WO2022001894A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2022001894A1
WO2022001894A1 PCT/CN2021/102527 CN2021102527W WO2022001894A1 WO 2022001894 A1 WO2022001894 A1 WO 2022001894A1 CN 2021102527 W CN2021102527 W CN 2021102527W WO 2022001894 A1 WO2022001894 A1 WO 2022001894A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal device
control plane
upf
data packet
Prior art date
Application number
PCT/CN2021/102527
Other languages
English (en)
French (fr)
Inventor
王亚鑫
李岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022001894A1 publication Critical patent/WO2022001894A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release

Definitions

  • the present application relates to the field of communication, and in particular, to a communication method and apparatus.
  • a radio access network radio access network, RAN
  • centralized processing node centralized unit, CU
  • distributed processing nodes distributed unit, DU
  • the base station network can be adjusted more flexibly.
  • the CU may also be referred to as gNB-CU
  • the DU may also be referred to as gNB-DU.
  • the CU can be divided into a control plane (CU control plane, CU-CP) of the centralized processing node and a user plane (CU user plane, CU-UP) of the centralized processing node.
  • CU control plane, CU-CP control plane
  • CU user plane CU user plane
  • CU-UP user plane
  • the CU-CP may also be referred to as gNB-CU-CP
  • the CU-UP may also be referred to as gNB-CU-UP.
  • multi-access edge computing (MEC) and the sinking user plane function (UPF) network element (the sinking UPF network element (referred to as the UPF) refers to the widespread deployment of UPF) deployed in the same physical equipment room as gNB-CU, and the joint deployment of gNB-CU, UPF and MEC may become mainstream.
  • MEC multi-access edge computing
  • UPF sinking user plane function
  • the gNB-CU has been deployed in the same physical equipment room as the sinking UPF, due to factors such as reducing the number of data plane transmission hops, saving costs, and terminating the data plane security nodes in the core network, finally It is possible to combine UPF and gNB-CU-UP into one network element.
  • the embodiments of the present application provide a communication method and apparatus, which are applied to a scenario where a UPF and a CU-UP are co-located, and can avoid losing downlink data when a terminal device communicates with the network side.
  • an embodiment of the present application provides a communication method, which is applied to a DU in a centralized unit CU-distributed unit DU architecture.
  • the method includes: the DU receives a first control plane from the centralized unit-control plane CU-CP information, the first control plane information is used to instruct to restore the RRC connection of the terminal equipment; if the DU is the last DU connected before the terminal equipment enters the inactive state, the DU sends the information to the centralized unit-user plane function network element (centralized unit).
  • the DU sends the first indication information, and the first indication information enables the data packet corresponding to the terminal device to be sent to the DU; if the DU is not the last DU connected before the terminal device enters the inactive state, the DU sends the The CU-UPF sends second indication information, and the second indication information enables the establishment of a downlink connection between the CU-UPF and the DU, and the data packet of the terminal device is sent to the DU.
  • the DU may send the first indication information to the CU-UPF, or the DU may send the second indication information to the CU-UPF, that is, the first indication information or the second indication information is sent alternatively.
  • the DU sends the first indication information to the CU-UPF, enabling the CU-UPF to send the data packet corresponding to the terminal device to the CU-UPF.
  • the DU sends the second indication information to the CU-UPF, enables the CU-UPF to establish a downlink connection with the DU, and sends the data packet of the terminal device to the CU-UPF.
  • the DU After the DU obtains the data packet corresponding to the terminal device from the CU-UPF, it can send the data packet to the terminal device through the air interface resource to prevent the terminal device from losing its downlink data in the inactive state.
  • the method further includes: the DU receives an RRC recovery request from the terminal device; - The CP sends an initial uplink radio resource control (radio resource control, RRC) message, and the initial uplink RRC message is used to request to restore the RRC connection of the terminal device. That is to say, after receiving the RRC recovery request from the terminal device, the DU sends an initial uplink RRC message to the CU-CP.
  • the DU may be the last DU connected before the terminal device enters the inactive state (ie, no DU handover has occurred), or could be other DUs (ie DU handover occurred).
  • the method before the distributed unit DU receives the first control plane information from the centralized unit-control plane CU-CP, the method further includes: the DU receives the first downlink of the terminal device from the CU-UPF The data packet, the header of the first downlink data packet includes the first quality of service flow identity (QoS (quality of service) flow identity, QFI) information, and the first QFI information is used to identify the quality of service (quality of service) of the first downlink data packet.
  • QoS quality of service
  • QFI quality of service flow identity
  • the DU when the terminal device is in an inactive state, the DU sends user plane information to the CU-UPF, and the user plane information is used to instruct the CU-UPF to stop sending the second downlink data packet corresponding to the terminal device, and the second downlink
  • the header of the data packet includes the first QFI information, and the user plane information is further used to instruct the CU-UPF to buffer the first downlink data packet and the second downlink data packet.
  • the DU may notify the CU-UPF through user plane information to stop delivering and buffer the corresponding downlink data packet. Since the DU does not have the function of buffering data, by instructing the CU-UPF to stop sending and buffering the corresponding downlink data packets, data packet loss can be avoided, and the CU-UPF can prevent the CU-UPF from sending useless data to the DU to occupy communication resources.
  • the method further includes: the DU sends second control plane information to the CU-CP, where the second control plane information includes first QFI information and a first paging policy indicator (paging policy indicator, PPI) information, the first QFI information and the first PPI information are used to determine the paging policy of the terminal device.
