。なお、以下に示す溶接ワイヤがフラックス入りワイヤである場合には、溶接ワイヤ全質量とは、外皮とフラックスにおける成分量の総和を指す。また、外皮としては、例えば、普通鋼、SUH409L(JIS G 4312:2001年)、SUS430、SUS304L、SUS316L、SUS310S(いずれもJIS G 4305:2012年)等が挙げられる。 Hereinafter, preferred embodiments of the welding wire that can be used in the present invention will be described in detail. When the welding wire shown below is a flux-cored wire, the total mass of the welding wire refers to the total mass of the components in the outer skin and the flux. Examples of the outer skin include ordinary steel, SUH409L (JIS G 4312: 2001), SUS430, SUS304L, SUS316L, SUS310S (all JIS G 4305: 2012) and the like.
<Cr:18質量%以上28.5質量%以下、Ni:8.0質量%以上37.0質量%以下>
 Crは溶接金属の耐食性を向上させる成分である。また、Niは溶接金属のオーステナイト組織を安定化させ、低温での靱性を向上させる成分であり、フェライト組織の晶出量を調整する目的で一定量添加される成分である。
 本発明において、溶接ワイヤとしては、オーステナイト系ステンレスであることが好ましい。また、溶接ワイヤ中のCr含有量及びNi含有量は、ともに、JIS Z3321:2013(溶接用ステンレス鋼溶加棒、ソリッドワイヤ及び鋼帯)又はJIS Z3323:2007(ステンレス鋼アーク溶接フラックス入りワイヤ及び溶加棒)で規定されている範囲内であることが好ましい。具体的に、溶接ワイヤ中のCr含有量は、溶接ワイヤ全質量に対して18質量%以上28.5質量%以下であることが好ましい。
 また、溶接ワイヤ中のNi含有量は、溶接ワイヤ全質量に対して8.0質量%以上37.0質量%以下であることが好ましい。
<Cr: 18% by mass or more and 28.5% by mass or less, Ni: 8.0% by mass or more and 37.0% by mass or less>
Cr is a component that improves the corrosion resistance of the weld metal. Further, Ni is a component that stabilizes the austenite structure of the weld metal and improves the toughness at low temperatures, and is a component that is added in a fixed amount for the purpose of adjusting the crystallization amount of the ferrite structure.
In the present invention, the welding wire is preferably austenitic stainless steel. The Cr content and Ni content in the welding wire are both JIS Z3321: 2013 (stainless steel filler rod for welding, solid wire and steel strip) or JIS Z3323: 2007 (stainless steel arc welding flux-containing wire and wire and steel strip). It is preferably within the range specified by the filler rod). Specifically, the Cr content in the welding wire is preferably 18% by mass or more and 28.5% by mass or less with respect to the total mass of the welding wire.
The Ni content in the welding wire is preferably 8.0% by mass or more and 37.0% by mass or less with respect to the total mass of the welding wire.
 図1は、縦軸をニッケル当量(%)とし、横軸をクロム当量(%)とした場合の、DeLongの組織図である。溶接ワイヤは、JIS Z3119-2017によって規定された図1に示すDeLongの組織図に基づき、フェライト百分率で15.3%以下の組織を有するものであると、オーステナイト系の母材を使用し、シールドガス中に水素を含有する場合であっても、溶接金属に割れが発生することを抑制することができるため好ましい。なお、本発明において使用することができる溶接ワイヤにおいて、図1に示すDeLongの組織図に記載のニッケル当量及びクロム当量の範囲を超える領域については、DeLongの組織図に記載の直線に基づき、それを外挿して適用するものとする。
 また、溶接ワイヤが、DeLongの組織図に基づき、オーステナイトのみからなる組織であるか、又はオーステナイトとフェライトからなる組織であって、フェライト百分率で15.3%以下の組織を有するものであると、より一層溶接金属の割れを防止することができるため好ましい。
FIG. 1 is an organizational chart of DeLong when the vertical axis is nickel equivalent (%) and the horizontal axis is chromium equivalent (%). Based on the DeLong structure diagram shown in FIG. 1 defined by JIS Z3119-2017, the weld wire has a structure of 15.3% or less in a ferrite percentage, and austenitic base material is used to shield the weld wire. Even when hydrogen is contained in the gas, it is preferable because it can suppress the occurrence of cracks in the weld metal. In the welding wire that can be used in the present invention, the region exceeding the range of nickel equivalent and chromium equivalent shown in the DeLong organization chart shown in FIG. 1 is based on the straight line shown in the DeLong organization chart. Is extrapolated and applied.
Further, based on the DeLong structure diagram, the weld wire has a structure consisting only of austenite, or a structure consisting of austenite and ferrite and having a structure having a ferrite percentage of 15.3% or less. It is preferable because it can further prevent cracking of the weld metal.
 さらに、本発明において使用することができる溶接ワイヤは、前述のCr及びNiに加えて、任意元素として、必要に応じてC、Si、Mn、P、S、Cu、Mo、Nb及びNを含有してもよい。なお、上述の通り、本発明に係るシールドガスと組み合わせるのに適した溶接ワイヤの鋼種は、オーステナイト系ステンレスである。したがって、これら任意元素の含有量の好ましい範囲は、JIS Z3321:2013(溶接用ステンレス鋼溶加棒、ソリッドワイヤ及び鋼帯)又はJIS Z3323:2007(ステンレス鋼アーク溶接フラックス入りワイヤ及び溶加棒)で規定されている各元素の含有量の最大値以下であることが好ましい。また、溶接ワイヤはこれら任意元素を含有し、残部がFe及び不可避的不純物であることが更に好ましい。 Further, the welding wire that can be used in the present invention contains C, Si, Mn, P, S, Cu, Mo, Nb and N as optional elements in addition to the above-mentioned Cr and Ni. You may. As described above, the steel grade of the welding wire suitable for combination with the shield gas according to the present invention is austenitic stainless steel. Therefore, the preferred range of the content of these arbitrary elements is JIS Z3321: 2013 (stainless steel filler rod for welding, solid wire and steel strip) or JIS Z3323: 2007 (wire and filler rod containing stainless steel arc welding flux). It is preferable that the content is not more than the maximum value of the content of each element specified in 1. Further, it is more preferable that the welding wire contains these optional elements and the balance is Fe and unavoidable impurities.
 以下、本発明において使用することができる溶接ワイヤの成分量のより好ましい数値範囲を、その限定理由と共に具体的に説明する。 Hereinafter, a more preferable numerical range of the component amount of the welding wire that can be used in the present invention will be specifically described together with the reason for the limitation.
<C:0.20質量%以下(0質量%を含む)>
 Cは溶接金属の強度又は耐食性に影響を及ぼす成分であり、溶接ワイヤ中のC含有量が低いほど、耐食性が良好となることから、溶接ワイヤ中のC含有量は少ないほど好ましく、0質量%であってもよい。得られる溶接金属の機械的性能を調整するために、溶接ワイヤがCを任意元素として含有する場合に、具体的には、溶接ワイヤ中のC含有量はワイヤ全質量に対して0.20質量%以下であることがより好ましい。
<C: 0.20% by mass or less (including 0% by mass)>
C is a component that affects the strength or corrosion resistance of the weld metal, and the lower the C content in the weld wire, the better the corrosion resistance. Therefore, the smaller the C content in the weld wire, the more preferably 0% by mass. May be. When the welded wire contains C as an optional element in order to adjust the mechanical performance of the obtained weld metal, specifically, the C content in the welded wire is 0.20 mass with respect to the total mass of the wire. % Or less is more preferable.
