WO2022001981A1 - Sofc system control method and device, and fcu - Google Patents

Sofc system control method and device, and fcu Download PDF

Info

Publication number
WO2022001981A1
WO2022001981A1 PCT/CN2021/102835 CN2021102835W WO2022001981A1 WO 2022001981 A1 WO2022001981 A1 WO 2022001981A1 CN 2021102835 W CN2021102835 W CN 2021102835W WO 2022001981 A1 WO2022001981 A1 WO 2022001981A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
mass flow
molar
water
hydrogen
Prior art date
Application number
PCT/CN2021/102835
Other languages
French (fr)
Inventor
Chao YU
Xuesong SHEN
Original Assignee
Ceres Intellectual Property Company Limited
Weichai Power Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceres Intellectual Property Company Limited, Weichai Power Co., Ltd. filed Critical Ceres Intellectual Property Company Limited
Publication of WO2022001981A1 publication Critical patent/WO2022001981A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1233Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

The invention provides an SOFC system control method and device and an FCU. The method comprises steps of obtaining a mass flow of fuel according to a current target value needed by an SOFC stack and a molar ratio determined based on detected natural gas fuel components; obtaining a mass flow of water based on the fuel mass flow and a water-carbon ratio meeting the reforming requirement; controlling the opening degree of a second control valve according to the fuel mass flow, and controlling the opening degree of a third control valve according to the water mass flow; and detecting the temperature of the SOFC stack in real time, and controlling the opening degree of a first control valve according to the temperature of the SOFC stack. In this solution, natural gas fuel components are detected and their molar ratio is determined. The needed fuel mass flow and water mass flow are calculated according to the molar ratio of the natural gas fuel components, the current target value and the water-carbon ratio, so that the opening degrees of the respective control valves of the fuel and deionized water are controlled, and the opening degree of the control valve corresponding to air is controlled according to the temperature of the SOFC stack to operation optimization of the SOFC system and increase the conversion rate of the natural gas fuel.

