WO2022002258A1 - 小区下行固定资源的发送方法及通信装置 - Google Patents

小区下行固定资源的发送方法及通信装置 Download PDF

Info

Publication number
WO2022002258A1
WO2022002258A1 PCT/CN2021/104293 CN2021104293W WO2022002258A1 WO 2022002258 A1 WO2022002258 A1 WO 2022002258A1 CN 2021104293 W CN2021104293 W CN 2021104293W WO 2022002258 A1 WO2022002258 A1 WO 2022002258A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
sending time
downlink fixed
time
sending
Prior art date
Application number
PCT/CN2021/104293
Other languages
English (en)
French (fr)
Inventor
崔建明
韩丁
常玉超
郑晓军
薛春林
张云翰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21832377.2A priority Critical patent/EP4164161A4/en
Priority to JP2022581003A priority patent/JP7451775B2/ja
Publication of WO2022002258A1 publication Critical patent/WO2022002258A1/zh
Priority to US18/149,177 priority patent/US20230138287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and a communication device for sending downlink fixed resources in a cell.
  • Adjacent cells can be adjacent cells under the same network device, or adjacent cells under different network devices. For example, cell 1 is adjacent to cell 2, cell 1 is a cell under network device 1, and cell 2 is a network device. 2 sub-districts.
  • Neighboring cells send the same channel or signal, which may interfere with each other.
  • the same cell-level measurement reference signals sent by adjacent cells may interfere with each other.
  • a single-standard system such as a new radio (new radio, NR) system or a long term evolution (long term evolution, LTE) system.
  • Neighboring cells send different channels or signals, which may interfere with each other.
  • the common channel that cell 1 sends regularly according to the configuration period may interfere with the data channel or reference signal sent by cell 2.
  • Cross-standard systems such as the NR system and the LTE system share spectrum, the common channel sent by cell 1 in the NR system is fixed according to the configuration period, which may cause interference to the data channel or reference signal sent by cell 2 in the LTE system, thereby affecting the LTE performance.
  • the present application provides a method and a communication device for transmitting downlink fixed resources in a cell, which can reduce interference in neighboring cells and improve system performance.
  • a first aspect of the present application provides a method for sending downlink fixed resources in a cell, and the method is applied to a first network device.
  • the method may be performed by the first network device, or may be performed by an apparatus (eg, a processor or a chip, etc.) in the first network device.
  • the method takes the first network device as an example, and includes the following contents.
  • the first network device configures a first sending time of the cell downlink fixed resources for the first cell under the first network device; controls the first cell to send the cell downlink fixed resources within the first sending time; wherein the first sending time is the same as the first sending time.
  • Adjacent cells of the cell have different transmission times of the downlink fixed resources of the cell, and the first cell and the adjacent cells of the first cell carry the same frequency.
  • the transmission times of the cell downlink fixed resources sent by the adjacent cells are different, so that the cell downlink fixed resources sent between the adjacent cells are staggered in the time domain and the space domain, thereby reducing the interference between the cell downlink fixed resources, which is beneficial to Improve the performance of single-mode systems.
  • the interference of the downlink fixed resources of the cell to other resources can be reduced, which is beneficial to improve the performance of the cross-standard system.
  • the cell downlink fixed resource may be a cell-level measurement reference signal or a common channel.
  • the adjacent cell of the first cell may be a second cell under the first network device, that is, the first cell and the second cell belong to the coverage of the first network device, and the first cell and the second cell belong to the coverage of the first network device.
  • the second cell is adjacent.
  • the sending time for the second cell to send the downlink fixed resources of the cell may be referred to as the second sending time
  • the first network device controls the second cell to send the downlink fixed resources of the cell within the second sending time, so that under the same network device Neighboring cells send different downlink fixed resources at different times, thereby reducing interference between cells under the same network device.
  • the first network device further configures a third cell of the first network device to send a third sending time for the downlink fixed resources of the cell, and the third sending time is different from the first sending time and the second sending time. same.
  • the first network device controls the third cell of the first network device to send the cell downlink fixed resources within the third sending time; the third cell and the first cell carry the same frequency.
  • the first network device can control the three cells under it and not send the cell downlink fixed resources at the same time, so that the cell downlink fixed resources sent by the three cells are isolated from each other in the time domain and space domain, reducing the number of cells sent by the same network device. Interference between downlink fixed resources.
  • different cells of the same network device transmit cell downlink fixed resources in different transmission times, that is, the same network device transmits cell downlink fixed resources in different directions and in different transmission times, so as to be isolated from each other in time domain and space domain.
  • the first interval duration between the first sending time and the second sending time is different from the second interval duration between the second sending time and the third sending time.
  • the transmission time for the three cells of the first network device to transmit the downlink fixed resources of the cells is relative to the transmission time for the three cells to simultaneously transmit the downlink fixed resources of the cells, and there is a frame offset, and the frame offset of the three cells is offset.
  • the first network device can flexibly configure the sending time of the downlink fixed resource of the sending cell of each cell.
  • the first interval duration between the first sending time and the second sending time is the same as the second interval duration between the second sending time and the third sending time. It can be understood that the sending time of the three cells of the first network device for sending the downlink fixed resources of the cells is periodic, so that the terminal device can periodically scan the downlink fixed resources of the cells.
  • the first network device further controls the first cell to send the cell downlink fixed resources within the fourth sending time; controls the second cell to send the cell downlink fixed resources within the fifth sending time; controls the third cell
  • the downlink fixed resources of the cell are sent within the sixth sending time; the interval between the fourth sending time and the fifth sending time is the same as the first interval, and the fourth interval between the fifth sending time and the sixth sending time is the same as the first interval.
  • the second interval has the same duration.
  • the first network device controls the first cell to periodically send cell downlink fixed resources, controls the second cell to periodically send cell downlink fixed resources, and controls the third cell to periodically send
  • the period of each cell for sending the cell downlink fixed resource may be the same, but the transmission time for each cell to send the cell downlink fixed resource is different.
  • the first cell, the second cell and the third cell belong to logically combined cells, that is, the first cell, the second cell and the third cell are logically regarded as one cell.
  • the first network device controls the first cell to send the cell downlink fixed resources within the first sending time within the resource sending period of the logically combined cell; controls the second cell to send the cell downlink fixed resources within the second sending time; controls the third cell
  • the cell downlink fixed resource is sent within the third sending time. It can be understood that the first network device controls the three cells not to transmit the downlink fixed resources of the cells at the same time within the resource transmission period of the logically combined cell.
  • This transmission mode can be understood as a beam scanning mode, and the transmission period of the logically combined cell is the beam scanning period.
  • the beam scanning method can not only reduce the interference between the cell downlink fixed resources sent by each cell, but also reduce the overhead of the common channel, which can improve the spectral efficiency; it can also save the symbol overhead of the cell downlink fixed resources, which is conducive to energy saving.
  • the adjacent cell of the first cell is a fourth cell under the second network device, and the first network device obtains the sending time of the downlink fixed resources of the fourth cell from the second network device, so as to The first sending time configured by the first network device for its first cell is different from the sending time of the fourth cell sending the downlink fixed resources of the cell, thereby reducing interference between adjacent cells between different network devices.
  • the adjacent cells of different network devices send cell downlink fixed resources in different sending times, that is, different network devices send cell downlink fixed resources in different directions and different sending times, so that they are isolated from each other in time domain and space domain. .
  • a second aspect of the present application provides a communication device.
  • the communication apparatus has part or all of the functions of the first network device described in the first aspect.
  • the function of the apparatus may have the function of some or all of the embodiments of the network device in this application, or may have the function of independently implementing any one of the embodiments of this application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a processing unit and a communication unit, and the processing unit is configured to support the communication device to perform the corresponding functions in the above method.
  • the communication unit is used to support communication between the communication device and other devices.
  • the communication device may also include a storage unit for coupling with the processing unit and the communication unit, which stores program instructions and data necessary for the communication device.
  • the communication device includes a processing unit and a communication unit:
  • a processing unit configured to configure a first sending time for the first cell of the first network device to send the downlink fixed resources of the cell; a communication unit, configured to control the first cell to send the downlink fixed resources of the cell within the first sending time; Wherein, the first sending time is different from the sending time when the neighboring cells of the first cell send the downlink fixed resources of the cell; the first cell and the neighboring cells of the first cell carry the same frequency.
  • the communication unit may be a transceiver or a communication interface
  • the processing unit may be a processor
  • the communication device includes:
  • a processor configured to configure a first sending time for the first cell of the first network device to send the downlink fixed resources of the cell; a transceiver, configured to control the first cell to send the downlink fixed resources of the cell within the first sending time; Wherein, the first sending time is different from the sending time when the neighboring cells of the first cell send the downlink fixed resources of the cell; the first cell and the neighboring cells of the first cell carry the same frequency.
  • the processor may be used to perform, for example but not limited to, baseband related processing
  • the transceiver may be used to perform, for example but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on chips that are independent of each other, or at least part or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be integrated with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be called a System on Chip. Whether each device is independently arranged on different chips or integrated on one or more chips often depends on the needs of product design. The embodiments of the present application do not limit the implementation form of the foregoing device.
  • a third aspect of the present application provides a processor for executing the various methods of the above-mentioned first aspect.
  • the process of sending a signal and receiving a signal in the above method can be understood as a process of outputting a signal by a processor, and a process of receiving an input signal by the processor.
  • the processor when outputting a signal, the processor outputs the signal to the transceiver for transmission by the transceiver. Further, after the signal is output by the processor, other processing may be required before reaching the transceiver.
  • the processor receives an incoming signal
  • the transceiver receives the signal and feeds it into the processor. Further, after the transceiver receives the signal, the signal may require additional processing before being input to the processor.
  • the operations of transmitting, sending and receiving involved in the processor can be understood more generally as
  • the processor outputs and receives, inputs, etc. operations, rather than the transmit, transmit, and receive operations directly performed by the radio frequency circuit and antenna.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (read only memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • ROM read-only memory
  • the type of memory and the manner in which the memory and the processor are arranged are not limited.
  • a fourth aspect of the present application provides a computer-readable storage medium for storing computer software instructions, and when the instructions are executed by a communication device, the method described in the first aspect is implemented.
  • a fifth aspect of the present application further provides a computer program product comprising instructions, which, when executed on a communication device, cause the communication device to perform the method described in the first aspect above.
  • a sixth aspect of the present application provides a chip system, the chip system includes a processor, the processor is coupled with a memory, the memory is used for storing a program, and when the program is executed by the processor, the device including the chip is made to perform the above-mentioned first aspect. method described.