<Si:1.00質量%以下(0質量%を含む)>
 Siは溶接金属の強度を向上させる成分である元素であるが、その一方で、靱性を劣化させる成分でもあるため、溶接ワイヤ中のSi含有量は0質量%であってもよい。得られる溶接金属の機械的性能を調整するために、溶接ワイヤがSiを任意元素として含有する場合に、具体的には、溶接ワイヤ中のSi含有量はワイヤ全質量に対して1.00質量%以下であることがより好ましい。
<Si: 1.00% by mass or less (including 0% by mass)>
Si is an element that is a component that improves the strength of the weld metal, but on the other hand, it is also a component that deteriorates the toughness, so the Si content in the weld wire may be 0% by mass. When the welding wire contains Si as an arbitrary element in order to adjust the mechanical performance of the obtained weld metal, specifically, the Si content in the welding wire is 1.00 mass with respect to the total mass of the wire. % Or less is more preferable.
<Mn:4.8%質量以下(0%含む)>
 Mnは溶接金属の強度を向上させる成分であるが、本発明においては、溶接ワイヤ中のMn含有量は0質量%であってもよい。得られる溶接金属の機械的性能を調整するために、溶接ワイヤがMnを任意元素として含有する場合に、具体的には、溶接ワイヤ中のMn含有量はワイヤ全質量に対して4.8質量%以下であることがより好ましい。
<Mn: 4.8% mass or less (including 0%)>
Mn is a component that improves the strength of the weld metal, but in the present invention, the Mn content in the weld wire may be 0% by mass. When the welded wire contains Mn as an optional element in order to adjust the mechanical performance of the obtained weld metal, specifically, the Mn content in the welded wire is 4.8 mass with respect to the total weight of the wire. % Or less is more preferable.
<P:0.03%質量以下(0%含む)>
<S:0.03%質量以下(0%含む)>
 P及びSは、溶接金属中の含有量が多くなるほど耐割れ性が低下するため、溶接ワイヤ中のP含有量及びS含有量はいずれも少ないほど好ましく、0質量%であってもよい。具体的には、溶接ワイヤ中のP含有量及びS含有量は、ワイヤ全質量に対して、それぞれ0.03質量%以下であることがより好ましい。
<P: 0.03% mass or less (including 0%)>
<S: 0.03% mass or less (including 0%)>
As the content of P and S in the weld metal increases, the crack resistance decreases. Therefore, the smaller the P content and the S content in the weld wire, the more preferable, and the P and S may be 0% by mass. Specifically, the P content and the S content in the welded wire are more preferably 0.03% by mass or less with respect to the total mass of the wire.
<Cu:4.0%質量以下(0%含む)>
 Cuは溶接金属の強度及び耐食性を向上させる成分であるが、本発明においては、溶接ワイヤ中のCu含有量は0質量%であってもよい。得られる溶接金属の機械的性能及び耐食性を調整するために、溶接ワイヤにCuを任意元素として含有する場合や、溶接時の通電性を向上させる等の目的で表面にCuめっきを施す場合に、具体的には、溶接ワイヤ中およびめっきされるCu含有量の合計はワイヤ全質量に対して4.0質量%以下であることがより好ましい。
<Cu: 4.0% mass or less (including 0%)>
Cu is a component that improves the strength and corrosion resistance of the weld metal, but in the present invention, the Cu content in the welded wire may be 0% by mass. When Cu is contained as an optional element in the welding wire in order to adjust the mechanical performance and corrosion resistance of the obtained weld metal, or when Cu plating is applied to the surface for the purpose of improving the electrical conductivity during welding. Specifically, the total Cu content in the welded wire and plated is more preferably 4.0% by mass or less with respect to the total mass of the wire.
<Mo:4.0%質量以下(0%含む)>
 Moは高温強度及び耐食性を向上させる成分であるが、その一方で、σ脆化を助長する成分でもあるため、溶接ワイヤ中のMo含有量は0質量%であってもよい。得られる溶接金属の機械的性能及び耐食性を調整するために、溶接ワイヤがMoを任意元素として含有する場合に、具体的には、溶接ワイヤ中のMo含有量は溶接ワイヤ全質量に対して4.0質量%以下であることがより好ましい。
<Mo: 4.0% mass or less (including 0%)>
Mo is a component that improves high-temperature strength and corrosion resistance, but on the other hand, it is also a component that promotes σ embrittlement, so that the Mo content in the weld wire may be 0% by mass. When the welded wire contains Mo as an optional element in order to adjust the mechanical performance and corrosion resistance of the obtained weld metal, specifically, the Mo content in the welded wire is 4 with respect to the total mass of the welded wire. More preferably, it is 0.0% by mass or less.
<Nb:1.0質量%以下(0%含む)>
 Nbは炭化物を生成することによりCを安定化させる効果があり、Cr酸化物の生成を抑制して耐食性を向上させる成分である。なお、ここでいう炭化物は、炭硫化物、炭窒化物等のCを含む複合化合物も含む。その一方で、Nbが溶接ワイヤ中に必要以上に含有されると、結晶粒界に低融点化合物を生成し、耐割れ性を劣化させるため、溶接ワイヤ中のNb含有量は0質量%であってもよい。得られる溶接金属の耐食性を調整するために、溶接ワイヤがNbを任意元素として含有する場合に、具体的には、溶接ワイヤ中のNb含有量は溶接ワイヤ全質量に対して1.0質量%以下であることが好ましい。なお、Nbの代用として、TiをNbと同じ範囲内で含有してもよい。
<Nb: 1.0% by mass or less (including 0%)>
Nb has the effect of stabilizing C by forming carbides, and is a component that suppresses the formation of Cr oxides and improves corrosion resistance. The carbides referred to here also include complex compounds containing C such as charcoal sulfides and charcoal nitrides. On the other hand, when Nb is contained in the welding wire more than necessary, a low melting point compound is generated at the grain boundaries and the crack resistance is deteriorated. Therefore, the Nb content in the welding wire is 0% by mass. You may. When the welding wire contains Nb as an optional element in order to adjust the corrosion resistance of the obtained weld metal, specifically, the Nb content in the welding wire is 1.0% by mass with respect to the total mass of the welding wire. The following is preferable. As a substitute for Nb, Ti may be contained in the same range as Nb.
<N:0.30質量%以下(0%含む)>
 Nは結晶構造内に侵入型固溶して強度を向上させるとともに、耐孔食性を向上させる成分である。一方、Nは溶接金属にブローホールやピットといった気孔欠陥を発生させる原因ともなるため、溶接ワイヤ中のN含有量は0質量%であってもよい。得られる溶接金属の機械的性能及び耐孔食性を調整するために、溶接ワイヤがNを任意元素として含有する場合に、具体的には、溶接ワイヤ中のN含有量は溶接ワイヤ全質量に対して0.30質量%以下であることが好ましい。
<N: 0.30% by mass or less (including 0%)>
N is a component that penetrates into the crystal structure and solid-solves to improve the strength and pitting corrosion resistance. On the other hand, since N also causes pore defects such as blow holes and pits in the weld metal, the N content in the weld wire may be 0% by mass. When the welded wire contains N as an optional element in order to adjust the mechanical performance and porcelain resistance of the obtained weld metal, specifically, the N content in the welded wire is relative to the total mass of the welded wire. It is preferably 0.30% by mass or less.
