WO2022003815A1 - 電力制御システム - Google Patents
電力制御システム Download PDFInfo
- Publication number
- WO2022003815A1 WO2022003815A1 PCT/JP2020/025645 JP2020025645W WO2022003815A1 WO 2022003815 A1 WO2022003815 A1 WO 2022003815A1 JP 2020025645 W JP2020025645 W JP 2020025645W WO 2022003815 A1 WO2022003815 A1 WO 2022003815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- lithium ion
- control system
- battery
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
Definitions
- the present invention relates to a power control system.
- a commercial power supply or a power generation device is connected to a power supply line, and in order to realize an uninterruptible power supply function and a load leveling function, an instantaneous power type power buffer (for example, an electric double layer capacitor) is used.
- a sustained power power buffer eg lead storage battery.
- the instantaneous power type power buffer is connected to the power supply line via the first bidirectional DC / DC converter, and the charge / discharge of the instantaneous power type power buffer is controlled by using the first bidirectional DC / DC converter. Will be done.
- the sustained power type power buffer is connected to the power supply line via a second bidirectional DC / DC converter provided separately from the first bidirectional DC / DC converter, and is connected to the power supply line. Charging and discharging of the sustained power type power buffer is controlled by using a DC converter (see Patent Document 1 below).
- the second power control system has a commercial power supply and a power generation device connected to a power supply line, and is equipped with a lithium ion capacitor and a lead storage battery in order to suppress power fluctuations of the commercial power supply and the power generation device.
- the lithium ion capacitor is connected to the power supply line via the first power conversion unit, and the charging / discharging of the lithium ion capacitor is controlled by using the first power conversion unit.
- the lead-acid battery is connected to a power supply line via a second power conversion unit provided separately from the first power conversion unit, and the charge / discharge of the lead-acid battery is controlled by using the second power conversion unit. (See Patent Document 2 below).
- the third power control system is equipped with a lithium ion capacitor and a lithium ion battery in order to suppress the influence of power fluctuations of the power generation device.
- the lithium ion capacitor is connected to the power supply line via the first converter, and the charging / discharging of the lithium ion capacitor is controlled by using the first converter.
- the lithium ion battery is connected to the power supply line via a second converter provided separately from the first converter, and the surplus power of the lithium ion capacitor is transferred to the lithium ion battery by using the second converter. It is discharged (see Patent Document 3 below).
- a dedicated converter for controlling the charging / discharging of the capacitor and a dedicated converter for controlling the charging / discharging of the battery are provided, and these converters control each other independently. Therefore, for example, there is a problem that the circuit configuration and charge / discharge control become complicated.
- An object of the present invention is to provide a power control system capable of solving the above-mentioned problems.
- the power control system of the present invention is a power control system connected to a power supply line between a power generation device and a load that generates power by using natural energy, and is a power control system with a lithium ion capacitor. It includes a power storage unit having a lithium ion battery, a DC / DC converter, and a charge / discharge control unit that controls charging / discharging of the power storage unit.
- the charge / discharge control unit uses the lithium ion capacitor as the DC / DC.
- the lithium ion battery is connected to the power supply line via the DC / DC converter to control charging / discharging of the lithium ion capacitor, and the lithium ion battery is connected to the power supply line via the DC / DC converter.
- a lithium ion capacitor is connected to a power supply line via a DC / DC converter to control charge / discharge of the lithium ion capacitor
- a lithium ion battery is connected to the power supply line via the DC / DC converter. It is connected to the power supply line to control the charging and discharging of the lithium-ion battery. That is, the charging / discharging of the lithium ion capacitor and the charging / discharging of the lithium ion battery are controlled via a common DC / DC converter.
- the circuit configuration related to the converter can be simplified as compared with the configuration in which the DC / DC converters for charging / discharging the capacitor and for charging / discharging the battery are provided.
- the power storage unit has a configuration in which the lithium ion capacitor and the lithium ion battery are connected in parallel to each other and connected to the power supply line via the DC / DC converter. May be.
- the power storage units have a parallel form. In the parallel mode, the power fluctuation of the power supply line is preferentially used for charging / discharging the lithium ion capacitor. Therefore, it is possible to suppress the deterioration of the lithium ion battery due to the power fluctuation of the power supply line while allowing the charging and discharging of the lithium ion battery.
- the power storage unit has the parallel form and the capacitor in which the lithium ion capacitor is connected to the DC / DC converter and the lithium ion battery is not connected to the DC / DC converter. It may be configured so that it can be switched between a single form and a single form. In this power control system, deterioration of the lithium ion battery due to power fluctuation of the power supply line can be more effectively suppressed by switching from the parallel type to the single capacitor type.
- the power storage unit is connected to the power supply line via the DC / DC converter while the parallel form, the lithium ion capacitor, and the lithium ion battery are connected in series with each other. It may be configured so that the series form and the series form can be switched. In this power control system, by switching from the parallel form to the series form, the lithium ion capacitor can be charged and discharged without being limited by the voltage of the lithium ion battery.
- the charge / discharge control unit is a first state determination unit that determines whether or not the lithium ion battery is in a voltage sudden change state in which the amount of voltage change per unit time is equal to or greater than a reference amount.
- the storage unit may be switched from the parallel form to the series form on condition that the lithium ion battery is determined to be in the voltage sudden change state by the first state determination unit.
- the voltage of the lithium-ion battery which is in a state of sudden voltage change, changes abruptly, and the charge / discharge current of the lithium-ion battery changes rapidly accordingly, so that the lithium-ion battery tends to be over-discharged or over-charged.
- the power storage unit is switched from the parallel form to the series form on condition that the lithium ion battery is determined to be in a sudden voltage change state.
- the total voltage of the lithium ion capacitor and the lithium ion battery increases, and the charge / discharge current of the lithium ion battery decreases, so that it is possible to prevent the lithium ion battery from being over-discharged or over-charged.
- electric power can be supplied to the load from the power storage unit.
- the charge / discharge control unit includes a second state determination unit that determines whether or not the internal resistance of the lithium ion battery is equal to or higher than the reference resistance, and the second state determination unit is used.
- the storage unit may be switched from the parallel form to the series form on condition that the internal resistance of the lithium ion battery is determined to be equal to or higher than the reference resistance.
- the storage battery is switched from the parallel form to the series form on condition that the lithium ion battery has a reference resistance or more.
- the lithium ion capacitor includes a plurality of capacitor cells connected in series with each other, and the lithium ion battery includes a plurality of battery cells connected in series with each other, and includes the plurality of capacitor cells.
- the plurality of battery cells may be connected to each other in parallel, one for each.
- Lithium-ion capacitors tend to be over-discharged because they have a small energy capacity, and lithium-ion batteries are less likely to be over-discharged because they have a larger energy capacity than lithium-ion capacitors.
- the voltage of each capacitor cell is limited to the voltage of each battery cell connected in parallel to each capacitor cell, so that the voltage of each capacitor cell becomes the same as the voltage of each battery cell. ..
- over-discharging of the lithium ion capacitor due to dark current can be suppressed.
- the lithium ion capacitor includes a plurality of capacitor cells connected in series with each other, and the lithium ion battery includes a plurality of battery cells connected in series with each other, and includes the plurality of capacitor cells.
- the plurality of battery cells may be arranged one by one alternately, and the capacitor cells adjacent to each other may be arranged so as to be in contact with each other. Since the lithium ion capacitor is designed to have a higher output than the lithium ion battery, the electrode is thin and the volume of the current collector is large, so that the heat dissipation is high. Therefore, according to this power control system, it is possible to suppress the temperature rise of the lithium ion battery due to the heat dissipation effect of the lithium ion capacitor.
- the lithium-ion battery is composed of a battery module having a plurality of battery cells, and the battery module can be added to the battery module.
- the charge / discharge control unit controls the battery module.
- the battery control unit may be configured to be able to control the maximum number of the battery modules that can be added. According to this power control system, the battery module after the expansion can be controlled only by adding the battery module without the battery control unit.
- the charge / discharge control unit has a resistance specifying unit that specifies the internal resistance of the lithium ion battery, and the higher the internal resistance specified by the resistance specifying unit, the more the amount of current flows through the power storage unit. It may be configured to include a current control unit for reducing the size. Deterioration of the lithium-ion battery can be suppressed by suppressing an increase in the voltage of the lithium-ion battery due to an increase in the internal resistance of the lithium-ion battery.
- the power generation device is a solar power generation device
- the power storage unit is such that the lithium ion capacitor and the lithium ion battery are connected in parallel to each other and via the DC / DC converter.
- the charge / discharge control unit is configured to be switchable, and when the power generated by the solar power generation device exceeds the power required for the load, the power storage unit is used as the capacitor alone to generate the solar power.
- the electric storage unit is set as the parallel form from the electric storage unit. It may be configured to discharge and supply electric power to the load.
- the lithium ion capacitor is charged using the surplus power from the solar power generation device that may include the power fluctuation. At the same time, it is possible to suppress deterioration of the lithium ion battery due to power fluctuations in the power supply line.
- the lithium-ion capacitor can suppress the deterioration of the lithium-ion battery due to the power fluctuation of the power supply line.
- the charge / discharge control unit uses the storage unit as a single capacitor and uses the power from the photovoltaic power generation device to generate the lithium ion. It may be configured to charge the capacitor. According to this power control system, even when the amount of power generation is small due to cloudiness or the like, the lithium ion capacitor can be charged without wasting it.
- a commercial power source is connected to the power supply line, and when the current time is not in the nighttime charge range, the charge / discharge control unit discharges the power storage unit from the power storage unit in the parallel form.
- the electric power may be supplied to the load from the commercial power source.
- commercial power in the nighttime charge range can be effectively used.
- the charge / discharge control unit includes a prediction unit that predicts the power generation amount of the solar power generation device on the next day, and it is a necessary condition that the power generation amount predicted by the prediction unit is equal to or less than the reference amount.
- the lithium ion capacitor may be charged in the nighttime charge range on the previous day.
- the lithium-ion capacitor is charged in the nighttime charge range on the previous day.
- the lithium-ion capacitor is not charged in the nighttime charge range on the previous day, so that the amount of power generated from the photovoltaic power generation device on the next day is changed. Allow the lithium-ion capacitor to be fully charged and discharged.
- the charge / discharge control unit further includes a storage unit that stores measurement data related to the weather, and the prediction unit calculates the amount of power generation on the next day based on the measurement data stored in the storage unit. It may be a configuration to be predicted. As a result, it is possible to accurately predict the amount of power generation on the next day based on the accumulated actual measurement data of the weather.
- the present invention can also be realized in other forms such as a power control system, a power control method, a power control program, and a non-temporary recording medium on which the power control program is recorded.
- Explanatory drawing which shows the electric composition of a power control system 100 and an external device in 1st Embodiment Explanatory drawing which shows the electric composition of a power control system 100
- Flow chart showing the contents of combined power control processing
- Explanatory diagram showing the flow of power during each process
- Flowchart showing the contents of PV power generation processing
- Flowchart showing the contents of night processing
- Battery discharge processing Explanatory drawing which shows charge / discharge curve GB of LIB module 300
- a flowchart showing the contents of the self-sustaining power control process in the second embodiment.
- Explanatory drawing which shows the electric structure of the battery unit 120A in the modification
- Explanatory drawing which shows physical structure of LIC210 and LIB310
- Explanatory drawing showing the relationship between the internal resistance of the LIB module 300 and the amount of current flowing through the LIB module 300.
- FIG. 1 is an explanatory diagram showing an electrical configuration of the power control system 100 and an external device according to the first embodiment.
- FIG. 1 shows a photovoltaic power generation device 10, a commercial power source 20, and a communication device 30 (for example, a communication base station) as external devices, and these external devices and a power control system 100 are connected to a power supply line LW. It is electrically connected via.
- the photovoltaic power generation device 10 is an example of a power generation device in the claims
- the communication device 30 is an example of a load in the claims.
- the photovoltaic power generation device 10 is a device that generates electricity by using photovoltaic power generation that converts solar energy into electric power, and has a solar panel 12 and a PV converter 14.
- the PV converter 14 controls the power generation of the solar panel 12 and outputs DC power according to the amount of power generated by the solar panel 12 to the power supply line LW.
- the electric power output from the photovoltaic power generation device 10 is referred to as "PV electric power Wp".
- the commercial power supply 20 is electrically connected to the power supply line LW via the AC / DC converter 22.
- the AC power from the commercial power source 20 is converted into DC power by the AC / DC converter 22 and output to the power supply line LW.
- the DC power output from the commercial power supply 20 is referred to as "commercial power Wa”.
- the power control system 100 includes a DC / DC converter 110, a battery unit 120, and a PCU (POWER CONTROLL UNIT) 130.
- the battery unit 120 is electrically connected to the power supply line LW via the DC / DC converter 110.
- the PCU 130 operates, for example, a DC / DC converter 110 to control charging / discharging of the battery unit 120.
- the PV power Wp from the photovoltaic power generation device 10 can be supplied not only to the communication device 30 but also to the power control system 100.
- the commercial power Wa from the commercial power source 20 can be supplied not only to the communication device 30 but also to the power control system 100.
- the PCU 130 charges the battery unit 120 with the supplied PV power Wp or commercial power Wa.
- the PCU 130 can also supply the electric powers Wc and Wb stored in the battery unit 120 to the communication device 30.
- the battery unit 120 is an example of a power storage unit in the claims
- the PCU 130 is an example of a charge / discharge control unit in the claims.
- FIG. 2 is an explanatory diagram showing an electrical configuration of the power control system 100.