Description

SOFC SYSTEM CONTROL METHOD AND DEVICE, AND FCU TECHNICAL FIELD
The present invention relates to the technical field of the mechanical industry, particularly to an SOFC system control method and device, and an FCU.
BACKGROUND ART
A solid oxide fuel cell (SOFC) is a device, which efficiently converts the chemical energy of hydrocarbons and oxidants in a natural gas fuel into electrical energy at medium and high temperature.
At present, the type and concentration of a natural gas fuel are often determined in advance through laboratory testing, but in actual applications, the type and concentration of the natural gas fuel on the market fluctuate greatly. On the one hand, it is possible that the conversion rate of the actual natural gas fuel in the SOFC system is too high, resulting in increased attenuation or damage to the SOFC system. On the other hand, it is possible that the conversion rate of the actual natural gas fuel in the SOFC system is too low.
Therefore, how to provide an SOFC system control solution that can adapt to the needs of different types and concentrations of natural gas fuels is a problem that the present application addresses.
SUMMARY OF THE INVENTION
Aspects of the present invention provide an SOFC system control method and device, and a fuel cell control unit (FCU) to address the problem of not being adaptable to the needs of different types and concentrations of natural gas fuels in the prior art methods, devices and control units.
The first aspect of the present invention discloses an SOFC system control method, a first control valve controlling air inflow, a second control valve controlling fuel inflow and a third control valve controlling deionized water inflow are arranged in the SOFC system, the fuel component detector is arranged between the second control valve and a fuel inlet,  and the SOFC system control method comprises steps of: obtaining a mass flow of the fuel to be used according to a current target value needed by an SOFC stack and a molar ratio determined based on natural gas fuel components detected by a fuel gas component detector; obtaining a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting the reforming requirement; controlling the opening degree of the second control valve according to the mass flow of the fuel to be used, and controlling the opening degree of the third control valve according to the mass flow of the water to be used; and detecting the temperature of the SOFC stack in real time and controlling the opening degree of the first control valve according to the temperature of the SOFC stack.
Optionally, the step of obtaining a mass flow of the fuel to be used according to a preset current target value and a molar ratio determined based on natural gas fuel components detected by a fuel gas component detector comprises steps of: calculating according to the preset current target value and the fuel utilization target value to determine a molar flow of hydrogen; obtaining the natural gas fuel components detected by the fuel gas component detector, and determining the molar ratio of the natural gas fuel components based on the natural gas fuel components, which include carbon atoms, hydrogen atoms and oxygen atoms; determining respective coefficients of hydrogen and carbon dioxide in the mixed gas generated from the reforming of carbon-hydrogen-oxygen compounds according to the molar ratio of the natural gas fuel components; and calculating using the molar flow of hydrogen, the coefficient of hydrogen and the preset molar gas volume to obtain the mass flow of the fuel to be used.
Optionally, the step of calculating using the molar flow of hydrogen, the coefficient of hydrogen and the preset molar gas volume to obtain the mass flow of the fuel to be used comprises steps of: calculating the quotient of the molar flow of hydrogen and the coefficient of hydrogen to obtain the molar flow of the fuel; determining a fuel density according to the molar flow of the fuel; and calculating the product of the molar flow of the fuel, the preset molar gas volume and the fuel density to obtain the mass flow of the fuel to be used.
Optionally, the step of obtaining a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting the reforming requirement comprises steps of: determining the molar flow of the fuel according to the fuel mass flow; and calculating the product of the molar flow of the fuel, the water-carbon ratio meeting the reforming requirement, and the standard molar mass of water to obtain the mass flow of the water to  be used.
Optionally, the process of obtaining the current target value needed by the SOFC stack comprises steps of: obtaining the power demand of the loads; and generating a current control instruction based on the power demand of the loads, so that DCDC controls the current SOFC stack to output a current target value needed by the SOFC stack based on the current control instruction.
The second aspect of the present invention discloses an SOFC system control device, comprising: a first processing module, used for obtaining a mass flow of the fuel to be used according to a current target value needed by an SOFC stack and a molar ratio determined based on natural gas fuel components detected by a fuel gas component detector; a second processing module, used for obtaining a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting the reforming requirement; a first control module, used for controlling the opening degree of the second control valve according to the mass flow of the fuel to be used, and controlling the opening degree of the third control valve according to the mass flow of the water to be used; and a second control module, used for detecting the temperature of the SOFC stack in real time, and controlling the opening degree of the first control valve according to the temperature of the SOFC stack.
Optionally, the first processing module comprises: a first calculating unit, used for calculating according to the preset current target value and the fuel utilization target value to determine a molar flow of hydrogen; a first determining unit, used for obtaining the natural gas fuel components detected by the fuel gas component detector, and determining the molar ratio of the natural gas fuel components based on the natural gas fuel components, which include carbon atoms, hydrogen atoms and oxygen atoms; a second determining unit, used for determining respective coefficients of hydrogen and carbon dioxide in the mixed gas generated from the reforming of carbon-hydrogen-oxygen compounds according to the molar ratio of the natural gas fuel components; and a second calculating unit, used for calculating using the molar flow of hydrogen, the coefficient of hydrogen and the preset molar gas volume to obtain the mass flow of the fuel to be used.
Optionally, the second determining unit is specifically used for: calculating the quotient of the molar flow of hydrogen and the coefficient of hydrogen to obtain the molar flow of the fuel; determining a fuel density according to the molar flow of the fuel; calculating the  product of the molar flow of the fuel, the preset molar gas volume and the fuel density to obtain the mass flow of the fuel to be used.
Optionally, the second processing module comprises: a third determining unit, used for determining the molar flow of the fuel according to the fuel mass flow; and a third calculating unit, used for calculating the product of the molar flow of the fuel, the water-carbon ratio meeting the reforming requirement, and the standard molar mass of water to obtain the mass flow of the water to be used.
The third aspect of the present invention discloses a fuel cell control unit (FCU) , the FCU comprises a processor and a memory, computer programs are stored in the memory, and the processor executes the computer programs to implement the SOFC system control method disclosed in the first aspect of the embodiments of the present invention.
