WO2022002045A1 - 信号的处理方法及装置、存储介质、电子装置 - Google Patents

信号的处理方法及装置、存储介质、电子装置 Download PDF

Info

Publication number
WO2022002045A1
WO2022002045A1 PCT/CN2021/103096 CN2021103096W WO2022002045A1 WO 2022002045 A1 WO2022002045 A1 WO 2022002045A1 CN 2021103096 W CN2021103096 W CN 2021103096W WO 2022002045 A1 WO2022002045 A1 WO 2022002045A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital signal
processing
signal
activation function
effect compensation
Prior art date
Application number
PCT/CN2021/103096
Other languages
English (en)
French (fr)
Inventor
钟一鸣
杨波
黄新刚
贺江艳
马壮
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/013,400 priority Critical patent/US20230224041A1/en
Priority to EP21832170.1A priority patent/EP4175201A4/en
Publication of WO2022002045A1 publication Critical patent/WO2022002045A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6163Compensation of non-linear effects in the fiber optic link, e.g. self-phase modulation [SPM], cross-phase modulation [XPM], four wave mixing [FWM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/2525Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect

Definitions

  • the present disclosure relates to, but is not limited to, the field of communications.
  • Optical fiber communication system is an important infrastructure for carrying information transmission tasks. Compared with wireless communication, optical fiber communication has the advantages of large bandwidth and low loss, and can support optical transmission networks of dozens or even hundreds of kilometers. Whether it is the optical interconnection or optical access network between data centers from 2km to 20km, or the metropolitan area network or backbone network of hundreds of thousands of kilometers, the optical fiber analog signal will be affected by the entire transmission network. The impairment of various noises leads to a decrease in the signal-to-noise ratio.
  • the present disclosure provides a signal processing method, including: after receiving an optical analog signal, converting the optical analog signal into a digital signal; and performing nonlinear effect compensation processing on the digital signal.
  • the present disclosure also provides a signal processing device, comprising: a conversion module configured to convert the optical analog signal into a digital signal after receiving the optical analog signal; and a processing module configured to convert the digital signal to a digital signal.
  • the signal is processed for nonlinear effect compensation.
  • the present disclosure also provides a computer-readable storage medium having a computer program stored therein, wherein the computer program is configured to execute any of the methods described herein when run.
  • the present disclosure also provides an electronic device comprising a memory and a processor having a computer program stored in the memory, the processor being configured to execute the computer program to perform any of the methods described herein.
  • Fig. 1 is the hardware structure block diagram of the optical communication receiving end that realizes the signal processing method of the present disclosure
  • FIG. 2 is a flowchart of a signal processing method according to the present disclosure
  • FIG. 3 is a structural block diagram of a signal processing apparatus according to the present disclosure.
  • FIG. 4 is a schematic diagram of a process of digital signal processing at a receiving end according to an exemplary embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of the architecture of an equalizer according to an example embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of the architecture of a forward feedback equalizer according to an example embodiment of the present disclosure
  • FIG. 7 is a schematic diagram illustrating a comparison of the equalization effect between an equalization architecture according to an exemplary embodiment of the present disclosure and an equalizer architecture in the related art
  • FIG. 8 is a schematic diagram of the architecture of a backward feedback equalizer according to an example embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the architecture of a forward plus backward feedback equalizer according to an example embodiment of the present disclosure.
  • Optical fiber communication system is an important infrastructure for carrying information transmission tasks. Compared with wireless communication, optical fiber communication has the advantages of large bandwidth and low loss, and can support optical transmission networks of dozens or even hundreds of kilometers. Whether it is the optical interconnection or optical access network between data centers from 2km to 20km, or the metropolitan area network or backbone network of hundreds of thousands of kilometers, the optical fiber analog signal will be affected by the entire transmission network. The impairment of various noises leads to a decrease in the signal-to-noise ratio. Among them, there are two factors that have the greatest influence.
  • ISI Inter-Symbol Interference
  • digital signal processing mainly compensates for the dispersion in the optical fiber link and the intersymbol crosstalk caused by the limited bandwidth of the device, but cannot deal well with the signal damage caused by the nonlinear effect in the link.
  • FIG. 1 is a block diagram of the hardware structure of the optical communication receiving end implementing the signal processing method of the present disclosure.
  • the optical communication receiving end may include one or more (only one is shown in FIG. 1 ) processor 102 (the processor 102 may include, but is not limited to, a microprocessor MCU or a programmable logic device FPGA, etc.) device) and a memory 104 configured to store data, wherein the above-mentioned optical communication receiving end may further include a transmission device 106 and an input and output device 108 for communication functions.
  • the structure shown in FIG. 1 is only for illustration, and does not limit the structure of the optical communication receiving end.
  • the optical communication receiving end may further include more or less components than those shown in FIG. 1 , or have a different configuration than that shown in FIG. 1 .
  • the memory 104 can be configured to store computer programs, for example, software programs and modules of application software, such as computer programs corresponding to the signal processing methods in the present disclosure. A functional application and data processing are implemented, namely, the above-mentioned method is implemented.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely from the processor 102, and these remote memories may be connected to the optical communication receiver through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • Transmission device 106 is configured to receive or transmit data via a network.
  • a specific example of the above-mentioned network may include a wireless network provided by a communication provider at the optical communication receiving end.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station so as to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • the optical communication receiving end may also include an analog-to-digital conversion module configured to convert the optical analog signal into a digital signal, and then use the processor 102 to execute the computer program stored in the memory 104 to further process the digital signal.
  • an analog-to-digital conversion module configured to convert the optical analog signal into a digital signal, and then use the processor 102 to execute the computer program stored in the memory 104 to further process the digital signal.
  • FIG. 2 is a flowchart of the signal processing method according to the present disclosure. As shown in FIG. 2 , the method may include the following steps S202 and S204.
  • step S202 after receiving the optical analog signal, the optical analog signal is converted into a digital signal.
  • step S204 a nonlinear effect compensation process is performed on the digital signal.
  • the linear filtering process can compensate for the dispersion in the optical fiber link and the intersymbol interference caused by the limited bandwidth of the device, so as to better correct the signal.
  • the digital signal is subjected to nonlinear effect compensation processing, which can further compensate the nonlinear damage in the optical communication process and better correct the signal.
  • the digital signal subjected to nonlinear effect compensation processing may be a signal that has not undergone linear filtering processing, that is, in other exemplary embodiments, the optical-analog signal is converted After generating the digital signal, the digital signal may be subjected to nonlinear effect compensation processing, and then the digital signal subjected to the nonlinear effect compensation processing may be subjected to linear filtering processing.
  • the method further includes: after performing the nonlinear effect compensation processing on the digital signal, determining a processing error according to the digital signal after the nonlinear effect compensation processing, wherein the processing error It is used to indicate the error between the processed digital signal and the preset processing target; the tap coefficient is adjusted according to the processing error, wherein the tap coefficient is used to perform the linear filtering process on the digital signal.
