WO2022001930A1 - 自移动设备及其工作方法 - Google Patents

自移动设备及其工作方法 Download PDF

Info

Publication number
WO2022001930A1
WO2022001930A1 PCT/CN2021/102665 CN2021102665W WO2022001930A1 WO 2022001930 A1 WO2022001930 A1 WO 2022001930A1 CN 2021102665 W CN2021102665 W CN 2021102665W WO 2022001930 A1 WO2022001930 A1 WO 2022001930A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
control module
moving device
information
current location
Prior art date
Application number
PCT/CN2021/102665
Other languages
English (en)
French (fr)
Inventor
何明明
吴双龙
章心忆
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2022001930A1 publication Critical patent/WO2022001930A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0251Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting 3D information from a plurality of images taken from different locations, e.g. stereo vision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS

Definitions

  • the invention relates to the field of automatic work, in particular to a self-moving device and a working method thereof.
  • the automatic lawn mower defines the working range by establishing a map of the lawn, and automatically works in the working range.
  • the lawn mower may cause unsafe phenomena such as out of bounds and accidental injury to pedestrians due to its own software or hardware defects.
  • the software safety function can be written in the lawn mower to ensure the working process of the lawn mower. security in.
  • the existing lawn mowing system generally judges whether it is out of bounds by inducting the magnetic field.
  • the corresponding functional modules are shown in Figure 1, which may include: a control module, a moving mechanism, a cutting mechanism, a power supply assembly, an induction module, etc.
  • the moving mechanism drives the lawn mower to move in the working area
  • the cutting mechanism performs cutting work in the working area
  • the induction module senses the magnetic field signal generated by the boundary
  • the power supply assembly is used to supply power to the machine during movement and/or work.
  • the lawn mowers in the above existing lawn mowing systems are often designed according to the following principles to achieve real-time response to various safety conditions (such as: judging whether out of bounds, judging whether an obstacle is encountered, etc.) and control costs, including: 1) In the case of meeting the performance requirements, the specification of the processor in the control module is often lower, for example, the processor can use a processor with similar performance such as M3 or M4 in ARM; 2) The control module often uses a real-time operating system (RTOS) ) and other functions are relatively simple, allowing to directly operate the underlying hardware such as the memory and other operating systems, or you can also not use the operating system; 3) The capacity of the memory is small, such as: 8MB.
  • RTOS real-time operating system
  • the automatic lawn mower does not have a user present during the walking process, there are certain requirements for its safety.
  • the lawnmower can only work in the working area, and cannot move across the boundary of the working area to the non-working area without authorization; the lawnmower can reliably detect obstacles and take timely measures such as evading or evading the detected obstacles. Actions such as return, etc., the above-mentioned safety processes are all controlled by the control software of the machine. Therefore, for the automatic lawn mower, the safety function of the control software and the safety and reliability of the hardware running the control software are very important.
  • the problem to be solved by the present invention is to provide a self-moving device with high safety performance and a working method thereof.
  • a self-moving device comprising: an information collection device, a control device,
  • the information collection device includes: a collection module, a control module and a storage module, the collection module is configured to collect the current position information of the target object including the self-moving device under the control of the control module, and the The current location information is stored in the storage module, and the current location information is output to the control device;
  • the self-mobile device determines whether the information collection device is faulty according to whether the current location information has a sudden change.
  • the self-moving device further includes: an abnormality detection unit, the abnormality detecting unit is configured to detect whether the self-moving device is passively displaced and/or the signal quality of the current location of the self-moving device , in the case that the self-moving device has not moved, and the signal quality of the current location of the self-moving device is greater than a preset threshold, determine whether the current location information has a sudden change, if the current location information has a sudden change , it is determined that the information collection device is faulty; if the current location information does not change abruptly, it is determined that the information collection device is not faulty.
  • an abnormality detection unit is configured to detect whether the self-moving device is passively displaced and/or the signal quality of the current location of the self-moving device , in the case that the self-moving device has not moved, and the signal quality of the current location of the self-moving device is greater than a preset threshold, determine whether the current location information has a sudden change, if the current location information
  • the abnormality detection unit includes a lift detection sensor.
  • the self-mobile device when the self-mobile device is not moved, and the signal quality of the current location of the self-mobile device is less than or equal to a preset threshold, it is determined whether the current location information has a sudden change, if If the current location information does not change abruptly, it is determined that the information collection device is faulty; if the current location information changes suddenly, it is determined that the information collection device is not faulty.
  • the self-moving device further comprises: a position sensor, the position sensor is used to detect the current position information of the self-moving device,
  • the position sensor In the case that the current position information detected by the position sensor has not undergone a sudden change, comparing whether the difference between the adjacent position information collected by the information collection device and the difference between the adjacent position information collected by the position sensor is consistent, If they are consistent, it is determined that the self-moving device is not faulty.
  • the position sensor includes at least one of the following: inertial navigation device, ultrasonic sensor, radar sensor, UWB sensor.
  • the information collection device includes: a satellite positioning module and/or a vision module.
  • control device controls the self-moving device to perform the following operations, including: shutting down, giving an alarm or restarting.
  • control device determines whether the information collection device is faulty according to whether the current location information has a sudden change.
  • An embodiment of the present invention also provides a working method of a self-moving device, the method comprising: collecting current position information of a target object including the self-moving device; the self-moving device according to the current position information Whether a mutation occurs, it is determined whether the self-moving device is faulty.
  • the beneficial effect of the self-moving device provided by the present application is that the self-moving device can determine whether the information collecting device is faulty according to whether the current location information collected by the collecting module has a sudden change.
  • other devices in the mobile device such as the control device or the information acquisition device, may also determine whether the information acquisition device is faulty according to whether the current location information has a sudden change. That is, the current position information output by the information collecting device is used to determine whether the information collecting device is normal, so as to ensure the safety of the information collecting device during the working process of the machine.
  • FIG. 1 is a schematic structural diagram of an existing mowing system provided by the present invention.
  • FIG. 2 is a schematic structural diagram of a self-moving device provided by the present invention.
  • FIG. 3 is a schematic diagram of an automatic working system scenario provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a self-mobile device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a satellite positioning module provided by an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a lawn mower provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an automatic lawn mower provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the workflow of the automatic lawn mower provided by an embodiment of the present invention when the path planning is performed in the first control module;
  • FIG. 9 is a schematic diagram of the workflow of the automatic lawn mower provided by an embodiment of the present invention when a map is constructed in the first control module;
  • FIG. 10 is a schematic workflow diagram of a path planning performed by a first control module according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an automatic lawn mower provided by another embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a safety detection method for an automatic lawn mower provided by an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of a safety detection method for an automatic lawn mower provided by another embodiment of the present invention.
  • FIG. 14 is a schematic flowchart of a safety detection method for an automatic lawn mower provided by another embodiment of the present invention.
  • FIG. 15 is a schematic flowchart of a security detection method for an information collection device provided by an embodiment of the present invention.
  • the self-mobile device works without the presence of the user, it is necessary to continuously check the reliability of the software and hardware in the system to ensure the security of the software and hardware.
  • the reliability of software needs to be reviewed from the aspects of software development environment, development process, software architecture design, software logic, etc.; for running hardware with safety-related functions, measures such as power-on self-test and periodic self-test are required. That is, the self-mobile device needs to self-check in the working process to ensure its safety.
  • the self-test procedure of the lawnmower system is simple, and the manufacturer of the control module in the lawnmower system shown in Figure 1 may provide the customer with a self-test code .
  • the self-mobile device has related positioning functions such as RTK borderless, visual navigation, or other complex algorithm functions, due to the increase in machine functions and algorithm complexity, the computing power of the machine is required to be higher. Therefore, it is necessary to, for example, The higher performance self-mobile device shown in Figure 1.
  • the information collection device sends the acquired current position information to the first control module, and through the information collection device, the first control module
  • the modules and the self-mobile device collectively control the movement and/or operation of the self-mobile device.
  • the present application proposes A self-moving device.
  • two control modules jointly complete the operations that need to be performed when the self-moving device works, which solves the problems of large data processing capacity and slow data processing speed of the self-moving device with high performance;
  • one of the control modules can be controlled to perform the safety assurance operation, so that the self-movement can be guaranteed only by self-checking (periodic self-checking) of the control module that performs the safety safeguarding operation.
  • the security of the control software in the device simplifies the self-checking process of self-mobile devices, especially high-performance self-mobile devices.
  • the self-moving device architecture proposed in the present application the sensitivity and running speed of the self-moving device can be greatly improved on the premise of ensuring the safety in the working process.
  • the present application will be described in detail below through specific embodiments.
  • the self-moving device may include: a housing; a moving mechanism configured to support the housing and drive the mobile device to move; a working module configured to be mounted on the housing to perform predetermined work.
  • the self-moving device may further include: a first control module and a second control module, wherein the first control module and the second control module are configured to communicate with each other and work together to control the moving mechanism and work module; the second control module is configured to control the self-mobile device to perform the safety assurance operation, and to perform self-check on the hardware and control programs related to the control operation of the safety assurance operation; and, among the first control module and the second control module, only the second control module
  • the control module performs a self-check according to a predetermined plan during the working process of the mobile device.
  • the first control module may include: a memory management unit, when the data processing volume in the machine is large, the limited memory in the machine may be managed by the memory management unit, so as to realize the The control module executes the data-intensive process.
  • the memory management unit can be used to allocate storage space corresponding to the virtual address to the data in the self-mobile device.
  • the machine passes the memory through the memory.
  • the management unit allocates storage space for the data and thus cannot determine at which physical address the security-relevant data is stored. However, the machine needs to read safety-related data during self-inspection.
  • the first control module can be used to perform a work process that is independent of security logic and has a large amount of data processing, and a simple control module that controls movement and work from a mobile device can be used to control the execution of tasks involving security logic.
  • the working process so that in the working process of the mobile device, only the simple control module involving the safety logic needs to be started self-checking or periodic self-checking, which can simplify the self-checking process of the working system with high performance and ensure that it is in the working process. security in.
  • the second control module controls the self-mobile device to perform a security assurance operation, which may include: controlling the self-mobile device to move and/or work within a work area defined by the boundary, and/or, detecting whether there is a cause that the self-mobile device does not allow Abnormal conditions of movement and/or work.
  • the self-moving device moves and works in the work area under the control of the second control module.
  • the second control module controls the self-moving device to perform the following operations, including but not limited to: Shut down, and/or alarm, and/or restart, and/or send a notification message to the user that the machine is abnormal.
  • the second control module controls the self-moving device to stop, and/or alarm, and/or restart, and/or Or send a notification message to the user that the machine is abnormal.
  • the self-check may include: starting the self-check and executing the self-check according to a predetermined plan.
  • the self-check performed according to the predetermined plan may preferably include: periodic self-check, or self-check according to user requirements or different time intervals preset by the system.
  • the first control module and the second control module may perform a start-up self-check before the second control module performs the self-check according to a predetermined schedule.
  • the second control module self-checking the hardware that controls the running security operation may include: detecting whether the hardware in the mobile device is faulty during startup or working, wherein the hardware may include : Storage module. Specifically, the second control module detects whether the hardware is faulty during the working process of the mobile device, that is, performing a self-check according to a predetermined plan, which may include: reading data from the physical address of the storage module where the safety-related data is stored, detecting Whether the read data is consistent with the stored data, if they are consistent, it is judged that the self-moving device is not faulty, and if they are inconsistent, it is judged that the self-moving device is faulty.
  • the data in multiple physical addresses of the memory can be input into the self-checking program of the machine in turn, and whether the machine is faulty is detected according to the self-checking procedure that comes with the machine.
  • the self-mobile device architecture proposed in the present application is adopted, and the sensitivity and running speed of the self-mobile device can be greatly improved on the premise of ensuring the safety in the working process.
  • the automatic working system may include: the self-moving equipment 20 , the boundary 14 , the charging station 16 , the information collection device 11 , the first a control module.
  • Self-moving equipment 20 is limited to walking and working within work area 12 defined by boundary 14.
  • the boundary 14 may be the perimeter of the entire work area, usually connected end to end, enclosing the work area, and the boundary 14 may be solid.
  • the physical boundary 14 may be a boundary formed by walls, fences, railings, pools, and boundaries between the working area 12 and the non-working area 18, among others.
  • the charging station 16 may be used to supply power from the mobile device back to docking charge when the power is low.
  • the information collection device 11 can be used to collect the current position information of the target object including the self-mobile device, and control the walking and/or work of the self-mobile device by collecting the position information of the self-mobile device or the boundary, obstacles, etc.
  • the information collection device 11 may include: a satellite positioning module and/or a vision module.
  • the information collection apparatus 11 When the information collection apparatus 11 is installed on the self-mobile device 20, the information collection apparatus 11 can be used to obtain the current location information of the self-mobile device 20; when the information collection apparatus 11 exists independently, the information collection apparatus 11 can be used to obtain its own Current location information.
  • the first control module can perform data interaction with the self-mobile device 20
  • the information collection apparatus 14 can perform data interaction with the self-mobile device 20 .
  • the first control module can be independent of the information collection device, or can be detachably or fixedly installed in the information collection device; the first control module can be independent of the automatic lawn mower, or can be detachably or fixedly installed in the automatic lawn mower. Lawn mower.
  • the first control module may receive the current location information from the information collection device or the second control module through a wired or wireless connection.
  • the information collection device 11 may include: a satellite positioning module (GNSS, such as GPS, Beidou, GPS-RTK, etc.) or a vision module, which can be detachably or fixedly installed on the housing of the mobile device 20 .
  • GNSS satellite positioning module
  • the satellite positioning module shown in FIG. 5 may include: a casing; an antenna, installed on the top of the casing, for receiving satellite signals; an RF front-end, installed inside the casing, for filtering and amplifying the received satellite signals, etc.
  • positioning processor memory, used to perform baseband or solution processing on satellite signals to output the coordinates of the positioning module
  • interface used for electrical connection with other electronic devices, when the positioning module is docked with the self-moving device 20 At the time, the interface is electrically connected to the self-moving device 20 , and the interface can be in the form of a reed or a connector, so that the positioning module can output position information to the self-moving device 20 .
  • the satellite positioning module may further include: a data transceiver module for performing data interaction with other electronic devices in a wireless manner.
  • the position coordinates of the work area boundary and obstacles can be recorded by holding the satellite positioning module or controlling the self-mobile device 20 installed with the satellite positioning module to walk along the boundary or obstacles of the work area.
