WO2022002136A1 - 一种以系统收益最优为目标的光伏系统优化设计方法 - Google Patents

一种以系统收益最优为目标的光伏系统优化设计方法 Download PDF

Info

Publication number
WO2022002136A1
WO2022002136A1 PCT/CN2021/103575 CN2021103575W WO2022002136A1 WO 2022002136 A1 WO2022002136 A1 WO 2022002136A1 CN 2021103575 W CN2021103575 W CN 2021103575W WO 2022002136 A1 WO2022002136 A1 WO 2022002136A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
combination
optimal
inclination angle
evaluation parameters
Prior art date
Application number
PCT/CN2021/103575
Other languages
English (en)
French (fr)
Inventor
范忠瑶
牟娟
易金印
李谦
宁洪涛
牛海峰
Original Assignee
中广核风电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核风电有限公司 filed Critical 中广核风电有限公司
Priority to CN202180035791.XA priority Critical patent/CN115956254A/zh
Priority to EP21834057.8A priority patent/EP4167152A4/en
Priority to CA3188315A priority patent/CA3188315A1/en
Priority to US18/013,576 priority patent/US20230289697A1/en
Publication of WO2022002136A1 publication Critical patent/WO2022002136A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/14Marketing, i.e. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards

Definitions

  • the invention relates to the technical field of solar power generation, in particular to a photovoltaic system optimization design method aiming at the optimal system benefit.
  • the first step is system design, that is, the design goal is to maximize the power generation, and some projects are designed with specific construction conditions.
  • the second step is to calculate the investment income of the project in combination with investment, operation and maintenance costs, etc. on the basis of the pre-order design. After the above two steps are completed, some projects will be adjusted and optimized between the two steps according to the requirements.
  • the investment return is not the greatest when the power generation is the largest.
  • the inclination angle of the maximum local power generation is 35°
  • the internal rate of return is the largest when the inclination angle is 25°, and higher returns can be obtained.
  • the purpose of the present invention is to provide a photovoltaic system optimization design method aiming at the optimal system benefit, so as to solve the aforementioned problems existing in the prior art.
  • a photovoltaic system optimization design method aiming at the optimal system benefit, the design method includes:
  • the inclination angle is used as the iterative variable to calculate the evaluation parameters and the optimal capacity ratio under each inclination angle of each combination method;
  • the combination of the system is composed of photovoltaic module type, inverter type, component arrangement, support tracking type and capacity ratio arrangement.
  • the evaluation parameters include the irradiation amount of the inclined plane, the power generation amount, the floor space of the power station and the cost of the system.
  • the capacity ratio is the component-inverter capacity ratio
  • the factors that need to be considered in the system revenue of the photovoltaic system include photovoltaic module type, inverter type, support tracking type, construction and installation-engineering-land-delivery costs, post-operation and maintenance costs, expense inflation and taxes.
  • the iterative step size of the inclination angle may be 1°.
  • the types of photovoltaic modules include monocrystalline silicon photovoltaic modules, polycrystalline silicon photovoltaic modules, double-glass and double-sided photovoltaic modules;
  • the types of inverters include centralized inverters, string inverters and distributed inverters ; Arrangement Consider the arrangement of different horizontal and vertical components in the array; the bracket tracking type includes fixed, fixed and adjustable and various tracking arrangements.
  • the present application provides an optimal design method for a photovoltaic system with the goal of optimizing system revenue.
  • the design method includes:
  • the evaluation parameters and the optimal capacity ratio at each inclination angle are obtained by the following methods: the inclination angle of the photovoltaic module is used as an iterative variable, and the evaluation under different inclination angles is calculated respectively. parameters and optimal capacity ratio;
  • the combination elements in the combination method include photovoltaic module type, inverter type, component arrangement, support tracking type and capacity ratio arrangement.
  • the evaluation parameters include the irradiance of the inclined plane, the power generation, the area of the power station and the cost of the system.
  • the capacity ratio is the module-inverter capacity ratio; the optimal capacity ratio for any combination is calculated as follows:
  • the factors that need to be considered in the system revenue include all or part of photovoltaic module type, inverter type, support tracking type, construction and installation-engineering-land-delivery costs, post-operation and maintenance costs, expense inflation and taxes.
  • the iterative step size of the inclination angle is 1°.
  • the types of photovoltaic modules include monocrystalline silicon photovoltaic modules, polycrystalline silicon photovoltaic modules, double-glass and double-sided photovoltaic modules;
  • the types of inverters include centralized inverters, string inverters and distributed inverters ; Arrangement considers the arrangement of different horizontal and vertical components in the array; the bracket tracking type includes fixed type and fixed adjustable type.
  • the design method can obtain the inclination angle and the capacity ratio corresponding to the optimal value of the system benefit through an enumeration method.
  • the embodiment of the present application also provides a photovoltaic system optimization design method aiming at the optimal system revenue.
  • the support tracking form of the photovoltaic system is vertical uniaxial, inclined uniaxial or flat-inclined uniaxial, and the design method includes:
  • the evaluation parameters under each inclination angle are obtained in the following ways: using the inclination angle as an iterative variable, the evaluation parameters under different inclination angles are calculated respectively; for the vertical uniaxial this The inclination angle is the inclination angle of the photovoltaic module, and the inclination angle is the inclination angle of the inclined axis for the inclined uniaxial or flat inclined uniaxial;
  • the combination elements in the combination method include the type of photovoltaic modules, the type of inverters, the arrangement of components and the type of bracket tracking.
  • the evaluation parameters include the irradiation amount, power generation amount, the area of the power station and the cost of the system in the form of bracket tracking.
  • the embodiment of the present application also provides a photovoltaic system optimization design method aiming at the optimal system revenue.
  • the support tracking forms of the photovoltaic system are horizontal single-axis and various dual-axis tracking types, and the design method includes:
  • the combination elements in the combination method include the type of photovoltaic modules, the type of inverters, the arrangement of components and the type of bracket tracking.
  • the evaluation parameters include the irradiation amount, power generation amount, the area of the power station and the cost of the system in the form of bracket tracking.
  • the optimization design goal is the system investment income, and one-stop automatic optimization of all the main system design parameters including component type, inverter type, arrangement method, bracket tracking type, etc. has been realized; 2.