 本発明に係るガスシールドアーク溶接方法に使用することができる溶接ワイヤには、上記元素の他に不可避的不純物として、V、Sn、Na、Co、Ca、Li、Sb、W及びAs等が含有される。なお、上記不可避的不純物として挙げられる各元素が、酸化物として溶接ワイヤ中に含まれる場合には、Oも不純物として含まれることとなる。 The welding wire that can be used in the gas shielded arc welding method according to the present invention contains V, Sn, Na, Co, Ca, Li, Sb, W, As and the like as unavoidable impurities in addition to the above elements. Will be done. When each element listed as the unavoidable impurity is contained in the welding wire as an oxide, O is also contained as an impurity.
〔溶接装置〕
 次に、本発明に係るガスシールドアーク溶接方法に使用することができる溶接装置について説明する。溶接装置としては、ガスシールドアーク溶接を行う溶接装置であれば特に限定されず、従来のガスシールドアーク溶接に用いられている溶接装置を用いることができる。例えば、半自動溶接装置、移動台車等を用いた自動溶接装置、溶接ロボットシステム等が挙げられる。
[Welding equipment]
Next, a welding apparatus that can be used in the gas shielded arc welding method according to the present invention will be described. The welding device is not particularly limited as long as it is a welding device that performs gas shielded arc welding, and a welding device used for conventional gas shielded arc welding can be used. For example, a semi-automatic welding device, an automatic welding device using a mobile carriage, a welding robot system, and the like can be mentioned.
 図2は、本発明において使用することができる溶接装置の例を示す模式図である。
 例えば、図2に示すように、溶接装置1は、溶接トーチ11が先端に取り付けられ、その溶接トーチ11をワークWの溶接線に沿って移動させるロボット10と、溶接トーチ11に溶接ワイヤを供給するワイヤ供給部(図示しない)と、ワイヤ供給部を介して消耗式電極に電流を供給して、消耗式電極と被溶接材との間でアークを発生させる溶接電源部30を備える。また、溶接装置は、溶接トーチ11を移動させるためのロボット動作を制御するロボット制御部20を備え、さらにロボット制御部20に操作者からの指令を入力する為のインターフェースとなる教示ペンダント40を備える。
FIG. 2 is a schematic view showing an example of a welding apparatus that can be used in the present invention.
For example, as shown in FIG. 2, in the welding device 1, a welding torch 11 is attached to the tip thereof, and a robot 10 for moving the welding torch 11 along a welding line of a work W and a welding wire are supplied to the welding torch 11. It is provided with a wire supply unit (not shown) and a welding power supply unit 30 that supplies a current to the consumable electrode via the wire supply unit to generate an arc between the consumable electrode and the material to be welded. Further, the welding device includes a robot control unit 20 that controls the robot operation for moving the welding torch 11, and further includes a teaching pendant 40 that serves as an interface for inputting a command from the operator to the robot control unit 20. ..
 さらに、本発明に係るガスシールドアーク溶接方法において適用することができる種々の条件について、詳細に説明する。 Further, various conditions applicable to the gas shielded arc welding method according to the present invention will be described in detail.
(溶接トーチ)
 溶接トーチの姿勢は、母材に対して垂直であっても、傾斜させてもよい。溶接トーチを溶接進行方向の反対側に向かって傾斜させる場合に、母材に対する垂線と該トーチとの成す角を前進角と言い、当該溶接進行方向に向かって傾斜させる場合に、母材に対する垂線と該トーチとの成す角を後退角と言う。溶接トーチに前進角を付けることで、より効果的にアーク溶接中のシールド性を高めることが可能となる。また、電極に後退角を付けることで、ビード後方をシールドできるため、溶接直後のビードの酸化反応を抑制することができる。本発明においては、溶接線上の適正な溶け込みと良好なビード形状とを得るために、前進角及び後退角の条件を必要に応じて変更してもよい。
(Welding torch)
The posture of the welding torch may be perpendicular to the base metal or may be tilted. When the welding torch is tilted toward the opposite side of the welding progress direction, the angle formed by the vertical line with respect to the base metal and the torch is called the advance angle, and when the welding torch is tilted toward the welding progress direction, the vertical line with respect to the base metal is tilted. The angle formed by the torch is called the receding angle. By adding a forward angle to the welding torch, it is possible to more effectively improve the shielding property during arc welding. Further, by providing a receding angle to the electrode, the rear side of the bead can be shielded, so that the oxidation reaction of the bead immediately after welding can be suppressed. In the present invention, the conditions of the forward angle and the receding angle may be changed as necessary in order to obtain proper penetration on the weld line and a good bead shape.
<シールドガス流量Q:10~30(リットル/分)>
 シールドガス流量Qは、大気から溶融金属を防護するためのシールド性に寄与する。シールドガス流量Qが10(リットル/分)以上であると、十分なシールド性を確保することができる。また、シールドガス流量Qが30(リットル/分)以下であると、ガスの流れは乱流を抑え、安定な層流となる。したがって、シールド性確保の観点から、シールドガス流量Qは、10~30(リットル/分)とすることが好ましく、ビードのなじみ及び光沢性をより一層確保する観点から、シールドガス流量Qは、15~25(リットル/分)であることがより好ましい。
<Shield gas flow rate Q: 10 to 30 (liters / minute)>
The shield gas flow rate Q contributes to the shielding property for protecting the molten metal from the atmosphere. When the shield gas flow rate Q is 10 (liters / minute) or more, sufficient shielding properties can be ensured. Further, when the shield gas flow rate Q is 30 (liters / minute) or less, the gas flow suppresses turbulence and becomes a stable laminar flow. Therefore, from the viewpoint of ensuring the shielding property, the shield gas flow rate Q is preferably 10 to 30 (liters / minute), and from the viewpoint of further ensuring the familiarity and glossiness of the beads, the shield gas flow rate Q is 15. More preferably, it is ~ 25 (liters / minute).
<溶接ワイヤの突出し長さL:10~30mm>
 溶接ワイヤの突出し長さLも、大気から溶融金属を防護するためのシールド性に寄与する。溶接ワイヤの突出し長さLが30mm以下であると、大気の巻込みによってガス組成が変化することを抑制し、十分なシールド性を確保することができる。また、溶接ワイヤの突出し長さLが10mm以上であると、アーク熱によるコンタクトチップやシールドノズルの損傷を抑制することができる。したがって、シールド性確保と装置損傷抑制の観点から、溶接ワイヤの突き出し長さLは、10~30mmであることが好ましく、熱損傷を抑え、長時間の溶接性を確保したうえで、アーク安定性、ビードのなじみ及び光沢性をより確保する観点から、溶接ワイヤの突出し長さLは、15~20mmであることがより好ましい。
<Welding wire protrusion length L: 10 to 30 mm>
The protruding length L of the weld wire also contributes to the shielding property for protecting the molten metal from the atmosphere. When the protruding length L of the welding wire is 30 mm or less, it is possible to suppress the change in the gas composition due to the entrainment of the atmosphere and secure sufficient shielding property. Further, when the protrusion length L of the welding wire is 10 mm or more, damage to the contact tip and the shield nozzle due to arc heat can be suppressed. Therefore, from the viewpoint of ensuring the shielding property and suppressing the damage to the device, the protrusion length L of the welding wire is preferably 10 to 30 mm, and the arc stability is ensured after suppressing the thermal damage and ensuring the weldability for a long time. From the viewpoint of further ensuring the familiarity and gloss of the bead, the protrusion length L of the weld wire is more preferably 15 to 20 mm.