Based on the SOFC system control method and device, and FCU provided by the foregoing embodiments of the present invention, a first control valve controlling air inflow, a second control valve controlling fuel inflow and a third control valve controlling deionized water inflow are arranged in the SOFC system. A fuel gas component detector is arranged between the second control valve and a fuel inlet. The SOFC system control method comprises steps of: obtaining a mass flow of the fuel to be used according to a current target value needed by an SOFC stack and a molar ratio determined based on natural gas fuel components detected by a fuel gas component detector; obtaining a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting the reforming requirement; controlling the opening degree of the second control valve according to the mass flow of the fuel to be used, and controlling the opening degree of the third control valve according to the mass flow of the water to be used; and detecting the temperature of the SOFC stack in real time, and controlling the opening degree of the first control valve according to the temperature of the SOFC stack. In the embodiments of the present invention, the natural gas fuel components are detected by the fuel gas component detector in real time and the molar ratio of the natural gas fuel components is determined. Thus, the fuel mass flow and water mass flow needed by the current target value generated by the SOFC stack are calculated according to the current target value needed by the SOFC stack, the molar ratio of the natural gas fuel components and the water-carbon ratio meeting the reforming requirement, so that the opening degrees of the respective control valves of the fuel and deionized water are controlled, and the opening degree of the control valve corresponding to air is controlled according to the temperature  of the SOFC stack, to control the fuel, deionized water and air based on the opening degree of each control valve to enter the SOFC stack and cause the SOFC stack to generate the needed current target value. Thus, the needs of different types and concentrations of natural gas fuels can be adapted to optimize operation of the SOFC system and increase the conversion rate of the natural gas fuel.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings used in the description will be briefly described below. These are just some embodiments of the present invention.
Fig. 1 is a schematic view of the architecture of an SOFC system.
Fig. 2 is a schematic view of the flow of an SOFC system provided.
Fig. 3 is a schematic view of a flow for determining the fuel mass flow.
Fig. 4 is a structural schematic view of an SOFC system control device.
DETAILED DESCRIPTION
Embodiments of the present invention are described below in conjunction with the drawings. The described embodiments are only some of the embodiments of the present invention. Other embodiments of the present invention are within the scope of the claims.
The terms “comprise” , “include” and any other equivalent expressions are intended to cover non-exclusive inclusion so that a process, method, object, or device comprising a series of factors not only includes these factors but also includes other factors not expressly listed, or also includes factors inherent with the process, method, object or device. Under the condition of no further limitations, the factors delimited by the expression “comprise a…” do not exclude other same factors in the process, method, object or device including said factors.
In embodiments of the present invention, the natural gas fuel components are detected by the fuel gas component detector in real time and the molar ratio of the natural gas fuel components is determined. Thus, the fuel mass flow and water mass flow needed by the current target value generated by the SOFC stack are calculated according to the current  target value needed by the SOFC stack, the molar ratio of the natural gas fuel components, and the water-carbon ratio meeting the reforming requirement, so that the degree of opening of the respective control valves of the fuel and deionized water are controlled. The degree of opening of the control valve corresponding to air is controlled according to the temperature of the SOFC stack, to control the fuel, deionized water and air based on the opening degree of each control valve to enter the SOFC stack and cause the SOFC stack to generate the needed current target value. Thus, the needs of different types and concentrations of natural gas fuels can be adapted to optimize operation of the SOFC system and increase the conversion rate of the natural gas fuel.
Fig. 1 is a schematic view of the architecture of an SOFC system provided in an embodiment of the present invention. The SOFC system comprises a first control valve 101, a second control valve 102, a third control valve 103, a fuel gas component detector 104, an SOFC stack 105, an air heater 106, a fuel reformer 107, an evaporator 108, and an FCU (not shown in the figure) .
One end of the first control valve 101 is connected to the air inlet and the first control valve is used for controlling air inflow. The other end of the first control valve 101 is connected to the air heater 106, and the air heater 106 is connected to the cathode of the SOFC stack 105.
One end of the second control valve 102 is connected to the natural gas fuel inlet, the other end of the second control valve 102 is connected to the fuel reformer 107. The fuel gas component detector 104 is arranged between the second control valve 102 and the natural gas fuel inlet.
One end of the third control valve 103 is connected to the deionized water inlet, the third control valve 103 is connected to the evaporator 108, and the evaporator 108 is connected to the fuel reformer 107.
The fuel reformer 107 is connected to the anode of the SOFC stack 105.
The first control valve 101, the second control valve 102, the third control valve 103, the fuel gas component detector 104, the SOFC stack 105, the air heater 106, the fuel reformer 107, and the evaporator 108 are connected to the FCU, respectively.
The FCU controls the fuel gas component detector 104 to detect natural gas fuel components at the fuel inlet and determines the molar ratio of the natural gas fuel  components based on the detected natural gas fuel components.
The FCU is used for obtaining a mass flow of the fuel to be used according to a current target value needed by an SOFC stack and a molar ratio determined based on natural gas fuel components detected by a fuel gas component detector; obtaining a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting the reforming requirement; controlling the opening degree of the second control valve 102 according to the mass flow of the fuel to be used, to control fuel inflow based on the opening degree of the second control valve 102; controlling the opening degree of the third control valve 103 according to the mass flow of the water to be used, to control deionized water inflow based on the opening degree of the third control valve 103; and detecting the temperature of the SOFC stack 105 in real time, and controlling the opening degree of the first control valve 101 according to the temperature of the SOFC stack, to control oxygen inflow based on the opening degree of the first control valve 101.
Optionally, as shown in Fig. 1, in order to maintain the normal operation of the SOFC system, a tail gas burner 110 connected to the tail gas output end of the SOFC stack 105 and DCDC 111 connected to the current output end of the SOFC stack 105 are further provided.
The tail gas burner 110 is used for sending the temperature of the tail gas to the fuel reformer 107 and providing a temperature environment for the reforming reaction of the fuel reformer 107.
The DCDC 111 is used for controlling the current SOFC stack to output a current target value needed by the SOFC stack according to a current control instruction generated based on the power demand of the loads.