  • the information collection device 11 can be installed on the self-mobile device 20, so that the self-mobile device 20 can acquire the current position information of the self-mobile device 20 connected to the information collection device in real time.
  • the self-moving device 20 may include robots with walking functions such as sweeping robots, automatic lawn mowers, automatic snow blowers, and meal delivery robots, which automatically walk on the surface of the work area to perform vacuuming, For work such as mowing grass or shoveling snow, it can also be other equipment suitable for unattended operation, which is not limited in this application.
  • the self-moving device is the automatic lawn mower 20 as an example for description.
  • the automatic lawn mower in an embodiment of the present application may include: an information collection device and a first control module.
  • the automatic lawn mower in FIG. 7 may include a second control module, and the automatic lawn mower may further include: a housing 35, a moving mechanism 37, a cutting mechanism 221, a moving mechanism, a cutting mechanism
  • the mechanism and the second control module are mounted on the housing.
  • the moving mechanism 37 may be a wheel rotatably provided on the housing 35, and the cutting mechanism may include a cutter head.
  • the robotic lawnmower may move and/or work within the boundary-defined work area 12 under the control of the second control module.
  • the automatic lawn mower may also include a memory module for storing data or running programs, a power module for driving the moving mechanism and the cutting mechanism, and a data transceiving module for transceiving data.
  • the automatic lawn mower 20 may further include: a position sensor, and the position sensor may further include, but is not limited to, at least one of the following: an inertial navigation unit (IMU), an ultrasonic sensor, a radar sensor, an infrared sensor, and a UWB sensor etc.
  • inertial navigation devices may include gyroscopes, accelerometers, and the like.
  • the position sensor can cooperate with the satellite navigation system to assist the navigation of the satellite positioning module when the satellite signal is poor.
  • the automatic lawn mower 20 may further include: an abnormality detection unit, and the abnormality detection unit may also be used to detect abnormal conditions that occur during the running and working process of the lawnmower.
  • the abnormality may include: abnormal conditions caused by external geographical factors or external human beings.
  • the abnormal situation may include, but is not limited to, at least one of the following: encountering an obstacle, lifting, trapping, falling, and the like.
  • the automatic lawn mower 20 may include a second control module, and the second control module may receive current location information from the information collection device.
  • the second control module receives the current position information sent by the information collection device in real time, and controls the movement and work of the lawn mower in the working area based on the current position information.
  • the first control module may further include: a data transceiver module for transmitting and receiving data from the lawn mower, and a storage module for storing relevant data.
  • the running speed of the first control module can be greater than or equal to the running speed of the second control module, so that the first control module can quickly build a map of the work area according to the received position information of the boundary, so as to speed up the cutting process.
  • the first control module may be an upper computer, and the second control module may be a lower computer.
  • the operating systems in the first control module or the second control module may be the same or different, and the first control module or the second control module may adopt an operating system such as Linux or RTOS. In other embodiments of the present application, the operating speed of the first control module may also be lower than that of the second control module, which is not limited in the present application.
  • the automatic lawn mower may include: a mapping mode and a working mode.
  • the mapping mode the first control module creates a map of the work area according to the received position information of the boundary.
  • the working mode the second control module controls the lawnmower to move and/or work in the working area according to the map stored therein from the first control module and the current position information received from the information collection device.
  • a map of the work area is established by the first control module, and the machine is controlled by the second control module to perform work processes involving safety logic, such as movement and work in the work area, that is, in the first control system with a complex system
  • safety logic such as movement and work in the work area
  • the process that has nothing to do with the safety logic and has a large amount of data processing is executed in the module, and the process involving the safety logic is executed in the second control module with a simple control system, so that only the second control module involving the safety logic needs to be self-checked.
  • It can ensure the safety of the control software in the automatic lawn mower without self-checking the complex system (the first control module) with a large amount of data processing and executing complex algorithms, reducing the complexity of the self-checking and simplifying the high-speed positioning function.
  • Performance Work system self-check process On the premise of ensuring the safety of the automatic lawn mower in the working process, the sensitivity and running speed of the lawn mower are improved.
  • path planning can be performed directly in the second control module. Specifically, after receiving the map from the first control module, the second control module can directly plan the walking path of the lawn mower in the second control module when receiving a path planning request, and then the lawn mower A map of the control module, the walking path stored by itself and the current position information of the lawn mower, control the moving mechanism to drive the lawn mower to move and/or work in the working area.
  • path planning may be performed in the first control module.
  • the second control module may send a path planning request to the first control module; the first control module responds to the path planning request, according to the map of the work area, or The initial position information and the destination position information of the lawn mower plan the walking path, and send the walking path to the second control module; then the second control module can control the moving mechanism to drive the lawn mower to move in accordance with the map, the walking path and the current position information. Move and/or work within the work area.
  • the work flow chart of the automatic lawn mower when the path planning is performed in the first control module may include the following steps:
  • the positioning module sends the position information of the boundary to the second control module
  • the second control module receives the position information of the boundary
  • the second control module sends the position information of the boundary to the first control module
  • the first control module creates a map according to the location information of the boundary
  • the second control module sends a path planning request to the first control module
  • S808 The first control module plans a walking path according to the map
  • the first control module sends the planned walking path to the second control module
  • the second control module receives the planned walking path
  • the second control module controls the lawnmower to move and/or work within the working area defined by the boundary according to the map, the walking path and the current position information.
  • the first control module executes the process of building a map of the work area and planning a walking path with a large amount of data
  • the second control module controls the machine to perform work involving safety logic, such as movement and work in the work area. process. That is, in the first control module with a complex system, a process that is independent of safety logic and has a large amount of data processing is executed, and in the second control module with a simple system, the process involving safety logic is executed, so that only the safety logic-related processes are required.
  • the self-checking of the second control module of the automatic lawn mower can ensure the safety of the control software in the automatic lawn mower, without the need for self-checking of the complex system with a large amount of data processing and the execution of complex algorithms, which reduces the complexity of self-checking and simplifies the positioning system.
  • the self-checking process of the functional high-performance working system achieves the technical effect of improving the sensitivity and running speed of the automatic lawn mower under the premise of ensuring the safety of the automatic lawn mower in the working process.
  • the map and the walking path can be saved in the first control module and the second control module respectively. This is not limited.
  • the user in the mapping mode, can hold the information collection device or control a machine (for example, a lawnmower) carrying the information collection device to move along the boundary, and the information collection device obtains the information during the movement.
  • the location information of the boundary that is, the information acquisition device is moved to acquire the location information of the boundary, so that the first control module can build a map of the work area according to the received boundary location information.
  • the lawn mower and the first control module are in a power-on state, and the information collection device can change the position of the boundary during the movement process.
  • the information is sent to the second control module, and the second control module receives the position information from the boundary in the information collection device and sends it to the first control module.
  • the first control module when the information collection device is moved to acquire the position information of the boundary, the first control module is in a power-on state, and the information collection device can send the position information of the boundary to The first control module, the first control module can directly receive the position information from the information collection device.
  • the information collection apparatus may further include: a control unit (for example, an MCU micro-control unit), and the information collection apparatus may store the position information of the boundary during the movement.
  • a control unit for example, an MCU micro-control unit
  • the information collection apparatus may store the position information of the boundary during the movement.
  • the information collection device is signal-connected to the first control module, so that the information collection device can send the location information to the first control module in a wired or wireless manner.
  • a wireless transmission unit or a docking interface may be installed in the information collection device, the first control module or the second control module, so as to realize the sending and receiving of data such as map or boundary position information.
  • data such as map or boundary position information.
  • other data transmission modes may also be used, which will not be repeated in this application.
  • the first control module may create a map of the working area according to the received location information of the boundary. After the map is established, the map can be backed up in the first control module. Further, the maps can be backed up in the first control module and the second control module respectively, so as to update and compare the maps in the subsequent work process.
  • step S804 the first control module creates the map according to the location information of the boundary, as shown in FIG. 9 .
  • Can include:
  • the self-moving device may further include: a retouching mode, after the first control module creates a map of the work area according to the received position information of the boundary, it can control the machine to enter the retouching mode.
  • the first control module can receive information from the user about whether the map matches the work area, and revise or confirm the established map according to the received information whether the map matches the work area, so as to obtain the map of the work area.
  • the machine walks in the work area according to the map established during the mapping process. During the machine walking process, the user observes whether the path of the machine is consistent with the actual boundary 14 .
  • the inconsistent information is sent to the first control module, and the user sends the correct path to the machine to control the machine to walk along the actual boundary 14.
  • the machine can change the map according to the new position information received during the walking process, and after completing the retouching , the machine can get an updated map that is consistent with the actual boundary 14 .
  • the machine can walk according to the accurate boundary 14 without unsafe phenomena such as out of bounds.
  • the user confirms the map and saves the map in the first control module, and sends and saves the map to the second control module. After that, during the working process of the machine, the map saved in the second control module can be compared with the map in the first control module.
  • the machine When the comparison results are consistent, the machine is controlled to work; when the comparison results are inconsistent, the machine is controlled to stop working and / or alarm, can ensure the accuracy of the map during the working process of the machine, the machine can walk and/or work according to the accurate map, so that the machine will not go out of bounds and ensure the safety of the machine.
  • the step of confirming the map can also be directly performed in the second control module.
  • the first control module only needs to create a map according to the received position information of the boundary, and then in step S806, the second control module receives the map from the first control module, and uses the second control module to perform a map confirmation process.
  • Work Specifically, it can include:
  • the second control module determines a map according to the received user information
  • S8063 The second control module saves the map confirmed by the user.
  • the map related to the safety of the machine during the walking process is directly saved in the second control module, so that the machine can be guaranteed to work by only performing self-check on the second control module. for the purpose of safety in the process.
  • the information collection device in the working mode, is installed on the lawn mower to obtain the current position information, and the second control module controls the moving mechanism to drive the machine to move within the working area defined by the boundary according to the map and the current position information and/or work.
  • the second control module marks in the map according to the abnormality detected by the abnormality detection unit, so as to update the map later.
  • the abnormality detection unit can be used to detect, but is not limited to, at least one of the following situations, which may include: whether the lawnmower is passively displaced, detecting the quality of the satellite signal at the current location of the lawnmower, detecting whether the lawnmower encounters obstacles, detecting if the lawnmower is trapped, etc.
  • the lawnmower in the working mode, can search for a position point closest to the current position information in the planned walking path according to the walking path in the second control module, and move to the position point . After reaching the location point, the second control module can walk and work along the planned path according to the map and the current location information. Alternatively, when the lawnmower returns to charging, the lawnmower can walk to the charging station to charge according to the received path.
  • the second control module can mark the abnormality detected by the abnormality detection unit in the map, update the map, and store the updated map. After that, the route planning can be re-planned according to the updated map.
  • the lawn mower detects whether the map has changed due to external factors during the working process, and re-plans the walking path according to the updated map, so as to ensure the accuracy of the walking path of the lawn mower and the working efficiency of the lawn mower .
  • the abnormality detection unit is signal-connected to the second control module.
  • the second control module can mark the abnormal position on the map.
  • the preset condition may be that the marker in the map can form the outline of the obstacle, the lawnmower is lifted up at the same position multiple times or encounters an obstacle multiple times, and the like.
  • the second control module may send a path planning request when the lawnmower is turned on, before starting to work, returning to charging, working for a period of time, detecting map updates, or receiving user instructions on path planning.
  • the route planning request includes the updated map stored in the second control module, and the first control module responds to the route planning request, according to the work area Maps plan walking paths.
  • the work flow chart of the path planning performed by the first control module according to the map is shown in FIG. 10, which may include the following steps:
  • S8083 Perform path planning according to the stored map.
  • the first control module compares the received map with the map stored by itself.
  • the first control module sends the walking path stored by itself to the second control module.
  • the first control module may also perform path planning according to a map stored by itself, and send the planned walking path to the second control module.
  • the first control module updates the map stored in the storage module to the received map, and performs path planning according to the updated map, The planned walking path is sent to the second control module.
  • the path planning method is basically the same as the above-mentioned embodiment, the difference is that when the second control module sends a path planning request to the first control module, the path planning request does not carry the updated path planning request. map. Specifically, when the second control module sends a route planning request to the first control module, the first control module sends a map acquisition request to the second control module in response to the route planning request, so that the second control module sends a request to the first control module. Send the updated map. After that, the first control module plans the walking path according to the map of the working area.
  • the second control module when the second control module sends a path planning request, it may first detect whether a walking path is stored in the memory of the lawn mower or the first control module, and if it is detected that the walking path is not stored, the The walking path is obtained by directly planning the walking path according to the map.
  • the second control module when the second control module sends a path planning request, if it is detected that the lawn mower or the memory of the first control module stores a walking path, the above-mentioned method shown in FIG. 10 can be used. way to re-plan the path to get the walking path.
  • the path planning method is basically the same as the above-mentioned embodiment, the difference is that the abnormality detection unit is connected to the first control module. Specifically, the abnormality detection unit is signal-connected to the first control module.
  • the first control module marks in the map and updates the map.
  • the path planning can be performed directly according to the updated map without performing the map comparison process as shown in FIG. 10 .
  • the lawnmower can continue to detect abnormal conditions during the walking process, and update the map and walking path in the manner in the above embodiment, which is not limited in this application.
  • the self-moving device works cooperatively to control its walking and working through two control modules that communicate with each other, wherein only one control module controls the self-moving device to perform the safety assurance operation, and is related to the control execution of the safety assurance operation.
  • the hardware and control program of the mobile device perform self-checking, and among the two control modules, only the control module performs self-checking according to a predetermined plan during the working process of the mobile device.
  • one of the control modules is controlled to perform the safety assurance operation, so that only one of the control modules needs to be self-checked (periodic self-check) to ensure the control software in the self-mobile device.
  • Safety simplifies the self-inspection process of self-mobile devices, especially high-performance self-mobile devices.
  • the sensitivity and the running speed can be greatly improved under the premise of ensuring the safety of the self-mobile device during the working process.