- the DC / DC converter 110 is a bidirectional DC / DC converter, and as will be described later, this common DC / DC converter 110 charges and discharges both the LIC module 200 and the LIB module 300. Used for control.
- the battery unit 120 includes a LIC module 200, a LIB module 300, a first switch 122, a second switch 124, and a third switch 126.
- the LIC module 200 has a configuration in which a plurality of lithium ion capacitors (hereinafter referred to as "LIC") 210 are connected in series.
- One end (for example, the positive electrode side) of the LIC module 200 is electrically connected to the DC / DC converter 110, and the other end (for example, the negative electrode side) of the LIC module 200 is electrically connected to the common line (for example, the ground line) side. It is connected to the.
- LIC is an example of a capacitor cell in the claims.
- the LIB module 300 has a configuration in which a plurality of lithium ion batteries (hereinafter referred to as "LIB") 310 are connected in series.
- the LIB 310 is, for example, an iron phosphate-based LIB or a ternary-based (nickel-manganese-cobalt-based, etc.) LIB.
- the LIB 310 can be used in the same voltage range as the upper and lower voltage ranges of the LIC 210 (for example, 2.2 V or more and 3.8 V or less).
- the upper and lower limit voltage ranges are the voltage range from the discharge cutoff voltage (cutoff voltage) to the full charge voltage.
- the same upper and lower voltage range means that the error is ⁇ 0.2 V or less.
- the LIB 310 is an iron phosphate system
- the voltage range narrower than the general upper and lower voltage range of the ternary system for example, 2.8 V or more and 4.0 V or less) (for example, 2.6 V or more and 4.0 V or less).
- One end (for example, the positive electrode side) of the LIB module 300 is electrically connected to the DC / DC converter 110 via the first switch 122, and the other end (for example, the negative electrode side) of the LIB module 300 is on the common line side. Is electrically connected to. That is, the first switch 122 is a switch for switching on and off the electrical connection between the DC / DC converter 110 and the LIB module 300. Further, the other end side of the LIC module 200 is electrically connected to the connection line between the first switch 122 and the LIB module 300 via the second switch 124. That is, the second switch 124 is a switch for turning on / off the series connection between the LIC module 200 and the LIB module 300.
- the LIB module 300 is an example of a battery module in the claims, and the LIB is an example of a battery cell in the claims.
- the third switch 126 is connected in parallel to the DC / DC converter 110. When the third switch 126 is in the open state, the battery unit 120 is electrically connected to the power supply line LW via the DC / DC converter 110, and charging / discharging becomes possible. When the third switch 126 is in the closed state, the battery unit 120 is electrically connected to the power supply line LW without going through the DC / DC converter 110, and charging / discharging becomes possible.
- the battery unit 120 can switch the connection form of the LIC module 200 and the LIB module 300 to the DC / DC converter 110 between "parallel form”, “series form”, and “LIC single form”. ..
- the LIC module 200 and the LIB module 300 are electrically connected in parallel to each other, and the LIC module 200 and the LIB module 300 connected in parallel are connected to each other via a DC / DC converter 110. (See FIGS. 4 (b) and 4 (c) described later).
- the battery unit 120 By closing the first switch 122 and opening the second switch 124, the battery unit 120 can be arranged in parallel.
- the LIC module 200 and the LIB module 300 are connected in series with each other, and the LIC module 200 and the LIB module 300 connected in series are connected to the power supply line LW via the DC / DC converter 110. It is a form. By opening the first switch 122 and closing the second switch 124, the battery unit 120 can be in series form.
- the "LIC independent form” is a form in which the LIC module 200 is electrically connected to the DC / DC converter 110 and the LIB module 300 is not connected to the DC / DC converter 110 (FIG. 4 (described later)). a) See). By opening both the first switch 122 and the second switch 124, the battery unit 120 can be in the LIC independent form.
- the PCU 130 includes a control unit 132, a storage unit 134, an interface unit 136, a LIC management unit 138, and a LIB management unit 140, and each of these units is communicably connected to each other via a bus (not shown). Has been done.
- the control unit 132 is configured by, for example, a CPU or the like, and controls the operation of the DC / DC converter 110 and the switches 122 and 124 by executing a computer program read from the storage unit 134. For example, the control unit 132 executes a power control process described later by reading a power control program (not shown) from the storage unit 134 and executing the program.
- the control unit 132 functions as a first state determination unit and a second state determination unit when executing the power control process. The functions of each of these parts will be described in accordance with the description of various processes described later.
- the storage unit 134 is composed of, for example, a ROM, a RAM, a hard disk drive (HDD), or the like, and stores various data, programs, or models, or temporarily executes a work area or data when executing various programs or models. It is used as a storage area. Further, the power control program is stored in the storage unit 134.
- the power control program is a computer program for executing the power control process described later. These programs are provided in a state of being stored in a recording medium (not shown) readable by a computer such as a CD-ROM, a DVD-ROM, or a USB memory, and are stored in the storage unit 134 by being installed in the PCU 130. Will be done.
- the interface unit 136 is configured by, for example, a LAN interface, a USB interface, or the like, and communicates with other devices by wire or wirelessly.
- the LIC management unit 138 detects the current, voltage, temperature, etc. of the LIC 210 in the LIC module 200, and manages the state of the LIC 210 based on the detection result.
- the LIB management unit 140 detects the current, voltage, temperature, etc. of the LIB 310 in the LIB module 300, and manages the state of the LIB 310 based on the detection result.
- the LIB management unit 140 is an example of a battery control unit within the scope of claims.
- the battery unit 120 is configured so that the LIC module 200 and the LIB module 300 can be added to each other.
- a predetermined maximum number of LIC modules 200 can be connected in parallel to each other and can be controlled by a common LIC management unit 138 provided in the PCU 130. That is, in the battery unit 120, the number of LIC modules 200 can be increased or decreased up to the maximum number.
- a predetermined maximum number of LIB modules 300 can be connected in parallel to each other, and can be controlled by a common LIB management unit 140 provided in the PCU 130. That is, in the battery unit 120, the number of LIB modules 300 can be increased or decreased up to the maximum number.
- the maximum number of LIC modules 200 and the maximum number of LIB modules 300 may be the same or different. With such a configuration, it is possible to collectively charge / discharge control the maximum number of LIC modules 200 and LIB modules 300 that can be arranged in the battery unit 120 by using a common DC / DC converter 110. Further, the maximum number of LIC modules 200 that can be arranged in the battery unit 120 can be collectively managed by the common LIC management unit 138. Further, the maximum number of LIB modules 300 that can be arranged in the battery unit 120 can be collectively managed by the common LIB management unit 140. As a result, the entire power control system 100 can be made compact.
- FIG. 3 is a flowchart showing the contents of the combined power control process.
- the control unit 132 determines whether or not the photovoltaic power generation device 10 has solar power generation (S110). Specifically, the control unit 132 determines the presence or absence of solar power generation based on the signal from the PV converter 14. When it is determined that there is solar power generation (S110: YES), the control unit 132 executes the PV power generation processing described later (S120), and returns to the processing of S110 after the PV power generation processing is executed. When it is determined that there is no photovoltaic power generation (S110: NO), the control unit 132 determines whether or not the current time belongs to the nighttime charge zone (also referred to as “nighttime power time zone”) (S130).
- the nighttime charge zone also referred to as “nighttime power time zone”
- the nighttime charge zone is a nighttime zone (for example, from 23:00 to 7:00) when the usage charge of the commercial power Wa from the commercial power source 20 is cheaper than that in the daytime, and the commercial power Wa from the commercial power source 20 is preferentially used. This is an example of a time zone where there is a merit in doing so.
- FIG. 4 is an explanatory diagram showing the flow of electric power during each process.
- FIG. 5 is a flowchart showing the contents of PV power generation processing.
- the PV power generation processing is mainly a processing for supplying power to the communication device 30 by using the PV power Wp from the photovoltaic power generation device 10.
- the PV power generation processing is executed when the photovoltaic power generation device 10 is in the power generation state (S110: YES in FIG. 3) in the daytime charge range (for example, from 7:00 to 23:00). Further, in the PV power generation processing, the commercial power Wa by the commercial power source 20 is not used.
- the control unit 132 determines that the power amount of the PV power Wp by the photovoltaic power generation device 10 (hereinafter referred to as “PV power generation power amount”) is the power amount required for the communication device 30 (hereinafter referred to as “PV power generation power amount”). , “Device electric energy”) or more (S210). For example, when the sky is clear and the photovoltaic power generation device 10 is sufficiently generating power, the PV power generation amount becomes equal to or more than the device power amount. In such a case, only the PV power Wp (Wp1) from the photovoltaic power generation device 10 is supplied to the communication device 30, and the communication device 30 operates.
- FIG. 4A shows the flow of each power when the PV power generation amount is equal to or more than the device power amount.
- the control unit 132 uses the surplus power Wp2 from the photovoltaic power generation device 10 as shown in FIG. 4A.
- the LIC module 200 is charged (S220).
- the control unit 132 has the battery unit 120 as the LIC independent form, operates the DC / DC converter 110, and charges only the LIC module 200. Therefore, the storage capacity of the LIC module 200 is preferably a capacity capable of charging all the surplus power Wp2 from the photovoltaic power generation device 10.
- the PV power Wp from the photovoltaic power generation device 10 is liable to fluctuate due to changes in the weather.
- the PV power Wp may include a short-cycle fluctuation component (variation cycle is in seconds and minutes) and a medium- to long-term fluctuation component (variation cycle is in hours and days).
- a short-period fluctuation portion of PV power Wp (surplus power Wp2) is supplied to the LIB module 300
- the LIB 310 rapidly repeats charging and discharging, and the LIB 310 deteriorates.
- the battery unit 120 is the LIC independent form, and the PV power Wp (short cycle fluctuation portion) is not supplied to the LIB module 300.
- the LIC 210 constituting the LIC module 200 has a higher output (higher output density) and higher charge / discharge responsiveness (lower internal resistance) than the LIB 310. Therefore, the LIC module 200 is charged according to the short-period fluctuation of the PV power Wp.
- the capacity of the LIC module 200 is preferably such that it is not saturated by charging the PV power Wp from the photovoltaic power generation device 10.
- the PV power generation amount of the photovoltaic power generation device 10 is very small, and the device power amount of the communication device 30 is very small, the PV power generation amount becomes equal to or more than the device power amount. obtain. Even in such a case, a minute current flows through the LIC 210 due to the minute surplus power Wp2, and the LIC module 200 is charged. That is, in the present embodiment, the battery unit 120 can be charged even when the PV power generation amount of the photovoltaic power generation device 10 is very small.
- the internal resistance of the LIB 310 and the communication device 30 is higher than the internal resistance of the LIC 210.
- the amount of PV power generation of the photovoltaic power generation device 10 is very small, it is difficult to charge the LIB 310 and the communication device 30. Therefore, by charging the LIC 210 as in the present embodiment, even if the PV power generation amount of the photovoltaic power generation device 10 is very small, the small PV power generation amount can be effectively used without wasting it. ..
- control unit 132 determines that the PV power generation amount is less than the device power amount (S210: NO)
- the control unit 132 executes the battery discharge process (S230).
- the battery discharge process will be described later.
- the control unit 132 returns to S110 in FIG. 3 after a predetermined time has elapsed from the start of the processing of S220 or the processing of S230.
- FIG. 6 is a flowchart showing the contents of night processing.
- the nighttime process is mainly a process for supplying electric power to the communication device 30 by using the commercial electric power Wa from the commercial power source 20.
- the nighttime processing is executed in the nighttime charge zone (S130: YES in FIG. 3). Further, in the nighttime processing, since the photovoltaic power generation device 10 does not generate power, the PV power Wp by the photovoltaic power generation device 10 is not used.
- FIG. 4B shows the flow of each electric power in the nighttime charge zone.
- the control unit 132 allows the commercial power Wa from the commercial power source 20 to be supplied to the communication device 30 (S310).
- the control unit 132 arranges the battery unit 120 in parallel, operates the DC / DC converter 110, and uses the commercial power Wa (Wa2, Wa3) from the commercial power source 20 to use the battery unit 120 (with the LIC module 200).
- the LIB module 300) is charged (S320).
- the control unit 132 charges the LIB module 300, for example, by a CC (constant current charging) -CV (constant voltage charging) method.
- the LIC module 200 is also charged, and when the upper limit voltage is reached, the charging of the LIC module 200 is stopped.
- the control unit 132 returns to S110 in FIG. 3 after a predetermined time has elapsed from the start of the processing of S320.
- FIG. 7 is a flowchart showing the contents of the battery discharge processing.
- the battery discharge process is a process for supplying electric power to the communication device 30 by using the discharge powers Wc and Wb from the battery unit 120.
- the battery discharge process is executed when the photovoltaic power generation device 10 is not in the power generation state (S110: NO and S130: NO in FIG. 3) in the daytime charge range. Since the photovoltaic power generation device 10 does not generate power, the PV power Wp generated by the photovoltaic power generation device 10 is not used. Further, in the battery discharge process, since it is not in the nighttime charge range, the commercial power Wa by the commercial power source 20 is not used. Therefore, the storage capacity of the LIB module 300 is preferably equal to or larger than the amount of power of the device in the daytime charge range.
- the control unit 132 determines whether or not the LIB module 300 is in a voltage sudden change state (S410). At this time, the control unit 132 functions as a first state determination unit.
- the voltage sudden change state is a state in which the voltage change amount per unit time of the LIB module 300 is equal to or more than the reference amount.