  • the second control plane information includes first QFI information and a first paging policy indicator (paging policy indicator, PPI) information, the first QFI information and the first PPI information are used to determine the paging policy of the terminal device.
  • PPI paging policy indicator
  • the method further includes: the DU receives a third downlink data packet corresponding to the terminal device from the CU-UPF, the header of the third downlink data packet includes the second QFI information and the second PPI information, and the second downlink data packet includes the second QFI information and the second PPI information.
  • the QFI information is different from the first QFI information; the DU sends the third control plane information to the CU-CP, where the third control plane information includes the second QFI information and the second PPI information, and the second QFI information and the second PPI information are used for the terminal equipment
  • the paging strategy is determined.
  • the CU-CP may re-determine the paging strategy according to the second PPI information in the third control plane information, if the priority of the Paging strategy determined according to the first PPI information is lower than the priority of the Paging strategy determined according to the second PPI information.
  • priority the CU-CP can update the paging policy of the terminal device; if the priority of the paging policy determined according to the first PPI information is not lower than (higher or equal to) the priority of the paging policy determined according to the second PPI information, Then the CU-CP can still perform Paging on the terminal device according to the Paging policy determined by the first PPI information.
  • the method further includes: the DU receives fourth control plane information from the CU-CP, where the fourth control plane information is used to instruct the DU to release air interface resources of the terminal device and reserve the DU and the centralized unit - The connection of the user plane function network element CU-UPF and the context of the terminal equipment; DU releases the air interface resources of the terminal equipment.
  • the CU-CP when the CU-CP triggers the UE to enter the inactive state, the CU-CP can instruct the DU to release the relevant air interface resources, and retain the user plane connection with the co-located network element CU-UPF and the relevant UE context,
  • the CU-UPF does not perceive the above process, and can be distinguished from the process in which the UPF (equivalent to CU-UPF) detects downlink data and initiates paging under RRC Idle, thus solving the problem that the existing technology cannot support the RRC Inactive technology.
  • the method before the DU receives the fourth control plane information from the CU-CP, the method further includes: the DU receives fifth control plane information from the CU-CP, where the fifth control plane information is used to indicate the terminal The condition for the device to enter the inactive state; the DU sends the sixth control plane information to the CU-CP, and the sixth control plane information is used to indicate whether the terminal device meets the conditions for entering the inactive state.
  • an embodiment of the present application provides a communication method, which is applied to a centralized unit-control plane CU-CP in a centralized unit CU-distributed unit DU architecture, the method includes: the CU-CP sends a distributed unit DU Send the first control plane information, the first control plane information is used to restore the radio resource control RRC connection of the terminal equipment; if the DU is the last DU connected before the terminal equipment enters the inactive state, the first control plane information includes the centralized unit- The uplink port identifier of the user plane function network element CU-UPF; if the DU is not the last DU connected before the terminal device enters the inactive state, the first control plane information includes the uplink port identifier of the CU-UPF, and the last DU serving the terminal device.
  • Downlink port information of a DU the method includes: the CU-CP sends a distributed unit DU Send the first control plane information, the first control plane information is used to restore the radio resource control RRC connection of the terminal equipment;
  • the CU-CP may send the first control plane information to the DU to restore the RRC connection of the terminal device. Moreover, if the DU handover does not occur, the DU can obtain the data packet corresponding to the terminal device from the CU-UPF according to the uplink port identifier of the CU-UPF. If a DU switch occurs, the DU can obtain the data packet corresponding to the terminal device from the CU-UPF according to the uplink port identifier of the CU-UPF and the downlink port information of the last DU serving the terminal device (when the terminal device is in the inactive period under the core network packets sent). Then, the DU can send the data packet to the terminal device through the air interface resource, so as to prevent the terminal device from losing its downlink data in the inactive state.
  • the method further includes: the CU-CP sends the terminal device context to the last DU connected before the terminal device enters the inactive state Release message, the terminal device context release message is used to instruct the last DU connected before the terminal device enters the inactive state to release the connection with the centralized unit-user plane function network element CU-UPF and the context of the terminal device.
  • the method further includes: the CU-CP receiving second control plane information from the DU, where the second control plane information includes first QFI information and first PPI information, and the first QFI information and the first PPI information The information is used by the CU-CP to determine the paging policy for the terminal device.
  • the method further includes: the CU-CP receiving third control plane information from the DU, where the third control plane information includes second QFI information and second PPI information, and the second QFI information and second PPI information The information is used by the CU-CP to determine a paging policy for the terminal device, the second QFI information is different from the first QFI information, and the second PPI information is different from the first PPI information.
  • the method further includes: the CU-CP sends fourth control plane information to the DU, where the fourth control plane information is used to instruct the DU to release the air interface resources of the terminal device and reserve the DU and the core network user plane The connection of the network element and the context of the terminal device.
  • the method further includes: the CU-CP sends fifth control plane information to the DU, where the fifth control plane information is used to instruct the terminal device to enter Conditions of the inactive state; the CU-CP receives sixth control plane information from the DU, and the sixth control plane information is used to indicate whether the terminal equipment satisfies the conditions for entering the inactive state.
  • an embodiment of the present application provides a communication method, including: a centralized unit-user plane function network element CU-UPF receives first indication information from a distributed unit DU, where the DU is a connection before a terminal device enters an inactive state The last DU of the DU, the first indication information enables the data packet corresponding to the terminal device to be sent to the DU; or, the CU-UPF receives the second indication information from the DU, and the DU is not the last DU connected before the terminal device enters the inactive state , the second indication information enables the establishment of a downlink connection between the CU-UPF and the DU, and the data packet of the terminal device is sent to the DU.
