WO2022001963A1 - 通信资源调度方法和装置 - Google Patents

通信资源调度方法和装置 Download PDF

Info

Publication number
WO2022001963A1
WO2022001963A1 PCT/CN2021/102777 CN2021102777W WO2022001963A1 WO 2022001963 A1 WO2022001963 A1 WO 2022001963A1 CN 2021102777 W CN2021102777 W CN 2021102777W WO 2022001963 A1 WO2022001963 A1 WO 2022001963A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
resource
transmission
domain
uplink
Prior art date
Application number
PCT/CN2021/102777
Other languages
English (en)
French (fr)
Inventor
高全中
胥恒
岳宗笛
张立文
张芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020237003171A priority Critical patent/KR20230029936A/ko
Priority to EP21834250.9A priority patent/EP4171143A4/en
Publication of WO2022001963A1 publication Critical patent/WO2022001963A1/zh
Priority to US18/146,730 priority patent/US20230136286A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • H04W72/512Allocation or scheduling criteria for wireless resources based on terminal or device properties for low-latency requirements, e.g. URLLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation

Definitions

  • the present application relates to communication technologies, and in particular, to a communication resource scheduling method and apparatus.
  • the business needs of users in different business scenarios are also different.
  • the demand for uplink capacity is high, that is, there is a high demand for uplink transmission bandwidth and uplink transmission rate.
  • demand for downlink capacity is high, that is, there is a high demand for downlink transmission bandwidth and downlink transmission rate.
  • the present application provides a communication resource scheduling method and device, so as to meet the service requirements of different users under the condition of limited wireless spectrum resources.
  • the present application provides a communication resource scheduling method.
  • the method may include: a first communication device instructing a first resource of a first cell to be used for a first transmission.
  • the first communication device indicates that a second resource of a neighboring cell of the first cell is used for the second transmission, and the second resource is related to at least one of a time domain, a frequency domain, a space domain, a code domain and a power domain of the first resource.
  • the second transmission is a downlink transmission, or when the first transmission is a downlink transmission, the second transmission is an uplink transmission.
  • the time domain of the second resource and the first resource is , at least one of the frequency domain, the air domain, the code domain or the power domain is different, and different scheduling methods are adopted for the first cell and the adjacent cells of the first cell to meet the different service requirements of terminal equipment in different cells, and While meeting different business requirements, it avoids uplink and downlink interference.
  • both the first resource and the second resource are flexible time-frequency domain resources.
  • the flexible time-frequency domain resources may be time-frequency domain resources in F time slots.
  • This implementation manner can dynamically adjust the uplink and downlink resources based on the load state of the cell to meet the service requirements of the cell.
  • the area covered by the first cell is an industrial park, and its uplink transmission demand is high
  • the area covered by the adjacent cells of the first cell is a residential area, and its downlink transmission demand is high.
  • the method of this implementation manner can be used to schedule the first resource in the F time slot in the first cell for uplink transmission, and schedule the second resource in the F time slot in the adjacent cells of the first cell for downlink transmission.
  • at least one of the time domain, frequency domain, space domain, code domain or power domain of the first resource and the second resource is different.
  • F can also be dynamically scheduled for uplink transmission or downlink transmission at different times, so as to effectively combat the tidal effect in the network. For example, more uplink transmission resources are configured in the cells of the industrial park at night to meet the needs of industrial digitalization.
  • the methods of the embodiments of the present application are not only applicable to TDD systems, but also to FDD systems.
  • the signal interference strength between the adjacent cells of the first cell and the first cell is greater than the first threshold, and the traffic volume of the second transmission of the adjacent cells of the first cell is greater than the second threshold. or, the signal interference strength between a neighboring cell of the first cell and the first cell is greater than a first threshold; the second resource of the neighboring cell is different from the time domain of the first resource.
  • the uplink and downlink interference can be avoided based on the traffic volume and the signal interference strength, or based on the signal interference strength, by adopting a time domain coordination method.
  • the signal interference strength between the adjacent cells of the first cell and the first cell is greater than the first threshold, and the traffic volume of the second transmission of the adjacent cells of the first cell is smaller than the second threshold. If the threshold is set, the second resource of the adjacent cell may not be scheduled.
  • the second resource of the neighboring cell has the same time domain as the second resource.
  • the adjacent cells may not be scheduled.
  • the second resource of the cell when the traffic volume of the second transmission of the adjacent cells of the first cell is low, and the interference between the first cell and the adjacent cells is strong interference, in order to avoid uplink and downlink interference, the adjacent cells may not be scheduled.
  • the signal interference strength between the adjacent cells of the first cell and the first cell is less than the first threshold and greater than the third threshold, and the second transmission of the adjacent cells of the first cell
  • the traffic volume of the first cell is greater than the second threshold; or the signal interference strength between the neighboring cells of the first cell and the first cell is less than the first threshold and greater than the third threshold; the second resource of the neighboring cell is the same as the first threshold.
  • the frequency domain of a resource is different.
  • frequency domain coordination can be adopted to avoid uplink and downlink interference.
  • the signal interference strength between the adjacent cells of the first cell and the first cell is less than a third threshold, and the traffic volume of the second transmission of the adjacent cells of the first cell is greater than the second threshold. threshold; or, the signal interference strength between a neighboring cell of the first cell and the first cell is less than a third threshold; the second resource of the neighboring cell is in the space domain, code domain, or power domain of the first resource. At least one is different.
  • the uplink and downlink interference can be avoided based on the traffic volume and the signal interference strength, or based on the signal interference strength, by adopting at least one coordinated manner in the space domain, code domain or power domain.
  • the first transmission is uplink transmission
  • the method further includes: receiving uplink data on the first resource; demodulating the uplink data using a channel estimation result of the demodulation reference signal DMRS on the third resource , the third resource and the first resource have the same frequency domain location and different time domain location; or, receive uplink data on the first resource, demodulate the uplink data on the first resource, and obtain the first solution modulate data, receive uplink data on the third resource, demodulate the uplink data on the third resource, obtain second demodulated data, and combine the first demodulated data and the second demodulated data.
  • the demodulation performance can be improved to ensure accurate data reception.
  • the traffic volume of the first transmission is greater than the fourth threshold, and/or the service type of the first transmission includes ultra-reliable and low-latency URLLC.
  • the first resource of the first cell can be instructed to be used for uplink transmission or downlink transmission through the above implementation manner, and the time domain, frequency domain, air domain, code domain or power domain is used for the adjacent cells of the first cell.
  • the traffic volume includes at least one of the following: the average actual traffic volume of the first transmission within a first preset duration, or the actual traffic volume of the first transmission at least one moment, or a second preset The average predicted traffic volume of the first transmission within the duration, or the predicted traffic volume of the first transmission at at least one moment.
  • the method further includes: receiving first information from the second communication device, where the first information is used to indicate that the first resource of the first cell is used for the first transmission; or, according to the first cell At least one of the traffic volume or service type of the first transmission, and at least one of the traffic volume or service type of the second transmission of the adjacent cells of the first cell, it is determined that the first resource of the first cell is used for the first cell. a transmission.
  • adjacent cells of the first cell are located in the same cell cluster.
  • the method further includes: sending a sounding signal, where the sounding signal is used to measure the signal interference strength between the first cell and neighboring cells of the first cell.
  • the signal interference strength is received, and the signal interference strength is used to determine that the second resource is different from at least one of a time domain, a frequency domain, a space domain, a code domain, and a power domain of the first resource.
  • the present application provides a communication device, which may be a wireless access network device or a chip, a system-on-a-chip or a single board in the wireless access network device, and may also be used in the wireless access network device to implement The functional modules of the above-mentioned first aspect or any possible design method of the above-mentioned first aspect.
  • the communication device can be used as a first communication device, and the communication device can implement the functions performed by the first communication device in the above-mentioned first aspect or each possible design of the above-mentioned first aspect, and the functions can be implemented by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication apparatus may include: a processing module configured to instruct the first resource of the first cell to be used for the first transmission through the transceiver module.
  • the processing module is further configured to instruct the second resource of the adjacent cell of the first cell to be used for the second transmission through the transceiver module, and the second resource is related to the time domain, frequency domain, space domain, and code domain of the first resource. Different from at least one term in the power domain.
  • the first transmission is uplink transmission and the second transmission is downlink transmission, or the first transmission is downlink transmission and the second transmission is uplink transmission.
  • both the first resource and the second resource are flexible time-frequency domain resources.
  • the traffic volume of the second transmission is greater than the second threshold.
  • the signal interference strength between a neighboring cell of the first cell and the first cell is greater than a first threshold; the second resource of the neighboring cell and the time domain of the first resource are different.
  • the signal interference strength between a neighboring cell of the first cell and the first cell is less than the first threshold and greater than a third threshold; the second resource of the neighboring cell and the first resource frequency domain is different.
  • the signal interference strength between the adjacent cells of the first cell and the first cell is less than a third threshold; At least one of the power domains is different.
  • the traffic volume of the second transmission is less than the second threshold, and the second resource of the adjacent cell may not be scheduled, and the second resource has the same time domain as the first resource.
  • the first transmission is an uplink transmission.
  • the transceiver module is further configured to receive the uplink data on the first resource, and the processing module is further configured to demodulate the uplink data using the channel estimation result of the demodulation reference signal DMRS on the third resource, the third resource and the third resource are further configured to demodulate the uplink data.
  • the frequency domain position of a resource is the same but the time domain position is different; or, the transceiver module is further configured to receive uplink data on the first resource, and the processing module is further configured to demodulate the uplink data on the first resource, Obtain the first demodulated data, the transceiver module is also used to receive the uplink data on the third resource, the processing module is also used to demodulate the uplink data on the third resource, obtain the second demodulation data, combine the the first demodulated data and the second demodulated data.
  • the traffic volume of the first transmission is greater than the fourth threshold, and/or the service type of the first transmission includes ultra-reliable and low-latency URLLC.
  • the traffic volume includes at least one of the following: the average actual traffic volume of the first transmission within a first preset duration, or the actual traffic volume of the first transmission at least one moment, or a second preset The average predicted traffic volume of the first transmission within the duration, or the predicted traffic volume of the first transmission at at least one moment.
  • the transceiver module is further configured to receive first information sent by the second communication device, where the first information is used to indicate that the first resource of the first cell is used for the first transmission; or, the processing module It is also used for determining whether to pass the first cell according to at least one of the traffic volume or service type of the first transmission and at least one of the traffic volume or service type of the second transmission of the adjacent cells of the first cell.
  • the transceiver module executes the step of indicating that the first resource of the first cell is used for the first transmission.
  • adjacent cells of the first cell are located in the same cell cluster.
  • the processing module is further configured to send a probe signal through the transceiver module, where the probe signal is used to measure the signal interference strength between the first cell and neighboring cells of the first cell.
  • the transceiver module is further configured to receive the signal interference strength, where the signal interference strength is used to determine that the second resource is different from at least one of the time domain, frequency domain, space domain, code domain and power domain of the first resource.
  • the present implementation provides a communication apparatus, including: one or more processors.
  • Memory for storing one or more programs.
  • the one or more programs when executed by the one or more processors, cause the one or more processors to implement the method according to any one of the first aspects.
  • the present application provides a computer-readable storage medium, comprising a computer program, which, when executed on a computer, causes the computer to execute the method according to any one of the above-mentioned first aspects.
  • the present application provides a computer program, when the computer program is executed by a computer, for performing the method according to any one of the above-mentioned first aspects.
  • the present application provides a chip, including a processor and a memory, the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory to execute the above-mentioned first aspect. The method of any of the above.
  • the communication resource scheduling method and device by instructing the first resource of the first cell to be used for the first transmission, and instructing the second resource of the adjacent cell of the first cell to be used for the second transmission, the second resource is used for the second transmission.
  • different scheduling methods are used for the first cell and the adjacent cells of the first cell to meet the needs of terminals in different cells.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of uplink and downlink interference according to an embodiment of the present application
  • FIG. 3 is a flowchart of a communication resource scheduling method according to an embodiment of the present application.
  • 4A is a schematic diagram of a time slot format according to an embodiment of the present application.
  • FIG. 4B is a schematic diagram of a first resource according to an embodiment of the present application.
  • 4C is a schematic diagram of a second resource according to an embodiment of the present application.
  • 5A is a schematic diagram of another first resource according to an embodiment of the present application.
  • 5B is a schematic diagram of another second resource according to an embodiment of the present application.
  • 5C is a schematic diagram of another second resource according to an embodiment of the present application.
  • 6A is a schematic diagram of the granularity of time-domain coordinated scheduling according to an embodiment of the present application.
  • FIG. 6B is a schematic diagram of the granularity of frequency-domain coordinated scheduling according to an embodiment of the present application.
  • FIG. 7 is a flowchart of another communication resource scheduling method according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a method for determining a cooperative scheduling mode according to an embodiment of the present application.
  • 9A is a schematic diagram of interference detection according to an embodiment of the present application.
  • FIG. 9B is a schematic diagram of a transmission mode of a sounding signal according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a division result of a cell cluster according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a communication resource scheduling method according to an embodiment of the application.
  • FIG. 13 is a schematic diagram of a communication apparatus 1300 according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a communication apparatus 1400 according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a communication apparatus 1500 according to an embodiment of the present application.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • the mobile communication system includes a core network device 110 , a radio access network device 120 and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1 ).
  • the terminal equipment is connected to the wireless access network equipment in a wireless manner, and the wireless access network equipment is connected with the core network equipment in a wireless or wired manner.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment.
  • Terminal equipment can be fixed or movable.
  • FIG. 1 is only a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, wireless access network devices, and terminal devices included in the mobile communication system.