  • another aspect of the present application further provides a working method for the self-moving device, wherein the self-moving device includes: a first control module and a second control module, and the method may include:
  • the second control module controls the self-moving device to perform a security assurance operation, and performs self-check on hardware and control programs related to the control and operation of the security assurance operation, wherein the first control module and the second control module In the module, only the second control module performs self-checking according to a predetermined plan during the working process of the self-moving device.
  • the self-mobile device works cooperatively through two control modules that communicate with each other to control its walking and work, wherein only one control module controls the self-mobile device to perform safety assurance operations, and controls the execution of safety assurance operations related to the control module.
  • the hardware and the control program perform self-inspection, and among the two control modules, only the control module performs the self-inspection according to a predetermined plan during the working process of the mobile device.
  • one of the control modules is controlled to perform the safety assurance operation, so that only one of the control modules needs to be self-checked (periodic self-check) to ensure the control software in the self-mobile device.
  • Safety simplifies the self-inspection process of self-mobile devices, especially high-performance self-mobile devices.
  • the sensitivity and the running speed can be greatly improved on the premise of ensuring the safety of the self-moving device during the working process.
  • the information collection device using the satellite positioning module as a schematic diagram has a positioning processor and a large-capacity memory, so the above-mentioned traditional method cannot be used to ensure its safety.
  • a self-moving device which may include: an information collection apparatus, wherein the information collection apparatus may include: a satellite positioning module and/or a vision module.
  • the lawnmower system or the automatic lawnmower may further include a control device that controls the movement and operation of the lawnmower in the work area defined by the boundary.
  • the lawnmower or the lawnmower system may further include: a storage module, wherein the storage module is configured to store the same operation parameter and/or the same operation program related to the lawnmower in a plurality of physical addresses therein.
  • the operating parameters may be acquired through an information collection device, or may be acquired through detection by an abnormality detection unit in an automatic lawn mower or the like.
  • the operating parameters may be current location information and/or map, route planning data, or data detected by various types of sensors installed on the lawnmower, such as temperature data, tilt angle data or acceleration data.
  • the running program may be any program loaded into the storage module during the running process of the machine, or may also be a program written in the machine by a programmer.
  • the storage module can also be used to store a data comparison program. When the control device executes the data comparison program, it can read the data stored in it from multiple physical addresses of the storage module. If the read data is consistent or read If the processed results of the received data are consistent, it is determined that the storage module is fault-free; if the read data is inconsistent or the processed results of the read data are inconsistent, it is determined that the storage module is faulty.
  • control device may include a control module installed in the lawn mower.
  • control device may include the first control module and the second control module in the foregoing embodiments, both of which may be installed in the lawn mower; or one may be installed in the lawn mower, The other is installed in the information collection device.
  • first control module and the second control module in the foregoing embodiments, both of which may be installed in the lawn mower; or one may be installed in the lawn mower, The other is installed in the information collection device.
  • the technical solution of the present application is described by taking the automatic lawn mower as shown in FIG. 11 as an example.
  • the control device may include a first control module and a second control module, the difference is that the automatic lawn mower shown in FIG.
  • the control module individually controls the movement and work of the lawn mower, or the first control module and the second control module jointly control the movement and work of the lawn mower in the work area defined by the map, that is, in this embodiment, the lawn mower has a complex system.
  • the first control module involves work related to lawn mower safety.
  • the data comparison program when executed by the control device, it can be realized that the data stored therein is read from multiple physical addresses. It is determined that the storage module is fault-free; if the read data is inconsistent or the result of the read data processing is inconsistent, it is determined that the storage module is faulty. That is, by backing up the operating parameters and/or operating programs related to the lawn mower multiple times in the storage module, the obtained parameters are compared, and according to the comparison results, it is detected whether the hardware such as Flash or RAM in the lawn mower is normal.
  • the following describes the method of determining the system fault only by operating parameters and the method of determining the system fault by combining the operating parameters and the operating program.
  • the same operating parameter can be stored in multiple physical addresses (at least two physical addresses) of the lawn mower, so that during the working process, the lawn mower can pass data from multiple physical addresses to the lawn mower.
  • Read any number of operating parameters in the automatic lawn mower and compare the read data. According to the comparison results, it can be determined whether there is a fault in the automatic lawn mower. That is, by reading the same data located in different physical addresses, it is determined whether the memory is faulty according to the data comparison result.
  • the following steps may be included, wherein the operation parameter is taken as an example of map data, and the multiple physical addresses are taken as an example of two physical addresses.
  • S1201 write the same map data into the storage blocks corresponding to the first physical address and the second physical address;
  • S1202 Read data from the first physical address and the second physical address respectively;
  • the machine After the machine builds the map, it writes the same map data into the first/second physical address respectively, and reads the data stored in the first physical address and the second physical address in real time during the subsequent working process of the machine , or, when the machine needs to use the map, the stored data can be read from the two physical addresses respectively, and the read data can be compared to see if they are consistent.
  • safety protection measures can be activated, such as: controlling the machine to alarm and stop, and sending a notification message to the user that the machine has failed.
  • the machine can be controlled to continue working.
  • the same operating parameters can be stored in at least two physical addresses of the storage module respectively, so that during operation, the lawn mower can read any arbitrary address from the at least two physical addresses respectively. Save the running parameters twice, and input the two data read into the same running program, compare the operation results output by the running program multiple times, and determine whether there is a fault in the automatic lawn mower according to the comparison results. Specifically, as shown in FIG. 13 , the following steps may be included, wherein the following operation parameters take the map data as an example, and the operation program takes the out-of-bounds judgment program as an example.
  • the machine After the machine builds the map, it reads the same current location information located in the two physical addresses, and inputs it into the same out-of-bounds judgment program. output to determine if the memory is faulty. When a memory failure is detected, safety protection measures can be initiated, such as: controlling the machine to alarm, stop, restart, and send a notification message to the user that the machine has failed. When it is detected that there is no fault in the memory, the machine can be controlled to continue working.
  • the same running program can be stored in multiple physical addresses of the storage module, so that during operation, the lawnmower can read any two physical addresses from the multiple physical addresses. Save the running program, and input the read running parameters into any two physical addresses that store the same running program, compare the operation results output by the running program multiple times, and determine whether the automatic lawn mower appears according to the comparison results. Fault.
  • the following steps may be included, wherein the following operation parameters take the map data as an example, and the operation program takes the out-of-bounds judgment program as an example.
  • S1402 Read map data and current location information from the storage module
  • the same out-of-bounds judgment program is programmed into at least two physical addresses before the machine leaves the factory, or, at any preset time after the machine is powered on, the same out-of-bounds judgment program is backed up in at least two physical addresses.
  • the current location information and the map are read from the storage module, and input into two physical addresses as input data.
  • the programs in the two physical addresses process the input data to obtain the operation results, and compare the obtained operations Whether the results are consistent, if they are consistent, there is no fault in the memory, and if they are inconsistent, there is a fault.
  • safety protection measures can be initiated, such as: controlling the machine to alarm, stop, restart, and send a notification message to the user that the machine has failed.
  • the machine can be controlled to continue working.
  • the periodic self-check can be implemented by controlling the lawn mower to be shut down and restarted periodically within a predetermined time, and by periodically starting the self-check during the periodical restart.
  • the machine can be restarted when the lawnmower returns to the charging station, and periodic self-checks can be implemented by performing a self-startup check on the machine after restarting.
  • the automatic lawn mower can also be set to be shut down and restarted within a safe time range such as 2 hours to implement periodic self-checking, which is not limited in this application.
  • the information collection apparatus may include: a collection module, a control module and a storage module, the collection module is configured to collect current position information of a target object including a self-mobile device under the control of the control module, The current position information is stored in the storage module, and the current position information is output to the control device. That is, an independent control module and a large-capacity storage module exist in the information collection device.
  • the satellite positioning module shown in FIG. 5 is used as an example to illustrate.
  • the acquisition module can be an antenna and an RF front-end and other components involved in data acquisition functions (when the information acquisition device is a visual module, the acquisition module can be the one in which the image is collected.
  • the information collection device since the information collection device has a control module (eg, a positioning processor) and a storage module (eg, a large-capacity memory), the above traditional methods cannot be used to ensure its security. Because it is not easy to insert the self-test code to realize the power-on (start-up) self-test or periodic self-test by reading the underlying code, and generally the module is directly purchased from the supplier, so for the equipment with the above characteristics, Its safety during work cannot be guaranteed. Specifically, the following methods can be used to ensure its safety.
  • a control module eg, a positioning processor
  • a storage module eg, a large-capacity memory
  • the self-mobile device can determine whether the information collection device is faulty according to whether the current location information collected by the collection module has a sudden change.
  • other devices in the mobile device such as the control device or the information acquisition device can also determine whether the information acquisition device is faulty according to whether the current location information has changed abruptly. That is, the current position information output by the information collecting device is used to determine whether the information collecting device is normal, so as to ensure the safety of the information collecting device during the working process of the machine. The following can be described by specific embodiments.
  • the self-moving device may further include: an abnormality detection unit, where the abnormality detection unit may be used to detect whether the lawnmower is passively displaced and/or the signal quality of the current location of the lawnmower (the Signal quality can include: satellite positioning signal quality and visual image signal quality), or it can be said to detect abnormal conditions that occur during the walking and working process of the lawn mower, according to the passive displacement of the lawn mower, the signal quality of the current location And whether there is a sudden change in the current position information, it is determined whether the information collection device is faulty.
  • the Signal quality can include: satellite positioning signal quality and visual image signal quality
  • the abnormality detection unit may include, but is not limited to, at least one of the following: an inertial navigation unit (IMU), an ultrasonic sensor, a radar sensor, an infrared sensor, a UWB sensor, and a lift detection sensor.
  • IMU inertial navigation unit
  • UWB infrared sensor
  • UWB infrared sensor
  • lift detection sensor e.g., a Bosch Sensortec B Sensortec B sensor
  • inertial navigation equipment can be used to determine whether the lawn mower has moved.
  • FIG. 15 can be used to illustrate whether the information collection device is faulty, which can include the following steps:
  • S1502 determine whether the machine is moved; if it is moved, execute S1507; if not, execute S1503;
  • S1503 Whether the signal quality is greater than the preset threshold; if it is greater than the preset threshold, execute S1504; if it is less than or equal to the preset threshold, execute S1505;
  • S1504 Determine whether the positioning data has a mutation; if there is a mutation, execute S1507; if there is no mutation, execute S1506;
  • S1505 Determine whether there is no mutation in the positioning data; if there is no mutation, execute S1507; if there is a mutation, execute S1506;
  • the control machine Specifically, during the working process of the machine, it is detected whether the machine has a passive displacement change such as lifting, and if not, the current positioning quality of the machine is judged.
  • the positioning quality is poor, check whether the positioning data jumps, if there is no jump, control the machine to stop; when the positioning quality is high, if it detects that the positioning data jumps, control the machine to stop (alarm, or send a message to the user).
  • the notification message of the machine failure if it is detected that the positioning data has not jumped, the control machine will continue to work.
  • the inertial navigation unit when judging whether the machine is moved, such as lifting, etc., the inertial navigation unit (IMU) can be used to detect whether the motion parameters detected by the machine during the walking process change continuously. The changed parameters indicate that the machine has not been moved. If it is the sampling frequency, the walking speed of the lawnmower with the information collection device installed, or the non-continuous change within the allowable error range, it indicates that the machine has been moved.
  • IMU inertial navigation unit
  • the signal quality as the satellite signal quality as an example
  • the method of generating the position of the measurement point includes multiplying the propagation speed of the signal by the signal propagation time difference.
  • the strength for example, can be set so that if the number of detected satellites is greater than 3, it corresponds to the quality of the satellite positioning signal within the preset threshold range, and the three-dimensional position data and time information of the measurement point are obtained through equations.
  • the satellite positioning signal may also include RTK signals
  • combining satellite positioning technology with RTK technology includes: arranging another satellite navigation positioning receiver on the reference station, continuously receiving satellite positioning signals, and The satellite positioning signal received by the reference station is sent to the wireless receiving device at the measurement point in real time through the radio transmission equipment, and the satellite positioning signal received by the measurement point and the satellite positioning signal representing the position information of the reference station received by the wireless receiving device are used.
  • Signal data according to the principle of relative positioning, real-time settlement of the three-dimensional coordinates of the location of the measurement point. It can be seen that the satellite positioning signal received by the receiver and the satellite positioning signal data of the reference station received by the wireless receiving device at the measurement point have a great influence on the positioning result.
  • the RTK signal includes the satellite positioning signal received by the receiver and the reference station satellite positioning signal received by the wireless receiving device.
  • the setting method for judging that the quality of the satellite positioning signal is within the preset threshold range is not limited to the above examples, and those skilled in the art may make other changes under the inspiration of the technical essence of this application, but As long as the realized functions and effects are the same or similar to those of the present application, they shall all be covered within the protection scope of the present application.
  • the following manners can be used to determine whether the positioning data is mutated.
  • the positioning accuracy of an information collection device eg, RTK
  • the walking speed of the machine is used as the basis to determine the preset distance threshold.
  • the preset distance threshold may also be pre-set in the program by the manufacturer according to the selected information collection device or written in the product manual, which is not limited in this application.
  • a position sensor may also be combined to determine whether the positioning data has not changed abruptly.
  • the position sensor may include the inertial navigation device IMU and the odometer odo. First, it can be judged whether the position sensor is faulty.
  • the IMU and odo data of each location point can be fused to determine whether the fusion data of the current location point and the fusion data of the previous location point are within the preset distance threshold range. odo), the accuracy of the fusion algorithm, the sampling frequency of each location point, and the walking speed of the lawn mower.
  • the information collection device and the position sensor can be combined to determine whether the information collection device is faulty.
  • the error range can be determined according to the positioning accuracy of RTK, the positioning accuracy of the position sensor, and the accuracy of the fusion algorithm.
  • the above-mentioned safety detection method is simple and easy to implement, and can ensure the safety of the information collection device in the lawn mower system.
  • the self-mobile device can determine whether the information collection device is faulty according to whether the current location information collected by the collection module has a sudden change.
  • other devices in the mobile device such as the control device or the information acquisition device, may also determine whether the information acquisition device is faulty according to whether the current location information has a sudden change. That is, the current position information output by the information collecting device is used to determine whether the information collecting device is normal, so as to ensure the safety of the information collecting device during the working process of the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种安全性能高的自移动设备(20),包括:信息采集装置(11)、控制装置,信息采集装置(11)包括:采集模块、控制模块以及存储模块,采集模块配置为在控制模块的控制下采集包括自移动设备(20)在内的目标物体的当前位置信息,将当前位置信息存储至存储模块,并将当前位置信息输出至控制装置;自移动设备(20)根据当前位置信息是否发生突变,确定信息采集装置(11)是否出现故障。