  • the system-on-a-chip may also include an interface for retrieving programs or instructions from memory.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Fig. 1 is a kind of schematic diagram of cell merging
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • Fig. 3a is a schematic diagram of a network device sending SSB
  • Figure 3b is a schematic diagram of multiple network devices sending SSB
  • FIG. 4 is a schematic flowchart of a method for sending downlink fixed resources in a cell provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a network device sending SSB according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of multiple network devices sending SSB according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another network device sending SSB provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • a cell carrying the same frequency may be called a co-frequency cell.
  • cell 1 and cell 2 carry the same frequency
  • cell 1 and cell 2 are co-frequency cells.
  • a cell refers to an intra-frequency cell.
  • the network device may use a single frequency network (single frequency network, SFN) technology to combine multiple co-frequency cells into one logically combined cell.
  • the network device may use an adaptive single frequency network (adaptive single frequency network, ASFN) technology to combine multiple intra-frequency cells into one logically combined cell.
  • the logically merged cell may also be referred to as an SFN cell, an ASFN cell, or the like.
  • FIG. 1 is a schematic diagram of cell combining.
  • the network device merges the first cell, the second cell and the third cell into one logically merged cell.
  • the first cell, the second cell and the third cell may be intra-frequency cells under the same network device, or may be intra-frequency cells under different network devices.
  • the cell downlink fixed resources refer to the cell resources sent by the network equipment in a fixed manner, and the fixed transmission can be understood as periodic sending or sending according to pre-configuration.
  • the downlink fixed resources of a cell can also be described as cell resources for fixed transmission, or cell resources for fixed transmission, and the like.
  • Cell downlink fixed resources can be cell-level measurement reference signals, such as channel state information-reference signal (CSI-RS); or common channels, such as physical broadcast channel (PBCH) or A common (common) physical downlink control channel (physical downlink control channel, PDCCH), etc.; it can also be a signal carried on a common channel, such as a synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SSB).
  • CSI-RS channel state information-reference signal
  • PBCH physical broadcast channel
  • PDCCH physical downlink control channel
  • SSB synchronization signal/physical broadcast channel block
  • the downlink fixed resource of the cell is introduced by taking the SSB as an example.
  • the transmission time can also be described as a transmission opportunity, a time domain resource, a time unit, and the like.
  • the sending time is the time when the reference signal is sent, and the unit of the sending time may be a radio frame, a subframe, a slot, a mini slot, etc., or multiple frames or subslots.
  • the time window formed by the frame such as the system information (SI) window. This embodiment of the present application does not limit the time length of the sending time.
  • FIG. 2 is a schematic diagram of a network architecture provided by the present application.
  • the network architecture may include network equipment 201 and terminal equipment 202 .
  • the number and form of the devices shown in FIG. 2 are used as examples and do not constitute a limitation to the present application.
  • the network architecture includes two or more terminal devices.
  • the network device 201 may be a device with a wireless transceiver function or a chip that may be provided in the device.
  • the network device 201 may also be a base station, and the base station may have various forms, such as a macro base station, a micro base station, a relay station, an access point, and the like.
  • the base station may be a base station in a long term evolution (long term evolution, LTE) system, a base station in a new radio (new radio, NR) system, or a base station in a future communication system.
  • LTE long term evolution
  • NR new radio
  • the network device 201 may support RRU networking scenarios, such as RRU networking scenarios such as 2 transmit (transmit, T) and 2 receive (R), 4T4R, and 8T8R.
  • the terminal device 202 may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • VR virtual reality
  • AR augmented reality
  • FIG. 3a is a schematic diagram of a network device sending SSB.
  • the hexagons represent cells, and the ovals in each hexagon represent the beams used to transmit the SSB.
  • the network device includes three cells, namely a first cell, a second cell and a third cell, and these three cells carry the same frequency.
  • the first cell transmits the time domain resources of the SSB
  • the second cell transmits the time domain resources of the SSB
  • the third cell transmits the time domain resources of the SSB, which are the same. That is, the first cell, the second cell, and the third cell transmit the SSB on the same time-frequency resource.
  • the first cell, the second cell and the third cell all transmit SSB at time t, SSB at time t+N, and SSB at time t+2N. It can be understood that the first cell, the second cell and the third cell all send the SSB periodically and simultaneously, and the sending period of the SSB is N, where N is a positive integer.
  • the first cell, the second cell, and the third cell use the same time-frequency resources for sending SSBs, and the SSBs sent by the respective cells collide in the time and frequency domains. Therefore, the cells may cause interference to each other.
  • the three cells use wide beams to send SSBs respectively, the spatial isolation of the wide beams sent by the three cells is low, which further aggravates the interference between cells.
  • FIG. 3b is a schematic diagram of multiple network devices sending SSB.
  • Figure 3b shows a continuous networking scenario of a remote radio unit (RRU).
  • RRU remote radio unit
  • the above-mentioned interference may be interference between SSBs sent by adjacent cells, or interference between SSBs periodically sent by one cell to data channels sent by its adjacent cells.
  • the NR system shares the spectrum with the LTE system, and the SSB periodically sent by cell 1 under the NR system has the same time-frequency resources as the data channel sent by cell 2 under the LTE system, then the SSB sent by cell 1 will affect the data sent by cell 2
  • the channel causes interference, which affects the terminal equipment to obtain data from the data channel.
  • cell 1 is adjacent to cell 2.
  • the embodiments of the present application provide a method and a communication device for sending downlink fixed resources of a cell.
  • Adjacent cells send cell downlink fixed resources in different sending times, so that the cell downlink fixed resources sent between adjacent cells are in the time domain. It is staggered from the airspace, thereby reducing the interference of adjacent cells, which is beneficial to improve the system performance.
  • the technical solutions of the present application can be applied to various single-standard communication systems.
  • the technical solution of the present application can be used in a 5G system, which can also be called a new radio (NR) system; can also be used in a long term evolution (LTE) system, and can also be used in a future communication system.
  • NR new radio
  • LTE long term evolution
  • the technical solution of the present application can also be applied to a cross-standard communication system, for example, an NR system and an LTE system share a spectrum.
  • FIG. 4 is a schematic flowchart of a method for sending downlink fixed resources in a cell provided by the present application.
  • the process may include but not limited to the following steps:
  • Step 401 The first network device configures a first sending time for a first cell of the first network device to send the downlink fixed resource of the cell.
  • the first network device may be any network device in the network architecture.
  • Step 402 The first network device controls the first cell to send the downlink fixed resources of the cell within the first sending time.
  • the first transmission time is different from the transmission time of the adjacent cells of the first cell for transmitting the downlink fixed resources of the cell, thereby reducing the interference between the cell downlink fixed resources sent between the adjacent cells, and reducing the effect of the cell downlink fixed resources on other resources. (such as data channel or reference signal, etc.) interference.
  • the first cell and the adjacent cells of the first cell carry the same frequency, that is, the first cell and its adjacent cells are the same frequency cell.
  • the adjacent cell of the first cell is the second cell under the first network device. That is, the first cell and the second cell belong to the coverage of the first network device, and the first cell is adjacent to the second cell.
  • the sending time for the second cell to send the downlink fixed resource of the cell may be referred to as the second sending time, and the second sending time is different from the first sending time.
  • the first network device controls the second cell to send the cell downlink fixed resources within the second sending time, so that adjacent cells under the same network device have different sending times of the cell downlink fixed resources, thereby reducing the cell downlink fixed resources under the same network device interference between.
  • the first network device configures the first cell to send the first sending time of the downlink fixed resources of the cell, configures the second cell to send the second sending time of the downlink fixed resources of the cell, and controls the first cell to send the cell within the first sending time.
  • the first network device further configures the third cell to send a third sending time for the downlink fixed resources of the cell, and controls the third cell to send the cell downlink within the third sending time. Fixed resources.
  • the third sending time is different from the first sending time and the second sending time.
  • the first network device controls the first cell to send the cell downlink fixed resources, and the terminal equipment located in the first cell can scan the cell downlink fixed resources sent by the first cell.
  • the first network device controls the second cell to send the cell downlink fixed resources, and the terminal equipment located in the second cell can scan the cell downlink fixed resources sent by the second cell.
  • the first network device controls the third cell to send the cell downlink fixed resources, and the terminal equipment located in the third cell can scan the cell downlink fixed resources sent by the third cell.
  • the first network device may configure the first sending time, the second sending time and the third sending time at the same time, and the sending times are different for each.
  • the first sending time is earlier than the second sending time
  • the second sending time is earlier than the third sending time.
  • the first network device can configure the sending time for each cell to send the downlink fixed resource of the cell at the same time, and the sending time of each cell is different.
  • the order of configuring the transmission time of each cell is not limited.
  • the interval between the three sending times may be configured to be the same, that is, the interval between the first sending time and the second sending time, and the second sending time
  • the interval between the time and the third sending time is the same. It can be understood that the transmission reference times of the three cells of the first network device are periodic, so the terminal device can periodically scan the downlink fixed resources of the cells.
  • the transmission time for the three cells to send the downlink fixed resources of the cells may be within the resource transmission period of one logically combined cell.
  • the three cells to send the cell downlink fixed resources in the form of logically combined cells refer to the specific description of Embodiment 1. .
  • the interval lengths between the three sending times may also be configured to be different, that is, the interval lengths between the first sending time and the second sending time, and The interval duration between the second sending time and the third sending time is different.
  • the transmission time of the three cells to send the downlink fixed resources of the cell is the same as the transmission time of the three cells, that is, the three cells transmit the downlink fixed resources of the cell at the same time, there is a frame offset, and the frame offset of the three cells is. settings are different.
  • the first network device can flexibly configure the sending time of the cell downlink fixed resource for each intra-frequency cell. For the manner of configuring different frame offsets for three cells, reference may be made to the specific description of Embodiment 2.
  • the first network device further controls the first cell to send the cell downlink fixed resources at the fourth sending time, controls the second cell to send the cell downlink fixed resources at the fifth sending time, and controls the third cell to send the cell downlink fixed resources at the fifth sending time.
  • Sending time The downlink fixed resources of the cell are sent.
  • the interval length of the sixth sending time is the same as the interval length of the second sending time and the third sending time.
  • the first network device respectively controls the first cell, the second cell and the third cell to periodically send downlink fixed resources of the cells.
  • the transmission time of the cell to transmit the downlink fixed resource is different.
  • the adjacent cell of the first cell is the fourth cell of the second network device.
  • the cell downlink fixed resources sent by adjacent cells of different network devices on the same video resources will also interfere with each other. interfere with each other.
  • the first network device configures the first sending time of the first cell to be different from the sending time of the fourth cell, which can reduce the interference between the downlink fixed resources sent by the first cell and the fourth cell.
  • the first network device may acquire, from the second network device, the sending time of the downlink fixed resource of the fourth cell for sending the cell through the interface between the network devices.
  • the sending time for the fourth cell to send the downlink fixed resource of the cell may be configured by the second network device.