  • the mobile communication system may include any number of radio access network devices such as 2, 3, and 6.
  • a radio access network device is an access device that a terminal device wirelessly accesses to the mobile communication system, which can be a base station (NodeB), an evolved base station (eNodeB), a base station in an NR mobile communication system, a future mobile communication system A base station in a wireless access network device or an access node in a WiFi system, etc., the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • a terminal device may also be referred to as a terminal (Terminal), a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, industrial control (industrial control) wireless terminals in ), wireless terminals in assisted driving, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • Radio access network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of the wireless access network device and the terminal device.
  • the embodiments of the present application may be applicable to downlink transmission, uplink transmission, and device to device (device to device, D2D) signal transmission.
  • the sending device is a wireless access network device
  • the corresponding receiving device is a terminal device.
  • the sending device is a terminal device
  • the corresponding receiving device is a wireless access network device.
  • D2D signal transmission the sending device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the transmission direction in this embodiment of the present application is not limited.
  • the coverage of the radio access network device in this embodiment of the present application may include one cell, or may include multiple cells.
  • the uplink service requirements include one or more of the bandwidth, rate, delay, reliability, or data transmission capacity of the uplink transmission
  • the downlink service requirements include the bandwidth, rate, delay, reliability, or data transmission of the downlink transmission. one or more of the capacity.
  • the downlink bandwidth requirement is large, generally more than 10 times the uplink bandwidth requirement.
  • 2B business scenarios require high uplink capacity.
  • the uplink capacity requirement can reach more than 1Gbps.
  • the service scenarios of 2C and 2B are used as examples in the embodiments of the present application for illustration, and the embodiments of the present application are not limited by this. wireless communication network.
  • the embodiment of the present application adopts a time slot format including flexible F time slots, according to the uplink service requirements of the terminal equipment in the cell.
  • the F time slot is flexibly scheduled for uplink transmission or for downlink transmission.
  • the embodiment of the present application can avoid uplink and downlink interference through coordinated scheduling.
  • the explanation of the uplink and downlink interference indicates that the uplink and downlink interference refers to the interference caused by the service transmission of adjacent cells in different transmission directions on the same time-frequency domain resources.
  • cell 1 and cell 2 are adjacent cells, and cell 1 and cell 2 both use the time slot format shown in the first row of Figure 2, that is, when 3 F's are included Among them, the uplink traffic of cell 1 accounts for a relatively high proportion. Therefore, the radio access network equipment of cell 1 schedules one F time slot for uplink transmission, and the remaining 2 F time slots are used for downlink transmission. The proportion of uplink traffic in cell 2 is relatively low, therefore, the radio access network equipment in cell 2 schedules three F time slots for downlink transmission.
  • the wireless access network equipment of cell 1 performs uplink transmission through the time-frequency domain resource, and cell 2
  • the radio access network equipment of cell 2 performs downlink transmission through this time-frequency domain resource. Since the transmit power of downlink transmission is much higher than the power of uplink transmission, the downlink transmission in the fourth time slot of cell 2 will affect the downlink transmission of the fourth time slot of cell 1.
  • the uplink transmission of the time slot causes interference, resulting in bit errors in the uplink transmission.
  • FIG. 2 takes two adjacent cells as an example for illustration, and the number of adjacent cells in the embodiment of the present application is not limited by this, and the number of adjacent cells may be 3, 4, and 7 Wait for any number.
  • the adjacent cells may be cells of the same radio access network device, or may be cells of different radio access network devices.
  • FIG. 3 is a flowchart of a communication resource scheduling method according to an embodiment of the present application.
  • This embodiment involves a radio access network device and multiple terminal devices, wherein the coverage of the radio access network device includes a first cell and a third In adjacent cells of a cell, the multiple terminal devices may include the terminal device 11 of the first cell and the terminal device 21 of the adjacent cell of the first cell.
  • the method of this embodiment may include:
  • Step 101 The radio access network device indicates to the terminal device 11 that the first resource of the first cell is used for the first transmission.
  • the first transmission includes uplink transmission or downlink transmission.
  • Radio access network equipment can use system information block (system information block, SIB) 1, radio resource control (radio resource control, RRC) signaling, slot format indicator (slot format indicator, SFI), or downlink control information (downlink) At least one item of control information, DCI), indicating to the terminal device 11 that the first resource of the first cell is used for the first transmission.
  • SIB system information block
  • RRC radio resource control
  • slot format indicator slot format indicator
  • SFI slot format indicator
  • DCI downlink control information
  • This embodiment of the present application uses the terminal device 11 in the first cell as an example for illustration. It can be understood that the radio access network device may also communicate with other terminal devices in the first cell, for example, the terminal device 12, the terminal device 13, etc., The first resource of the first cell is indicated for the first transmission.
  • the first resource may be part or all of the resources in the F-slot.
  • the radio access network equipment adopts the time slot format shown in FIG. 4A
  • the time slot format includes F time slots
  • the number of the F time slots can be set to any integer from 1 to 10.
  • This embodiment adopts the time slot format.
  • the number of F time slots shown in FIG. 4A is 3 as an example for illustration, and the number of F time slots is not limited by the number shown in FIG. 4A .
  • the first, second, sixth and seventh time slots are downlink transmission (DL) time slots
  • the eighth time slot is a special (S) time slot. Part of the symbols are used for downlink transmission (DL), and part of the symbols are used for uplink transmission (UL).
  • the S-slot may also include symbols for downlink-to-uplink interval (GAP).
  • GAP downlink-to-uplink interval
  • Setting the F time slot can support flexible scheduling, for example, the F time slot is scheduled for uplink transmission or downlink transmission. In some embodiments, when the number of F time slots can be set to 10, each time slot supports flexible scheduling.
  • the first resource may be one F-slot, or multiple F-slots, or part of the frequency domain resources in one F-slot, or part of the time-frequency domain resources in one F-slot, or among multiple F-slots part of the frequency domain resources of the F-slot, or part of the time-domain resources in one F-slot, or part of the time-domain resources in multiple F-slots, or part of the time-frequency domain resources in multiple F-slots.
  • the first resource is some or all of the resources in the F slot in the slot format of FIG. 4A.
  • the first resource may be the resource shown in FIG. 4B , and the first resource is a part of time domain resources in an F time slot.
  • the radio access network device instructs the first resource of the first cell to be used for the first transmission through the above step 101, and the first transmission is an uplink transmission (UL) in FIG. 4B .
  • the radio access network device may also indicate that other resources other than the first resource in the three F time slots shown in FIG. 4A of the first cell are used for uplink transmission or downlink transmission.
  • the radio access network device may indicate that the first F time slot and the third F time slot in FIG. 4A of the first cell are used for downlink transmission (DL).
  • the radio access network device may not schedule resources other than the first resource in the second F time slot of FIG. 4A of the first cell.
  • the radio access network device may determine the value according to at least one of the service requirements of the terminal device 11, the service requirements of other terminal devices in the first cell, or the service requirements of terminal devices in adjacent cells of the first cell.
  • the first resource of the first cell is indicated for the first transmission.
  • the traffic volume of the first transmission of the first cell is greater than the fourth threshold, and/or the traffic type of the first transmission includes ultra-reliable low latency communication (URLLC).
  • URLLC ultra-reliable low latency communication
  • the traffic involved in this embodiment of the present application includes at least one of the following: the average actual traffic volume of the first transmission within the first preset duration, or the actual traffic volume of the first transmission at least one moment, or the first transmission volume within the second preset duration
  • the first preset duration may be any duration such as 5 hours, 6 hours, and 24 hours.
  • the second preset duration may be any duration such as 5 hours, 6 hours, and 24 hours.
  • the first preset duration may be a duration in historical time, and the second preset duration may be a duration in future time.
  • Step 102 The terminal device 11 performs the first transmission on the first resource.
  • the terminal device 11 performs the first transmission on the first resource according to the instruction of the wireless access network device. For example, the terminal device performs uplink transmission on the first resource, that is, the terminal device sends the uplink signal on the first resource, and correspondingly, the radio access network device receives the uplink signal sent by the terminal device on the first resource. For another example, the terminal device performs downlink transmission on the first resource, that is, the radio access network device sends the downlink signal on the first resource, and the terminal device receives the downlink signal sent by the radio access network device on the first resource.
  • the terminal device 11 sends an uplink signal to the radio access network device on the first resource. It can be understood that the terminal device 11 may also perform uplink transmission or downlink transmission on resources other than the first resource. For example, as shown in FIG. 4B , the terminal device 11 may also perform uplink transmission or downlink transmission on the first, second, third, fifth, Downlink transmission (DL) on slots 6 and 7, downlink transmission (DL) on partial symbols in slot 8, uplink transmission (UL) on partial symbols in slot 8, Uplink transmissions (UL) are performed on the 9th and 10th time slots.
  • DL Downlink transmission
  • DL downlink transmission
  • UL uplink transmission
  • Uplink transmissions (UL) are performed on the 9th and 10th time slots.
  • Step 103 The radio access network device indicates to the terminal device 21 that the second resource of the adjacent cell of the first cell is used for the second transmission, and the second resource is related to the time domain, frequency domain, space domain, and code domain of the first resource. or at least one of the power domains is different.
  • the second transmission is a downlink transmission
  • the first transmission is a downlink transmission
  • the second transmission is an uplink transmission. That is, the transmission directions of the first transmission and the second transmission are opposite.
  • the radio access network device may indicate to the terminal device 21 that the second resource of the adjacent cell of the first cell is used for the second transmission through at least one of SIB 1, RRC signaling, SFI, or DCI.
  • the radio access network device in this embodiment performs transmission in the opposite transmission direction by indicating the first resource of the first cell and the second resource of the adjacent cell of the first cell, the second resource and the time domain of the first resource, At least one of the frequency domain, space domain, code domain or power domain is different, so as to avoid uplink and downlink interference.
  • the space domain may include the beam domain, for example, the different beam domains may be different beam directions and/or different beam intensities, and the like. Different power domains may refer to different transmit powers.
  • the embodiment of the present application uses the terminal device 21 of the adjacent cell of the first cell as an example for illustration. It can be understood that the radio access network device may also send messages to other terminal devices in the adjacent cell, for example, the terminal device 22, The terminal device 23 and the like indicate that the second resource of the adjacent cell is used for the second transmission.
  • the second resource may be part or all of the resources in the F-slot.
  • the second resource may be one F-slot, or multiple F-slots, or part of frequency domain resources in one F-slot, or part of time-frequency domain resources in one F-slot, or among multiple F-slots part of the frequency domain resources of the F-slot, or part of the time-domain resources in one F-slot, or part of the time-domain resources in multiple F-slots, or part of the time-frequency domain resources in multiple F-slots.
  • the second resource may be the resource shown in FIG. 4C , the second resource is a part of the time domain resources in an F time slot, and the second resource and the time domain of the first resource are different.
  • the radio access network device instructs the second resource of the adjacent cell of the first cell to be used for the second transmission through the above step 103, and the second transmission is an uplink transmission (UL) in FIG. 4C .
  • the radio access network device may also indicate that other resources other than the second resource in the three F time slots shown in FIG. 4A of the adjacent cells of the first cell are used for uplink transmission or downlink transmission. Taking FIG. 4C as an example, the radio access network device may indicate that the first F time slot and the third F time slot in FIG.
  • the radio access network device may not schedule resources other than the second resource in the second F time slot of FIG. 4A of the adjacent cells of the first cell, for example, not to schedule the adjacent cells of the first cell and the first cell. Resources in the same time domain to avoid uplink and downlink interference.
  • the terminal equipment in cell 1 has uplink service requirements, and the radio access network equipment schedules the three F in cell 1 as shown in FIG. 4A .
  • the time slot is transmitted as shown in Figure 4B, that is, the first F time slot and the third F time slot are used for downlink transmission, and part of the time domain resources (ie, the first resource) in the second F time slot are used for uplink transmission
  • the terminal equipment in cell 2 does not have many uplink service requirements.
  • the radio access network equipment schedules the three F time slots shown in Figure 4A in cell 2 to be transmitted as shown in Figure 4C, that is, the first F time slot.
  • the third F time slot is used for downlink transmission, and part of the time domain resources (that is, the second resource) in the second F time slot is used for downlink transmission.
  • the time domain of the first resource and the second resource is different, so that the While meeting the service requirements of terminal equipment in different cells, the uplink and downlink interference of adjacent cells is avoided.
  • the radio access network device may determine the value according to at least one of the service requirements of the terminal device 21, the service requirements of the terminal devices in the first cell, or the service requirements of other terminal devices in adjacent cells of the first cell.
  • a second resource indicating a neighbor cell of the first cell is used for the second transmission.
  • Step 104 The terminal device 21 performs the second transmission on the second resource.
  • the terminal device 21 performs the second transmission on the second resource according to the instruction of the wireless access network device. For example, the terminal device performs downlink transmission on the second resource, that is, the radio access network device sends a downlink signal to the terminal device on the second resource, and the terminal device receives the downlink signal on the second resource. For another example, the terminal device 21 performs uplink transmission on the second resource, that is, the terminal device 21 sends the uplink signal on the second resource, and the radio access network device receives the uplink signal sent by the terminal device 21 .
  • the terminal device 21 receives the downlink signal sent by the radio access network device on the second resource. It can be understood that the terminal device 21 may also perform uplink transmission or downlink transmission on resources other than the second resource. For example, as shown in FIG. 4C , the terminal device 21 may also perform uplink transmission or downlink transmission on the first, second, third, fifth, Downlink transmission (DL) on slots 6 and 7, downlink transmission (DL) on partial symbols in slot 8, uplink transmission (UL) on partial symbols in slot 8, Uplink transmissions (UL) are performed on the 9th and 10th time slots.
  • DL Downlink transmission
  • DL downlink transmission
  • UL uplink transmission
  • Uplink transmissions (UL) are performed on the 9th and 10th time slots.
  • the execution order of the above steps 101 and 103 is not limited by the size of the serial number.
  • the steps 101 and 103 may be executed at the same time, or the step 103 may be executed first, and then the step 101 may be executed. There is no specific limitation.
  • the time domain of the second resource and the first resource is , at least one of the frequency domain, the air domain, the code domain or the power domain is different, and different scheduling methods are adopted for the first cell and the adjacent cells of the first cell to meet the different service requirements of terminal equipment in different cells, and While meeting different business requirements, it avoids uplink and downlink interference.
  • the area covered by the first cell is an industrial park, and its uplink transmission requirements are high, while the area covered by the adjacent cells of the first cell is a residential area, and its downlink transmission requirements are high.
  • the first resource in the F time slot can be scheduled in the first cell for uplink transmission by the method in the embodiment of the present application, and the first resource in the F time slot can be scheduled in the adjacent cells of the first cell.
  • the two resources are used for downlink transmission.