  • the processing target may be a target of some preset processing parameters, such as a threshold value, a preset range, and the like.
  • the method further includes: after performing nonlinear effect compensation processing on the digital signal, performing linear filtering processing on the digital signal subjected to the nonlinear effect compensation processing.
  • the method further includes: after performing the nonlinear effect compensation processing on the digital signal, determining a processing error according to the digital signal after the nonlinear effect compensation processing, wherein the The processing error is used to indicate the error between the processed digital signal and a preset processing target; the tap coefficient is adjusted according to the processing error, wherein the tap coefficient is used to perform the linear filtering process on the digital signal.
  • performing the nonlinear effect compensation processing on the digital signal includes: using an activation function to perform the nonlinear effect compensation processing on the digital signal.
  • the activation function satisfies the following conditions: the response curve of the activation function is a nonlinear function curve; and the activation function is a monotonically increasing or monotonically decreasing function; and, the activation function is in the number
  • the signal's data range is smooth and derivative.
  • the activation function further satisfies at least one of the following conditions: the output value of the activation function is between 0-1 or -1-1; the derivative of the activation function is acceptable. It should be noted that if the output value of the activation function is between 0 and 1 or -1 to 1, the activation function can be consistent with the logical value after the symbol demapping of the communication system, which is helpful for the processing of digital signals.
  • the activation function includes one of the following: a Sigmoid function, a Tanh function, or a Leaky ReLU function.
  • module may be a combination of software and/or hardware that implements a predetermined function.
  • apparatus described in the following embodiments is preferably implemented in software, implementations in hardware, or a combination of software and hardware, are also possible and contemplated.
  • the apparatus includes: a conversion module 31 configured to convert the optical analog signal into a digital signal after receiving the optical analog signal;
  • the module 33 is configured to perform nonlinear effect compensation processing on the digital signal.
  • the device further includes: a linear filtering module configured to perform linear filtering processing on the digital signal after converting the optical analog signal into the digital signal; the processing module is further configured to perform linear filtering on the digital signal after converting the optical analog signal into the digital signal; The digital signal after the linear filtering process is subjected to the nonlinear effect compensation process.
  • a linear filtering module configured to perform linear filtering processing on the digital signal after converting the optical analog signal into the digital signal
  • the processing module is further configured to perform linear filtering on the digital signal after converting the optical analog signal into the digital signal
  • the digital signal after the linear filtering process is subjected to the nonlinear effect compensation process.
  • the apparatus further includes: a determining module configured to, after performing the nonlinear effect compensation processing on the digital signal, determine a processing error according to the digital signal after the nonlinear effect compensation processing, Wherein, the processing error is used to indicate the error between the processed digital signal and the preset processing target; the linear filtering module is further configured to adjust the tap coefficient according to the processing error, wherein the tap coefficient is used for the The digital signal is subjected to this linear filtering process.
  • the apparatus further includes: a linear filtering module configured to perform linear filtering processing on the digital signal subjected to the nonlinear effect compensation processing after the nonlinear effect compensation processing is performed on the digital signal .
  • the apparatus further includes: a determining module configured to, after performing the nonlinear effect compensation processing on the digital signal, determine a processing error according to the digital signal after the nonlinear effect compensation processing, Wherein, the processing error is used to indicate the error between the processed digital signal and the preset processing target; the linear filtering module is further configured to adjust the tap coefficient according to the processing error, wherein the tap coefficient is used for the The digital signal is subjected to this linear filtering process.
  • the processing module is further configured to perform the nonlinear effect compensation processing on the digital signal using an activation function.
  • the activation function satisfies the following conditions: the response curve of the activation function is a nonlinear function curve; and the activation function is a monotonically increasing or monotonically decreasing function; and, the activation function is in the number
  • the signal's data range is smooth and derivative.
  • the activation function further satisfies at least one of the following conditions: the output value of the activation function is between 0-1 or -1-1; the derivative of the activation function is acceptable.
  • the activation function includes one of the following: a Sigmoid function, a Tanh function, or a Leaky ReLU function.
  • the above modules can be implemented by software or hardware, and the latter can be implemented in the following ways, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination The forms are located in different processors.
  • the present disclosure adds a nonlinear activation function to the linear equalizer architecture, so that the linear equalizer architecture has a certain nonlinear response, thereby compensating for nonlinear effects. Aiming at the situation that nonlinear factors cannot be well compensated in the related art, the present disclosure proposes a novel equalization compensation architecture, so that the equalizer can not only eliminate the influence of inter-symbol crosstalk, but also perform certain nonlinear compensation. .
  • the present disclosure is mainly aimed at compensating the nonlinear effect of the received signal sent to the equalizer in the digital domain for the nonlinear effect introduced by the optical fiber and devices in the optical fiber transmission link, and the compensation can be realized by computer software algorithm.
  • FIG. 4 is a schematic diagram of a process of digital signal processing at a receiving end according to an exemplary embodiment of the present disclosure. As shown in FIG. 4 , the process includes the following steps: the received analog signal in the optical fiber is first converted into a digital signal through a digital-to-analog conversion module, and then sent to a digital signal. Data recovery and compensation are performed in the digital signal processing chip.
  • the digital signal processing chip generally includes the following functions: resampling: making the sampling rate an integer multiple of the sampling rate required for signal recovery; clock/phase recovery: enabling the receiving end system to recover the clock signal of the data and find the most important value of the data.
  • equalization processing to compensate for the dispersion in the network transmission and the intersymbol interference caused by other factors; the equalization processing also includes the use of activation functions to compensate for nonlinear effects of the signal.
  • the present disclosure adds a nonlinear compensation module on the basis of the equalization compensation architecture, in order to enable the novel equalizer to have the ability to compensate nonlinear signals.
  • the nonlinear compensation module described in this disclosure may be a nonlinear activation function module.
  • FFE Forward Equalization
  • DFE Decision Feedback Equalization
  • FFE+DFE forward equalization
  • FFE Forward Equalization
  • DFE Decision Feedback Equalization
  • the nonlinear activation function should satisfy at least the following three conditions at the same time: the activation function module response curve should be a nonlinear function curve; the activation function should satisfy the monotonically increasing/monotonically decreasing characteristics, and its The output value should be between 0 to 1 or -1 to 1, which is consistent with the logical value after the symbol demapping of the communication system; the activation function should meet the characteristics of smoothness and derivation within the data range.
  • the function derivative will be embodied in the system algorithm, so the function derivative should have the characteristics of being easy to obtain.