  • the transmission times of the cell downlink fixed resources sent by adjacent cells are different, so that the cell downlink fixed resources sent between adjacent cells are staggered in the time domain and the space domain, thereby reducing the difference between the cell downlink fixed resources. It is beneficial to improve the performance of a single-mode system. Further, the interference of the downlink fixed resources of the cell to other resources (such as data channels or reference signals, etc.) can be reduced, which is beneficial to improve the performance of the cross-standard system.
  • Embodiment 1-Embodiment 2 will be described in detail below.
  • Embodiment 1-Three cells transmit SSB in the manner of logically combining cells
  • FIG. 5 is a schematic diagram of a network device sending SSB according to an embodiment of the present application.
  • the network device includes three cells (respectively, a first cell, a second cell and a third cell). cell), each cell sends SSB to the terminal equipment in the cell as an example for introduction.
  • FIG. 5 can be applied to a time division duplexing (TDD) network and a frequency division duplexing (FDD) network.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • the network device Before configuring the sending time of the three cells respectively, the network device first combines the three cells into one logically combined cell. For example, technologies such as SFN or ASFN are used to combine three cells into one logically combined cell.
  • hexagons represent cells, and ellipses represent beams.
  • the network device transmits the SSB, one cell transmits the SSB through one beam.
  • the SSB sent by the first cell is represented by diagonal lines
  • the SSB sent by the second cell is represented by black
  • the SSB sent by the third cell is represented by gray.
  • the rectangle in FIG. 5 represents the unit of sending time.
  • the unit of sending time in this embodiment of the present application is described by taking a slot (slot) as an example.
  • the first cell in network device i is denoted as Cell[0,i]
  • the second cell in network device i is denoted as Cell[1,i]
  • the third cell in network device i is denoted as Cell[1,i].
  • the network device i After the network device i merges the three cells, as shown in Figure 5, it controls the first cell to transmit the downlink fixed resources of the cell in the time slot t, and controls the second cell to transmit the downlink fixed resources of the cell in the time slot t+N. +2N controls the third cell to send downlink fixed resources of the cell.
  • the network device i controls the first cell to transmit the downlink fixed resources of the cell in the time slot t+3N, controls the second cell to transmit the downlink fixed resources of the cell in the time slot t+4N, and controls the third cell to transmit the downlink fixed resources of the cell in the time slot t+5N , and so on.
  • the transmission mode shown in FIG. 5 is a beam scanning mode for the logically combined cell, and the transmission period of the logically combined cell, that is, the period of beam scanning, is 3N.
  • the transmission period of the logically combined cell that is, the period of beam scanning
  • 3N the transmission period of the logically combined cell
  • three beams are used to transmit the downlink fixed resources of the cell, and the directions of the three beams are different, that is, the directions of the three ellipses shown in FIG. 5 .
  • the period of the beam scanning is 3N, that is, the time period for three cells to complete a round of SSB transmission is 3N, and the three cells in Figure 3a send SSB simultaneously within the period N, then Figure 5 is three times longer than Figure 3a. send cycle.
  • Extending the transmission period can reduce the overhead of the common channel and improve the spectral efficiency; it can also save the symbol overhead of the downlink fixed resources of the cell, which is beneficial to energy saving.
  • the resources occupied by some system messages of the NR FDD may collide with the cell reference signal (CRS) of the LTE, resulting in a loss of LTE performance.
  • CRS cell reference signal
  • the transmission period is lengthened, which can reduce the impact on the performance of the LTE system caused by the resource conflict.
  • FIG. 6 is a schematic diagram of multiple network devices sending SSB according to an embodiment of the present application.
  • the transmission times of the cell downlink fixed resources configured by each cell under the same network device are different, so that the cell downlink fixed resources sent between cells are staggered in the time domain and the space domain, thereby reducing the transmission time between the cell downlink fixed resources sent by each cell.
  • interference which is beneficial to improve system performance.
  • the transmission time of cell downlink fixed resources sent by adjacent cells of different network devices is also different, and the interference between cell downlink fixed resources sent by adjacent cells of different network devices can also be reduced.
  • Embodiment 2-Three cells are configured with different frame offsets
  • FIG. 7 is a schematic diagram of another network device sending SSB provided by an embodiment of the present application.
  • the network device includes three cells (respectively, a first cell, a second cell and a third cell). Three cells), each cell sends SSB to the terminal equipment in the cell as an example for introduction.
  • Figure 7 can be applied to a TDD network.
  • FIG. 7 represents the unit of transmission time.
  • the unit of transmission time in this embodiment of the present application is described by taking a slot (slot) as an example.
  • the first cell in network device i is denoted as Cell[0,i]
  • the second cell in network device i is denoted as Cell[1,i]
  • the third cell in network device i is denoted as Cell[1,i].
  • the network device configures different frame offsets for the three cells, for example, the frame offset configured for the first cell is 0, the frame offset configured for the second cell is k1, and the frame offset configured for the third cell is k2 , where k1 is less than k2, that is, the transmission time of the second cell is earlier than the transmission time of the third cell, and neither k1 nor k2 is 0.
  • the frame offset refers to the time offset between the sending time of each cell in FIG. 7 sending the SSB, and the time offset between the sending time when the three cells simultaneously send the SSB in FIG. 3a.
  • the time slot t is when three cells send SSB simultaneously
  • the time slot t is when the first cell sends SSB in Fig. 7
  • the time slot t is when the second cell sends SSB in Fig. 7 +k1
  • the sending time of the SSB sent by the third cell is time slot t+k2.
  • the transmission time for three cells to transmit SSB simultaneously is time slot t+N, in Fig.
  • the transmission time for the first cell to transmit SSB is time slot t+N, and in Fig. 7 for the second cell to transmit SSB The time is time slot t+N+k1, and the transmission time of the SSB sent by the third cell in FIG. 7 is time slot t+N+k2.
  • the sequence of sending SSB by network device i in FIG. 7 is as follows: the first cell sends SSB at time slot t; the second cell sends SSB at time slot t+k1; the third cell sends SSB at time slot t+k2 SSB; the first cell sends SSB at time slot t+N; the second cell sends SSB at time slot t+N+k1; the third cell sends SSB at time slot t+N+k2.
  • FIG. 6 is a schematic diagram of multiple network devices sending SSB according to an embodiment of the present application.
  • the frame offsets configured in each cell under the same network device are different, so that the transmission time of the cell downlink fixed resources sent between cells is different, and the cell downlink fixed resources sent by each cell are staggered in the time domain and space domain, thereby reducing the number of Interference between cells is beneficial to improve system performance.
  • the frame offsets configured by adjacent cells of different network devices are different, and the interference between the downlink fixed resources sent by the adjacent cells of different network devices can also be reduced.
  • different cells respectively transmit downlink fixed resources of cells in different time slots (slots), so as to realize the isolation of time domain and space domain and reduce interference.
  • Embodiment 1 and Embodiment 2 take the coverage of adjacent cells belonging to the same network device as an example.
  • the adjacent cells are adjacent cells of different network devices, reference may also be made to Embodiment 1 and Embodiment 2. 2.
  • the interactive process of sending time or frame offset configured between different network devices can be increased.
  • the network device includes three cells as an example. In the case where the network device includes more than three cells, expansion can be performed based on the foregoing method embodiments.
  • the network device may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device 800 shown in FIG. 8 may include a communication unit 802 and a processing unit 801 .
  • the communication unit 802 may include a sending unit and a receiving unit, the sending unit is used to implement the sending function, the receiving unit is used to implement the receiving function, and the communication unit 802 may implement the sending function and/or the receiving function.
  • the communication unit may also be described as a transceiving unit.
  • the communication apparatus has the function of implementing the first network device described in the embodiments of the present application.
  • the communication apparatus includes modules or units or means (means) corresponding to the terminal device performing the steps described in the embodiments of the present application, and the functions, units or means (means) may be implemented by software, or by hardware
  • the implementation can also be implemented through hardware executing corresponding software, or through a combination of software and hardware.
  • the communication apparatus 800 may be the first network device, or may be a device in the first network device.
  • a processing unit 801 configured to configure a first sending time for a first cell of a first network device to send a downlink fixed resource of the cell;
  • a communication unit 802 configured to control the first cell to send downlink fixed resources of the cell within the first sending time
  • the first transmission time is different from the transmission time of the adjacent cells of the first cell for transmitting the downlink fixed resources of the cell; and the frequencies borne by the first cell and the adjacent cells of the first cell are the same.
  • the communication unit 802 is configured to implement step 402 in the embodiment shown in FIG. 4
  • the processing unit 801 is configured to implement step 401 in the embodiment shown in FIG. 4 .
  • FIG. 9 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • the communication apparatus 900 may also be a network device, and may also be a chip, a chip system, or a processor that supports the network device to implement the above method.
  • the communication device may be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • the communication apparatus may include one or more processors 901, and the processors 901 may also be referred to as processing units, which may implement certain control functions.
  • the processor 901 may be a general-purpose processor or a special-purpose processor or the like.
  • the processor 901 may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, process software program data.
  • the processor 901 may also store instructions and/or data 903, and the instructions and/or data 903 may be executed by the processor, so that the communication apparatus 900 executes the above method embodiments method described in .
  • the processor 901 may include a communication unit for implementing the functions of receiving and transmitting.
  • the communication unit may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the communication apparatus 900 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the communication device 900 may include one or more memories 902 on which instructions 904 may be stored.
  • the instructions can be executed on the processor to cause the communication device 900 to perform the methods described in the above method embodiments.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be provided separately or integrated together.
  • the local sequences described in the above method embodiments may be stored in a memory or in a processor.
  • the communication apparatus 900 may further include a transceiver 905 and/or an antenna 906 .
  • the processor 901 may be referred to as a processing unit, and controls the communication device 900 .
  • the transceiver 905 may be referred to as a communication unit, a transceiver, a transceiver circuit or a transceiver, etc., and is used to implement a transceiver function.
  • a communication apparatus 900 may include:
  • a processor 901, configured for the first cell of the first network device to send the first sending time of the downlink fixed resource of the cell
  • a transceiver 905 configured to control the first cell to send the downlink fixed resources of the cell within the first sending time
  • the first transmission time is different from the transmission time of the adjacent cells of the first cell for transmitting the downlink fixed resources of the cell; the first cell and the adjacent cells of the first cell carry the same frequency.
  • the transceiver 905 is configured to execute step 402 in the embodiment shown in FIG. 4
  • the processor 901 is configured to execute step 401 in the embodiment shown in FIG. 4 .
  • ICs may include analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), and the like.
  • RFICs radio frequency integrated circuits
  • ASICs application specific integrated circuits
  • PCB printed circuit board
  • the communication apparatus described in the above embodiments may be network equipment or terminal equipment, but the scope of the apparatus described in this application is not limited thereto, and the structure of the communication apparatus may not be limited by FIG. 9 .
  • the communication means may be:
  • Receivers terminals, cellular phones, wireless equipment, handsets, mobile units, in-vehicle equipment, network equipment, cloud equipment, artificial intelligence equipment, machine equipment, home equipment, medical equipment, industrial equipment, etc.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other possible Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, implements the functions of any of the foregoing method embodiments.
  • the present application also provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, high-density digital video discs (DVDs)), or semiconductor media (eg, solid state disks, SSD)) etc.
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种小区下行固定资源的发送方法及通信装置,应用于RRU组网场景。该方法中,第一网络设备配置第一网络设备的第一小区发送小区下行固定资源的第一发送时间,控制第一小区在第一发送时间内发送小区下行固定资源;其中,第一发送时间与第一小区的相邻小区发送小区下行固定资源的发送时间不同,第一小区与所述第一小区的相邻小区承载的频率相同。采用本申请,可以减少相邻小区之间发送的小区下行固定资源之间的干扰,从而提高单制式系统的性能;可以减少小区下行固定资源对其他资源(例如数据信道等)的干扰,有利于提高跨制式系统的性能。