  • at least one of the time domain, frequency domain, space domain, code domain or power domain of the first resource and the second resource is different.
  • the first resource of the first cell is instructed to be used for the first transmission to meet the first transmission requirement of the terminal device of the first cell
  • the second resource of the adjacent cell of the first cell is instructed to be used for the second transmission.
  • transmission to meet the second transmission requirement of the adjacent cell in order to avoid the uplink and downlink interference between the first cell and the adjacent cell, the first resource and the second resource are in the time domain, frequency domain, space domain, code domain or power domain. At least one is different.
  • the following embodiments explain different cooperative scheduling manners of the first resource and the second resource.
  • Mode 1 Time-domain coordinated scheduling.
  • the first resources of the first cell are used for the first transmission
  • the second resources of the adjacent cells of the first cell are used for the second transmission
  • the time domains of the first resources and the second resources are different.
  • a neighboring cell of the first cell when a neighboring cell of the first cell includes a signal interference strength with the first cell that is greater than the first threshold, and the traffic volume of the second transmission of the neighboring cell of the first cell is greater than the second threshold
  • mode 1 can be used, that is, domain coordinated scheduling , to avoid interference between the first transmission and the second transmission.
  • the first threshold and the second threshold can be flexibly set according to requirements.
  • method 1 when the neighboring cells of the first cell include neighboring cells whose signal interference strength with the first cell is greater than the first threshold, in other words, when the neighboring cells of the first cell have a difference between the first cell and the first cell When there is strong interference, method 1 can be used.
  • strong interference usually means that the signal interference strength is close to or exceeds the strength of the useful signal, so that the interfered signal cannot communicate normally.
  • This type of interference usually requires time domain coordination, that is, only one transmission direction (uplink or downlink) can be performed at the same time. Communication.
  • Another implementation manner is that the first resource of the first cell is used for the first transmission, the radio access network device does not schedule the second resource of the adjacent cell of the first cell for the second transmission, and the first resource and the second resource are used for the second transmission.
  • the time domain of the resource is the same.
  • a neighboring cell of the first cell when a neighboring cell of the first cell includes a signal interference strength with the first cell that is greater than the first threshold, and the traffic volume of the second transmission of the neighboring cell of the first cell is less than the second threshold
  • the adjacent cells of the first cell are not scheduled.
  • the second resource is used for the second transmission to avoid interference between the first transmission and the second transmission.
  • the frequency domain of the first resource and the second resource for co-scheduling in the time domain may be the same, and the space domain, code domain and power domain of the first resource and the second resource may be the same.
  • Mode 2 frequency domain coordinated scheduling, that is, the first resource of the first cell is used for the first transmission, the second resource of the adjacent cell of the first cell is used for the second transmission, and the frequency domain of the first resource and the second resource are different .
  • the time domain of the first resource and the second resource for frequency domain co-scheduling may be the same, and the space domain, code domain and power domain of the first resource and the second resource may be the same.
  • the first resource may be the resource shown in FIG. 5A , and the first resource is a part of the frequency domain resource in an F time slot.
  • the radio access network device instructs the first resource of the first cell to be used for the first transmission through the above step 101, and the first transmission is uplink transmission (UL) in FIG. 5A .
  • the radio access network device may also indicate that other resources in the three F time slots of the first cell except the first resource as shown in FIG. 4A are used for uplink transmission or downlink transmission.
  • the radio access network device may indicate that the first F time slot and the third F time slot in FIG. 4A of the first cell are used for downlink transmission (DL).
  • the radio access network device may not schedule resources other than the first resource in the second F time slot of FIG. 4A of the first cell.
  • the second resource may be the resource shown in FIG. 5B , the second resource is a part of the frequency domain resource corresponding to an F time slot, and the second resource is the same as the frequency domain of the first resource. Differently, optionally, the time domain of the second resource and the first resource are the same.
  • the radio access network device instructs the second resource of the adjacent cell of the first cell to be used for the second transmission through the above step 103, and the second transmission is an uplink transmission (UL) in FIG. 5B .
  • the radio access network device may also indicate that other resources other than the second resource in the three F time slots shown in FIG. 4A of the adjacent cells of the first cell are used for uplink transmission or downlink transmission. Taking FIG.
  • the radio access network device may indicate that the first F time slot and the third F time slot in FIG. 4A of the neighboring cell of the first cell are used for downlink transmission (DL).
  • the radio access network device may not schedule resources other than the second resource in the second F time slot of FIG. 4A of the adjacent cells of the first cell, for example, not to schedule the adjacent cells of the first cell and the first cell. Resources in the same frequency domain to avoid uplink and downlink interference.
  • the above-mentioned first resource in FIG. 5A and the second resource in FIG. 5B are the resources for co-scheduling in the frequency domain between the first cell and neighboring cells of the first cell.
  • the neighboring cells of the first cell when the neighboring cells of the first cell include a signal interference strength with the first cell that is less than the first threshold and greater than the third threshold, and the traffic volume of the second transmission of the neighboring cells of the first cell
  • the second method can be used, That is, frequency domain co-scheduling to avoid interference between the first transmission and the second transmission.
  • the first threshold, the second threshold and the third threshold can be flexibly set according to requirements.
  • the second mode when the neighboring cells of the first cell include neighboring cells whose signal interference strength with the first cell is less than the first threshold and greater than the third threshold, in other words, when the neighboring cells of the first cell When there is general interference with the first cell, the second mode can be used.
  • general interference means that the signal interference strength is weaker than the useful signal strength moving range, which will lead to the degradation of the communication performance of the interfered signal.
  • This type of interference can use the frequency domain coordination method, that is, the first cell schedules some frequency domain resources, and the phase of the first cell. Neighboring cells call another part of frequency domain resources.
  • Mode 3 Co-scheduling in the space domain, code domain or power domain, that is, the first resource of the first cell is used for the first transmission, the second resource of the adjacent cell of the first cell is used for the second transmission, and the first resource and the second resource are used for the second transmission.
  • the spatial, code or power domains of the resources are different.
  • the frequency domain of the first resource and the second resource co-scheduled for the space domain, code domain or power domain may be the same, and the frequency domain may be the same.
  • the second resource can be as shown in FIG. 5C , and the second resource is in the slot format shown in FIG. 4A .
  • An F time slot in the radio access network device schedules the F time slot for the second transmission, and the second resource is different from the space domain, code domain or power domain of the first resource.
  • the radio access network device instructs the second resource of the adjacent cell of the first cell to be used for the second transmission through the above step 103, and the second transmission is a downlink transmission (DL) in FIG. 5C .
  • the radio access network device may also indicate that other resources other than the second resource in the three F time slots shown in FIG.
  • the radio access network device may indicate that the first F time slot and the third F time slot in FIG. 4A of the neighboring cell of the first cell are used for downlink transmission (DL).
  • DL downlink transmission
  • the first resource and the second resource have the same time domain and the same frequency domain, since the first resource and the second resource are different in the space domain, code domain or power domain, uplink and downlink interference can also be avoided.
  • the third method can be used, that is, the space domain, code Domain or power domain co-scheduling to avoid interference between the first transmission and the second transmission.
  • the first threshold, the second threshold and the third threshold can be flexibly set according to requirements.
  • method 3 when the neighboring cells of the first cell include neighboring cells whose signal interference strength with the first cell is less than the third threshold, in other words, when the neighboring cells of the first cell have a difference between the first cell and the first cell When there is weak interference, method 3 can be used.
  • weak interference means that the interference strength between signals is weak, and the impact on communication performance is limited.
  • This type of interference can use air/power domain coordination.
  • the air domain refers to changing the direction of the signal to further reduce the interference
  • the power domain refers to the Reduce the signal strength to further reduce the interference; in addition, it can also be combined with the beam domain (different cells use different beam direction signals to reduce interference) and/or code rate (different cells use orthogonal codes to reduce interference) to reduce the interference collaboratively. interference.
  • the above-mentioned ways 1, 2, and 3 are used as examples to illustrate the cooperative scheduling method.
  • the cooperative scheduling method can also be a combination of different cooperative scheduling methods.
  • the frequency domain of the first resource and the second resource are different, and the space domain is different. etc., the embodiments of the present application do not illustrate them one by one.
  • FIG. 6A is a schematic diagram of the granularity of time-domain coordinated scheduling according to an embodiment of the present application. As shown in FIG. 6A , some symbols in the F time slot and a complete F time slot can be scheduled for downlink transmission, and 3 The remaining time domain resources in the F time slots are used for uplink transmission, and there is a gap between downlink transmission and uplink transmission.
  • the granularity of frequency-domain coordinated scheduling may be a physical resource block group (RGB), etc.
  • FIG. 6B is a schematic diagram of the granularity of frequency-domain coordinated scheduling according to an embodiment of the present application.
  • part of the frequency domain resources in the F time slot can be scheduled for the first transmission.
  • RGB1 to 9 in the F time slot are scheduled for the first transmission of the first cell, and the remaining RGB11 to 17 are used for the first transmission.
  • FIG. 7 is a flowchart of another communication resource scheduling method according to an embodiment of the present application.
  • the embodiment of the present application involves multiple wireless access network devices, such as a communication device, a wireless access network Device 2 and radio access network device 3, the coverage of radio access network device 2 includes the first cell, the coverage of radio access network device 3 includes adjacent cells of the first cell, and multiple terminal devices may include The terminal equipment 11 of the first cell, and the terminal equipment 21 of the adjacent cells of the first cell, the communication device may be wireless access network equipment or its internal chip, or network management equipment, etc.
  • this communication device The method of an embodiment may include:
  • Step 201 the communication apparatus sends first information to the wireless access network device 2 .
  • the radio access network device 2 receives the first information sent by the communication apparatus, where the first information is used to indicate that the first resource of the first cell is used for the first transmission.
  • Step 202 the communication apparatus sends the second information to the wireless access network device 3 .
  • the radio access network device 3 receives the second information sent by the communication apparatus, where the second information is used to indicate that the second resources of the neighboring cells of the first cell are used for the second transmission.
  • the second resource is different from at least one of the time domain, frequency domain, spatial domain, code domain or power domain of the first resource.
  • the communication device determines the cooperative scheduling mode of the first cell and the adjacent cells of the first cell, and instructs the corresponding radio access network device, for example, the radio access network device 2 and the radio access network in this embodiment.
  • the coordinated scheduling manner of the first resource and the second resource may be any one of the foregoing manner 1, manner 2 or manner 3, or a combination thereof.
  • Step 203 The radio access network device 2 indicates to the terminal device 11 that the first resource of the first cell is used for the first transmission.
  • the radio access network device 2 indicates to the terminal device 11 that the first resource of the first cell is used for the first transmission.
  • Step 204 The terminal device 11 performs the first transmission on the first resource.
  • Step 205 The radio access network device 3 indicates to the terminal device 21 that the second resource of the adjacent cell of the first cell is used for the second transmission.
  • the radio access network device 3 indicates to the terminal device 21 that the second resource of the adjacent cell of the first cell is used for the second transmission.
  • Step 206 The terminal device 21 performs the second transmission on the second resource.
  • steps 203 to 206 may refer to the explanations of steps 101 to 104 in the embodiment shown in FIG. 3 , and details are not repeated here.
  • steps 201 to 206 is not limited by the size of the serial number, and they may be executed simultaneously, or step 202 is executed first, and then step 201 is executed, etc.
  • the embodiments of the present application do not illustrate them one by one.
  • the time domain of the second resource and the first resource is , at least one of the frequency domain, the air domain, the code domain or the power domain is different, and different scheduling methods are adopted for the first cell and the adjacent cells of the first cell to meet the different service requirements of terminal equipment in different cells, and While meeting different business requirements, it avoids uplink and downlink interference.
  • FIG. 8 is a flowchart of a method for determining a cooperative scheduling mode according to an embodiment of the present application. Based on the above-mentioned embodiment shown in FIG. 3 or FIG. 7 , this embodiment explains the determination of the cooperative scheduling mode.
  • the execution body of the example may be the wireless access network device or the chip or a single board of the wireless access network device in the embodiment shown in FIG. 3 , or may be the communication device in the embodiment shown in FIG. 7 , as shown in FIG. 8 ,
  • the method of this embodiment may include:
  • Step 301 Acquire at least one item of traffic volume or service type of the first transmission of the first cell, and at least one item of the traffic volume or service type of the second transmission of the adjacent cells of the first cell.
  • the radio access network device may receive at least one of the traffic volume indication information or the service type indication information sent by the terminal device in the first cell, and the radio access network device can receive at least one of the traffic volume indication information or the service type indication information according to at least one of the traffic volume indication information or the service type indication information.
  • One item is to determine at least one of the traffic volume or the traffic type of the first transmission.
  • the service type indication information may be any value from 1 to 10, and any value from 1 to 10 is used to indicate a service volume.
  • the service type indication information may be QCI.
  • the radio access network device may receive at least one item of traffic volume indication information or service type indication information sent by terminal devices in adjacent cells of the first cell, and based on this, determine the traffic volume or service type of the second transmission. at least one.
  • the traffic volume of the second transmission involved in the embodiment of the present application includes at least one of the following: the average actual traffic volume of the second transmission within the first preset time period, or the actual traffic volume of the second transmission at at least one moment, or the second predetermined traffic volume of the second transmission.
  • the average predicted traffic volume of the second transmission within the duration is set, or the predicted traffic volume of the second transmission at at least one moment.
  • the first preset duration may be any duration such as 5 hours, 6 hours, and 24 hours.
  • the second preset duration may be any duration such as 5 hours, 6 hours, and 24 hours.
  • the first preset duration may be a duration in historical time, and the second preset duration may be a duration in future time.
  • Step 302 according to at least one of the traffic volume or service type of the first transmission of the first cell, at least one of the traffic volume or service type of the second transmission of the adjacent cells of the first cell, and the relationship between the first cell and the first cell.
  • the signal interference strength of the neighboring cells of a cell is determined to adopt at least one of the first mode, the second mode or the third mode.
  • the first cell needs to perform the first transmission enhancement, for example, the uplink transmission enhancement
  • the first transmission enhancement for example, the uplink transmission enhancement
  • the first cell can be based on at least one of the traffic volume or the service type of the second transmission of the adjacent cells of the first cell, and the signal interference strength between the first cell and the adjacent cells of the first cell. , and determine to adopt at least one of Method 1, Method 2 or Method 3.