- the control unit 132 specifies the amount of voltage change per unit time of the LIB module 300, for example, based on the detection result of the voltage of the LIB module 300 from the LIB management unit 140.
- FIG. 8 is an explanatory diagram showing the charge / discharge curve GB of the LIB module 300.
- the vertical axis of the graph of FIG. 8 is the OCV (open circuit voltage) of the LIC module 200, and the horizontal axis is the SOC (charged state).
- OCV open circuit voltage
- SOC discharged state
- the LIB module 300 tends to be overcharged, and in the non-plateau region E22 with a low SOC, the LIB module 300 tends to be overdischarged.
- the LIB module 300 deteriorates due to repeated overcharging and overdischarging.
- the fact that the LIB module 300 is not in the voltage sudden change state means that the LIB module 300 belongs to the plateau region E1
- the fact that the LIB module 300 is in the voltage sudden change state means that the LIB module 300 belongs to the non-plateau region E2. It is assumed that it is.
- control unit 132 determines that the LIB module 300 is not in the voltage sudden change state (S410: NO), it is unlikely that the LIB module 300 will be over-discharged due to the voltage sudden change state, so the process proceeds to S420.
- the control unit 132 determines that the LIB module 300 is in a voltage sudden change state (S410: YES)
- the control unit 132 switches the battery unit 120 from the parallel form to the series form (S430). That is, since the LIB module 300 belongs to the non-plateau region E2, it tends to be over-discharged.
- the charge / discharge control of the LIB 310 can be performed by using a wide region of the plateau region E1 close to the non-plateau region E2.
- the control unit 132 determines whether or not the internal resistance of the LIB module 300 is equal to or higher than the reference resistance. At this time, the control unit 132 functions as a second state determination unit.
- the internal resistance of the LIB module 300 increases due to factors such as deterioration of the LIB module 300 and a decrease in the temperature of the LIB module 300 due to the influence of the environmental temperature. Therefore, the control unit 132 specifies the internal resistance of the LIB module 300 based on the detection result of the voltage and the current of the LIB module 300 from the LIB management unit 140, for example.
- the control unit 132 may specify the internal resistance of the LIB module 300 based on, for example, the temperature detection result of the LIB module 300 from the LIB management unit 140.
- the voltage of the LIB module 300 is substantially constant. If the internal resistance of the LIB module 300 increases in such a case, the amount of discharge current of the LIB module 300 decreases, and there is a possibility that sufficient power cannot be discharged from the battery unit 120 (LIB module 300).
- the control unit 132 determines that the internal resistance of the LIB module 300 is equal to or higher than the reference resistance (S420: YES)
- the control unit 132 switches the battery unit 120 from the parallel form to the series form (S430).
- the voltage of the battery unit 120 rises to the sum of the voltage of the LIB module 300 and the voltage of the LIC module 200.
- the charge / discharge current amount of the LIB module 300 decreases, it is possible to suppress the occurrence of insufficient discharge of the LIB module 300 (battery unit 120) and supply sufficient power to the communication device 30.
- control unit 132 determines that the internal resistance of the LIB module 300 is less than the reference resistance (S420: NO), it is unlikely that the discharge shortage of the LIB module 300 will occur due to the increase in the internal resistance. Proceed to S440.
- the control unit 132 arranges the battery unit 120 in parallel and operates the DC / DC converter 110 to discharge the battery unit 120.
- FIG. 4C shows the flow of each electric power when the battery unit 120 is discharged.
- the discharge power Wc from the LIC module 200 is supplied to the communication device 30 so as to follow the short-period fluctuation amount. Therefore, it is possible to suppress the occurrence of insufficient power supply to the communication device 30. Therefore, the discharge power Wb from the LIB module 300 can be supplied to the communication device 30 while suppressing the deterioration of the LIB 310 due to the short cycle fluctuation (rapid charge / discharge).
- the LIC module 200 and the LIB module 300 are connected in parallel. Therefore, the voltage of the LIC module 200 is limited to the voltage of the LIB module 300 (see the graph GC in FIG. 8). As a result, it is possible to prevent the LIC module 200 from being over-discharged in a short time due to, for example, a dark current in the circuit. That is, in this embodiment, it is not necessary to provide a dedicated circuit for suppressing the dark current of the LIC module 200. Further, the power for the short-period fluctuation is supplied from the LIC module 200 to the communication device 30 without separately providing a means for detecting the short-period fluctuation in the power required for the communication device 30, and the medium- to long-term fluctuation is supplied from the LIB module 300. Power can be supplied to the communication device 30. The control unit 132 returns to S110 in FIG. 3 after a predetermined time has elapsed from the start of the processing of S430 or the processing of S440.
- the LIC module 200 is connected to the power supply line LW via the DC / DC converter 110 to control the charging / discharging of the LIC module 200, and the LIB is also controlled.
- the module 300 is also connected to the power supply line LW via the DC / DC converter 110, and the charging / discharging of the LIB module 300 is controlled. That is, the charging / discharging of the LIC module 200 and the charging / discharging of the LIB module 300 are controlled via a common DC / DC converter 110.
- the entire power control system 100 can be made compact.
- the battery units 120 have a parallel form (see S230 in FIG. 5, S320 in FIGS. 4, S440 in FIG. 7).
- the power fluctuation portion (short cycle fluctuation portion) of the power supply line LW is preferentially used for charging / discharging the LIC module 200. Therefore, it is possible to suppress the deterioration of the LIB module 300 due to the power fluctuation of the power supply line LW while allowing the charging and discharging of the LIB module 300.
- the battery unit 120 can be switched from the parallel form to the LIC single form (see S220 in FIG. 4A and FIG. 5). As a result, deterioration of the LIB module 300 due to power fluctuations in the power supply line LW can be suppressed more effectively.
- the battery unit 120 can be switched from the parallel form to the series form (see S430 in FIG. 7).
- the LIC module 200 can be charged and discharged without being limited by the voltage of the LIB module 300.
- the surplus power Wp2 from the solar power generation device 10 that may include the power fluctuation amount is obtained. It can be used to charge the LIC module 200 while suppressing deterioration of the LIB module 300 due to power fluctuations in the power supply line LW (see FIG. 4A).
- the PV power generation amount is less than the device power amount (S210: NO in FIG. 5)
- the discharge powers Wc and Wb from both the LIC module 200 and the LIB module 300 are supplied to the communication device 30 (FIG. 5). 4 (c)). Therefore, while enabling the discharge of the LIB module 300, the LIC module 200 can suppress the deterioration of the LIB module 300 due to the power fluctuation of the power supply line LW.
- FIG. 9 is a flowchart showing the contents of the self-sustaining power control process in the second embodiment.
- the second embodiment is different from the first embodiment described above in that the control unit 132 of the PCU 130 executes the self-sustaining power control process.
- the same configurations (processes) as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. do.
- the communication device 30 uses the PV power Wp of the solar power generation device 10 without using the commercial power Wa of the commercial power source 20. Power is supplied to the battery unit 120 and the battery unit 120 is charged. It is preferable that the maximum power generation amount of the photovoltaic power generation device 10 and the storage capacity of the battery unit 120 are each equal to or more than the device power amount for one day of the communication device 30.
- the self-supporting power control process in a system in which PV power Wp is mainly used, the LIC module 200 and the LIB module 300 are charged according to the power generation state of the photovoltaic power generation device 10 and the operating state of the communication device 30. This is a process for controlling the discharge. In the self-sustaining power control process, the commercial power Wa of the commercial power source 20 is used only for backup.
- the control unit 132 determines whether or not the PV power generation amount is equal to or more than the device power amount (S510).
- the processing of S510 is the same as the processing of S210 of the first embodiment.
- the control unit 132 determines whether or not the power generation cycle of the PV power Wp from the photovoltaic power generation device 10 is a short cycle. (S520).
- the power control system 100 includes a cycle detection unit (not shown) that detects the power generation cycle of the PV power Wp from the photovoltaic power generation device 10, and PV is based on the detection result of the cycle detection unit. It is determined whether or not the power generation cycle of the electric power Wp is a short cycle.
- the control unit 132 determines that the power generation cycle of the PV power Wp is a short cycle (S520: YES)
- the control unit 132 operates the DC / DC converter 110 with the battery unit 120 as the LIC independent form to charge only the LIC module 200.
- S530 The processing of S530 is the same as the processing of S220 of the first embodiment.
- the control unit 132 determines that the power generation cycle of the PV power Wp is not a short cycle (medium-long cycle) (S520: NO)
- the battery unit 120 is arranged in parallel (S540). As a result, the LIB module 300 is charged in addition to the LIC module 200.
- control unit 132 determines that the PV power generation amount is less than the device power amount (S510: NO)
- the control unit 132 executes the battery discharge process described above (S550).
- the process of S550 is the same as the battery discharge process (FIG. 7) of the first embodiment.
- the configuration of the power control system 100 and the like in the above embodiment is merely an example and can be variously modified.
- the battery unit 120 including a plurality of LIC210s (capacitor cells) and a plurality of LIB310s (battery cells) is exemplified as the power storage unit, but the power storage unit includes a configuration including one LIC210 or one LIB310. It may be provided.
- FIG. 10 is an explanatory diagram showing the electrical configuration of the battery unit 120A in the modified example
- FIG. 11 is an explanatory diagram showing the physical configuration of the LIC 210 and the LIB 310.
- the battery unit 120A includes a plurality of LIC210s (capacitor cells) connected in series with each other and a plurality of LIB310s (battery cells) connected in series with each other. Further, the positive electrode side of each LIC 210 and the positive electrode side of each LIB 310 are electrically connected via the first switch 122A.
- FIG. 10 is an explanatory diagram showing the electrical configuration of the battery unit 120A in the modified example
- FIG. 11 is an explanatory diagram showing the physical configuration of the LIC 210 and the LIB 310.
- the battery unit 120A includes a plurality of LIC210s (capacitor cells) connected in series with each other and a plurality of LIB310s (battery cells) connected in series with each other.
- the plurality of LIC210s and the plurality of LIB310s are connected one by one in parallel to each other.
- over-discharging of each LIC 210 can be reliably suppressed.
- the short-period fluctuation portion of the power supply line LW can be more reliably and preferentially used for charging / discharging the LIC 210 than for charging / discharging the LIB 310.
- the balance circuit is shared in the parallel circuit consisting of one cell of the LIC210 and one cell of the LIB310.
- each LIB 310 has a problem that it tends to be over-discharged due to a sudden voltage change state.
- the other end side of each LIC210 is electrically connected to the connection line between each first switch 122A and each LIB310 via the second switch 124A. That is, by opening and closing each second switch 124A, each LIC210 and each LIB310 can be individually switched between a parallel form and a series form.
- each LIB 310 when each LIB 310 is in a voltage sudden change state, by connecting each LIC 210 and each LIB 310 in series, it is possible to individually suppress the occurrence of over-discharge of each LIB 310 due to the voltage sudden change state.
- the LIB 310 has a higher internal resistance than the LIC 210, there is a problem that the temperature tends to be high.
- the plurality of LIC210s and the plurality of LIB310s are arranged alternately one by one, and the LIC210s and LIB310s adjacent to each other are arranged so as to be in contact with each other. It is preferable that the LIC 210 and the LIB 310 are in surface contact with each other. Since the LIC 210 is designed to have a higher output than the LIB 310, the electrodes are thin and the volume of the current collector is large, so that the heat dissipation is high.
- the LIC 210 By arranging the LIC 210 so as to protrude to the outer peripheral side of the LIB 310 (see FIG. 11) or by adding a heat radiating means to the LIC 210, the heat radiating effect of the LIC 210 is further improved.
- the photovoltaic power generation device 10 is exemplified as the power generation device, but any device that generates power using natural energy may be used, for example, wind power generation, hydroelectric power generation, bio-based fuel cell, or the like.
- the communication device 30 is exemplified as the load, but for example, a server device, a management device, or the like, or a stationary or mobile device for operating an actuator (for example, a motor) may be used.
- the battery unit 120 may be arranged in parallel in S220 of the PV power generation processing of FIG. Even in this case, since the short-period fluctuation portion of the PV power Wp is preferentially charged to the LIC 210, deterioration of the LIB 310 due to rapid charging / discharging can be suppressed.
- the power control system 100 may make the control unit 132 function as a prediction unit for predicting the amount of power generated by the photovoltaic power generation device 10 on the next day.
- the control unit 132 may predict the amount of power generation on the next day based on, for example, weather information (for example, weather prediction) obtained via a communication network.
- the control unit 132 may store, for example, data on the weather of the environment in which the photovoltaic power generation device 10 is installed in the storage unit 134, and the control unit 132 may predict the amount of power generation based on the data on the weather. ..
- the data related to the weather is, for example, data created from past results regarding the correspondence between environmental information (temperature, atmospheric pressure, wind power, etc.) that affects the climate and the amount of power generation. Further, the control unit 132 may sequentially acquire and accumulate environmental information and the amount of power generation, and predict the amount of power generation on the next day by machine learning based on the accumulated big data. If the amount of power generated on the next day is equal to or less than the reference amount, the control unit 132 may not be able to sufficiently supply power to the communication device 30 by the PV power Wp from the photovoltaic power generation device 10 during the daytime of the next day. .. Therefore, the LIC module 200 is charged in the nighttime charge zone on the previous day (see FIGS. 4 (b) and 6).
- the LIC module 200 when the amount of power generated on the next day exceeds the standard amount, the LIC module 200 is not charged in the nighttime charge zone on the previous day, so that the LIC module responds to the fluctuation of the PV power Wp from the photovoltaic power generation device 10 on the next day.
- the 200 can be made to stand by so that it can be sufficiently charged and discharged.