Description

小区下行固定资源的发送方法及通信装置
本申请要求于2020年07月03日提交中国专利局、申请号为202010632132.1、申请名称为“小区下行固定资源的发送方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种小区下行固定资源的发送方法及通信装置。
背景技术
通信系统中,相邻小区之间的干扰是影响终端设备信噪比、系统性能的重要原因。相邻小区可以是同一网络设备下相邻的小区,也可以是不同网络设备下相邻的小区,例如小区1与小区2相邻,小区1是网络设备1下的小区,小区2是网络设备2下的小区。
相邻小区发送相同的信道或信号,可能会相互干扰,例如在单制式系统下,相邻小区发送的相同的小区级测量参考信号,可能会相互干扰。单制式系统,例如新空口(new radio,NR)系统或长期演进(long term evolution,LTE)系统。
相邻小区发送不同的信道或信号,也可能会相互干扰,例如在跨制式系统下,小区1按照配置周期固定发送的公共信道,可能会对小区2发送的数据信道或参考信号等造成干扰。跨制式系统,例如NR系统与LTE系统共享频谱,NR系统中的小区1按照配置周期固定发送的公共信道,可能会对LTE系统中的小区2发送的数据信道或参考信号等造成干扰,从而影响LTE的性能。
因此,如何减少邻区干扰是亟待解决的技术问题。
发明内容
本申请提供一种小区下行固定资源的发送方法及通信装置,可以减少邻区干扰,从而提高系统性能。
本申请第一方面提供一种小区下行固定资源的发送方法,该方法应用于第一网络设备。该方法可以由第一网络设备执行,也可以由第一网络设备中的装置(例如处理器或芯片等)执行。该方法以第一网络设备为例,包括以下内容。
第一网络设备为第一网络设备下的第一小区配置小区下行固定资源的第一发送时间;控制第一小区在第一发送时间内发送小区下行固定资源;其中,第一发送时间与第一小区的相邻小区发送小区下行固定资源的发送时间不同,第一小区与第一小区的相邻小区承载的频率相同。
上述方法中,相邻小区发送小区下行固定资源的发送时间不同,实现相邻小区之间发送的小区下行固定资源在时域和空域上错开,从而减少小区下行固定资源之间的干扰,有利于提高单制式系统的性能。进一步的,可以减少小区下行固定资源对其他资源(例如数据信道或参考信号等)的干扰,有利于提高跨制式系统的性能。
其中,小区下行固定资源可以是小区级测量参考信号,也可以是公共信道。
在一种可能的实现方式中,第一小区的相邻小区可以是第一网络设备下的第二小区,即第一小区和第二小区属于第一网络设备的覆盖范围,且第一小区与第二小区相邻。这种情况下,第二小区发送小区下行固定资源的发送时间可以称为第二发送时间,第一网络设 备控制第二小区在第二发送时间内发送小区下行固定资源,使得同一网络设备下的相邻小区发送小区下行固定资源的发送时间不同,从而减少同一网络设备下的小区下行固定资源之间的干扰。
在一种可能的实现方式中,第一网络设备还配置第一网络设备的第三小区发送小区下行固定资源的第三发送时间,第三发送时间与第一发送时间、第二发送时间均不相同。第一网络设备控制第一网络设备的第三小区在第三发送时间内发送小区下行固定资源;第三小区与第一小区承载的频率相同。第一网络设备可以控制其下的三个小区,不在同一时间发送小区下行固定资源,从而实现三个小区发送的小区下行固定资源,在时域和空域上互相隔离,减少同一网络设备发送的小区下行固定资源之间的干扰。
可以理解的是,同一网络设备的不同小区在不同发送时间内发送小区下行固定资源,即同一网络设备在不同方向、不同发送时间内发送小区下行固定资源,使得在时域和空域上互相隔离。
在一种可能的实现方式中,第一发送时间与第二发送时间之间的第一间隔时长,与第二发送时间与第三发送时间的第二间隔时长,不同。可以理解的是,第一网络设备的三个小区发送小区下行固定资源的发送时间,相对于三个小区同时发送小区下行固定资源的发送时间,存在帧偏置,且三个小区的帧偏置不相同。这样,第一网络设备可灵活地配置各个小区的发送小区下行固定资源的发送时间。
在一种可能的实现方式中,第一发送时间与第二发送时间之间的第一间隔时长,与第二发送时间与第三发送时间的第二间隔时长,相同。可以理解的是,第一网络设备的三个小区发送小区下行固定资源的发送时间具有周期性,以便终端设备可以周期性地扫描小区下行固定资源。
在一种可能的实现方式中,第一网络设备还控制第一小区在第四发送时间内发送小区下行固定资源;控制第二小区在第五发送时间内发送小区下行固定资源;控制第三小区在第六发送时间内发送小区下行固定资源;其中,第四发送时间和第五发送时间的间隔时长,与第一间隔时长相同,第五发送时间和第六发送时间的第四间隔时长,与第二间隔时长相同。以第一网络设备包括三个小区为例,第一网络设备控制第一小区周期性地发送小区下行固定资源,控制第二小区周期性地发送小区下行固定资源,控制第三小区周期性地发送小区下行固定资源,各个小区发送小区下行固定资源的周期可以相同,但各个小区发送小区下行固定资源的发送时间不相同。
在一种可能的实现方式中,第一小区、第二小区和第三小区属于逻辑合并小区,即将第一小区、第二小区和第三小区在逻辑上当作一个小区。第一网络设备在逻辑合并小区的资源发送周期内,控制第一小区在第一发送时间内发送小区下行固定资源;控制第二小区在第二发送时间内发送小区下行固定资源;控制第三小区在第三发送时间内发送小区下行固定资源。可以理解的是,第一网络设备在逻辑合并小区的资源发送周期内,控制三个小区不同时发送小区下行固定资源。这种发送方式可以理解为波束扫描的方式,逻辑合并小区的发送周期即波束扫描的周期。采用波束扫描的方式,不仅可以减少各个小区发送的小区下行固定资源之间的干扰;还可以减少公共信道的开销,可以提升频谱效率;还可以节约小区下行固定资源的符号开销,有利于节能。
在一种可能的实现方式中,第一小区的相邻小区为第二网络设备下的第四小区,第一网络设备从第二网络设备获取第四小区发送小区下行固定资源的发送时间,以便第一网络设备为其第一小区配置的第一发送时间与第四小区发送小区下行固定资源的发送时间不同,从而减少不同网络设备之间的相邻小区之间的干扰。
可以理解的是,不同网络设备的相邻小区在不同发送时间内发送小区下行固定资源,即不同网络设备在不同方向、不同发送时间内发送小区下行固定资源,使得在时域和空域上互相隔离。
本申请第二方面提供一种通信装置。该通信装置具有实现上述第一方面所述的第一网络设备的部分或全部功能。比如,装置的功能可具备本申请中网络设备的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该通信装置的结构中可包括处理单元和通信单元,所述处理单元被配置为支持通信装置执行上述方法中相应的功能。所述通信单元用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储单元,所述存储单元用于与处理单元和通信单元耦合,其保存通信装置必要的程序指令和数据。
一种实施方式中,所述通信装置包括处理单元和通信单元:
处理单元,用于配置第一网络设备的第一小区发送小区下行固定资源的第一发送时间;通信单元,用于控制第一小区在所述第一发送时间内发送所述小区下行固定资源;其中,所述第一发送时间与所述第一小区的相邻小区发送所述小区下行固定资源的发送时间不同;所述第一小区与所述第一小区的相邻小区承载的频率相同。
作为示例,通信单元可以为收发器或通信接口,处理单元可以为处理器。
一种实施方式中,所述通信装置包括:
处理器,用于配置第一网络设备的第一小区发送小区下行固定资源的第一发送时间;收发器,用于控制第一小区在所述第一发送时间内发送所述小区下行固定资源;其中,所述第一发送时间与所述第一小区的相邻小区发送所述小区下行固定资源的发送时间不同;所述第一小区与所述第一小区的相邻小区承载的频率相同。
在实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多。例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(System on Chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的需要。本申请实施例对上述器件的实现形式不做限定。
本申请第三方面提供一种处理器,用于执行上述第一方面的各种方法。在执行这些方法的过程中,上述方法中有关发送信号和接收信号的过程,可以理解为由处理器输出信号 的过程,以及处理器接收输入的信号的过程。具体来说,在输出信号时,处理器将信号输出给收发器,以便由收发器进行发射。更进一步的,信号在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的信号时,收发器接收信号,并将其输入处理器。更进一步的,在收发器收到信号之后,信号可能需要进行其他的处理,然后才输入处理器。
如此一来,对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在具体实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型以及存储器与处理器的设置方式不作限定。
本申请第四方面提供一种计算机可读存储介质,用于储存计算机软件指令,当所述指令被通信装置执行时,实现上述第一方面所述的方法。
本申请第五方面还提供了一种包括指令的计算机程序产品,当其在通信装置上运行时,使得通信装置执行上述第一方面所述的方法。
本申请第六方面提供了一种芯片系统,该芯片系统包括处理器,处理器与存储器耦合,存储器用于存储程序,当程序被处理器执行时,使得包含芯片的装置执行上述第一方面所述的方法。在一种设计中,该芯片系统还可以包括接口,接口用于从存储器获取程序或指令。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是一种小区合并的示意图;
图2是本申请实施例提供的一种网络架构的示意图;
图3a是一个网络设备发送SSB的示意图;
图3b是多个网络设备发送SSB的示意图;
图4是本申请实施例提供的一种小区下行固定资源的发送方法的流程示意图;
图5是本申请实施例提供的一种一个网络设备发送SSB的示意图;
图6是本申请实施例提供的多个网络设备发送SSB的示意图;