  • the traffic volume of the second transmission of the adjacent cells of the first cell is greater than the second threshold
  • the first mode, the second mode or the third mode is determined according to the signal interference strength between the first cell and the adjacent cells of the first cell.
  • the time domain coordination mode when the traffic volume of the second transmission of the adjacent cells of the first cell is small, the time domain coordination mode may be adopted.
  • a time domain coordination manner may be adopted.
  • Step 303 When the first method is adopted, determine that the time domains of the first resource of the first cell and the second resource of the adjacent cells of the first cell are different.
  • the frequency domain of the first resource and the second resource are the same, and the spatial domain, the code domain or the power domain are the same.
  • Step 304 When the second method is adopted, determine that the first resource of the first cell and the second resource of the adjacent cells of the first cell have different frequency domains.
  • the time domain of the first resource and the second resource are the same, and the space domain, the code domain or the power domain are the same.
  • Step 305 When the third mode is adopted, determine that the first resource of the first cell and the second resource of the adjacent cell of the first cell are different in at least one of the space domain, code domain or power domain.
  • the time domain of the first resource and the second resource are the same, and the frequency domain is the same.
  • the first transmission is uplink transmission
  • the second transmission is downlink transmission.
  • the first cell may not be transmitted to the first cell. Perform upstream transmission enhancements.
  • the first transmission is uplink transmission
  • the second transmission is downlink transmission.
  • the uplink transmission enhancement may not be performed on the first cell.
  • the signal interference strength with the adjacent cells of the first cell is determined to adopt at least one of the first, second and third modes, so as to flexibly select an appropriate coordinated scheduling mode according to the service requirements of different cells to avoid uplink and downlink interference.
  • FIG. 9A is a schematic diagram of interference detection according to an embodiment of the present application.
  • seven radio access network devices are used, and each radio access network device covers one cell as an example.
  • each The hexagonal grid represents a cell, and the same frequency band is reused between cells to form a cellular structure to achieve regional signal coverage.
  • the service behavior of the terminal equipment is independent, so the proportion of uplink and downlink services in different cells will be unbalanced.
  • radio access network device 1 covers cell 1
  • radio access network device 2 covers cell 2
  • radio access network device 7 covers cell 7.
  • the radio access network device 1 broadcasts and sends the probe signal, and the radio access network device 2 to the radio access network device 7 receive the probe signal respectively, and measure the signal interference strength between the two cells, and the radio access network device 2 to the radio access network device 7 respectively receive the probe signal and measure the signal interference strength between the two cells.
  • the access network device 7 may feed back the measured signal interference strength to the wireless access network device 1 .
  • the radio access network device 2 broadcasts and sends a probe signal, and the radio access network device 1, radio access network device 3 to radio access network device 7 receive the probe signal respectively, and measure the signal interference between the two cells
  • the wireless access network device 1 , the wireless access network device 3 to the wireless access network device 7 can feed back the measured signal interference strength to the wireless access network device 2 .
  • Radio access network equipment broadcasts the detection signal and receives the feedback signal interference strength in a similar manner. Based on this, the signal interference strength between any two cells can be obtained.
  • Each radio access network device may feed back the signal interference strength to the radio access network device executing the method in the embodiment shown in FIG. 8 to determine to adopt at least one of the first mode, the second mode or the third mode.
  • each radio access network device sends the sounding signal can be any of the following: (1) using GAP to send the sounding signal, (2) sending the sounding signal with a dedicated downlink symbol, (3) multiplexing the existing downlink sounding signal (TRS) /CSI) to send a sounding signal.
  • the GAP symbols can be used for detection signal transmission and interference detection.
  • the dedicated downlink symbols may be partial symbols in the DL subframe. Different from the dedicated downlink symbols, the existing downlink sounding signal (TRS/CSI) is multiplexed to send the sounding signal, and it is not necessary to occupy additional downlink symbols.
  • the first cell and the adjacent cells of the first cell in any of the foregoing embodiments may be located in the same cell cluster, and the division of the cell cluster may be based on the signal interference strength between different cells, the cells within the cell cluster At least one of the maximum number, the geographic location of the radio access network equipment covering the cell, or the service requirements of the cell.
  • the division of the cell clusters may be divided by artificial intelligence (AI) learning, for example, using AI to learn information such as service characteristics and interference characteristics of the cells online and perform dynamic cell cluster division based on this.
  • the maximum value of the number of cells in the cell cluster can be any value such as 12.
  • cells in a cell cluster may satisfy at least one of the following:
  • the signal interference strength of the cells in the cell cluster is greater than a threshold; or, the physical distance of the radio access network equipment of the cells in the cell cluster is less than a threshold; or, the service requirements of the cells in the cell cluster are the service requirements of the same transmission direction , for example, uplink transmission or downlink transmission.
  • cell cluster 1 cluster1
  • cell cluster 2 cluster2
  • cell cluster 3 cluster3
  • collaborative scheduling is performed within the cell clusters, so as to reduce the coordination complexity and delay, and improve the efficiency of the collaborative scheduling.
  • FIG. 11 is a schematic diagram of a coordinated scheduling according to the embodiment of the present application, wherein the first cell is covered by the radio access network device 1 cell 1, the adjacent cells of the first cell include cell 2 covered by radio access network device 2, cell 3 covered by radio access network device 3, and cell 4 covered by radio access network device 4, and the terminals in cell 1
  • the equipment includes terminal equipment 11, the terminal equipment of cell 2 includes terminal equipment 21, the terminal equipment of cell 3 includes terminal equipment 31, and the terminal equipment of cell 4 includes terminal equipment 41.
  • the first transmission is uplink transmission
  • the second transmission is downlink transmission. example.
  • radio access network device 1 determines that cell 1 needs to perform uplink transmission enhancement, that is, resources in the F time slot need to be scheduled for uplink transmission. As shown in FIG. 11 , some frequency domain resources in the F time slot of cell 1 as shown in FIG. 11 are scheduled for uplink transmission.
  • the radio access network device 1 determines the coordinated scheduling mode in combination with at least one of the downlink transmission traffic volume or the service type of the cell 2 , the cell 3 and the cell 4 . For example, if the downlink transmission of cell 2 does not need to be enhanced, or the signal interference strength between cell 2 and cell 1 is at a strong interference level, one F time slot of cell 2 may not be scheduled.
  • the downlink transmission of cell 3 needs to be enhanced, and the signal interference strength between cell 3 and cell 1 is at a normal interference level, another part of the frequency domain resources of the F time slot of cell 3 can be scheduled for downlink transmission.
  • the downlink transmission of cell 4 needs to be enhanced, and the signal interference strength between cell 4 and cell 1 belongs to the weak interference level, then the F time slot of cell 4 can be scheduled for downlink transmission, and the F time slot used for downlink transmission
  • the space domain, code domain or power domain is different from the spatial domain, code domain or power domain of the uplink transmission enhanced resource of cell 1.
  • the first resource of the first cell may be the UL interference time slot shown in FIG. 12 .
  • the resource at the same position as the first resource in the neighboring cell is used for downlink transmission, so it will cause interference to the first resource, and a joint demodulation method may be adopted in this embodiment of the present application.
  • the radio access network device may receive uplink data on the first resource.
  • the uplink data may be demodulated using a channel estimation result of a demodulation reference signal DMRS on a third resource, where the third resource has the same frequency domain location and time domain location as the first resource.
  • the third resource may be a UL clear time slot as shown in FIG.
  • the wireless access network device may receive uplink data on the first resource, demodulate the uplink data on the first resource, obtain the first demodulated data, and receive the uplink data on the third resource, The uplink data on the third resource is demodulated to obtain the second demodulated data, and the first demodulated data and the second demodulated data can be combined.
  • the radio access network device in the embodiment of the present application may also schedule terminal devices with little interference in the UL interference time slot, and schedule terminal devices with large interference in the UL non-interference time slot.
  • the demodulation performance in the collaborative scheduling process, in order to ensure the accuracy of uplink data reception, the demodulation performance may be improved by means of joint demodulation, so as to ensure accurate data reception.
  • the communication resource scheduling method provided by the embodiment of the present application is described above, and the communication device provided by the embodiment of the present application will be described below.
  • FIG. 13 is a schematic diagram of a communication apparatus 1300 according to an embodiment of the present application, where the communication apparatus 1300 includes:
  • the processing module 1310 is configured to instruct the first resource of the first cell to be used for the first transmission through the transceiver module 1320.
  • the processing module 1310 is further configured to indicate through the transceiver module 1320 that the second resource of the adjacent cell of the first cell is used for the second transmission, the second resource and the time domain, frequency domain, space domain, code of the first resource At least one of the domain and the power domain are different.
  • the first transmission is uplink transmission
  • the second transmission is downlink transmission
  • the second transmission is uplink transmission
  • the first resource and the second resource are flexible time-frequency domain resources.
  • the traffic volume of the second transmission of a neighbor cell of the first cell is greater than a second threshold.
  • the signal interference strength between a neighboring cell of the first cell and the first cell is greater than a first threshold; the second resource of the neighboring cell and the time domain of the first resource are different.
  • the signal interference strength between neighboring cells of the first cell and the first cell is less than the first threshold and greater than a third threshold; the difference between the second resource of the neighboring cell and the first resource is The frequency domain is different.
  • the signal interference strength between a neighboring cell of the first cell and the first cell is less than a third threshold; the spatial domain, code domain or power of the second resource of the neighboring cell and the first resource At least one of the domains is different.
  • the first transmission is an uplink transmission.
  • the transceiver module 1320 is further configured to receive the uplink data on the first resource, and the processing module 1310 is further configured to demodulate the uplink data using the channel estimation result of the demodulation reference signal DMRS on the third resource, the third resource and The frequency domain position of the first resource is the same and the time domain position.
  • the transceiver module 1320 is further configured to receive uplink data on the first resource, and the processing module is further configured to demodulate the uplink data on the first resource to obtain the first demodulated data, and the transceiver module 1320 is also configured to demodulate the uplink data on the first resource.
  • the processing module 1310 is further configured to demodulate the uplink data on the third resource, obtain second demodulation data, and combine the first demodulation data and the second demodulation data. adjust data.
  • the traffic volume of the first transmission is greater than a fourth threshold, and/or the traffic type of the first transmission includes ultra-reliable and low-latency URLLC.
  • the traffic volume includes at least one of the following: an average actual traffic volume of the first transmission within a first preset time period, or an actual traffic volume of the first transmission at at least one moment, or a second preset time period The average predicted traffic volume of the first transmission within the period, or the predicted traffic volume of the first transmission at at least one moment.
  • the transceiver module 1320 is further configured to receive first information sent by the second communication device, where the first information is used to indicate that the first resource of the first cell is used for the first transmission; or, the processing module 1310 is further configured to, according to at least one of the traffic volume or service type of the first transmission of the first cell, and at least one of the traffic volume or service type of the second transmission of the adjacent cells of the first cell, determine whether to The step of indicating that the first resource of the first cell is used for the first transmission is performed by the transceiver module 1320 .
  • adjacent cells of the first cell are located in the same cell cluster.
  • the processing module 1310 is further configured to send a sounding signal through the transceiver module 1320, where the sounding signal is used to measure the signal interference strength between the first cell and the adjacent cells of the first cell; the transceiver Module 1320 is further configured to receive the signal interference strength, where the signal interference strength is used to determine that the second resource is different from at least one of the time domain, frequency domain, spatial domain, code domain and power domain of the first resource.
  • processing module 1310 in this embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 1320 may be implemented by a transceiver or a transceiver-related circuit component.
  • an embodiment of the present application further provides a communication apparatus 1400
  • the communication apparatus 1400 includes a processor 1410, a memory 1420 and a transceiver 1430, wherein the memory 1420 stores instructions or programs, and the processor 1410 is used for executing Instructions or programs stored in memory 1420 .
  • the processor 1410 is configured to perform the operations performed by the processing module 1310 in the foregoing embodiments
  • the transceiver 1430 is configured to perform operations performed by the transceiving module 1320 in the foregoing embodiments.
  • the communication device 1300 or the communication device 1400 may correspond to the wireless access network device in any of the embodiments of FIG. 3 to FIG. 12 of the embodiment of the present application, and the communication device 1300 or the communication device 1400
  • the operations and/or functions of the respective modules of FIG. 12 are respectively to implement the corresponding processes of the respective methods in any of the embodiments 3 to 12 , and are not repeated here for brevity.
  • the wireless access network device may be as shown in FIG. 15
  • the apparatus 1500 includes one or more radio frequency units, such as a remote radio unit (remote radio unit, RRU) 1510 and one or more baseband units (baseband units, BBUs) (also referred to as digital units, digital units, DUs) 1520 .
  • the RRU 1510 may be called a transceiver module, which corresponds to the transceiver module 1320 in FIG. 13 , and optionally, the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1511 and RF unit 1512.
  • the RRU 1510 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals to baseband signals, for example, for indicating to the terminal equipment that the first resource of the first cell is used for the first transmission.
  • the part of the BBU 1510 is mainly used to perform baseband processing, control the base station, and the like.
  • the RRU 1510 and the BBU 1520 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1520 is the control center of the base station, and can also be called a processing module, which can correspond to the processing module 1310 in FIG. 13 , and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and the like.
  • the BBU processing module
  • the BBU may be used to control the base station to perform the operation procedure of the wireless access network device in the above method embodiments, for example, to generate information indicating that the first resource of the first cell is used for the first transmission.
  • the BBU 1550 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or may respectively support a wireless access network of different access standards.
  • Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 1520 also includes a memory 1521 and a processor 1522.
  • the memory 1521 is used to store necessary instructions and data.
  • the processor 1522 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation procedure of the wireless access network device in the foregoing method embodiments.
  • the memory 1521 and the processor 1522 may serve one or more single boards. That is to say, the memory and processor can be provided separately on each single board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • processors mentioned in the embodiments of the present invention may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application-specific integrated circuits ( Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present invention may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module
  • memory described herein is intended to include, but not be limited to, these and any other suitable types of memory.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信资源调度方法和装置。本申请的通信资源调度方法可以包括:指示第一小区的第一资源用于第一传输,并指示第一小区的相邻小区的第二资源用于第二传输,该第二资源与该第一资源的时域、频域、空域、码域或功率域中的至少一项不同。本申请实施例可以对第一小区和第一小区的相邻小区采用不同的调度方式,以满足不同小区的终端设备的不同的业务需求,并且在满足不同的业务需求的同时,避免上下行干扰。