  • the CU-UPF receives the first indication information from the DU, and the first indication information enables the CU-UPF to assign the corresponding terminal device to the DU.
  • the data packet is sent to the DU; if the DU is not the last DU connected before the terminal device enters the inactive state, the CU-UPF receives the second indication information from the DU, and the second indication information enables the CU-UPF to establish a downlink connection with the DU, and Send the data packet of the terminal device to the DU.
  • the DU obtains the data packet corresponding to the terminal device from the CU-UPF, it can send the data packet to the terminal device through the air interface resource to prevent the terminal device from losing its downlink data in the inactive state.
  • the method further includes: the CU-UPF sends a first downlink data packet to the DU, and the header of the first downlink data packet carries the first quality of service flow identifier QFI information; the CU-UPF receives information from User plane information of the DU.
  • the user plane information is used to instruct the CU-UPF to stop sending the second downlink data packet corresponding to the terminal device.
  • the header of the second downlink data packet includes the first QFI information, and the user plane information is also used to instruct the CU-UPF to stop sending the second downlink data packet corresponding to the terminal device.
  • the first downlink data packet and the second downlink data packet are buffered; the CU-UPF stops sending the second downlink data packet corresponding to the terminal device and buffers the first downlink data packet and the second downlink data packet.
  • an embodiment of the present application provides a communication device, where the communication device is a DU in a centralized unit CU-distributed unit DU architecture, including: a receiving unit configured to receive data from a centralized unit-control plane CU-CP The first control plane information, the first control plane information is used to instruct to restore the radio resource control RRC connection of the terminal device; the sending unit is used to send the first indication information to the centralized unit-user plane function network element CU-UPF, the first The indication information enables the data packet corresponding to the terminal device to be sent to the DU; or, the sending unit is configured to send the second indication information to the CU-UPF, the second indication information enables the establishment of a downlink connection between the CU-UPF and the DU, and the terminal The device's data packet is sent to the DU.
  • the receiving unit is further configured to: receive an RRC recovery request from the terminal device; the sending unit is further configured to send an initial uplink RRC message to the CU-CP, where the initial uplink RRC message is used to request recovery of the terminal device RRC connection.
  • the receiving unit is further configured to: receive the first downlink data packet of the terminal device from the CU-UPF, the header of the first downlink data packet includes the first quality of service flow identifier QFI information, the first downlink data packet
  • the QFI information is used to identify the QoS flow of the first downlink data packet; when the terminal device is in an inactive state, the sending unit is also used to send user plane information to the CU-UPF, where the user plane information is used to indicate the CU-UPF Stop sending the second downlink data packet corresponding to the terminal device, the header of the second downlink data packet includes the first QFI information, and the user plane information is further used to instruct the CU-UPF to buffer the first downlink data packet and the second downlink data packet.
  • the sending unit is further configured to: send second control plane information to the CU-CP, where the second control plane information includes the first QFI information and the first paging policy identifier PPI information, the first QFI information The information and the first PPI information are used to determine the paging policy of the terminal device.
  • the receiving unit is further configured to: receive a third downlink data packet corresponding to the terminal device from the CU-UPF, where the packet header of the third downlink data packet includes the second QFI information and the second PPI information, and the second downlink data packet includes the second QFI information and the second PPI information.
  • the QFI information is different from the first QFI information;
  • the sending unit is further configured to send the third control plane information to the CU-CP, where the third control plane information includes the second QFI information and the second PPI information, the second QFI information and the second PPI information
  • the information is used to determine the paging strategy of the terminal equipment.
  • the receiving unit is further configured to: receive fourth control plane information from the centralized unit-control plane CU-CP, where the fourth control plane information is used to instruct the DU to release air interface resources of the terminal device, and
  • the connection between the DU and the centralized unit-user plane function network element CU-UPF and the context of the terminal device are reserved through the storage unit; the processing unit is used to release the air interface resources of the terminal device.
  • the receiving unit is further configured to: receive fifth control plane information from the CU-CP, where the fifth control plane information is used to indicate a condition for the terminal device to enter the inactive state; the sending unit is further configured to: Send sixth control plane information to the CU-CP, where the sixth control plane information is used to indicate whether the terminal device satisfies the condition for entering the inactive state.
  • an embodiment of the present application provides a communication device, where the communication device is a centralized unit-control plane CU-CP in a centralized unit CU-distributed unit DU architecture, including: a sending unit configured to send a message to a distributed unit The DU sends the first control plane information, and the first control plane information is used to restore the RRC connection of the terminal equipment; if the DU is the last DU connected before the terminal equipment enters the inactive state, the first control plane information includes the centralized unit - the upstream port identifier of the user plane function network element CU-UPF; if the DU is not the last DU connected before the terminal equipment enters the inactive state, the first control plane information includes the upstream port identifier of the CU-UPF, and the information on the upstream port serving the terminal equipment. Downlink port information of the last DU.
  • the sending unit is further configured to: send a terminal device context release message to the last DU connected before the terminal device enters the inactive state , the terminal device context release message is used to instruct the last DU connected before the terminal device enters the inactive state to release the connection with the centralized unit-user plane function network element CU-UPF and the context of the terminal device.
  • it further includes a receiving unit, configured to: receive second control plane information from the DU, where the second control plane information includes first QFI information and first PPI information, and the first QFI information and first PPI information The information is used by the CU-CP to determine the paging policy for the terminal device.