图7是本申请实施例提供的另一种一个网络设备发送SSB的示意图;
图8是本申请实施例提供的一种通信装置的结构示意图;
图9是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为便于理解本申请公开的实施例,对涉及的几个术语进行简单阐述。
1、逻辑合并小区
承载相同频率的小区,可以称为同频小区。例如小区1和小区2承载的频率相同,那 么小区1与小区2为同频小区。为了描述方便,本申请实施例中,小区指的是同频小区。
网络设备可以使用单一频率网络(single frequency network,SFN)的技术,将多个同频小区合并为一个逻辑合并小区。或,网络设备可以使用自适应单一频率网络(adaptive single frequency network,ASFN)的技术,将多个同频小区合并为一个逻辑合并小区。逻辑合并小区也可以称为SFN小区或ASFN小区等。
示例性的,请参阅图1,图1是一种小区合并的示意图。如图1所示,网络设备将第一小区、第二小区和第三小区合并为一个逻辑合并小区。第一小区、第二小区和第三小区可以是同一网络设备下的同频小区,也可以是不同网络设备下的同频小区。
2、小区下行固定资源
应用在本申请中,小区下行固定资源,指的是网络设备固定发送的小区资源,固定发送可以理解为周期性发送或按照预配置发送。小区下行固定资源,也可以描述为固定发送的小区资源,或固定传输的小区资源等。小区下行固定资源可以是小区级测量参考信号,例如信道状态信息-参考信号(channel state information-reference signal,CSI-RS);也可以是公共信道,例如物理广播信道(physical broadcast channel,PBCH)或公共(common)物理下行控制信道(physical downlink control channel,PDCCH)等;还可以是承载在公共信道上的信号,例如同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SSB)。本申请中,小区下行固定资源以SSB为例进行介绍。
3、发送时间
发送时间也可以描述为发送时机、时域资源、时间单元等。应用在本申请中,发送时间为发送参考信号的时间,发送时间的单位可以是无线帧、子帧、时隙(slot)、微时隙(mini slot)等,也可以是多个帧或子帧构成的时间窗口,例如系统信息(system information,SI)窗口。本申请实施例对发送时间的时间长度不做限制。
请参阅图2,图2是本申请提供的一种网络架构的示意图。该网络架构可包括网络设备201和终端设备202。图2所示的设备的数量和形态用于举例,并不构成对本申请的限定,例如实际应用中,网络架构包括两个或两个以上的终端设备。
其中,网络设备201可为具有无线收发功能的设备或可设置于该设备的芯片。网络设备201也可以是基站,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。基站可以是长期演进(long term evolution,LTE)系统中的基站,也可以是新空口(new radio,NR)系统中的基站,还可以是未来通信系统中的基站。应用在本申请中,网络设备201可以支持RRU组网场景,例如2发(transmit,T)2收(receive,R)、4T4R、8T8R等RRU组网场景。
其中,终端设备202也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城 市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
请参阅图3a,图3a是一个网络设备发送SSB的示意图。图3a中,六边形表示小区,每个六边形中的椭圆形表示发送SSB使用的波束。网络设备包括三个小区,分别为第一小区、第二小区和第三小区,这三个小区承载相同的频率。第一小区发送SSB的时域资源,第二小区发送SSB的时域资源,第三小区发送SSB的时域资源,相同。即第一小区、第二小区以及第三小区在相同的时频资源上发送SSB。
图3a中,第一小区、第二小区和第三小区均在时间t内发送SSB,在时间t+N内发送SSB,以及在t+2N内发送SSB。可以理解的是,第一小区、第二小区和第三小区均周期性地且同时发送SSB,SSB的发送周期为N,N为正整数。这样,第一小区、第二小区和第三小区发送SSB的时频资源相同,各个小区发送的SSB在时域、频域碰撞,因此,小区之间会互相造成干扰。同时,由于三个小区分别使用宽波束发送SSB,则三个小区发送的宽波束空间隔离度低,进一步加重了小区之间的干扰。
请参阅图3b,图3b是多个网络设备发送SSB的示意图。图3b是射频拉远单元(remote radio unit,RRU)连续组网场景,各个网络设备的各个小区发送SSB的时频资源均相同,那么不同网络设备的相邻小区之间也存在干扰。
上述干扰可以是相邻小区发送的SSB之间的干扰,也可以是一个小区周期性发送的SSB对其相邻小区发送的数据信道的干扰。例如NR系统与LTE系统共享频谱,NR系统下的小区1周期性发送的SSB与LTE系统下的小区2发送的数据信道的时频资源相同,那么小区1发送的SSB会对小区2发送的数据信道造成干扰,影响终端设备从数据信道获取数据。其中,小区1与小区2相邻。
鉴于此,本申请实施例提供一种小区下行固定资源的发送方法及通信装置,相邻小区在不同发送时间内发送小区下行固定资源,使得相邻小区之间发送的小区下行固定资源在时域和空域错开,从而减少邻区干扰,有利于提高系统性能。
本申请的技术方案可应用于各种单制式的通信系统中。例如,本申请的技术方案可用于5G系统,也可以称为新空口(new radio,NR)系统;也可用于长期演进(long term evolution,LTE)系统,还可以用于未来通信系统。本申请的技术方案还可以应用于跨制式的通信系统中,例如NR系统和LTE系统共享频谱。
其中,本申请公开的实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请公开的实施例的技术方案,并不构成对于本申请公开的实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请公开的实施例提供的技术方案对于类似的技术问题,同样适用。
下面将对本申请提供的小区下行固定资源的发送方法进行介绍。
请参阅图4,为本申请提供的一种小区下行固定资源的发送方法的流程示意图,该流程可以包括但不限于如下步骤:
步骤401、第一网络设备配置第一网络设备的第一小区发送小区下行固定资源的第一发送时间。
其中,第一网络设备可以是网络架构中的任意一个网络设备。
步骤402、第一网络设备控制第一小区在第一发送时间内发送小区下行固定资源。
其中,第一发送时间与第一小区的相邻小区发送小区下行固定资源的发送时间不同,从而减少相邻小区之间发送的小区下行固定资源之间的干扰,减少小区下行固定资源对其他资源(例如数据信道或参考信号等)的干扰。第一小区与第一小区的相邻小区承载的频率相同,即第一小区与其相邻小区为同频小区。
下面分两种情况进行介绍。
情况一,第一小区的相邻小区为第一网络设备下的第二小区。即第一小区和第二小区属于第一网络设备的覆盖范围,且第一小区与第二小区相邻。这种情况下,第二小区发送小区下行固定资源的发送时间可以称为第二发送时间,第二发送时间与第一发送时间不同。第一网络设备控制第二小区在第二发送时间内发送小区下行固定资源,使得同一网络设备下的相邻小区发送小区下行固定资源的发送时间不同,从而减少同一网络设备下的小区下行固定资源之间的干扰。
可以理解的是,第一网络设备配置第一小区发送小区下行固定资源的第一发送时间,配置第二小区发送小区下行固定资源的第二发送时间,控制第一小区在第一发送时间内发送小区下行固定资源,控制第二小区在第二发送时间内发送小区下行固定资源。
进一步的,在第一网络设备包括三个小区的情况下,第一网络设备还配置第三小区发送小区下行固定资源的第三发送时间,并控制第三小区在第三发送时间内发送小区下行固定资源。第三发送时间与第一发送时间、第二发送时间均不同。
在第一发送时间内,第一网络设备控制第一小区发送小区下行固定资源,则位于第一小区内的终端设备可以扫描到第一小区发送的小区下行固定资源。在第二发送时间内,第一网络设备控制第二小区发送小区下行固定资源,则位于第二小区内的终端设备可以扫描到第二小区发送的小区下行固定资源。在第三发送时间内,第一网络设备控制第三小区发送小区下行固定资源,则位于第三小区内的终端设备可以扫描到第三小区发送的小区下行固定资源。
在第一网络设备包括三个小区的情况下,第一网络设备可同时配置第一发送时间、第二发送时间和第三发送时间,各个发送时间均不相同。示例性的,第一发送时间早于第二发送时间,第二发送时间早于第三发送时间。进一步的,在第一网络设备包括三个以上小区的情况下,第一网络设备可同时配置各个小区发送小区下行固定资源的发送时间,且各个小区的发送时间均不相同。在本申请实施例中,不限定配置各个小区的发送时间的先后顺序。
在一种可能的实现方式中,在配置三个小区的发送时间时,可以配置三个发送时间之间的间隔时长相同,即第一发送时间与第二发送时间的间隔时长,和第二发送时间与第三发送时间的间隔时长,相同。可以理解的是,第一网络设备的三个小区发送参考时间具有周期性,那么终端设备可以周期性的扫描小区下行固定资源。
进一步的,三个小区发送小区下行固定资源的发送时间可以在一个逻辑合并小区的资源发送周期内,对于三个小区以逻辑合并小区的方式发送小区下行固定资源,可参见实施例1的具体描述。
在一种可能的实现方式中,在配置三个小区的发送时间时,也可以配置三个发送时间之间的间隔时长不同,即第一发送时间与第二发送时间之间的间隔时长,和第二发送时间 与第三发送时间之间的间隔时长,不同。可以理解的是,三个小区发送小区下行固定资源的发送时间,相对于三个小区的发送时间相同,即三个小区同时发送小区下行固定资源,存在帧偏置,并且三个小区的帧偏置不同。第一网络设备可以灵活地为每一个同频小区配置小区下行固定资源的发送时间。对于三个小区配置不同帧偏置的方式,可参见实施例2的具体描述。