Description

通信资源调度方法和装置
本申请要求于2020年06月30日提交中国专利局、申请号为202010617621.X、申请名称为“通信资源调度方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种通信资源调度方法和装置。
背景技术
随着无线通信技术的发展和移动用户需求的快速增长,未来无线通信网络面临着无线频谱资源短缺的挑战。
不同业务场景中用户的业务需求也并不相同。例如,对于面向企业(to business,2B)的业务场景中,上行容量需求较高,即对上行传输带宽和上行传输速率有较高的需求。而对于面向消费者(to consumer,2C)的业务场景中,下行容量需求较高,即对下行传输带宽和下行传输速率有较高需求。
如何针对不同业务场景,在无线频谱资源有限的条件下,满足不同用户的业务需求成为亟待解决的技术问题。
发明内容
本申请提供一种通信资源调度方法和装置,以在无线频谱资源有限的条件下,满足不同用户的业务需求。
第一方面,本申请提供一种通信资源调度方法,该方法可以包括:第一通信装置指示第一小区的第一资源用于第一传输。该第一通信装置指示该第一小区的相邻小区的第二资源用于第二传输,该第二资源与该第一资源的时域、频域、空域、码域和功率域中的至少一项不同。其中,该第一传输为上行传输时,该第二传输为下行传输,或者,该第一传输为下行传输时,该第二传输为上行传输。
本实现方式,通过指示第一小区的第一资源用于第一传输,并指示第一小区的相邻小区的第二资源用于第二传输,该第二资源与该第一资源的时域、频域、空域、码域或功率域中的至少一项不同,对第一小区和第一小区的相邻小区采用不同的调度方式,以满足不同小区的终端设备的不同的业务需求,并且在满足不同的业务需求的同时,避免上下行干扰。
一种可能的设计中,该第一资源和该第二资源均为灵活时频域资源。该灵活时频域资源可以是F时隙中的时频域资源。
本实现方式可以基于小区的负载状态动态调整上下行的资源,满足小区的业务需求。例如,第一小区所覆盖的区域为工业园区,其上行传输需求较高,而第一小区的相邻小区所覆盖的区域为住宅区,其下行传输需求较高,为了满足不同小区的业务传输需求,可以 通过本实现方式的方法在第一小区中调度F时隙中的第一资源用于上行传输,在第一小区的相邻小区中调度F时隙中的第二资源用于下行传输,为了避免上下行干扰,第一资源和第二资源的时域、频域、空域、码域或功率域中的至少一项不同。
在一些实施例中,还可以在不同时间动态调度F用于上行传输或下行传输,从而有效对抗网络中的潮汐效应。例如,在晚上在工业园区的小区配置较多的上行传输资源,以满足工业数字化需求。
本申请实施例的方法不仅适用于TDD系统,还适用于FDD系统。
一种可能的设计中,该第一小区的相邻小区与该第一小区之间的信号干扰强度大于第一阈值,且该第一小区的相邻小区的第二传输的业务量大于第二阈值;或者,该第一小区的相邻小区与该第一小区之间的信号干扰强度大于第一阈值;该相邻小区的第二资源与该第一资源的时域不同。
本实现方式,可以基于业务量和信号干扰强度,或者,基于信号干扰强度,采用时域协同的方式,避免上下行干扰。
一种可能的设计中,该第一小区的相邻小区与该第一小区之间的信号干扰强度大于第一阈值,且该第一小区的相邻小区的第二传输的业务量小于第二阈值,则可以不调度相邻小区的第二资源。该相邻小区的第二资源与第二资源的时域相同。
本实现方式,在第一小区的相邻小区的第二传输的业务量较低,且第一小区与相邻小区之间的干扰属于强干扰时,为了避免上下行干扰,可以不调度相邻小区的第二资源。
一种可能的设计中,该第一小区的相邻小区与该第一小区之间的信号干扰强度小于该第一阈值且大于第三阈值,且该第一小区的相邻小区的第二传输的业务量大于第二阈值;或者该第一小区的相邻小区与该第一小区之间的信号干扰强度小于该第一阈值且大于第三阈值;该相邻小区的第二资源与该第一资源的频域不同。
本实现方式,可以基于业务量和信号干扰强度,或者,基于信号干扰强度,采用频域协同的方式,避免上下行干扰。
一种可能的设计中,该第一小区的相邻小区与该第一小区之间的信号干扰强度小于第三阈值,且该第一小区的相邻小区的第二传输的业务量大于第二阈值;或者,该第一小区的相邻小区与该第一小区之间的信号干扰强度小于第三阈值;该相邻小区的第二资源与该第一资源的空域、码域或功率域中至少一项不同。
本实现方式,可以基于业务量和信号干扰强度,或者,基于信号干扰强度,采用空域、码域或功率域中至少一项协同的方式,避免上下行干扰。
一种可能的设计中,该第一传输为上行传输,该方法还包括:接收该第一资源上的上行数据;使用第三资源上的解调参考信号DMRS的信道估计结果解调该上行数据,该第三资源与该第一资源的频域位置相同且时域位置不同;或者,接收该第一资源上的上行数据,对该第一资源上的上行数据进行解调,获取第一解调数据,接收该第三资源上的上行数据,对该第三资源上的上行数据进行解调,获取第二解调数据,合并该第一解调数据和该第二解调数据。
本实现方式,通过联合解调的方式,可以提升解调性能,保证数据准确接收。
一种可能的设计中,该第一传输的业务量大于第四阈值,和/或该第一传输的业务类型包括超可靠低时延URLLC。
本实现方式,可以基于第一小区的上行传输或下行传输的业务量和/或业务类型,确定是否对第一小区进行上行传输增强或下行传输增强,当确定对第一小区进行上行传输增强或下行传输增强时,可以通过上述实现方式指示第一小区的第一资源用于上行传输或下行传输,并对第一小区的相邻小区采用时域、频域、空域、码域或功率域的协同方式,以避免相邻小区之间的上下行干扰。
一种可能的设计中,该业务量包括以下至少一项:第一预设时长内该第一传输的平均实际业务量,或至少一个时刻该第一传输的实际业务量,或第二预设时长内该第一传输的平均预测业务量,或至少一个时刻该第一传输的预测业务量。
一种可能的设计中,该方法还包括:从第二通信装置接收第一信息,该第一信息用于指示该第一小区的第一资源用于第一传输;或者,根据该第一小区的第一传输的业务量或业务类型中至少一项,和该第一小区的相邻小区的第二传输的业务量或业务类型中至少一项,确定第一小区的第一资源用于第一传输。
一种可能的设计中,该第一小区的相邻小区位于同一个小区簇内。
本实现方式,通过划分小区簇,在小区簇内进行协同调度,以降低协同复杂度及时延,提升协同调度的效率。
一种可能的设计中,该方法还包括:发送探测信号,该探测信号用于测量该第一小区与该第一小区的相邻小区之间的信号干扰强度。接收该信号干扰强度,该信号干扰强度用于确定该第二资源与该第一资源的时域、频域、空域、码域和功率域中的至少一项不同。
第二方面,本申请提供一种通信装置,该通信装置可以为无线接入网设备或者无线接入网设备中的芯片或者片上系统或单板,还可以为无线接入网设备中用于实现上述第一方面或上述第一方面的任一可能的设计的方法的功能模块。该通信装置可以作为第一通信装置,该通信装置可以实现上述第一方面或上述第一方面的各可能的设计中第一通信装置所执行的功能,功能可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块。举例来说,一种可能的实施方式中,该通信装置,可以包括:处理模块,用于通过收发模块指示第一小区的第一资源用于第一传输。该处理模块,还用于通过该收发模块指示该第一小区的相邻小区的第二资源用于第二传输,该第二资源与该第一资源的时域、频域、空域、码域和功率域中的至少一项不同。其中,该第一传输为上行传输,该第二传输为下行传输,或者,该第一传输为下行传输,该第二传输为上行传输。
一种可能的设计中,该第一资源和该第二资源均为灵活时频域资源。
一种可能的设计中,该第二传输的业务量大于第二阈值。
一种可能的设计中,该第一小区的相邻小区与该第一小区之间的信号干扰强度大于第一阈值;该相邻小区的第二资源与该第一资源的时域不同。
一种可能的设计中,该第一小区的相邻小区与该第一小区之间的信号干扰强度小于该第一阈值且大于第三阈值;该相邻小区的第二资源与该第一资源的频域不同。
一种可能的设计中,该第一小区的相邻小区与该第一小区之间的信号干扰强度小于第三阈值;该相邻小区的第二资源与该第一资源的空域、码域或功率域中至少一项不同。
一种可能的设计中,该第二传输的业务量小于第二阈值,可以不调度相邻小区的第二资源,该第二资源与第一资源的时域相同。
一种可能的设计中,该第一传输为上行传输。该收发模块还用于接收该第一资源上的 上行数据,该处理模块还用于使用第三资源上的解调参考信号DMRS的信道估计结果解调该上行数据,该第三资源与该第一资源的频域位置相同且时域位置不同;或者,该收发模块还用于接收该第一资源上的上行数据,该处理模块还用于对该第一资源上的上行数据进行解调,获取第一解调数据,该收发模块还用于接收第三资源上的上行数据,该处理模块还用于对该第三资源上的上行数据进行解调,获取第二解调数据,合并该第一解调数据和该第二解调数据。
一种可能的设计中,该第一传输的业务量大于第四阈值,和/或该第一传输的业务类型包括超可靠低时延URLLC。
一种可能的设计中,该业务量包括以下至少一项:第一预设时长内该第一传输的平均实际业务量,或至少一个时刻该第一传输的实际业务量,或第二预设时长内该第一传输的平均预测业务量,或至少一个时刻该第一传输的预测业务量。
一种可能的设计中,该收发模块还用于接收第二通信装置发送的第一信息,该第一信息用于指示该第一小区的第一资源用于第一传输;或者,该处理模块还用于根据该第一小区的第一传输的业务量或业务类型中至少一项,和该第一小区的相邻小区的第二传输的业务量或业务类型中至少一项,确定是否通过该收发模块执行该指示第一小区的第一资源用于第一传输的步骤。
一种可能的设计中,该第一小区的相邻小区位于同一个小区簇内。
一种可能的设计中,该处理模块还用于通过该收发模块发送探测信号,该探测信号用于测量该第一小区与该第一小区的相邻小区之间的信号干扰强度。该收发模块还用于接收该信号干扰强度,该信号干扰强度用于确定该第二资源与该第一资源的时域、频域、空域、码域和功率域中的至少一项不同。
第三方面,本实现方式提供一种通信装置,包括:一个或多个处理器。存储器,用于存储一个或多个程序。当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如第一方面任一项所述的方法。
第四方面,本申请提供一种计算机可读存储介质,包括计算机程序,所述计算机程序在计算机上被执行时,使得所述计算机执行上述第一方面中任一项所述的方法。
第五方面,本申请提供一种计算机程序,当所述计算机程序被计算机执行时,用于执行上述第一方面中任一项所述的方法。
第六方面,本申请提供一种芯片,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如上述第一方面中任一项所述的方法。
本申请实施例的通信资源调度方法和装置,通过指示第一小区的第一资源用于第一传输,并指示第一小区的相邻小区的第二资源用于第二传输,该第二资源与该第一资源的时域、频域、空域、码域或功率域中的至少一项不同,对第一小区和第一小区的相邻小区采用不同的调度方式,以满足不同小区的终端设备的不同的业务需求,并且在满足不同的业务需求的同时,避免上下行干扰。
附图说明
图1是本申请实施例应用的一种移动通信系统的架构示意图;
图2为本申请实施例的上下行干扰的示意图;
图3为本申请实施例的一种通信资源调度方法的流程图;
图4A为本申请实施例的一种时隙格式的示意图;
图4B为本申请实施例的一种第一资源的示意图;
图4C为本申请实施例的一种第二资源的示意图;
图5A为本申请实施例的另一种第一资源的示意图;
图5B为本申请实施例的另一种第二资源的示意图;
图5C为本申请实施例的另一种第二资源的示意图;
图6A为本申请实施例的时域协同调度粒度的示意图;
图6B为本申请实施例的频域协同调度粒度的示意图;
图7为本申请实施例的另一种通信资源调度方法的流程图;
图8为本申请实施例的一种确定协同调度方式的方法的流程图;
图9A为本申请实施例的一种干扰侦测的示意图;
图9B为本申请实施例的探测信号的发送方式的示意图;
图10为本申请实施例的小区簇的划分结果的示意图;
图11为本申请实施例的一种通信资源调度方法的示意图;
图12为本申请实施例的联合解调的示意图;
图13为本申请实施例的通信装置1300的示意图;
图14为本申请实施例的通信装置1400的示意图;
图15为本申请实施例的通信装置1500的示意图。
具体实施方式
本申请实施例所涉及的术语“第一”、“第二”等仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
图1是本申请实施例应用的一种移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一 个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未示出。本申请实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。例如,该移动通信系统可以包括2个、3个、6个等任意个数的无线接入网设备。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站(NodeB)、演进型基站(eNodeB)、NR移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等,本申请实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端(Terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、辅助驾驶的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请实施例可以适用于下行传输,也可以适用于上行传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行传输,发送设备是终端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请实施例的传输方向不做限定。
本申请实施例的无线接入网设备的覆盖范围内可以包括一个小区,也可以包括多个小区。
在无线通信网络中,不同用户使用终端设备的业务需求不同。举例而言,有的用户使用终端设备的上行业务需求大于下行业务需求。例如,用户通常使用终端设备进行直播、在互联网发布音频或视频等。有的用户使用终端设备的下行业务需求大于上行业务需求。例如,用户通常使用终端设备播放音频或视频,或下载音频或视频等。其中,上行业务需求包括上行传输的带宽、速率、延时、可靠性、或数据传输容量中一项或多项,下行业务需求包括下行传输的带宽、速率、延时、可靠性、或数据传输容量中一项或多项。
以2C和2B的业务场景为例,其中,2C的业务场景中,下行带宽需求大,一般是上行带宽需求的10倍以上。而与2C的业务场景不同,2B的业务场景中,上行容量需求高,例如,在煤矿、钢厂、现代化工厂、企业园区等区域上行容量需求可达1Gbps以上。需要说明的是,本申请实施例的以2C和2B的业务场景为例进行举例说明,本申请实施例不以此作为限制,本申请实施例的通信资源的调度方法适用于任何有不同业务需求的无线通信 网络。
为了在无线通信网络中满足不同用户使用终端设备的业务需求,并且在无线频谱资源有限的条件下,本申请实施例采用包括灵活F时隙的时隙格式,根据小区内终端设备的上行业务需求和下行业务需求,灵活调度F时隙用于上行传输或用于下行传输,在灵活调度F时隙过程中,本申请实施例可以通过协同调度,避免上下行干扰。具体实施方式可以参见下述实施例的解释说明。
对上下行干扰的解释说明,上下行干扰指在相同时频域资源上,相邻小区进行不同传输方向的业务传输,所导致的干扰。以图2所示的时隙格式进行举例说明,小区1和小区2为相邻小区,小区1和小区2均采用如图2的第一行所示的时隙格式,即包括3个F时隙,其中,小区1的上行业务占比较高,因此,小区1的无线接入网设备调度一个F时隙用于上行传输,其余2个F时隙用于下行传输。小区2的上行业务占比较低,因此,小区2的无线接入网设备调度3个F时隙用于下行传输。由图2可见,相同的时频域资源上,即第2个F时隙(也即第4个时隙),小区1的无线接入网设备通过该时频域资源进行上行传输,小区2的无线接入网设备通过该时频域资源进行下行传输,由于下行传输的发射功率远高于上行传输的功率,所以小区2的第4个时隙的下行传输会对小区1的第4个时隙的上行传输造成干扰,导致上行传输误码。
需要说明的是,上述图2以两个相邻小区为例进行举例说明,本申请实施例的相邻小区的个数不以此作为限制,相邻小区的个数可以是3、4、7等任意个数。该相邻小区可以是同一无线接入网设备的小区,也可以是不同无线接入网设备的小区。
图3为本申请实施例的一种通信资源调度方法的流程图,本实施例涉及无线接入网设备和多个终端设备,其中,无线接入网设备的覆盖范围内包括第一小区和第一小区的相邻小区,多个终端设备可以包括第一小区的终端设备11,以及第一小区的相邻小区的终端设备21,如图3所示,本实施例的方法可以包括:
步骤101、无线接入网设备向终端设备11指示第一小区的第一资源用于第一传输。
该第一传输包括上行传输或下行传输。
无线接入网设备可以通过系统信息块(system information block,SIB)1、无线资源控制(radio resource control,RRC)信令、时隙格式指示(slot format indicator,SFI)、或者下行控制信息(downlink control information,DCI)中至少一项,向终端设备11指示第一小区的第一资源用于第一传输。
本申请实施例以第一小区的终端设备11为例进行举例说明,可以理解的,无线接入网设备也可以向第一小区内的其他终端设备,例如,终端设备12、终端设备13等,指示第一小区的第一资源用于第一传输。
该第一资源可以是F时隙中的部分或全部资源。举例而言,无线接入网设备采用如图4A所示的时隙格式,该时隙格式包括F时隙,该F时隙的个数可以设置为1至10中任意整数,本实施例采用如图4A所示的F时隙的个数为3个为例进行举例说明,F时隙的个数不以图4A所示个数作为限制。如图4A所示,第1个、第2个、第6和第7个时隙为下行传输(DL)时隙,第8个时隙为特殊(S)时隙,该S时隙中的部分符号用于下行传输(DL),部分符号用于上行传输(UL),该S时隙还可以包括用于下行转上行间隔的符号 (GAP)。设置F时隙可以支持灵活调度,例如,调度该F时隙用于上行传输或下行传输。在一些实施例中,当F时隙的个数可以设置为10时,每个时隙都支持灵活调度。
该第一资源可以是一个F时隙、或者多个F时隙、或者一个F时隙中的部分频域资源、或者一个F时隙中的部分时频域资源、或者多个F时隙中的部分频域资源、或者一个F时隙中的部分时域资源、或者多个F时隙中的部分时域资源、或者多个F时隙中的部分时频域资源。换言之,第一资源是图4A的时隙格式中的F时隙中的部分或全部资源。
以图4B为例进行举例说明,该第一资源可以是如图4B所示的资源,该第一资源是一个F时隙中的部分时域资源。无线接入网设备通过上述步骤101指示第一小区的该第一资源用于第一传输,在图4B中该第一传输为上行传输(UL)。无线接入网设备还可以指示第一小区的如图4A所示的3个F时隙中除了该第一资源之外的其他资源用于上行传输或下行传输。以图4B为例,无线接入网设备可以指示第一小区的图4A中的第一个F时隙和第三个F时隙用于下行传输(DL)。无线接入网设备可以不调度第一小区的图4A的第二个F时隙中除第一资源之外的资源。