<0.5≦シールドガス流量Q/溶接ワイヤの突出し長さL≦2.2>
 本発明においては、上記シールドガス流量Qと溶接ワイヤの突出し長さLとを適切に制御するとともに、シールドガス流量Qと突出し長さLとの比を制御することが好ましい。Q/Lが0.5以上であれば、より好ましいシールド性を確保でき、2.2以下であれば、ガスの流れはより安定な層流の状態でアーク領域を保護することができる。したがって、シールドガス流量Qと突出し長さLとの比は、下記式(4)を満足することが好ましい。
<0.5 ≤ shield gas flow rate Q / welding wire protrusion length L ≤ 2.2>
In the present invention, it is preferable to appropriately control the shield gas flow rate Q and the protrusion length L of the welding wire, and control the ratio of the shield gas flow rate Q to the protrusion length L. When the Q / L is 0.5 or more, a more preferable shielding property can be secured, and when the Q / L is 2.2 or less, the gas flow can protect the arc region in a more stable laminar flow state. Therefore, the ratio of the shield gas flow rate Q to the protrusion length L preferably satisfies the following equation (4).
 0.5≦Q/L≦2.2・・・(4) 0.5 ≤ Q / L ≤ 2.2 ... (4)
<開先形状・開先角度>
 本発明に係るガスシールドアーク溶接方法において、溶接母材の開先形状は特に限定されないが、例えば、V形、レ形、I形、K形、X形、J形及びU形から選択された1種の開先形状とすることができる。
 また、開先角度についても限定されないが、I形の開先形状を適用することができるため、開先角度は0°以上であることが好ましい。一方、開先角度が90°以下であれば、溶接ワイヤ及びシールドガスの消耗量を適切に調整することができるため好ましい。したがって、開先角度は0~90°とすることが好ましい。
<Groove shape / groove angle>
In the gas shielded arc welding method according to the present invention, the groove shape of the welding base material is not particularly limited, but is selected from, for example, V type, Les type, I type, K type, X type, J type and U type. It can be one type of groove shape.
Further, the groove angle is not limited, but the groove angle is preferably 0 ° or more because an I-shaped groove shape can be applied. On the other hand, when the groove angle is 90 ° or less, it is preferable because the consumption amount of the welding wire and the shield gas can be appropriately adjusted. Therefore, the groove angle is preferably 0 to 90 °.
[構造物の製造方法]
 本発明は、溶接ワイヤと、上述の通り組成が制御されたシールドガスを用いたガスシールドアーク溶接により製造される構造物の製造方法にも関する。なお、溶接ワイヤについても、上述の通り組成が制御されたものであることが好ましい。
[Manufacturing method of structure]
The present invention also relates to a method for manufacturing a structure manufactured by gas shielded arc welding using a welding wire and a shield gas whose composition is controlled as described above. It is also preferable that the composition of the welding wire is controlled as described above.
 以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples, and the present invention is modified to the extent that it can be adapted to the gist of the present invention. It is possible, and all of them are included in the technical scope of the present invention.
 下記に示す溶接試験方法及び溶接条件により溶接を行い、溶融性能、なじみ、光沢性及び溶滴移行について、それぞれ下記に示す方法により評価を行った。 Welding was performed according to the welding test method and welding conditions shown below, and the melting performance, familiarity, glossiness and droplet transfer were evaluated by the methods shown below.
<溶接試験方法及び溶接条件>
 ステンレス鋼の母材に対して、種々の組成のシールドガスを使用して、種々の溶接条件で、1層1パスのビードオンプレート溶接を実施した。本発明例及び比較例において、共通して使用した溶接条件の詳細を下記表1に示し、シールドガスの組成を下記表2に示す。なお、表1に示すアーク長は、高速度ビデオカメラを用いてアークを撮影し、基準長とした6mmになるように、溶接電源の電圧調整ボリュームを適宜変更して調整を行った。使用した高速度ビデオカメラのレンズ部には適切なフィルタを適用し、アーク光が観察できるようにした。
 また、溶接時に溶滴移行を観察することにより、アーク安定性を評価するとともに、溶接により得られたビードを試料とし、観察することにより、溶融性能、なじみ及び光沢性を評価した。各評価方法における測定方法及び評価基準を下記表3~表9に示す。また、下記表1に示す条件以外の溶接条件を下記表10に示し、評価結果を下記表11に示す。
<Welding test method and welding conditions>
One-layer, one-pass bead-on-plate welding was performed on the base metal of stainless steel using shield gases having various compositions under various welding conditions. The details of the welding conditions commonly used in the examples of the present invention and the comparative examples are shown in Table 1 below, and the composition of the shield gas is shown in Table 2 below. The arc length shown in Table 1 was adjusted by appropriately changing the voltage adjustment volume of the welding power supply so that the arc was photographed using a high-speed video camera and the reference length was 6 mm. An appropriate filter was applied to the lens of the high-speed video camera used so that arc light could be observed.
In addition, the arc stability was evaluated by observing the droplet transfer during welding, and the melting performance, familiarity and glossiness were evaluated by observing the beads obtained by welding as a sample. The measurement methods and evaluation criteria for each evaluation method are shown in Tables 3 to 9 below. Welding conditions other than those shown in Table 1 below are shown in Table 10 below, and the evaluation results are shown in Table 11 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔試験方法及び評価基準〕
<溶接電流を100Aとした場合の溶融性能試験方法>
 溶接電流を100Aとした低電流の溶接条件は、通常は立向溶接や上向溶接等の難溶接姿勢に適用される条件である。このような姿勢での溶接は通常、溶接速度が非常に遅くなることから、溶接入熱が高くなるため、融合不良欠陥は発生しにくい。本実施例においては、簡易的に下向溶接とした。
[Test method and evaluation criteria]
<Melting performance test method when welding current is 100A>
The low current welding condition with a welding current of 100 A is a condition usually applied to difficult welding postures such as vertical welding and upward welding. Welding in such a posture usually has a very slow welding speed, so that the heat input to the weld is high, and thus fusion defect defects are unlikely to occur. In this embodiment, downward welding is simply used.
<溶接電流を100Aとした場合の溶融性能評価基準>
 溶融性能は、ビード幅及びビード高さを測定し、ビード幅とビード高さの比(ビード幅/ビード高さ)を算出することにより評価した。溶接電流を100Aとした場合に、(ビード幅/ビード高さ)により得られる値が2.3以上であれば、開先施工を行う際にも融合不良の発生は防止できると判断し、合格とした。