在一种可能的实现方式中,第一网络设备还控制第一小区在第四发送时间发送小区下行固定资源,控制第二小区在第五发送时间发送小区下行固定资源,控制第三小区在第六发送时间发送小区下行固定资源。第六发送时间和第五发送时间的间隔时长,其中,第四发送时间和第五发送时间的间隔时长,与第一发送时间和第二发送时间的间隔时长,相同;第五发送时间和第六发送时间的间隔时长,与第二发送时间和第三发送时间的间隔时长,相同。
如此,第一网络设备分别控制第一小区、第二小区和第三小区周期性的发送小区下行固定资源。各个小区发送小区下行固定资源的周期在相同的情况下,发送小区下行固定资源的发送时间不同。
情况二,第一小区的相邻小区为第二网络设备的第四小区。
除了同一网络设备下的三个小区在相同的时域资源上发送的小区下行固定资源,会相互干扰以外,不同网络设备的相邻小区在相同的视频资源上发送的小区下行固定资源,也会相互干扰。第一网络设备配置第一小区的第一发送时间与第四小区的发送时间不同,可减少第一小区与第四小区发送的小区下行固定资源之间的干扰。
第一网络设备可通过网络设备之间的接口,从第二网络设备获取第四小区发送小区下行固定资源的发送时间。第四小区发送小区下行固定资源的发送时间可由第二网络设备配置。
在图4所示的实施例中,相邻小区发送小区下行固定资源的发送时间不同,实现相邻小区之间发送的小区下行固定资源在时域和空域上错开,从而减少小区下行固定资源之间的干扰,有利于提高单制式系统的性能。进一步的,可以减少小区下行固定资源对其他资源(例如数据信道或参考信号等)的干扰,有利于提高跨制式的系统的性能。
下面对实施例1-实施例2进行详细的描述。
实施例1-三个小区以逻辑合并小区的方式发送SSB
请参阅图5,图5是本申请实施例提供的一种一个网络设备发送SSB的示意图,如图5所示,以网络设备包括三个小区(分别为第一小区、第二小区和第三小区),每个小区分别向小区中的终端设备发送SSB为例进行介绍。图5可以应用于时分双工(time division duplexing,TDD)网络和频分双工(frequency division duplexing,FDD)网络。网络设备在分别配置三个小区的发送时间之前,先将三个小区合并为一个逻辑合并小区。例如采用SFN或ASFN等技术,将三个小区合并为一个逻辑合并小区。
图5中,六边形表示小区,椭圆形表示波束。网络设备在发送SSB时,一个小区通过一个波束发送SSB。第一小区发送的SSB用斜线来表示,第二小区发送的SSB用黑色来表示,第三小区发送的SSB用灰色来表示。图5中的矩形表示发送时间的单位,为了描述方便,本申请实施例中发送时间的单位以时隙(slot)为例进行介绍。
示例性的,将网络设备i中的第一小区记做Cell[0,i],将网络设备i中的第二小区记做Cell[1,i],将网络设备i中的第三小区记做Cell[2,i]。
网络设备i将三个小区合并之后,如图5所示,在时隙t控制第一小区发送小区下行固定资源,在时隙t+N控制第二小区发送小区下行固定资源,在时隙t+2N控制第三小区发送小区下行固定资源。网络设备i在时隙t+3N控制第一小区发送小区下行固定资源,在时隙t+4N控制第二小区发送小区下行固定资源,在时隙t+5N控制第三小区发送小区下行固定资源,如此循环往复。
可以理解的是,图5所示的发送方式对逻辑合并小区而言,为波束扫描的方式,逻辑合并小区的发送周期即波束扫描的周期,即为3N。对逻辑合并小区而言,使用三个波束发送小区下行固定资源,三个波束的方向不同,即为图5所示的三个椭圆形的方向。
波束扫描的周期为3N,即三个小区完成一轮SSB发送的时长为3N,而图3a中三个小区在周期N内同时发送SSB,那么图5相比于图3a,拉长了三倍发送周期。拉长发送周期,可以减少公共信道的开销,可以提升频谱效率;还可以节约小区下行固定资源的符号开销,有利于节能。进一步的,在NR系统和LTE系统共享频谱的场景中,由于NR FDD部分系统消息所占的资源会与LTE的小区级参考信号(cell reference signal,CRS)冲突,导致LTE性能损失。而采用本申请实施例1的配置方式,将发送周期拉长,可以降低由于资源冲突导致的对LTE系统的性能影响。
请参阅图6,图6是本申请实施例提供的多个网络设备发送SSB的示意图。其中,同一网络设备下的各个小区配置的小区下行固定资源的发送时间不同,使得小区之间发送的小区下行固定资源在时域和空域上错开,从而减少各个小区发送小区下行固定资源之间的干扰,有利于提高系统性能。并且不同网络设备的相邻小区发送小区下行固定资源的发送时间也不同,还可以实现减少不同网络设备的相邻小区发送的小区下行固定资源之间的干扰。
实施例2-三个小区配置不同帧偏置
请参阅图7,图7是本申请实施例提供的另一种一个网络设备发送SSB的示意图,如图7所示,以网络设备包括三个小区(分别为第一小区、第二小区和第三小区),每个小区分别向小区中的终端设备发送SSB为例进行介绍。图7可以应用于TDD网络。
图7中,六边形代表小区,椭圆形表示波束。第一小区发送SSB的用斜线来表示,第二小区发送SSB用黑色来表示,第三小区发送SSB用灰色来表示。图7中的矩形表示发送时间的单位,为了描述方便,本申请实施例中发送时间的单位以时隙(slot)为例进行介绍。
示例性的,将网络设备i中的第一小区记做Cell[0,i],将网络设备i中的第二小区记做Cell[1,i],将网络设备i中的第三小区记做Cell[2,i]。网络设备分别为三个小区配置不同的帧偏置,例如,为第一小区配置帧偏置为0,为第二小区配置的帧偏置为k1,为第三小区配置的帧偏置为k2,其中k1小于k2,即第二小区的发送时间早于第三小区的发送时间,且k1、k2均不为0。
其中,帧偏置指的是图7中各个小区发送SSB的发送时间,相对于图3a中三个小区同时发送SSB的发送时间之间的时间偏移量。例如,图3a中三个小区同时发送SSB的发送时间为时隙t,图7中第一小区发送SSB的发送时间为时隙t,图7中第二小区发送SSB 的发送时间为时隙t+k1,图7中第三小区发送SSB的发送时间为时隙t+k2。再例如,图3a中三个小区同时发送SSB的发送时间为时隙t+N,图7中第一小区发送SSB的发送时间为时隙t+N,图7中第二小区发送SSB的发送时间为时隙t+N+k1,图7中第三小区发送SSB的发送时间为时隙t+N+k2。
可以理解的是,图7中网络设备i发送SSB的顺序依次为:第一小区在时隙t发送SSB;第二小区在时隙t+k1发送SSB;第三小区在时隙t+k2发送SSB;第一小区在时隙t+N发送SSB;第二小区在时隙t+N+k1发送SSB;第三小区在时隙t+N+k2发送SSB。
请参阅图6,图6本申请实施例提供的多个网络设备发送SSB的示意图。其中同一网络设备下的各个小区配置的帧偏置不同,使得小区之间发送的小区下行固定资源的发送时间不同,则各个小区发送的小区下行固定资源在时域和空域上错开,从而减少各个小区之间的干扰,有利于提高系统性能。并且不同网络设备的相邻小区配置的帧偏置不同,还可以实现减少不同网络设备的相邻小区发送的小区下行固定资源之间的干扰。
如此,通过配置不同的帧偏置,使得不同的小区在不同的时隙(slot)分别发送小区下行固定资源,实现时域和空域的隔离,减少干扰。
需要说明的是,实施例1和实施例2以相邻小区属于同一网络设备的覆盖范围为例,对于相邻小区为不同网络设备的相邻小区的情况,也可参考实施例1和实施例2,可增加不同网络设备之间配置的发送时间或帧偏置的交互过程。
上述方法实施例中,以网络设备包括三个小区为例,在网络设备包括三个以上小区的情况下,可基于上述方法实施例进行拓展。
为了实现上述本申请实施例提供的方法中的各功能,网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
请参阅图8,图8为本申请实施例提供的一种通信装置的结构示意图。其中,图8所示的通信装置800可包括通信单元802和处理单元801。通信单元802可包括发送单元和接收单元,发送单元用于实现发送功能,接收单元用于实现接收功能,通信单元802可以实现发送功能和/或接收功能。通信单元也可以描述为收发单元。
所述通信装置具备实现本申请实施例描述的第一网络设备的功能。比如,所述通信装置包括终端设备执行本申请实施例描述的终端设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
在一种可能的设计中,通信装置800可以是第一网络设备,也可以是第一网络设备中的装置。
处理单元801,用于配置第一网络设备的第一小区发送小区下行固定资源的第一发送时间;
通信单元802,用于控制第一小区在第一发送时间内发送小区下行固定资源;
其中,第一发送时间与第一小区的相邻小区发送小区下行固定资源的发送时间不同; 第一小区与第一小区的相邻小区承载的频率相同。
示例性的,通信单元802用于实现图4所示实施例中的步骤402,处理单元801用于实现图4所示实施例中的步骤401。
可见,通过给承载相同频率的多个小区配置参考信号的不同的发送时间,依次控制多个小区按照配置得发送时间发送信号,能够实现发送的信号在时域和空域互不干扰,降低了公共信道之间的干扰。
请参阅图9,图9是本申请实施例提供的另一种通信装置的结构示意图。通信装置900也可以是网络设备,还可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等。该通信装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述通信装置可以包括一个或多个处理器901,所述处理器901也可以称为处理单元,可以实现一定的控制功能。所述处理器901可以是通用处理器或者专用处理器等。例如,所述处理器901可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器901也可以存有指令和/或数据903,所述指令和/或数据903可以被所述处理器运行,使得所述通信装置900执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器901中可以包括用于实现接收和发送功能的通信单元。例如该通信单元可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,通信装置900可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述通信装置900中可以包括一个或多个存储器902,其上可以存有指令904。所述指令可在所述处理器上被运行,使得所述通信装置900执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的本地序列可以存储在存储器中,或者存储在处理器中。