- the storage unit 134 is an example of the storage unit within the scope of the claims.
- the battery unit 120 may be in a parallel mode without the determination of S520.
- the power fluctuation portion (short cycle fluctuation portion) of the PV power Wp power supply line LW
- the cycle detection unit becomes unnecessary.
- the LIB module 300 may be electrically connected to the DC / DC converter 110 and the LIB module 200 may be disconnected from the electrical connection.
- the commercial power supply 20 may not be connected to the power supply line LW.
- the control unit 132 may execute the following current control process. That is, the control unit 132 specifies the internal resistance of the LIB module 300, and the higher the specified internal resistance, the smaller the amount of current flowing through the battery unit 120. At this time, the control unit 132 functions as a resistance specifying unit and a current control unit within the scope of the claims.
- FIG. 12 is an explanatory diagram showing the relationship between the internal resistance of the LIB module 300 and the amount of current flowing through the LIB module 300. As shown in FIG. 12, as the internal resistance of the LIB module 300 decreases (see graph GZ), the amount of current flowing through the LIB module 300 is increased (see graph GI).
- the side reaction of the LIB module 300 due to the increase in the internal resistance of the LIB module 300 can be suppressed, and the deterioration of the LIB module 300 can be suppressed.
- the amount of current flowing through the LIB module 300 is set as the upper limit amount. It is preferable to keep it.
- a part of the configuration realized by the hardware may be replaced with software, and conversely, a part of the configuration realized by the software may be replaced with hardware.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
コンバータに関する回路構成を簡略化する。 電力制御システムは、自然エネルギーを利用して発電する発電装置と負荷との間の電力供給ラインに接続される。電力制御システムは、リチウムイオンキャパシタとリチウムイオン電池とを有する蓄電部と、DC/DCコンバータと、蓄電部の充放電を制御する充放電制御部と、を備える。充放電制御部は、リチウムイオンキャパシタを、DC/DCコンバータを介して、電力供給ラインに接続してリチウムイオンキャパシタの充放電を制御し、リチウムイオン電池を、共通のDC/DCコンバータを介して、電力供給ラインに接続してリチウムイオン電池の充放電を制御する。
Description
本発明は、電力制御システムに関する。
従来から、例えば太陽光発電や風力発電など、自然エネルギー(「再生可能エネルギー」ともいう)を利用して発電する発電装置と負荷との間の電力供給ラインに接続される電力制御システムが知られている。
第1の電力制御システムは、商用電源や発電装置が電力供給ラインに接続されており、無停電電源機能と負荷平準化機能との実現のため、瞬発力型電力バッファ(例えば電気二重層キャパシタ)と持続力型電力バッファ(例えば鉛蓄電池)とを備えている。瞬発力型電力バッファは、第1の双方向DC/DCコンバータを介して電力供給ラインに接続されており、第1の双方向DC/DCコンバータを用いて瞬発力型電力バッファの充放電が制御される。持続力型電力バッファは、第1の双方向DC/DCコンバータとは別に設けられた第2の双方向DC/DCコンバータを介して電力供給ラインに接続されており、第2の双方向DC/DCコンバータを用いて持続力型電力バッファの充放電が制御される(下記特許文献1参照)。
第2の電力制御システムは、商用電源や発電装置が電力供給ラインに接続されており、商用電源や発電装置の電力変動の抑制のため、リチウムイオンキャパシタと鉛蓄電池とを備えている。リチウムイオンキャパシタは、第1の電力変換部を介して電力供給ラインに接続されており、第1の電力変換部を用いてリチウムイオンキャパシタの充放電が制御される。鉛蓄電池は、第1の電力変換部とは別に設けられた第2の電力変換部を介して電力供給ラインに接続されており、第2の電力変換部を用いて鉛蓄電池の充放電が制御される(下記特許文献2参照)。
第3の電力制御システムは、発電装置の電力変動による影響を抑制するため、リチウムイオンキャパシタとリチウムイオン電池とを備えている。リチウムイオンキャパシタは、第1のコンバータを介して電力供給ラインに接続されており、第1のコンバータを用いてリチウムイオンキャパシタの充放電が制御される。リチウムイオン電池は、第1のコンバータとは別に設けられた第2のコンバータを介して電力供給ラインに接続されており、第2のコンバータを用いて、リチウムイオンキャパシタの余剰電力がリチウムイオン電池に放電される(下記特許文献3参照)。
上述した従来の電力制御システムでは、キャパシタの充放電を制御するための専用のコンバータと、電池の充放電を制御するための専用のコンバータとが設けられており、これらのコンバータが互いに独立に制御されるため、例えば回路構成や充放電制御が複雑になる、という課題がある。
本発明は、上述した課題を解決することが可能な電力制御システムを提供することを目的とする。
上記目的を達成するために、本発明の電力制御システムは、自然エネルギーを利用して発電する発電装置と負荷との間の電力供給ラインに接続される電力制御システムであって、リチウムイオンキャパシタとリチウムイオン電池とを有する蓄電部と、DC/DCコンバータと、前記蓄電部の充放電を制御する充放電制御部と、を備え、前記充放電制御部は、前記リチウムイオンキャパシタを、前記DC/DCコンバータを介して、前記電力供給ラインに接続して前記リチウムイオンキャパシタの充放電を制御し、前記リチウムイオン電池を、前記DC/DCコンバータを介して、前記電力供給ラインに接続して前記リチウムイオン電池の充放電を制御する。本電力制御システムでは、リチウムイオンキャパシタが、DC/DCコンバータを介して電力供給ラインに接続されてリチウムイオンキャパシタの充放電が制御され、また、リチウムイオン電池が、上記DC/DCコンバータを介して電力供給ラインに接続されてリチウムイオン電池の充放電が制御される。すなわち、リチウムイオンキャパシタの充放電とリチウムイオン電池の充放電とが共通のDC/DCコンバータを介して制御される。これにより、キャパシタの充放電用と電池の充放電用とで個別のDC/DCコンバータを備える構成に比べて、少なくともコンバータに関する回路構成を簡略化することができる。
上記電力制御システムにおいて、前記蓄電部は、前記リチウムイオンキャパシタと前記リチウムイオン電池とが互いに並列に接続されると共に前記DC/DCコンバータを介して前記電力供給ラインに接続された並列形態を有する構成としてもよい。本電力制御システムでは、蓄電部が並列形態を有する。並列形態では、電力供給ラインの電力変動分は、リチウムイオンキャパシタの充放電に優先的に利用される。このため、リチウムイオン電池の充放電を許容しつつ、電力供給ラインの電力変動に起因するリチウムイオン電池の劣化を抑制することができる。
上記電力制御システムにおいて、前記蓄電部は、前記並列形態と、前記リチウムイオンキャパシタが前記DC/DCコンバータに接続されており、かつ、前記リチウムイオン電池が前記DC/DCコンバータに接続されていないキャパシタ単独形態と、を切り替え可能に構成されている構成としてもよい。本電力制御システムでは、並列形態からキャパシタ単独形態に切り替えることにより、電力供給ラインの電力変動に起因するリチウムイオン電池の劣化を、より効果的に抑制することができる。
上記電力制御システムにおいて、前記蓄電部は、前記並列形態と、前記リチウムイオンキャパシタと前記リチウムイオン電池とが互いに直列に接続されると共に前記DC/DCコンバータを介して前記電力供給ラインに接続された直列形態と、を切り替え可能に構成されている構成としてもよい。本電力制御システムでは、並列形態から直列形態に切り替えることにより、リチウムイオン電池の電圧に制限されることなく、リチウムイオンキャパシタを充放電させることができる。
上記電力制御システムにおいて、前記充放電制御部は、前記リチウムイオン電池が、単位時間当たりの電圧変化量が基準量以上である電圧急変状態であるか否かを判断する第1の状態判断部を備え、前記第1の状態判断部にて前記リチウムイオン電池が前記電圧急変状態であると判断されたことを必要条件として、前記蓄電部を前記並列形態から前記直列形態に切り替える構成としてもよい。電圧急変状態であるリチウムイオン電池の電圧は急峻に変化し、それに伴ってリチウムイオン電池の充放電電流が急速に変化し、リチウムイオン電池が過放電や過充電になりやすくなる。これに対して、本電力制御システムでは、リチウムイオン電池が電圧急変状態であると判断されたことを必要条件として、蓄電部が並列形態から直列形態に切り替えられる。これにより、リチウムイオンキャパシタとリチウムイオン電池との合算電圧が増大し、リチウムイオン電池の充放電電流が低下するため、リチウムイオン電池が過放電や過充電になることを抑制することができる。また、リチウムイオン電池が電圧急変状態であっても蓄電部から負荷に電力を供給できる。
上記電力制御システムにおいて、前記充放電制御部は、前記リチウムイオン電池の内部抵抗が基準抵抗以上であるか否かを判断する第2の状態判断部を備え、前記第2の状態判断部にて前記リチウムイオン電池の内部抵抗が基準抵抗以上であると判断されたことを必要条件として、前記蓄電部を前記並列形態から前記直列形態に切り替える構成としてもよい。リチウムイオン電池の内部抵抗が増大すると、リチウムイオン電池に流れる充放電電流量が減少し、蓄電部の放電不足や充電不足が発生するおそれがある。これに対して、本電力制御システムでは、リチウムイオン電池が基準抵抗以上であることを必要条件として、蓄電池が並列形態から直列形態に切り替わる。これにより、リチウムイオン電池に流れる充放電電流量が減少しても、蓄電部の電圧が高くなる分だけ、蓄電部の放電不足や充電不足の発生を抑制することができる。
上記電力制御システムにおいて、前記リチウムイオンキャパシタは、互いに直列に接続された複数のキャパシタセルを含み、前記リチウムイオン電池は、互いに直列に接続された複数の電池セルを含み、前記複数のキャパシタセルと前記複数の電池セルとは、それぞれ1つずつ互いに並列に接続されている構成としてもよい。リチウムイオンキャパシタは、エネルギー容量が小さいために過放電になり易く、リチウムイオン電池は、リチウムイオンキャパシタに比べてエネルギー容量が大きいため過放電になり難い。本構成によれば、各キャパシタセルの電圧は、該各キャパシタセルに並列に接続された各電池セルの電圧に制限されることにより、各キャパシタセルの電圧が各電池セルの電圧と同じになる。これにより、暗電流によるリチウムイオンキャパシタの過放電を抑制できる。
上記電力制御システムにおいて、前記リチウムイオンキャパシタは、互いに直列に接続された複数のキャパシタセルを含み、前記リチウムイオン電池は、互いに直列に接続された複数の電池セルを含み、前記複数のキャパシタセルと前記複数の電池セルとは、1つずつ交互に配列され、かつ、互いに隣り合う前記キャパシタセルと電池セルとが接触するように配置されている構成としてもよい。リチウムイオンキャパシタは、リチウムイオン電池に比べて、高出力に設計されているため、電極が薄く、集電体の容積が大きいため、放熱性が高い。このため、本電力制御システムによれば、リチウムイオンキャパシタの放熱効果によりリチウムイオン電池の高温化を抑制することができる。
上記電力制御システムにおいて、前記リチウムイオン電池は、複数の電池セルを有する電池モジュールにより構成されるとともに、前記電池モジュールを増設可能に構成されており、前記充放電制御部は、前記電池モジュールを制御する電池制御部を備え、前記電池制御部は、増設可能な最大数の前記電池モジュールを制御可能に構成されている構成としてもよい。本電力制御システムによれば、電池制御部を備えない電池モジュールを増設するだけで、増設後の電池モジュールを制御できる。
上記電力制御システムにおいて、前記充放電制御部は、前記リチウムイオン電池の内部抵抗を特定する抵抗特定部と、前記抵抗特定部により特定される前記内部抵抗が高い程、前記蓄電部に流す電流量を小さくする電流制御部と、を備える構成としてもよい。リチウムイオン電池の内部抵抗の増大に伴うリチウムイオン電池の電圧上昇を抑えて、リチウムイオン電池の劣化を抑制することができる。
上記電力制御システムにおいて、前記発電装置は、太陽光発電装置であり、前記蓄電部は、前記リチウムイオンキャパシタと前記リチウムイオン電池とが互いに並列に接続されると共に前記DC/DCコンバータを介して前記電力供給ラインに接続された並列形態と、前記リチウムイオンキャパシタが前記DC/DCコンバータに接続されており、かつ、前記リチウムイオン電池が前記DC/DCコンバータに接続されていないキャパシタ単独形態と、を切り替え可能に構成されており、前記充放電制御部は、前記太陽光発電装置より発電される電力が前記負荷に必要な電力を超えた場合、前記蓄電部を前記キャパシタ単独形態として前記太陽光発電装置からの余剰電力によって前記リチウムイオンキャパシタを充電し、前記太陽光発電装置より発電される電力が前記負荷で必要な電力に対して不足する場合、前記蓄電部を前記並列形態として前記蓄電部から放電させて前記負荷に電力を供給する構成としてもよい。本電力制御システムでは、太陽光発電装置より発電される電力が負荷に必要な電力を超えた場合、電力変動分を含み得る太陽光発電装置からの余剰電力を使用してリチウムイオンキャパシタを充電させつつ、電力供給ラインの電力変動に起因するリチウムイオン電池の劣化を抑制することができる。また、太陽光発電装置より発電される電力が負荷に必要な電力未満である場合、リチウムイオンキャパシタとリチウムイオン電池との両方からの放電電力が負荷に供給される。このため、リチウムイオン電池の放電を可能としつつ、リチウムイオンキャパシタにより電力供給ラインの電力変動に起因するリチウムイオン電池の劣化を抑制することができる。