  • a receiving unit configured to: receive second control plane information from the DU, where the second control plane information includes first QFI information and first PPI information, and the first QFI information and first PPI information The information is used by the CU-CP to determine the paging policy for the terminal device.
  • the receiving unit is further configured to: receive third control plane information from the DU, where the third control plane information includes the second QFI information and the second PPI information, and the second QFI information and the second PPI information are used for When the CU-CP determines the paging policy for the terminal device, the second QFI information is different from the first QFI information, and the second PPI information is different from the first PPI information.
  • the sending unit is further configured to: the CU-CP sends fourth control plane information to the DU, where the fourth control plane information is used to instruct the DU to release the air interface resources of the terminal device and reserve the DU and core network users The connection of the plane network element and the context of the terminal device.
  • the sending unit is further configured to: send fifth control plane information to the DU, where the fifth control plane information is used to indicate a condition for the terminal device to enter the inactive state; the receiving unit is further configured to receive information from the DU The sixth control plane information, the sixth control plane information is used to indicate whether the terminal device satisfies the condition for entering the inactive state.
  • an embodiment of the present application provides a communication device, where the communication device is a centralized unit-user plane function network element CU-UPF, including: a receiving unit configured to receive first indication information from a distributed unit DU, the DU It is the last DU connected before the terminal device enters the inactive state, and the first indication information enables the data packet corresponding to the terminal device to be sent to the DU; or, the receiving unit is used to receive the second indication information from the DU, and the DU is not a terminal The last DU connected before the device enters the inactive state, the second indication information enables the establishment of the downlink connection between the CU-UPF and the DU, and the data packet of the terminal device is sent to the DU.
  • CU-UPF centralized unit-user plane function network element
  • it further includes a sending unit, configured to: send a first downlink data packet to the DU, where the header of the first downlink data packet carries the first quality of service flow identifier QFI information; the receiving unit is configured to receive User plane information from the DU, the user plane information is used to instruct the CU-UPF to stop sending the second downlink data packet corresponding to the terminal device, the header of the second downlink data packet includes the first QFI information, and the user plane information is also used to instruct the CU-UPF
  • the UPF buffers the first downlink data packet and the second downlink data packet; the sending unit is configured to stop sending the second downlink data packet corresponding to the terminal device and buffer the first downlink data packet and the second downlink data packet through the buffer unit.
  • a seventh aspect provides a communication device, which can be a DU, including: a processor and a memory; the memory is used to store computer-executable instructions, and the processor executes the computer-executable instructions stored in the memory to make the device A method as in any of the first aspects above is performed.
  • a communication device which may be a CU-CP, including: a processor and a memory; the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory, so that The apparatus performs the method of any of the above second aspects.
  • a ninth aspect provides a communication device, which may be a CU-UPF, including: a processor and a memory; the memory is used to store computer-executed instructions, and the processor executes the computer-executed instructions stored in the memory to make The apparatus performs the method of any of the above third aspects.
  • a computer-readable storage medium is provided, and instructions are stored in the computer-readable storage medium, which, when executed on a computer, enables the computer to execute the method of any one of the first to third aspects above. .
  • a computer program product comprising instructions which, when run on a computer, enable the computer to perform the method of any one of the first to third aspects above.
  • a twelfth aspect provides a circuit system comprising a processing circuit configured to perform the method of any one of the first to third aspects above.
  • a thirteenth aspect provides a chip, the chip includes a processor, the processor is coupled to a memory, the memory stores program instructions, and the above-mentioned program instructions are implemented when the program instructions stored in the memory are executed by the processor The method of any one of the first to third aspects.
  • a fourteenth aspect provides a communication system, the communication system comprising the communication device of any one of the fourth aspect, the communication device of any one of the fifth aspect, and the communication device of any one of the sixth aspect.
  • FIG. 1 is a schematic diagram of a network architecture in a CU/DU separation scenario provided by an embodiment of the present application
  • 2A is a schematic diagram of a protocol stack of a gNB-DU and a gNB-CU-CP according to an embodiment of the present application;
  • FIG. 2B is a schematic diagram of a protocol stack of a gNB-DU and a gNB-CU-UP according to an embodiment of the present application;
  • FIG. 3 is a schematic diagram of the distribution of a gNB-DU, gNB-CU-CP and gNB-CU-UP according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a network architecture in a scenario where a UPF and a gNB-CU-UP are combined according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a network architecture in yet another scenario where UPF and gNB-CU-UP are jointly set up according to an embodiment of the present application;
  • 6A is a schematic diagram of a control plane protocol stack architecture in a scenario where gNB-CU-CP and UPF are co-located according to an embodiment of the present application;
  • FIG. 6B is a schematic diagram of a user plane protocol stack architecture of a scenario where gNB-CU-CP and UPF are co-located according to an embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of a DU, CU-CP or CU-UPF according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of signal interaction provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another DU provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another CU-CP provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of still another CU-UPF provided by an embodiment of the present application.
  • CU/DU separation technology is an important feature in 5G. This technology can adjust the base station network more flexibly, and this technology has good benefits for load balancing and resource maximization. Connectivity, edge computing, business offloading, and intelligent operation and maintenance all have better support.
  • gNB can be divided into gNB-CU-CP, gNB-CU-UP and gNB-DU.
  • gNB-CU-CP can communicate with gNB-CU-UP through E1 interface
  • gNB-CU-CP can communicate with gNB-DU through F1-C interface
  • gNB-CU-UP can communicate with gNB-DU through F1-U interface .