<Melting performance evaluation criteria when the welding current is 100A>
The melting performance was evaluated by measuring the bead width and the bead height and calculating the ratio of the bead width to the bead height (bead width / bead height). When the welding current is 100 A, if the value obtained by (bead width / bead height) is 2.3 or more, it is judged that the occurrence of fusion failure can be prevented even when performing groove construction, and the result is passed. And said.
<溶接電流を150Aとした場合の溶融性能試験方法>
 溶接電流を150Aとした高電流の溶接条件は、下向溶接に適用される条件であり、本試験において得られるビード形状が重要となる。
<Melting performance test method when welding current is 150A>
The high current welding condition with the welding current of 150 A is a condition applied to downward welding, and the bead shape obtained in this test is important.
<溶接電流を150Aとした場合の溶融性能評価基準>
 溶接電流を100Aとした場合と同様に、ビード幅及びビード高さを測定し、ビード幅とビード高さの比(ビード幅/ビード高さ)を算出することにより評価した。溶接電流を150Aとした場合に、(ビード幅/ビード高さ)により得られる値が3.3以上であれば、融合不良の発生は防止できると判断し、合格とした。評価方法を下記表3に示す。なお、ビード幅、ビード高さはそれぞれノギスで測定を行った。
<Melting performance evaluation criteria when the welding current is 150A>
The bead width and the bead height were measured and the ratio of the bead width to the bead height (bead width / bead height) was calculated in the same manner as when the welding current was 100 A. When the welding current was 150 A and the value obtained by (bead width / bead height) was 3.3 or more, it was judged that the occurrence of fusion failure could be prevented, and the result was accepted. The evaluation method is shown in Table 3 below. The bead width and bead height were measured with calipers.
 フランク角は、次パスの施工においてすみ肉継手のような形状となる90°以上であれば、溶接止端部を溶融させて、融合不良の無い継手を作成することが可能である。したがって、余裕を持って、欠陥を防止することができる範囲として、(ビード幅/ビード高さ)により得られる値が上記範囲内であれば合格としている。 If the flank angle is 90 ° or more, which will be shaped like a fillet joint in the construction of the next pass, it is possible to melt the weld toe to create a joint without fusion defects. Therefore, if the value obtained by (bead width / bead height) is within the above range as a range in which defects can be prevented with a margin, it is accepted.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<なじみ性の評価試験方法・評価基準>
 なじみ性については、溶接電流を100Aとした場合と、150Aとした場合の両方における官能評価とした。なお、各溶接電流におけるなじみ性は1~5の5段階評価とし、溶接電流を100Aとした場合のなじみ性の点数と、溶接電流を150Aとした場合のなじみ性の点数との合計を総合評価とした。なじみ性の評価基準を下記表4に示し、なじみ性の総合評価の評価基準を下記表5に示す。
<Familiarity evaluation test method / evaluation criteria>
Regarding the familiarity, the sensory evaluation was performed both when the welding current was set to 100 A and when the welding current was set to 150 A. The familiarity at each welding current is evaluated on a 5-point scale from 1 to 5, and the total of the familiarity score when the welding current is 100A and the familiarity score when the welding current is 150A is comprehensively evaluated. And said. The evaluation criteria for familiarity are shown in Table 4 below, and the evaluation criteria for comprehensive evaluation of familiarity are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<光沢性の評価試験方法・評価基準>
 光沢性についても、溶接電流を100Aとした場合と、150Aとした場合の両方における官能評価とした。なお、各溶接電流における光沢性は1~3の3段階評価とし、溶接電流を100Aとした場合の光沢性の点数と、溶接電流を150Aとした場合の光沢性の点数との合計を総合評価とした。光沢性の評価基準を下記表6に示し、光沢性の総合評価の評価基準を下記表7に示す。
<Glossiness evaluation test method / evaluation criteria>
The glossiness was also evaluated as a sensory evaluation when the welding current was 100 A and when the welding current was 150 A. The glossiness at each welding current is evaluated in three stages of 1 to 3, and the total of the glossiness score when the welding current is 100A and the glossiness score when the welding current is 150A is comprehensively evaluated. And said. The evaluation criteria for glossiness are shown in Table 6 below, and the evaluation criteria for comprehensive evaluation of glossiness are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<溶滴移行の評価試験方法・評価基準>
 溶滴移行については、溶接電流を100Aとした場合と、150Aとした場合の両方において、高速度ビデオカメラにより観察し、各溶接電流における溶滴移行を1~3の3段階で評価した。また、溶接電流を100Aとした場合の溶滴移行の点数と、溶接電流を150Aとした場合の溶滴移行の点数とに基づき、アーク安定性の総合評価とした。溶滴移行の評価基準を下記表8に示し、アーク安定性の総合評価の評価基準を下記表9に示す。
<Evaluation test method / evaluation criteria for droplet transfer>
The droplet transfer was observed with a high-speed video camera both when the welding current was 100 A and when the welding current was 150 A, and the droplet transfer at each welding current was evaluated in three stages of 1 to 3. Further, the arc stability was comprehensively evaluated based on the score of droplet transfer when the welding current was 100 A and the score of droplet transfer when the welding current was 150 A. The evaluation criteria for droplet transfer are shown in Table 8 below, and the evaluation criteria for comprehensive evaluation of arc stability are shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
〔評価結果〕
 下記表10~表12に示すように、試験No.T1~T13は、シールドガスの組成が本発明の範囲内であるとともに、CO含有量及びH含有量により得られる式(1)及び式(2)を満足しているため、溶融性能、アーク安定性、なじみ性及び光沢性のいずれの項目についても、優れた結果となった。
〔Evaluation results〕
As shown in Tables 10 to 12 below, Test No. T1 to T13 have a melting performance because the composition of the shield gas is within the range of the present invention and the formulas (1) and (2) obtained by the CO 2 content and the H 2 content are satisfied. Excellent results were obtained in all of the items of arc stability, familiarity and glossiness.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 図3は、試験No.T1における試料No.B1(溶接電流150A)の溶接金属の断面を示す図面代用写真である。図3を用いて、溶融性能試験が合格である一例を示す。試験No.T1(試料No.B1)は、溶接電流が150Aであり、(ビード幅/ビード高さ)により得られる値が5.2となり、フランク角は155°となった。このような滑らかなビード止端が形成される施工においては、融合不良欠陥に対する耐性は極めて良好であると判断された。 FIG. 3 shows the test No. Sample No. in T1 It is a drawing substitute photograph which shows the cross section of the weld metal of B1 (welding current 150A). FIG. 3 shows an example in which the melting performance test is passed. Test No. In T1 (Sample No. B1), the welding current was 150 A, the value obtained by (bead width / bead height) was 5.2, and the flank angle was 155 °. In the construction in which such a smooth bead toe is formed, it was judged that the resistance to the fusion defect is extremely good.