Description

自移动设备及其工作方法
本申请要求了申请日为2020年06月28日,申请号为202010598045.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及自动工作领域,尤其涉及一种自移动设备及其工作方法。
背景技术
随着计算机和人工智能技术的不断进步,越来越多的人在日常生活中选择使用自动工作系统。在自动工作系统中工作的自移动设备,例如:智能割草机、扫地机器人等智能产品,在进行初始设置后可自动工作,以将用户从清洁房间、维护草坪等繁琐枯燥费时的家务劳动中解放出来。
通常,自移动设备可以在没有人为操作监控或没有人在场的场景下运行。以自动割草机所在的自动工作系统实现草坪清理为例:自动割草机通过对草坪建立地图来限定工作范围,并在工作范围中自动工作。在工作过程中,割草机可能会由于自身软件或硬件方面的缺陷而导致出界、误伤行人等不安全现象的发生,可以通过在割草机中写入软件安全功能以保证割草机工作过程中的安全。
现有割草系统一般通过感应磁场判断是否出界,相应的功能模块如图1所示,可以包括:控制模块、移动机构、切割机构、电源组件、感应模块等,其中,在控制模块的控制下,移动机构带动割草机在工作区域内移动,切割机构在工作区域内执行切割工作,感应模块通过感应边界所产生的磁场信号,电源组件用于给机器在移动和/或工作过程中供电。
上述现有割草系统中的割草机在设计上往往遵循以下原则,以达到实时响应各类安全状况(如:判断是否出界、判断是否遇障等)并控制成本的目的,包括:1)在满足性能需求的情况下,控制模块中的处理器规格往往较低,例如处理器可以使用ARM中M3或M4等具有相似性能的处理器;2)控制模块中往往采用例如实时操作系统(RTOS)等功能相对简单、允许直接对存储器等底层硬件进行操作的操作系统,或者也可以不使用操作系统;3)存储器的容量较小,如:8MB。
由于自动割草机在行走工作过程中没有用户在场,因此对其安全性有一定要求。例如:割草机只能在工作区域内工作,而不能擅自跨越工作区域的边界移动到非工作区域;割草机能够可靠地探测到障碍物,并及时对探测到的障碍物采取如规避或返回等动作等,上述这些安全过程均由机器的控制软件控制。因此,对于自动割草机而言,控制软件的安全功能、以及运行控制软件的硬件的安全可靠性十分重要。
发明内容
为克服现有技术的缺陷,本发明所要解决的问题是提供一种安全性能较高的自移动设备及其工作方法。
本发明的上述目的可采用下列技术方案来实现:
一种自移动设备,包括:信息采集装置、控制装置,
所述信息采集装置包括:采集模块、控制模块以及存储模块,所述采集模块配置为在所述控制模块的控制下采集包括所述自移动设备在内的目标物体的当前位置信息,将所述当前位置信息存储至所述存储模块,并将所述当前位置信息输出至所述控制装置;
所述自移动设备根据所述当前位置信息是否发生突变,确定所述信息采集装置是否出现故障。
在一个实施例中,所述自移动设备中还包括:异常检测单元,所述异常检测单元用于检测所述自移动设备是否发生被动位移和/或所述自移动设备当前所在位置的信号质量,在所述自移动设备未被移动,且,所述自移动设备当前所在位置的信号质量大于预设阈值的情况下,判断所述当前位置信息是否发生突变,若所述当前位置信息发生突变,确定所述信息采集装置出现故障;若所述当前位置信息未发生突变,确定所述信息采集装置未出现故障。
在一个实施例中,所述异常检测单元包括:抬起检测传感器。
在一个实施例中,在所述自移动设备未被移动,且,所述自移动设备当前所在位置的信号质量小于或等于预设阈值的情况下,判断所述当前位置信息是否发生突变,若所述当前位置信息未发生突变,确定所述信息采集装置出现故障;若所述当前位置信息发生突变,确定所述信息采集装置未出现故障。
在一个实施例中,所述自移动设备还包括:位置传感器,所述位置传感器用于检测所述自移动设备的当前位置信息,
在所述位置传感器检测到的当前位置信息未发生突变的情况下,比较所述信息采集装置采集到的相邻位置信息之差与所述位置传感器采集到的相邻位置信息之差是否一致,若一致,确定所述自移动设备未出现故障。
在一个实施例中,所述位置传感器包括以下至少之一:惯性导航设备、超声波传感器、雷达传感器、UWB传感器。
在一个实施例中,所述信息采集装置包括:卫星定位模块和/或视觉模块。
在一个实施例中,当确定所述信息采集装置出现故障之后,所述控制装置控制所述自移动设备执行以下操作,包括:停机、报警或重新启动。
在一个实施例中,所述控制装置根据所述当前位置信息是否发生突变,确定所述信息采集装置是否出现故障。
本发明实施例中还提供了一种自移动设备的工作方法,所述方法包括:采集包括所述自移动设备在内的目标物体的当前位置信息;所述自移动设备根据所述当前位置信息是否发生突变,确定所述自移动设备是否出现故障。
本申请提供的自移动设备的有益效果是:自移动设备可以根据采集模块采集到的当前位置信息是否发生突变,确定信息采集装置是否出现故障。具体的,也可以是控制装置或信息采集装置等自移动设备中的其他器件根据当前位置信息是否发生突变,确定信息采集装置是否出现故障。即,利用信息采集装置输出的当前位置信息判断信息采集装置是否正常,从而保证机器工作过程中信息采集装置的安全。
附图说明
以上所述的本发明的目的、技术方案以及有益效果可以通过下面附图实现:
图1是本发明所提供的现有割草系统的结构示意图;
图2是本发明所提供的一种自移动设备的结构示意图;
图3是本发明一个实施方式所提供的自动工作系统场景示意图;
图4是本发明一个实施方式所提供的自移动设备示意图;
图5是本发明一个实施方式所提供的卫星定位模块结构示意图;
图6是本发明一个实施方式所提供的割草机结构示意图;
图7是本发明一个实施方式所提供的自动割草机结构示意图;
图8是本发明一个实施方式所提供的自动割草机在第一控制模块中进行路径规划时的工作流程示意图;
图9是本发明一个实施方式所提供的自动割草机在第一控制模块中建图时的工作流程示意图;
图10是本发明一个实施方式所提供的第一控制模块进行路径规划的工作流程示意图;
图11是本发明另一个实施方式所提供的自动割草机结构示意图;
图12是本发明一个实施方式所提供的自动割草机的安全检测方法流程示意图;
图13是本发明另一个实施方式所提供的自动割草机的安全检测方法流程示意图;
图14是本发明另一个实施方式所提供的自动割草机的安全检测方法流程示意图;
图15是本发明一个实施方式所提供的信息采集装置安全检测方法流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在详细说明本发明的实施例前,应该注意到的是,在本发明的描述中,诸如左和右,上和下,前和后,第一和第二之类的关系术语仅仅用来区分一个实体或动作与另一个实体或动作,而不一定要求或暗示这种实体或动作之间的任何实际的这种关系或顺序。术语“包括”、“包含”或任何其他变体旨在涵盖非排他性的包含,由此使得包括一系列要素的过程、方法、物品或者设备不仅包含这些要素,而且还包含没有明确列出的其他要素,或者为这种过程、方法、物品或者设备所固有的要素。
自移动设备在没有用户在场的情况下工作时,需要对系统中软硬件的可靠性进行必要的持续检查,以保证软硬件的安全性。比如,软件的可靠性,需要从软件开发环境、开发流程、软件架构设计、软件逻辑等方面进行审核;对于运行具有安全相关功能的硬件而言,需要采用开机自检、周期自检等措施。即,自移动设备在工作过程中需要自检以保证其安全。对于如图1所示的割草机系统而言,该割草机系统自检程序简单,且,生产如图1所示割草 机系统中控制模块的生产厂商可能会向客户提供自检代码。
随着人工智能以及传感器等技术的发展,当用户对机器的计算能力需求大幅提升时,往往需要采用更加先进的处理器(CPU)、更复杂或规模更大的控制软件、更大容量(GB级)的存储器。具体的,当自移动设备中具有RTK无边界、视觉导航等相关定位功能或其他复杂算法的功能时,由于机器功能增加、算法复杂度增加,对机器的计算能力要求较高,因此,需要比如图1所示的性能更高的自移动设备。以自移动设备中具有定位功能为例,如图2所示,在该自移动设备中,信息采集装置将获取到的当前位置信息发送至第一控制模块,并通过信息采集装置、第一控制模块、自移动设备共同控制自移动设备的移动和/或工作。
对于图2所示的具有定位功能的自移动设备而言,由于该自移动设备的计算能力更高,所采用的处理器以及存储器规格也更复杂,因此,该自移动设备中控制软件的安全检查难度显著提升。主要体现在两个方面:1)控制软件的安全性,例如:操作系统、以及交互数据等的自检;2)运行控制软件的硬件安全可靠性,例如:时钟以及计时器的自检、RAM以及Flash存储器等的自检。
具体的,如图2所示具有较高数据处理能力、相对先进处理器、采用较复杂操作系统(如Linux操作系统)的自移动设备中,往往存在原有软件安全规范难以实施、或者安全规范实施代价很大的问题。比如为了解决运行了Linux操作系统的硬件(比如存储器)开机自检,需要在Linux操作系统的Boot Loader引导程序中插入相应的自检程序段,这种操作需要对Linux操作系统底层相当熟悉的本领域技术人员花费较多的时间才能够完成。又比如为了检测控制软件运行过程中硬件的安全性(周期自检),需要在软件运行过程中中断进程,进行时钟检查和存储器扫描自检等。一般来讲,每扫描1MB内存需要的时间为毫秒级,1GB的内存需要的时间为秒级。因此,当系统容量较高(GB级)时,如果持续不断的控制软件在一定周期内(比如5s内)进行硬件扫描将会花费大量时间,从而导致机器运行速度较慢,影响机器的正常工作,且可能导致机器无法实时响应。
考虑到当自移动设备性能提升时,由于写入其中的自检程序复杂度增加以及自检时所花费的时间较长,导致其在使用过程中安全性无法得到保障的缺陷,本申请提出了一种自移动设备。在该自移动设备中,首先,通过两个 控制模块共同完成自移动设备工作时所需要执行的操作,解决了性能较高的自移动设备数据处理量较大、数据处理速度较慢的问题;进一步的,当自移动设备中存在两个控制模块时,可以控制其中一个控制模块执行安全保障操作,从而仅需要对该执行安全保障操作的控制模块自检(周期自检)即可保证自移动设备中控制软件的安全,简化了自移动设备、尤其是高性能自移动设备的自检过程。采用本申请所提出的自移动设备架构,在保证工作过程中安全的前提下,可以大大提高自移动设备的灵敏度以及运行速度。下面通过具体实施例对本申请进行详细说明。
在本申请的实施例中,自移动设备可以包括:壳体;移动机构,配置为支撑壳体并带动移动设备移动;工作模块,配置为安装在壳体上,执行预定工作。当自移动设备涉及复杂运算时,自移动设备还可以包括:第一控制模块以及第二控制模块,其中,第一控制模块和第二控制模块配置为相互通信,协同工作以控制移动机构和工作模块;第二控制模块配置为控制自移动设备执行安全保障操作,并对控制运行安全保障操作相关的硬件以及控制程序进行自检;且,第一控制模块和第二控制模块中,仅第二控制模块在自移动设备工作过程中按照预定计划执行自检。
在本申请的一个实施例中,第一控制模块中可以包括:内存管理单元,当机器中数据处理量较大时,可以通过内存管理单元对机器中的有限内存进行管理,以实现通过第一控制模块执行数据处理量较大的过程。内存管理单元可以用于给自移动设备中的数据分配与虚拟地址相对应的存储空间,自移动设备运行过程中,由于第一控制模块中具有内存管理单元,程序运行的过程中,机器通过内存管理单元给数据分配存储空间,因而无法确定安全相关数据存储在哪个物理地址。然而机器在自检时需要读取安全相关数据,由于机器并不确定安全相关数据位于哪个物理地址,如果通过第一控制模块控制自移动设备执行安全保障操作,自移动设备将很难实现自检。因此,在本申请的实施例中,可以通过第一控制模块执行与安全逻辑无关、且数据处理量较大的工作过程,利用控制自移动设备移动和工作的简单控制模块控制执行涉及安全逻辑的工作过程,从而在自移动设备的工作过程中,仅需要对涉及安全逻辑的简单控制模块进行启动自检或周期自检,可以简化具有较高性能工作系统的自检过程,保证其在工作过程中的安全性。
其中,第二控制模块控制自移动设备执行安全保障操作,可以包括:控 制自移动设备限定于在边界限定的工作区域内移动和/或工作,和/或,检测是否存在导致自移动设备不允许移动和/或工作的异常情况。具体的,自移动设备在第二控制模块的控制下在工作区域内移动和工作,当检测到机器出界等安全问题时,第二控制模块控制自移动设备执行以下操作,包括但不限定于:停机、和/或报警、和/或重新启动、和/或向用户发送机器出现异常的通知消息。自移动设备在工作以及移动的过程中检测到存在跌落、抬起等可能会伤害用户的安全问题时,第二控制模块控制自移动设备停机、和/或报警、和/或重新启动、和/或向用户发送机器出现异常的通知消息。
在本申请的一个实施例中,自检可以包括:启动自检以及按照预定计划执行的自检。其中,按照预定计划执行的自检优选的可以包括:周期自检,也可以是按照用户要求或系统预先设定的时间间隔不同的自检。在第二控制模块按照预定计划执行自检之前,第一控制模块和第二控制模块可以执行启动自检。