上記電力制御システムにおいて、前記充放電制御部は、前記太陽光発電装置の発電量が基準量以下である場合、前記蓄電部を前記キャパシタ単独形態として前記太陽光発電装置からの電力によって前記リチウムイオンキャパシタを充電する構成としてもよい。本電力制御システムによれば、曇りなどで発電量が少ない場合でも、無駄にせずにリチウムイオンキャパシタに充電することができる。
上記電力制御システムにおいて、前記電力供給ラインには、商用電源が接続されており、前記充放電制御部は、現在時刻が夜間料金帯でない場合、前記蓄電部を前記並列形態として前記蓄電部から放電させて前記負荷に電力を供給し、現在時刻が前記夜間料金帯である場合、前記商用電源から前記負荷に電力を供給する構成としてもよい。本電力制御システムでは、夜間料金帯の商用電力を効果的に利用することができる。
上記電力制御システムにおいて、前記充放電制御部は、前記太陽光発電装置の翌日の発電量を予測する予測部を備え、前記予測部に予測された発電量が基準量以下であることを必要条件として、前日の前記夜間料金帯における前記リチウムイオンキャパシタの充電を行う構成としてもよい。本電力制御システムでは、太陽光発電装置の翌日の発電量が基準量以下である場合、翌日の日中において、太陽光発電装置からの電力によって負荷に電力が十分に供給されなくなるおそれがある。このため、前日の夜間料金帯におけるリチウムイオンキャパシタの充電を行う。一方、太陽光発電装置の翌日の発電量が基準量を超える場合、前日の夜間料金帯におけるリチウムイオンキャパシタの充電を行わないことより、翌日の太陽光発電装置からの電力の変動分に応じてリチウムイオンキャパシタが十分に充放電できるようにする。
上記電力制御システムにおいて、前記充放電制御部は、さらに、気象に関する測定データを蓄積する蓄積部を備え、前記予測部は、前記蓄積部に蓄積された前記測定データに基づき前記翌日の発電量を予測する構成としてもよい。これにより、蓄積された気象に関する実際の測定データに基づき、正確に翌日の発電量を予測することができる。
なお、本発明は、例えば、電力制御システム、電力制御方法、電力制御プログラム、該電力制御プログラムを記録した一時的でない記録媒体等の他の形態で実現することも可能である。
A.第1実施形態:
A-1.電力制御システム100と外部装置との電気的構成:
図1は、第1実施形態における電力制御システム100と外部装置との電気的構成を示す説明図である。図1には、外部装置として、太陽光発電装置10と商用電源20と通信機器30(例えば通信基地局)とが示されており、これらの外部装置と電力制御システム100とが電力供給ラインLWを介して電気的に接続されている。太陽光発電装置10は、特許請求の範囲における発電装置の一例であり、通信機器30は、特許請求の範囲における負荷の一例である。
A-1.電力制御システム100と外部装置との電気的構成:
図1は、第1実施形態における電力制御システム100と外部装置との電気的構成を示す説明図である。図1には、外部装置として、太陽光発電装置10と商用電源20と通信機器30(例えば通信基地局)とが示されており、これらの外部装置と電力制御システム100とが電力供給ラインLWを介して電気的に接続されている。太陽光発電装置10は、特許請求の範囲における発電装置の一例であり、通信機器30は、特許請求の範囲における負荷の一例である。
太陽光発電装置10は、太陽光エネルギーを電力に変換する太陽光発電を用いて発電する装置であり、ソーラーパネル12とPVコンバータ14とを有する。PVコンバータ14は、ソーラーパネル12の発電制御を行い、ソーラーパネル12での発電量に応じた直流電力を電力供給ラインLWに出力する。以下、太陽光発電装置10から出力される電力を「PV電力Wp」という。商用電源20は、AC/DCコンバータ22を介して電力供給ラインLWに電気的に接続されている。商用電源20からの交流電力がAC/DCコンバータ22により直流電力に変換され、電力供給ラインLWに出力される。以下、商用電源20から出力される直流電力を「商用電力Wa」という。
電力制御システム100は、DC/DCコンバータ110と、バッテリユニット120と、PCU(POWER CONTROL UNIT)130と、を備える。バッテリユニット120は、DC/DCコンバータ110を介して電力供給ラインLWに電気的に接続されている。PCU130は、例えばDC/DCコンバータ110を動作させてバッテリユニット120の充放電を制御する。このような構成により、太陽光発電装置10からのPV電力Wpは、通信機器30だけでなく、電力制御システム100にも供給可能である。また、商用電源20からの商用電力Waは、通信機器30だけでなく、電力制御システム100にも供給可能である。PCU130は、供給されるPV電力Wpや商用電力Waによってバッテリユニット120を充電する。また、PCU130は、バッテリユニット120に蓄電された電力Wc,Wbを通信機器30に供給することも可能である。バッテリユニット120は、特許請求の範囲における蓄電部の一例であり、PCU130は、特許請求の範囲における充放電制御部の一例である。
A-2.電力制御システム100の電気的構成:
図2は、電力制御システム100の電気的構成を示す説明図である。図2に示すように、DC/DCコンバータ110は、双方向DC/DCコンバータであり、後述のように、この共通のDC/DCコンバータ110がLICモジュール200とLIBモジュール300との両方の充放電制御に用いられる。
図2は、電力制御システム100の電気的構成を示す説明図である。図2に示すように、DC/DCコンバータ110は、双方向DC/DCコンバータであり、後述のように、この共通のDC/DCコンバータ110がLICモジュール200とLIBモジュール300との両方の充放電制御に用いられる。
バッテリユニット120は、LICモジュール200とLIBモジュール300と第1スイッチ122と第2スイッチ124と第3スイッチ126とを備えている。
LICモジュール200は、複数のリチウムイオンキャパシタ(以下、「LIC」という)210が直列に接続された構成である。LICモジュール200の一端(例えば正極側)は、DC/DCコンバータ110に電気的に接続されており、LICモジュール200の他端(例えば負極側)は、コモンライン(例えばグランドライン)側に電気的に接続されている。LICは、特許請求の範囲におけるキャパシタセルの一例である。
LIBモジュール300は、複数のリチウムイオン電池(以下、「LIB」という)310が直列に接続された構成である。LIB310は、例えばリン酸鉄系のLIBや3元系(ニッケルマンガンコバルト系等)のLIBである。本実施形態では、LIB310は、LIC210の上下限電圧範囲(例えば2.2V以上、3.8V以下)と同一の電圧範囲で使用可能であることが好ましい。上下限電圧範囲は、放電終止電圧(カットオフ電圧)から満充電電圧までの電圧範囲である。また、上下限電圧範囲が同一であるとは、誤差が±0.2V以下であることをいう。例えば、LIB310がリン酸鉄系である場合、そのリン酸鉄系の一般的な上下限電圧範囲(例えば2.0V以上、3.7V以下)でLIB310を使用することが好ましい。また、LIB310が3元系である場合、その3元系の一般的な上下限電圧範囲(例えば2.8V以上、4.0V以下)より狭い電圧範囲(例えば2.6V以上、4.0V以下)でLIB310を使用することが好ましい。
LIBモジュール300の一端(例えば正極側)は、第1スイッチ122を介して、DC/DCコンバータ110に電気的に接続されており、LIBモジュール300の他端(例えば負極側)は、コモンライン側に電気的に接続されている。すなわち、第1スイッチ122は、DC/DCコンバータ110とLIBモジュール300との電気的接続を入り切りするためのスイッチである。また、LICモジュール200の他端側は、第2スイッチ124を介して、第1スイッチ122とLIBモジュール300との接続ラインに電気的に接続されている。すなわち、第2スイッチ124は、LICモジュール200とLIBモジュール300との直列接続を入り切りするためのスイッチである。LIBモジュール300は、特許請求の範囲における電池モジュールの一例であり、LIBは、特許請求の範囲における電池セルの一例である。第3スイッチ126は、DC/DCコンバータ110に対して並列に接続されている。第3スイッチ126が開状態であるときに、バッテリユニット120は、DC/DCコンバータ110を介して電力供給ラインLWに電気的に接続され、充放電が可能になる。第3スイッチ126が閉状態であるときに、バッテリユニット120は、DC/DCコンバータ110を介さず、電力供給ラインLWに電気的に接続され、充放電が可能になる。
以上の構成により、バッテリユニット120は、DC/DCコンバータ110に対するLICモジュール200とLIBモジュール300との接続形態を、「並列形態」と「直列形態」と「LIC単独形態」とに切り替え可能である。
「並列形態」は、LICモジュール200とLIBモジュール300とが互いに電気的に並列に接続され、その並列接続されたLICモジュール200およびLIBモジュール300が、DC/DCコンバータ110を介して電力供給ラインLWに接続された形態である(後述の図4(b)(c)参照)。第1スイッチ122を閉状態とし、かつ、第2スイッチ124を開状態にすることにより、バッテリユニット120を並列形態にすることができる。
「直列形態」は、LICモジュール200とLIBモジュール300とが互いに直列に接続され、その直列接続されたLICモジュール200およびLIBモジュール300が、DC/DCコンバータ110を介して電力供給ラインLWに接続された形態である。第1スイッチ122を開状態とし、かつ、第2スイッチ124を閉状態にすることにより、バッテリユニット120を直列形態にすることができる。
「LIC単独形態」は、LICモジュール200がDC/DCコンバータ110に電気的に接続されており、かつ、LIBモジュール300がDC/DCコンバータ110に接続されていない形態である(後述の図4(a)参照)。第1スイッチ122と第2スイッチ124との両方を開状態にすることにより、バッテリユニット120をLIC単独形態にすることができる。
「並列形態」は、LICモジュール200とLIBモジュール300とが互いに電気的に並列に接続され、その並列接続されたLICモジュール200およびLIBモジュール300が、DC/DCコンバータ110を介して電力供給ラインLWに接続された形態である(後述の図4(b)(c)参照)。第1スイッチ122を閉状態とし、かつ、第2スイッチ124を開状態にすることにより、バッテリユニット120を並列形態にすることができる。
「直列形態」は、LICモジュール200とLIBモジュール300とが互いに直列に接続され、その直列接続されたLICモジュール200およびLIBモジュール300が、DC/DCコンバータ110を介して電力供給ラインLWに接続された形態である。第1スイッチ122を開状態とし、かつ、第2スイッチ124を閉状態にすることにより、バッテリユニット120を直列形態にすることができる。
「LIC単独形態」は、LICモジュール200がDC/DCコンバータ110に電気的に接続されており、かつ、LIBモジュール300がDC/DCコンバータ110に接続されていない形態である(後述の図4(a)参照)。第1スイッチ122と第2スイッチ124との両方を開状態にすることにより、バッテリユニット120をLIC単独形態にすることができる。
PCU130は、制御部132と、記憶部134と、インターフェース部136と、LIC管理部138と、LIB管理部140とを備え、これらの各部が、バス(図示しない)を介して互いに通信可能に接続されている。
制御部132は、例えばCPU等により構成され、記憶部134から読み出したコンピュータプログラムを実行することにより、DC/DCコンバータ110やスイッチ122,124の動作を制御する。例えば、制御部132は、記憶部134から電力制御プログラム(図示しない)を読み出して実行することにより、後述の電力制御処理を実行する。制御部132は、電力制御処理を実行する際、第1の状態判断部、第2の状態判断部として機能する。これら各部の機能については、後述の各種の処理の説明に合わせて説明する。
記憶部134は、例えばROMやRAM、ハードディスクドライブ(HDD)等により構成され、各種のデータ、プログラムやモデルを記憶したり、各種のプログラムやモデルを実行する際の作業領域やデータの一時的な記憶領域として利用されたりする。また、記憶部134には、電力制御プログラムが格納されている。電力制御プログラムは、後述の電力制御処理を実行するためのコンピュータプログラムである。これらのプログラムは、例えば、CD-ROMやDVD-ROM、USBメモリ等のコンピュータによって読み取り可能な記録媒体(不図示)に格納された状態で提供され、PCU130にインストールすることにより記憶部134に格納される。
インターフェース部136は、例えばLANインターフェースやUSBインターフェース等により構成され、有線または無線により他の装置との通信を行う。LIC管理部138は、LICモジュール200におけるLIC210の電流、電圧や温度等を検出して、その検出結果に基づきLIC210の状態を管理する。LIB管理部140は、LIBモジュール300におけるLIB310の電流、電圧や温度等を検出して、その検出結果に基づきLIB310の状態を管理する。LIB管理部140は、特許請求の範囲における電池制御部の一例である。
本実施形態では、バッテリユニット120は、LICモジュール200とLIBモジュール300とがそれぞれ増設可能に構成されている。具体的には、バッテリユニット120では、所定の最大数のLICモジュール200が、互いに並列に接続可能であり、かつ、PCU130に備えられた共通のLIC管理部138によって制御可能である。すなわち、バッテリユニット120では、LICモジュール200を最大数まで増減可能である。また、バッテリユニット120では、所定の最大数のLIBモジュール300が、互いに並列に接続可能であり、かつ、PCU130に備えられた共通のLIB管理部140によって制御可能である。すなわち、バッテリユニット120では、LIBモジュール300を最大数まで増減可能である。なお、LICモジュール200の最大数とLIBモジュール300の最大数とは同じでもよいし、異なってもよい。このような構成により、バッテリユニット120に配置可能な最大数のLICモジュール200やLIBモジュール300について、共通のDC/DCコンバータ110を用いてまとめて充放電制御が可能である。また、バッテリユニット120に配置可能な最大数のLICモジュール200について、共通のLIC管理部138によってまとめて管理可能である。また、バッテリユニット120に配置可能な最大数のLIBモジュール300について、共通のLIB管理部140によってまとめて管理可能である。これにより、電力制御システム100全体のコンパクト化を図ることができる。