In the embodiments of the present invention, the natural gas fuel components are detected by the fuel gas component detector in real time and the molar ratio of the natural gas fuel components is determined. Thus, the fuel mass flow and water mass flow needed by the current target value generated by the SOFC stack are calculated according to the current target value needed by the SOFC stack, the molar ratio of the natural gas fuel components, and the water-carbon ratio meeting the reforming requirement, so that the degree of opening of the respective control valves of the fuel and deionized water are controlled, and the degree of opening of the control valve corresponding to air is controlled according to the temperature of the SOFC stack, to control the fuel, deionized water and air based on  the degree of opening of each control valve to enter the SOFC stack and cause the SOFC stack to generate the needed current target value. Thus, the needs of different types and concentrations of natural gas fuels can be adapted to optimize operation of the SOFC system and increase the conversion rate of the natural gas fuel.
Fig. 2 is a schematic view of the flow of an SOFC system provided in an embodiment of the present invention based on the SOFC system shown in the foregoing embodiments of the present invention. The SOFC system control method comprises:
Step S201: obtaining a mass flow of the fuel to be used according to a current target value needed by an SOFC stack and a molar ratio determined based on natural gas fuel components detected by a fuel gas component detector.
At Step S201, the natural gas fuel components include carbon atoms, hydrogen atoms, and oxygen atoms.
In a specific implementation process of Step S201, the FCU controls the fuel gas component detector to detect natural gas fuel components and determines the molar ratio of carbon atoms, hydrogen atoms, and oxygen atoms based on the natural gas fuel components. The FCU determines the mass flow of the fuel to be used according to the current target value needed by the SOFC stack and the molar ratio of carbon atoms, hydrogen atoms, and oxygen atoms.
The fuel mass flow refers to the fuel mass passing through the effective cross-section of a pipeline or an open groove, corresponds to volume flow and may also be expressed as the product of volume flow and fuel density.
The process of obtaining the current target value needed by the SOFC stack comprises the following steps:
Step S11: obtaining the power demand of the loads.
In a specific implementation process of Step S11, the FCU obtains the power demand of the loads of a natural gas engine.
Step S12: generating a current control instruction based on the power demand of the load, so that DCDC controls the current SOFC stack to output a current target value needed by the SOFC stack based on the current control instruction.
In a specific implementation process of Step S12, a current control instruction is generated  based on the power demand of the load, i.e., the SOFC stack needs to convert the chemical energy in the fuel into the current target value needed by the SOFC stack. The DCDC controls the current SOFC stack to output the current target value needed by the SOFC stack based on the current control instruction.
Step S202: obtaining a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting the reforming requirement.
The water-carbon ratio refers to the ratio of water vapor and carbon entering the fuel reformer.
In embodiments of the present invention, the water-carbon ratio meeting the reforming requirement is determined according to the reforming reaction formula.
The reforming reaction formula (1) is:
Figure PCTCN2021102835-appb-000001
Since “mole” refers to the number of particles of matter, such as the number of atoms, electrons or molecules, in the chemical formula (1) of the reforming reaction, x is the number of carbon atoms, y is the number of hydrogen atoms, and z is the number of oxygen atoms.
Under normal standard conditions, the standard ratio of water vapor and carbon in the fuel reformer is in the range 2.2: 1 –3.2: 1, e.g. 2.5: 1.
The process of determining the water-carbon ratio meeting the reforming requirement according to the chemical formula of the reforming reaction is as follows:
According to the chemical formula (1) of the reforming reaction, the coefficient of water vapor needed for the reforming reaction of carbon-hydrogen-oxygen compounds in the fuel in the fuel reformer is determined to be 2x-z.
According to the product of the standard ratio of water vapor to carbon and the coefficient of water vapor, the water-carbon ratio meeting the reforming requirement is determined to be 2.5* (2x-z) : 1.
The water mass flow refers to the product of the volume flow of deionized water passing through the effective cross-section of a pipe or an open groove and the density of deionized water.
In a specific implementation process of Step S202, the step of obtaining a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting the reforming requirement comprises the following steps:
Step S21: determining the molar flow of the fuel according to the fuel mass flow.
In a specific implementation process of Step S21, the fuel mass flow is used for calculation to obtain the molar flow of the fuel.
Step S22: calculating the product of the molar flow of the fuel, the water-carbon ratio meeting the reforming requirement, and the standard molar mass of water to obtain the mass flow of the water to be used.
In a specific implementation process of Step S22, based on the product of the molar flow, the water-carbon ratio meeting the reforming requirement and the standard molar mass of water, the mass flow dmWat of the water to be used is calculated with Formula (2) .
Formula (2) :
dmWat=dmolC xH yO z×2.5× (2x-z) ×mmH 2O   (2)
where, 2.5* (2x-z) is the water-carbon ratio meeting the reforming requirement, dmolC xH yO z is the molar flow of the fuel, and mmH 2O is the molar mass of water.
The molar mass of water means that each mole of water contains the Avogadro constant of particles, that is, the molar mass of water is 18g/mol.
The implementation sequence of Step S201 and Step S202 is not limited to the above description and Step S201 and Step S202 can be implemented in parallel, or Step S202 is implemented at first, followed by Step S201. The embodiments of the present invention set no limitation to the implementation sequence.
Step S203: controlling the opening degree of the second control valve according to the mass flow of the fuel to be used and controlling the degree of opening of the third control valve according to the mass flow of the water to be used.
In a specific implementation process of Step S203, the FCU controls the degree of opening of the second control valve according to the mass flow of the fuel to be used to control fuel inflow based on the degree of opening of the second control valve and input the fuel to the fuel reformer; and controls the degree of opening of the third control valve  according to the mass flow of the water to be used to control deionized water inflow based on the degree of opening of the third control valve and input the water to the evaporator to obtain water vapor.
Step S204: detecting the temperature of the SOFC stack in real time and controlling the degree of opening of the first control valve according to the temperature of the SOFC stack.
In a specific implementation process of Step S204, the temperature of the SOFC stack is detected in real time by a temperature sensor arranged at the outlet of the SOFC stack. The FCU obtains the temperature of the SOFC stack detected by the temperature sensor in real time and controls the degree of opening of the first control valve according to the temperature of the SOFC stack to control air inflow based on the degree of opening of the first control valve and input the air to the air heater.
In embodiments of the present invention, at the temperature of the tail gas provided by the tail gas burner, the fuel reformer will undergo a reforming reaction of the fuel input from the second control valve and the water vapor input from the evaporator to generate a mixed gas of hydrogen and carbon dioxide. The mixed gas is input to the anode of the SOFC stack. The oxygen heated in the air heater is input to the cathode of the SOFC stack and the oxygen in the cathode of the SOFC stack reacts with the mixed gas of hydrogen and carbon dioxide in the anode of the SOFC stack, i.e., the chemical energy in the fuel is converted into electrical energy.