  • the present disclosure provides an equalizer that, in terms of linear filter selection, is adapted to include a forward equalizer (FFE), a backward equalizer (DFE), and a forward plus backward equalizer ( FFE+DFE) and other architectures.
  • FFE forward equalizer
  • DFE backward equalizer
  • FFE+DFE forward plus backward equalizer
  • the equalizer provided by the present disclosure may include training methods based on training sequences, blind equalization methods, and other training methods, such as constant modulus algorithm, in the selection of equalizer training methods.
  • the equalizer provided by the present disclosure may include the least mean square algorithm (Least Mean Square, LMS), the recursive least square method (Recursive Least Square, RLS) in terms of the selection of the convergence algorithm. algorithm.
  • LMS least mean square algorithm
  • RLS recursive Least Square
  • the digital processing solution provided by the present disclosure for compensating the nonlinearity of the link algorithm can compensate the nonlinear distortion in the link to a certain extent.
  • a nonlinear activation function is added, which is easy to iteratively upgrade the technology in the traditional technical reserve, and the hardware system architecture has not changed much, which is convenient to implement.
  • FIG. 5 is a schematic diagram of the architecture of an equalizer according to an exemplary embodiment of the present disclosure.
  • the equalizer architecture can be equivalent to a linear filter for compensating for the intersymbol interference in the signal, but for the signal in the signal nonlinearity cannot be compensated.
  • a nonlinear activation function can be added to the equalizer architecture in order to compensate for the nonlinear part of the signal.
  • the signal processing flow can include the following steps:
  • Step 1 the digital signal X(n) sent to the new equalizer for processing is first processed by a linear filter module, wherein the linear filter architecture includes FFE, DFE, and FFE+DFE, etc.; this step can use a linear filter processing flow or manner, is not limited in the present disclosure.
  • step 2 the digital signal preprocessed by the linear filter is sent to the nonlinear activation function module to generate a nonlinear response.
  • the function of this step is to compensate the nonlinear problem in the system link.
  • the entire equalizer architecture is a linear system, which can only compensate for intersymbol crosstalk, but cannot eliminate nonlinear factors.
  • the role of the activation function here is to increase the nonlinear response of the entire equalizer to the data.
  • the selection of the activation function needs to meet the following constraints:
  • the input and output response curve of the activation function module must be a nonlinear function
  • the activation function should meet the characteristics of monotonically increasing/monotonically decreasing, and its output value should be between 0 to 1 or -1 to 1, which is consistent with the logical value after the symbol demapping of the communication system;
  • the activation function should be smooth and derivable within the data range.
  • the function derivative will be embodied in the system algorithm, so the function derivative should have the characteristics of being easy to obtain.
  • a part of the output signal Y(n) after nonlinear processing is sent back to the linear filter, and the linear filter is modified inversely according to a certain algorithm and error calculation. filter tap coefficients of the filter.
  • the purpose of this step is to better adapt the frequency response curve of the linear filter to the performance of the transmission system.
  • FIG. 6 is a schematic diagram of the architecture of a forward feedback equalizer according to an exemplary embodiment of the present disclosure.
  • the digital bit signal X k to be equalized is delayed by a fractional multiple delayer T/n seconds, where T is the data The symbol period corresponding to one bit, and n is the resampling and upsampling multiple.
  • T is the data
  • n is the resampling and upsampling multiple.
  • the number of delays can be optimized according to actual needs.
  • each data is multiplied by a multiplier and then added.
  • ⁇ 0 to ⁇ n are the tap coefficients that are multiplied by the multiplier before each data.
  • the tap coefficient is set to an initial value at the beginning, and the subsequent value will be adaptively updated with a certain convergence condition based on the training target.
  • the result y k after the accumulation of the tap coefficients will output the nonlinear value Z k through a nonlinear activation function f(x), and the output data will be fed back, and the forward tap coefficients will be updated in reverse based on certain convergence conditions. .
  • FIG. 7 is a schematic diagram illustrating the comparison of the equalization effect between the equalization architecture according to the exemplary embodiment of the present disclosure and the equalizer architecture in the related art, showing that the equalizer architecture of the exemplary embodiment of the present disclosure and the traditional FFE equalizer architecture algorithm are used to simplify the coherent experimental system. Transmission performance comparison results.
  • the nonlinear sources of the entire link include nonlinearity in the laser at the origin, nonlinear detection of the photodetector at the receiving end, and nonlinear effects of the envelope detection method in the back-end analog signal processing.
  • the traditional linear equalizer architecture mainly compensates the intersymbol interference in the signal, and under the condition of 1e-2 bit error, the received optical power is -23dBm.
  • the novel equalizer architecture of the present disclosure while compensating for inter-symbol crosstalk, it also performs a certain nonlinear compensation, and also pays attention to the bit error condition of 1e-2.
  • the received optical power is about -25dBm, and the performance is There is an increase of about 2dB.
  • FIG. 8 is a schematic diagram of the architecture of a backward feedback equalizer according to an exemplary embodiment of the present disclosure, which is an embodiment of adding a nonlinear activation function on the basis of the current backward feedback equalizer (DFE) architecture.
  • DFE current backward feedback equalizer
  • ⁇ 0 to ⁇ n are the tap coefficients to be multiplied before each data.
  • the tap coefficient is set to an initial value at the beginning, and the subsequent value will be based on the training target, and the tap coefficient will be adaptively updated with a certain convergence condition.
  • the convergence conditions include LMS (Least Mean Square, least mean square), RLS (Recursive Least Square, recursive minimum Square method), CMA (Constant Modulus Algorithm) and so on.
  • FIG. 9 is a schematic diagram of the architecture of a forward plus backward feedback equalizer according to an exemplary embodiment of the present disclosure, adding a nonlinear activation to the equalizer architecture combining the forward equalization architecture (FFE) and the backward equalization architecture (DFE) Implementation after function.
  • FFE forward equalization architecture
  • DFE backward equalization architecture
  • the received data bit stream is first summed by a forward equalizer architecture and then used as the input of the latter backward equalizer architecture.
  • the nonlinear data Z k output by the backward equalizer through the nonlinear activation function adaptively updates the tap coefficients of FFE and DFE with a certain convergence algorithm.
  • the present disclosure also provides a computer-readable storage medium storing a computer program in the computer-readable storage medium, wherein the computer program is configured to execute the steps of any one of the above methods when executed.
  • the above-mentioned computer-readable storage medium may include, but is not limited to, a USB flash drive, a read-only memory (Read-Only Memory, referred to as ROM), and a random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or CD-ROM and other media that can store computer programs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the present disclosure also provides an electronic device comprising a memory and a processor, the memory having a computer program stored therein, the processor being configured to execute the computer program to perform the steps in any one of the above methods.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present disclosure can be implemented by a general-purpose computing device, and they can be centralized on a single computing device or distributed in a network composed of multiple computing devices
  • they can be implemented in program code executable by a computing device, so that they can be stored in a storage device and executed by the computing device, and in some cases, can be performed in a different order than shown here.
  • the described steps, or they are respectively made into individual integrated circuit modules, or a plurality of modules or steps in them are made into a single integrated circuit module to realize.
  • the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种信号的处理方法及装置、存储介质、电子装置,所述方法应用于光通信接收端,包括:在接收光模拟信号之后,将所述光模拟信号转换成数字信号;对所述数字信号进行非线性效应补偿处理。