  • the optimized design parameters not only include components , inverter, system layout, bracket inclination, etc., and also includes automatic optimization of component-inverter capacity ratio; 3.
  • the use of appropriate optimization algorithms can greatly improve the optimization efficiency while ensuring the optimization effect.
  • the optimization results show that, compared with the traditional design method aiming at power generation, the optimization design method aiming at system revenue such as Internal Rate of Return (IRR, Internal Rate of Return) can achieve a revenue increase of more than 1.06%, and the light The worse the resources, the more significant the improvement effect is.
  • This design method is very important to further reduce the cost of electricity and improve the operating income under the background of the current photovoltaic flat bidding project.
  • FIG. 1 is a schematic diagram of an optimized design method in an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for designing a photovoltaic system according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another method for designing a photovoltaic system provided by an embodiment of the present invention.
  • FIG. 4 is a flowchart of another method for designing a photovoltaic system provided by an embodiment of the present invention.
  • FIG. 1 this figure is a schematic diagram of an optimized design method in an embodiment of the present invention.
  • the inclination angle is used as the iterative variable to calculate the evaluation parameters and the optimal capacity ratio under each inclination angle of each combination method;
  • FIG. 2 is a flowchart of a method for designing a photovoltaic system according to an embodiment of the present application.
  • This embodiment provides a photovoltaic system optimization design method aiming at the optimal system benefit, and the design method includes:
  • the evaluation parameters and the optimal capacity ratio at each inclination angle are obtained by the following methods: the inclination angle of the photovoltaic module is used as an iterative variable, and the evaluation under different inclination angles is calculated respectively. parameters and optimal capacity ratio;
  • the system can be combined in a variety of ways, mainly composed of photovoltaic module types, inverter types, component arrangement methods, and support tracking types;
  • the types of photovoltaic modules include monocrystalline silicon photovoltaic modules, polycrystalline silicon photovoltaic modules, dual Glass and double-sided photovoltaic modules;
  • the types of inverters include centralized inverters, string inverters and distributed inverters;
  • the arrangement method considers the arrangement of different horizontal and vertical components in the array, such as Vertical one, vertical two, horizontal two, horizontal four, etc.;
  • the bracket tracking type includes fixed type, fixed adjustable type and tracking type arrangement under various degrees of freedom.
  • the evaluation parameters specifically include the irradiance of the inclined plane, the power generation, the area of the power station and the cost of the system.
  • the execution flow of the optimized design method is:
  • the maximum range of the iterative inclination angle may be 0-90°, or 5-55°, or the iterative range of the inclination angle may be set and optimized according to the actual situation of the project.
  • the initial value of the inclination angle iteration can start from the minimum value within the iteration range; the iterative step size of the inclination angle can be set according to actual needs, for example, it is set to 1°, that is, the installation inclination angle of the photovoltaic module is used as the iteration variable, and the inclination angle here refers to the photovoltaic module. the inclination to the ground.
  • the final photovoltaic system design scheme is obtained through cyclic iteration involving variables such as module type, inverter type, arrangement method, support tracking type, capacity ratio, system cost, financial cost, and operation and maintenance cost under different inclination angles.
  • the evaluation parameter calculation in step S1 includes:
  • the irradiation amount of the inclined plane received by the photovoltaic module is the sum of the direct irradiation of the inclined plane, the scattering of the inclined plane and the ground reflection.
  • the G function is defined as follows,
  • H is the total irradiance on the horizontal plane
  • H bt is the direct irradiation on the inclined plane
  • H i and H d are the monthly total irradiance on the horizontal plane and the monthly scattered irradiance on the horizontal plane
  • is the installation inclination angle of photovoltaic modules
  • is the installation azimuth angle of photovoltaic modules
  • ⁇ s is the sunset angle on the horizontal plane, and the available formula
  • the positive is the sunset time angle
  • the negative is the sunrise time angle
  • ⁇ sr is the sunrise time angle of the inclined plane
  • ⁇ ss is the sunset time angle of the inclined plane
  • is the sun declination angle
  • the slope scattering is calculated as follows:
  • H dt is the scattering on the inclined plane
  • ⁇ ' s is the sunset angle on the inclined plane, which can be obtained by using the formula ask for
  • the ground reflection is calculated as follows:
  • H rt is the ground reflection
  • is the surface reflectivity
  • the value is different for different surface types
  • H t is the irradiance of the inclined plane.
  • step S12 is specifically as follows: the calculation of the power generation on the surface of the photovoltaic module is as follows:
  • E is a photovoltaic power generation system component surface
  • P is the total installed capacity of photovoltaic panels
  • [eta] is the efficiency of the system
  • the system efficiency ⁇ is determined according to the type of photovoltaic modules, the type of inverter and the actual conditions of the project location. Different photovoltaic modules and inverter types are selected, and the system efficiency is different, which in turn can obtain different power generation.
  • step S13 is specifically as follows: when the photovoltaic modules of the photovoltaic system are installed facing south, only the north-south spacing of the modules needs to be considered in the calculation of the total area of the power station, and the distance between the modules in the front and rear rows on the winter solstice is from 9:00 a.m. to 15:00 p.m. No occlusion is the calculation basis, and only for fixed and fixed adjustable support arrangements, the total area of the photovoltaic system is calculated as follows:
  • S is the total area of the photovoltaic system
  • is the sun elevation angle
  • (L 1 , L 2 ) is the square array size under the module installation method
  • the module installation method can consider three types of fixed inclination angle, adjustable inclination angle, and automatic tracking. It is an installation method, in which the fixed and adjustable inclination angle installation adopts the annual maximum installation inclination angle to calculate the component spacing and the footprint of the photovoltaic system.