  • Terminal equipment can access the network through gNB-DU.
  • the gNB-CU-CP can communicate with the access and mobility management function (AMF) network elements through the Next Generation Network (NG) 2 interface (N2 for short), and the AMF can communicate through the N11 interface (N11 for short) ) communicates with the session management function (SMF) network element, the SMF can communicate with the UPF network element through the N4 interface (referred to as N4), and the UPF network element accesses the data network (DN6) through the N6 interface (referred to as N6). ), the UPF network element can communicate with the gNB-CU-UP through the N3 interface (N3 for short).
  • AMF access and mobility management function
  • AMF is responsible for access and mobility management functions, it can receive non-access stratum (non-access stratum, NAS) signaling (including session management (session management, SM) signaling of terminal equipment and access network.
  • NAS non-access stratum
  • SM session management
  • the related signaling of the device completes the registration process of the user, the forwarding of the SM signaling and the mobility management.
  • the SMF is responsible for the session management function, and completes the establishment, release, and update processes related to the protocol data unit (protocol data unit, PDU) session.
  • protocol data unit protocol data unit
  • the terminal device may also be referred to as a terminal, the terminal may be a wireless terminal or a wired terminal, and a wireless terminal may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or a Other processing equipment for wireless modems.
  • a wireless terminal may communicate with one or more core networks via a radio access network (RAN), and the wireless terminal may be a mobile terminal such as a mobile telephone (or "cellular" telephone) and a computer with a mobile terminal
  • the wireless terminal may be a portable, pocket-sized, hand-held, computer-built or vehicle-mounted mobile device, or may be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, wireless local loop (wireless local loop, WLL) station or personal digital assistant (personal digital assistant, PDA) and other devices.
  • PCS personal communication service
  • a wireless terminal may also be referred to as a system, subscriber unit, subscriber station, mobile station, mobile, remote station, remote terminal, receiver.
  • the wireless terminal can also be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, a communication device, an embedded device, etc., which are not limited herein.
  • PDA personal digital assistant
  • RRC and packet data convergence protocol (PDCP) protocol stacks can be distributed in gNB-CU-CP (CU-CP), radio link control (radio link control (RLC), media access control (MAC) and physical layer (physical layer, PHY) protocol stacks can be distributed in the gNB-DU (DU).
  • CU-CP gNB-CU-CP
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • SDAP service data adaptation protocol
  • SDAP service data adaptation protocol
  • PDCP protocol stack may be distributed in the gNB-CU-UP (CU-UP).
  • gNB-DU can be deployed in a distributed manner
  • gNB-CU-CP and gNB-CU-UP can be deployed centrally
  • one gNB-CU-CP can control multiple gNB-CU-UPs.
  • CU-UP can be flexibly grouped and distributed in different areas to serve gNB-DUs in different areas.
  • One gNB-CU-UP can be connected with multiple gNB-DUs, and one gNB-DU can be connected with one or more gNB-CU-UPs.
  • UPF and gNB-CU-UP can be combined into one network element, which is recorded as CU-UPF.
  • CU-UPF in this embodiment of the present application is only a naming manner, and it is not excluded that other possible names are defined in existing or future protocols to replace the above names.
  • the CU-UPF can be managed by the SMF in a unified manner.
  • CU-UPF can communicate with gNB-DU through F1-U interface, CU-UPF can access DN through N6 interface, and can cancel the management authority of gNB-CU-UP (ie CU-UPF) by gNB-CU-CP (cancel The original E1 interface), or only retain some permissions and system structures that do not affect security.
  • RRC_INACTIVE can be considered as an intermediate state between RRC_IDLE and RRC connected state (RRC_CONNECTED).
  • RRC_CONNECTED RRC connected state
  • RRC Inactive/RRC_INACTIVE may be referred to as Inactive or inactive state.
  • An embodiment of the present application provides a communication method, which is applied to a scenario where CU-UP and UPF are combined (UPF and CU-UP are combined as CU-UPF), where gNB-CU-CP can instruct gNB-DU to release related air interface resources , and retain the user plane connection and related UE context with the co-located network element CU-UPF.
  • the CU-UPF does not perceive the above process, and can detect the downlink data with the UPF (equivalent to CU-UPF) under RRC Idle to initiate paging. Different from each other, it solves the problem that the existing technology cannot support the RRC Inactive technology.
  • the gNB-DU after the gNB-DU detects the downlink data packets from the CU-UPF, it can notify the CU-UPF to stop sending the corresponding downlink data packets through the user plane information, and buffer the downlink data packets. Since the DU does not have the function of buffering data, by instructing the CU-UPF to stop sending and buffering the corresponding downlink data packets, data packet loss can be avoided, and the CU-UPF can prevent the CU-UPF from sending useless data to the DU to occupy communication resources.
  • the DU can send the first indication information to the CU-UPF, and the first indication information enables the data packet corresponding to the terminal device to be sent to the DU; if the DU is not the terminal device For the last DU connected before entering the inactive state, the DU can send second indication information to the CU-UPF, the second indication information enables the establishment of the downlink connection between the CU-UPF and the DU, and the data packet of the terminal device is sent to the DU.
  • the DU after the DU obtains the data packet corresponding to the terminal device from the CU-UPF, it can send the data packet to the terminal device through the air interface resource, so as to prevent the terminal device from losing its downlink data in the inactive state.
  • the DU may send the first indication information to the CU-UPF, or the DU may send the second indication information to the CU-UPF, that is, the first indication information or the second indication information is sent alternatively.