可选的,无线接入网设备可以根据终端设备11的业务需求、或第一小区内其他终端设备的业务需求、或第一小区的相邻小区的终端设备的业务需求中至少一项,确定指示第一小区的第一资源用于第一传输。
在一些实施例中,第一小区的第一传输的业务量大于第四阈值,和/或第一传输的业务类型包括超可靠低时延(Ultra-reliable low latency communication,URLLC)。
本申请实施例所涉及的业务量包括以下至少一项:第一预设时长内第一传输的平均实际业务量,或至少一个时刻第一传输的实际业务量,或第二预设时长内第一传输的平均预测业务量,或至少一个时刻第一传输的预测业务量。第一预设时长可以是5个小时、6个小时、24个小时等任意时长。第二预设时长可以是5个小时、6个小时、24个小时等任意时长。第一预设时长可以是历史时间内的时长,第二预设时长可以是未来时间内的时长。
步骤102、终端设备11在第一资源上进行第一传输。
终端设备11根据无线接入网设备的指示,在第一资源上进行第一传输。例如,终端设备在第一资源进行上行传输,即终端设备在第一资源上发送上行信号,相应的,无线接入网设备在第一资源上接收终端设备发送的上行信号。再例如,终端设备在第一资源进行下行传输,即无线接入网设备在第一资源上发送下行信号,终端设备在第一资源上接收无线接入网设备发送的下行信号。
以图4B为例做进一步举例说明,终端设备11在第一资源上向无线接入网设备发送上行信号。可以理解的,终端设备11还可以在除第一资源之外的其他资源上进行上行传输或下行传输,例如,如图4B所示,终端设备11还可以在第1、2、3、5、6和7个时隙上进行下行传输(DL),在第8个时隙中的部分符号上进行下行传输(DL),在第8个时隙中的部分符号上进行上行传输(UL),在第9和第10个时隙上进行上行传输(UL)。
步骤103、无线接入网设备向终端设备21指示第一小区的相邻小区的第二资源用于第二传输,该第二资源与该第一资源的时域、频域、空域、码域或功率域中的至少一项不同。
当第一传输为上行传输时,该第二传输为下行传输,当第一传输为下行传输时,第二传输为上行传输。即第一传输和第二传输的传输方向相反。
无线接入网设备可以通过SIB 1、RRC信令、SFI、或者DCI中至少一项,向终端设备 21指示第一小区的相邻小区的第二资源用于第二传输。本实施例的无线接入网设备通过指示第一小区的第一资源和第一小区的相邻小区的第二资源进行传输方向相反的传输,该第二资源与该第一资源的时域、频域、空域、码域或功率域中的至少一项不同,从而避免上下行干扰。其中,空域可以包括波束域,例如,波束域不同可以是波束指向不同和/或波束强度不同等。功率域不同可以指发送功率不同。
本申请实施例以第一小区的相邻小区的终端设备21为例进行举例说明,可以理解的,无线接入网设备也可以向该相邻小区内的其他终端设备,例如,终端设备22、终端设备23等,指示该相邻小区的第二资源用于第二传输。
该第二资源可以是F时隙中的部分或全部资源。该第二资源可以是一个F时隙、或者多个F时隙、或者一个F时隙中的部分频域资源、或者一个F时隙中的部分时频域资源、或者多个F时隙中的部分频域资源、或者一个F时隙中的部分时域资源、或者多个F时隙中的部分时域资源、或者多个F时隙中的部分时频域资源。
以图4C为例进行举例说明,该第二资源可以是如图4C所示的资源,该第二资源是一个F时隙中的部分时域资源,该第二资源与第一资源的时域不同。无线接入网设备通过上述步骤103指示第一小区的相邻小区的该第二资源用于第二传输,在图4C中该第二传输为上行传输(UL)。无线接入网设备还可以指示第一小区的相邻小区的如图4A所示的3个F时隙中除了该第二资源之外的其他资源用于上行传输或下行传输。以图4C为例,无线接入网设备可以指示第一小区的相邻小区的图4A中的第一个F时隙和第三个F时隙用于下行传输(DL)。无线接入网设备可以不调度第一小区的相邻小区的图4A的第二个F时隙中除第二资源之外的资源,例如,不调度第一小区的相邻小区的与第一资源相同时域的资源,以避免上下行干扰。
以第一小区为小区1,第一小区的相邻小区为小区2为例,小区1中的终端设备有上行业务需求,无线接入网设备调度小区1的如图4A所示的3个F时隙为如图4B所示传输,即第1个F时隙和第3个F时隙用于下行传输,第2个F时隙中的部分时域资源(即第一资源)用于上行传输,而小区2的终端设备没有较多上行业务需求,无线接入网设备调度小区2的如图4A所示的3个F时隙为如图4C所示传输,即第1个F时隙和第3个F时隙用于下行传输,第2个F时隙中的部分时域资源(即第二资源)用于下行传输,第一资源与第二资源的时域不同,从而在满足不同小区的终端设备的业务需求的同时,避免了相邻小区的上下行干扰。
可选的,无线接入网设备可以根据终端设备21的业务需求、或第一小区内终端设备的业务需求、或第一小区的相邻小区内其他终端设备的业务需求中至少一项,确定指示第一小区的相邻小区的第二资源用于第二传输。
步骤104、终端设备21在第二资源上进行第二传输。
终端设备21根据无线接入网设备的指示,在第二资源上进行第二传输。例如,终端设备在第二资源进行下行传输,即无线接入网设备在第二资源上向终端设备发送下行信号,终端设备在第二资源上接收下行信号。再例如,终端设备21在第二资源进行上行传输,即终端设备21在第二资源上发送上行信号,无线接入网设备接收终端设备21发送的上行信号。
以图4C为例做进一步举例说明,终端设备21在第二资源上接收无线接入网设备发送 的下行信号。可以理解的,终端设备21还可以在除第二资源之外的其他资源上进行上行传输或下行传输,例如,如图4C所示,终端设备21还可以在第1、2、3、5、6和7个时隙上进行下行传输(DL),在第8个时隙中的部分符号上进行下行传输(DL),在第8个时隙中的部分符号上进行上行传输(UL),在第9和第10个时隙上进行上行传输(UL)。
需要说明的是,上述步骤101和步骤103的执行顺序不以序号大小作为限制,例如,可以同时执行步骤101和步骤103,或者,先执行步骤103,再执行步骤101,本申请实施例对此不作具体限定。
本实施例,通过指示第一小区的第一资源用于第一传输,并指示第一小区的相邻小区的第二资源用于第二传输,该第二资源与该第一资源的时域、频域、空域、码域或功率域中的至少一项不同,对第一小区和第一小区的相邻小区采用不同的调度方式,以满足不同小区的终端设备的不同的业务需求,并且在满足不同的业务需求的同时,避免上下行干扰。
以一种场景为例,第一小区所覆盖的区域为工业园区,其上行传输需求较高,而第一小区的相邻小区所覆盖的区域为住宅区,其下行传输需求较高,为了满足不同小区的业务传输需求,可以通过本申请实施例的方法在第一小区中调度F时隙中的第一资源用于上行传输,在第一小区的相邻小区中调度F时隙中的第二资源用于下行传输,为了避免上下行干扰,第一资源和第二资源的时域、频域、空域、码域或功率域中的至少一项不同。
本申请实施例通过指示第一小区的第一资源用于第一传输,以满足第一小区的终端设备的第一传输需求,通过指示第一小区的相邻小区的第二资源用于第二传输,以满足相邻小区的第二传输需求,为了避免第一小区与相邻小区的上下行干扰,该第一资源与第二资源的时域、频域、空域、码域或功率域中至少一项不同。下面实施例对第一资源和第二资源的不同的协同调度方式进行解释说明。
方式一、时域协同调度。
一种可实现方式,第一小区的第一资源用于第一传输,第一小区的相邻小区的第二资源用于第二传输,第一资源与第二资源的时域不同。
一种举例说明,参见上述图4B和图4C的F时隙调度方式,即为时域协同。
在一些实施例中,当第一小区的相邻小区包括与第一小区之间的信号干扰强度大于第一阈值,且第一小区的相邻小区的第二传输的业务量大于第二阈值的相邻小区时,换言之,当第一小区的相邻小区与第一小区之间强干扰,且第一小区的相邻小区的第二传输需求较高时,可以采用方式一,即时域协同调度,以避免第一传输和第二传输之间的干扰。该第一阈值、第二阈值可以根据需求进行灵活设置。
在一些实施例中,当第一小区的相邻小区包括与第一小区之间的信号干扰强度大于第一阈值的相邻小区时,换言之,当第一小区的相邻小区与第一小区之间强干扰时,可以采用方式一。
其中,强干扰通常指信号干扰强度接近或超过有用信号强度,导致被干扰信号无法正常通信,该类干扰通常需要时域协同,即同一时刻仅能进行一种传输方向(上行或下行)通信。
另一种可实现方式,第一小区的第一资源用于第一传输,无线接入网设备不调度第一小区的相邻小区的第二资源用于第二传输,第一资源与第二资源的时域相同。
在一些实施例中,当第一小区的相邻小区包括与第一小区之间的信号干扰强度大于第一阈值,且第一小区的相邻小区的第二传输的业务量小于第二阈值的相邻小区时,换言之,当第一小区的相邻小区与第一小区之间强干扰,且第一小区的相邻小区的第二传输需求较低时,不调度第一小区的相邻小区的第二资源用于第二传输,以避免第一传输和第二传输之间的干扰。
对于时域协同调度的第一资源和第二资源的频域可以相同,第一资源和第二资源的空域、码域和功率域可以相同。
方式二、频域协同调度,即第一小区的第一资源用于第一传输,第一小区的相邻小区的第二资源用于第二传输,第一资源与第二资源的频域不同。
对于频域协同调度的第一资源和第二资源的时域可以相同,第一资源和第二资源的空域、码域和功率域可以相同。
以图5A为例进行举例说明,该第一资源可以是如图5A所示的资源,该第一资源是一个F时隙中的部分频域资源。无线接入网设备通过上述步骤101指示第一小区的该第一资源用于第一传输,在图5A中该第一传输为上行传输(UL)。无线接入网设备还可以指示第一小区的如图4A所示的3个F时隙中除了该第一资源之外的其他资源用于上行传输或下行传输。以图5A为例,无线接入网设备可以指示第一小区的图4A中的第一个F时隙和第三个F时隙用于下行传输(DL)。无线接入网设备可以不调度第一小区的图4A的第二个F时隙中除第一资源之外的资源。
以图5B为例进行举例说明,该第二资源可以是如图5B所示的资源,该第二资源是一个F时隙对应的部分频域资源,该第二资源与第一资源的频域不同,可选的,第二资源和第一资源的时域相同。无线接入网设备通过上述步骤103指示第一小区的相邻小区的该第二资源用于第二传输,在图5B中该第二传输为上行传输(UL)。无线接入网设备还可以指示第一小区的相邻小区的如图4A所示的3个F时隙中除了该第二资源之外的其他资源用于上行传输或下行传输。以图5B为例,无线接入网设备可以指示第一小区的相邻小区的图4A中的第一个F时隙和第三个F时隙用于下行传输(DL)。无线接入网设备可以不调度第一小区的相邻小区的图4A的第二个F时隙中除第二资源之外的资源,例如,不调度第一小区的相邻小区的与第一资源相同频域的资源,以避免上下行干扰。
上述图5A中的第一资源和图5B中的第二资源,即为第一小区与第一小区的相邻小区之间的频域协同调度的资源。
在一些实施例中,当第一小区的相邻小区包括与第一小区之间的信号干扰强度小于第一阈值且大于第三阈值,且第一小区的相邻小区的第二传输的业务量大于第二阈值的相邻小区时,换言之,当第一小区的相邻小区与第一小区之间一般干扰,且第一小区的相邻小区的第二传输需求较高,可以采用方式二,即频域协同调度,以避免第一传输和第二传输之间的干扰。该第一阈值、第二阈值和第三阈值可以根据需求进行灵活设置。
在一些实施例中,当第一小区的相邻小区包括与第一小区之间的信号干扰强度小于第一阈值且大于第三阈值的相邻小区时,换言之,当第一小区的相邻小区与第一小区之间一般干扰时,可以采用方式二。
其中,一般干扰指信号干扰强度弱于有用信号强度移动范围,会导致被干扰信号通信性能下降,该类干扰可以用频域协同方式,即第一小区调度部分频域资源,第一小区的相 邻小区调用另一部分频域资源。
方式三、空域、码域或功率域协同调度,即第一小区的第一资源用于第一传输,第一小区的相邻小区的第二资源用于第二传输,第一资源与第二资源的空域、码域或功率域不同。
对于空域、码域或功率域协同调度的第一资源和第二资源的频域可以相同,且频域可以相同。
以图5A所示的第一资源为例做进一步举例说明,对于空域、码域或功率域协同调度,第二资源可以如图5C所示,该第二资源是如图4A所示时隙格式中的一个F时隙,无线接入网设备调度该F时隙用于第二传输,该第二资源与第一资源的空域、码域或功率域不同。无线接入网设备通过上述步骤103指示第一小区的相邻小区的该第二资源用于第二传输,在图5C中该第二传输为下行传输(DL)。无线接入网设备还可以指示第一小区的相邻小区的如图4A所示的3个F时隙中除了该第二资源之外的其他资源用于上行传输或下行传输。以图5C为例,无线接入网设备可以指示第一小区的相邻小区的图4A中的第一个F时隙和第三个F时隙用于下行传输(DL)。虽然第一资源和第二资源的时域相同且频域相同,但是由于第一资源和第二资源的空域、码域或功率域不同,所以也可以避免上下行干扰。
在一些实施例中,当第一小区的相邻小区包括与第一小区之间的信号干扰强度小于第三阈值,且第一小区的相邻小区的第二传输的业务量大于第二阈值的相邻小区时,换言之,当第一小区的相邻小区与第一小区之间弱干扰时,且第一小区的相邻小区的第二传输需求较高,可以采用方式三,即空域、码域或功率域协同调度,以避免第一传输和第二传输之间的干扰。该第一阈值、第二阈值和第三阈值可以根据需求进行灵活设置。
在一些实施例中,当第一小区的相邻小区包括与第一小区之间的信号干扰强度小于第三阈值的相邻小区时,换言之,当第一小区的相邻小区与第一小区之间弱干扰时,可以采用方式三。
其中,弱干扰是指信号间的干扰强度较弱,对通信性能的影响有限,这类干扰可以采用空/功率域协同,空域是指改变信号方向性,使的干扰进一步降低,功率域是指降低信号强度,使的干扰进一步降低;另也可以结合波束域(不同小区使用不同波束方向信号,进而降低干扰)和/或码率(不同小区间使用正交码,进而降低干扰)来协同降低干扰。
上述以方式一、方式二、方式三为例对协同调度方式进行举例说明,协同调度方式还可以是不同协同调度方式的组合,例如,第一资源和第二资源的频域不同,且空域不同等,本申请实施例不一一举例说明。
对时域协同调度和频域协同调度进行解释说明。对于时域协同调度,时域协同调度的粒度可以是时隙或符号。以图6A为例,图6A为本申请实施例的时域协同调度粒度的示意图,如图6A所示,可以调度F时隙中的部分符号和一个完整的F时隙用于下行传输,3个F时隙中的剩余时域资源用于上行传输,下行传输转换成上行传输之间间隔有GAP。对于频域协同调度,频域协同调度的粒度可以是物理资源块集合(resource block group,RGB)等,以图6B为例,图6B为本申请实施例的频域协同调度粒度的示意图,如图6B所示,可以调度F时隙中的部分频域资源用于第一传输,例如,调度F时隙中的RGB1至9用于第一小区的第一传输,剩余的RGB11至17用于第一小区的相邻小区的第二传输。
图7为本申请实施例的另一种通信资源调度方法的流程图,与图3所示实施例不同,本申请实施例涉及多个无线接入网设备,例如,通信装置、无线接入网设备2和无线接入网设备3,无线接入网设备2的覆盖范围内包括第一小区,无线接入网设备3的覆盖范围内包括第一小区的相邻小区,多个终端设备可以包括第一小区的终端设备11,以及第一小区的相邻小区的终端设备21,该通信装置可以是无线接入网设备或其内部芯片,也可以是网管设备等,如图7所示,本实施例的方法可以包括:
步骤201、通信装置向无线接入网设备2发送第一信息。
无线接入网设备2接收通信装置发送的第一信息,该第一信息用于指示第一小区的第一资源用于第一传输。
步骤202、通信装置向无线接入网设备3发送第二信息。
无线接入网设备3接收通信装置发送的第二信息,该第二信息用于指示第一小区的相邻小区的第二资源用于第二传输。该第二资源与该第一资源的时域、频域、空域、码域或功率域中的至少一项不同。
本实施例由通信装置确定第一小区和第一小区的相邻小区的协同调度方式,并指示相应的无线接入网设备,例如,本实施例的无线接入网设备2和无线接入网设备3,第一资源和第二资源的协同调度方式可以上述方式一、方式二或方式三中任一项或其组合。
步骤203、无线接入网设备2向终端设备11指示第一小区的第一资源用于第一传输。
无线接入网设备2根据该第一信息,向终端设备11指示第一小区的第一资源用于第一传输。
步骤204、终端设备11在第一资源上进行第一传输。
步骤205、无线接入网设备3向终端设备21指示第一小区的相邻小区的第二资源用于第二传输。
无线接入网设备3根据该第二信息,向终端设备21指示第一小区的相邻小区的第二资源用于第二传输。
步骤206、终端设备21在第二资源上进行第二传输。
其中,步骤203至步骤206的解释说明可以参见图3所示实施例的步骤101至步骤104的解释说明,此处不再赘述。
需要说明的是,上述步骤201至步骤206的执行顺序不以序号大小作为限制,其可以同时执行,或先执行步骤202,再执行步骤201等,本申请实施例不一一举例说明。
本实施例,通过指示第一小区的第一资源用于第一传输,并指示第一小区的相邻小区的第二资源用于第二传输,该第二资源与该第一资源的时域、频域、空域、码域或功率域中的至少一项不同,对第一小区和第一小区的相邻小区采用不同的调度方式,以满足不同小区的终端设备的不同的业务需求,并且在满足不同的业务需求的同时,避免上下行干扰。
图8为本申请实施例的一种确定协同调度方式的方法的流程图,本实施例在上述图3或图7所示实施例的基础之上,对确定协同调度方式进行解释说明,本实施例的执行主体可以是图3所示实施例的无线接入网设备或无线接入网设备的芯片或一个单板,也可以是图7所示实施例的通信装置,如图8所示,本实施例的方法可以包括:
步骤301、获取第一小区的第一传输的业务量或业务类型中至少一项,以及第一小区的相邻小区的第二传输的业务量或业务类型中至少一项。
例如,无线接入网设备可以接收第一小区内的终端设备发送的业务量指示信息或业务类型指示信息中至少一项,无线接入网设备根据该业务量指示信息或业务类型指示信息中至少一项,确定第一传输的业务量或业务类型中至少一项。该业务类型指示信息可以是1至10中任意数值,1至10中任意数值用于指示一种业务量。该业务类型指示信息可以是QCI。类似的,无线接入网设备可以接收第一小区的相邻小区内的终端设备发送的业务量指示信息或业务类型指示信息中至少一项,基于此确定第二传输的业务量或业务类型中至少一项。
本申请实施例所涉及的第二传输的业务量包括以下至少一项:第一预设时长内第二传输的平均实际业务量,或至少一个时刻第二传输的实际业务量,或第二预设时长内第二传输的平均预测业务量,或至少一个时刻第二传输的预测业务量。第一预设时长可以是5个小时、6个小时、24个小时等任意时长。第二预设时长可以是5个小时、6个小时、24个小时等任意时长。第一预设时长可以是历史时间内的时长,第二预设时长可以是未来时间内的时长。
步骤302、根据第一小区的第一传输的业务量或业务类型中至少一项,第一小区的相邻小区的第二传输的业务量或业务类型中至少一项,以及第一小区与第一小区的相邻小区的信号干扰强度,确定采用方式一、方式二或方式三中至少一项。
例如,当第一传输的业务量大于第四阈值,和/或第一传输的业务类型包括超可靠低时延URLLC时,确定第一小区需要进行第一传输增强,例如,上行传输增强,当第一小区需要第一传输增强时,可以根据第一小区的相邻小区的第二传输的业务量或业务类型中至少一项,以及第一小区与第一小区的相邻小区的信号干扰强度,确定采用方式一、方式二或方式三中至少一项。例如,当第一小区的相邻小区的第二传输的业务量大于第二阈值时,根据第一小区与第一小区的相邻小区的信号干扰强度确定采用方式一或方式二或方式三。