  • the fixed and adjustable inclination angle optimization scheme is realized by the enumeration method. That is, by comparing the power generation under the same inclination adjustment times and after combining the inclination angles of different components, the inclination angle combination scheme with the maximum power generation under the corresponding adjustment times is obtained. For example, when the adjustment times of the fixed adjustable inclination scheme involved in this optimization combination is 2, by listing all the combination schemes of different inclination angles in different months when the inclination angle is adjusted twice a year, the inclination angle combination scheme with the largest annual power generation is obtained. Save this plan as the angle plan for the two inclination arrangements this year.
  • step S14 is specifically as follows: the factors that need to be considered in the calculation of the construction cost and investment income of the photovoltaic system include photovoltaic module type, inverter type, support tracking type, construction and installation-engineering-land-delivery cost, post-operation and maintenance cost, Fee inflation and taxes.
  • the optimal capacity ratio corresponding to each inclination angle of the photovoltaic system in this combination is obtained, which specifically includes:
  • P is the actual output power of the photovoltaic module under any irradiation and temperature
  • P stc is the rated output power of the photovoltaic module
  • T stc is the working temperature of the photovoltaic module in the standard state, which is 25°C
  • k is the photovoltaic module The power temperature coefficient of the module
  • G' is the actual irradiance (unit: W/m 2 )
  • T c is the actual working temperature of the photovoltaic module, which can be calculated from the formula Calculated
  • T air is the ambient temperature
  • T cN is the PV module temperature under NOCT conditions, the value is 273+45 ⁇ 2 (unit: K);
  • T aN is the ambient temperature under NOCT conditions, the value is 273+20 (unit: K) )
  • G TN is the irradiance on the surface of the photovoltaic module under NOCT conditions, with a value of 800 (unit: W/m 2 );
  • ⁇ 1 is the conversion efficiency
  • Theoretical output power INT( ⁇ *10 6 /P stc )*P* ⁇ /1000000
  • is the rated output power of the inverter, if the theoretical output power ⁇ ⁇ , the actual output power is equal to the theoretical output power value; if the theoretical output power ⁇ ⁇ , the actual output power is equal to ⁇ ;
  • the theoretical output power of the inverter INT(1000000/Pstc)*P* ⁇ /1000000, and the actual output power is:
  • Light rejection rate [(theoretical output power-actual output power)/theoretical output power]*100%.
  • the light rejection rate is an important physical quantity in the design of the capacity ratio, which reflects the system performance parameters under the optimal capacity ratio of the photovoltaic module-inverter.
  • the iteration step size in step S1 may be 1°, and each iteration can obtain the corresponding inclination angle and the optimal system return value (such as the internal rate of return IRR) corresponding to the inclination angle.
  • the iterative step size of the inclination angle can be other values than 1, which is not specifically limited here. The smaller the iterative step size of the inclination angle, the more accurate the final result. Balance between precision.
  • the invention provides a photovoltaic system optimization design method aiming at the optimal system benefit.
  • the design method takes the whole life cycle of the photovoltaic system as the optimized design object, and takes the system benefit that the investment operator cares most about as the system optimization design goal.
  • all the main indicators affecting the early construction and later operation of the photovoltaic system will be put into automatic Search for optimization in order to obtain the optimal design scheme and improve the revenue of the photovoltaic system; the actual calculation results show that, compared with the traditional design method aiming at power generation, the optimal design method aiming at system revenue (such as internal rate of return (IRR))
  • IRR internal rate of return
  • the revenue can be increased by more than 1.06%, and the improvement effect is more significant in areas with poorer light resources.
  • This design method is very important to further reduce the cost of electricity and improve the operating income under the background of the current photovoltaic flat bidding project.
  • the implementation method described above is a photovoltaic system design scheme when the support tracking form is fixed or fixed and adjustable.
  • the following describes the design method of the support tracking form of vertical uniaxial, inclined uniaxial tilted uniaxial or horizontal inclined uniaxial.
  • this figure is a flowchart of another method for designing a photovoltaic system provided by an embodiment of the present invention.
  • the evaluation parameters at each inclination angle are obtained in the following manner: the inclination angle is used as an iterative variable, and the evaluation parameters under different inclination angles are calculated respectively.
  • the inclination angle is the inclination angle of the photovoltaic module, and the inclination angle is the inclination angle of the inclined axis for the inclined uniaxial or flat inclined uniaxial;
  • the combination elements in the combination method include photovoltaic module type, inverter type, component arrangement and support tracking type.
  • the evaluation parameters include the irradiation amount, power generation amount, the area of the power station and the cost of the system in the form of bracket tracking.
  • the design method provided by the above embodiment only considers the evaluation parameters when obtaining system benefits, and in addition to the evaluation parameters, the optimal capacity ratio may also be considered. Details are given below.
  • the evaluation parameters and the optimal capacity ratio under each inclination angle can be obtained by the following methods: using the inclination angle as the iterative variable, the evaluation parameters and the optimal capacity ratio under different inclination angles are calculated respectively. Excellent capacity ratio;
  • the system benefit of each combination mode is calculated, and the inclination angle and capacity ratio corresponding to the optimal value of the system benefit of each combination mode are determined.
  • this figure is a flowchart of another method for designing a photovoltaic system according to an embodiment of the present invention.
  • the support tracking form of the photovoltaic system is horizontal single-axis or various dual-axis tracking types, wherein the dual-axis tracking type at least includes horizontal dual-axis, T-type tracking Dual-axis or polar-axis dual-axis, it should be understood that the dual-axis tracking type can also include other types, which will not be repeated here.
  • the design method includes:
  • the combination elements in the combination method include photovoltaic module type, inverter type, component arrangement and support tracking type.
  • the evaluation parameters include the irradiation amount, power generation amount, the area of the power station and the cost of the system in the form of bracket tracking.
  • the design method provided by the above embodiment only considers the evaluation parameters when obtaining system benefits, and in addition to the evaluation parameters, the optimal capacity ratio may also be considered. Details are given below.
  • the obtaining of the evaluation parameters and the optimal capacity ratio of each combination of the multiple combinations of the photovoltaic system design respectively includes: respectively obtaining the evaluation parameters and the optimal capacity of each combination of the multiple combinations of the photovoltaic system design. ratio;