在本申请的一个实施例中,第二控制模块对控制运行安全保障操作的硬件进行自检可以包括:在启动或工作过程中检测自移动设备中的硬件是否出现故障,其中,该硬件可以包括:存储模块。具体的,第二控制模块在自移动设备工作过程中检测硬件是否出现故障,即,按照预定计划执行自检,可以包括:从存储模块的存储有安全相关数据的物理地址中读取数据,检测读取到的数据与所存储的数据是否一致,若一致,则判断所述自移动设备无故障,若不一致,则判断所述自移动设备出现故障。或者,检测硬件是否出现故障也可以是将存储器多个物理地址中的数据依次输入机器自带的自检程序,根据机器自带的自检程序检测机器是否出现故障。
在本申请的实施例中,采用本申请所提出的自移动设备架构,在保证工作过程中安全的前提下,可以大大提高自移动设备的灵敏度以及运行速度。
在本申请下面的具体实施例中,以自移动设备具有数据处理量较大的定位功能为例对本申请的方案进行详细说明。当然,下面实施例中所描述的系统架构以及数据处理方式同样也适用于当自移动设备中具有其它类型的复杂处理过程,本申请对此不作限定。
如图3所示的自动工作系统场景示意图以及如图4所示的自移动设备结构示意图所示,自动工作系统可以包括:自移动设备20、边界14、充电站16、信息采集装置11、第一控制模块。自移动设备20限定于在边界14所限 定的工作区域12内行走并工作。边界14可以是整个工作区域的外围,通常首尾相连,将工作区域封闭,边界14可以是实体的。其中,实体的边界14可以是墙壁、篱笆、栏杆、水池以及工作区域12与非工作区域18之间的交界等形成的界限。充电站16可以用于供自移动设备能源不足时返回对接充电以补充能量。信息采集装置11可以用于采集包括所述自移动设备在内的目标物体的当前位置信息,通过采集自移动设备或者边界、障碍物等的位置信息来控制自移动设备的行走和/或工作。具体的,信息采集装置11可以包括:卫星定位模块和/或视觉模块。
当信息采集装置11安装于自移动设备20上时,信息采集装置11可以用于获取自移动设备20的当前位置信息;当信息采集装置11独立存在时,信息采集装置可以用于获取其自身的当前位置信息。如图4所示,第一控制模块可以与自移动设备20进行数据交互,信息采集装置14可以与自移动设备20进行数据交互。进一步的,第一控制模块可以独立于信息采集装置,也可以可拆卸或固定的安装于信息采集装置;第一控制模块可以独立于自动割草机,也可以或可拆卸或固定的安装于自动割草机。第一控制模块可以通过有线或无线连接的方式接收来自信息采集装置或第二控制模块的当前位置信息。
在本实施例中,信息采集装置11可以包括:卫星定位模块(GNSS,例如:GPS、北斗、GPS-RTK等)或视觉模块,其可拆卸或固定安装于自移动设备20的壳体上。如图5所示的卫星定位模块可以包括:壳体;天线,安装于壳体顶部,用于接收卫星信号;RF前端,安装于壳体内部,用于将接收到的卫星信号进行滤波放大等处理;定位处理器、存储器,用于对卫星信号进行基带或解算等处理,以输出定位模块的坐标;接口,用于与其他电子器件的电性连接,当定位模块与自移动设备20对接时,接口与自移动设备20实现电连接,接口形式可以为簧片或接插件等,从而定位模块可以输出位置信息给自移动设备20。卫星定位模块还可以包括:数据收发模块,用于通过无线方式与其他电子器件进行数据交互。在生成工作区域地图的过程中,可以通过手持卫星定位模块或者控制安装有卫星定位模块的自移动设备20沿着工作区域的边界或障碍等位置行走来记录工作区域的边界、障碍等位置坐标。在自移动设备20的工作过程中,可以将信息采集装置11安装于自移动设备20,从而自移动设备20可以实时获取与信息采集装置相连的自移动设备20的当 前位置信息。
在本申请的实施例中,自移动设备20可以包括扫地机器人、自动割草机、自动扫雪机、送餐机器人等具有行走功能的机器人,它们自动行走于工作区域的表面,进行吸尘、割草或者扫雪等工作,也可以为其它适合无人值守的设备,本申请对此不作限定。在本申请下面的实施例中,以自移动设备为自动割草机20为例进行说明。
本申请一个实施例中的自动割草机可以包括:信息采集装置以及第一控制模块。如图6以及图7所示,其中,图7中自动割草机可以包括第二控制模块,自动割草机中还可以包括:壳体35、移动机构37、切割机构221,移动机构、切割机构以及第二控制模块安装于所述壳体。该移动机构37可以是能转动地设置于壳体35上的车轮,该切割机构可以包括刀盘。自动割草机可以在第二控制模块的控制下,在边界限定的工作区域12内移动和/或工作。自动割草机中还可以包括用于存储数据或运行程序的存储模块、用于驱动移动机构、切割机构的动力模块以及用于收发数据的数据收发模块。
在本实施例中,自动割草机20中还可以包括:位置传感器,位置传感器还可以包括但不限于以下至少之一:惯性导航设备(IMU)、超声波传感器、雷达传感器、红外传感器、UWB传感器等,惯性导航设备可以包括陀螺仪、加速度计等。位置传感器能够与卫星导航系统配合,在卫星信号较差的情况下,针对卫星定位模块进行辅助导航。
在本申请的实施例中,自动割草机20中还可以包括:异常检测单元,异常检测单元还可以用于检测割草机在行走和工作过程中发生的异常情况。该异常可以包括:由于外界地理因素或外界人为所导致的异常情况。具体的,异常情况可以包括但不限于以下至少之一:遇到障碍物、抬起、受困、跌落等。
在本申请的实施例中,自动割草机20可以包括第二控制模块,第二控制模块可以接收来自信息采集装置的当前位置信息。割草机工作过程中,第二控制模块实时接收信息采集装置发送的当前位置信息,并基于当前位置信息控制割草机在工作区域内的移动和工作。
在本实施例中,如图7所示,第一控制模块中还可以包括:用于收发来自割草机中数据的数据收发模块、以及用于存储相关数据的存储模块。优选的,第一控制模块的运行速度可以大于或等于所述第二控制模块的运行速度, 从而,第一控制模块可以根据接收到的边界的位置信息快速的建立工作区域的地图,以加快割草机的工作效率。第一控制模块可以为上位机,第二控制模块可以为下位机。第一控制模块或第二控制模块中的操作系统可以相同也可以不同,第一控制模块或第二控制模块可以为采用例如Linux或RTOS等操作系统。在本申请的其他实施例中,第一控制模块的运行速度也可以小于第二控制模块,本申请对此不作限定。
在本申请的实施例中,所述自动割草机可以包括:建图模式以及工作模式。在建图模式下,第一控制模块根据接收到的边界的位置信息建立工作区域的地图。在工作模式下,第二控制模块根据其中存储的来自第一控制模块的地图以及接收到的来自信息采集装置的当前位置信息,控制割草机在工作区域内移动和/或工作。本实施例中,通过第一控制模块建立工作区域的地图,通过第二控制模块控制机器执行在工作区域内的移动和工作等涉及安全逻辑的工作过程,即,在具有复杂系统的第一控制模块中执行与安全逻辑无关且数据处理量较大的过程,在具有简单控制系统的第二控制模块中执行涉及安全逻辑的过程,从而仅需要对涉及安全逻辑的第二控制模块进行自检即可保证自动割草机中控制软件的安全,而无需对数据处理量较大需要执行复杂算法的复杂系统(第一控制模块)进行自检,降低自检复杂度,简化了具有定位功能的高性能工作系统自检过程。在保证自动割草机工作过程中安全的前提下,提高了割草机的灵敏度以及运行速度。
在本申请的一个实施例中,可以直接在第二控制模块中进行路径规划。具体的,第二控制模块在接收到来自第一控制模块的地图之后,当接收到路径规划请求时,可以直接在第二控制模块中规划割草机的行走路径,之后割草机根据来自第一控制模块的地图以及自身存储的行走路径以及割草机当前位置信息,控制移动机构带动割草机在工作区域内移动和/或工作。
在本申请的另一个实施例中,可以在第一控制模块中进行路径规划。具体的,第二控制模块在接收到来自第一控制模块的地图之后,可以向第一控制模块发送路径规划请求;第一控制模块响应于该路径规划请求,根据工作区域的地图,或,割草机的初始位置信息与目的位置信息规划行走路径,并将该行走路径发送至第二控制模块;之后第二控制模块可以根据地图、行走路径以及当前位置信息,控制移动机构带动割草机在工作区域内移动和/或工作。
如图8所示为自动割草机在第一控制模块中进行路径规划时的工作流程图,具体的,可以包括以下步骤:
S801:定位模块向第二控制模块发送边界的位置信息;
S802:第二控制模块接收边界的位置信息;
S803:第二控制模块将边界的位置信息发送至第一控制模块;
S804:第一控制模块根据边界的位置信息建立地图;
S805:第一控制模块将地图发送至第二控制模块;
S806:第二控制模块接收地图;
S807:第二控制模块向第一控制模块发送路径规划请求;
S808:第一控制模块根据地图规划行走路径;
S809:第一控制模块将规划后的行走路径发送至第二控制模块;
S810:第二控制模块接收规划后的行走路径;
S811:第二控制模块根据地图、行走路径以及当前位置信息控制割草机在边界限定的工作区域内移动和/或工作。
本实施例中,通过第一控制模块执行建立工作区域的地图以及规划行走路径等数据量较大的过程,通过第二控制模块控制机器执行在工作区域内的移动和工作等涉及安全逻辑的工作过程。即,在具有复杂系统的第一控制模块中执行与安全逻辑无关且数据处理量较大的过程,在具有简单系统的第二控制模块中执行涉及安全逻辑的过程,从而仅需要对涉及安全逻辑的第二控制模块进行自检即可保证自动割草机中控制软件的安全,而无需对数据处理量较大需要执行复杂算法的复杂系统进行自检,降低自检复杂度,简化了具有定位功能的高性能工作系统自检过程,达到了在保证自动割草机工作过程中安全性的前提下,提高割草机的灵敏度以及运行速度的技术效果。
在本申请的实施例中,当第一控制模块或第二控制模块完成建图修图以及路径规划之后,可以分别均在第一控制模块以及第二控制模块中保存地图以及行走路径,本申请对此不作限定。
在本申请的实施例中,在建图模式下,用户可以手持信息采集装置或控制载有信息采集装置的机器(例如:割草机)沿着边界移动,信息采集装置在移动的过程中获取边界的位置信息,即,信息采集装置被移动以获取所述边界的位置信息,从而第一控制模块可以根据接收到的边界位置信息建立工作区域的地图。
在本申请的一个实施例中,在信息采集装置被移动以获取边界的位置信息的过程中,割草机以及第一控制模块处于开机状态,信息采集装置可以在移动的过程中将边界的位置信息发送至第二控制模块,第二控制模块接收来自信息采集装置中边界的位置信息,并发送至第一控制模块。
在本申请的另一个实施例中,在信息采集装置被移动以获取边界的位置信息的过程中,第一控制模块处于开机状态,信息采集装置可以在移动的过程中将边界的位置信息发送至第一控制模块,第一控制模块可以直接接收来自信息采集装置的位置信息。
在本申请的另一个实施例中,信息采集装置中还可以包括:控制单元(例如:MCU微控制单元),信息采集装置可以在移动的过程中存储边界的位置信息。具体的,在信息采集装置被移动以获取边界的位置信息的过程中,信息采集装置处于开机状态,信息采集装置可以在移动的过程中存储边界的位置信息,在采集完边界的位置信息之后,将信息采集装置与第一控制模块信号连接,从而信息采集装置可以通过有线或无线的方式将位置信息发送至第一控制模块。在本申请的实施例中,可以通过在信息采集装置、第一控制模块或第二控制模块中安装无线传输单元或对接接口,以实现地图或边界位置信息等数据的发送接收。当然也可以采用其他数据传输方式,本申请对此不再赘述。
在本实施例中,第一控制模块在接收到边界的位置信息之后,可以根据接收到的边界的位置信息建立工作区域的地图。在建立完地图之后,可以将地图在第一控制模块中进行备份。进一步的,可以分别在第一控制模块和第二控制模块中备份地图,以便于在之后的工作过程中更新以及比对地图。
在一个具体的实施方式中,步骤S804中第一控制模块根据边界的位置信息建立地图时的工作流程图如图9所示。可以包括:
S8041:根据接收到的边界的位置信息建立地图;
S8042:根据接收到的用户信息确定地图;
S8043:保存用户确认后的地图。
具体的,如上述方法中所描述,自移动设备还可以包括:修图模式,在第一控制模块根据接收到的边界的位置信息建立工作区域的地图之后,可以控制机器进入修图模式。在修图模式下,第一控制模块可以接收来自用户的关于地图与工作区域是否相符的信息,根据接收到的是否相符的信息对已建 立的地图进行修正或确认,以得到工作区域的地图。具体的,机器按照建图过程中所建立的地图在工作区域中行走,在机器行走的过程中,用户观察机器行走的路径与实际边界14是否一致。若不一致则向第一控制模块发送不一致的信息,同时用户向机器发送正确的路径以控制机器沿实际边界14行走,机器可以根据行走过程中接收到的新的位置信息更改地图,完成修图之后,机器可以得到与实际边界14一致的更新后的地图。在之后进入工作模式工作时,机器可以按照准确的边界14行走,而不会发生出界等不安全的现象。在该实施例中,在第一控制模块中完成用户确认地图保存地图,并将该地图发送并保存至第二控制模块。之后,机器在工作过程中,可以将第二控制模块中保存的地图与第一控制模块中的地图进行对比,当对比结果一致时,控制机器工作;当对比结果不一致时,控制机器停止工作和/或报警,可以保证机器工作过程中地图的准确性,机器能够按照准确的地图行走和/或工作,从而机器不会出界,保证机器的安全。