Optionally, the current of the current SOFC stack generated by reactions of oxygen, natural gas fuel and deionized water input is based on the degree of opening of the first control valve, the second control valve and the third control valve. DCDC controls current output and supplies power to the load of the vehicle according to current control instructions generated based on the power demand of the load.
In embodiments of the present invention, the natural gas fuel components are detected by the fuel gas component detector in real time and the molar ratio of the natural gas fuel components is determined. Thus, the fuel mass flow needed by the current target value generated by the SOFC stack is calculated according to the current target value needed by the SOFC stack and the molar ratio of the natural gas fuel components. The water mass flow needed by the current target value generated by the SOFC stack is calculated according to the fuel mass flow and the molar ratio, so that the degree of opening of the  respective control valves of the fuel and deionized water are controlled, and the degree of opening of the control valve corresponding to air is controlled according to the temperature of the SOFC stack, to control the fuel, deionized water, and air based on the degree of opening of each control valve to enter the SOFC stack and cause the SOFC stack to generate the needed current target value. Thus, the needs of different types and concentrations of natural gas fuels can be adapted to optimize operation of the SOFC system and increase the conversion rate of the natural gas fuel.
Based on the SOFC system control method shown in Fig. 2 above, the process of obtaining a mass flow of the fuel to be used according to a preset current target value and a molar ratio determined based on the natural gas fuel components detected by a fuel gas component detector at Step S202 comprises the following steps, as shown in Fig. 3:
Step S301: calculating, according to the preset current target value and the fuel utilization target value, to determine a molar flow of hydrogen.
In a specific implementation process of Step S301, based on the preset current target value and the fuel utilization target value, the molar flow dmolH 2 of hydrogen is calculated with Formula (3) .
Formula (3) :
Figure PCTCN2021102835-appb-000002
where, I d is the preset current target value, FU is the fuel utilization target value, and Fa is the Faraday constant.
The fuel utilization target value is calibrated inside the FCU according to the characteristics of the fuel cell. The range of the fuel utilization target value will depend on the characteristics of the fuel cell. For example, the range could be between 0.5 and 0.8. In this case, a fuel utilization target value 0.5 could be calibrated inside the FCUl.
The Faraday constant is a physical constant and refers to the charges carried by one mole of electrons.
Step S302: obtaining the natural gas fuel components detected by the fuel gas component detector and determining the molar ratio of the natural gas fuel components based on the natural gas fuel components.
In a specific implementation process of Step S302, carbon atoms, hydrogen atoms, and oxygen atoms detected by the fuel gas component detector in the natural gas fuel are obtained, and the molar ratio of carbon atoms, hydrogen atoms, and oxygen atoms in the natural gas fuel is determined based on the natural gas fuel components.
Step S303: determining respective coefficients of hydrogen and carbon dioxide in the mixed gas generated from the reforming of carbon-hydrogen-oxygen compounds according to the molar ratio of the natural gas fuel components.
In a specific implementation process of Step S303, the molar ratio of carbon atoms, hydrogen atoms, and oxygen atoms determined at Step S302 is input into Formula (1) for calculation, thereby determining that the coefficient of hydrogen generated from the reforming of carbon-hydrogen-oxygen compounds is
Figure PCTCN2021102835-appb-000003
and the coefficient of carbon dioxide is x.
Step S304: calculating, using the molar flow of hydrogen, the coefficient of hydrogen, and the preset molar gas volume, to obtain the mass flow of the fuel to be used.
In a specific implementation process of Step S304, the step of calculating using the molar flow of hydrogen, the coefficient of hydrogen and the preset molar gas volume to obtain the mass flow of the fuel to be used comprises the following step:
Step S31: calculating the quotient of the molar flow of hydrogen and the coefficient of hydrogen to obtain the molar flow of the fuel.
In a specific implementation process of Step S31, based on the molar flow dmolH 2 of hydrogen obtained at Step S301 and the hydrogen coefficient
Figure PCTCN2021102835-appb-000004
determined at Step S302, the molar flow dmolC xH yO z of the fuel is calculated with Formula (4) .
Formula (4) :
Figure PCTCN2021102835-appb-000005
where, dmolH 2 is the molar flow of hydrogen, and
Figure PCTCN2021102835-appb-000006
is the coefficient of hydrogen.
Step S32: determining a fuel density according to the molar flow of the fuel.
In a specific implementation process of Step S32, calculation is conducted using the molar flow of the fuel to determine the density of the current fuel.
Step S33: calculating the product of the molar flow of the fuel, the preset molar gas volume, and the fuel density to obtain the mass flow of the fuel to be used.
At Step S33, because the volume occupied by 1 mole of any ideal gas is about 22.4 liters under standard conditions, the molar gas volume is preset to be 22.4 liters/mol.
In a specific implementation process of Step S33, based on the molar flow dmolC xH yO z of the fuel, the preset molar gas volume, and the fuel density, the mass flow dmC xH yO z of the fuel to be used is calculated with Formula (5) .
Formula (5) :
dmC xH yO Z=V m×dmolC xH yO Z×ρ
where, V mv is the molar gas volume, ρ is the fuel density, and dmolC xH yO z is the molar flow of the fuel.
In embodiments of the present invention, calculation is conducted according to the preset current target value and the fuel utilization target value to determine the molar flow of hydrogen. The natural gas fuel components detected by the fuel gas component detector are obtained and the molar ratio of the natural gas fuel components is determined based on the natural gas fuel components. Respective coefficients of hydrogen and carbon dioxide in the mixed gas generated from the reforming of carbon-hydrogen-oxygen compounds are determined according to the molar ratio of the natural gas fuel components. Calculation is conducted using the molar flow of hydrogen, the coefficient of hydrogen, and the preset molar gas volume to obtain the mass flow of the fuel to be used. Thus, the water mass flow needed by the current target value generated by the SOFC stack is calculated, so that the degree of opening of the respective control valves of the fuel and deionized water are controlled, and the degree of opening of the control valve corresponding to air is controlled according to the temperature of the SOFC stack, to control the fuel, deionized water and air based on the degree of opening of each control valve to enter the SOFC stack and cause the SOFC stack to generate the needed current target value. Thus, the needs of different types and concentrations of natural gas fuels can be adapted to optimize operation of the SOFC system and increase the conversion rate of the natural gas fuel.
Corresponding to the SOFC system control method disclosed in the foregoing embodiment  of the present invention, an embodiment of the present invention further discloses a structural schematic view of an SOFC system control device, as shown in Fig. 4. The SOFC system control device comprises the following:
first processing module 401, used for obtaining a mass flow of the fuel to be used according to a current target value needed by an SOFC stack and a molar ratio determined based on natural gas fuel components detected by a fuel gas component detector.
second processing module 402, used for obtaining a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting the reforming requirement.
first control module 403, used for controlling the degree of opening of the second control valve according to the mass flow of the fuel to be used, and controlling the degree of opening of the third control valve according to the mass flow of the water to be used.