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Water Supply & Treatment (AREA)
  • Quality & Reliability (AREA)
  • Public Health (AREA)
  • Operations Research (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Power Engineering (AREA)
  • Educational Administration (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种以系统收益最优为目标的光伏系统优化设计方法,包括,如何选定光伏组件类型、逆变器型式、组件排布方式、支架跟踪型式以及组件-逆变器容配比数值以实现光伏系统收益最优,其中:系统各设备和参数的选型是在全部上述组合方式下,以倾角作为迭代变量,以系统收益作为优化设计目标,通过优化迭代后求得的。该方法的优点是:将光伏系统收益作为优化设计目标,综合考虑了系统组件类型、逆变器形式、组件排布和跟踪类型、容配比、土地成本以及电站运维成本等对光伏系统收益的影响,从而获得最优光伏系统设计方案。

Description

一种以系统收益最优为目标的光伏系统优化设计方法
本申请要求于2020年07月01日提交中国国家知识产权局的申请号为202010623222.4、申请名称为“一种以系统收益最优为目标的光伏系统优化设计方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及太阳能发电技术领域,尤其涉及一种以系统收益最优为目标的光伏系统优化设计方法。
背景技术
目前,常见的光伏系统设计通常分为两步。第一步为系统设计,即主要以发电量最大为设计目标、部分项目结合具体建设条件进行各参数设计。第二步,在前序设计的基础上结合投资、运维成本等计算项目的投资收益。以上两步完成后,部分项目会根据要求在两个步骤间进行调整优化。
然而,多个算例显示,发电量最大时投资收益并非最大。如,以某项目为例,当地发电量最大的倾角为35°,而倾角25°时内部收益率最大,可以获得更高收益。
因此,需要一种能够以光伏系统全生命周期为优化设计对象,以投资运营商最关心的电站收益作为系统优化设计目标,将影响光伏系统前期建设和后期运营的全部主要指标投入自动寻优,以实现系统设计全部主要参数自动优化的设计方法。
发明内容
本发明的目的在于提供一种以系统收益最优为目标的光伏系统优化设计方法,从而解决现有技术中存在的前述问题。
为了实现上述目的,本发明采用的技术方案如下:
一种以系统收益最优为目标的光伏系统优化设计方法,所述设计方法包括,
S1、针对系统设计的多种组合方式,以倾角作为迭代变量,分别计算各组合方式的各个倾角下的评价参数及最优容配比;
S2、分别确定各组合方式的系统收益最佳的倾角及其对应的光伏系统设计方案,以计算各个组合方式的系统收益;
S3、比较各种组合方式下光伏系统设计方案的最优系统收益值,从而确定最终的光伏系统设计方案。
优选的,系统的组合方式由光伏组件类型、逆变器类型、组件排布方式、支架跟踪型式和容配比布置方式构成。
优选的,所述评价参数包括倾斜面辐照量、发电量、电站的占地面积和系统造价。
优选的,所述容配比为组件-逆变器容配比;
各种组合方式的最优容配比计算如下,
A、计算该种组合方式的光伏组件在任意辐照、任意温度下的实际输出功率;
B、计算该种组合方式的逆变器的实际输出功率,利用逆变器的额定输出功率计算逆变器的实际输出功率;
C、以系统收益为目标,分别计算该种组合方式的光伏系统下不同容配比对应的系统收益值,对比后确定该种组合方式的最优容配比;
优选的,光伏系统的系统收益需要考虑的因素有光伏组件类型、逆变器类型、支架跟踪类型、建安-工程-土地-送出费用、后期运维成本、费用通胀和税款。
优选的,所述倾角的迭代步长可以为1°。
优选的,光伏组件的类型有单晶硅光伏组件、多晶硅光伏组件、双玻和双面光伏组件;逆变器的类型有集中式逆变器、组串式逆变器和集散式逆变器;排布方式考虑阵列中不同横排、竖排组件的布置方式;支架跟踪型式有固定式、固定可调式和各种跟踪式布置方式。
本申请提供一种以系统收益最优为目标的光伏系统优化设计方法,光伏系统的支架跟踪形式为固定式或固定可调式时,设计方法包括:
S1、针对光伏系统设计的多种组合方式中的任意一种组合方式均通过以下方式获得各个倾角下的评价参数及最优容配比:以光伏组件倾角作为迭代变量,分别计算不同倾角下的评价参数及最优容配比;
S2、根据每种组合方式在不同倾角下的评价参数及最优容配比,计算各个组合方式的系统收益,确定每种组合方式的系统收益最佳值对应的倾角和容配比;
S3、比较各种组合方式下的系统收益最佳值,选择系统收益最佳值最大的组合方式及该组合方式对应的倾角和容配比作为最终的光伏系统设计方案。
优选地,所述组合方式中的组合要素包括光伏组件类型、逆变器类型、组件排布方式、支架跟踪型式和容配比布置方式。
评价参数包括倾斜面辐照量、发电量、电站的占地面积和系统造价。
容配比为组件-逆变器容配比;任意一种组合方式的最优容配比计算如下,
A、计算该种组合方式的光伏组件在任意辐照、任意温度下的实际输出功率;
B、计算该种组合方式的逆变器的实际输出功率,所述逆变器的实际输出功率通过逆变器的额定输出功率限定计算;
C、以系统收益为目标,分别计算该种组合方式的光伏系统在不同容配比时对应的系统收益值,对比后确定该种组合方式的最优容配比。
优选地,所述系统收益需要考虑的因素包括光伏组件类型、逆变器类型、支架跟踪类型、建安-工程-土地-送出费用、后期运维成本、费用通胀和税款中的全部或部分。
优选地,所述倾角的迭代步长为1°。
优选地,光伏组件的类型包括单晶硅光伏组件、多晶硅光伏组件、双玻和双面光伏组件;逆变器的类型包括集中式逆变器、组串式逆变器和集散式逆变器;排布方式考虑阵列中不同横排、竖排组件的布置方式;支架跟踪型式包括固定式和固定可调式。
优选地,所述支架跟踪形式为固定可调式时,所述设计方法可以通过枚举法获得系统收益最佳值对应的倾角和容配比。
本申请实施例还提供一种以系统收益最优为目标的光伏系统优化设计方法,光伏系统的支架跟踪形式为垂直单轴、倾斜单轴或平斜单轴,所述设计方法包括:
S1、针对光伏系统设计的多种组合方式中的任意一种组合方式均通过以下方式获得各个倾角下的评价参数:以倾角作为迭代变量,分别计算不同倾角下的评价参数;对于垂直单轴该倾角为光伏组件倾角、对于倾斜单轴或平斜单轴该倾角为倾斜轴倾角;
S2、根据每种组合方式在不同倾角下的评价参数,计算各个组合方式的系统收益,确定每种组合方式的系统收益最佳值对应的倾角;
S3、比较各种组合方式下的系统收益最佳值,选择系统收益最佳值最大的组合方式及该组合方式对应的倾角作为最终的光伏系统设计方案。
组合方式中的组合要素包括光伏组件类型、逆变器类型、组件排布方式和支架跟踪型式。评价参数包括对应支架跟踪形式的辐照量、发电量、电站的占地面积和系统造价。
本申请实施例还提供一种以系统收益最优为目标的光伏系统优化设计方法,光伏系统的支架跟踪形式为水平单轴、各种双轴跟踪式,所述设计方法包括:
S1、分别获得光伏系统设计的多种组合方式中每种组合方式的评价参数;
S2、根据每种组合方式的评价参数,计算各个组合方式的系统收益;
S3、比较各种组合方式下的系统收益,选择系统收益最大的组合方式作为最终的光伏系统设计方案。
组合方式中的组合要素包括光伏组件类型、逆变器类型、组件排布方式和支架跟踪型式。评价参数包括对应支架跟踪形式的辐照量、发电量、电站的占地面积和系统造价。