A-3.併用型電力制御処理:
次に、本実施形態のPCU130により実行される併用型電力制御処理について説明する。本実施形態では、太陽光発電装置10の最大発電量が比較的に小さいため、太陽光発電装置10のPV電力Wpと商用電源20の商用電力Waとの両方を併用して通信機器30への電力供給やバッテリユニット120への充電が行われる。併用型電力制御処理は、このようにPV電力Wpと商用電力Waとが併用されるシステムにおいて、太陽光発電装置10の発電状態や通信機器30の動作状態等に応じてLICモジュール200とLIBモジュール300との充放電を制御するための処理である。図3は、併用型電力制御処理の内容を示すフローチャートである。
次に、本実施形態のPCU130により実行される併用型電力制御処理について説明する。本実施形態では、太陽光発電装置10の最大発電量が比較的に小さいため、太陽光発電装置10のPV電力Wpと商用電源20の商用電力Waとの両方を併用して通信機器30への電力供給やバッテリユニット120への充電が行われる。併用型電力制御処理は、このようにPV電力Wpと商用電力Waとが併用されるシステムにおいて、太陽光発電装置10の発電状態や通信機器30の動作状態等に応じてLICモジュール200とLIBモジュール300との充放電を制御するための処理である。図3は、併用型電力制御処理の内容を示すフローチャートである。
併用型電力制御処理が開始されると、図3に示すように、制御部132は、太陽光発電装置10による太陽光発電の有無を判断する(S110)。具体的には、制御部132は、PVコンバータ14からの信号に基づき、太陽光発電の有無を判断する。制御部132は、太陽光発電ありと判断した場合(S110:YES)、後述のPV発電時処理を実行し(S120)、PV発電時処理の実行後にS110の処理に戻る。制御部132は、太陽光発電なしと判断した場合(S110:NO)、現在時刻が夜間料金帯(「夜間電力時間帯」ともいう)に属するか否かを判断する(S130)。夜間料金帯とは、商用電源20からの商用電力Waの使用料金が昼間よりも安くなる夜間時間帯(例えば23時~7時)であり、商用電源20からの商用電力Waを優先的に利用することにメリットがある時間帯の一例である。
制御部132は、現在時刻が夜間料金帯に属すると判断した場合(S130:YES)、後述の夜間処理を実行し(S140)、商用電源20から通信機器30に電力を供給する夜間処理の実行後にS110の処理に戻る。制御部132は、現在時刻が夜間料金帯に属しないと判断した場合(S130:NO)、バッテリユニット120から通信機器30に電力を供給するバッテリ放電処理を実行し(S150)、バッテリ放電処理の実行後にS110の処理に戻る。図4は、各処理時の電力の流れを示す説明図である。
A-3-1.PV発電時処理
図5は、PV発電時処理の内容を示すフローチャートである。PV発電時処理は、主として、太陽光発電装置10からのPV電力Wpを使用して通信機器30に電力を供給するための処理である。本実施形態では、PV発電時処理は、昼間料金帯(例えば7時~23時)のうち、太陽光発電装置10が発電状態である場合(図3でS110:YES)に実行される。また、PV発電時処理では、商用電源20による商用電力Waは使用されない。
図5は、PV発電時処理の内容を示すフローチャートである。PV発電時処理は、主として、太陽光発電装置10からのPV電力Wpを使用して通信機器30に電力を供給するための処理である。本実施形態では、PV発電時処理は、昼間料金帯(例えば7時~23時)のうち、太陽光発電装置10が発電状態である場合(図3でS110:YES)に実行される。また、PV発電時処理では、商用電源20による商用電力Waは使用されない。
PV発電時処理が開始されると、制御部132は、太陽光発電装置10によるPV電力Wpの電力量(以下、「PV発電電力量」という)が、通信機器30に必要な電力量(以下、「デバイス電力量」という)以上であるか否かを判断する(S210)。例えば空が晴れており太陽光発電装置10が十分に発電しているとき、PV発電電力量がデバイス電力量以上になる。このような場合、太陽光発電装置10からのPV電力Wp(Wp1)だけが通信機器30に供給されて通信機器30が動作する。また、PV発電電力量がデバイス電力量以上である場合、太陽光発電装置10からのPV電力Wpに余剰電力Wp2が発生する。図4(a)には、PV発電電力量がデバイス電力量以上である場合における各電力の流れが示されている。
制御部132は、PV発電電力量がデバイス電力量以上であると判断した場合(S210:YES)、図4(a)に示すように、太陽光発電装置10からの余剰電力Wp2を使用してLICモジュール200を充電する(S220)。具体的には、制御部132は、バッテリユニット120を上記LIC単独形態とし、DC/DCコンバータ110を動作させてLICモジュール200だけを充電する。このため、LICモジュール200の蓄電容量は、太陽光発電装置10からの余剰電力Wp2をすべて充電できる容量であることが好ましい。
ここで、太陽光発電装置10からのPV電力Wpは、天候の変化によって変動しやすい。具体的には、PV電力Wpには短周期変動分(変動周期が秒単位、分単位)と中長期変動分(変動周期が時間単位、日単位)とが含まれ得る。例えばPV電力Wp(余剰電力Wp2)の短周期変動分がLIBモジュール300に供給されると、LIB310が充放電を急速に繰り返すことによりLIB310が劣化する。これに対して、本実施形態では、バッテリユニット120がLIC単独形態であり、PV電力Wp(短周期変動分)がLIBモジュール300に供給されない。このため、PV電力Wpの短周期変動分に起因してLIB310が劣化することを抑制することができる。一方、LICモジュール200を構成するLIC210は、LIB310に比べて、高出力(出力密度が高い)であり、充放電の応答性が高い(内部抵抗が低い)。このため、PV電力Wpの短周期変動分に応じてLICモジュール200が充電される。LICモジュール200の容量は、太陽光発電装置10からのPV電力Wpの充電によって飽和しない程度の容量であることが好ましい。
また、例えば空が曇っており太陽光発電装置10のPV発電電力量が微少であり、かつ、通信機器30のデバイス電力量が微少である場合でも、PV発電電力量がデバイス電力量以上になり得る。このような場合でも、微少な余剰電力Wp2によってLIC210に微少な電流が流れてLICモジュール200が充電される。つまり、本実施形態では、太陽光発電装置10のPV発電電力量が微少である場合でもバッテリユニット120を充電することができる。なお、LIB310や通信機器30の内部抵抗は、LIC210の内部抵抗に比べて高い。このため、太陽光発電装置10のPV発電電力量が微少である場合、LIB310や通信機器30を充電することは難しい。そこで、本実施形態のようにLIC210を充電することにより、太陽光発電装置10のPV発電電力量が微少である場合でも、その微少なPV発電電力量を無駄にせず有効に利用することができる。
制御部132は、PV発電電力量がデバイス電力量未満であると判断した場合(S210:NO)、バッテリ放電処理を実行する(S230)。バッテリ放電処理については後述する。なお、制御部132は、S220の処理またはS230の処理の開始から所定時間経過後に図3のS110に戻る。
A-3-2.夜間処理
図6は、夜間処理の内容を示すフローチャートである。夜間処理は、主として、商用電源20からの商用電力Waを使用して通信機器30に電力を供給するための処理である。本実施形態では、上述したように、夜間処理は、夜間料金帯(図3でS130:YES)に実行される。また、夜間処理では、太陽光発電装置10は発電しないため、太陽光発電装置10によるPV電力Wpは使用されない。図4(b)には、夜間料金帯における各電力の流れが示されている。
図6は、夜間処理の内容を示すフローチャートである。夜間処理は、主として、商用電源20からの商用電力Waを使用して通信機器30に電力を供給するための処理である。本実施形態では、上述したように、夜間処理は、夜間料金帯(図3でS130:YES)に実行される。また、夜間処理では、太陽光発電装置10は発電しないため、太陽光発電装置10によるPV電力Wpは使用されない。図4(b)には、夜間料金帯における各電力の流れが示されている。
夜間処理が開始されると、制御部132は、商用電源20からの商用電力Waを通信機器30に供給することを許容する(S310)。これにより、図4(b)に示すように、商用電源20からの商用電力Wa(Wa1)だけが通信機器30に供給されて通信機器30が動作する。また、制御部132は、バッテリユニット120を並列形態とし、DC/DCコンバータ110を動作させて、商用電源20からの商用電力Wa(Wa2,Wa3)を使用してバッテリユニット120(LICモジュール200とLIBモジュール300)を充電する(S320)。制御部132は、例えばLIBモジュール300に対してCC(定電流充電)-CV(定電圧充電)方式で充電する。この際、LICモジュール200も充電され、上限電圧に達したらLICモジュール200の充電を停止する。なお、制御部132は、S320の処理の開始から所定時間経過後に図3のS110に戻る。
A-3-3.バッテリ放電処理
図7は、バッテリ放電処理の内容を示すフローチャートである。バッテリ放電処理は、バッテリユニット120からの放電電力Wc,Wbを使用して通信機器30に電力を供給するための処理である。本実施形態では、バッテリ放電処理は、昼間料金帯のうち、太陽光発電装置10が発電状態でない場合(図3でS110:NO、かつ、S130:NO)に実行される。太陽光発電装置10は発電しないため、太陽光発電装置10によるPV電力Wpは使用されない。また、バッテリ放電処理では、夜間料金帯ではないため、商用電源20による商用電力Waは使用されない。このため、LIBモジュール300の蓄電容量は、昼間料金帯におけるデバイス電力量以上であることが好ましい。
図7は、バッテリ放電処理の内容を示すフローチャートである。バッテリ放電処理は、バッテリユニット120からの放電電力Wc,Wbを使用して通信機器30に電力を供給するための処理である。本実施形態では、バッテリ放電処理は、昼間料金帯のうち、太陽光発電装置10が発電状態でない場合(図3でS110:NO、かつ、S130:NO)に実行される。太陽光発電装置10は発電しないため、太陽光発電装置10によるPV電力Wpは使用されない。また、バッテリ放電処理では、夜間料金帯ではないため、商用電源20による商用電力Waは使用されない。このため、LIBモジュール300の蓄電容量は、昼間料金帯におけるデバイス電力量以上であることが好ましい。
バッテリ放電処理が開始されると、制御部132は、LIBモジュール300が電圧急変状態であるか否かを判断する(S410)。このとき、制御部132は、第1の状態判断部として機能する。電圧急変状態は、LIBモジュール300の単位時間当たりの電圧変化量が基準量以上である状態である。制御部132は、例えばLIB管理部140からのLIBモジュール300の電圧の検出結果に基づき、LIBモジュール300の単位時間当たりの電圧変化量を特定する。
ここで、図8は、LIBモジュール300の充放電曲線GBを示す説明図である。図8のグラフの縦軸がLICモジュール200のOCV(開放電圧)であり、横軸がSOC(充電状態)である。図8に示すように、LIBモジュール300では、充放電過程において、単位時間当たりの電圧変化量が所定値以下であるプラトー領域E1と、単位時間当たりの電圧変化量が所定値を超える非プラトー領域E2(E21,E22)とが存在する。SOCが高い非プラトー領域E21では、LIBモジュール300は、過充電になり易く、SOCが低い非プラトー領域E22では、LIBモジュール300は、過放電になり易い。LIBモジュール300は、過充電や過放電を繰り返すことによって劣化する。本実施形態では、LIBモジュール300が電圧急変状態でないことは、LIBモジュール300がプラトー領域E1に属しており、LIBモジュール300が電圧急変状態であることは、LIBモジュール300が非プラトー領域E2に属しているものとする。
制御部132は、LIBモジュール300が電圧急変状態でないと判断した場合(S410:NO)、電圧急変状態に起因するLIBモジュール300の過放電が生じる可能性は低いため、S420に進む。一方、制御部132は、LIBモジュール300が電圧急変状態であると判断した場合(S410:YES)、バッテリユニット120を並列形態から直列形態に切り替える(S430)。すなわち、LIBモジュール300は、非プラトー領域E2に属しているため、過放電になり易い。しかし、バッテリユニット120が並列形態から直列形態になると、LICモジュール200とLIBモジュール300との合計抵抗値が大きくなることにより、LIBモジュール300に流れる充放電電流量が低減する。その結果、電圧急変状態に起因するLIBモジュール300の過放電の発生を抑制することができる。このため、例えば図8に示すように、プラトー領域E1のうち、非プラトー領域E2に近い広い領域を使用してLIB310の充放電制御を行うことができる。
S420では、制御部132は、LIBモジュール300の内部抵抗が基準抵抗以上であるか否かを判断する。このとき、制御部132は、第2の状態判断部として機能する。LIBモジュール300の内部抵抗は、例えばLIBモジュール300の劣化や環境温度の影響によるLIBモジュール300の温度低下などの要因により増大する。そこで、制御部132は、例えばLIB管理部140からのLIBモジュール300の電圧と電流の検出結果に基づき、LIBモジュール300の内部抵抗を特定する。なお、制御部132は、例えば、LIB管理部140からのLIBモジュール300の温度の検出結果に基づき、LIBモジュール300の内部抵抗を特定してもよい。
ここで、上述したように、LIBモジュール300が電圧急変状態でない(プラトー領域E1に属している)場合、LIBモジュール300の電圧は略一定である。このような場合にLIBモジュール300の内部抵抗が増大すると、LIBモジュール300の放電電流量が減少し、バッテリユニット120(LIBモジュール300)から十分な電力を放電できなくなるおそれがある。
そこで、制御部132は、LIBモジュール300の内部抵抗が基準抵抗以上であると判断した場合(S420:YES)、バッテリユニット120を並列形態から直列形態に切り替える(S430)。バッテリユニット120が並列形態から直列形態になると、バッテリユニット120の電圧は、LIBモジュール300の電圧にLICモジュール200の電圧を合算した電圧に上昇する。その結果、LIBモジュール300の充放電電流量が減少しても、LIBモジュール300(バッテリユニット120)の放電不足の発生を抑制し、通信機器30に十分な電力を供給することができる。一方、制御部132は、LIBモジュール300の内部抵抗が基準抵抗未満であると判断した場合(S420:NO)、内部抵抗の増大に起因するLIBモジュール300の放電不足が生じる可能性は低いため、S440に進む。
S440では、制御部132は、バッテリユニット120を並列形態とし、DC/DCコンバータ110を動作させてバッテリユニット120を放電させる。図4(c)には、バッテリユニット120の放電時における各電力の流れが示されている。ここで、例えば通信機器30への給電(必要な電力)に短周期変動分が生じた場合、その短周期変動分に追従するようにLICモジュール200からの放電電力Wcが通信機器30に供給されるため、通信機器30への給電不足の発生を抑制することができる。このため、短周期変動分(急速な充放電)に起因するLIB310の劣化を抑制しつつ、LIBモジュール300からの放電電力Wbを通信機器30に供給することができる。