second control module 404, used for detecting the temperature of the SOFC stack in real time, and controlling the degree of opening of the first control valve according to the temperature of the SOFC stack.
The specific principles and implementation processes of the units in the SOFC system control device disclosed in this embodiment of the present invention are the same as those in the SOFC system control method shown in the foregoing implementation of the present invention. Reference to the corresponding parts in the SOFC system control method disclosed in the foregoing embodiment of the present invention will not be described again.
In the embodiments of the present invention, the natural gas fuel components are detected by the fuel gas component detector in real time and the molar ratio of the natural gas fuel components is determined. Thus, the fuel mass flow needed by the current target value generated by the SOFC stack is calculated according to the current target value needed by the SOFC stack and the molar ratio of the natural gas fuel components. The water mass flow needed by the current target value generated by the SOFC stack is calculated according to the fuel mass flow and the water-carbon ratio, so that the degree of opening of the respective control valves of the fuel and deionized water are controlled, and the degree of opening of the control valve corresponding to air is controlled according to the temperature of the SOFC stack, to control the fuel, deionized water and air based on the degree of opening of each control valve to enter the SOFC stack and cause the SOFC stack to generate the needed current target value. Thus, the needs of different types and  concentrations of natural gas fuels can be adapted to optimize operation of the SOFC system and increase the conversion rate of the natural gas fuel.
Based on the SOFC system control device shown in Fig. 4 above, the first processing module 401 comprises the following:
A first calculating unit, used for calculating according to the preset current target value and the fuel utilization target value to determine a molar flow of hydrogen.
A first determining unit, used for obtaining the natural gas fuel components detected by the fuel gas component detector, and determining the molar ratio of the natural gas fuel components based on the natural gas fuel components. The natural gas fuel components include carbon atoms, hydrogen atoms, and oxygen atoms.
A second determining unit, used for determining respective coefficients of hydrogen and carbon dioxide in the mixed gas generated from the reforming of carbon-hydrogen-oxygen compounds according to the molar ratio of the natural gas fuel components.
A second calculating unit, used for calculating using the molar flow of hydrogen, the coefficient of hydrogen, and the preset molar gas volume to obtain the mass flow of the fuel to be used.
Optionally, the second calculating unit is specifically used for calculating the quotient of the molar flow of hydrogen and the coefficient of hydrogen to obtain the molar flow of the fuel; determining a fuel density according to the molar flow of the fuel; and calculating the product of the molar flow of the fuel, the preset molar gas volume, and the fuel density to obtain the mass flow of the fuel to be used.
In embodiments of the present invention, calculation is conducted according to the preset current target value and the fuel utilization target value to determine a molar flow of hydrogen. The natural gas fuel components detected by the fuel gas component detector are obtained and the molar ratio of the natural gas fuel components is determined based on the natural gas fuel components Respective coefficients of hydrogen and carbon dioxide in the mixed gas generated from the reforming of carbon-hydrogen-oxygen compounds are determined according to the molar ratio of the natural gas fuel components Calculation is conducted using the molar flow of hydrogen, the coefficient of hydrogen, and the preset molar gas volume to obtain the mass flow of the fuel to be used. Thus, the water mass flow needed by the current target value generated by the SOFC stack is calculated, so that the  degree of opening of the respective control valves of the fuel and deionized water are controlled, and the degree of opening of the control valve corresponding to air is controlled according to the temperature of the SOFC stack, to control the fuel, deionized water, and air based on the degree of opening of each control valve to enter the SOFC stack and cause the SOFC stack to generate the needed current target value. Thus, the needs of different types and concentrations of natural gas fuels can be adapted to optimize operation of the SOFC system and increase the conversion rate of the natural gas fuel.
Based on the foregoing SOFC system control device shown in Fig. 4, the second processing module 402 comprises the following:
A third determining unit, used for determining the molar flow of the fuel according to the fuel mass flow.
A third calculating unit, used for calculating the product of the molar flow of the fuel, the water-carbon ratio meeting the reforming requirement, and the standard molar mass of water to obtain the mass flow of the water to be used.
In embodiments of the present invention, the product of the molar flow of the fuel, the water-carbon ratio meeting the reforming requirement, and the standard molar mass of water is calculated to obtain the mass flow of the water to be used. Thus, the fuel mass flow needed by the current target value generated by the SOFC stack is calculated, so that the degree of opening of the respective control valves of the fuel and deionized water are controlled, and the degree of opening of the control valve corresponding to air is controlled according to the temperature of the SOFC stack, to control the fuel, deionized water, and air based on the opening degree of each control valve to enter the SOFC stack and cause the SOFC stack to generate the needed current target value. Thus, the needs of different types and concentrations of natural gas fuels can be adapted to optimize operation of the SOFC system and increase the conversion rate of the natural gas fuel.
Based on the foregoing SOFC system control device disclosed in an embodiment of the present invention, the foregoing modules can be implemented based on an FCU hardware device comprising a processor and a memory. Specifically, the foregoing modules are stored in a memory as program units, and a processor invokes the foregoing program units in the memory to implement the SOFC system control method.
The system and system embodiment described above are schematic, wherein the units described as separate components may be or may not be physically separated and the  components displayed as units may be or may not be physical units, i.e., they may be located in one place, or may be distributed to a plurality of network units. Some or all of the modules can be selected according to the actual needs to achieve the object of the solution of this embodiment.
The units and algorithm steps of the examples described in the embodiments disclosed herein can be implemented by electronic hardware, computer software, or a combination thereof. In order to clearly illustrate the interchangeability of hardware and software, in the above description, the composition and steps of each example have been generally described in accordance with the functions. Whether these functions are performed in the form of hardware or software depends on the specific applications and design constraints of the technical solution. Different methods for each specific application can be used to implement the described functions. This implementation is within the scope of the present invention.
Various modifications to these embodiments will be apparent. The general principle defined herein can be implemented in other embodiments without departing from the spirit or scope of the present invention. Therefore, the present invention will not be limited to the embodiments provided herein but should conform to the widest scope consistent with the principles and novel features disclosed in the claims.