与现有技术相比,本发明提供的技术方案带来的有益效果为:
1、优化设计目标为系统投资收益,实现了包含组件类型、逆变器型式、排布方式、支架跟踪型式等全部主要系统设计参数的一站式自动寻优;2、优化设计参数不仅包含组件、逆变器、系统排布、支架倾角等,还包括组件-逆变器容配比的自动寻优;3、采用适当的优化算法,可以在保证优化效果的同时大幅提升优化效率。4、优化结果显示,与传统以发电量为目标的设计方法相比,以系统收益如内部收益率(IRR,Internal Rate of Return)为目标的优化设计方法可以实现收益提升1.06%以上,而且光资源越差的地区提升效果越显著,该设计方法在当前光伏平竞价项目背景下对于进一步降低度电成本、提高运营收益非常重要。
附图说明
图1是本发明实施例中优化设计方法的原理图;
图2是本发明实施例提供的一种光伏系统的设计方法的流程图;
图3是本发明实施例提供的又一种光伏系统的设计方法的流程图;
图4是本发明实施例提供的另一种光伏系统的设计方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。
参见图1,该图为本发明实施例中优化设计方法的原理图。
S1、针对系统设计的多种组合方式,以倾角作为迭代变量,分别计算各组合方式的各个倾角下的评价参数及最优容配比;
S2、获取各个组合方式的系统收益,以分别确定各组合方式的系统收益最佳的倾角及其对应的光伏系统设计方案;
S3、比较各种组合方式下光伏系统设计方案的最优系统收益值,从而确定最终的光伏系统设计方案。
参见图2,该图为本申请实施例提供的一种光伏系统的设计方法的流程图。
本实施例中提供了一种以系统收益最优为目标的光伏系统优化设计方法,所述设计方法包括:
S10、针对光伏系统设计的多种组合方式中的任意一种组合方式均通过以下方式获得各个倾角下的评价参数及最优容配比:以光伏组件倾角作为迭代变量,分别计算不同倾角下的评价参数及最优容配比;
S20、根据每种组合方式在不同倾角下的评价参数及最优容配比,计算各个组合方式的系统收益,确定每种组合方式的系统收益最佳值对应的倾角和容配比;
S30、比较各种组合方式下的系统收益最佳值,选择系统收益最佳值最大的组合方式及该组合方式对应的倾角和容配比作为最终的光伏系统设计方案。
本实施例中,系统的组合方式包括多种,主要由光伏组件类型、逆变器类型、组件排布方式和支架跟踪型式构成;光伏组件的类型有单晶硅光伏组件、多晶硅光伏组件、双玻和双面光伏组件;逆变器的类型有集中式逆变器、组串式逆变器和集散式逆变器;排布方式考虑阵列中不同横排、竖排组件的布置方式,如竖一、竖二、横二、横四等;支架跟踪型式有固定式、固定可调式和各种自由度下的跟踪式布置方式。通过改变其中的光伏组件类型和/或逆变器类型和/或组件排布方式和/或支架跟踪型式,可以构成多种系统的组合方式。评价参数具体包括倾斜面辐照量、发电量、电站的占地面积和系统造价。
本实施例中,优化设计方法的执行流程为:
1、选定一种光伏系统的组合方式,例如组合方式包括光伏组件类型、逆变器类型、组件排布方式和支架跟踪型式的系统组合方式,以倾角作为迭代变量,计算求得该组合方式下在各个倾角下的倾斜面辐照量、发电量、占地面积和系统造价,以及该组合方式在对应倾角下的光伏系统的最优组件-逆变器容配比;
2、将系统收益(如内部收益率IRR)作为优化目标,比较求得此种系统 组合方式下系统收益最佳的倾角和对应的光伏系统设计方案;
3、改变系统组合方式,求得不同组合方式下光伏系统的最优系统收益值,重复前两步,直至遍历全部组合方式;
4、比较各组合方案下的最优系统收益值,从而确定最终的光伏系统设计方案。
本实施例中,迭代倾角的范围最大可以为0-90°,也可以为5-55°,或根据项目实际情况设置和优化倾角的迭代范围。倾角迭代的初值可从迭代范围内的最小值开始;倾角的迭代步长可以根据实际需要设置,例如设置为1°,即以光伏组件安装倾角为迭代变量,此处的倾角是指光伏组件与地面之间的倾角。通过不同倾角下涉及组件类型、逆变器型式、排布方式、支架跟踪型式、容配比、系统造价、财务成本、运维费用等变量的循环迭代,求得最终的光伏系统设计方案。
本实施例中,步骤S1中的评价参数计算包括:
S11、计算各组合方式的光伏组件接收的倾斜面辐照量;
S12、计算各组合方式的光伏系统的发电量;
S13、计算各组合方式的光伏系统的总占地面积;
S14、计算各组合方式的光伏系统的造价和投资收益;
S15、计算各组合方式的光伏系统的组件-逆变器最佳容配比;
S16、给倾角迭代增加一个步长,获取各个倾角下最优的系统收益值(如内部收益率IRR)和最优容配比。
本实施例中,步骤S11中,光伏组件接收的倾斜面辐照量为斜面直接辐照、斜面散射和地面反射之和。
所述斜面直接辐照计算如下:
H bt=DH
其中,
Figure PCTCN2021103575-appb-000001
Figure PCTCN2021103575-appb-000002
Figure PCTCN2021103575-appb-000003
Figure PCTCN2021103575-appb-000004
Figure PCTCN2021103575-appb-000005
G函数定义如下,
Figure PCTCN2021103575-appb-000006
定义以下参数,
Figure PCTCN2021103575-appb-000007
p i=0.409+0.5016sin(ω s-60),
Figure PCTCN2021103575-appb-000008
Figure PCTCN2021103575-appb-000009
B i=cosω s cosβ+tanδsinβcosγ,
Figure PCTCN2021103575-appb-000010
其中,H为水平面总辐照量;H bt为斜面直接辐照;H i和H d分别为水平面 上各月总辐照量和水平面上各月散射辐照量;
Figure PCTCN2021103575-appb-000011
为地理纬度;β为光伏组件安装倾角;γ为光伏组件安装方位角;ω s为水平面上日落时角,可利用式
Figure PCTCN2021103575-appb-000012
求出,正为日落时角,负为日出时角;ω sr为倾斜面日出时角;ω ss为倾斜面日落时角;δ为太阳赤纬角;
所述斜面散射计算如下:
Figure PCTCN2021103575-appb-000013
Figure PCTCN2021103575-appb-000014
其中,H dt为斜面散射;ω' s为倾斜面上日落时角,可利用式
Figure PCTCN2021103575-appb-000015
求出;
所述地面反射计算如下:
H rt=0.5ρH(1-cosβ)
其中,H rt为地面反射,ρ为地表反射率,不同地表类型取值不同;
因此,所述倾斜面辐照量计算为:
H t=H bt+H dt+H rt
其中,H t为倾斜面辐照量。
本实施例中,步骤S12具体为,光伏组件表面的发电量计算如下,
E=P×H t×η/G stc
其中,E为光伏系统的组件表面的发电量;P为光伏电池板总安装容量;η为系统效率;G stc为标准状态下总辐照量,取值为1000W/m 2。其中,系统效率η根据光伏组件的类型和逆变器的类型及项目所在地实际条件确定。选择不同的光伏组件和逆变器类型,系统效率不同,进而可以获得不同的发电量。
本实施例中,步骤S13具体为,当光伏系统的光伏组件朝南安装时,电站总占地面积计算仅需考虑组件南北向间距,并以冬至日上午9时至下午15时前后排组件间不遮挡为计算依据,仅针对固定式和固定可调式支架布置方式,所述光伏系统的总占地面积计算如下,