 また、試験No.T2~T13についても、試験No.T1と同様に優れた溶融性能を得ることができた。なお、ガスNo.G1を使用した試験No.T1~T6のうち、特に、試験No.T1~T3、T5及びT6は、溶接ワイヤの突出し長さLが本発明のより好ましい範囲であるため、大気の巻込みによってガス組成が変化することなく、優れたアーク安定性を得ることができた。 Also, the test No. For T2 to T13, the test No. As with T1, excellent melting performance could be obtained. In addition, gas No. Test No. using G1. Of T1 to T6, especially the test No. In T1 to T3, T5 and T6, since the protrusion length L of the weld wire is in the more preferable range of the present invention, excellent arc stability can be obtained without changing the gas composition due to the entrainment of the atmosphere. rice field.
 それぞれ異なるガスを使用した試験No.T7~T13のうち、試験No.T7、T8、T11及びT12は、シールドガス中のCO含有量及びH含有量を用いた式(2)により得られる値が本発明のより好ましい下限値を超えているため、優れたアーク安定性を得ることができた。
 また、試験No.T13は、シールドガス中のCO含有量が本発明範囲内であって高い値であるため、優れたアーク安定性を得ることができた。
Test No. using different gases. Of T7 to T13, the test No. T7, T8, T11 and T12 are excellent arcs because the values obtained by the formula (2) using the CO 2 content and the H 2 content in the shield gas exceed the more preferable lower limit value of the present invention. I was able to obtain stability.
In addition, the test No. Since the CO 2 content in the shield gas of T13 is within the range of the present invention and is high, excellent arc stability could be obtained.
 一方、試験No.T14は、シールドガス中のH含有量が本発明範囲の上限を超えているとともに、CO含有量及びH含有量により得られる式(1)及び式(2)に規定する上限を超えているため、アーク安定性が低下した。 On the other hand, the test No. In T14, the H 2 content in the shield gas exceeds the upper limit of the range of the present invention, and also exceeds the upper limits specified in the formulas (1) and (2) obtained by the CO 2 content and the H 2 content. Therefore, the arc stability was lowered.
 試験No.T15は、シールドガス中のCO含有量が本発明範囲の下限未満であるとともに、CO含有量及びH含有量により得られる式(2)に規定する上限を超えているため、溶融性能が低いものとなった。 Test No. Since the CO 2 content in the shield gas of T15 is less than the lower limit of the range of the present invention and exceeds the upper limit specified in the formula (2) obtained by the CO 2 content and the H 2 content, the melting performance of T15 is high. Became low.
 試験No.T16は、シールドガス中のH含有量が本発明範囲の下限未満であるとともに、CO含有量及びH含有量により得られる式(1)及び式(2)に規定する下限未満であるため、溶融性能が低いものとなった。 Test No. In T16, the H 2 content in the shield gas is less than the lower limit of the range of the present invention, and is also less than the lower limit specified in the formulas (1) and (2) obtained by the CO 2 content and the H 2 content. Therefore, the melting performance was low.
 図4は、試験No.T16における試料No.B16(溶接電流150A)の溶接金属の断面を示す図面代用写真である。図4を用いて、溶融性能試験が不合格である一例を示す。試験No.T16(試料No.B16)は、溶接電流が150Aであり、(ビード幅/ビード高さ)により得られる値が3.2となり、フランク角は125°となった。このようなビード止端が形成された後に次の溶接パスを施工する場合、アークが止端部に当たらない場合には融合不良欠陥が発生する可能性が考えられるため、余裕を持った判断として不合格の判定を行った。 FIG. 4 shows the test No. Sample No. in T16. It is a drawing substitute photograph which shows the cross section of the weld metal of B16 (welding current 150A). FIG. 4 shows an example in which the melting performance test fails. Test No. In T16 (Sample No. B16), the welding current was 150 A, the value obtained by (bead width / bead height) was 3.2, and the flank angle was 125 °. When constructing the next welding path after such a bead toe is formed, if the arc does not hit the toe, a fusion defect may occur, so it is a judgment with a margin. It was judged as rejected.
 試験No.17は、シールドガス中のCO含有量が本発明範囲の上限を超えているとともに、CO含有量及びH含有量により得られる式(2)に規定する下限未満であるため、溶融性能が低いものとなった。 Test No. No. 17 has a melting performance because the CO 2 content in the shield gas exceeds the upper limit of the range of the present invention and is less than the lower limit specified in the formula (2) obtained by the CO 2 content and the H 2 content. Became low.
 試験No.18は、シールドガス中のH含有量が本発明範囲の下限未満であるとともに、CO含有量及びH含有量により得られる式(1)及び式(2)に規定する下限未満であるため、溶融性能が低いものとなった。 Test No. Reference numeral 18 is that the H 2 content in the shield gas is less than the lower limit of the range of the present invention, and is also less than the lower limit specified in the formulas (1) and (2) obtained by the CO 2 content and the H 2 content. Therefore, the melting performance was low.
 図5は、本発明方法により溶接を実施した試験板のビード外観を示す図面代用写真である。また、図6は、図5に示す試験板の溶接金属の断面を示す図面代用写真である。なお、図5及び図6に示す試験板は、板厚が12mmであるSUS304Lを溶接母材とし、開先角度を45°として、概ね上記試験No.T1の条件を適用して、3層3パスの立向溶接を行ったものである。図5及び図6に示すように、本発明方法により得られた継手は、十分な溶込みと滑らかなビード形状を得ることができた。 FIG. 5 is a drawing substitute photograph showing the appearance of the bead of the test plate welded by the method of the present invention. Further, FIG. 6 is a drawing substitute photograph showing a cross section of the weld metal of the test plate shown in FIG. In the test plates shown in FIGS. 5 and 6, SUS304L having a plate thickness of 12 mm is used as a welding base material, the groove angle is 45 °, and the above test No. This is a three-layer, three-pass vertical welding performed under the conditions of T1. As shown in FIGS. 5 and 6, the joint obtained by the method of the present invention was able to obtain sufficient penetration and a smooth bead shape.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood. Further, each component in the above-described embodiment may be arbitrarily combined as long as the gist of the invention is not deviated.
 なお、本出願は、2020年6月29日出願の日本特許出願(特願2020-111997)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on the Japanese patent application filed on June 29, 2020 (Japanese Patent Application No. 2020-111997), the contents of which are incorporated herein by reference.
1 溶接装置
10 ロボット
11 溶接トーチ
20 ロボット制御部
30 溶接電源部
40 教示ペンダント
1 Welding device 10 Robot 11 Welding torch 20 Robot control unit 30 Welding power supply unit 40 Teaching pendant