  • the communication method and apparatus provided by the embodiments of this application may be applied to a 5G mobile communication system or a new radio (NR), etc.
  • the technical solutions provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system may be a future evolved public land mobile network (PLMN) network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, the Internet of Things (internet of things, IoT) network or other network, this application does not limit.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT Internet of Things
  • FIG. 5 A network architecture applicable to the embodiments of the present application is shown in FIG. 5 , and one gNB-CU-CP can control multiple gNB-DUs.
  • the UE When the UE has no downlink service data, the UE can enter an inactive state, that is, release the air interface transmission resources, but retain the related resources of the NG-U.
  • the gNB-CU-CP instructs all gNB-DUs within its control range to initiate Paging. After receiving the Paging message initiated by the gNB-DU, the UE can resume the connection with the gNB-DU and the gNB-CU-UP.
  • the UE when the downlink data of the core network arrives, if the UE moves from the service range of one gNB-DU within the control range of the gNB-CU-CP to the service range of another gNB-DU, it will happen After the DU handover, the UE can establish a connection with the new gNB-DU; if the downlink data from the core network arrives, the UE is still in the service range of the last gNB-DU that it connected to before entering the inactive state, that is, no DU occurs. After handover, the UE can restore the connection with the gNB-DU.
  • the network architecture involved in Figure 5 may also include other network elements, such as a unified data management (UDM) network element, a policy control function (PCF) network element, an authentication server function (authentication server function) server function, AUSF) network element, network exposure function (NEF) network element/network function repository function (NRF) network element/network slice selection function (NSSF), unified Network elements or devices such as unified data repository (UDR) or network repository function (NRF), etc., are not specifically limited.
  • UDM unified data management
  • PCF policy control function
  • authentication server function authentication server function
  • AUSF authentication server function
  • NEF network exposure function
  • NEF network element/network function repository function
  • NSSF network slice selection function
  • unified Network elements or devices such as unified data repository (UDR) or network repository function (NRF), etc.
  • each network element and the interface between each network element in FIG. 5 is just an example, and the name of each network element and the interface between each network element in the specific implementation may be other, and the embodiment of the present application is for this There is no specific limitation.
  • FIG. 6A it is a schematic diagram of a control plane protocol stack architecture in a scenario where gNB-CU-CP and UPF are co-located.
  • the peer-to-peer protocol layers between the UE and the DU include the RLC layer, the MAC layer, and the PHY.
  • the peer-to-peer protocol layers between the UE and the CU-CP include the RRC layer and the PDCP layer.
  • the peer-to-peer protocol layers between the UE and the AMF include a non-access stratum (NAS) layer.
  • the peer-to-peer protocol layers between AMF and SMF include the NAS layer.
  • the PDCP and SDAP Config messages related to security and quality of service (QoS) flow control can be passed through the CU-UPF on the control plane.
  • the path of CP->AMF->SMF->CU-UPF is finally delivered to CU-UPF.
  • FIG. 6B it is a schematic diagram of a user plane protocol stack architecture in a scenario where gNB-CU-CP and UPF are co-located.
  • the peer-to-peer protocol layers between the UE and the CU-UPF include SDAP and PDCP layers, and the peer-to-peer protocol layers between the UE and the UPF include a protocol data unit (protocol data unit, PDU) layer (layer).
  • PDU protocol data unit
  • the CU-UPF is directly connected to the DN (not shown in FIG. 6B ) through the three-layer protocol or to the PDU session anchor (PSA) of the UPF.
  • PSA PDU session anchor
  • the peer-to-peer protocol layers between CU-UPF and UPF include general packet radio service (GPRS) tunneling protocol user plane (gPRS tunnelling protocol user plane, GTP-U), user datagram protocol (user datagram protocol, UDP)/Internet Protocol (IP) layer, L2 layer and L1 layer.
  • GPRS general packet radio service
  • GTP-U general packet radio service tunneling protocol user plane
  • UDP user datagram protocol
  • IP Internet Protocol
  • gNB-DU gNB-CU-CP
  • gNB-CU-UP gNB-CU-UP
  • CU-UP gNB-CU-UP
  • DU gNB-DU
  • FIG. 7 is a schematic diagram of a hardware structure of a communication device according to an embodiment of the present application.
  • the communication device 700 includes at least one processor 701, communication lines 702, memory 703 and at least one communication interface 704.
  • the processor 701 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 702 may include a path to communicate information between the aforementioned components.
  • Communication interface 704 using any transceiver-like device, for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 703 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM) or other type of static storage device that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory may exist independently and be connected to the processor through communication line 702 .
  • the memory can also be integrated with the processor.
  • the memory 703 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 701 .
  • the processor 701 is configured to execute the computer-executed instructions stored in the memory 703, thereby implementing the communication methods provided by the following embodiments of the present application.
  • the computer-executed instructions in the embodiment of the present application may also be referred to as application code, which is not specifically limited in the embodiment of the present application.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 7 .
  • the communication device 700 may include multiple processors, such as the processor 701 and the processor 705 in FIG. 7 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • control plane information refers to the information used for interaction between the DU and the CU-CP.
  • the control plane information may also have other names. This application Not limited.
  • an embodiment of the present application provides a communication method, including:
  • the CU-CP sends control plane information (fourth control plane information) to the DU.
  • the fourth control plane information is used to instruct the DU to release the air interface resources of the terminal device, and to retain the connection between the DU and the user plane network element of the core network and the context of the terminal device, so that the terminal device can enter the inactive state.
  • the fourth control plane information may be a UE Context Release Command, which includes an RRC Release message.