S=(L 1*cosβ+L 1*sinβcosγ/tanα)*L 2
其中,S为光伏系统的总占地面积,α为太阳高度角;(L 1,L 2)为组件安装方式下的方阵尺寸;组件安装方式可以考虑固定倾角、可调倾角、自动跟踪三种安装方式,其中,固定可调倾角安装采用年最大安装倾角计算组件间距和光伏系统的占地面积。
其中,固定可调倾角优化方案通过枚举法实现。即,通过比较相同倾角调节次数下、不同组件倾角组合后的发电量,求取对应调节次数下发电量最大的倾角组合方案。如,本次寻优组合涉及的固定可调倾角方案调节次数为2时,通过列举一年调整2次倾角时、不同月份不同倾角的全部组合方案,求得年发电量最大的倾角组合方案,保存该方案作为本次一年2种倾角布置方式的角度方案。
本实施例中,步骤S14具体为,光伏系统的造价和投资收益计算需要考虑的因素有光伏组件类型、逆变器类型、支架跟踪类型、建安-工程-土地-送出费用、后期运维成本、费用通胀和税款。
本实施例中,通过计算光伏组件在项目气象环境条件和不同容配比组合下的实际输出功率,求得该组合方式的光伏系统下各个倾角对应的最佳容配比,具体包括,
A、计算光伏组件在任意辐照、任意温度下的实际输出功率,
Figure PCTCN2021103575-appb-000016
其中,P为光伏组件在任意辐照、任意温度下的实际输出功率;P stc为光伏组件的额定输出功率;T stc为标准状态下光伏组件的工作温度,取值为25℃;k 为光伏组件的功率温度系数;G'为实际辐照度(单位:W/m 2);T c为光伏组件的实际工作温度,可由式
Figure PCTCN2021103575-appb-000017
计算获得,T air为环境温度,T cN为NOCT条件下光伏组件温度,取值273+45±2(单位:K);T aN为NOCT条件下环境温度,取值273+20(单位:K);G TN为NOCT条件下光伏组件表面的辐照量,取值800(单位:W/m 2);η1为光伏组件转化效率;τβ为常数,取值0.9;
B、计算逆变器的实际输出功率,利用逆变器的额定输出功率计算逆变器的实际输出功率;
理论输出功率=INT(θ*10 6/P stc)*P*η/1000000
其中,θ为逆变器的额定输出功率,若理论输出功率<θ时,实际输出功率就等于理论输出功率值;若理论输出功率≥θ时,实际输出功率就等于θ;
举例说明对于逆变器实际输出功率的计算,其基本思路:
以逆变器的额定输出功率为1MW为例,在光伏组件超配时,逆变器的理论输出功率=INT(1000000/Pstc)*P*η/1000000,实际输出功率为:
当理论输出功率<1MW时,实际输出功率就等于理论输出功率值;
当理论输出功率≥1MW时,实际输出功率就等于1MW。
C、以系统收益为目标,计算该组合方式的光伏系统下不同容配比对应的系统收益值,对比后确定最佳容配比;
D、计算弃光率,
弃光率=[(理论输出功率-实际输出功率)/理论输出功率]*100%。
弃光率是容配比设计的一个重要物理量,反映光伏组件-逆变器最佳容配比下的系统性能参数。
本实施例中,步骤S1中的迭代步长可以为1°,每次迭代都能获取对应倾角 和该倾角对应的最优系统收益值(如内部收益率IRR)。可以理解的是,倾角的迭代步长可以为1以外的其他数值,在此不做具体限定,倾角的迭代步长越小,则最终的结果越精确,本领域技术人员可以在迭代速度和结果精确之间进行平衡。
通过采用本发明公开的上述技术方案,得到了如下有益的效果:
本发明提供了一种以系统收益最优为目标的光伏系统优化设计方法,该设计方法以光伏系统全生命周期为优化设计对象,以投资运营商最关心的系统收益作为系统优化设计目标,综合考虑系统设备类型、组件安装方式、组件/逆变器容配比、土地成本和后期运维成本等各个环节对光伏系统收益的影响,将影响光伏系统前期建设和后期运营的全部主要指标投入自动寻优,以便得出最优设计方案并提高光伏系统收益;实际计算结果显示,与传统以发电量为目标的设计方法相比,以系统收益(如内部收益率IRR)为目标的优化设计方法可以实现收益提升1.06%以上,而且光资源越差的地区提升效果越显著,该设计方法在当前光伏平竞价项目背景下对于进一步降低度电成本、提高运营收益非常重要。
以上介绍的实现方式是以支架跟踪形式为固定式或固定可调式时的光伏系统设计方案,下面介绍支架跟踪形式为垂直单轴、斜单轴倾斜单轴或平斜单轴的设计方法。
参见图3,该图为本发明实施例提供的又一种光伏系统的设计方法的流程图。
本实施例提供的以系统收益最优为目标的光伏系统优化设计方法,其中,光伏系统的支架跟踪形式为垂直单轴、倾斜单轴或平斜单轴,设计方法包括:
S21、针对光伏系统设计的多种组合方式中的任意一种组合方式均通过以下方式获得各个倾角下的评价参数:以倾角作为迭代变量,分别计算不同倾角下的评价参数,对于垂直单轴该倾角为光伏组件倾角、对于倾斜单轴或平斜单轴该倾角为倾斜轴倾角;
S22、根据每种组合方式在不同倾角下的评价参数,获取各个组合方式的系统收益,确定每种组合方式的系统收益最佳值对应的倾角;
S23、比较各种组合方式下的系统收益最佳值,选择系统收益最佳值最大的组合方式及该组合方式对应的倾角作为最终的光伏系统设计方案。
其中,组合方式中的组合要素包括光伏组件类型、逆变器类型、组件排布方式和支架跟踪型式。评价参数包括对应支架跟踪形式的辐照量、发电量、电站的占地面积和系统造价。
以上实施例提供的设计方法在获得系统收益时仅考虑了评价参数,除了评价参数以外,还可以考虑最优容配比。下面进行详细介绍。
即针对光伏系统设计的多种组合方式中的任意一种组合方式均通过以下方式获得各个倾角下的评价参数及最优容配比:以倾角作为迭代变量,分别计算不同倾角下的评价参数及最优容配比;
根据每种组合方式在不同倾角下的评价参数及最优容配比,计算各个组合方式的系统收益,确定每种组合方式的系统收益最佳值对应的倾角和容配比。
比较各种组合方式下的系统收益最佳值,选择系统收益最佳值最大的组合方式及该组合方式对应的倾角和容配比作为最终的光伏系统设计方案。
下面介绍本申请实施例提供的设计方法应用在支架跟踪形式为水平单轴、各种双轴跟踪式的实现形式。
参见图4,该图为本发明实施例提供的另一种光伏系统的设计方法的流程图。
本实施例提供的以系统收益最优为目标的光伏系统优化设计方法,光伏系统的支架跟踪形式为水平单轴或各种双轴跟踪式,其中双轴跟踪式至少包括水平双轴、T型双轴或极轴双轴,应该理解双轴跟踪式还可以包括其他类型,在此不再一一赘述,所述设计方法包括:
S31、分别获得光伏系统设计的多种组合方式中每种组合方式的评价参数;
S32、根据每种组合方式的评价参数,计算各个组合方式的系统收益;
S33、比较各种组合方式下的系统收益,选择系统收益最大的组合方式作为最终的光伏系统设计方案。
其中,组合方式中的组合要素包括光伏组件类型、逆变器类型、组件排布方式和支架跟踪型式。评价参数包括对应支架跟踪形式的辐照量、发电量、电站的占地面积和系统造价。
以上实施例提供的设计方法在获得系统收益时仅考虑了评价参数,除了评价参数以外,还可以考虑最优容配比。下面进行详细介绍。
所述分别获得光伏系统设计的多种组合方式中每种组合方式的评价参数和最优容配比,具体包括:分别获得光伏系统设计的多种组合方式中每种组合方式的评价参数及最优容配比;
根据每种组合方式的评价参数及最优容配比,计算各个组合方式的系统收益,确定每种组合方式的系统收益最佳值对应的容配比。
比较各种组合方式下的系统收益最佳值,选择系统收益最佳值最大的组合方式及该组合方式对应容配比作为最终的光伏系统设计方案。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视本发明的保护范围。