可选的,所述通信装置900还可以包括收发器905和/或天线906。所述处理器901可以称为处理单元,对所述通信装置900进行控制。所述收发器905可以称为通信单元、收发机、收发电路或者收发器等,用于实现收发功能。
在一种可能的设计中,一种通信装置900(例如,网络设备、基带芯片等)可包括:
处理器901,用于第一网络设备的第一小区发送小区下行固定资源的第一发送时间;
收发器905,用于控制第一小区在第一发送时间内发送小区下行固定资源;
其中,第一发送时间与第一小区的相邻小区发送小区下行固定资源的发送时间不同;第一小区与第一小区的相邻小区承载的频率相同。
示例性的,收发器905用于执行图4所示实施例中的步骤402,处理器901用于执行 图4所示实施例中的步骤401。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)上。IC可以包括模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)等。印刷电路板(printed circuit board,PCB)上印刷电路可以实现IC。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且通信装置的结构可以不受图9的限制。通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或其子系统;
(2)接收机、终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的通信装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种小区下行固定资源的发送方法,其特征在于,所述方法应用于第一网络设备,所述方法包括:
    配置所述第一网络设备的第一小区发送小区下行固定资源的第一发送时间;
    控制所述第一小区在所述第一发送时间内发送所述小区下行固定资源;
    其中,所述第一发送时间与所述第一小区的相邻小区发送所述小区下行固定资源的发送时间不同;所述第一小区与所述第一小区的相邻小区承载的频率相同。
  2. 根据权利要求1所述的方法,其特征在于,所述第一小区的相邻小区为所述第一网络设备下的第二小区;所述第二小区发送所述小区下行固定资源的发送时间为第二发送时间;
    所述方法还包括:
    控制所述第二小区在所述第二发送时间内发送所述小区下行固定资源。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    控制所述第一网络设备的第三小区在第三发送时间内发送所述小区下行固定资源;所述第三发送时间与所述第一发送时间、第二发送时间均不相同;所述第三小区与所述第一小区承载的频率相同。
  4. 根据权利要求3所述的方法,其特征在于,所述第一发送时间与所述第二发送时间之间的第一间隔时长,与所述第二发送时间与所述第三发送时间的第二间隔时长,不同。
  5. 根据权利要求3所述的方法,其特征在于,所述第一发送时间与所述第二发送时间之间的第一间隔时长,与所述第二发送时间与所述第三发送时间的第二间隔时长,相同。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    控制所述第一小区在第四发送时间内发送所述小区下行固定资源;
    控制所述第二小区在第五发送时间内发送所述小区下行固定资源;
    控制所述第三小区在第六发送时间内发送所述小区下行固定资源;
    其中,所述第四发送时间与所述第五发送时间的间隔时长,与所述第一间隔时长相同,所述第五发送时间与所述第六发送时间的间隔时长,与所述第二间隔时长相同。
  7. 根据权利要求3所述的方法,其特征在于,所述第一小区、所述第二小区和所述第三小区属于逻辑合并小区;
    所述控制所述第一小区在所述第一发送时间内发送所述小区下行固定资源,控制所述第二小区在所述第二发送时间内发送所述小区下行固定资源,控制所述第三小区在所述第三发送时间内发送所述小区下行固定资源,包括:
    在所述逻辑合并小区的资源发送周期内,控制所述第一小区在所述第一发送时间内发送所述小区下行固定资源;控制所述第二小区在所述第二发送时间内发送所述小区下行固定资源;控制所述第三小区在所述第三发送时间内发送所述小区下行固定资源。
  8. 根据权利要求1所述的方法,其特征在于,所述第一小区的相邻小区为第二网络设备下的第四小区;
    所述方法还包括:
    从所述第二网络设备获取所述第四小区发送所述小区下行固定资源的发送时间。
  9. 一种通信装置,其特征在于,所述通信装置应用于第一网络设备,所述装置包括处理器和收发器;
    所述处理器,用于配置所述第一网络设备的第一小区发送小区下行固定资源的第一发送时间;
    所述收发器,用于控制所述第一小区在所述第一发送时间内发送所述小区下行固定资源;
    其中,所述第一发送时间与所述第一小区的相邻小区发送所述小区下行固定资源的发送时间不同;所述第一小区与所述第一小区的相邻小区承载的频率相同。
  10. 根据权利要求9所述的装置,其特征在于,所述第一小区的相邻小区为所述第一网络设备下的第二小区;所述第二小区发送所述小区下行固定资源的发送时间为第二发送时间;
    所述收发器,还用于控制所述第二小区在所述第二发送时间内发送所述小区下行固定资源。
  11. 根据权利要求8所述的装置,其特征在于,
    所述收发器,还用于控制所述第一网络设备的第三小区在第三发送时间内发送所述小区下行固定资源;所述第三发送时间与所述第一发送时间、第二发送时间均不相同;所述第三小区与所述第一小区承载的频率相同。
  12. 根据权利要求9所述的装置,其特征在于,
    所述第一发送时间与所述第二发送时间之间的第一间隔时长,与所述第二发送时间与所述第三发送时间的第二间隔时长,不同。
  13. 根据权利要求9所述的装置,其特征在于,
    所述第一发送时间与所述第二发送时间之间的第一间隔时长,与所述第二发送时间和所述第三发送时间的第二间隔时长,相同。
  14. 根据权利要求12或13所述的装置,其特征在于,
    所述收发器,还用于控制所述第一小区在第四发送时间内发送所述小区下行固定资源;控制所述第二小区在第五发送时间内发送所述小区下行固定资源;控制所述第三小区在第六发送时间内发送所述小区下行固定资源;
    其中,所述第四发送时间与所述第五发送时间的间隔时长,与所述第一间隔时长相同,所述第五发送时间与所述第六发送时间的间隔时长,与所述第二间隔时长相同。
  15. 根据权利要求11所述的装置,其特征在于,所述第一小区、所述第二小区和所述第三小区属于逻辑合并小区;
    所述收发器,具体用于在所述逻辑合并小区的资源发送周期内,控制所述第一小区在所述第一发送时间内发送所述小区下行固定资源;控制所述第二小区在所述第二发送时间内发送所述小区下行固定资源;控制所述第三小区在所述第三发送时间内发送所述小区下行固定资源。
  16. 根据权利要求9所述的装置,其特征在于,所述第一小区的相邻小区为第二网络设备下的第四小区;
    所述收发器,还用于从所述第二网络设备获取所述第四小区发送所述小区下行固定资源的发送时间。
  17. 一种通信装置,其特征在于,所述装置包括通信单元和处理单元,使得所述装置实现权利要求1至8中任一项所述的方法。
  18. 一种通信装置,其特征在于,所述装置用于执行权利要求1至8中任一项所述的方法。
  19. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得包含所述芯片的装置执行如权利要求1至8中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得如权利要求1至8中任一项所述的方法被实现。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机执行指令,当所述计算机执行指令被执行时实现权利要求1-8任一项所述的方法。
PCT/CN2021/104293 2020-07-03 2021-07-02 小区下行固定资源的发送方法及通信装置 WO2022002258A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21832377.2A EP4164161A4 (en) 2020-07-03 2021-07-02 CELL DOWNLINK FIXED RESOURCE TRANSMISSION METHOD AND COMMUNICATION APPARATUS
JP2022581003A JP7451775B2 (ja) 2020-07-03 2021-07-02 セルダウンリンク固定リソースを送信するための方法および通信装置
US18/149,177 US20230138287A1 (en) 2020-07-03 2023-01-03 Method for sending cell downlink fixed resource and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010632132.1 2020-07-03
CN202010632132.1A CN113891341B (zh) 2020-07-03 2020-07-03 小区下行固定资源的发送方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/149,177 Continuation US20230138287A1 (en) 2020-07-03 2023-01-03 Method for sending cell downlink fixed resource and communications apparatus