Description

信号的处理方法及装置、存储介质、电子装置
相关申请的交叉引用
本申请要求2020年6月29日提交给中国专利局的第202010606439.4号专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开涉及但不限于通信领域。
背景技术
光纤通信系统是承载信息传递任务的重要基础设施。相比于无线通信,光纤通信具有带宽大、损耗低的优势,可以支撑起几十甚至上百上千公里的光传输网络。不论是从2km到20km之间的数据中心之间的光互连或者光接入网,亦或是上百上千公里的城域网或骨干网,光纤模拟信号在整个传输网络中均会受各种噪声的损伤导致信号信噪比降低。
发明内容
一方面,本公开提供了一种信号的处理方法,包括:在接收光模拟信号之后,将所述光模拟信号转换成数字信号;对所述数字信号进行非线性效应补偿处理。
另一方面,本公开还提供了一种信号的处理装置,包括:转换模块,配置为在接收光模拟信号之后,将所述光模拟信号转换成数字信号;处理模块,配置为对所述数字信号进行非线性效应补偿处理。
另一方面,本公开还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行本文所述任一方法。
另一方面,本公开还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述 计算机程序以执行本文所述任一方法。
附图说明
图1是实现本公开的信号的处理方法的光通信接收端的硬件结构框图;
图2是根据本公开的信号的处理方法的流程图;
图3是根据本公开的信号的处理装置的结构框图;
图4是根据本公开示例实施方式的接收端数字信号处理的过程示意图;
图5是根据本公开示例实施方式的均衡器的架构示意图;
图6是根据本公开示例实施方式的前向反馈均衡器的架构示意图;
图7是根据本公开示例实施方式的均衡架构与相关技术中的均衡器架构均衡效果比较示意图;
图8是根据本公开示例实施方式的后向反馈均衡器的架构示意图;
图9是根据本公开示例实施方式的前向加后向反馈均衡器的架构示意图。
具体实施方式
下文中将参考附图并结合实施方式来详细说明本公开的实施方式。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
光纤通信系统是承载信息传递任务的重要基础设施。相比于无线通信,光纤通信具有带宽大、损耗低的优势,可以支撑起几十甚至上百上千公里的光传输网络。不论是从2km到20km之间的数据中心之间的光互连或者光接入网,亦或是上百上千公里的城域网或骨干网,光纤模拟信号在整个传输网络中均会受各种噪声的损伤导致信号信 噪比降低。其中影响最大的因素有两个,其一是光纤中的各种色散和光电器件带宽受限引入的码间串扰(Inter-Symbol Interference,ISI),另一个就是传输网络中的众多非线性效应影响。因此为了使得接收到的信号能够正确无误地发送到终端用户,需要在接收侧配合数字信号处理进行信号的补偿和恢复。
相关技术中,数字信号处理主要是对光纤链路中的色散及器件带宽受限引入的码间串扰进行补偿,而对链路中的非线性效应带来的信号损伤无法进行很好的处理。
本公开中所提供的方法可以在光通信接收端或者类似的接收装置中执行。以运行在光通信接收端上为例,图1是实现本公开的信号的处理方法的光通信接收端的硬件结构框图。如图1所示,光通信接收端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和配置为存储数据的存储器104,其中,上述光通信接收端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述光通信接收端的结构造成限定。例如,光通信接收端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可配置为存储计算机程序,例如,应用软件的软件程序以及模块,如本公开中的信号的处理方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至光通信接收端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106配置为经由一个网络接收或者发送数据。上述的网络具体实例可包括光通信接收端的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface  Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其配置为通过无线方式与互联网进行通讯。
需要说明的是,光通信接收端还可以包括模数转换模块,配置为将光模拟信号转换成数字信号,再利用处理器102执行存储器104中存储的计算机程序,对数字信号进行进一步处理。
在本公开中提供了一种运行于上述光通信接收端的信号的处理方法,图2是根据本公开的信号的处理方法的流程图,如图2所示,所述方法可以包括如下步骤S202和S204。
在步骤S202,在接收光模拟信号之后,将该光模拟信号转换成数字信号。
在步骤S204,对该数字信号进行非线性效应补偿处理。
通过上述步骤,由于在将光模拟信号转换成数字信号之后,对数字信号进行非线性效应补偿处理,因此,可以解决相关技术中光通信过程中的非线性损伤无法较好的处理的问题,达到提升信号处理精确性的技术效果。
在一个示例性的实施方式中,在将该光模拟信号转换成该数字信号之后,对该数字信号进行线性滤波处理;并且,该对该数字信号进行非线性效应补偿处理,包括:对经过该线性滤波处理之后的该数字信号进行该非线性效应补偿处理。
需要说明的是,线性滤波处理可以对光纤链路中的色散及器件带宽受限引入的码间串扰进行补偿,以更好的修正信号。在线性滤波处理之后,对该数字信号进行非线性效应补偿处理,可以进一步补偿光通信过程中的非线性损伤,更好的修正信号。
需要进一步说明的是,在本公开中,进行非线性效应补偿处理的数字信号可以是未经过线性滤波处理的信号,也就是说,在其它示例性的实施方式中,在将该光模拟信号转换成该数字信号之后,可以先对该数字信号进行非线性效应补偿处理,再将经过该非线性效应补偿处理的数字信号进行线性滤波处理。
在一个示例性的实施方式中,该方法还包括:在该对该数字信号进行该非线性效应补偿处理之后,根据经过该非线性效应补偿处理之后的数字信号确定处理误差,其中,该处理误差用于指示处理后的数字信号与预设的处理目标之间的误差;根据该处理误差调整抽头系数,其中,该抽头系数用于对该数字信号进行该线性滤波处理。
需要说明的是,利用处理后的数字信号与处理目标之间的误差调整抽头系数,可以更好的优化线性滤波处理的处理效果,以不断的接近处理目标。其中,处理目标可以是一些预设的处理参数的目标,例如阈值、预设范围等。
在一个示例性的实施方式中,该方法还包括:在对所述数字信号进行非线性效应补偿处理后,对经过所述非线性效应补偿处理的数字信号进行线性滤波处理。
在一个示例性的实施方式中,该方法还包括:对所述数字信号进行所述非线性效应补偿处理之后,根据经过所述非线性效应补偿处理之后的数字信号确定处理误差,其中,所述处理误差用于指示处理后的数字信号与预设的处理目标之间的误差;根据所述处理误差调整抽头系数,其中,所述抽头系数用于对所述数字信号进行所述线性滤波处理。
在一个示例性的实施方式中,对该数字信号进行非线性效应补偿处理,包括:利用激活函数对该数字信号进行该非线性效应补偿处理。
在一个示例性的实施方式中,该激活函数满足以下条件:该激活函数的响应曲线是一条非线性函数曲线;以及,该激活函数为单调递增或单调递减函数;以及,该激活函数在该数字信号的数据范围内平滑可导。
在一个示例性的实施方式中,该激活函数还满足以下条件至少之一:该激活函数的输出值在0~1或者-1~1之间;该激活函数的导数可取。需要说明的是,激活函数的输出值在0~1或者-1~1之间可以使得激活函数与通信系统符号解映射后的逻辑值保持一致,有助于数字信号的处理。
在一个示例性的实施方式中,该激活函数包括以下之一:Sigmoid函数、Tanh函数或者Leaky ReLU函数。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施方式的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施方式所述的方法。
在本公开中还提供了一种信号的处理装置,该装置用于实现上述实施方式及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施方式所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本公开的信号的处理装置的结构框图,如图3所示,该装置包括:转换模块31,配置为在接收光模拟信号之后,将所述光模拟信号转换成数字信号;处理模块33,配置为对所述数字信号进行非线性效应补偿处理。
通过上述步骤,由于在将光模拟信号转换成数字信号之后,对数字信号进行非线性效应补偿处理,因此,可以解决相关技术中光通信过程中的非线性损伤无法较好的处理的问题,达到提升信号处理精确性的技术效果。
在一个示例性的实施方式中,该装置还包括:线性滤波模块,配置为在将该光模拟信号转换成该数字信号之后,对该数字信号进行线性滤波处理;处理模块还配置为对经过该线性滤波处理之后的该数字信号进行该非线性效应补偿处理。
在一个示例性的实施方式中,该装置还包括:确定模块,配置为在该对该数字信号进行该非线性效应补偿处理之后,根据经过该非线性效应补偿处理之后的数字信号确定处理误差,其中,该处理误差 用于指示处理后的数字信号与预设的处理目标之间的误差;所述线性滤波模块,还配置为根据该处理误差调整抽头系数,其中,该抽头系数用于对该数字信号进行该线性滤波处理。
在一个示例性的实施方式中,该装置还包括:线性滤波模块,配置为在对所述数字信号进行非线性效应补偿处理后,对经过所述非线性效应补偿处理的数字信号进行线性滤波处理。
在一个示例性的实施方式中,该装置还包括:确定模块,配置为在该对该数字信号进行该非线性效应补偿处理之后,根据经过该非线性效应补偿处理之后的数字信号确定处理误差,其中,该处理误差用于指示处理后的数字信号与预设的处理目标之间的误差;所述线性滤波模块,还配置为根据该处理误差调整抽头系数,其中,该抽头系数用于对该数字信号进行该线性滤波处理。
在一个示例性的实施方式中,处理模块还配置为利用激活函数对该数字信号进行该非线性效应补偿处理。
在一个示例性的实施方式中,该激活函数满足以下条件:该激活函数的响应曲线是一条非线性函数曲线;以及,该激活函数为单调递增或单调递减函数;以及,该激活函数在该数字信号的数据范围内平滑可导。
在一个示例性的实施方式中,该激活函数还满足以下条件至少之一:该激活函数的输出值在0~1或者-1~1之间;该激活函数的导数可取。在一个示例性的实施方式中,该激活函数包括以下之一:Sigmoid函数、Tanh函数或者Leaky ReLU函数。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本公开在线性均衡器架构上,增加一个非线性的激活函数,使线性均衡器架构中具有一定非线性的响应,从而补偿非线性效应。本公开针对相关技术中无法很好的对非线性因素进行补偿的情况,提出了一种新型的均衡补偿架构,使得该均衡器既能够消除码间串扰的影 响,也能进行一定的非线性补偿。
本公开主要是针对光纤传输链路中,光纤和器件等引入的非线性效应,在数字域中对送入均衡器的接收信号的非线性效应作补偿,该补偿可以通过计算机软件算法所实现。
图4是根据本公开示例实施方式的接收端数字信号处理的过程示意图,如图4所示,包括以下步骤:接收到的光纤中的模拟信号先经过数模转换模块转成数字信号,再送入数字信号处理芯片中进行数据恢复和补偿。数字信号处理芯片中一般包含以下几个功能:重采样:使得采样率变成信号恢复所需的整数倍采样率;时钟/相位恢复:使得接收端系统恢复出数据的时钟信号,找到数据的最佳采样点及相位点;帧同步:同步找到帧头;均衡处理:补偿网络传输中的色散及其他因素引入的码间串扰;均衡处理还包括利用激活函数对信号进行非线性效应补偿处理。
本公开在均衡补偿架构基础上,增加非线性补偿模块,目的在于使该新型均衡器具备对非线性信号的补偿能力。本公开中所述非线性补偿模块可以是非线性激活函数模块。
在一个示例性的实施方式中,针对均衡技术模块,在均衡器架构上可以采用前向均衡(Feed Forward Equalization,FFE)、后向均衡(Decision Feedback Equalization,DFE)或者FFE+DFE等结构。
在一个示例性的实施方式中,该非线性激活函数应至少同时满足以下三个条件:激活函数模块响应曲线需是一条非线性函数曲线;激活函数应满足单调递增/单调递减的特性,并且其输出值应在0~1或者-1~1之间,与通信系统符号解映射后的逻辑值保持一致;激活函数应满足数据范围内平滑可导的特性。
在一个示例性的实施方式中,函数导数会在系统算法中体现,故函数导数应具备容易求取的特性。
在一个示例性的实施方式中,本公开提供的均衡器,在线性滤波器选择上,适用于包括前向均衡器(FFE)、后向均衡器(DFE)以及前向加后向均衡器(FFE+DFE)等多种架构。
在一个示例性的实施方式中,本公开提供的均衡器,在均衡器 训练方式的选择上,可以包含基于训练序列和盲均衡方式以及其他的训练方式,如恒模算法等。
在一个示例性的实施方式中,本公开提供的均衡器,在收敛算法选择上,可以包含最小均方算法(Least Mean Square,LMS)、递推最小二乘法(Recursive Least Square,RLS)等常见算法。
本公开提供的补偿链路非线性算法上的数字处理方案,可以对链路中的非线性失真进行一定的补偿。在传统常见的均衡器架构基础上仅增加了一个非线性激活函数,易于在传统技术储备中进行技术迭代升级,硬件系统架构上变动不大,方便实现。
图5是根据本公开示例实施方式的均衡器的架构示意图,如图5所示,均衡器架构可以等价于一个线性的滤波器,用于补偿信号中的码间串扰情况,但对于信号中的非线性无法进行补偿。可以在均衡器架构上添加了一个非线性的激活函数,目的是为了补偿信号中的非线性部分。信号处理流程可以包括以下几步:
步骤一,送入新型均衡器处理的数字信号X(n)先经过一个线性的滤波器模块处理,其中线性滤波器架构包括FFE、DFE以及FFE+DFE等;该步骤可以采用线性滤波器处理流程或方式,在本公开并不作限定。
步骤二,经过线性滤波器预处理后的数字信号再送入非线性激活函数模块中产生非线性响应,该步骤的作用在于补偿系统链路中的非线性问题。该步骤的具体处理流程可参考其他示例实施方式。
需要强调的是,相关技术中的信号处理并没有非线性激活函数这一步,整个均衡器架构是一个线性系统,只能对结果做码间串扰的补偿,而对非线性因素无法消除。激活函数在此处的作用即是增加整个均衡器对数据的非线性响应。
在一个示例性的实施方式中,对于激活函数的选择需要满足以下几个限制要求:
1、激活函数模块输入输出响应曲线需是一条非线性的函数;
2、激活函数应满足单调递增/单调递减的特性,并且其输出值应在0~1或者-1~1之间,与通信系统符号解映射后的逻辑值保持一致;
3、激活函数应满足数据范围内平滑可导的特性。
在一个示例性的实施方式中,函数导数会在系统算法中体现,故函数导数应具备容易求取的特性。
在一个示例性的实施方式中,非线性的激活函数可以包括,如Sigmoid:y=1/(1+e -x)函数,Tanh:y=(1-e -x)/(1+e -x)函数或者Leaky ReLU函数等。
如图5所示,在一个示例性的实施方式中,经过非线性处理后的输出信号Y(n),一部分再送回线性滤波器中,根据基于一定的算法和误差计算,反向修改线性滤波器的滤波器抽头系数。该步骤的目的在于使得线性滤波器的频响曲线更好地适应传输系统的性能。该步骤的具体处理流程可参考其他示例实施方式。
另外,针对前向反馈均衡器的训练目标方式、收敛算法不做强制要求,可应用多种训练方式。以上只是举例说明,本公开并不以此作为限制。
图6是根据本公开示例实施方式的前向反馈均衡器的架构示意图,如图6所示,需要均衡的数字比特信号X k经过分数倍的延迟器延迟T/n秒,其中T是数据一个比特对应的符号周期,n为重采样上采样倍数。延迟器个数可根据实际需求进行优化。延迟后的数据,每一个数据经过一个乘法器相乘后再相加。ω 0到ω n为每个数据前经过乘法器时相乘的抽头系数。抽头系数刚开始设置一个初始值,后续值将基于训练目标,以一定的收敛条件自适应更新。经过抽头系数累加后的结果y k将经过一个非线性激活函数f(x)输出非线性值Z k,同时输出的数据还要后向反馈回去,基于一定的收敛条件反向更新前向抽头系数。
图7是根据本公开示例实施方式的均衡架构与相关技术中的均衡器架构均衡效果比较示意图,展示了本公开示例实施方式的均衡器架构与传统FFE均衡器架构算法用于简化相干实验系统的传输性能比较结果。在简化相干系统中,整个链路的非线性来源包括发端激光器内的非线性、收端光电探测器的非线性检测以及后端模拟信号处理中的包络检测方式的非线性效应等。传统的线性均衡器架构主要补偿 信号中的码间串扰,关注1e-2的误码条件下,其接收光功率在-23dBm。相对应的,根据本公开的新型均衡器架构,在补偿码间串扰的同时,也进行了一定的非线性补偿,同样关注1e-2的误码条件,其接收光功率在-25dBm左右,性能上有2dB左右的提升。
图8是根据本公开示例实施方式的后向反馈均衡器的架构示意图,为在目前后向反馈均衡器(DFE)架构的基础上,增加一个非线性激活函数的实施方式。如图8所示,与前向反馈均衡器不同的地方在于,其输入的数据比特信号先经过非线性激活函数,输出非线性数据Zk后,其中一路作为输出,另一路送入各延迟器中经过分数倍的延迟T/n秒,其中T是数据一个比特对应的符号周期,n为重采样上采样倍数。延迟器个数可根据实际需求进行优化。延迟后的数据,每一个数据经过一个乘法器相乘后再相加。ω 0到ω n为每个数据前需要相乘的抽头系数。抽头系数刚开始设置一个初始值,后续值将基于训练目标,以一定的收敛条件自适应更新抽头系数,该收敛条件包括LMS(Least Mean Square,最小均方)、RLS(Recursive Least Square,递归最小二乘法)、CMA(Constant Modulus Algorithm)等等。
图9是根据本公开示例实施方式的前向加后向反馈均衡器的架构示意图,把前向均衡架构(FFE)和后向均衡架构(DFE)组合的均衡器架构基础上增加一个非线性激活函数后的实施方式。如图9所示,接收到的数据比特流先经过一个前向均衡器架构求和后作为后一个后向均衡器架构的输入。同时后向均衡器经过非线性激活函数输出的非线性数据Z k以一定的收敛算法自适应更新FFE和DFE的抽头系数。
本公开还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法中的步骤。
在一个示例性实施方式中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法中的步骤。
在一个示例性实施方式中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施方式中的具体示例可以参考上述实施方式及示例性实施方式中所描述的示例,本实施方式在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的示例性实施方式而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种信号的处理方法,应用于光通信接收端,包括:
    在接收光模拟信号之后,将所述光模拟信号转换成数字信号;
    对所述数字信号进行非线性效应补偿处理。
  2. 根据权利要求1所述的方法,还包括:
    在将所述光模拟信号转换成所述数字信号之后,对所述数字信号进行线性滤波处理;
    所述对所述数字信号进行非线性效应补偿处理,包括:对经过所述线性滤波处理之后的所述数字信号进行所述非线性效应补偿处理。
  3. 根据权利要求2所述的方法,还包括:
    对所述数字信号进行所述非线性效应补偿处理之后,根据经过所述非线性效应补偿处理之后的数字信号确定处理误差,其中,所述处理误差用于指示处理后的数字信号与预设的处理目标之间的误差;
    根据所述处理误差调整抽头系数,其中,所述抽头系数用于对所述数字信号进行所述线性滤波处理。
  4. 根据权利要求1所述的方法,还包括:在对所述数字信号进行非线性效应补偿处理后,对经过所述非线性效应补偿处理的数字信号进行线性滤波处理。
  5. 根据权利要求4所述的方法,还包括:对所述数字信号进行所述非线性效应补偿处理之后,根据经过所述非线性效应补偿处理之后的数字信号确定处理误差,其中,所述处理误差用于指示处理后的数字信号与预设的处理目标之间的误差;
    根据所述处理误差调整抽头系数,其中,所述抽头系数用于对所述数字信号进行所述线性滤波处理。
  6. 根据权利要求1至5中的任一项所述的方法,其中,对所述数字信号进行非线性效应补偿处理,包括:利用激活函数对所述数字信号进行所述非线性效应补偿处理。
  7. 根据权利要求6所述的方法,其中,所述激活函数满足以下 条件:
    所述激活函数的响应曲线是一条非线性函数曲线;以及,
    所述激活函数为单调递增或单调递减函数;以及,
    所述激活函数在所述数字信号的数据范围内平滑可导。
  8. 根据权利要求6所述的方法,其中,所述激活函数满足以下条件至少之一:
    所述激活函数的输出值在0~1或者-1~1之间;
    所述激活函数的导数可取。
  9. 根据权利要求6所述的方法,其中,所述激活函数包括以下之一:
    Sigmoid函数、Tanh函数或者Leaky ReLU函数。
  10. 一种信号的处理装置,包括:
    转换模块,配置为在接收光模拟信号之后,将所述光模拟信号转换成数字信号;
    处理模块,配置为对所述数字信号进行非线性效应补偿处理。
  11. 根据权利要求10所述的信号的处理装置,还包括:线性滤波模块,配置为在将所述光模拟信号转换成所述数字信号之后,对所述数字信号进行线性滤波处理;
    其中,所述处理模块还配置为对经过所述线性滤波处理之后的所述数字信号进行所述非线性效应补偿处理。
  12. 根据权利要求11所述的信号的处理装置,还包括:确定模块,配置为在该对该数字信号进行该非线性效应补偿处理之后,根据经过该非线性效应补偿处理之后的数字信号确定处理误差,其中,该处理误差用于指示处理后的数字信号与预设的处理目标之间的误差;所述线性滤波模块,还配置为根据该处理误差调整抽头系数,其中,该抽头系数用于对该数字信号进行该线性滤波处理。
  13. 根据权利要求10所述的信号的处理装置,还包括:线性滤波模块,配置为在对所述数字信号进行非线性效应补偿处理后,对经过所述非线性效应补偿处理的数字信号进行线性滤波处理。
  14. 根据权利要求13所述的信号的处理装置,还包括:确定模 块,配置为在该对该数字信号进行该非线性效应补偿处理之后,根据经过该非线性效应补偿处理之后的数字信号确定处理误差,其中,该处理误差用于指示处理后的数字信号与预设的处理目标之间的误差;所述线性滤波模块,还配置为根据该处理误差调整抽头系数,其中,该抽头系数用于对该数字信号进行该线性滤波处理。
  15. 根据权利要求10至14所述的信号的处理装置,其中,处理模块还配置为利用激活函数对该数字信号进行该非线性效应补偿处理。
  16. 根据权利要求15所述的信号的处理装置,其中,所述激活函数满足以下条件:
    所述激活函数的响应曲线是一条非线性函数曲线;以及,
    所述激活函数为单调递增或单调递减函数;以及,
    所述激活函数在所述数字信号的数据范围内平滑可导。
  17. 根据权利要求15所述的信号的处理装置,其中,所述激活函数满足以下条件至少之一:
    所述激活函数的输出值在0~1或者-1~1之间;
    所述激活函数的导数可取。
  18. 根据权利要求15所述的信号的处理装置,其中,所述激活函数包括以下之一:
    Sigmoid函数、Tanh函数或者Leaky ReLU函数。
  19. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至9任一项中所述的方法。
  20. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至9任一项中所述的方法。
PCT/CN2021/103096 2020-06-29 2021-06-29 信号的处理方法及装置、存储介质、电子装置 WO2022002045A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/013,400 US20230224041A1 (en) 2020-06-29 2021-06-29 Signal processing method and device, storage medium, and electronic device
EP21832170.1A EP4175201A4 (en) 2020-06-29 2021-06-29 SIGNAL PROCESSING METHOD AND APPARATUS, STORAGE MEDIUM AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010606439.4A CN113938199A (zh) 2020-06-29 2020-06-29 一种信号的处理方法及装置、存储介质、电子装置
CN202010606439.4 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022002045A1 true WO2022002045A1 (zh) 2022-01-06