LICモジュール200とLIBモジュール300とが並列に接続されている。このため、LICモジュール200の電圧がLIBモジュール300の電圧に制限される(図8のグラフGC参照)。この結果、例えば回路の暗電流等によってLICモジュール200が短時間に過放電になることを抑制することができる。すなわち、本実施形態では、LICモジュール200の暗電流を抑制するための専用の回路を設けることが不要である。また、通信機器30に必要な電力における短周期変動分を検出する手段を別途設けることなく、LICモジュール200から短周期変動分の電力を通信機器30に供給し、LIBモジュール300から中長期変動分の電力を通信機器30に供給することができる。なお、制御部132は、S430の処理またはS440の処理の開始から所定時間経過後に図3のS110に戻る。
A-4.本実施形態の効果:
以上説明したように、本実施形態の電力制御システム100では、LICモジュール200が、DC/DCコンバータ110を介して電力供給ラインLWに接続されてLICモジュール200の充放電が制御され、また、LIBモジュール300が、同じくDC/DCコンバータ110を介して電力供給ラインLWに接続されてLIBモジュール300の充放電が制御される。すなわち、LICモジュール200の充放電とLIBモジュール300の充放電とが共通のDC/DCコンバータ110を介して制御される。これにより、キャパシタの充放電用と電池の充放電用とで個別のDC/DCコンバータを備える構成に比べて、少なくともコンバータに関する回路構成を簡略化することができる。また、その結果、電力制御システム100の全体をコンパクトにすることができる。
以上説明したように、本実施形態の電力制御システム100では、LICモジュール200が、DC/DCコンバータ110を介して電力供給ラインLWに接続されてLICモジュール200の充放電が制御され、また、LIBモジュール300が、同じくDC/DCコンバータ110を介して電力供給ラインLWに接続されてLIBモジュール300の充放電が制御される。すなわち、LICモジュール200の充放電とLIBモジュール300の充放電とが共通のDC/DCコンバータ110を介して制御される。これにより、キャパシタの充放電用と電池の充放電用とで個別のDC/DCコンバータを備える構成に比べて、少なくともコンバータに関する回路構成を簡略化することができる。また、その結果、電力制御システム100の全体をコンパクトにすることができる。
本実施形態では、バッテリユニット120が並列形態を有する(図5のS230、図4(b)(c)、図6のS320、図7のS440参照)。並列形態では、電力供給ラインLWの電力変動分(短周期変動分)は、LICモジュール200の充放電に優先的に利用される。このため、LIBモジュール300の充放電を許容しつつ、電力供給ラインLWの電力変動に起因するLIBモジュール300の劣化を抑制することができる。
本実施形態では、バッテリユニット120を並列形態からLIC単独形態に切り替えることができる(図4(a)、図5のS220参照)。これにより、電力供給ラインLWの電力変動に起因するLIBモジュール300の劣化を、より効果的に抑制することができる。
本実施形態では、バッテリユニット120を並列形態から直列形態に切り替えることができる(図7のS430参照)。これにより、LIBモジュール300の電圧に制限されることなく、LICモジュール200を充放電させることができる。
本実施形態では、太陽光発電装置10からのPV発電電力量がデバイス電力量以上である場合(図5のS210:YES)、電力変動分を含み得る太陽光発電装置10からの余剰電力Wp2を使用してLICモジュール200を充電させつつ、電力供給ラインLWの電力変動に起因するLIBモジュール300の劣化を抑制することができる(図4(a)参照)。また、PV発電電力量がデバイス電力量未満である場合(図5のS210:NO)、LICモジュール200とLIBモジュール300との両方からの放電電力Wc,Wbが通信機器30に供給される(図4(c)参照)。このため、LIBモジュール300の放電を可能としつつ、LICモジュール200により電力供給ラインLWの電力変動に起因するLIBモジュール300の劣化を抑制することができる。
B.第2実施形態:
図9は、第2実施形態における自立型電力制御処理の内容を示すフローチャートである。第2実施形態では、PCU130の制御部132が自立型電力制御処理を実行する点で、上述した第1実施形態とは異なる。以下、第2実施形態における電力制御システム100と外部装置との電気的構成(処理)の内、第1実施形態と同一の構成(処理)については、同一符号を付すことによって、その説明を省略する。
図9は、第2実施形態における自立型電力制御処理の内容を示すフローチャートである。第2実施形態では、PCU130の制御部132が自立型電力制御処理を実行する点で、上述した第1実施形態とは異なる。以下、第2実施形態における電力制御システム100と外部装置との電気的構成(処理)の内、第1実施形態と同一の構成(処理)については、同一符号を付すことによって、その説明を省略する。
本実施形態では、太陽光発電装置10の最大発電量が比較的に大きいため、商用電源20の商用電力Waを使用せずに、太陽光発電装置10のPV電力Wpを使用して通信機器30への電力供給やバッテリユニット120への充電が行われる。太陽光発電装置10の最大発電量とバッテリユニット120の蓄電容量とは、ぞれぞれ、通信機器30の1日分のデバイス電力量以上であることが好ましい。自立型電力制御処理は、このように主としてPV電力Wpが使用されるシステムにおいて、太陽光発電装置10の発電状態や通信機器30の動作状態等に応じてLICモジュール200とLIBモジュール300との充放電を制御するための処理である。なお、自立型電力制御処理では、商用電源20の商用電力Waはバックアップ用としてのみ使用される。
自立型電力制御処理が開始されると、図9に示すように、制御部132は、PV発電電力量がデバイス電力量以上であるか否かを判断する(S510)。このS510の処理は、第1実施形態のS210の処理と同じである。制御部132は、PV発電電力量がデバイス電力量以上であると判断した場合(S510:YES)、太陽光発電装置10からのPV電力Wpの発電周期が短周期であるか否かを判断する(S520)。本実施形態では、電力制御システム100は、太陽光発電装置10からのPV電力Wpの発電周期を検出する周期検出部(図示しない)を備えており、その周期検出部の検出結果に基づき、PV電力Wpの発電周期が短周期であるか否かを判断する。
制御部132は、PV電力Wpの発電周期が短周期であると判断した場合(S520:YES)、バッテリユニット120をLIC単独形態として、DC/DCコンバータ110を動作させてLICモジュール200だけを充電する(S530)。このS530の処理は、第1実施形態のS220の処理と同じである。一方、制御部132は、PV電力Wpの発電周期が短周期でない(中長周期である)と判断した場合(S520:NO)、バッテリユニット120を並列形態とする(S540)。これにより、LICモジュール200に加えてLIBモジュール300が充電される。
制御部132は、PV発電電力量がデバイス電力量未満であると判断した場合(S510:NO)、上述したバッテリ放電処理を実行する(S550)。このS550の処理は、第1実施形態のバッテリ放電処理(図7)と同じである。
C.変形例:
本発明は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
本発明は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
上記実施形態における電力制御システム100等の構成は、あくまで一例であり、種々変形可能である。例えば上記実施形態では、蓄電部として、複数のLIC210(キャパシタセル)や複数のLIB310(電池セル)を備えるバッテリユニット120を例示したが、蓄電部は、1つのLIC210を備える構成や1つのLIB310を備える構成でもよい。
図10は、変形例におけるバッテリユニット120Aの電気的構成を示す説明図であり、図11は、LIC210とLIB310との物理的構成を示す説明図である。図10に示すように、バッテリユニット120Aは、互いに直列に接続された複数のLIC210(キャパシタセル)と、互いに直列に接続された複数のLIB310(電池セル)を含んでいる。また、各LIC210の正極側と各LIB310の正極側とが第1スイッチ122Aを介して電気的に接続されている。ここで、図10のように、全ての第1スイッチ122Aが開状態である場合、複数のLIC210の全体電圧は、複数のLIB310の全体電圧と同じになる。しかし、複数のLIC210のそれぞれの電圧バラツキによって特定のLIC210が過放電になるという課題が生じる。これに対して、本変形例では、全ての第1スイッチ122Aを開状態にすると、複数のLIC210の全体と複数のLIB310の全体とが並列に接続され、例えばLIB310の電圧の制限を受けることなく、LIC210を充電することができる。また、全ての第1スイッチ122Aを閉状態にすると、複数のLIC210と複数のLIB310とは、それぞれ1つずつ互いに並列に接続される。これにより、各LIC210の過放電を確実に抑制することができる。また、電力供給ラインLWの短周期変動分を、LIB310の充放電よりもLIC210の充放電に、より確実に優先的に利用することができる。また、各LIC210(キャパシタセル)と各LIB310(電池セル)の電圧のバランスをとるためのバランス回路を設ける場合、LIC210の1セルとLIB310の1セルとからなる並列回路内でバランス回路を共通化できるため、回路構成をより簡素化できる。さらに、上述したように、各LIB310は、電圧急変状態になることに起因して過放電になり易いという課題がある。これに対して、本変形例では、各LIC210の他端側は、第2スイッチ124Aを介して、各第1スイッチ122Aと各LIB310との接続ラインに電気的に接続されている。すなわち、各第2スイッチ124Aを開閉させることにより、各LIC210と各LIB310とを、並列形態と直列形態とに個別に切り替えることができる。これにより、各LIB310が電圧急変状態である場合、各LIC210と各LIB310とを直列形態にすることにより、電圧急変状態に起因する各LIB310の過放電の発生を個別に抑制することができる。
また、LIB310は、LIC210に比べて内部抵抗が高いため、高温になり易いという課題がある。これに対して、図11に示すように、複数のLIC210と複数のLIB310とは、1つずつ交互に配列され、かつ、互いに隣り合うLIC210とLIB310とが接触するように配置されている。LIC210とLIB310とは互いに面接触することが好ましい。LIC210は、LIB310に比べて、高出力に設計されているため、電極が薄く、集電体の容積が大きいため、放熱性が高い。このため、LIC210の放熱効果によりLIB310の高温化を抑制することができる。なお、LIC210がLIB310の外周側に飛び出すように配置したり(図11参照)、LIC210に放熱手段を付加したりすることにより、LIC210の放熱効果がさらに向上する。
上記実施形態では、発電装置として、太陽光発電装置10を例示したが、自然エネルギーを利用して発電する装置であればよく、例えば風力発電、水力発電やバイオ系燃料電池などでもよい。上記実施形態では、負荷として、通信機器30を例示したが、例えばサーバ装置や管理装置などでもよく、アクチュエータ(例えばモータ)を動作させる定置型あるいは移動型の装置などでもよい。
上記実施形態における各種の処理の内容は、あくまで一例であり、種々変形可能である。例えば、上記第1実施形態において、図5のPV発電時処理のS220において、バッテリユニット120を並列形態にしてもよい。この場合でも、PV電力Wpの短周期変動分がLIC210に優先的に充電されるため、急速な充放電に起因するLIB310の劣化を抑制することができる。
上記第1実施形態において、電力制御システム100は、制御部132を、太陽光発電装置10の翌日の発電量を予測する予測部として機能させてもよい。制御部132は、例えば通信ネットワークを介して得られる気象情報(例えば気象予測)に基づき翌日の発電量を予測してもよい。或いは、制御部132は、例えば太陽光発電装置10が設置される環境の気象に関するデータを記憶部134に記憶しておき、制御部132がこの気象に関するデータに基づき発電量を予測してもよい。気象に関するデータは、例えば、気候に影響する環境情報(温度、気圧、風力等)と発電量との対応関係について過去の実績から作成されたデータである。また、制御部132は、環境情報と発電量とを逐次取得して蓄積し、その蓄積されたビックデータに基づく機械学習によって翌日の発電量を予測してもよい。そして、制御部132は、翌日の発電量が基準量以下である場合、翌日の日中において、太陽光発電装置10からのPV電力Wpによって通信機器30に電力が十分に供給されなくなるおそれがある。このため、前日の夜間料金帯におけるLICモジュール200の充電を行う(図4(b)、図6参照)。一方、翌日の発電量が基準量を超える場合、前日の夜間料金帯におけるLICモジュール200の充電を行わないことより、翌日の太陽光発電装置10からのPV電力Wpの変動分に応じてLICモジュール200が十分に充放電できるように待機させることができる。このとき、記憶部134は、特許請求の範囲における蓄積部の一例である。
上記第2実施形態では、図9の自立型電力制御処理において、S520の判断をせずにバッテリユニット120を並列形態としてもよい。このような構成でも、PV電力Wp(電力供給ラインLW)の電力変動分(短周期変動分)は、LICモジュール200の充放電に優先的に利用される。このため、LIBモジュール300の充放電を許容しつつ、PV電力Wpの電力変動に起因するLIBモジュール300の劣化を抑制することができる。また、上記周期検出部が不要になる。また、図9のS540の処理において、DC/DCコンバータ110にLIBモジュール300を電気的に接続し、LICモジュール200の電気的な接続を切り離すLIB単独形態としてもよい。また、上記第2実施形態において、商用電源20が電力供給ラインLWに接続されていない構成でもよい。
上記実施形態において、制御部132は、次の電流制御処理を実行してもよい。すなわち、制御部132は、LIBモジュール300の内部抵抗を特定し、その特定した内部抵抗が高い程、バッテリユニット120に流す電流量を小さくする。このとき、制御部132は、特許請求の範囲における抵抗特定部と電流制御部として機能する。図12は、LIBモジュール300の内部抵抗とLIBモジュール300に流す電流量との関係を示す説明図である。図12に示すように、LIBモジュール300の内部抵抗が低下するに連れて(グラフGZ参照)、LIBモジュール300に流す電流量を増大させる(グラフGI参照)。これにより、LIBモジュール300の内部抵抗の増大に伴うLIBモジュール300の副反応を抑えて、LIBモジュール300の劣化を抑制することができる。なお、図12に示すように、LIBモジュール300の過放電を抑制するため、LIBモジュール300に流す電流量が所定の上限量に達した場合には、LIBモジュール300に流す電流量を上限量に保つことが好ましい。