Claims (14)

  1. 一种以系统收益最优为目标的光伏系统优化设计方法,其特征在于,光伏系统的支架跟踪形式为固定式或固定可调式时,所述设计方法包括:
    S1、针对光伏系统设计的多种组合方式中的任意一种组合方式均通过以下方式获得各个倾角下的评价参数及最优容配比:以光伏组件倾角作为迭代变量,分别计算不同倾角下的评价参数及最优容配比;
    S2、根据每种组合方式在不同倾角下的评价参数及最优容配比,计算各个组合方式的系统收益,确定每种组合方式的系统收益最佳值对应的倾角和容配比;
    S3、比较各种组合方式下的系统收益最佳值,选择系统收益最佳值最大的组合方式及该组合方式对应的倾角和容配比作为最终的光伏系统设计方案。
  2. 根据权利要求1所述的以系统收益最优为目标的光伏系统优化设计方法,其特征在于,所述组合方式中的组合要素包括光伏组件类型、逆变器类型、组件排布方式、支架跟踪型式和容配比布置方式。
  3. 根据权利要求1所述的以系统收益最优为目标的光伏系统优化设计方法,其特征在于,所述评价参数包括倾斜面辐照量、发电量、电站的占地面积和系统造价。
  4. 根据权利要求1所述的以系统收益最优为目标的光伏系统优化设计方法,其特征在于,所述容配比为组件-逆变器容配比;任意一种组合方式的最优容配比计算如下,
    A、计算该种组合方式的光伏组件在任意辐照、任意温度下的实际输出功率;
    B、计算该种组合方式的逆变器的实际输出功率,所述逆变器的实际输出功率通过逆变器的额定输出功率限定计算;
    C、以系统收益为目标,分别计算该种组合方式的光伏系统在不同容配比时对应的系统收益值,对比后确定该种组合方式的最优容配比。
  5. 根据权利要求3所述的以系统收益最优为目标的光伏系统优化设计方法,其特征在于,所述系统收益需要考虑的因素包括光伏组件类型、逆变器类型、支架跟踪类型、建安-工程-土地-送出费用、后期运维成本、费用通胀和税款中的全部或部分。
  6. 根据权利要求1所述的以系统收益最优为目标的光伏系统优化设计方法,其特征在于,所述倾角的迭代步长为1°。
  7. 根据权利要求2所述的以系统收益最优为目标的光伏系统优化设计方法,其特征在于,光伏组件的类型包括单晶硅光伏组件、多晶硅光伏组件、双玻和双面光伏组件;逆变器的类型包括集中式逆变器、组串式逆变器和集散式逆变器;排布方式考虑阵列中不同横排、竖排组件的布置方式;支架跟踪型式包括固定式和固定可调式。
  8. 根据权利要求1-7任一项所述的以系统收益最优为目标的光伏系统优化设计方法,其特征在于,所述支架跟踪形式为固定可调式时,所述设计方法可以通过枚举法获得系统收益最佳值对应的倾角和容配比。
  9. 一种以系统收益最优为目标的光伏系统优化设计方法,其特征在于,光伏系统的支架跟踪形式为垂直单轴、倾斜单轴或平斜单轴,所述设计方法包括:
    S1、针对光伏系统设计的多种组合方式中的任意一种组合方式均通过以下方式获得各个倾角下的评价参数:以倾角作为迭代变量,分别计算不同倾角下的评价参数;对于垂直单轴该倾角为光伏组件倾角、对于倾斜单轴或平斜单轴该倾角为倾斜轴倾角;
    S2、根据每种组合方式在不同倾角下的评价参数,计算各个组合方式的系统收益,确定每种组合方式的系统收益最佳值对应的倾角;
    S3、比较各种组合方式下的系统收益最佳值,选择系统收益最佳值最大的组合方式及该组合方式对应的倾角作为最终的光伏系统设计方案。
  10. 根据权利要求9所述的以系统收益最优为目标的光伏系统优化设计方 法,其特征在于,所述组合方式中的组合要素包括光伏组件类型、逆变器类型、组件排布方式和支架跟踪型式。
  11. 根据权利要求9或10所述的以系统收益最优为目标的光伏系统优化设计方法,其特征在于,所述针对光伏系统设计的多种组合方式中的任意一种组合方式均通过以下方式获得各个倾角下的评价参数:以倾角作为迭代变量,分别计算不同倾角下的评价参数,具体为,针对光伏系统设计的多种组合方式中的任意一种组合方式均通过以下方式获得各个倾角下的评价参数及最优容配比:以倾角作为迭代变量,分别计算不同倾角下的评价参数及最优容配比;
    根据每种组合方式在不同倾角下的评价参数,计算各个组合方式的系统收益,具体包括:根据每种组合方式在不同倾角下的评价参数及最优容配比,计算各个组合方式的系统收益;
    所述评价参数包括对应支架跟踪形式的辐照量、发电量、电站的占地面积和系统造价。
  12. 一种以系统收益最优为目标的光伏系统优化设计方法,其特征在于,光伏系统的支架跟踪形式为水平单轴和各种双轴跟踪式,所述设计方法包括:
    S1、分别获得光伏系统设计的多种组合方式中每种组合方式的评价参数;
    S2、根据每种组合方式的评价参数,计算各个组合方式的系统收益;
    S3、比较各种组合方式下的系统收益,选择系统收益最大的组合方式作为最终的光伏系统设计方案。
  13. 根据权利要求12所述的以系统收益最优为目标的光伏系统优化设计方法,其特征在于,
    所述组合方式中的组合要素包括光伏组件类型、逆变器类型、组件排布方式和支架跟踪型式。
  14. 根据权利要求12或13所述的以系统收益最优为目标的光伏系统优化设计方法,其特征在于,所述分别获得光伏系统设计的多种组合方式中每种组合方式的评价参数,具体包括:分别获得光伏系统设计的多种组合方式中每种组 合方式的评价参数及最优容配比;
    根据每种组合方式的评价参数,计算各个组合方式的系统收益,具体包括:根据每种组合方式的评价参数及最优容配比,计算各个组合方式的系统收益;
    所述评价参数包括对应支架跟踪形式的辐照量、发电量、电站的占地面积和系统造价。
PCT/CN2021/103575 2020-07-01 2021-06-30 一种以系统收益最优为目标的光伏系统优化设计方法 WO2022002136A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180035791.XA CN115956254A (zh) 2020-07-01 2021-06-30 一种以系统收益最优为目标的光伏系统优化设计方法
EP21834057.8A EP4167152A4 (en) 2020-07-01 2021-06-30 OPTIMIZATION DESIGN METHOD FOR PHOTOVOLTAIC SYSTEM BY TAKING SYSTEM BENEFIT OPTIMIZATION AS A TARGET
CA3188315A CA3188315A1 (en) 2020-07-01 2021-06-30 Optimization design method for photovoltaic system by taking system benefit optimization as target
US18/013,576 US20230289697A1 (en) 2020-07-01 2021-06-30 Optimization design method for photovoltaic system by taking system benefit optimization as target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010623222.4 2020-07-01
CN202010623222.4A CN111738526B (zh) 2020-07-01 2020-07-01 一种以系统收益最优为目标的光伏系统优化设计方法

Publications (1)

Publication Number Publication Date
WO2022002136A1 true WO2022002136A1 (zh) 2022-01-06

Family

ID=72652323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103575 WO2022002136A1 (zh) 2020-07-01 2021-06-30 一种以系统收益最优为目标的光伏系统优化设计方法

Country Status (5)

Country Link
US (1) US20230289697A1 (zh)
EP (1) EP4167152A4 (zh)
CN (2) CN111738526B (zh)
CA (1) CA3188315A1 (zh)
WO (1) WO2022002136A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114492084A (zh) * 2022-03-29 2022-05-13 长江勘测规划设计研究有限责任公司 一种基于容配比比选的光伏电站发电小时数估算模型
CN115099489A (zh) * 2022-06-24 2022-09-23 江苏为恒智能科技有限公司 一种基于最优经济测算的工商业储能系统容量配置方法
CN116070335A (zh) * 2023-04-03 2023-05-05 中通服建设有限公司 一体化光伏建筑设计方法
CN116611711A (zh) * 2023-07-05 2023-08-18 深圳海辰储能控制技术有限公司 储能项目分析系统、方法、设备及可读存储介质
ES2976835A1 (es) * 2022-12-23 2024-08-09 Univ Jaen Procedimiento para el diseño de instalaciones fotovoltaicas