Claims (8)

  1.  溶接ワイヤを電極として使用し、シールドガスを溶接母材の被溶接領域に流しながら溶接するガスシールドアーク溶接方法であって、
     前記シールドガスは、シールドガス全体積に対し、
     CO:0.5体積%以上2.0体積%以下、及び、
     H:0.5体積%以上3.0体積%以下、
    を含有し、
     残部がAr及び不可避的不純物であり、
     前記シールドガス全体積に対する前記COの含有量を体積%で[CO]とし、前記シールドガス全体積に対する前記Hの含有量を体積%で[H]としたとき、下記式(1)及び式(2)を満たすことを特徴とするガスシールドアーク溶接方法。
     1.30≦[CO]+[H]≦4.40・・・(1)
     0.35≦[H]/([CO]+[H])≦0.74・・・(2)
    It is a gas shielded arc welding method that uses a welding wire as an electrode and welds while flowing a shield gas to the welded area of the welding base material.
    The shield gas is based on the total volume of the shield gas.
    CO 2 : 0.5% by volume or more and 2.0% by volume or less, and
    H 2 : 0.5% by volume or more and 3.0% by volume or less,
    Contains,
    The rest is Ar and unavoidable impurities,
    When the content of the CO 2 with respect to the total volume of the shield gas is [CO 2 ] by volume% and the content of the H 2 with respect to the total volume of the shield gas is [H 2 ] by volume, the following formula (1). ) And the gas shielded arc welding method, which is characterized by satisfying the formula (2).
    1.30 ≤ [CO 2 ] + [H 2 ] ≤ 4.40 ... (1)
    0.35 ≤ [H 2 ] / ([CO 2 ] + [H 2 ]) ≤ 0.74 ... (2)
  2.  前記シールドガス全体積に対する前記Arの含有量を体積%で[Ar]としたとき、下記式(3)を満たすことを特徴とする請求項1に記載のガスシールドアーク溶接方法。
     57.0≦0.5×[Ar]+1.5×[CO]+10×[H]≦80.0・・・(3)
    The gas shielded arc welding method according to claim 1, wherein when the content of Ar with respect to the total volume of the shield gas is [Ar] in% by volume, the following formula (3) is satisfied.
    57.0 ≤ 0.5 x [Ar] +1.5 x [CO 2 ] +10 x [H 2 ] ≤ 80.0 ... (3)
  3.  前記溶接ワイヤは、溶接ワイヤ全質量に対し、
     Cr:18質量%以上28.5質量%以下、及び、
     Ni:8.0質量%以上37.0質量%以下、
    を含有し、
     DeLongの組織図に基づくフェライト百分率で15.3%以下の組織を有することを特徴とする請求項1又は2に記載のガスシールドアーク溶接方法。
    The welding wire is used with respect to the total mass of the welding wire.
    Cr: 18% by mass or more and 28.5% by mass or less, and
    Ni: 8.0% by mass or more and 37.0% by mass or less,
    Contains,
    The gas shielded arc welding method according to claim 1 or 2, wherein the ferrite percentage has a structure of 15.3% or less based on the organization chart of DeLong.
  4.  前記溶接ワイヤは、前記溶接ワイヤ全質量に対し、
     C:0.20質量%以下(0質量%を含む)、
     Si:1.00質量%以下(0質量%を含む)、
     Mn:4.8質量%以下(0質量%を含む)、
     P:0.03質量%以下(0質量%を含む)、
     S:0.03質量%以下(0質量%を含む)、
     Cu:4.0質量%以下(0質量%を含む)、
     Mo:4.0質量%以下(0質量%を含む)、
     Nb:1.0質量%以下(0質量%を含む)、及び、
     N:0.30質量%以下(0質量%を含む)、
    であることを特徴とする請求項3に記載のガスシールドアーク溶接方法。
    The welding wire is based on the total mass of the welding wire.
    C: 0.20% by mass or less (including 0% by mass),
    Si: 1.00% by mass or less (including 0% by mass),
    Mn: 4.8% by mass or less (including 0% by mass),
    P: 0.03% by mass or less (including 0% by mass),
    S: 0.03% by mass or less (including 0% by mass),
    Cu: 4.0% by mass or less (including 0% by mass),
    Mo: 4.0% by mass or less (including 0% by mass),
    Nb: 1.0% by mass or less (including 0% by mass), and
    N: 0.30% by mass or less (including 0% by mass),
    The gas shielded arc welding method according to claim 3, wherein the method is characterized by the above.
  5.  前記溶接母材の被溶接領域は開先を有し、
     前記開先は、V形、レ形、I形、K形、X形、J形及びU形から選択された1種の開先形状を有し、
     前記開先の開先角度は0~90°であることを特徴とする請求項1又は2に記載のガスシールドアーク溶接方法。
    The welded area of the weld base material has a groove and has a groove.
    The groove has one type of groove shape selected from V type, Les type, I type, K type, X type, J type and U type.
    The gas shielded arc welding method according to claim 1 or 2, wherein the groove angle of the groove is 0 to 90 °.
  6.  前記シールドガスのガス流量Qが10~30(リットル/分)以下、
     前記溶接ワイヤの突出し長さLが10~30(mm)以下であり、
     前記ガス流量Q(リットル/分)と前記突出し長さL(mm)との比が、下記式(4)を満足することを特徴とする請求項1又は2に記載のガスシールドアーク溶接方法。
     0.5≦Q/L≦2.2・・・(4)
    The gas flow rate Q of the shield gas is 10 to 30 (liters / minute) or less,
    The protrusion length L of the welding wire is 10 to 30 (mm) or less, and the welding wire has a protrusion length L of 10 to 30 (mm) or less.
    The gas shielded arc welding method according to claim 1 or 2, wherein the ratio of the gas flow rate Q (liters / minute) to the protrusion length L (mm) satisfies the following formula (4).
    0.5 ≤ Q / L ≤ 2.2 ... (4)
  7.  溶接ワイヤ及びシールドガスを用いたガスシールドアーク溶接により製造される構造物の製造方法であって、
     前記シールドガスは、シールドガス全体積に対し、
     CO:0.5体積%以上2.0体積%以下、及び、
     H:0.5体積%以上3.0体積%以下、
    を含有し、
     残部がAr及び不可避的不純物であり、
     前記シールドガス全体積に対する前記COの含有量を体積%で[CO]とし、前記シールドガス全体積に対する前記Hの含有量を体積%で[H]としたとき、下記式(1)及び式(2)を満たすことを特徴とする構造物の製造方法。
     1.30≦[CO]+[H]≦4.40・・・(1)
     0.35≦[H]/([CO]+[H])≦0.74・・・(2)
    It is a manufacturing method of a structure manufactured by gas shielded arc welding using a welding wire and a shield gas.
    The shield gas is based on the total volume of the shield gas.
    CO 2 : 0.5% by volume or more and 2.0% by volume or less, and
    H 2 : 0.5% by volume or more and 3.0% by volume or less,
    Contains,
    The rest is Ar and unavoidable impurities,
    When the content of the CO 2 with respect to the total volume of the shield gas is [CO 2 ] by volume% and the content of the H 2 with respect to the total volume of the shield gas is [H 2 ] by volume, the following formula (1). ) And a method for manufacturing a structure, which is characterized by satisfying the formula (2).
    1.30 ≤ [CO 2 ] + [H 2 ] ≤ 4.40 ... (1)
    0.35 ≤ [H 2 ] / ([CO 2 ] + [H 2 ]) ≤ 0.74 ... (2)
  8.  ガスシールドアーク溶接に用いられるシールドガスであって、
     シールドガス全体積に対し、
     CO:0.5体積%以上2.0体積%以下、及び、
     H:0.5体積%以上3.0体積%以下、
    を含有し、
     残部がAr及び不可避的不純物であり、
     前記シールドガス全体積に対する前記COの含有量を体積%で[CO]とし、前記シールドガス全体積に対する前記Hの含有量を体積%で[H]としたとき、下記式(1)及び式(2)を満たすことを特徴とするシールドガス。
     1.30≦[CO]+[H]≦4.40・・・(1)
     0.35≦[H]/([CO]+[H])≦0.74・・・(2)
    Gas shield gas used for arc welding,
    For the total volume of shield gas
    CO 2 : 0.5% by volume or more and 2.0% by volume or less, and
    H 2 : 0.5% by volume or more and 3.0% by volume or less,
    Contains,
    The rest is Ar and unavoidable impurities,
    When the content of the CO 2 with respect to the total volume of the shield gas is [CO 2 ] by volume% and the content of the H 2 with respect to the total volume of the shield gas is [H 2 ] by volume, the following formula (1). ) And the shield gas characterized by satisfying the formula (2).
    1.30 ≤ [CO 2 ] + [H 2 ] ≤ 4.40 ... (1)
    0.35 ≤ [H 2 ] / ([CO 2 ] + [H 2 ]) ≤ 0.74 ... (2)
PCT/JP2021/003997 2020-06-29 2021-02-03 Gas shielded arc welding method, structure object production method, and shielding gas WO2022004032A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021299003A AU2021299003B2 (en) 2020-06-29 2021-02-03 Gas shielded arc welding method, structure object production method, and shielding gas
CN202180042685.4A CN115916445A (en) 2020-06-29 2021-02-03 Gas shielded arc welding method, method for manufacturing structure, and shielding gas
KR1020227040039A KR20230003531A (en) 2020-06-29 2021-02-03 Gas shielded arc welding method, structure manufacturing method and shield gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-111997 2020-06-29
JP2020111997A JP7428601B2 (en) 2020-06-29 2020-06-29 Gas shielded arc welding method, structure manufacturing method and shielding gas