上記実施形態において、ハードウェアによって実現されている構成の一部をソフトウェアに置き換えるようにしてもよく、反対に、ソフトウェアによって実現されている構成の一部をハードウェアに置き換えるようにしてもよい。
10:太陽光発電装置 12:ソーラーシステム 14:PVコンバータ 20:商用電源 22:AC/DCコンバータ 30:通信機器 100:電力制御システム 110:DC/DCコンバータ 120,120A:バッテリユニット 122,122A,124,124A,126:スイッチ 130:PCU 132:制御部 134:記憶部 136:インターフェース部 138:LIC管理部 140:LIB管理部 200:LICモジュール 210:LIC 300:LIBモジュール 310:LIB E1:プラトー領域 E2:非プラトー領域 GB:充放電曲線 LW:電力供給ライン Wa:商用電力 Wc,Wb:放電電力 Wp2:余剰電力 Wp:PV電力
Claims (15)
- 自然エネルギーを利用して発電する発電装置と負荷との間の電力供給ラインに接続される電力制御システムであって、
リチウムイオンキャパシタとリチウムイオン電池とを有する蓄電部と、
DC/DCコンバータと、
前記蓄電部の充放電を制御する充放電制御部と、
を備え、
前記充放電制御部は、
前記リチウムイオンキャパシタを、前記DC/DCコンバータを介して、前記電力供給ラインに接続して前記リチウムイオンキャパシタの充放電を制御し、
前記リチウムイオン電池を、前記DC/DCコンバータを介して、前記電力供給ラインに接続して前記リチウムイオン電池の充放電を制御する、
電力制御システム。 - 請求項1に記載の電力制御システムであって、
前記蓄電部は、
前記リチウムイオンキャパシタと前記リチウムイオン電池とが互いに並列に接続されると共に前記DC/DCコンバータを介して前記電力供給ラインに接続された並列形態を有する、
電力制御システム。 - 請求項2に記載の電力制御システムであって、
前記蓄電部は、
前記並列形態と、
前記リチウムイオンキャパシタが前記DC/DCコンバータに接続されており、かつ、前記リチウムイオン電池が前記DC/DCコンバータに接続されていないキャパシタ単独形態と、
を切り替え可能に構成されている、
電力制御システム。 - 請求項2または請求項3に記載の電力制御システムであって、
前記蓄電部は、
前記並列形態と、
前記リチウムイオンキャパシタと前記リチウムイオン電池とが互いに直列に接続されると共に前記DC/DCコンバータを介して前記電力供給ラインに接続された直列形態と、
を切り替え可能に構成されている、
電力制御システム。 - 請求項4に記載の電力制御システムであって、
前記充放電制御部は、
前記リチウムイオン電池が、単位時間当たりの電圧変化量が基準量以上である電圧急変状態であるか否かを判断する第1の状態判断部を備え、
前記第1の状態判断部にて前記リチウムイオン電池が前記電圧急変状態であると判断されたことを必要条件として、前記蓄電部を前記並列形態から前記直列形態に切り替える、
電力制御システム。 - 請求項4または請求項5に記載の電力制御システムであって、
前記充放電制御部は、
前記リチウムイオン電池の内部抵抗が基準抵抗以上であるか否かを判断する第2の状態判断部を備え、
前記第2の状態判断部にて前記リチウムイオン電池の内部抵抗が基準抵抗以上であると判断されたことを必要条件として、前記蓄電部を前記並列形態から前記直列形態に切り替える、
電力制御システム。 - 請求項1から請求項6までのいずれか一項に記載の電力制御システムであって、
前記リチウムイオンキャパシタは、互いに直列に接続された複数のキャパシタセルを含み、
前記リチウムイオン電池は、互いに直列に接続された複数の電池セルを含み、
前記複数のキャパシタセルと前記複数の電池セルとは、それぞれ1つずつ互いに並列に接続されている、
電力制御システム。 - 請求項1から請求項7までのいずれか一項に記載の電力制御システムであって、
前記リチウムイオンキャパシタは、互いに直列に接続された複数のキャパシタセルを含み、
前記リチウムイオン電池は、互いに直列に接続された複数の電池セルを含み、
前記複数のキャパシタセルと前記複数の電池セルとは、1つずつ交互に配列され、かつ、互いに隣り合う前記キャパシタセルと電池セルとが接触するように配置されている、
電力制御システム。 - 請求項1から請求項8までのいずれか一項に記載の電力制御システムであって、
前記リチウムイオン電池は、複数の電池セルを有する電池モジュールにより構成されるとともに、前記電池モジュールを増設可能に構成されており、
前記充放電制御部は、前記電池モジュールを制御する電池制御部を備え、前記電池制御部は、増設可能な最大数の前記電池モジュールを制御可能に構成されている、
電力制御システム。 - 請求項1から請求項9までのいずれか一項に記載の電力制御システムであって、
前記充放電制御部は、
前記リチウムイオン電池の内部抵抗を特定する抵抗特定部と、
前記抵抗特定部により特定される前記内部抵抗が高い程、前記蓄電部に流す電流量を小さくする電流制御部と、を備える、
電力制御システム。 - 請求項1から請求項10までのいずれか一項に記載の電力制御システムであって、
前記発電装置は、太陽光発電装置であり、
前記蓄電部は、
前記リチウムイオンキャパシタと前記リチウムイオン電池とが互いに並列に接続されると共に前記DC/DCコンバータを介して前記電力供給ラインに接続された並列形態と、
前記リチウムイオンキャパシタが前記DC/DCコンバータに接続されており、かつ、前記リチウムイオン電池が前記DC/DCコンバータに接続されていないキャパシタ単独形態と、
を切り替え可能に構成されており、
前記充放電制御部は、
前記太陽光発電装置より発電される電力が前記負荷に必要な電力を超えた場合、前記蓄電部を前記キャパシタ単独形態として前記太陽光発電装置からの余剰電力によって前記リチウムイオンキャパシタを充電し、
前記太陽光発電装置より発電される電力が前記負荷で必要な電力に対して不足する場合、前記蓄電部を前記並列形態として前記蓄電部から放電させて前記負荷に電力を供給する、
電力制御システム。 - 請求項11に記載の電力制御システムであって、
前記充放電制御部は、前記太陽光発電装置の発電量が基準量以下である場合、前記蓄電部を前記キャパシタ単独形態として前記太陽光発電装置からの電力によって前記リチウムイオンキャパシタを充電する、
電力制御システム。 - 請求項11または請求項12に記載の電力制御システムであって、
前記電力供給ラインには、商用電源が接続されており、
前記充放電制御部は、現在時刻が夜間料金帯でない場合、前記蓄電部を前記並列形態として前記蓄電部から放電させて前記負荷に電力を供給し、現在時刻が前記夜間料金帯である場合、前記商用電源から前記負荷に電力を供給する、
電力制御システム。 - 請求項13に記載の電力制御システムであって、
前記充放電制御部は、前記太陽光発電装置の翌日の発電量を予測する予測部を備え、
前記予測部に予測された発電量が基準量以下であることを必要条件として、前日の前記夜間料金帯における前記リチウムイオンキャパシタの充電を行う、
電力制御システム。 - 請求項14に記載の電力制御システムであって、
前記充放電制御部は、さらに、気象に関する測定データを蓄積する蓄積部を備え、
前記予測部は、前記蓄積部に蓄積された前記測定データに基づき前記翌日の発電量を予測する、
電力制御システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/025645 WO2022003815A1 (ja) | 2020-06-30 | 2020-06-30 | 電力制御システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/025645 WO2022003815A1 (ja) | 2020-06-30 | 2020-06-30 | 電力制御システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022003815A1 true WO2022003815A1 (ja) | 2022-01-06 |
Family
ID=79315781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025645 WO2022003815A1 (ja) | 2020-06-30 | 2020-06-30 | 電力制御システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022003815A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0984277A (ja) * | 1995-09-18 | 1997-03-28 | Nissan Motor Co Ltd | 電池の充電制御方法および装置 |
JP2007124864A (ja) * | 2005-10-31 | 2007-05-17 | Sharp Corp | 電力変換システム |
JP2013214463A (ja) * | 2012-04-03 | 2013-10-17 | M & G Japan:Kk | 防犯街路灯 |
KR20150090371A (ko) * | 2014-01-28 | 2015-08-06 | 삼화전기주식회사 | 능동형 ess |
JP2015177718A (ja) * | 2014-03-18 | 2015-10-05 | 国立大学法人東北大学 | 蓄電装置およびその制御方法 |
EP3151357A1 (en) * | 2015-09-30 | 2017-04-05 | Paul Riis Arndt | Solar powerpack |
JP2018060684A (ja) * | 2016-10-05 | 2018-04-12 | 株式会社デンソー | 電源装置 |
-
2020
- 2020-06-30 WO PCT/JP2020/025645 patent/WO2022003815A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0984277A (ja) * | 1995-09-18 | 1997-03-28 | Nissan Motor Co Ltd | 電池の充電制御方法および装置 |
JP2007124864A (ja) * | 2005-10-31 | 2007-05-17 | Sharp Corp | 電力変換システム |
JP2013214463A (ja) * | 2012-04-03 | 2013-10-17 | M & G Japan:Kk | 防犯街路灯 |
KR20150090371A (ko) * | 2014-01-28 | 2015-08-06 | 삼화전기주식회사 | 능동형 ess |
JP2015177718A (ja) * | 2014-03-18 | 2015-10-05 | 国立大学法人東北大学 | 蓄電装置およびその制御方法 |
EP3151357A1 (en) * | 2015-09-30 | 2017-04-05 | Paul Riis Arndt | Solar powerpack |
JP2018060684A (ja) * | 2016-10-05 | 2018-04-12 | 株式会社デンソー | 電源装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rydh et al. | Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements | |
US8938323B2 (en) | Power storage system and method of controlling the same | |
US8396609B2 (en) | Control of cells, modules and a pack comprised of hybridized electrochemistries | |
US7091625B2 (en) | Home-use fuel cell system | |
Bhuiyan et al. | Energy storage technologies for grid-connected and off-grid power system applications | |
US8808886B2 (en) | Battery management system and method thereof, and power storage apparatus using the same | |
Chaurey et al. | Battery storage for PV power systems: an overview | |
Spiers | Batteries in PV systems | |
US20130187465A1 (en) | Power management system | |
US11670954B2 (en) | Hybrid battery system | |
KR20110132122A (ko) | 전력 저장 시스템 및 그 제어방법 | |
US9450439B2 (en) | Secondary battery system and operating method of secondary battery | |
KR102064586B1 (ko) | 에너지 저장 시스템의 충전 관리 방법 | |
US11909249B2 (en) | Power feeding system | |
JP2017195732A (ja) | 蓄電池システム | |
Ikeya et al. | Charging operation with high energy efficiency for electric vehicle valve-regulated lead–acid battery system | |
CN117747314A (zh) | 一种超级电容器应用在电源系统的方法 | |
Jiao et al. | Analysis of two hybrid energy storage systems in an off-grid photovoltaic microgrid: A case study | |
WO2022003815A1 (ja) | 電力制御システム | |
JPH05252671A (ja) | 太陽光発電出力制御方式 | |
CN116094013A (zh) | 一种电池储能装置 | |
CN214707295U (zh) | 智能蓄电装置、不停车电子收费设备 | |
Jousse et al. | Assessment of lithium ion LiFePO 4 cells usage in photovoltaic standalone systems | |
Reynaud et al. | A novel distributed photovoltaic power architecture using advanced Li-ion batteries | |
Skyllas-Kazacos | Electro-chemical energy storage technologies for wind energy systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20943629 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20943629 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |