WO2023138132A1 - 支架跟踪方法、系统、光伏设备及介质 - Google Patents

支架跟踪方法、系统、光伏设备及介质 Download PDF

Info

Publication number
WO2023138132A1
WO2023138132A1 PCT/CN2022/126687 CN2022126687W WO2023138132A1 WO 2023138132 A1 WO2023138132 A1 WO 2023138132A1 CN 2022126687 W CN2022126687 W CN 2022126687W WO 2023138132 A1 WO2023138132 A1 WO 2023138132A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
power generation
target photovoltaic
tracking
photovoltaic module
Prior art date
Application number
PCT/CN2022/126687
Other languages
English (en)
French (fr)
Inventor
孙凯
黄国昆
全鹏
赵明
Original Assignee
天合光能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天合光能股份有限公司 filed Critical 天合光能股份有限公司
Priority to AU2022434597A priority Critical patent/AU2022434597A1/en
Priority to EP22921556.1A priority patent/EP4321958A1/en
Priority to US18/561,771 priority patent/US20240258961A1/en
Publication of WO2023138132A1 publication Critical patent/WO2023138132A1/zh
Priority to CONC2023/0015530A priority patent/CO2023015530A2/es

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells

Definitions

  • the embodiments of the present invention relate to the technical field of solar energy, and in particular to a support tracking method, system, photovoltaic equipment and medium.
  • photovoltaic power generation With the rapid development of photovoltaic power generation technology, photovoltaic power generation has been widely concerned.
  • Existing photovoltaic modules are generally arranged in an array. In the morning or evening, the angle of sunlight is small, and the photovoltaic modules in the front row will block the photovoltaic modules in the rear row, which will affect the power generation of the photovoltaic modules.
  • Embodiments of the present invention provide a support tracking method, system, photovoltaic equipment, and medium to solve the problem that the photovoltaic modules located in the front row block the photovoltaic modules in the rear row of photovoltaic modules, which affects the power generation of the photovoltaic modules.
  • an embodiment of the present invention provides a bracket tracking method, including:
  • the target adjustment method of the tracking angle of the target photovoltaic module is determined.
  • the irradiation data includes the shaded area of the photovoltaic module, the incident angle of the photovoltaic module and the shaded position of the photovoltaic module;
  • the gear position is based on the type of the target photovoltaic component, and the areas where the power generation loss of the target photovoltaic component caused by the shading area of the target photovoltaic component are the same are divided.
  • adjust the tracking angle of the target photovoltaic module according to the irradiation data and the initial tracking angle including:
  • a micro-shading model of the target photovoltaic module is established;
  • the tracking angle of the target photovoltaic module is adjusted according to the corresponding adjustment method of each target photovoltaic module; wherein, the adjustment method includes: a first adjustment method, a second adjustment method and a third adjustment method.
  • each target photovoltaic component is in the first adjustment mode, based on the micro-shading model, the tracking angle of the target photovoltaic component is reduced, and the shading area of the target photovoltaic component is zero;
  • each target photovoltaic component is in the third adjustment mode, based on the micro-shading model, the tracking angle of the target photovoltaic component is reduced, the gear of the photovoltaic component is lowered, and the shading area is greater than zero.
  • calculate the total power generation of the target photovoltaic module corresponding to the adjustment mode of different tracking angles including:
  • the second power generation and the third power generation corresponding to each adjustment mode of (n-1) target photovoltaic components, and the power generation of a single target photovoltaic component in the first row, calculate the total power generation of n target photovoltaic components;
  • n is a positive integer greater than or equal to 2; each adjustment mode of (n-1) target photovoltaic modules includes 3 (n-1) combinations.
  • determine the target adjustment method of the tracking angle of the target photovoltaic module including:
  • the target adjustment method of the tracking angle of the target photovoltaic component after determining the target adjustment method of the tracking angle of the target photovoltaic component based on the total power generation of the target photovoltaic component, it also includes:
  • an embodiment of the present invention provides a support tracking system, including:
  • a data acquisition module configured to acquire the irradiation data of each target photovoltaic module
  • An angle acquisition module configured to acquire the initial tracking angle of each target photovoltaic module
  • the power calculation module is used to adjust the tracking angle of the target photovoltaic module according to the irradiation data and the initial tracking angle, and calculate the total power generation of the target photovoltaic module corresponding to the adjustment mode of different tracking angles;
  • the adjustment mode determination module is used to determine the target adjustment mode of the tracking angle of the target photovoltaic module based on the total power generation of the target photovoltaic module.
  • an embodiment of the present invention further provides a photovoltaic device, including the rack tracking system described in the second aspect.
  • the embodiment of the present invention further provides a readable storage medium.
  • the rack tracking system can execute the rack tracking method described in the first aspect.
  • the technical solution provided by the embodiment of the present invention obtains the irradiation data and initial tracking angle of each target photovoltaic module, establishes a micro-shading model, uses different tracking angle adjustment methods to adjust the tracking angle of the target photovoltaic module, and calculates the power generation of each target photovoltaic module using each tracking angle adjustment method, and the total power generation of a photovoltaic module array that uses different tracking angle adjustment methods for each target photovoltaic module. According to the calculated total power generation of the photovoltaic module array, the tracking angle adjustment method adopted by each target photovoltaic module is determined as the target adjustment method of the tracking angle.
  • the support tracking method set up in this way can be applied to each target photovoltaic module with different levels and height differences in complex terrain, and realize the optimization of the total power generation of the photovoltaic module array, so that the power generation benefit can be optimized and the loss of power generation can be minimized.
  • Fig. 1 is a flow chart of a bracket tracking method provided by an embodiment of the present invention
  • Fig. 2 is a schematic top view of a photovoltaic module array provided by an embodiment of the present invention
  • Fig. 3 is a schematic structural diagram of a target photovoltaic module of the whole cell type provided by an embodiment of the present invention
  • Fig. 4 is a schematic structural diagram of a target photovoltaic module of the half-cell type provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the "one"-shaped string connection of the half-cell type photovoltaic module arrangement provided by the embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a "C"-shaped string connection of a half-cell type photovoltaic module arrangement provided by an embodiment of the present invention
  • Fig. 7 is a flow chart of another bracket tracking method provided by an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the scene when the target photovoltaic module is blocked during the inverse tracking phase provided by the embodiment of the present invention.
  • Fig. 9 is a schematic diagram of adjusting the tracking angle of each target photovoltaic module in the first adjustment mode provided by the embodiment of the present invention.
  • Fig. 10 is a schematic diagram of adjusting the tracking angle of each target photovoltaic module in the second adjustment mode provided by the embodiment of the present invention.
  • Fig. 11 is a schematic diagram of adjusting the tracking angle of each target photovoltaic module in the third adjustment mode provided by the embodiment of the present invention.
  • Fig. 12 is a flow chart of the specific method of step S250 in another bracket tracking method provided by an embodiment of the present invention.
  • Fig. 13 is a flow chart of another bracket tracking method provided by an embodiment of the present invention.
  • Fig. 14 is a flow chart of another bracket tracking method provided by an embodiment of the present invention.
  • Fig. 15 is a structural diagram of a support tracking system provided by an embodiment of the present invention.
  • Fig. 16 is a schematic diagram of a photovoltaic device provided by an embodiment of the present invention.
  • Fig. 17 is a structural diagram of a readable storage medium provided by an embodiment of the present invention.
  • this embodiment proposes the following solutions:
  • FIG. 1 is a flow chart of a bracket tracking method provided by an embodiment of the present invention. This method is suitable for solving the problem that the total power generation is reduced due to shading or light leakage of photovoltaic modules during the reverse tracking stage.
  • the bracket tracking method includes:
  • FIG. 2 is a schematic top view of a photovoltaic module array provided by an embodiment of the present invention.
  • the photovoltaic modules 101 are arranged in an array, and the photovoltaic module array 100 may include multiple rows of photovoltaic modules.
  • each row of photovoltaic modules forms a column; along the north-south direction, each photovoltaic module forms a separate row.
  • Two adjacent rows of photovoltaic modules in the photovoltaic module array 100 are arranged sequentially in the east-west direction of the geographic location.
  • Each row of photovoltaic modules 101 includes a single group of photovoltaic modules, and a single group of photovoltaic modules may be composed of multiple photovoltaic modules. Therefore, in the same row of the photovoltaic module array 100 , the tracking angles of each photovoltaic module of a single group of photovoltaic modules are the same.
  • the target photovoltaic component is each row of photovoltaic components in the photovoltaic component array 100 .
  • the sun In the inverse tracking phase in the morning, the sun is in the east, so the photovoltaic module 101 is in the first row, the photovoltaic module 104 is in the fourth row, the photovoltaic module 101 is in the front row, and the photovoltaic modules 102, 103 and 104 are in the back row; while in the afternoon inverse tracking stage, the sun is in the west, so the photovoltaic module 104 is in the first row, the photovoltaic module 101 is in the fourth row, the photovoltaic module 104 is in the front row, and the photovoltaic modules 103, 102 and 101 are in the back row .
  • the irradiance data is the relevant parameter of the photovoltaic module actually receiving the sun's rays. Irradiation data can be obtained through ground weather stations used to measure horizontal total radiation data and diffuse radiation data, or can be obtained in real time through a third-party meteorological service platform based on geographic information based on local geographic location information and time.
  • the initial tracking angle of each target photovoltaic component is the tracking angle in the initial state before the inverse tracking phase
  • the initial tracking angle may include the tracking angle set when the photovoltaic components are arranged and installed without adjustment in the inverse tracking process, or the tracking angle of each target photovoltaic component after the last inverse tracking phase adjustment.
  • the initial tracking angles of each target photovoltaic module in the photovoltaic module array are the same, and the distance between two adjacent rows of photovoltaic modules in the photovoltaic module array is generally the same.
  • the tracking angle of the target photovoltaic module can be directly acquired by the inclination sensor, which is installed on the photovoltaic module tracking bracket, and the inclination sensor is connected with the controller.
  • the tracking bracket can adjust the tracking angle of the target photovoltaic module, thereby reducing the power loss of the photovoltaic module array due to shading or light leakage during the reverse tracking phase.
  • the tracking angle of photovoltaic modules There are many ways to adjust the tracking angle of photovoltaic modules.
  • the power generation after optimal adjustment of the target photovoltaic modules can be calculated according to each different tracking angle adjustment method. Then, according to the optimized and adjusted power generation of each row of target photovoltaic modules, the total power generation of the photovoltaic module array is calculated.
  • the tracking angle adjustment method corresponding to each row of photovoltaic modules is the optimal tracking angle adjustment method of the corresponding row of photovoltaic modules, and the optimal tracking angle adjustment method is determined as the target adjustment method corresponding to the tracking angle of the target photovoltaic module.
  • the technical solution provided in this embodiment obtains the irradiation data and initial tracking angle of each target photovoltaic module, establishes a micro-shading model, uses different tracking angle adjustment methods to adjust the tracking angle of the target photovoltaic module, and calculates the power generation of each target photovoltaic module using each tracking angle adjustment method, and the total power generation of a photovoltaic module array that uses different tracking angle adjustment methods for each target photovoltaic module. According to the calculated total power generation of the photovoltaic module array, the tracking angle adjustment method adopted by each target photovoltaic module is determined as the target adjustment method of the tracking angle.
  • the support tracking method set up in this way can be applied to each target photovoltaic module with different levels and height differences in complex terrain, and realize the optimization of the total power generation of the photovoltaic module array, so that the power generation benefit can be optimized and the loss of power generation can be minimized.
  • the irradiation data includes the shaded area of the photovoltaic module, the incident angle of the photovoltaic module, and the shaded gear of the photovoltaic module;
  • the gear position is based on the type of the target photovoltaic component, and the areas where the power generation loss of the target photovoltaic component caused by the shading area of the target photovoltaic component are the same are divided.
  • the irradiation data of the target photovoltaic module can be calculated based on common scattered irradiation models such as Hay and Perez.
  • the shading area of photovoltaic modules that is, the shadow area formed on the back row of photovoltaic modules by the front row of photovoltaic modules in two adjacent rows of photovoltaic modules during the reverse tracking phase.
  • the incident angle of the photovoltaic module is the angle formed by the sunlight irradiating on the photovoltaic module and the normal line of the surface of the photovoltaic module.
  • the incident angle of the photovoltaic module affects the power generation of the photovoltaic module, and the closer the incident angle of the photovoltaic module is to 90°, the greater the power generation.
  • FIG. 3 is a schematic structural diagram of a target photovoltaic module of the full-cell type provided by an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a target photovoltaic module of a half-cell type provided by an embodiment of the present invention.
  • the types of target photovoltaic modules may include full cells, half cells, and three-cell cells.
  • Each small rectangle in the photovoltaic module is a photovoltaic string 200, and the photovoltaic strings 200 connected by a black wire 201 are connected in series, and each group of series-connected photovoltaic strings 200 is connected in parallel to form each cell 202, and each cell 202 is connected in parallel to form the entire photovoltaic module.
  • the target photovoltaic module of the whole cell type shown in FIG. 3 for the target photovoltaic module of the half cell type shown in FIG. 4 .
  • the tracking design and installation method of photovoltaic modules generally adopts the method of vertical installation of photovoltaic modules. Fig.
  • FIG. 5 is a schematic diagram of the "one"-shaped string connection of the half-cell type photovoltaic module arrangement provided by the embodiment of the present invention
  • Fig. 6 is a "C"-shaped string connection diagram of the half-cell type photovoltaic module arrangement provided by the embodiment of the present invention.
  • the wiring of photovoltaic strings may include "one" and/or "C" connections.
  • the black connection 201 is in the shape of a “one”; as shown in FIG. 6 , the black connection 201 is in the shape of a “C”.
  • a target photovoltaic module in a "C"-shaped string connection mode is taken as an example for explanation.
  • the division of stalls is also different.
  • a shading phenomenon occurs during the reverse tracking phase, the power generation of a group of photovoltaic strings connected in series with the shaded photovoltaic string is affected. Therefore, for a group of photovoltaic strings connected in series, regardless of the size of the shading area, the power loss caused by shading is considered to be the same. Therefore, the area on the target photovoltaic module that contains complete series-connected photovoltaic strings is determined as a stall.
  • the whole photovoltaic module is one gear
  • the target photovoltaic module can include two gears
  • half of the area of a half cell is one gear
  • the target photovoltaic module can include four gears.
  • FIG. 7 is a flowchart of another bracket tracking method provided by an embodiment of the present invention.
  • the bracket tracking method includes:
  • the micro-shading model of the target photovoltaic component can be established.
  • the controller receives the irradiation data and the initial tracking angle, based on the micro-shading model, it can calculate the ideal power generation data of the target photovoltaic module at the current tracking angle when it receives sunlight and is not blocked, and the actual power generation data of each photovoltaic string in the target photovoltaic module, and compare them.
  • the photovoltaic module array has no shading or light leakage, and the tracking angle of the tracking bracket does not need to be adjusted; if the actual power generation data is less than the ideal power generation data, the current moment enters the reverse tracking stage.
  • the photovoltaic module array has shading or light leakage, resulting in loss of power generation of the photovoltaic module, and the tracking angle of the tracking bracket needs to be adjusted.
  • FIG. 8 is a schematic diagram of a scene when the target photovoltaic module is blocked during the inverse tracking phase provided by the embodiment of the present invention.
  • the target photovoltaic component includes a bracket 300 and a photovoltaic component 301 .
  • the included angle between the photovoltaic module 301 and the horizontal plane is the tracking angle ⁇ of the tracking bracket, and the included angle between the incident sunlight and the surface normal of the photovoltaic module is the incident angle ⁇ of the photovoltaic module.
  • the initial tracking angle of the target photovoltaic component is fixed, for example, the tracking angle ⁇ may be 32°.
  • the photovoltaic module 301 may include four gears: the first gear 305, the second gear 306, the third gear 307, and the fourth gear 308. From the first gear 305 to the fourth gear 308, the gears increase sequentially, and the range where the sun's incident light is blocked increases, resulting in a gradual increase in the power generation loss of the target photovoltaic module.
  • the target photovoltaic modules 303 in the front row cause serious shading to the target photovoltaic modules 304 in the rear row, and the shading shadow covers the entire area of the first gear 305 and part of the second gear 306 of the photovoltaic modules 301, which increases the loss of power generation of the photovoltaic module array. Therefore, it is necessary to adjust the tracking angle of the target photovoltaic modules 304 in the rear row.
  • the tracking angle of the target photovoltaic component is reduced based on the micro-shading model, and the shading area of the target photovoltaic component is zero.
  • the tracking angle of the target photovoltaic component is increased without increasing the gear of the photovoltaic component.
  • each target photovoltaic component is in the third adjustment mode, based on the micro-shading model, the tracking angle of the target photovoltaic component is reduced, the gear of the photovoltaic component is lowered, and the shading area is greater than zero.
  • FIG. 9 is a schematic diagram of each target photovoltaic component adjusting the tracking angle in the first adjustment mode provided by the embodiment of the present invention
  • FIG. 10 is a schematic diagram of the target photovoltaic component adjusting the tracking angle in the second adjustment mode provided by the embodiment of the present invention
  • FIG. 11 is a schematic diagram of the target photovoltaic component adjusting the tracking angle in the third adjustment mode provided by the embodiment of the present invention. As shown in FIG.
  • the tracking angle ⁇ of the target photovoltaic component 304 in the rear row can be reduced, so that the target photovoltaic component 303 in the front row does not block the target photovoltaic component 304 in the rear row, that is, the shading area is zero, and the power generation loss of the target photovoltaic component 304 in the rear row is 0.
  • the tracking angle ⁇ of the target photovoltaic components 304 in the rear row can be reduced to 0°.
  • the tracking angle ⁇ of the target photovoltaic module 304 in the rear row can be increased, but the gear position of the target photovoltaic module is not increased, so that the gear position of the target photovoltaic module is still maintained at the gear position before the adjustment of the tracking angle ⁇ , and the tracking angle ⁇ of the tracking bracket is adjusted to the maximum angle that does not increase the gear level, so as to ensure that the power generation of the target photovoltaic module reaches the maximum when the adjustment is satisfied.
  • the tracking angle ⁇ of the tracking bracket can be adjusted to 60°, and the shading shadow still covers the entire area of the first gear 305 and part of the second gear 306 of the photovoltaic module 301 .
  • the power generation loss of the target photovoltaic module is the same, but the tracking angle of the tracking bracket is increased to 60°, and the power generation of the target photovoltaic module increases. Therefore, by adjusting the tracking angle in the second adjustment manner, from the perspective of the overall effect, the power generation of the target photovoltaic module increases.
  • the tracking angle ⁇ of the target photovoltaic module 304 in the rear row can be reduced, thereby reducing the gear position of the photovoltaic module, but still retaining a certain shading area. Adjust the tracking angle ⁇ of the tracking bracket to meet the critical maximum angle of lowering a gear, so as to ensure that the power generation of the target photovoltaic module 304 in the rear row reaches the maximum when the conditions are met.
  • the bracket tracking angle ⁇ can be adjusted to 28°, and the shadow coverage area on the target photovoltaic module 304 in the rear row is reduced from the entire area of the first gear 305 and the partial area of the second gear 306 to only cover the partial area of the first gear 305, that is, the shade is reduced from the second gear 306 to the first gear 305.
  • the tracking angle is adjusted in the third adjustment mode.
  • the tracking angle ⁇ of the target photovoltaic components 304 in the rear row is reduced, the power generation of the target photovoltaic components 304 in the rear row is reduced, but the loss of power generation of the target photovoltaic components 304 in the rear row is also reduced by downshifting. In this way, the target photovoltaic module can achieve the effect of increasing the power generation from the overall effect.
  • the power generation of the target photovoltaic module is different.
  • the tracking angle of the tracking bracket of the target photovoltaic module is 32°
  • the horizontal total irradiance is 364W/m 2
  • the horizontal diffuse irradiance is 82W/m 2 .
  • the irradiation data will not change greatly in a data collection period, then in a future period, the irradiation represents the average irradiation in a period, which can be used to calculate and predict the power generation of the target photovoltaic module in this period.
  • the data acquisition period of the irradiation data may be 1 minute, which is not limited herein. Due to the difference in horizontal terrain height, in the reverse tracking phase in the morning and/or afternoon, when the target photovoltaic modules in the front row block the target photovoltaic modules in the rear row, the power generation will be different after optimal adjustment for different types of photovoltaic modules using different tracking angle adjustment methods.
  • Table 1 is a table of the changes in power generation after different types of photovoltaic modules are adjusted by each tracking angle adjustment method.
  • the power generation adjusted by different adjustment methods can be calculated according to the sky scattering radiation model and the photovoltaic module electrical model.
  • the sky scattering radiation model is based on the earth-sun relationship data in geographic information and the earth's atmospheric data, and is used to calculate the radiation composition and distribution data of the target photovoltaic module receiving sunlight.
  • Sky diffuse irradiance models can include Hay model and Preze model.
  • the photovoltaic module electrical model is based on the relevant parameters of the target photovoltaic module characteristics, and uses the four-parameter method to calculate the power generation of the target photovoltaic module.
  • the relevant parameters of the target photovoltaic module characteristics may include module series resistance, diode reverse saturation current, photogenerated current and/or diode ideality factor.
  • the power generation loss is 73%, after the first adjustment method is optimized, the power generation loss is 54%, after the second adjustment method is optimized, the power generation loss is 37.5%, after the third adjustment method is optimized, the power generation loss is 54%; After the adjustment mode is optimized, the power generation loss is 36%, and after the third adjustment mode is optimized, the power generation loss is 54%. Therefore, for a photovoltaic module of the monolithic module type, the power generation of the target photovoltaic module can be optimized by adopting the second adjustment method.
  • the power generation loss is 73%
  • the power generation loss is 54%
  • the power generation loss is 37.5%
  • the power generation loss is 46.5%
  • the power generation loss is 50%
  • the power generation loss is 54%
  • the power generation loss is 36%
  • the power generation loss is 25.8%.
  • the second adjustment method is used for optimization; if the module connection mode is "one"-shaped connection, the third adjustment method is used for optimization, which can optimize the power generation of the target photovoltaic module.
  • FIG. 12 is a flow chart of a specific method of step S250 in another bracket tracking method provided by an embodiment of the present invention.
  • calculate the total power generation of the target photovoltaic module corresponding to the adjustment mode of different tracking angles including:
  • the first power generation amount of the photovoltaic module obtained when each target photovoltaic module adjusts the tracking angle in the first adjustment manner can be calculated.
  • the second power generation amount of the photovoltaic module obtained when each target photovoltaic module adjusts the tracking angle in the second adjustment manner can be calculated.
  • the micro-shading model can calculate the third power generation amount of the photovoltaic module obtained when each target photovoltaic module adjusts the tracking angle in a third adjustment manner.
  • the second power generation and the third power generation corresponding to each adjustment mode of (n-1) target photovoltaic components, and the power generation of a single target photovoltaic component in the first row, calculate the total power generation of n target photovoltaic components;
  • n is a positive integer greater than or equal to 2; each adjustment mode of (n-1) target photovoltaic modules includes 3 (n-1) combinations.
  • the photovoltaic component array composed of n target photovoltaic components, where n is a positive integer greater than or equal to 2, the photovoltaic component array has at least two rows, and the number of target photovoltaic components contained in the photovoltaic component array is not limited here. Since the first row is arranged facing the sun and no shading occurs, the power generation of the first row of target photovoltaic modules is the ideal power generation under the current situation, and the second row of target photovoltaic modules starts to calculate the power generation corresponding to different adjustment methods.
  • the first adjustment method, the second adjustment method and the third adjustment method can be used to adjust the tracking angle for each row of target photovoltaic modules, and the first power generation, second power generation and third power generation of each row of target photovoltaic modules are calculated respectively.
  • the first power generation, the second power generation and the third power generation of each row of target photovoltaic modules are respectively added to the power generation of the first row of target photovoltaic modules to obtain the total power generation of the photovoltaic module array.
  • Three different tracking angle adjustment methods are used to iteratively optimize each target photovoltaic module of the photovoltaic module array. Based on the micro-shading model, the optimized power generation of each target photovoltaic module and the total power generation of the entire photovoltaic module array are calculated, which is conducive to the optimization of the total power generation of the photovoltaic module array.
  • FIG. 13 is a flow chart of another bracket tracking method provided by an embodiment of the present invention.
  • the bracket tracking method includes:
  • 3 (n-1) sets of total power generation data of n target photovoltaic modules are calculated and compared, and the maximum total power generation of the photovoltaic module array can be selected.
  • an optimal combination of tracking angle adjustment methods corresponding to the maximum total power generation of the photovoltaic module array is selected, wherein the adjustment method of the tracking angle of each target photovoltaic module is determined as the target adjustment method.
  • the total horizontal irradiance is 400W/m 2
  • the diffuse irradiance is 100W /m 2 .
  • Table 2 is a table of the power generation of each row of target photovoltaic modules and the total power generation of the photovoltaic module array provided by the embodiment of the present invention to optimize the combination of each adjustment method.
  • the total power generation of the photovoltaic module array obtained by the optimal combination 11 of the tracking angle adjustment method is the largest. Therefore, at the photovoltaic module arrangement point in Tongchuan, China, for a photovoltaic module array with 4 rows of target photovoltaic modules, the first row does not need to be adjusted, the second row adopts the second adjustment method, the third row adopts the first adjustment method, and the fourth row adopts the second adjustment method. Adjusting the tracking angle of the tracking bracket respectively can achieve the optimal power generation of the photovoltaic module array.
  • FIG. 14 is a flowchart of another bracket tracking method provided by an embodiment of the present invention. As shown in Figure 14, on the basis of the above embodiments, the bracket tracking method includes:
  • the total power generation of photovoltaic module arrays with n target photovoltaic modules is calculated and iteratively optimized in 3 (n-1) optimal combinations of the first adjustment method, the second adjustment method and the third adjustment method respectively.
  • an optimal combination with the best total power generation can be obtained, and the tracking angle adjustment method corresponding to each target photovoltaic module in the optimization combination is determined as the target adjustment method.
  • the controller controls each target photovoltaic module to adjust to the tracking angle corresponding to the target adjustment method according to the target adjustment method, so as to achieve the optimal total power generation of the photovoltaic module array, and effectively reduce the influence of shading or light leakage that occurs in the reverse tracking phase on the power generation of the photovoltaic module array.
  • Fig. 15 is a structural diagram of a support tracking system provided by an embodiment of the present invention. As shown in Figure 15, the support tracking system 50 includes:
  • a data acquisition module 10 configured to acquire the irradiation data of each target photovoltaic module
  • Angle acquisition module 20 used to acquire the initial tracking angle of each target photovoltaic module
  • the power calculation module 30 is used to adjust the tracking angle of the target photovoltaic module according to the irradiation data and the initial tracking angle, and calculate the total power generation of the target photovoltaic module corresponding to the adjustment mode of different tracking angles;
  • the adjustment method determination module 40 is configured to determine a target adjustment method for the tracking angle of the target photovoltaic module based on the total power generation of the target photovoltaic module.
  • the rack tracking system provided in the embodiments of the present invention can execute the rack tracking method provided in any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • the power calculation module 30 includes:
  • a model building unit is used to establish a micro-shading model of the target photovoltaic component according to the irradiation data of each target photovoltaic component and the initial tracking angle of each target photovoltaic component and the type of the target photovoltaic component;
  • the tracking angle adjustment unit is configured to adjust the tracking angle of the target photovoltaic module based on the micro-shading model and according to the adjustment modes corresponding to each target photovoltaic module.
  • the tracking angle adjustment unit 32 includes:
  • the tracking angle first adjustment subunit is used for each target photovoltaic component in the first adjustment mode, based on the micro-shading model, to reduce the tracking angle of the target photovoltaic component, and the shading area of the target photovoltaic component is zero;
  • the second tracking angle adjustment subunit is used to increase the tracking angle of the target photovoltaic component based on the micro-shading model in the second adjustment mode for each target photovoltaic component without increasing the gear position of the photovoltaic component;
  • the third tracking angle adjustment subunit is used for each target photovoltaic module in the third adjustment mode, based on the micro-shading model, to reduce the tracking angle of the target photovoltaic module, reduce the gear of the photovoltaic module, and the shaded area is greater than zero.
  • the tracking angle adjustment unit 32 further includes:
  • the first power generation calculation subunit is used to calculate the first power generation of each target photovoltaic module when the photovoltaic module is in the first adjustment mode according to the irradiation data and the initial tracking angle based on the micro-shading model;
  • the second power generation calculation subunit is used to calculate the second power generation of each target photovoltaic module in the second adjustment mode according to the irradiation data and the initial tracking angle based on the micro-shading model;
  • the third power generation calculation subunit is used to calculate the third power generation of the photovoltaic module when each target photovoltaic module is in the third adjustment mode according to the irradiation data and the initial tracking angle based on the micro-shading model;
  • the total power generation calculation subunit is used to calculate the total power generation of n target photovoltaic components based on the first power generation, second power generation and third power generation corresponding to each adjustment mode of (n-1) target photovoltaic components and the power generation of a single target photovoltaic component in the first row.
  • FIG. 16 is a schematic diagram of a photovoltaic device provided by an embodiment of the present invention.
  • the photovoltaic device 400 includes the rack tracking system 401 described in the above embodiments, which can implement the rack tracking methods described in the above embodiments, and has the same beneficial effects as the rack tracking method.
  • the present invention also provides a readable storage medium 50 containing computer-executable instructions.
  • Fig. 17 is a structural diagram of a readable storage medium provided by an embodiment of the present invention.
  • the computer-executable instructions are used to execute a support tracking method when executed by the computer processor 51.
  • the support tracking method includes: obtaining the irradiation data of each target photovoltaic module; obtaining the initial tracking angle of each target photovoltaic module; adjusting the tracking angle of the target photovoltaic module according to the irradiation data and the initial tracking angle, and calculating the total power generation of the target photovoltaic module corresponding to the adjustment mode of different tracking angles;
  • the target adjustment method of the tracking angle of the target photovoltaic module is determined.
  • the computer-executable instructions are not limited to the method operations described above, and may also perform related operations in the stent tracking method provided by any embodiment of the present invention.
  • the present invention can be implemented by software and necessary general hardware, and of course also by hardware, but in many cases the former is a better implementation.
  • the technical solution of the present invention or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as a computer floppy disk, a read-only memory (ROM), a random access memory (RAM), a flash memory (FLASH), a hard disk or an optical disc, etc., including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute each of the present invention.
  • a computer-readable storage medium such as a computer floppy disk, a read-only memory (ROM), a random access memory (RAM), a flash memory (FLASH), a hard disk or an optical disc, etc.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photovoltaic Devices (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Die Bonding (AREA)

Abstract

一种支架跟踪方法、系统、光伏设备及介质。支架跟踪方法包括:获取各目标光伏组件(304)的辐照数据(S110);获取各目标光伏组件(304)的初始跟踪角度(S120);根据辐照数据和初始跟踪角度,调节目标光伏组件(304)的跟踪角度,并计算不同跟踪角度的调节方式对应的目标光伏组件(304)的总发电量(S130);基于目标光伏组件(304)的总发电量,确定目标光伏组件(304)的跟踪角度的目标调节方式(S140)。通过建立微遮挡模型,计算光伏组件阵列采用不同的跟踪角度调节方式优化组合进行调节后的总发电量,确定总发电量最优的目标调节方式,从而降低逆跟踪阶段出现的遮挡或漏光现象对光伏组件阵列的总发电量的影响,使光伏组件阵列的总发电量达到最优。

Description

支架跟踪方法、系统、光伏设备及介质 技术领域
本发明实施例涉及太阳能技术领域,尤其涉及一种支架跟踪方法、系统、光伏设备及介质。
背景技术
随着光伏发电技术的快速发展,光伏发电得到广泛关注。现有的光伏组件一般是呈阵列排布的,在早上或晚上太阳照射角度较小,位于前排的光伏组件会对后排的光伏组件遮挡,影响光伏组件的发电量。
发明内容
本发明实施例提供一种支架跟踪方法、系统、光伏设备及介质,以解决光伏组件存在位于前排的光伏组件对后排的光伏组件遮挡,影响光伏组件的发电量的问题。
为解决上述技术问题,本发明采用以下技术方案:
第一方面,本发明实施例提供一种支架跟踪方法,包括:
获取各目标光伏组件的辐照数据;
获取各目标光伏组件的初始跟踪角度;
根据辐照数据和初始跟踪角度,调节目标光伏组件的跟踪角度,并计算不同跟踪角度的调节方式对应的目标光伏组件的总发电量;
基于目标光伏组件的总发电量,确定目标光伏组件的跟踪角度的目标调节方式。
可选的,辐照数据包括光伏组件的遮挡面积、光伏组件的入射角度和光 伏组件被遮挡的档位;
其中,档位是基于目标光伏组件的类型,由目标光伏组件的遮挡面积引起的目标光伏组件的发电量损失相同的区域划分的。
可选的,根据辐照数据和初始跟踪角度,调节目标光伏组件的跟踪角度,包括:
根据各目标光伏组件的辐照数据和各目标光伏组件的初始跟踪角度以及目标光伏组件的类型,建立目标光伏组件的微遮挡模型;
基于微遮挡模型,根据各目标光伏组件分别对应的调节方式,调节目标光伏组件的跟踪角度;其中,调节方式包括:第一调节方式、第二调节方式和第三调节方式。
可选的,基于微遮挡模型,根据各目标光伏组件分别对应的调节方式,调节目标光伏组件的跟踪角度,包括:
每一目标光伏组件在第一调节方式时,基于微遮挡模型,减小目标光伏组件的跟踪角度,且目标光伏组件的遮挡面积为零;
每一目标光伏组件在第二调节方式时,基于微遮挡模型,增大目标光伏组件的跟踪角度,且不升高光伏组件的档位;
每一目标光伏组件在第三调节方式时,基于微遮挡模型,减小目标光伏组件的跟踪角度,降低光伏组件的档位,且遮挡面积大于零。
可选的,根据辐照数据和初始跟踪角度,计算不同跟踪角度的调节方式对应的目标光伏组件的总发电量,包括:
基于微遮挡模型,根据辐照数据和初始跟踪角度,计算每一目标光伏组件在第一调节方式时,光伏组件的第一发电量;
基于微遮挡模型,根据辐照数据和初始跟踪角度,计算每一目标光伏组件在第二调节方式时,光伏组件的第二发电量;
基于微遮挡模型,根据辐照数据和初始跟踪角度,计算每一目标光伏组 件在第三调节方式时,光伏组件的第三发电量;
基于(n-1)个目标光伏组件的各调节方式对应的第一发电量、第二发电量和第三发电量以及第一排的单个目标光伏组件的发电量,计算n个目标光伏组件的总发电量;
其中,n为大于或等于2的正整数;(n-1)个目标光伏组件的各调节方式包括3 (n-1)种组合。
可选的,基于目标光伏组件的总发电量,确定目标光伏组件的跟踪角度的目标调节方式,包括:
根据n个目标光伏组件的总发电量进行比较,得到目标光伏组件的最大总发电量;
基于目标光伏组件的最大总发电量,确定目标光伏组件的发电量为最大总发电量时,各目标光伏组件的跟踪角度的目标调节方式。
可选的,在基于目标光伏组件的总发电量,确定目标光伏组件的跟踪角度的目标调节方式之后,还包括:
基于跟踪角度的目标调节方式,调节目标光伏组件的跟踪角度。
第二方面,本发明实施例提供一种支架跟踪系统,包括:
数据获取模块,用于获取各目标光伏组件的辐照数据;
角度获取模块,用于获取各目标光伏组件的初始跟踪角度;
电量计算模块,用于根据辐照数据和初始跟踪角度,调节目标光伏组件的跟踪角度,并计算不同跟踪角度的调节方式对应的目标光伏组件的总发电量;
调节方式确定模块,用于基于目标光伏组件的总发电量,确定目标光伏组件的跟踪角度的目标调节方式。
第三方面,本发明实施例还提供一种光伏设备,包括第二方面所述的支架跟踪系统。
第四方面,本发明实施例还提供一种可读存储介质,当可读存储介质中的指令由支架跟踪系统的处理器执行时,使得支架跟踪系统能够执行第一方面所述的支架跟踪方法。
本发明实施例提供的技术方案通过获取各目标光伏组件的辐照数据和初始跟踪角度,建立微遮挡模型,采用不同的跟踪角度调节方式对目标光伏组件的跟踪角度进行调节,并计算各目标光伏组件采用每一种跟踪角度调节方式的发电量,以及各目标光伏组件采用不同跟踪角度调节方式组合的光伏组件阵列的总发电量。根据计算得到的光伏组件阵列的总发电量,将各目标光伏组件对应采用的跟踪角度调节方式确定为跟踪角度的目标调节方式。这样设置的支架跟踪方法,可适用于处于复杂地势的具有不同水平高度差的各目标光伏组件,实现光伏组件阵列的总发电量最优化,使发电效益达到最优,发电量损失降到最小。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本发明实施例的内容和这些附图获得其他的附图。
图1是本发明实施例提供的一种支架跟踪方法的流程图;
图2是本发明实施例提供的光伏组件阵列的俯视示意图;
图3是本发明实施例提供的整片电池片类型的目标光伏组件结构示意图;
图4是本发明实施例提供的半片电池片类型的目标光伏组件结构示意图;
图5是本发明实施例提供的半片电池片类型的光伏组件排布的“一”字型组串接线示意图;
图6是本发明实施例提供的半片电池片类型的光伏组件排布的“C”字型组串接线示意图;
图7是本发明实施例提供的又一种支架跟踪方法的流程图;
图8是本发明实施例提供的目标光伏组件在逆跟踪阶段发生遮挡时的场景示意图;
图9是本发明实施例提供的各目标光伏组件以第一调节方式调节跟踪角度的示意图;
图10是本发明实施例提供的各目标光伏组件以第二调节方式调节跟踪角度的示意图;
图11是本发明实施例提供的各目标光伏组件以第三调节方式调节跟踪角度的示意图;
图12是本发明实施例提供的又一种支架跟踪方法中步骤S250的具体方法的流程图;
图13是本发明实施例提供的又一种支架跟踪方法的流程图;
图14是本发明实施例提供的又一种支架跟踪方法的流程图;
图15是本发明实施例提供的一种支架跟踪系统的结构图;
图16是本发明实施例提供的一种光伏设备的示意图;
图17是本发明实施例提供的一种可读存储介质的结构图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非 全部结构。
基于上述技术问题,本实施例提出了以下解决方案:
本发明实施例提供一种支架跟踪方法。图1是本发明实施例提供的一种支架跟踪方法的流程图。该方法适用于解决在逆跟踪阶段,光伏组件发生遮挡或漏光导致总发电量降低的问题。该支架跟踪方法包括:
S110、获取各目标光伏组件的辐照数据。
具体地,图2是本发明实施例提供的光伏组件阵列的俯视示意图。如图2所示,光伏组件101呈阵列排布,光伏组件阵列100可以包括多排光伏组件,例如:光伏组件阵列100可以包括光伏组件101、光伏组件102、光伏组件103和光伏组件104。在一个光伏组件阵列100中,沿东西方向,各排光伏组件形成一列;沿南北方向,每个光伏组件单独形成一排。光伏组件阵列100中的相邻两排光伏组件在地理位置的东西方向依次排列。每一排光伏组件101中包括单组光伏组件,单组光伏组件可以由多块光伏组件组成。因此,在光伏组件阵列100的同一排中,单组光伏组件的每块光伏组件的跟踪角度均相同。目标光伏组件则为光伏组件阵列100中的每一排光伏组件。在上午的逆跟踪阶段,太阳位于东边,因此光伏组件101为第一排,光伏组件104为第四排,光伏组件101为前排,光伏组件102、光伏组件103和光伏组件104为后排;而在下午的逆跟踪阶段,太阳位于西边,因此光伏组件104为第一排,光伏组件101为第四排,光伏组件104为前排,光伏组件103、光伏组件102和光伏组件101为后排。
在每天的上午和/或下午,太阳高度角较小的时间段内,由于地势的高低起伏,前排的光伏组件可能会对后排的光伏组件造成较明显的太阳光遮挡现象,导致整个光伏组件阵列的发电量损失较大。辐照数据是光伏组件实际接收太阳光线的相关参数。辐照数据可通过用于测量水平总辐照数据和散射辐照数据的地面气象站获取,也可以根据当地所处的地理位置信息与时刻, 基于地理信息,实时通过第三方气象服务平台获取。
S120、获取各目标光伏组件的初始跟踪角度。
具体地,各目标光伏组件的初始跟踪角度是在逆跟踪阶段之前的初始状态下的跟踪角度,初始跟踪角度可以包括排布安装各光伏组件且未经过逆跟踪过程的调整时设置的跟踪角度,或者经过上次逆跟踪阶段调整后的各目标光伏组件的跟踪角度。在光伏组件阵列排布点的地理位置信息确定的情况下,光伏组件阵列中的各目标光伏组件的初始跟踪角度均相同,并且光伏组件阵列中相邻两排光伏组件之间的距离设置一般也相同。目标光伏组件的跟踪角度可以直接由倾角传感器获取,倾角传感器安装于光伏组件跟踪支架上,倾角传感器与控制器相连接。
S130、根据辐照数据和初始跟踪角度,调节目标光伏组件的跟踪角度,并计算不同跟踪角度的调节方式对应的目标光伏组件的总发电量。
具体地,根据获取的辐照数据和初始跟踪角度,跟踪支架可调节目标光伏组件的跟踪角度,从而减小光伏组件阵列在逆跟踪阶段因遮挡或漏光造成的发电量损失。光伏组件跟踪角度的调节方式具有多种,在光伏组件阵列中,对于每一排目标光伏组件,可以计算出依据每一种不同的跟踪角度调节方式优化调节目标光伏组件后的发电量。再根据每一排目标光伏组件优化调节后的发电量,计算出光伏组件阵列的总发电量。
S140、基于目标光伏组件的总发电量,确定目标光伏组件的跟踪角度的目标调节方式。
具体地,根据各目标光伏组件组成的光伏组件阵列的总发电量,并根据预设判断方法判断,根据判断结果确定最优的跟踪角度调节方式的组合。其中,每一排光伏组件对应采用的跟踪角度调节方式为对应排光伏组件最优的跟踪角度调节方式,并将最优的跟踪角度调节方式确定为对应目标光伏组件的跟踪角度的目标调节方式。
本实施例提供的技术方案通过获取各目标光伏组件的辐照数据和初始跟踪角度,建立微遮挡模型,采用不同的跟踪角度调节方式对目标光伏组件的跟踪角度进行调节,并计算各目标光伏组件采用每一种跟踪角度调节方式的发电量,以及各目标光伏组件采用不同跟踪角度调节方式组合的光伏组件阵列的总发电量。根据计算得到的光伏组件阵列的总发电量,将各目标光伏组件对应采用的跟踪角度调节方式确定为跟踪角度的目标调节方式。这样设置的支架跟踪方法,可适用于处于复杂地势的具有不同水平高度差的各目标光伏组件,实现光伏组件阵列的总发电量最优化,使发电效益达到最优,发电量损失降到最小。
可选的,在上述实施例的基础上,辐照数据包括光伏组件的遮挡面积、光伏组件的入射角度和光伏组件被遮挡的档位;
其中,档位是基于目标光伏组件的类型,由目标光伏组件的遮挡面积引起的目标光伏组件的发电量损失相同的区域划分的。
具体地,目标光伏组件的辐照数据可以基于Hay、Perez等常见的散射辐照模型计算得到。光伏组件的遮挡面积,即在逆跟踪阶段,相邻两排光伏组件中的前排光伏组件对后排光伏组件造成遮挡而在后排光伏组件上形成的阴影面积。光伏组件的入射角度是照射在光伏组件上的太阳光线与光伏组件表面的法线形成的夹角。光伏组件的入射角度的大小,影响光伏组件的发电量,且光伏组件的入射角度越接近90°,发电量越大。
光伏组件被遮挡的档位是根据不同目标光伏组件的类型以及发电量损失的大小而设定的。将由于遮挡形成的阴影面积造成的发电量损失相同的区域,划分为同一档位。示例性地,图3是本发明实施例提供的整片电池片类型的目标光伏组件结构示意图;图4是本发明实施例提供的半片电池片类型的目标光伏组件结构示意图。如图3和图4所示,目标光伏组件的类型可以包括整片电池片、半片电池片和三分电池片等。光伏组件中的各个小矩形是 光伏组串200,通过一条黑色接线201连通的各光伏组串200串联连接,每组串联连接的光伏组串200之间并联连接形成各电池片202,各电池片202之间并联连接形成整个光伏组件。例如:对于图3所示的整片电池片类型的目标光伏组件;对于图4所示的半片电池片类型的目标光伏组件。光伏组件的跟踪设计安装方式一般采用光伏组件竖装的方式。图5是本发明实施例提供的半片电池片类型的光伏组件排布的“一”字型组串接线示意图,图6是本发明实施例提供的半片电池片类型的光伏组件排布的“C”字型组串接线示意图。对于半片电池片类型且采用竖装方式安装的光伏组件,光伏组串的接线方式可以包括“一”字型和/或“C”字型连接。如图5所示,黑色接线201为“一”字型;如图6所示,黑色接线201为“C”字型。本实施例以“C”字型连接的组串接线方式的目标光伏组件为例进行解释说明。
对于以“C”字型组串接线方式连接的不同类型的光伏组件,档位的划分也不同。当在逆跟踪阶段产生遮挡现象时,与被遮挡的光伏组串串联连接的一组光伏组串的发电量均受到影响。因此,对于一组串联的光伏组串,不论遮挡面积的大小,由遮挡阴影造成的发电量损失视为相同。所以,目标光伏组件上包含完整的串联连接的光伏组串的区域确定为一个档位。示例性地,对于整片电池片类型的光伏组件,整块光伏组件即为一个档位,则目标光伏组件可以包含两个档位;对于半片电池片类型的光伏组件,半片电池片的一半区域为一个档位,则目标光伏组件可以包含四个档位。
可选的,图7是本发明实施例提供的又一种支架跟踪方法的流程图。在上述实施例的基础上,参见图7,该支架跟踪方法包括:
S210、获取各目标光伏组件的辐照数据。
S220、获取各目标光伏组件的初始跟踪角度。
S230、根据各目标光伏组件的辐照数据和各目标光伏组件的初始跟踪角度以及目标光伏组件的类型,建立目标光伏组件的微遮挡模型。
具体地,依据各目标光伏组件的辐照数据、初始跟踪角度和目标光伏组件的类型等组件特性,可以建立目标光伏组件的微遮挡模型。在目标光伏组件类型确定的情况下,控制器接收到辐照数据和初始跟踪角度后,基于微遮挡模型可以计算出目标光伏组件在当前跟踪角度下,接收太阳光线且不被遮挡时的理想发电量数据,以及目标光伏组件中的各光伏组串的实际发电量数据,并进行对比。若实际发电量数据等于理想发电量数据,则该光伏组件阵列未发生遮挡或漏光现象,跟踪支架的跟踪角度无需进行调节;若实际发电量数据小于理想发电量数据,则当前时刻进入逆跟踪阶段,该光伏组件阵列发生遮挡或漏光现象,造成光伏组件的发电量损失,需要对跟踪支架的跟踪角度进行调节。
S240、基于微遮挡模型,根据各目标光伏组件分别对应的调节方式,调节目标光伏组件的跟踪角度;其中,调节方式包括:第一调节方式、第二调节方式和第三调节方式。
具体地,图8是本发明实施例提供的目标光伏组件在逆跟踪阶段发生遮挡时的场景示意图。如图8所示,目标光伏组件包括支架300和光伏组件301。光伏组件301与水平面的夹角为跟踪支架的跟踪角度α,太阳光入射光线与光伏组件表面法线的夹角为光伏组件的入射角β。示例性地,在光伏组件阵列的排布位置的地理位置信息和太阳高度角数据确定的情况下,目标光伏组件的初始跟踪角度是固定的,例如:跟踪角度α可以为32°。当光伏组件的入射角β小于一定的预设值,且光伏组件的实际发电量数据小于理想发电量数据时,控制器控制跟踪支架进入逆跟踪阶段,通过调节跟踪支架的跟踪角度α,优化光伏组件阵列的总发电量。光伏组件301可以包括第一档位305、第二档位306、第三档位307和第四档位308四个档位,由第一档位305至第四档位308,档位依次升高,太阳入射光线被遮挡的范围增大,导致目标光伏组件的发电量损失逐渐增大。由于相邻两排目标光伏组件的水 平高度差不同,前排目标光伏组件303对后排目标光伏组件304造成较严重的遮挡,遮挡阴影覆盖了光伏组件301的第一档位305的全部区域和第二档位306的部分区域,使得光伏组件阵列的发电量损失增大。因此,需要对后排目标光伏组件304进行跟踪角度的调节。对于各目标光伏组件的跟踪角度的调节方式可以包括三种,分别为第一调节方式、第二调节方式和第三调节方式。
可选的,基于微遮挡模型,根据各目标光伏组件分别对应的调节方式,调节目标光伏组件的跟踪角度,包括:
每一目标光伏组件在第一调节方式时,基于微遮挡模型,减小目标光伏组件的跟踪角度,且目标光伏组件的遮挡面积为零。
每一目标光伏组件在第二调节方式时,基于微遮挡模型,增大目标光伏组件的跟踪角度,且不升高光伏组件的档位。
每一目标光伏组件在第三调节方式时,基于微遮挡模型,减小目标光伏组件的跟踪角度,降低光伏组件的档位,且遮挡面积大于零。
具体地,图9是本发明实施例提供的各目标光伏组件以第一调节方式调节跟踪角度的示意图;图10是本发明实施例提供的各目标光伏组件以第二调节方式调节跟踪角度的示意图;图11是本发明实施例提供的各目标光伏组件以第三调节方式调节跟踪角度的示意图。如图9所示,对于各目标光伏组件以第一调节方式调节跟踪角度时,可以减小后排目标光伏组件304的跟踪角度α,使得前排目标光伏组件303对后排目标光伏组件304不造成遮挡,即遮挡面积为零,则后排目标光伏组件304的发电量损失为0。例如:后排目标光伏组件304的跟踪角度α可减小至0°。
如图10所示,对于各目标光伏组件以第二调节方式调节跟踪角度时,可以增大后排目标光伏组件304的跟踪角度α,但不升高目标光伏组件的档位,使目标光伏组件的档位仍保持于调节跟踪角度α前的档位,且将跟踪支 架的跟踪角度α调节至满足不升高档位的最大角度,保证目标光伏组件在满足调节的情况下,发电量达到最大。例如:可以将跟踪支架的跟踪角度α调节至60°,遮挡阴影仍然覆盖光伏组件301的第一档位305的全部区域和第二档位306的部分区域。在阴影遮挡的档位不变的情况下,目标光伏组件的发电量损失量是相同的,而跟踪支架的跟踪角度增大至60°,目标光伏组件的发电量增大。因此,以第二调节方式调节跟踪角度,从整体效果来看,目标光伏组件的发电量增大。
如图11所示,对于各目标光伏组件以第三调节方式调节跟踪角度时,可以减小后排目标光伏组件304的跟踪角度α,从而降低光伏组件的档位,但仍保留一定的遮挡面积。调节跟踪支架的跟踪角度α至满足降低一个档位的临界最大角度,保证后排目标光伏组件304在满足条件的情况下,发电量达到最大。例如:可以将支架跟踪角度α调节至28°,后排目标光伏组件304上的遮挡阴影覆盖区域由第一档位305的全部区域和第二档位306的部分区域,减小至只覆盖第一档位305的部分区域,即遮挡阴影由第二档位306降低至第一档位305。以第三调节方式调节跟踪角度,虽然后排目标光伏组件304的跟踪角度α减小,后排目标光伏组件304的发电量有所减小,但通过降档使得后排目标光伏组件304的发电量损失也减小。从而使目标光伏组件从整体效果来看,达到发电量增大的效果。
对于不同的组件类型,分别以第一调节方式、第二调节方式和第三调节方式调节跟踪支架的跟踪角度后,目标光伏组件的发电量不同。示例性地,如图8所示,以中国铜川地区为例,在夏季某个晴天的某个瞬时时刻,目标光伏组件的跟踪支架的跟踪角度为32°,水平总辐照为364W/m 2,水平散射辐照为82W/m 2。辐照数据在一个数据采集周期内不会发生较大变化,则未来一个周期内,该辐照代表一个周期内的平均辐照,可用以计算预测该周期内目标光伏组件的发电量。其中,辐照数据的数据采集周期可以是1分钟, 在此不作任何限定。由于水平地势高度差,在上午和/或下午的逆跟踪阶段,前排目标光伏组件对后排目标光伏组件造成遮挡时,对于不同光伏组件类型采用不同的跟踪角度调节方式进行优化调节后,发电量也不同。表1是不同类型的光伏组件采用每种跟踪角度调节方式调节后发电量的变化情况表。采用不同调节方式调节后的发电量可以根据天空散射辐照模型和光伏组件电学模型计算得到。其中,天空散射辐照模型是基于地理信息中的地日关系数据以及地球大气数据,建立的用于计算目标光伏组件接受太阳光照的辐照组成和分布数据的模型。天空散射辐照模型可以包括Hay模型和Preze模型。光伏组件电学模型是基于目标光伏组件特性的相关参数,利用四参数法计算目标光伏组件发电量的模型。示例性地,目标光伏组件特性的相关参数可以包括组件串联电阻、二极管反向饱和电流、光生电流和/或二极管理想因子。
由表1可知,若光伏组件类型为整片组件,对于“C”字型连接的组件连接方式,优化调节前,发电量损失73%,采用第一调节方式优化后,发电量损失54%,采用第二调节方式优化后,发电量损失37.5%,采用第三调节方式优化后,发电量损失54%;对于“一”字型连接的组件连接方式,优化调节前,发电量损失50%,采用第一调节方式优化后,发电量损失54%,采用第二调节方式优化后,发电量损失36%,采用第三调节方式优化后,发电量损失54%。因此,对于整片组件类型的光伏组件,采用第二调节方式可使目标光伏组件的发电量达到最优。若光伏组件类型为半片组件,对于“C”字型连接的组件连接方式,优化调节前,发电量损失73%,采用第一调节方式优化后,发电量损失54%,采用第二调节方式优化后,发电量损失37.5%,采用第三调节方式优化后,发电量损失46.5%。若对于“一”字型连接的组件连接方式,优化调节前,发电量损失50%,采用第一调节方式优化后,发电量损失54%,采用第二调节方式优化后,发电量损失36%,采用第三调节方式优化后,发电量损失25.8%。因此,对于半片组件类型的光伏组件,若 组件连接方式为“C”字型连接,则采用第二调节方式进行优化;若组件连接方式为“一”字型连接,则采用第三调节方式进行优化,均可使目标光伏组件的发电量达到最优。
对于在光伏组件阵列中处于不同位置的目标光伏组件或者水平高度差不同的目标光伏组件,适用不同的跟踪角度调节方法,从而可使光伏组件阵列的总发电量达到最优。
表1不同类型的光伏组件调节跟踪角度前后的发电量变化情况
Figure PCTCN2022126687-appb-000001
S250、计算不同跟踪角度的调节方式对应的目标光伏组件的总发电量。
S260、基于目标光伏组件的总发电量,确定目标光伏组件的跟踪角度的目标调节方式。
可选的,图12是本发明实施例提供的又一种支架跟踪方法中步骤S250的具体方法的流程图。如图12所示,在上述实施例的基础上,根据辐照数据和初始跟踪角度,计算不同跟踪角度的调节方式对应的目标光伏组件的总发电量,包括:
S2501、基于微遮挡模型,根据辐照数据和初始跟踪角度,计算每一目标光伏组件在第一调节方式时,光伏组件的第一发电量。
具体地,根据辐照数据和初始跟踪角度,基于微遮挡模型可以计算出各目标光伏组件以第一调节方式调节跟踪角度时,所得到的光伏组件的第一发电量。
S2502、基于微遮挡模型,根据辐照数据和初始跟踪角度,计算每一目标光伏组件在第二调节方式时,光伏组件的第二发电量。
具体地,根据辐照数据和初始跟踪角度,基于微遮挡模型可以计算出各目标光伏组件以第二调节方式调节跟踪角度时,所得到的光伏组件的第二发电量。
S2503、基于微遮挡模型,根据辐照数据和初始跟踪角度,计算每一目标光伏组件在第三调节方式时,光伏组件的第三发电量。
具体地,根据辐照数据和初始跟踪角度,由微遮挡模型可以计算出各目标光伏组件以第三调节方式调节跟踪角度时,所得到的光伏组件的第三发电量。
S2504、基于(n-1)个目标光伏组件的各调节方式对应的第一发电量、第二发电量和第三发电量以及第一排的单个目标光伏组件的发电量,计算n个目标光伏组件的总发电量;
其中,n为大于或等于2的正整数;(n-1)个目标光伏组件的各调节 方式包括3 (n-1)种组合。
具体地,在由n个目标光伏组件组成的光伏组件阵列中,n为大于或等于2的正整数,则光伏组件阵列至少有两排,光伏组件阵列中包含的目标光伏组件的数量在此不作任何限定。由于第一排正对太阳排布,不会发生遮挡情况,则第一排目标光伏组件的发电量为当前情况下的理想发电量,由第二排目标光伏组件开始计算采用不同的调节方式对应的发电量。
需要说明的是,对于具有n个目标光伏组件的光伏组件阵列,由相应的第一排向后,共有(n-1)个目标光伏组件需要进行优化调节。基于微遮挡模型,对每一排目标光伏组件可以分别采用第一调节方式、第二调节方式和第三调节方式调节跟踪角度,分别计算得到每一排目标光伏组件的第一发电量、第二发电量和第三发电量。将每一排目标光伏组件的第一发电量、第二发电量和第三发电量分别与第一排目标光伏组件的发电量相加,得到光伏组件阵列的总发电量。由于具有三种不同的跟踪角度调节方式,需要对除第一排以外的其他目标光伏组件,即(n-1)个目标光伏组件的跟踪角度进行调节。因此,可对光伏组件阵列计算出3 (n-1)组总发电量数据。示例性地,若n=4,则需对除第一排以外的其他3个目标光伏组件的跟踪角度进行调节,分别采用第一调节方式、第二调节方式和第三调节方式,共有3 3种调节方式优化组合,可得到3 3组总发电量数据。
采用三种不同的跟踪角度调节方式,对光伏组件阵列的各目标光伏组件进行迭代优化。基于微遮挡模型,计算各目标光伏组件优化后的发电量以及整个光伏组件阵列的总发电量,有利于实现光伏组件阵列总发电量的最优化。
可选的,图13是本发明实施例提供的又一种支架跟踪方法的流程图。如图13所示,在上述实施例的基础上,该支架跟踪方法包括:
S310、获取各目标光伏组件的辐照数据。
S320、获取各目标光伏组件的初始跟踪角度。
S330、根据辐照数据和初始跟踪角度,调节目标光伏组件的跟踪角度,并计算不同跟踪角度的调节方式对应的目标光伏组件的总发电量。
S340、根据n个目标光伏组件的总发电量进行比较,得到目标光伏组件的最大总发电量。
具体地,基于微遮挡模型计算出n个目标光伏组件的3 (n-1)组总发电量数据后进行比较,可以选出光伏组件阵列的最大总发电量。
S350、基于目标光伏组件的最大总发电量,确定目标光伏组件的发电量为最大总发电量时,各目标光伏组件的跟踪角度的目标调节方式。
具体地,选择光伏组件阵列的总发电量为最大时所对应的跟踪角度调节方式的优化组合,其中将各目标光伏组件的跟踪角度的调节方式确定为目标调节方式。
示例性地,以光伏组件阵列排布在中国铜川地区,且光伏组件阵列共具有4排目标光伏组件,即n=4为例。在中国铜川地区夏至日真太阳时6:20时,水平总辐照为400W/m 2,散射辐照为100W/m 2,该光伏组件阵列共有3 (n-1)种,即3 (4-1)种跟踪角度调节方式的优化组合。表2是本发明实施例提供的采用每种调节方式优化组合对应的各排目标光伏组件的发电量以及光伏组件阵列的总发电量情况表。
由表2可知,跟踪角度调节方式优化组合11得到的光伏组件阵列的总发电量最大。因此,在中国铜川地区的光伏组件排布点,对于具有4排目标光伏组件的光伏组件阵列,第1排不需调节,第2排采用第二调节方式,第3排采用第一调节方式,第4排采用第二调节方式,分别对跟踪支架的跟踪角度进行调节,可以实现光伏组件阵列的发电量最优。
表2不同调节方式优化后的目标光伏组件的发电量
Figure PCTCN2022126687-appb-000002
可选的,图14是本发明实施例提供的又一种支架跟踪方法的流程图。如图14所示,在上述实施例的基础上,该支架跟踪方法包括:
S410、获取各目标光伏组件的辐照数据。
S420、获取各目标光伏组件的初始跟踪角度。
S430、根据辐照数据和初始跟踪角度,调节目标光伏组件的跟踪角度,并计算不同跟踪角度的调节方式对应的目标光伏组件的总发电量。
S440、基于目标光伏组件的总发电量,确定目标光伏组件的跟踪角度的目标调节方式。
S450、基于跟踪角度的目标调节方式,调节目标光伏组件的跟踪角度。
具体地,基于微遮挡模型,计算得到具有n个目标光伏组件的光伏组件阵列分别采用第一调节方式、第二调节方式和第三调节方式进行迭代优化的3 (n-1)种优化组合的光伏组件阵列的总发电量,进行比较后可得到总发电量最优的一种优化组合,并将该优化组合中各目标光伏组件对应的跟踪角度调节方式确定为目标调节方式。控制器则根据目标调节方式控制各目标光伏组件调节至目标调节方式对应的跟踪角度,从而实现光伏组件阵列的总发电量达到最优,有效降低了在逆跟踪阶段出现的遮挡或漏光现象对光伏组件阵列的发电量造成的影响。
本发明实施例还提供一种支架跟踪系统。图15是本发明实施例提供的一种支架跟踪系统的结构图。如图15所示,该支架跟踪系统50包括:
数据获取模块10,用于获取各目标光伏组件的辐照数据;
角度获取模块20,用于获取各目标光伏组件的初始跟踪角度;
电量计算模块30,用于根据辐照数据和初始跟踪角度,调节目标光伏组件的跟踪角度,并计算不同跟踪角度的调节方式对应的目标光伏组件的总发电量;
调节方式确定模块40,用于基于目标光伏组件的总发电量,确定目标光伏组件的跟踪角度的目标调节方式。
本发明实施例所提供的支架跟踪系统可执行本发明任意实施例所提供的支架跟踪方法,具备执行方法相应的功能模块和有益效果。
可选的,在上述实施例的基础上,电量计算模块30包括:
模型建立单元,用于根据各目标光伏组件的辐照数据和各目标光伏组件的初始跟踪角度以及目标光伏组件的类型,建立目标光伏组件的微遮挡模 型;
跟踪角度调节单元,用于基于微遮挡模型,根据各目标光伏组件分别对应的调节方式,调节目标光伏组件的跟踪角度。
可选的,在上述实施例的基础上,跟踪角度调节单元32包括:
跟踪角度第一调节子单元,用于每一目标光伏组件在第一调节方式时,基于微遮挡模型,减小目标光伏组件的跟踪角度,且目标光伏组件的遮挡面积为零;
跟踪角度第二调节子单元,用于每一目标光伏组件在第二调节方式时,基于微遮挡模型,增大目标光伏组件的跟踪角度,且不升高光伏组件的档位;
跟踪角度第三调节子单元,用于每一目标光伏组件在第三调节方式时,基于微遮挡模型,减小目标光伏组件的跟踪角度,降低光伏组件的档位,且遮挡面积大于零。
可选的,在上述实施例的基础上,跟踪角度调节单元32还包括:
第一发电量计算子单元,用于基于微遮挡模型,根据辐照数据和初始跟踪角度,计算每一目标光伏组件在第一调节方式时,光伏组件的第一发电量;
第二发电量计算子单元,用于基于微遮挡模型,根据辐照数据和初始跟踪角度,计算每一目标光伏组件在第二调节方式时,光伏组件的第二发电量;
第三发电量计算子单元,用于基于微遮挡模型,根据辐照数据和初始跟踪角度,计算每一目标光伏组件在第三调节方式时,光伏组件的第三发电量;
总发电量计算子单元,用于基于(n-1)个目标光伏组件的各调节方式对应的第一发电量、第二发电量和第三发电量以及第一排的单个目标光伏组件的发电量,计算n个目标光伏组件的总发电量。
本发明实施例还提供一种光伏设备,图16是本发明实施例提供的一种光伏设备的示意图。如图16所示,该光伏设备400包括上述实施例所述的支架跟踪系统401,可实现上述各实施例所述的支架跟踪方法,具备与所述 支架跟踪方法相同的有益效果。
本发明还提供一种包含计算机可执行指令的可读存储介质50。图17是本发明实施例提供的一种可读存储介质的结构图。所述计算机可执行指令在由计算机处理器51执行时用于执行一种支架跟踪方法,该支架跟踪方法包括:获取各目标光伏组件的辐照数据;获取各目标光伏组件的初始跟踪角度;根据辐照数据和初始跟踪角度,调节目标光伏组件的跟踪角度,并计算不同跟踪角度的调节方式对应的目标光伏组件的总发电量;
基于目标光伏组件的总发电量,确定目标光伏组件的跟踪角度的目标调节方式。
当然,本发明实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本发明任意实施例所提供的支架跟踪方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本发明可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
值得注意的是,上述支架跟踪系统的实施例中,所包括的各个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种支架跟踪方法,其特征在于,包括:
    获取各目标光伏组件的辐照数据;
    获取各所述目标光伏组件的初始跟踪角度;
    根据所述辐照数据和所述初始跟踪角度,调节所述目标光伏组件的跟踪角度,并计算不同所述跟踪角度的调节方式对应的所述目标光伏组件的总发电量;
    基于所述目标光伏组件的总发电量,确定所述目标光伏组件的所述跟踪角度的目标调节方式。
  2. 根据权利要求1所述的方法,其特征在于,所述辐照数据包括所述光伏组件的遮挡面积、所述光伏组件的入射角度和所述光伏组件被遮挡的档位;
    其中,所述档位是基于所述目标光伏组件的类型,由所述目标光伏组件的遮挡面积引起的所述目标光伏组件的发电量损失相同的区域划分的。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述辐照数据和所述初始跟踪角度,调节所述目标光伏组件的跟踪角度,包括:
    根据各所述目标光伏组件的辐照数据和各所述目标光伏组件的所述初始跟踪角度以及所述目标光伏组件的类型,建立所述目标光伏组件的微遮挡模型;
    基于所述微遮挡模型,根据各所述目标光伏组件分别对应的调节方式,调节所述目标光伏组件的跟踪角度;其中,所述调节方式包括:第一调节方式、第二调节方式和第三调节方式。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述微遮挡模型,根据各所述目标光伏组件分别对应的调节方式,调节所述目标光伏组件的跟踪角度,包括:
    每一所述目标光伏组件在所述第一调节方式时,基于所述微遮挡模型,减小所述目标光伏组件的跟踪角度,且所述目标光伏组件的遮挡面积为零;
    每一所述目标光伏组件在所述第二调节方式时,基于所述微遮挡模型,增大所述目标光伏组件的跟踪角度,且不升高所述光伏组件的档位;
    每一所述目标光伏组件在所述第三调节方式时,基于所述微遮挡模型,减小所述目标光伏组件的跟踪角度,降低所述光伏组件的档位,且所述遮挡面积大于零。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述辐照数据和所述初始跟踪角度,计算不同所述跟踪角度的调节方式对应的所述目标光伏组件的总发电量,包括:
    基于所述微遮挡模型,根据所述辐照数据和所述初始跟踪角度,计算每一所述目标光伏组件在所述第一调节方式时,所述光伏组件的第一发电量;
    基于所述微遮挡模型,根据所述辐照数据和所述初始跟踪角度,计算每一所述目标光伏组件在所述第二调节方式时,所述光伏组件的第二发电量;
    基于所述微遮挡模型,根据所述辐照数据和所述初始跟踪角度,计算每一所述目标光伏组件在所述第三调节方式时,所述光伏组件的第三发电量;
    基于(n-1)个所述目标光伏组件的各调节方式对应的第一发电量、第二发电量和第三发电量以及第一排的单个所述目标光伏组件的发电量,计 算n个所述目标光伏组件的总发电量;
    其中,n为大于或等于2的正整数;(n-1)个所述目标光伏组件的各调节方式包括3 (n-1)种组合。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述目标光伏组件的总发电量,确定所述目标光伏组件的所述跟踪角度的目标调节方式,包括:
    根据n个所述目标光伏组件的总发电量进行比较,得到所述目标光伏组件的最大总发电量;
    基于所述目标光伏组件的最大总发电量,确定所述目标光伏组件的发电量为最大总发电量时,各所述目标光伏组件的所述跟踪角度的目标调节方式。
  7. 根据权利要求1所述的方法,其特征在于,在所述基于所述目标光伏组件的总发电量,确定所述目标光伏组件的所述跟踪角度的目标调节方式之后,还包括:
    基于所述跟踪角度的目标调节方式,调节所述目标光伏组件的跟踪角度。
  8. 一种支架跟踪系统,其特征在于,包括:
    数据获取模块,用于获取各目标光伏组件的辐照数据;
    角度获取模块,用于获取各所述目标光伏组件的初始跟踪角度;
    电量计算模块,用于根据所述辐照数据和所述初始跟踪角度,调节所述目标光伏组件的跟踪角度,并计算不同所述跟踪角度的调节方式对应的所述目标光伏组件的总发电量;
    调节方式确定模块,用于基于所述目标光伏组件的总发电量,确定所 述目标光伏组件的所述跟踪角度的目标调节方式。
  9. 一种光伏设备,其特征在于,包括:权利要求8所述的支架跟踪系统。
  10. 一种可读存储介质,其特征在于,当所述可读存储介质中的指令由支架跟踪系统的处理器执行时,使得支架跟踪系统能够执行权利要求1-7任一项所述支架跟踪方法。
PCT/CN2022/126687 2022-01-21 2022-10-21 支架跟踪方法、系统、光伏设备及介质 WO2023138132A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2022434597A AU2022434597A1 (en) 2022-01-21 2022-10-21 Support tracking method and system, photovoltaic device, and medium
EP22921556.1A EP4321958A1 (en) 2022-01-21 2022-10-21 Support tracking method and system, photovoltaic device, and medium
US18/561,771 US20240258961A1 (en) 2022-01-21 2022-10-21 Tracker tracking method and system, photovoltaic apparatus and medium
CONC2023/0015530A CO2023015530A2 (es) 2022-01-21 2023-11-17 Método y sistema de seguimiento de seguidor, aparato y medio fotovoltaico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210070932.8 2022-01-21
CN202210070932.8A CN115993849A (zh) 2022-01-21 2022-01-21 一种支架跟踪方法、系统、光伏设备及介质