在另一个具体的实施方式中,也可以直接在第二控制模块中执行确认地图的步骤。其中,步骤S804中第一控制模块仅需根据接收到的边界的位置信息建立地图,之后在步骤S806中,第二控制模块接收来自第一控制模块的地图,利用第二控制模块执行确认地图的工作。具体的,可以包括:
S8061:第二控制模块根据接收到的用户信息确定地图;
S8063:第二控制模块保存用户确认后的地图。
通过上述直接在第二控制模块中确认地图的方式,将涉及机器行走过程中安全的地图直接保存在第二控制模块,从而可以通过仅对第二控制模块进行自检,即可实现保证机器工作过程中安全的目的。
本申请的实施例中,在工作模式下,信息采集装置安装于割草机以获取当前位置信息,第二控制模块根据地图以及当前位置信息,控制移动机构带动机器在边界限定的工作区域内移动和/或工作。同时,在割草机移动的过程中,第二控制模块根据异常检测单元检测到的异常在地图中进行标记,以便于后期更新地图。具体的,异常检测单元可以用于检测但不限于以下至少之一的情形,可以包括:割草机是否发生被动位移、检测割草机当前所在位置的卫星信号质量、检测割草机是否遇到障碍物、检测割草机是否受困等情形。
具体的,本实施例中,在工作模式下,割草机可以根据第二控制模块中的行走路径,在所规划的行走路径中寻找与当前位置信息最近的位置点,并 移动至该位置点。在到达该位置点之后,第二控制模块可以根据地图以及当前位置信息沿着所规划的路径行走并工作。或者,当割草机回归充电时,割草机可以根据接收到的路径行走至充电站进行充电。
工作模式下,割草机在移动的过程中,第二控制模块可以在地图中标记根据异常检测单元检测到的异常,更新地图,并存储更新后的地图。之后,可以根据更新后的地图重新进行路径规划。本实施例中,割草机在工作过程中检测地图是否由于外界因素发生变化,并根据更新后的地图重新规划行走路径,从而可以保证割草机行走路径的准确性以及割草机的工作效率。
在本申请的一个实施例中,异常检测单元与第二控制模块信号相连。当异常检测单元检测到割草机在行走过程中遇到障碍物、抬起等异常情况时,第二控制模块可以在地图上对发生异常的位置进行标记。当地图上标记的位置满足预设条件时,或者,割草机在同一位置抬起、遇障等异常情况的次数或者概率满足预设要求时,可以在第二控制模块中的地图对该异常位置进行更新。其中,预设条件可以是地图中的标记可以形成障碍物轮廓、割草机在相同位置处多次抬起或多次遇障等。
在本实施例中,在割草机开机、开始工作之前、回归充电、工作一段时间、检测到地图更新或接收到用户关于路径规划的指令等场景下,第二控制模块可以发送路径规划请求。
当第二控制模块向第一控制模块发送路径规划请求时,其中,路径规划请求中包含第二控制模块中存储的更新后的地图,第一控制模块响应于该路径规划请求,根据工作区域的地图规划行走路径。在一个具体的实施方式中,步骤S808中第一控制模块根据地图进行路径规划的工作流程图如图10所示,可以包括以下步骤:
S8081:将所接收到的地图与存储的地图进行对比,若相同则执行步骤S8083,若不相同则执行步骤S8082;
S8082:将存储模块中存储的地图更新为接收到的地图;
S8083:根据存储的地图进行路径规划。
具体的,第一控制模块将接收到的地图与自身存储的地图进行对比。当第一控制模块接收到的地图与自身存储的地图相同时,第一控制模块向第二控制模块发送自身存储的行走路径。或者,也可以是第一控制模块根据自身存储的地图进行路径规划,并将规划后的行走路径发送至第二控制模块。当 第一控制模块接收到的地图与自身存储的地图不相同时,第一控制模块将存储模块中存储的地图更新为接收到的地图,并根据所述更新后的地图进行路径规划,将重新规划后的行走路径发送至所述第二控制模块。
在本申请的另一个实施例中,和上述实施例路径规划方式基本相同,不同之处在于,当第二控制模块向第一控制模块发送路径规划请求时,路径规划请求中未携带有更新后的地图。具体的,当第二控制模块向第一控制模块发送路径规划请求时,第一控制模块响应于该路径规划请求,向第二控制模块发送获取地图请求,从而第二控制模块向第一控制模块发送更新后的地图。之后,第一控制模块根据工作区域的地图规划行走路径。
在本申请的实施例中,当第二控制模块发送路径规划请求时,可以先检测割草机或第一控制模块的存储器中是否存储有行走路径,若检测到未存储行走路径时,可以采用直接根据地图规划行走路径的方式得到行走路径。
在本申请的另一个实施例中,当第二控制模块发送路径规划请求时,若检测到割草机或第一控制模块的存储器中存储有行走路径时,可以采用上述如图10所示的方式重新进行路径规划得到行走路径。
在本申请的另一个实施例中,和上述实施例路径规划方式基本相同,不同之处在于,异常检测单元与第一控制模块相连。具体的,异常检测单元与第一控制模块信号相连。当割草机检测到异常情况时,第一控制模块在地图中标记并更新地图。在割草机需要进行路径规划时,可以直接根据更新后的地图进行路径规划,而无需进行如图10所示的地图比对等过程。
当然,在进行上述地图更新以及行走路径更新之后,割草机在行走的过程中可以继续检测异常情况,并采用上述实施例中的方式更新地图以及行走路径,本申请对此不作限定。
在本实施例中,自移动设备通过相互通信的两个控制模块协同工作以控制其行走和工作,其中,仅有一个控制模块控制自移动设备执行安全保障操作,并对控制执行安全保障操作相关的硬件以及控制程序进行自检,且这两个控制模块中,仅该控制模块在自移动设备的工作过程中按照预定计划执行自检。本申请中,当自移动设备存在两个控制模块时,控制其中一个控制模块执行安全保障操作,从而仅需要对其中一个控制模块自检(周期自检)即可保证自移动设备中控制软件的安全,简化了自移动设备、尤其是高性能自移动设备的自检过程。采用本申请所提出的方法,在保证自移动设备工作过 程中安全的前提下,可以大大提高灵敏度以及运行速度。
对应于上述自移动设备,本申请另一方面还提供了一种自移动设备的工作方法,其中,自移动设备中包括:第一控制模块以及第二控制模块,该方法可以包括:
所述第二控制模块控制所述自移动设备执行安全保障操作,并对控制运行所述安全保障操作相关的硬件以及控制程序进行自检,其中,所述第一控制模块和所述第二控制模块中,仅所述第二控制模块在所述自移动设备工作过程中按照预定计划执行自检。
本实施例中,自移动设备通过相互通信的两个控制模块协同工作以控制其行走和工作,其中,仅有一个控制模块控制自移动设备执行安全保障操作,并对控制执行安全保障操作相关的硬件以及控制程序进行自检,且这两个控制模块中,仅该控制模块在自移动设备的工作过程中按照预定计划执行自检。本申请中,当自移动设备存在两个控制模块时,控制其中一个控制模块执行安全保障操作,从而仅需要对其中一个控制模块自检(周期自检)即可保证自移动设备中控制软件的安全,简化了自移动设备、尤其是高性能自移动设备的自检过程。采用本申请所提出的方法,在保证自移动设备工作过程中安全的前提下,可以大大提高灵敏度以及运行速度。
对于具有较高数据处理能力、相对先进处理器、采用较复杂操作系统、以及具有较大容量存储器的设备而言,由于不易采用插入自检代码,以读取其中底层代码的传统方式实现开机(启动)自检或周期自检,因而对于具有上述特性的设备而言,无法保证其在工作过程中的安全。例如,如图11所示的工作系统,由于该系统的第一控制模块中采用Linux操作系统、且存储模块容量为GB级别,因此无法采用上述传统方式保证其安全。又例如,如图5所示的以卫星定位模块作为示意的信息采集装置,由于其中具有定位处理器以及大容量存储器,因此也无法采用上述传统方式保证其安全。
基于此,本申请中提供了一种自移动设备,可以包括:信息采集装置,其中,信息采集装置可以包括:卫星定位模块和/或视觉模块。割草机系统或者自动割草机中还可以包括:控制装置,控制装置可以控制割草机在边界限定的工作区域中移动和工作。割草机或割草机系统中还可以包括:存储模块, 存储模块配置为在其中的多个物理地址中存储有与割草机相关的同一运行参数和/或同一运行程序。其中,运行参数可以通过信息采集装置获取,也可以是通过自动割草机中的异常检测单元等检测得到。具体的,运行参数可以是当前位置信息和/或地图、路径规划数据,或,通过安装于割草机上的各类传感器检测到的数据,例如:温度数据、倾斜角度数据或加速度数据等。运行程序可以是机器在运行过程中加载至存储模块中的任一程序或者也可以是程序员编写在机器中的程序。存储模块中还可以用于存储数据比对程序,控制装置执行该数据比对程序时,可以从存储模块的多个物理地址中读取其中存储的数据,若读取到的数据一致或读取到的数据处理后的结果一致,则确定存储模块无故障;若读取到的数据不一致或读取到的数据处理后的结果不一致,则确定存储模块出现故障。在割草机工作过程中,通过存储模块中存储的运行参数和/或运行程序确定割草机是否出现故障,间接实现割草机的自检,和传统方式相比过程简单易实现,达到了在保证割草系统工作过程中安全性的前提下,提高割草机灵敏度以及运行速度的技术效果。
在本申请的一个实施例中,控制装置可以包括安装于割草机中的一个控制模块。在本申请的另一个实施例中,控制装置可以包括前述实施例中的第一控制模块以及第二控制模块,其可以均安装在割草机中;也可以是一个安装在割草机中,另一个安装在信息采集装置中。当然也可以是两个以上的控制模块,本申请对此不作限定。
在本申请的一个实施例中,以如图11所示的自动割草机为例对本申请的技术方案进行说明。和图7所示实施例中的自动割草机基本相同,控制装置可以包括第一控制模块以及第二控制模块,不同之处在于,图11所示的自动割草机采用的是通过第一控制模块单独控制割草机的移动和工作,或者,通过第一控制模块以及第二控制模块共同控制割草机在地图限定的工作区域中移动和工作,即,本实施例中,具有复杂系统的第一控制模块涉及与割草机安全相关的工作。由于该系统的第一控制模块中采用Linux操作系统、且存储模块容量为GB级别,因此无法采用上述传统方式保证其安全。可以采用下述实施例中的方式。值得说明的是,下文所述技术方案也可以用于例如图1或图7所示的割草系统中,本申请对此不作限定。
在本实施例中,数据比对程序被控制装置执行时可以实现,从多个物理地址中读取其中存储的数据,若读取到的数据一致或读取到的数据处理后的 结果一致,则确定存储模块无故障;若读取到的数据不一致或读取到的数据处理后的结果不一致,则确定存储模块出现故障。即,通过在存储模块中多次备份与割草机相关的运行参数和/或运行程序,将得到的参数进行对比,并根据对比结果来检测割草机中的Flash或RAM等存储器等硬件是否正常。
下面分别从仅通过运行参数确定系统故障的方式以及运行参数和运行程序相结合确定系统故障的方式分别来说明。
在本申请的一个实施例中,可以将同一个运行参数存储至割草机的多个物理地址(至少两个物理地址)中,从而,在工作过程中,割草机通过从多个物理地址中读取任意多个运行参数,并将读取的数据进行对比,根据对比结果可以确定自动割草机中是否出现故障。即,通过读取位于不同物理地址中的同一个数据,根据数据比对结果确定存储器是否出现故障。具体的,如图12所示,可以包括以下步骤,其中,运行参数以地图数据为例,多个物理地址以两个物理地址为例、。
S1201:将同一地图数据写入第一物理地址以及第二物理地址对应的存储区块中;
S1202:分别从第一物理地址以及第二物理地址中读取数据;
S1203:对比读取到的数据是否一致,若一致则执行S1204,若不相同则执行S1205;
S1204:控制机器继续工作;
S1205:控制机器停机。
具体的,机器在建立地图之后,将同一地图数据分别写入至第一/第二物理地址中,在机器之后的工作过程中实时读取第一物理地址、第二物理地址中所存储的数据,或者,也可以在机器需要使用地图时分别从两个物理地址中读取所存储的数据,对比读取到的数据是否一致,若一致则存储器无故障,若不一致则存储器出现故障。在检测到存储器出现故障时,可以启动安全保护措施,例如:控制机器报警停机,向用户发送机器出现故障的通知消息。在检测到存储器无故障时,可以控制机器继续工作。
在本申请的另一个实施例中,可以将相同的运行参数分别存储至存储模块的至少两个物理地址中,从而在工作过程中,割草机可以从至少两个物理地址中分别读取任意两次保存的运行参数,并将读取到的两个数据输入同一运行程序,对比运行程序多次输出的运算结果,根据对比结果确定自动割草 机中是否出现故障。具体的,如图13所示,可以包括以下步骤,其中,如下运行参数以地图数据为例,运行程序以出界判断程序为例。
S1301:将当前位置信息写入第一物理地址以及第二物理地址;
S1302:分别从第一物理地址以及第二物理地址中读取数据;
S1303:将来自两个物理地址中的数据输入出界判断程序中并运算;
S1304:对比判断出界的运算结果是否一致,若一致则执行S1305,若不相同则执行S1306;
S1305:控制机器继续工作;
S1306:控制机器停机。
具体的,机器在建立地图之后,读取位于两个物理地址中的同一当前位置信息,并输入至同一个出界判断程序中,根据读取到的同一当前位置信息以及地图输入至出界判断程序时的输出结果,确定存储器是否出现故障。在检测到存储器出现故障时,可以启动安全保护措施,例如:控制机器报警、停机、重新启动,向用户发送机器出现故障的通知消息。在检测到存储器无故障时,可以控制机器继续工作。