  • the CU-CP may send the fifth control plane information to the DU, and the fifth control plane information is used to indicate the condition for the terminal device to enter the inactive state, so that the DU can Determine whether the terminal device needs to enter the inactive state according to the fifth control plane information, and report the corresponding situation to the CU-CP.
  • the fifth control plane information may be a UE Context Setup Request, which includes an Inactivity Monitoring Request.
  • the DU receives fourth control plane information from the CU-CP.
  • the DU may release the air interface resources of the terminal device according to the fourth control plane information.
  • the DU may send an RRC Release message to the UE to release related air interface resources.
  • the DU retains the connection between the DU and the user plane network element of the core network and the context of the terminal device, that is, the connection between the DU and the user plane network element of the core network is not disconnected and the context of the terminal device is not deleted.
  • the DU can also feed back the execution status of the RRC Release to the CU-CP, for example, can report whether the RRC Release is successfully executed through an indicator (Indicator).
  • the DU may receive the fifth control plane information from the CU-CP, and the fifth control plane information is used to indicate the condition for the terminal device to enter the inactive state, that is, the CU.
  • the CP can inform the DU under what conditions (conditions) the terminal equipment enters the inactive state, so that the DU can detect the downlink data transmission state of the terminal equipment to determine whether the terminal equipment meets the conditions for entering the inactive state.
  • the CU-CP can send the UE Context Setup Request to the DU, the UE Context Setup Request can be used to configure the UE context, and the UE Context Setup Request can carry the Inactivity Monitoring Request, which is used by the DU to trigger RRC Inactive, that is, used for DU determination. Whether the terminal device has the conditions to enter the inactive state, or is used by the DU to determine whether the terminal device needs to enter the inactive state.
  • the DU can send feedback information of the fifth control plane information to the CU-CP, where the feedback information is used to feed back to the CU-CP whether it supports Inactivity Monitoring. If the DU supports Inactivity Monitoring, the DU can send the sixth control plane information to the CU-CP, and the sixth control plane information is used to indicate whether the terminal device meets the conditions for entering the inactive state.
  • the sixth control plane information may include information about the UE entering the inactive state (for example, the UE has no downlink data for a long time, at this time, it may be considered that the UE needs to enter the inactive state).
  • the sixth control plane information may be UE inactivity notification.
  • the CU-CP may determine, according to the sixth control plane information, that the terminal device satisfies the condition for entering the inactive state or does not satisfy the condition for entering the inactive state. If the terminal equipment meets the conditions for entering the inactive state, the CU-CP determines to make the UE enter the inactive state, which may be to change the state of the UE from the connected state to the inactive state, that is, step 801 is executed.
  • the CU-CP when the CU-CP triggers the UE to enter the inactive state, the CU-CP can instruct the DU to release the relevant air interface resources, and retain the user plane connection with the co-located network element CU-UPF and the relevant UE context,
  • the CU-UPF does not perceive the above process, and can be distinguished from the process in which the UPF (equivalent to CU-UPF) detects downlink data and initiates paging under RRC Idle, thus solving the problem that the existing technology cannot support the RRC Inactive technology.
  • steps 801 to 802 describe how to make the UE enter the inactive state in the CU-UPF combined scenario.
  • the DU may receive data packets from the terminal device from the CU-UPF, and needs to perform corresponding processing, that is, this embodiment may further include steps 803 - Step 811.
  • steps 801-802 and subsequent steps 803-811 can be independent of each other, that is, the terminal device can be made to enter the inactive state through steps 801-step 802, or the terminal device can be made to enter the inactive state through other methods.
  • the active state is not limited in this application.
  • the CU-UPF sends the first downlink data packet of the terminal device to the DU.
  • the header of the first downlink data packet carries the first QFI information.
  • the first QFI may be used to identify the 5G QoS flow corresponding to the first downlink data packet.
  • 5G QoS flow is the most fine-grained QoS forwarding processing in 5G system, and all traffic mapped to the same 5G QoS flow receive the same forwarding processing (for example, scheduling policy, queue management policy, rate shaping policy, RLC configuration, etc.) .
  • the DU receives the first downlink data packet of the terminal device from the CU-UPF.
  • step 805 After the DU receives the first downlink data packet, if it is determined that the terminal device is in an inactive state, step 805 may be performed.
  • the DU sends user plane information to the CU-UPF.
  • the user plane information is used to instruct the CU-UPF to stop sending the second downlink data packet corresponding to the terminal device. This is because the terminal device is in an inactive state, that is, the RRC connection between the DU and the terminal device has been disconnected, and the DU cannot send data packets to the terminal device.
  • the terminal device delivers the data packet, so the DU can instruct the CU-UPF to stop sending the second downlink data packet corresponding to the terminal device.
  • the user plane information is also used to instruct the CU-UPF to buffer the first downlink data packet and the second downlink data packet. This is because the DU does not have the function of buffering data packets, so the CU-UPF can buffer the first downlink data packet and the second downlink data packet.
  • the header of the second downlink data packet includes the first QFI information, that is, both the second data packet and the first data packet belong to the QoS flow (5G QoS flow) corresponding to the first QFI.
  • the second data packet may include all or part of the data packets except the first data packet in the QoS flow corresponding to the first QFI.
  • the user plane information may be carried in a PDU, for example, may be carried in a downlink data delivery status (DDDS) PDU.
  • DDDS downlink data delivery status
  • the user plane information may be carried in the header of the data packet.