Publications (1)

Publication Number Publication Date
WO2022004032A1 true WO2022004032A1 (en) 2022-01-06

Family

ID=79315201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003997 WO2022004032A1 (en) 2020-06-29 2021-02-03 Gas shielded arc welding method, structure object production method, and shielding gas

Country Status (6)

Country Link
JP (1) JP7428601B2 (en)
KR (1) KR20230003531A (en)
CN (1) CN115916445A (en)
AU (1) AU2021299003B2 (en)
TW (1) TW202200296A (en)
WO (1) WO2022004032A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130496A (en) * 1983-12-20 1985-07-11 Mitsubishi Heavy Ind Ltd Stainless steel welding material
JP2005515899A (en) * 2002-02-01 2005-06-02 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Ternary gas mixture that can be used for blaze welding of galvanized parts
JP2007296535A (en) * 2006-04-27 2007-11-15 Kobe Steel Ltd Gas-shielded arc welding flux-cored wire and welding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025893A (en) 1999-07-15 2001-01-30 Nof Corp Flux cored wire for welding stainless steel or nickel alloy
JP2013046932A (en) 2012-10-18 2013-03-07 Toshiba Corp Shielding gas for mag welding, method for mag welding, and weld structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130496A (en) * 1983-12-20 1985-07-11 Mitsubishi Heavy Ind Ltd Stainless steel welding material
JP2005515899A (en) * 2002-02-01 2005-06-02 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Ternary gas mixture that can be used for blaze welding of galvanized parts
JP2007296535A (en) * 2006-04-27 2007-11-15 Kobe Steel Ltd Gas-shielded arc welding flux-cored wire and welding method

Also Published As

Publication number Publication date
JP7428601B2 (en) 2024-02-06
KR20230003531A (en) 2023-01-06
TW202200296A (en) 2022-01-01
JP2022022608A (en) 2022-02-07
AU2021299003A1 (en) 2023-01-05
CN115916445A (en) 2023-04-04
AU2021299003B2 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
KR101193273B1 (en) Wire containing flux for gas-sealed arc welding, allowing all-position welding
KR101674743B1 (en) Flux-cored wire for gas-shielded arc welding, method for welding steel for very low temperature use, and method for manufacturing weld joint
JP4970802B2 (en) Ni-based alloy flux cored wire
CN109789519B (en) Welding wire for electroslag welding, flux for electroslag welding, and welded joint
KR101708997B1 (en) Ni BASED ALLOY FLUX CORED WIRE
KR20190073457A (en) Flux cored wire, method of manufacturing weld joint, and weld joint
CN106392369B (en) Ni-based alloy flux-cored wire
US11426824B2 (en) Aluminum-containing welding electrode
JP6901868B2 (en) Electroslag welding wire, electroslag welding flux and welded joints
JP6953869B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
KR20170140798A (en) Flux-cored wire for gas-shielded arc welding
JP2008068274A (en) High strength weld metal having excellent low temperature toughness
JP3815984B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
US10799974B2 (en) Electrodes for forming austenitic and duplex steel weld metal
CN112512742B (en) Solid welding wire and method for manufacturing welded joint
KR101600174B1 (en) Flux cored wire for gas shielded arc welding
EP1752249A1 (en) Shielding gas comprising 0.2 % of an oxidative gas, the rest being helium ; Welding method using such shielding gas ; Weldment
JP6953870B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP6875232B2 (en) Multi-electrode gas shield arc single-sided welding method
JP7231499B2 (en) Flux-cored wire and welding method
WO2022004032A1 (en) Gas shielded arc welding method, structure object production method, and shielding gas
WO2020012925A1 (en) Flux-cored wire for two-phase stainless steel welding, welding method and welding metal
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal
EP4265370A1 (en) Flux cored wire
EP4112760A1 (en) Ni-based alloy flux-cored wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227040039

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021299003

Country of ref document: AU

Date of ref document: 20210203

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832877

Country of ref document: EP

Kind code of ref document: A1