Publications (1)

Publication Number Publication Date
WO2022002258A1 true WO2022002258A1 (zh) 2022-01-06

Family

ID=79012526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104293 WO2022002258A1 (zh) 2020-07-03 2021-07-02 小区下行固定资源的发送方法及通信装置

Country Status (5)

Country Link
US (1) US20230138287A1 (zh)
EP (1) EP4164161A4 (zh)
JP (1) JP7451775B2 (zh)
CN (1) CN113891341B (zh)
WO (1) WO2022002258A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758804A (zh) * 2004-10-10 2006-04-12 中兴通讯股份有限公司 一种时分组网系统中扇区负载均衡的方法
CN102104873A (zh) * 2009-12-16 2011-06-22 中兴通讯股份有限公司 同频组网方法和基站
WO2013058571A1 (ko) * 2011-10-18 2013-04-25 엘지전자 주식회사 무선 통신 시스템에서 셀 간 간섭을 완화하는 방법 및 이를 위한 장치
CN110740017A (zh) * 2018-07-18 2020-01-31 中国移动通信有限公司研究院 同步信号块发送方法、装置及网络设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225190A1 (ja) 2017-06-07 2018-12-13 株式会社Nttドコモ ユーザ端末及びセルサーチ方法
CN111066357B (zh) * 2017-09-11 2023-05-05 中兴通讯股份有限公司 信息传输系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758804A (zh) * 2004-10-10 2006-04-12 中兴通讯股份有限公司 一种时分组网系统中扇区负载均衡的方法
CN102104873A (zh) * 2009-12-16 2011-06-22 中兴通讯股份有限公司 同频组网方法和基站
WO2013058571A1 (ko) * 2011-10-18 2013-04-25 엘지전자 주식회사 무선 통신 시스템에서 셀 간 간섭을 완화하는 방법 및 이를 위한 장치
CN110740017A (zh) * 2018-07-18 2020-01-31 中国移动通信有限公司研究院 同步信号块发送方法、装置及网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4164161A4

Also Published As

Publication number Publication date
CN113891341A (zh) 2022-01-04
JP7451775B2 (ja) 2024-03-18
US20230138287A1 (en) 2023-05-04
JP2023532100A (ja) 2023-07-26
EP4164161A1 (en) 2023-04-12
EP4164161A4 (en) 2023-12-06
CN113891341B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
EP3955678A1 (en) Data receiving and transmitting method and apparatus
US10880917B2 (en) TDD single Tx switched UL solution
US11109392B2 (en) Communication method, network device, and relay device
US20130223416A1 (en) Muting Data Transmissions
JP2022516804A (ja) リソース構成方法および装置
WO2019214487A1 (zh) 一种信号传输方法和装置
WO2022007623A1 (zh) 接入小区的方法和装置
WO2021052354A1 (zh) 减小接收底噪的方法、装置、计算机设备和可读存储介质
WO2021254482A1 (zh) 一种覆盖增强等级的确定方法及装置
WO2022002258A1 (zh) 小区下行固定资源的发送方法及通信装置
WO2019157903A1 (zh) 一种资源配置方法及装置
US11856539B2 (en) Method and device for transmitting downlink control information
WO2021032014A1 (zh) 一种小区配置的确定方法及装置
KR20230088901A (ko) 비주기적 채널 상태 정보 기준 신호(ap-csi-rs) 및 주기적 기준 신호(rs) 측정들 사이의 충돌들을 처리하기 위한 시스템들 및 방법들
US11758550B2 (en) Dynamic exchange of information specifying available spectrum
WO2023207633A1 (zh) 通信方法与装置
US20240080167A1 (en) Method for uplink transmission, terminal device, and network device
US20220174498A1 (en) Resource indication method and apparatus
WO2023065301A1 (en) Layer 1 measurements in concurrent measurement gaps
WO2023184101A1 (zh) 一种资源配置方法及其装置
EP4240091A1 (en) Communication method and apparatus
WO2023155205A1 (zh) 一种侧行链路干扰消除的方法及其装置
US20240023041A1 (en) Broadcast data communication method and apparatus, and device
EP4383593A1 (en) Communication method and communication apparatus
US20240008013A1 (en) Communication method and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581003

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021832377

Country of ref document: EP

Effective date: 20230103

NENP Non-entry into the national phase

Ref country code: DE