在一些实施例中,当第一小区的相邻小区的第二传输的业务量少时,可以采用时域协同方式。
在一些实施例中,当第一小区中存在URLLC业务时,可以采用时域协同方式。
步骤303、当采用方式一时,确定第一小区的第一资源和第一小区的相邻小区的第二资源的时域不同。
其中,第一资源和第二资源的频域相同,且空域、码域或功率域相同。
其中,方式一的具体解释说明可以参见上述实施例的解释说明,此处不再赘述。
步骤304、当采用方式二时,确定第一小区的第一资源和第一小区的相邻小区的第二资源的频域不同。
其中,第一资源和第二资源的时域相同,且空域、码域或功率域相同。
其中,方式二的具体解释说明可以参见上述实施例的解释说明,此处不再赘述。
步骤305、当采用方式三时,确定第一小区的第一资源和第一小区的相邻小区的第二资源的空域、码域或功率域中至少一项不同。
其中,第一资源和第二资源的时域相同,且频域相同。
其中,方式三的具体解释说明可以参见上述实施例的解释说明,此处不再赘述。
在一些实施例中,第一传输为上行传输,第二传输为下行传输,当第一小区的相邻小区中存在下行传输的业务量大且干扰大的小区时,则可以对第一小区不进行上行传输增强。
在一些实施例中,第一传输为上行传输,第二传输为下行传输,当第一小区的相邻小区中存在URLLC业务调度的小区时,则可以对第一小区不进行上行传输增强。
本实施例,通过根据第一小区的第一传输的业务量或业务类型中至少一项,第一小区的相邻小区的第二传输的业务量或业务类型中至少一项,以及第一小区与第一小区的相邻小区的信号干扰强度,确定采用方式一、方式二或方式三中至少一项,以针对不同小区的业务需求,灵活选取合适的协同调度方式,以避免上下行干扰。
对上述实施例的第一小区与第一小区的相邻小区的信号干扰强度进行解释说明。
图9A为本申请实施例的一种干扰侦测的示意图,本实施例以7个无线接入网设备,且每个无线接入网设备覆盖一个小区为例,如图9A所示,每个六边形格子代表一个小区,小区间复用相同频段,组成蜂窝结构,实现区域的信号覆盖,每个小区外有若干邻区,每个小区内有若干终端设备,每个小区内的每个终端设备的业务行为独立,因此会出现不同小区的上下行业务占比不均衡的情况。例如,无线接入网设备1覆盖小区1,无线接入网设备2覆盖小区2,……,无线接入网设备7覆盖小区7。无线接入网设备1广播发送探测信号,无线接入网设备2至无线接入网设备7分别接收该探测信号,并测量两个小区之间的信号干扰强度,无线接入网设备2至无线接入网设备7可以将测量得到的信号干扰强度反馈给无线接入网设备1。类似的,无线接入网设备2广播发送探测信号,无线接入网设备1、无线接入网设备3至无线接入网设备7分别接收该探测信号,并测量两个小区之间的信号干扰强度,无线接入网设备1、无线接入网设备3至无线接入网设备7可以将测量得到的信号干扰强度反馈给无线接入网设备2。其他无线接入网设备采用类似的方式,广播探测信号,并接收反馈的信号干扰强度。基于此,可以得到任意两个小区之间的信号干扰强度。各个无线接入网设备可以将信号干扰强度反馈至执行图8所示实施例的方法的无线接入网设备,以确定采用方式一、方式二或方式三中至少一项。
各个无线接入网设备发送探测信号的方式可以是如下任意一种,(1)利用GAP发送探测信号,(2)专用下行符号发送探测信号,(3)复用已有的下行探测信号(TRS/CSI)发送探测信号。其中,如图9B所示,在DL转换为UL时,会有部分GAP符号,该GAP符号没有正常业务进行,本申请实施例可以利用该GAP符号进行探测信号发送,进行干扰侦测。参见图9B所示,专用下行符号可以是DL子帧中的部分符号。与专用下行符号不同,复用已有的下行探测信号(TRS/CSI)发送探测信号,可以无需额外占用下行符号。
在一些实施例中,上述任一实施例中的第一小区和第一小区的相邻小区可以位于同一小区簇,该小区簇的划分可以基于不同小区之间的信号干扰强度、小区簇内小区个数的最大值、覆盖小区的无线接入网设备的地理位置、或小区的业务需求中至少一项。可选的,小区簇的划分可以采用人工智能(AI)学习的方式划分,例如,利用AI在线学习小区的业务特征、干扰特征等信息并基于此进行动态小区簇划分。小区簇内小区个数的最大值可以是12等任意数值。
举例而言,一个小区簇内的小区可以满足以下至少一项:
小区簇内的小区的信号干扰强度大于一个阈值;或者,小区簇内的小区的无线接入网设备的物理距离小于一个阈值;或者,小区簇内的小区的业务需求为同一传输方向的业务需求,例如,上行传输或下行传输。
小区簇的划分结果可以如图10所示,即小区簇1(cluster1)、小区簇2(cluster2)和小区簇3(cluster3),每个小区簇包括不同的小区。
本实施例,通过划分小区簇,在小区簇内进行协同调度,以降低协同复杂度及时延,提升协同调度的效率。
下面通过一个具体的实施例,对本申请实施例的通信资源调度方法进行举例说明,图11为本申请实施例的一种协同调度的示意图,其中,以第一小区为无线接入网设备1覆盖的小区1,第一小区的相邻小区包括无线接入网设备2覆盖的小区2、无线接入网设备3覆盖的小区3和无线接入网设备4覆盖的小区4,小区1内的终端设备包括终端设备11,小区2的终端设备包括终端设备21,小区3的终端设备包括终端设备31,小区4的终端设备包括终端设备41,第一传输为上行传输,第二传输为下行传输为例。
如图11所示,由于小区1的上行资源利用率超过80%,所以无线接入网设备1确定小区1需要进行上行传输增强,即需要调度F时隙中的资源用于上行传输。如图11所示,调度如图11所示的小区1的F时隙中的部分频域资源用于上行传输。无线接入网设备1再结合小区2、小区3和小区4的下行传输的业务量或业务类型中至少一项,确定协同调度方式。例如,小区2的下行传输无增强需求,或小区2与小区1之间的信号干扰强度属于强干扰水平,则可以不调度小区2的一个F时隙。小区3的下行传输有增强需求,且小区3与小区1之间的信号干扰强度属于一般干扰水平,则可以调度小区3的F时隙的另一部分频域资源用于下行传输。小区4的下行传输有增强需求,且小区4与小区1之间的信号干扰强度属于弱干扰水平,则可以调度小区4的F时隙用于下行传输,且用于下行传输的F时隙的空域、码域或功率域与小区1的上行传输增强的资源的空域、码域或功率域不同。
对于上行传输干扰的资源的解调,例如,如图12所示的UL干扰的示意图,该第一小区的第一资源可以是如图12所示的UL干扰时隙,在第一小区的相邻小区中与该第一资源相同位置处的资源用于下行传输,所以会对该第一资源产生干扰,本申请实施例可以采用联合解调的方式。具体的,无线接入网设备可以接收第一资源上的上行数据。可以使用第三资源上的解调参考信号DMRS的信道估计结果解调所述上行数据,该第三资源与该第一资源的频域位置相同且时域位置。该第三资源可以是如图12所示的UL无干扰时隙。另一种可实现方式,无线接入网设备可以接收第一资源上的上行数据,对第一资源上的上行数据进行解调,获取第一解调数据,接收第三资源上的上行数据,对第三资源上的上行数据进行解调,获取第二解调数据,可以合并第一解调数据和第二解调数据。
本申请实施例的无线接入网设备还可以在UL干扰时隙调度干扰小的终端设备,在UL无干扰时隙调度干扰大的终端设备。
本申请实施例,在协同调度过程中,为了保证上行数据的接收的准确性,可以通过联合解调的方式提升解调性能,保证数据准确接收。
上文描述了本申请实施例提供的通信资源调度方法,下文将描述本申请实施例提供的通信装置。
图13为本申请实施例提供的通信装置1300的示意图,该通信装置1300包括:
处理模块1310,用于通过收发模块1320指示第一小区的第一资源用于第一传输。
该处理模块1310,还用于通过收发模块1320指示该第一小区的相邻小区的第二资源用于第二传输,该第二资源与该第一资源的时域、频域、空域、码域和功率域中的至少一项不同。
其中,该第一传输为上行传输,该第二传输为下行传输,或者,该第一传输为下行传输时,该第二传输为上行传输。
在一些实施例中,该第一资源和该第二资源均为灵活时频域资源。
在一些实施例中,第一小区的相邻小区的第二传输的业务量大于第二阈值。
在一些实施例中,该第一小区的相邻小区与该第一小区之间的信号干扰强度大于第一阈值;该相邻小区的第二资源与该第一资源的时域不同。
在一些实施例中,该第一小区的相邻小区与该第一小区之间的信号干扰强度小于该第一阈值且大于第三阈值;该相邻小区的第二资源与该第一资源的频域不同。
在一些实施例中,该第一小区的相邻小区与该第一小区之间的信号干扰强度小于第三阈值;该相邻小区的第二资源与该第一资源的空域、码域或功率域中至少一项不同。
在一些实施例中,该第一传输为上行传输。该收发模块1320还用于接收该第一资源上的上行数据,该处理模块1310还用于使用第三资源上的解调参考信号DMRS的信道估计结果解调该上行数据,该第三资源与该第一资源的频域位置相同且时域位置。或者,该收发模块1320还用于接收该第一资源上的上行数据,该处理模块还用于对该第一资源上的上行数据进行解调,获取第一解调数据,该收发模块1320还用于接收第三资源上的上行数据,该处理模块1310还用于对该第三资源上的上行数据进行解调,获取第二解调数据,合并该第一解调数据和该第二解调数据。
在一些实施例中,该第一传输的业务量大于第四阈值,和/或该第一传输的业务类型包括超可靠低时延URLLC。
在一些实施例中,该业务量包括以下至少一项:第一预设时长内该第一传输的平均实际业务量,或至少一个时刻该第一传输的实际业务量,或第二预设时长内该第一传输的平均预测业务量,或至少一个时刻该第一传输的预测业务量。
在一些实施例中,该收发模块1320还用于接收第二通信装置发送的第一信息,该第一信息用于指示该第一小区的第一资源用于第一传输;或者,该处理模块1310还用于根据该第一小区的第一传输的业务量或业务类型中至少一项,和该第一小区的相邻小区的第二传输的业务量或业务类型中至少一项,确定是否通过该收发模块1320执行该指示第一小区的第一资源用于第一传输的步骤。
在一些实施例中,该第一小区的相邻小区位于同一个小区簇内。
在一些实施例中,该处理模块1310还用于通过该收发模块1320发送探测信号,该探测信号用于测量该第一小区与该第一小区的相邻小区之间的信号干扰强度;该收发模块1320还用于接收该信号干扰强度,该信号干扰强度用于确定该第二资源与该第一资源的时 域、频域、空域、码域和功率域中的至少一项不同。
应理解,本申请实施例中的处理模块1310可以由处理器或处理器相关电路组件实现,收发模块1320可以由收发器或收发器相关电路组件实现。
如图14所示,本申请实施例还提供一种通信装置1400,该通信装置1400包括处理器1410,存储器1420与收发器1430,其中,存储器1420中存储指令或程序,处理器1410用于执行存储器1420中存储的指令或程序。存储器1420中存储的指令或程序被执行时,该处理器1410用于执行上述实施例中处理模块1310执行的操作,收发器1430用于执行上述实施例中收发模块1320执行的操作。
应理解,根据本申请实施例的通信装置1300或通信装置1400可对应于本申请实施例的图3至图12任一实施例中的无线接入网设备,并且通信装置1300或通信装置1400中的各个模块的操作和/或功能分别为了实现3至图12任一实施例中的各个方法的相应流程,为了简洁,在此不再赘述。
本实施例中的装置为无线接入网设备时,该无线接入网设备可以如图15所示,装置1500包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1510和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1520。所述RRU 1510可以称为收发模块,与图13中的收发模块1320对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1511和射频单元1512。所述RRU 1510部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备指示第一小区的第一资源用于第一传输。所述BBU 1510部分主要用于进行基带处理,对基站进行控制等。所述RRU 1510与BBU 1520可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1520为基站的控制中心,也可以称为处理模块,可以与图13中的处理模块1310对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于无线接入网络设备的操作流程,例如,生成指示第一小区的第一资源用于第一传输的信息等。
在一个示例中,所述BBU 1550可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1520还包括存储器1521和处理器1522。所述存储器1521用以存储必要的指令和数据。所述处理器1522用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于无线接入网络设备的操作流程。所述存储器1521和处理器1522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,本发明实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、 分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机 软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种通信资源调度方法,其特征在于,所述方法包括:
    第一通信装置指示第一小区的第一资源用于第一传输;
    所述第一通信装置指示所述第一小区的相邻小区的第二资源用于第二传输,所述第二资源与所述第一资源的时域、频域、空域、码域和功率域中的至少一项不同;
    其中,所述第一传输为上行传输,所述第二传输为下行传输,或者,所述第一传输为下行传输时,所述第二传输为上行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述第一资源和所述第二资源均为灵活时频域资源。
  3. 根据权利要求2所示的方法,其特征在于,所述第一小区的相邻小区的第二传输的业务量大于第二阈值。
  4. 根据权利要求3所述的方法,其特征在于,所述第一小区的相邻小区与所述第一小区之间的信号干扰强度大于第一阈值;所述相邻小区的第二资源与所述第一资源的时域不同。
  5. 根据权利要求3所述的方法,其特征在于,所述第一小区的相邻小区与所述第一小区之间的信号干扰强度小于第一阈值且大于第三阈值;所述相邻小区的第二资源与所述第一资源的频域不同。
  6. 根据权利要求3所述的方法,其特征在于,所述第一小区的相邻小区与所述第一小区之间的信号干扰强度小于第三阈值;所述相邻小区的第二资源与所述第一资源的空域、码域或功率域中至少一项不同。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一传输为上行传输,所述方法还包括:
    接收所述第一资源上的上行数据;使用第三资源上的解调参考信号DMRS的信道估计结果解调所述上行数据,所述第三资源与所述第一资源的频域位置相同且时域位置不同;或者,
    接收所述第一资源上的上行数据,对所述第一资源上的上行数据进行解调,获取第一解调数据,接收所述第三资源上的上行数据,对所述第三资源上的上行数据进行解调,获取第二解调数据,合并所述第一解调数据和所述第二解调数据。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述第一传输的业务量大于第四阈值,和/或所述第一传输的业务类型包括超可靠低时延URLLC。
  9. 根据权利要求8所述的方法,其特征在于,所述业务量包括以下至少一项:第一预设时长内所述第一传输的平均实际业务量,或至少一个时刻所述第一传输的实际业务量,或第二预设时长内所述第一传输的平均预测业务量,或至少一个时刻所述第一传输的预测业务量。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    从第二通信装置接收第一信息,所述第一信息用于指示所述第一小区的第一资源用于第一传输;或者,
    根据所述第一小区的第一传输的业务量或业务类型中至少一项,和所述第一小区的相邻小区的第二传输的业务量或业务类型中至少一项,确定第一小区的第一资源用于第一传 输。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述第一小区的相邻小区位于同一个小区簇内。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述方法还包括:
    发送探测信号,所述探测信号用于测量所述第一小区与所述第一小区的相邻小区之间的信号干扰强度;
    接收所述信号干扰强度,所述信号干扰强度用于确定所述第二资源与所述第一资源的时域、频域、空域、码域和功率域中的至少一项不同。
  13. 一种通信装置,其特征在于,包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-12中任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,包括计算机程序,所述计算机程序在计算机上被执行时,使得所述计算机执行权利要求1-12中任一项所述的方法。
  15. 一种芯片,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行如权利要求1-12中任一项所述的方法。
  16. 一种计算机程序产品,其特征在于,其特征在于,所述计算机程序产品包括计算机执行指令,当所述计算机执行指令被执行时实现权利要求1-12任一项所述的方法。
PCT/CN2021/102777 2020-06-30 2021-06-28 通信资源调度方法和装置 WO2022001963A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237003171A KR20230029936A (ko) 2020-06-30 2021-06-28 통신 리소스 스케줄링 방법 및 장치
EP21834250.9A EP4171143A4 (en) 2020-06-30 2021-06-28 METHOD AND DEVICE FOR COMMUNICATION RESOURCE PLANNING
US18/146,730 US20230136286A1 (en) 2020-06-30 2022-12-27 Communication resource scheduling method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010617621.X 2020-06-30
CN202010617621.XA CN113873664A (zh) 2020-06-30 2020-06-30 通信资源调度方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/146,730 Continuation US20230136286A1 (en) 2020-06-30 2022-12-27 Communication resource scheduling method and apparatus