Family

ID=79273136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103096 WO2022002045A1 (zh) 2020-06-29 2021-06-29 信号的处理方法及装置、存储介质、电子装置

Country Status (4)

Country Link
US (1) US20230224041A1 (zh)
EP (1) EP4175201A4 (zh)
CN (1) CN113938199A (zh)
WO (1) WO2022002045A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130193A1 (en) * 2010-04-16 2011-10-20 Alcatel-Lucent Usa Inc. Electronic nonlinearity compensation for optical transmission systems
US20130108260A1 (en) * 2011-10-28 2013-05-02 Fujitsu Limited Method and apparatus for adaptive nonlinear equalization in a polarization multiplexing optical communication system
CN104683031A (zh) * 2013-11-29 2015-06-03 中兴通讯股份有限公司 一种消除非线性效应的方法、发射机及接收机
CN108768541A (zh) * 2018-05-28 2018-11-06 武汉邮电科学研究院有限公司 用于通信系统接收端色散和非线性补偿的方法及装置
CN111181655A (zh) * 2020-01-06 2020-05-19 同济大学 一种基于bp算法和非线性dfe算法的光接收机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1755296B1 (en) * 2000-11-22 2010-01-20 Broadcom Corporation System to identify and characterize nonlinearities in optical communications channels
WO2012108421A1 (ja) * 2011-02-07 2012-08-16 日本電信電話株式会社 デジタル信号処理装置
JP6135415B2 (ja) * 2013-09-11 2017-05-31 富士通株式会社 非線形歪み補償装置及び方法並びに光受信器
US10148363B2 (en) * 2015-12-08 2018-12-04 Zte Corporation Iterative nonlinear compensation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011130193A1 (en) * 2010-04-16 2011-10-20 Alcatel-Lucent Usa Inc. Electronic nonlinearity compensation for optical transmission systems
US20130108260A1 (en) * 2011-10-28 2013-05-02 Fujitsu Limited Method and apparatus for adaptive nonlinear equalization in a polarization multiplexing optical communication system
CN104683031A (zh) * 2013-11-29 2015-06-03 中兴通讯股份有限公司 一种消除非线性效应的方法、发射机及接收机
CN108768541A (zh) * 2018-05-28 2018-11-06 武汉邮电科学研究院有限公司 用于通信系统接收端色散和非线性补偿的方法及装置
CN111181655A (zh) * 2020-01-06 2020-05-19 同济大学 一种基于bp算法和非线性dfe算法的光接收机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4175201A4 *

Also Published As

Publication number Publication date
EP4175201A4 (en) 2023-12-27
EP4175201A1 (en) 2023-05-03
CN113938199A (zh) 2022-01-14
US20230224041A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
US10505638B2 (en) High-speed receiver architecture
US8837626B2 (en) Conditional adaptation of linear filters in a system having nonlinearity
US7158567B2 (en) Method and apparatus for improved high-speed FEC adaptive equalization
US8731040B2 (en) Adapting transfer functions of continuous-time equalizers
US8743945B2 (en) Shift register based downsampled floating tap decision feedback equalization
US7738547B2 (en) Method and apparatus for improved high-speed adaptive equalization
US7003228B2 (en) Method and apparatus for improved high-speed adaptive equalization
EP1392013B1 (en) Hybrid adaptive equalizer for optical communication systems
US8582635B2 (en) Sparse and reconfigurable floating tap feed forward equalization
JPH08237520A (ja) テレビジョン信号等化装置
US20200366536A1 (en) Optical transmission apparatus and method for processing signal based on direct detection
US8446941B2 (en) Equalizer employing adaptive algorithm for high speed data transmissions and equalization method thereof
US20020191257A1 (en) Compensation of polarization mode dispersion in single mode fiber for maximum-likelihood sequence estimation
FR2786349A1 (fr) Egaliseur de contre-reaction de decision et procede de mise a jour des coefficients d'index de celui-ci
WO2022002045A1 (zh) 信号的处理方法及装置、存储介质、电子装置
US11005567B2 (en) Efficient multi-mode DFE
CN116668245A (zh) 联合时钟恢复和盲均衡的dsp装置、接收端及系统
JP4924276B2 (ja) 分散等化方法、分散等化装置および光トランシーバ
EP3217618B1 (en) Signal compensation method and device
CN113517934B (zh) 一种信号处理方法及相关设备
WO2023144966A1 (ja) シンボル判定装置、シンボル判定方法及びプログラム
CN114208065A (zh) 用于接收机的噪声消除设备和方法
WO2018086117A1 (zh) 一种误差处理的方法及误差处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021832170

Country of ref document: EP

Effective date: 20230130