Publications (1)

Publication Number Publication Date
WO2023138132A1 true WO2023138132A1 (zh) 2023-07-27

Family

ID=85989300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126687 WO2023138132A1 (zh) 2022-01-21 2022-10-21 支架跟踪方法、系统、光伏设备及介质

Country Status (7)

Country Link
US (1) US20240258961A1 (zh)
EP (1) EP4321958A1 (zh)
CN (1) CN115993849A (zh)
AU (1) AU2022434597A1 (zh)
CL (1) CL2023003463A1 (zh)
CO (1) CO2023015530A2 (zh)
WO (1) WO2023138132A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116562916B (zh) * 2023-07-12 2023-10-10 国网安徽省电力有限公司经济技术研究院 一种光伏直流配电系统经济效益分析评价系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100309330A1 (en) * 2009-06-08 2010-12-09 Adensis Gmbh Method and apparatus for forecasting shadowing for a photovoltaic system
CN107340785A (zh) * 2016-12-15 2017-11-10 江苏林洋新能源科技有限公司 一种基于智能化控制的双面光伏电池组件跟踪方法及控制器
CN111273703A (zh) * 2020-03-24 2020-06-12 江苏中信博新能源科技股份有限公司 一种全方位辐照跟踪方法、检测装置和光伏跟踪器
CN112327999A (zh) * 2020-11-02 2021-02-05 东南大学 基于最大功率点跟踪数据的光伏快速检测及精确诊断方法
CN112947665A (zh) * 2021-02-26 2021-06-11 大连海事大学 光伏阵列在动态阴影遮挡条件下的最大功率跟踪方法
CN113093813A (zh) * 2021-04-02 2021-07-09 阳光电源股份有限公司 基于光伏组件的逆跟踪方法、控制器及光伏跟踪系统
CN213717907U (zh) * 2020-11-23 2021-07-16 广州中旭新能源有限公司 一种智能光伏组件的单轴角度跟踪系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895834B1 (en) * 2011-03-01 2014-11-25 Jack Nachamkin Solar tracker assembly
US11522491B2 (en) * 2020-08-26 2022-12-06 FTC Solar, Inc. Systems and methods for adaptive range of motion for solar trackers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100309330A1 (en) * 2009-06-08 2010-12-09 Adensis Gmbh Method and apparatus for forecasting shadowing for a photovoltaic system
CN107340785A (zh) * 2016-12-15 2017-11-10 江苏林洋新能源科技有限公司 一种基于智能化控制的双面光伏电池组件跟踪方法及控制器
CN111273703A (zh) * 2020-03-24 2020-06-12 江苏中信博新能源科技股份有限公司 一种全方位辐照跟踪方法、检测装置和光伏跟踪器
CN112327999A (zh) * 2020-11-02 2021-02-05 东南大学 基于最大功率点跟踪数据的光伏快速检测及精确诊断方法
CN213717907U (zh) * 2020-11-23 2021-07-16 广州中旭新能源有限公司 一种智能光伏组件的单轴角度跟踪系统
CN112947665A (zh) * 2021-02-26 2021-06-11 大连海事大学 光伏阵列在动态阴影遮挡条件下的最大功率跟踪方法
CN113093813A (zh) * 2021-04-02 2021-07-09 阳光电源股份有限公司 基于光伏组件的逆跟踪方法、控制器及光伏跟踪系统

Also Published As

Publication number Publication date
CL2023003463A1 (es) 2024-06-07
EP4321958A1 (en) 2024-02-14
CO2023015530A2 (es) 2023-12-11
EP4321958A8 (en) 2024-04-03
AU2022434597A1 (en) 2023-11-30
US20240258961A1 (en) 2024-08-01
CN115993849A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
EP4167152A1 (en) Optimization design method for photovoltaic system by taking system benefit optimization as target
CN104281741B (zh) 光伏组件倾角和阵列间距交叉反馈多因素综合计算方法
WO2022105446A1 (zh) 一种智能光伏组件的单轴角度跟踪方法和系统
Cotfas et al. Multiconcept methods to enhance photovoltaic system efficiency
Valdivia et al. Bifacial photovoltaic module energy yield calculation and analysis
CN106371466B (zh) 一种基于双面电池阵列的太阳能跟踪方法
US20190190443A1 (en) Arrangements of a plurality of photovoltaic modules
Bulanyi et al. Shading analysis & improvement for distributed residential grid-connected photovoltaics systems
Yu et al. Development of a 2D temperature-irradiance coupling model for performance characterizations of the flat-plate photovoltaic/thermal (PV/T) collector
WO2023138132A1 (zh) 支架跟踪方法、系统、光伏设备及介质
CN107464038A (zh) 一种太阳能光伏发电站的设计方法及系统
WO2023109531A1 (zh) 一种跟踪控制方法及装置
Hu et al. A methodology for calculating photovoltaic field output and effect of solar tracking strategy
McIntosh et al. The optimal tilt angle of monofacial and bifacial modules on single-axis trackers
Ernst et al. Accurate modelling of the bifacial gain potential of rooftop solar photovoltaic systems
Sun et al. Development and validation of a concise and anisotropic irradiance model for bifacial photovoltaic modules
Tian et al. Performance prediction of a curved-type solar balcony combined with the flexible PV/T system during the non-heating season
CN105553386A (zh) 占地集约化光伏阵列
Tao et al. A novel combined solar concentration/wind augmentation system: Constructions and preliminary testing of a prototype
US20230078507A1 (en) Multi-phase backtracking of photovoltaic modules
Stein Bifacial Photovoltaic Performance Optimization Using Ray Tracing and High Performance Computing.
CN108549416B (zh) 光伏板日光追踪方法及装置
Russell et al. Modelling bifacial solar energy yield for single-axis tracked systems with racking
CN109726459A (zh) 一种双面光伏组件的间距优化方法
Mao et al. Optimization Design of Roof PV Array Topology Based on Matlab and PVsyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 805270

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2022921556

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202317076362

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022434597

Country of ref document: AU

Ref document number: AU2022434597

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022921556

Country of ref document: EP

Effective date: 20231107

WWE Wipo information: entry into national phase

Ref document number: 18561771

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022434597

Country of ref document: AU

Date of ref document: 20221021

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023024497

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 523451590

Country of ref document: SA

WWE Wipo information: entry into national phase

Ref document number: 523451590

Country of ref document: SA

ENP Entry into the national phase

Ref document number: 112023024497

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231123

NENP Non-entry into the national phase

Ref country code: DE