Publications (1)

Publication Number Publication Date
WO2022001963A1 true WO2022001963A1 (zh) 2022-01-06

Family

ID=78981654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102777 WO2022001963A1 (zh) 2020-06-30 2021-06-28 通信资源调度方法和装置

Country Status (5)

Country Link
US (1) US20230136286A1 (zh)
EP (1) EP4171143A4 (zh)
KR (1) KR20230029936A (zh)
CN (1) CN113873664A (zh)
WO (1) WO2022001963A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2652979B1 (en) * 2010-12-15 2015-07-01 Telefonaktiebolaget L M Ericsson (publ) Fractional frequency reuse in heterogeneous networks
CN107041003A (zh) * 2016-02-03 2017-08-11 电信科学技术研究院 一种上下行传输资源分配方法及装置
CN108282879A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014169A1 (en) * 2011-07-26 2013-01-31 Nec Europe Ltd. Method for resource management in a cellular communication network and resource management system
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
KR102147304B1 (ko) * 2014-12-04 2020-08-24 에스케이텔레콤 주식회사 셀제어장치 및 셀제어장치의 동작 방법
CN106559887B (zh) * 2015-09-29 2021-12-31 华为技术有限公司 配置资源的方法及网络设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2652979B1 (en) * 2010-12-15 2015-07-01 Telefonaktiebolaget L M Ericsson (publ) Fractional frequency reuse in heterogeneous networks
CN107041003A (zh) * 2016-02-03 2017-08-11 电信科学技术研究院 一种上下行传输资源分配方法及装置
CN108282879A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置

Also Published As

Publication number Publication date
EP4171143A1 (en) 2023-04-26
US20230136286A1 (en) 2023-05-04
CN113873664A (zh) 2021-12-31
EP4171143A4 (en) 2023-11-08
KR20230029936A (ko) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2018141272A1 (zh) 终端、网络设备和通信方法
US11147098B2 (en) Electronic apparatus, wireless communication device, and wireless communication method
CN113890706B (zh) 一种信息发送、接收方法及装置
US20200403687A1 (en) Millimeter wave relay link discovery
CN109845375A (zh) 无线通信中基于准予的和无准予的话务复用上的干扰缓解
EP3876565A1 (en) Data transmission method and device, and readable storage medium
US20210274449A1 (en) Method and device for controlling transmission power in wireless communication system
CN111586858A (zh) 信号传输方法和通信装置
CN112188622A (zh) 一种协作传输方法及通信装置
US20220256566A1 (en) Indication of repetition number for physical shared channel
US20230063901A1 (en) Sidelink feedback method and terminal device
JP2022520920A (ja) 方法、端末デバイス、ネットワークデバイス、及びプログラム
CN112399568A (zh) 控制无线中继设备的方法及相应设备
JP2023538487A (ja) アップリンク伝送パラメータの決定方法及び端末デバイス
KR20210101324A (ko) 전력 제어 방법 및 장치
WO2021197053A1 (en) Apparatus and method of wireless communication
WO2021129229A1 (zh) 一种通信方法和装置
JP2023517980A (ja) 通信方法および装置
US20220394503A1 (en) Wireless communication method and device
WO2022001963A1 (zh) 通信资源调度方法和装置
US20230269709A1 (en) Physical uplink control channel resource indication for dynamic time division duplex
WO2021197473A1 (zh) 一种信号传输方法和设备
US20160044698A1 (en) Base station, terminal, and scheduling method
RU2745959C1 (ru) Способ беспроводной связи, оконечное устройство, сетевое устройство и сетевой узел
US20240023076A1 (en) Method for channel estimation, terminal device, and network device