Claims (10)

  1. A method of controlling an SOFC system, wherein the SOFC system comprises a first control valve controlling air inflow, a second control valve controlling fuel inflow, and a third control valve controlling deionized water inflow, and a fuel component detector is arranged between the second control valve and a fuel inlet, the method comprising:
    obtaining a mass flow of the fuel to be used according to a current target value needed by an SOFC stack and a molar ratio determined based on natural gas fuel components detected by a fuel gas component detector;
    obtaining a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting a reforming requirement;
    controlling the degree of opening of the second control valve according to the mass flow of the fuel to be used, and controlling the degree of opening of the third control valve according to the mass flow of the water to be used; and
    detecting the temperature of the SOFC stack in real time and controlling the degree of opening of the first control valve according to the temperature of the SOFC stack.
  2. The method according to claim 1, wherein obtaining a mass flow of the fuel to be used according to a preset current target value and a molar ratio determined based on natural gas fuel components detected by a fuel gas component detector comprises steps of:
    determining a molar flow of hydrogen calculated according to the preset current target value and the fuel utilization target value;
    obtaining the natural gas fuel components detected by the fuel gas component detector, and determining the molar ratio of the natural gas fuel components based on the natural gas fuel components, which include carbon atoms, hydrogen atoms and oxygen atoms;
    determining respective coefficients of hydrogen and carbon dioxide in the mixed gas generated from the reforming of carbon-hydrogen-oxygen compounds according to the molar ratio of the natural gas fuel components; and
    using the molar flow of hydrogen to calculate the coefficient of hydrogen and the  preset molar gas volume to obtain the mass flow of the fuel to be used.
  3. The method according to claim 2, wherein using the molar flow of hydrogen to calculate the coefficient of hydrogen and the preset molar gas volume to obtain the mass flow of the fuel to be used comprises steps of:
    calculating the quotient of the molar flow of hydrogen and the coefficient of hydrogen to obtain the molar flow of the fuel;
    determining a fuel density according to the molar flow of the fuel; and
    calculating the product of the molar flow of the fuel, the preset molar gas volume and the fuel density to obtain the mass flow of the fuel to be used.
  4. The method according to claim 1, 2, or 3, wherein obtaining a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting a reforming requirement comprises steps of:
    determining the molar flow of the fuel according to the fuel mass flow; and
    calculating the product of the molar flow of the fuel, the water-carbon ratio meeting the reforming requirement, and the standard molar mass of water to obtain the mass flow of the water to be used.
  5. The method according to any preceding claim, wherein obtaining the current target value needed by the SOFC stack comprises steps of:
    obtaining the power demand of the load on the stack; and
    generating a current control instruction based on the power demand of the load, so that a DCDC controller controls the current SOFC stack to output a current target value needed by the SOFC stack based on the current control instruction.
  6. An SOFC system control device, comprising:
    a first processing module configured to obtain a mass flow of the fuel to be used according to a current target value needed by an SOFC stack and a molar ratio determined based on natural gas fuel components detected by a fuel gas component detector;
    a second processing module configured to obtain a mass flow of the water to be used based on the fuel mass flow and a water-carbon ratio meeting the reforming  requirement;
    a first control module configured to control the degree of opening of a second control valve according to the mass flow of the fuel to be used, and control the degree of opening of a third control valve according to the mass flow of the water to be used; and
    a second control module configured to detect the temperature of the SOFC stack in real time and control the degree of opening of a first control valve according to the temperature of the SOFC stack.
  7. The device according to claim 6, wherein the first processing module comprises: a first calculating unit, configured to determine a molar flow of hydrogen according to the preset current target value and the fuel utilization target value;
    a first determining unit, configured to obtain the natural gas fuel components detected by the fuel gas component detector, and determine the molar ratio of the natural gas fuel components based on the natural gas fuel components, which include carbon atoms, hydrogen atoms and oxygen atoms;
    a second determining unit, configured to determine respective coefficients of hydrogen and carbon dioxide in the mixed gas generated from the reforming of carbon-hydrogen-oxygen compounds according to the molar ratio of the natural gas fuel components; and
    a second calculating unit, configured to obtain the mass flow of the fuel to be used using the molar flow of hydrogen, the coefficient of hydrogen, and the preset molar gas volume.
  8. The device according to claim 7, wherein the second determining unit is specifically configured to: calculate the quotient of the molar flow of hydrogen and the coefficient of hydrogen to obtain the molar flow of the fuel; determine a fuel density according to the molar flow of the fuel; and calculate the product of the molar flow of the fuel, the preset molar gas volume and the fuel density to obtain the mass flow of the fuel to be used.
  9. The device according to claim 6, 7, or 8, wherein the second processing module comprises:
    a third determining unit, used for determining the molar flow of the fuel according to  the fuel mass flow; and
    a third calculating unit, configured to calculate the product of the molar flow of the fuel, the water-carbon ratio meeting the reforming requirement, and the standard molar mass of water to obtain the mass flow of the water to be used.
  10. A fuel cell control unit (FCU) , comprising a processor and a memory, wherein computer programs are stored in the memory, and the processor executes the computer programs to implement the SOFC system control method of any of claims 1 to 5.
PCT/CN2021/102835 2020-06-29 2021-06-28 Sofc system control method and device, and fcu WO2022001981A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010606757.0 2020-06-29
CN202010606757.0A CN111725545A (en) 2020-06-29 2020-06-29 Control method and device of SOFC system and FCU