在本申请的另一个实施例中,可以将相同的运行程序分别存储至存储模块的多个物理地址中,从而在工作过程中,割草机可以从多个物理地址中分别读取任意两次保存的运行程序,并将读取到的运行参数分别输入至任意两个存储有同一运行程序的物理地址中,对比运行程序多次输出的运算结果,根据对比结果确定自动割草机中是否出现故障。具体的,如图14所示,可以包括以下步骤,其中,如下运行参数以地图数据为例,运行程序以出界判断程序为例。
S1401:在第一物理地址以及第二物理地址中备份同一出界判断程序;
S1402:从存储模块中读取地图数据以及当前位置信息;
S1403:将地图数据以及当前位置信息分别输入至第一物理地址以及第二物理地址中并运算;
S1404:对比判断出界的运算结果是否一致,若一致则执行S1405,若不相同则执行S1406;
S1405:控制机器继续工作;
S1406:控制机器停机。
具体的,在机器出厂之前将相同的出界判断程序烧录到至少两个物理地 址中,或者,在机器开机后的任一预设时间,至少两个物理地址中备份同一个出界判断程序,在工作过程中从存储模块中读取当前位置信息以及地图,并作为输入数据分别输入至两个物理地址中,两个物理地址中的程序分别对输入数据进行处理得到运算结果,对比所得到的运算结果是否一致,若一致则存储器无故障,若不一致则出现故障。在检测到存储器出现故障时,可以启动安全保护措施,例如:控制机器报警、停机、重新启动,向用户发送机器出现故障的通知消息。在检测到存储器无故障时,可以控制机器继续工作。
在本申请的一个实施例中,可以通过控制割草机定期在预定时间内关机重启,通过定期重启时的定期启动自检来实现周期自检。在一个实施例中,可以在割草机回归充电站时对机器进行重启,通过重启后对机器进行启动自检以实现周期自检。在一个实施例中,也可以设定自动割草机在2小时等安全时间范围内关机重启以实现周期自检,本申请对此不作限定。
在本申请的实施例中,提出了多种实现检测割草机工作过程中安全的方法,通过上述方法可以实现检测具有复杂系统的割草机中Flash或RAM存储器等硬件是否正常。上述自检方式简单易实现,可以保证割草机的安全性。
在本申请的另一个实施例中,信息采集装置可以包括:采集模块、控制模块以及存储模块,采集模块配置为在控制模块的控制下采集包括自移动设备在内的目标物体的当前位置信息,将当前位置信息存储至存储模块,并将当前位置信息输出至控制装置。即,信息采集装置中存在独立的控制模块以及大容量存储模块。结合图5所示的卫星定位模块为例进行说明,此时的采集模块可以是天线以及RF前端等涉及数据采集功能的元件(当信息采集装置为视觉模块时,采集模块可以是其中采集图像的摄像头等),由于信息采集装置中具有控制模块(例如:定位处理器)以及存储模块(例如:大容量存储器),因此无法采用上述传统方式保证其安全。由于不易采用插入自检代码,以读取其中底层代码的传统方式实现开机(启动)自检或周期自检,且一般该模块直接通过供应商采购得到,因而对于具有上述特性的设备而言,无法保证其在工作过程中的安全。具体的,可以采用下述方式保证其安全。
在本实施例中,自移动设备可以根据采集模块采集到的当前位置信息是否发生突变,确定信息采集装置是否出现故障。具体的,也可以是控制装置或信息采集装置等自移动设备中的其他器件根据当前位置信息是否发生突 变,确定信息采集装置是否出现故障。即,利用信息采集装置输出的当前位置信息判断信息采集装置是否正常,从而保证机器工作过程中信息采集装置的安全。下面可以通过具体实施例说明。
在本申请的一个实施例中,自移动设备中还可以包括:异常检测单元,该异常检测单元可以用于检测割草机是否发生被动位移和/或割草机当前所在位置的信号质量(该信号质量可以包括:卫星定位信号质量以及视觉图像信号质量),也可以说是检测割草机在行走和工作过程中发生的异常情况,根据割草机的被动位移情况、当前所在位置的信号质量以及当前位置信息是否发生突变,确定信息采集装置是否出现故障。异常检测单元可以包括但不限于以下至少之一:惯性导航设备(IMU)、超声波传感器、雷达传感器、红外传感器、UWB传感器、抬起检测传感器。例如,可以通过惯性导航设备判断割草机是否发生移动。
具体的,可以通过图15所示的流程图来说明判断信息采集装置是否出现故障,可以包括以下步骤:
S1501:读取信息采集装置中的定位数据;
S1502:判断机器是否被移动;如果被移动,则执行S1507;如果没有被移动,则执行S1503;
S1503:信号质量是否大于预设阈值;若大于预设阈值,则执行S1504;若小于或等于预设阈值,则执行S1505;
S1504:判断定位数据是否发生突变;若发生突变则执行S1507;若未发生突变则执行S1506;
S1505:判断定位数据是否未发生突变;若未发生突变则执行S1507;若发生突变则执行S1506;
S1506:控制机器继续工作;
S1507:控制机器停机。
具体的,在机器工作过程中,检测机器有没有发生抬起等被动的位移变化,若没有则判断机器当前定位质量。当定位质量差时,再检测定位数据是否发生跳变,若无跳变,则控制机器停机;当定位质量高时,若检测到定位数据发生跳变则控制机器停机(报警,或向用户发送机器出现故障的通知消息),若检测到定位数据未发生跳变则控制机器继续工作。
具体的,在上述实施例中,判断机器是否被移动时,如抬起等情况,可 以通过惯性导航装置(IMU)检测机器在行走过程中检测到的运动参数是否是连续变化的,若为连续变化的参数则表明机器没有被移动,如果为采样频率、安装了信息采集装置的割草机行走速度或误差允许范围内的非连续变化,则表明机器被移动。
具体的,在上述实施例中,以信号质量为卫星信号质量为例,当判断卫星信号质量时,可以通过判断接收到卫星的数量是否大于预设数值和/或判断卫星定位信号的信噪比是否大于预设信噪比值。一般情况下,接收到卫星的数量大于3则说明卫星信号质量好。
本公开实施例中,根据卫星定位的原理:测量点的位置生成方式包括通过信号传播时间差乘以信号的传播速度,在一个示例中,可以根据卫星的数量在预设范围以内进行判断卫星信号的强弱,例如,可以设置为若检测到卫星数量大于3颗,则对应为卫星定位信号的质量在预设阈值范围以内,通过方程式,得到测量点的三维位置数据和时间信息。在另一个示例中,所述卫星定位信号还可以包括RTK信号,将卫星定位技术与RTK技术相结合,包括:在基准站上安置另外一台卫星导航定位接收机,连续接收卫星定位信号,并将基准站接收到的卫星定位信号通过无线电传输设备实时地发送给测量点处的无线接收设备,利用测量点接收到的卫星定位信号以及利用无线接收设备接收到的表征基准站位置信息的卫星定位信号数据,根据相对定位的原理,实时结算处测量点位置的三维坐标。可以看出,接收机接收到的卫星定位信号以及测量点处的无线接收设备接收到的基准站卫星定位信号数据,对定位结果的影响也比较大,因此可以根据RTK信号的信噪比是否在预设阈值范围以内判断卫星定位信号的强弱。在这里,所述RTK信号包括接收机接收到的卫星定位信号以及无线接收设备接收到的基准站卫星定位信号。需要说明的是,所述判断所述卫星定位信号的质量在预设阈值范围以内的设置方式不限于上述举例,所属领域技术人员在本申请技术精髓的启示下,还可能做出其它变更,但只要其实现的功能和效果与本申请相同或相似,均应涵盖于本申请保护范围内。
在本申请的实施例中,可以采用以下方式判断定位数据是否发生突变。
具体的,在本申请的一个实施例中,判断定位数据是否未发生突变时,可以以信息采集装置(如:RTK)等的定位精度、定位数据的采样频率、安装了信息采集装置的割草机行走速度为依据确定预设距离阈值,当读取到采集 到的相邻定位数据之差超过该预设距离阈值时,可以确定定位数据发生突变;反之则定位数据未发生突变。在其他实施例中,该预设距离阈值也可以是厂商根据所选用的信息采集装置预先在程序中设定好的或写入产品使用手册中的,本申请对此不作限定。
在本申请的另一个实施例中,也可以结合位置传感器来判断定位数据是否未发生突变。例如:位置传感器可以包括惯性导航设备IMU以及里程计odo。首先,可以判断位置传感器是否出现故障。可以将各个位置点的IMU与odo数据融合,判断当前位置点的融合数据与前一个位置点的融合数据是否在预设距离阈值范围内,该预设距离阈值范围由位置传感器(如:IMU以及odo)等的定位精度、融合算法的精度、各个位置点的采样频率、割草机行走速度为依据确定的。在多个位置传感器无故障的情况下,可以结合信息采集装置以及位置传感器确定信息采集装置是否出现故障。具体的,可以比较在误差允许范围内,相邻位置的RTK定位数据之差与相邻位置的位置传感器数据之差是否大致相同。可以根据RTK的定位精度、位置传感器的定位精度以及融合算法的精度来确定该误差范围。
在本申请的实施例中,上述安全检测方式简单易实现,可以保证割草机系统中信息采集装置的安全性。
在割草机工作过程中,通过存储模块中存储的运行参数和/或运行程序确定自动割草系统是否出现故障,间接实现割草机的自检,和传统方式相比过程简单易实现,达到了在保证割草系统工作过程中安全性的前提下,提高割草机灵敏度以及运行速度的技术效果。
在本实施例中,自移动设备可以根据采集模块采集到的当前位置信息是否发生突变,确定信息采集装置是否出现故障。具体的,也可以是控制装置或信息采集装置等自移动设备中的其他器件根据当前位置信息是否发生突变,确定信息采集装置是否出现故障。即,利用信息采集装置输出的当前位置信息判断信息采集装置是否正常,从而保证机器工作过程中信息采集装置的安全。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的和区别类似的对象,两者之间并不存在先后顺序,也不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种自移动设备,其特征在于,包括:信息采集装置、控制装置,
    所述信息采集装置包括:采集模块、控制模块以及存储模块,所述采集模块配置为在所述控制模块的控制下采集包括所述自移动设备在内的目标物体的当前位置信息,将所述当前位置信息存储至所述存储模块,并将所述当前位置信息输出至所述控制装置;
    所述自移动设备根据所述当前位置信息是否发生突变,确定所述信息采集装置是否出现故障。
  2. 如权利要求1所述的自移动设备,其特征在于,所述自移动设备中还包括:异常检测单元,所述异常检测单元用于检测所述自移动设备是否发生被动位移和/或所述自移动设备当前所在位置的信号质量,在所述自移动设备未被移动,且,所述自移动设备当前所在位置的信号质量大于预设阈值的情况下,判断所述当前位置信息是否发生突变,若所述当前位置信息发生突变,确定所述信息采集装置出现故障;若所述当前位置信息未发生突变,确定所述信息采集装置未出现故障。
  3. 如权利要求2所述的自移动设备,其特征在于,所述异常检测单元包括:抬起检测传感器。
  4. 如权利要求1所述的自移动设备,其特征在于,在所述自移动设备未被移动,且,所述自移动设备当前所在位置的信号质量小于或等于预设阈值的情况下,判断所述当前位置信息是否发生突变,若所述当前位置信息未发生突变,确定所述信息采集装置出现故障;若所述当前位置信息发生突变,确定所述信息采集装置未出现故障。
  5. 如权利要求1所述的自移动设备,其特征在于,所述自移动设备还包括:位置传感器,所述位置传感器用于检测所述自移动设备的当前位置信息,
    在所述位置传感器检测到的当前位置信息未发生突变的情况下,比较所述信息采集装置采集到的相邻位置信息之差与所述位置传感器采集到的相邻位置信息之差是否一致,若一致,确定所述自移动设备未出现故障。
  6. 如权利要求5所述的自移动设备,其特征在于,所述位置传感器包括以下至少之一:惯性导航设备、超声波传感器、雷达传感器、UWB传感器。
  7. 如权利要求1所述的自移动设备,其特征在于,所述信息采集装置包括:卫星定位模块和/或视觉模块。
  8. 如权利要求1所述的自移动设备,其特征在于,当确定所述信息采集装置出现故障之后,所述控制装置控制所述自移动设备执行以下操作,包括:停机、报警或重新启动。
  9. 如权利要求1所述的自移动设备,其特征在于,所述控制装置根据所述当前位置信息是否发生突变,确定所述信息采集装置是否出现故障。
  10. 一种自移动设备的工作方法,其特征在于,所述方法包括:
    采集包括所述自移动设备在内的目标物体的当前位置信息;
    所述自移动设备根据所述当前位置信息是否发生突变,确定所述自移动设备是否出现故障。
PCT/CN2021/102665 2020-06-28 2021-06-28 自移动设备及其工作方法 WO2022001930A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010598045.9A CN113848873A (zh) 2020-06-28 2020-06-28 自移动设备及其工作方法
CN202010598045.9 2020-06-28

Publications (1)

Publication Number Publication Date
WO2022001930A1 true WO2022001930A1 (zh) 2022-01-06

Family

ID=78972160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102665 WO2022001930A1 (zh) 2020-06-28 2021-06-28 自移动设备及其工作方法

Country Status (2)

Country Link
CN (2) CN116400694A (zh)
WO (1) WO2022001930A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105404297A (zh) * 2015-11-13 2016-03-16 深圳市步科电气有限公司 可实现精确停车定位的agv控制系统和agv
EP2997808A1 (en) * 2014-09-19 2016-03-23 Fabrizio Bernini A system for an optimised cutting of grass
CN105980948A (zh) * 2014-02-06 2016-09-28 洋马株式会社 自主行驶作业车辆的行驶路径的设定方法
CN107291077A (zh) * 2016-04-12 2017-10-24 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN109001789A (zh) * 2018-06-05 2018-12-14 西安交通大学 一种基于互相关熵配准的无人车定位融合方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304876A (ja) * 2000-04-25 2001-10-31 Nec Corp 車載カメラによる画像記録・再生方式
NO320692B1 (no) * 2002-12-30 2006-01-16 Stiftelsen Det Norske Veritas Fremgangsmate og system for testing av datamaskinbaserte styre- og overvakningssystemer i et fartoy via en kommunikasjonskanal
CN108604098B (zh) * 2016-11-11 2019-12-13 苏州宝时得电动工具有限公司 自动工作系统及其控制方法
CN108957496A (zh) * 2018-04-18 2018-12-07 广州市中海达测绘仪器有限公司 Uav抗gnss失效定位定向接收机及其应用方法
DE102018212733A1 (de) * 2018-07-31 2020-02-06 Robert Bosch Gmbh Erkennung einer nachlassenden Leistungsfähigkeit eines Sensors
CN111200780B (zh) * 2018-10-30 2021-08-27 中国电信股份有限公司 定位数据的异常检测方法、装置和计算机可读存储介质
CN110879596A (zh) * 2019-12-05 2020-03-13 中国北方车辆研究所 低成本自动割草机自主作业系统及其自主作业方法
CN111170103B (zh) * 2019-12-27 2021-07-20 猫岐智能科技(上海)有限公司 设备故障识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105980948A (zh) * 2014-02-06 2016-09-28 洋马株式会社 自主行驶作业车辆的行驶路径的设定方法
EP2997808A1 (en) * 2014-09-19 2016-03-23 Fabrizio Bernini A system for an optimised cutting of grass
CN105404297A (zh) * 2015-11-13 2016-03-16 深圳市步科电气有限公司 可实现精确停车定位的agv控制系统和agv
CN107291077A (zh) * 2016-04-12 2017-10-24 苏州宝时得电动工具有限公司 自动工作系统,自移动设备及其控制方法
CN109001789A (zh) * 2018-06-05 2018-12-14 西安交通大学 一种基于互相关熵配准的无人车定位融合方法

Also Published As

Publication number Publication date
CN116400694A (zh) 2023-07-07
CN113848873A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN108604098B (zh) 自动工作系统及其控制方法
US20230225576A1 (en) Obstacle avoidance method and apparatus for self-walking robot, robot, and storage medium
CN102768532B (zh) 自动工作系统、自动行走设备及其转向方法
WO2021058032A1 (zh) 地图建立方法、自移动设备、自动工作系统
US20230200613A1 (en) Obstacle avoidance method for robot, obstacle avoidance device for robot, and non-transitory computer readable storage medium
CN110051289B (zh) 扫地机器人语音控制方法、装置、机器人和介质
US20220304533A1 (en) Cleaning robot and control method therefor
CN112739505A (zh) 自主移动机器人对机器人工作区域的勘察
US11249482B2 (en) Mapping for autonomous mobile robots
EP3444565A1 (en) Automatic movement device for automatic working system, and control method therefor
US20110046784A1 (en) Asymmetric stereo vision system
KR20160021991A (ko) 청소 로봇, 청소 로봇의 제어 장치, 제어 시스템, 및 제어 방법
US20240028044A1 (en) Ranging method and apparatus, robot, and storage medium
CN117519126A (zh) 自移动设备的控制方法
WO2021058030A1 (zh) 自移动设备及其控制方法、自动工作系统
WO2022001929A1 (zh) 自移动设备及其工作方法
EP4075226A1 (en) Self-moving device and working method therefor
WO2022001930A1 (zh) 自移动设备及其工作方法
CN113064417B (zh) 自移动设备及其工作方法
CN210931181U (zh) 一种清洁机器人
WO2021023227A1 (zh) 一种自动工作系统
CN115344034A (zh) 一种智能清洁机器人路径规划方法及智能清洁装置
CN113625700B (zh) 自行走机器人控制方法、装置、自行走机器人和存储介质
WO2023274339A1 (zh) 自动工作系统
WO2021031405A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机设备和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21832072

Country of ref document: EP

Kind code of ref document: A1