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111738526B (zh) * 2020-07-01 2022-08-23 中广核新能源投资(深圳)有限公司 一种以系统收益最优为目标的光伏系统优化设计方法
CN113537733A (zh) * 2021-06-28 2021-10-22 龙源(北京)太阳能技术有限公司 一种光伏方阵最佳倾角和间距的确定方法与系统
CN113674072B (zh) * 2021-08-05 2023-05-16 郑州铁路职业技术学院 基于金融大数据的企业财务管理风险识别方法
CN113935138B (zh) * 2021-08-31 2024-07-30 隆基光伏科技(上海)有限公司 光伏电站排布方法、装置和电子设备
CN114253302B (zh) * 2021-12-15 2024-09-24 阳光电源(上海)有限公司 一种跟踪控制方法及装置
CN117151920B (zh) * 2023-09-15 2024-07-12 淮阴工学院 一种西北地区智能光伏迷迭香种植系统
CN117574176B (zh) * 2024-01-12 2024-04-09 江苏无双新能源科技有限公司 一种bipv光伏玻璃生产工艺优化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140331198A1 (en) * 2011-11-29 2014-11-06 Siemens Aktiengesellschaft Method for designing a physical layout of a photovoltaic system
CN105337307A (zh) * 2015-10-24 2016-02-17 北京科诺伟业科技股份有限公司 一种光伏装机容量与逆变器容量配置方法
CN107546765A (zh) * 2016-06-27 2018-01-05 新疆金风科技股份有限公司 光伏电站容量配置方法与装置
CN109472394A (zh) * 2018-09-30 2019-03-15 中国电力科学研究院有限公司 一种储能成本和收益的经济优化方法及系统
CN110490377A (zh) * 2019-08-05 2019-11-22 江苏辉伦太阳能科技有限公司 一种光伏电站全生命周期最佳容配比的计算方法
CN110766198A (zh) * 2019-09-18 2020-02-07 中国电建集团青海省电力设计院有限公司 一种基于光伏电站占地面积定量计算的光伏电站布置方法
CN111738526A (zh) * 2020-07-01 2020-10-02 中广核新能源投资(深圳)有限公司 一种以系统收益最优为目标的光伏系统优化设计方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1393750B1 (it) * 2008-12-31 2012-05-08 Convert Italia S P A Impianto fotovoltaico
CN106203711B (zh) * 2016-07-14 2020-03-17 上海宝钢节能环保技术有限公司 一种光伏电站组件安装最佳倾角的计算方法及系统
CN106372346A (zh) * 2016-09-07 2017-02-01 苏州阿特斯阳光电力科技有限公司 一种光伏组件最佳安装倾角的确定方法及装置
CN107482992B (zh) * 2017-10-11 2019-04-30 河海大学 一种考虑经济因素的电站级光伏倾角优化方法
CN108564221A (zh) * 2018-04-19 2018-09-21 深圳智润新能源电力勘测设计院有限公司 一种光伏阵列间距及倾角的计算方法和计算装置
CN108446811A (zh) * 2018-06-06 2018-08-24 中国计量大学 一种基于分布式光伏电站设计的预测发电量计算方法
CN109103926B (zh) * 2018-08-14 2020-01-03 清华大学 基于多辐照特性年气象场景的光伏发电接纳能力计算方法
CN109116872A (zh) * 2018-09-30 2019-01-01 天合光能股份有限公司 一种双面光伏组件跟踪角度的优选方法
CN109884896B (zh) * 2019-03-12 2022-02-11 河海大学常州校区 一种基于相似日辐照预测的光伏跟踪系统优化跟踪方法
CN110147123A (zh) * 2019-06-03 2019-08-20 合肥阳光新能源科技有限公司 一种光伏组件跟踪系统及其控制器和角度控制方法
CN110350590B (zh) * 2019-08-01 2020-12-01 河海大学常州校区 一种结合储能的光伏逆变器容量优化方法
CN110690854A (zh) * 2019-11-18 2020-01-14 合肥阳光新能源科技有限公司 光伏组件布局方法和装置
CN110764536B (zh) * 2019-12-12 2023-06-27 河海大学常州校区 一种平单轴光伏跟踪系统优化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140331198A1 (en) * 2011-11-29 2014-11-06 Siemens Aktiengesellschaft Method for designing a physical layout of a photovoltaic system
CN105337307A (zh) * 2015-10-24 2016-02-17 北京科诺伟业科技股份有限公司 一种光伏装机容量与逆变器容量配置方法
CN107546765A (zh) * 2016-06-27 2018-01-05 新疆金风科技股份有限公司 光伏电站容量配置方法与装置
CN109472394A (zh) * 2018-09-30 2019-03-15 中国电力科学研究院有限公司 一种储能成本和收益的经济优化方法及系统
CN110490377A (zh) * 2019-08-05 2019-11-22 江苏辉伦太阳能科技有限公司 一种光伏电站全生命周期最佳容配比的计算方法
CN110766198A (zh) * 2019-09-18 2020-02-07 中国电建集团青海省电力设计院有限公司 一种基于光伏电站占地面积定量计算的光伏电站布置方法
CN111738526A (zh) * 2020-07-01 2020-10-02 中广核新能源投资(深圳)有限公司 一种以系统收益最优为目标的光伏系统优化设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167152A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114492084A (zh) * 2022-03-29 2022-05-13 长江勘测规划设计研究有限责任公司 一种基于容配比比选的光伏电站发电小时数估算模型
CN115099489A (zh) * 2022-06-24 2022-09-23 江苏为恒智能科技有限公司 一种基于最优经济测算的工商业储能系统容量配置方法
CN115099489B (zh) * 2022-06-24 2023-11-14 江苏为恒智能科技有限公司 一种基于最优经济测算的工商业储能系统容量配置方法
ES2976835A1 (es) * 2022-12-23 2024-08-09 Univ Jaen Procedimiento para el diseño de instalaciones fotovoltaicas
CN116070335A (zh) * 2023-04-03 2023-05-05 中通服建设有限公司 一体化光伏建筑设计方法
CN116611711A (zh) * 2023-07-05 2023-08-18 深圳海辰储能控制技术有限公司 储能项目分析系统、方法、设备及可读存储介质
CN116611711B (zh) * 2023-07-05 2023-10-13 深圳海辰储能控制技术有限公司 储能项目分析系统、方法、设备及可读存储介质

Also Published As

Publication number Publication date
EP4167152A1 (en) 2023-04-19
CN111738526A (zh) 2020-10-02
CN115956254A (zh) 2023-04-11
US20230289697A1 (en) 2023-09-14
EP4167152A4 (en) 2024-07-10
CA3188315A1 (en) 2022-01-06
CN111738526B (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2022002136A1 (zh) 一种以系统收益最优为目标的光伏系统优化设计方法
Lv et al. Determination of optimum tilt angle and orientation for solar collectors based on effective solar heat collection
Zhu et al. Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection
CN104281741B (zh) 光伏组件倾角和阵列间距交叉反馈多因素综合计算方法
Yusufoglu et al. Analysis of the annual performance of bifacial modules and optimization methods
Cotfas et al. Multiconcept methods to enhance photovoltaic system efficiency
CN109116872A (zh) 一种双面光伏组件跟踪角度的优选方法
Good et al. Influence of PV technology and system design on the emission balance of a net zero emission building concept
Madessa Performance analysis of roof-mounted photovoltaic systems–The case of a Norwegian residential building
Zhong et al. Optical performance of inclined south–north axis three-positions tracked solar panels
CN111488669B (zh) 一种确定固定式太阳能装置最佳倾角的计算方法
Gönül et al. Techno-economic analysis of PV systems with manually adjustable tilt mechanisms
CN108763649B (zh) 一种优化评估光伏组件电池片所接受辐照量的方法
Zhen et al. The effects of inclined angle modification and diffuse radiation on the sun-tracking photovoltaic system
CN116402206A (zh) 一种屋顶分布式光伏发电量优化计算方法
CN110764536A (zh) 一种平单轴光伏跟踪系统优化方法
Johnson et al. Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones
Ernst et al. Accurate modelling of the bifacial gain potential of rooftop solar photovoltaic systems
Kharait et al. Energy yield and clipping loss corrections for hourly inputs in climates with solar variability
Soares et al. Sustainability impact of photovoltaic noise barriers with different design configurations
CN105553386A (zh) 占地集约化光伏阵列
US20230078507A1 (en) Multi-phase backtracking of photovoltaic modules
WO2023138132A1 (zh) 支架跟踪方法、系统、光伏设备及介质
CN110658856B (zh) 一种双轴交替式余量型变频逐日追踪方法
Shi et al. Optimization of 1-Axis Tracking with NS Rotating-Axis Orientation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3188315

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021834057

Country of ref document: EP

Effective date: 20230112

NENP Non-entry into the national phase

Ref country code: DE