Publications (1)

Publication Number Publication Date
WO2022001981A1 true WO2022001981A1 (en) 2022-01-06

Family

ID=72570198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102835 WO2022001981A1 (en) 2020-06-29 2021-06-28 Sofc system control method and device, and fcu

Country Status (2)

Country Link
CN (1) CN111725545A (en)
WO (1) WO2022001981A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160104906A1 (en) * 2014-10-08 2016-04-14 General Electric Company System and method for controlling flow rate ratio
US20180358640A1 (en) * 2015-12-15 2018-12-13 Nissan Motor Co., Ltd Fuel cell system and control method for fuel cell system
US20190393525A1 (en) * 2017-01-31 2019-12-26 SOLIDpower SA Method and system for producing hydrogen, electricity and co-production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160104906A1 (en) * 2014-10-08 2016-04-14 General Electric Company System and method for controlling flow rate ratio
US20180358640A1 (en) * 2015-12-15 2018-12-13 Nissan Motor Co., Ltd Fuel cell system and control method for fuel cell system
US20190393525A1 (en) * 2017-01-31 2019-12-26 SOLIDpower SA Method and system for producing hydrogen, electricity and co-production

Also Published As

Publication number Publication date
CN111725545A (en) 2020-09-29

Similar Documents

Publication Publication Date Title
JP4200576B2 (en) Fuel cell system
Wang et al. Real-time control for air excess ratio of a PEM fuel cell system
CN108091909B (en) Fuel cell air flow control method based on optimal oxygen ratio
Rezazadeh et al. Using adaptive neuro-fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling
US8343674B2 (en) Fuel cell system and control method of the same
CN105027341A (en) Fuel-cell system and method for controlling fuel-cell system
JP5061594B2 (en) Fuel cell operation system
WO2022001981A1 (en) Sofc system control method and device, and fcu
CN117096388B (en) Fuel cell water content management control method, electric equipment and electronic equipment
US7757668B2 (en) Method of correcting flow rate in fuel supply unit of fuel cell system
Zhu et al. Modelling and fuel flow control of PEMFC considering over-pressure case
CN117133950A (en) Control parameter regulation and control method and system for fuel cell system
JP2007095434A (en) Fuel cell system
CN112213370A (en) Method and device for detecting stoichiometric sensitivity of hydrogen fuel cell stack
US9673463B2 (en) Control arrangement and method in fuel cell system
Thanapalan et al. Modelling of a PEM fuel cell system
Rios et al. A control system for reducing the hydrogen consumption of PEM fuel cells under parametric uncertainties
KR20090043967A (en) Fuel cell system
KR101968797B1 (en) Control arrangement and method for adapting a fuel cell system to fuel composition
CA2662376A1 (en) Method for determining a state of a reformer in a fuel cell system
EP4293766A1 (en) Fuel cell system and method for controlling purge thereof
Fan et al. Improved model predictive control for a proton exchange membrane fuel cell
Shao et al. Parameter Identification for One-Dimension Fuel Cell Model Using GA-PSO Algorithm
Hobold et al. Prediction and optimization of fuel cell performance using a multi-objective genetic algorithm
JP2019149271A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21733365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21733365

Country of ref document: EP

Kind code of ref document: A1