  • the DDDS PDU is a control PDU sent by the DU to the CU-UP through the F1-U interface from the user plane.
  • the function of the control PDU is to report the transmission status of the PDCP PDU (including the PDCP sequence number (SN) number and the packet loss situation, etc.) for flow control.
  • the DDDS PDU can be used to indicate the CU-UP on the user plane. This message (the message carrying the DDDS PDU) is the last DL Status Report, and no subsequent uplink or downlink data will be sent from this channel (the communication channel that transmits the DDDS PDU).
  • the DDDS PDU may be used to indicate that this message is an Initial DL DATA DELIVERY STATUS so that the CU-UP can start sending downstream packets to the DU.
  • the structure of the DDDS PDU may be as shown in Table 1.
  • extension bits can be added on the basis of the DDDS PDU shown in Table 1, and the above-mentioned user plane information can be carried in the extension bits.
  • the design is not limited in this application.
  • the CU-UPF receives the user plane information from the DU.
  • the CU-UPF may stop sending the second downlink data packet corresponding to the terminal device according to the user plane information, and buffer the first downlink data packet and the second downlink data packet.
  • the DU sends the second control plane information to the CU-CP.
  • the second control plane information includes first QFI information and first PPI information, and the first QFI information and the first PPI information are used for determining a paging policy of the terminal device.
  • the second control plane information may further include the gNB-CU-CP UE F1AP ID and the gNB-DU UE F1AP ID, which are used to identify the terminal device.
  • the second control plane information may be carried in the DL Data Notification.
  • the CU-CP receives the second control plane information from the DU.
  • the CU-CP queries the 5G QoS identifier (5G QoS Identifier, 5QI) and the allocation and retention priority (ARP) according to the first QFI information.
  • 5QI is used to determine the QoS parameters of QoS flow, such as delay, packet error rate, etc.
  • ARP is used to determine the priority between different QoS flows.
  • the CU-CP determines the Paging policy according to the first PPI information. After determining the Paging policy, it can start sending Paging messages to DUs within the control range of the CU-CP, and the DUs that receive the Paging messages can initiate Paging to UEs within its coverage.
  • Steps 805-806 may be executed first, and then steps 807-808 may be executed; or steps 807 may be executed first - Step 808, and then execute steps 805-step 806; it is also possible to execute steps 805-step 806 and steps 807-step 808 at the same time, which is not specifically limited in this embodiment.
  • the embodiment of the present application may further include steps 809-811.
  • the DU receives a third downlink data packet corresponding to the terminal device from the CU-UPF.
  • the header of the third downlink data packet includes second QFI information and second PPI information, the second QFI information is different from the first QFI information, and the second PPI information is the same or different from the first PPI information.
  • the DU sends the third control plane information to the CU-CP.
  • the third control plane information includes the second QFI information and the second PPI information, and the second QFI information and the second PPI information are used for determining the paging policy of the terminal device.
  • the third control plane information may be carried in a new DL Data Notification message, and the new DL Data Notification message is different from the DL Data Notification message carrying the second control plane information.
  • the CU-CP receives third control plane information from the DU.
  • the CU-CP may re-determine the Paging policy according to the second PPI information in the third control plane information. If the priority of the Paging policy determined according to the first PPI information is lower than the priority of the Paging policy determined according to the second PPI information, then The CU-CP can update the Paging policy of the terminal device; if the priority of the Paging policy determined according to the first PPI information is not lower than (higher or equal to) the priority of the Paging policy determined according to the second PPI information, then the CU-CP The terminal device may still be Paging according to the Paging policy determined by the first PPI information.
  • the DU may notify the CU-UPF through user plane information to stop delivering and buffer the corresponding downlink data packet. Since the DU does not have the function of buffering data, by instructing the CU-UPF to stop sending and buffering the corresponding downlink data packets, data packet loss can be avoided, and the CU-UPF can prevent the CU-UPF from sending useless data to the DU to occupy communication resources.
  • Steps 803 to 811 describe how to trigger paging (ie, perform Paging on the terminal device) in the CU-UPF combined scenario.
  • the DU may receive an RRC recovery request from the terminal device, and the DU may request the CU-CP to recover the RRC connection of the terminal device, that is, the embodiment of the present application may further include steps 812 to 818 .
  • step 803-step 811 and step 812-step 818 may be independent of each other, that is, paging may be triggered by step 803-step 811, or may be triggered by other methods, which is not limited in this application.
  • the DU receives an RRC resume request (RRC Resume Request) from the terminal device.
  • the terminal device refers to the terminal device that receives the paging message.
  • the DU sends an initial uplink RRC message (Initial UL RRC Message Transfer) to the CU-CP.
  • the initial uplink RRC message is used to request to restore the RRC connection of the terminal device.
  • the CU-CP sends the first control plane information to the DU, where the first control plane information is used to restore the RRC connection of the terminal device.
  • the first control plane information may also carry the uplink port identifier of the CU-UPF, so that the DU can
  • the upstream port identifier of the CU-UPF requests the CU-UPF for data of the terminal device.
  • the uplink port identifier of the CU-UPF may be, for example, an F1-U UL tunnel endpoint identifier (tunnel endpoint identifier, TEID).
  • the first control plane information can carry not only the uplink port identifier of the CU-UPF, but also the last DU (Last DU connected before the terminal device enters the inactive state) Serving DU) downlink port information, the DU can request the data of the terminal device from the CU-UPF according to the uplink port identifier of the CU-UPF, and the data of the terminal device can be buffered by the Last Serving DU instructing the CU-UPF.
  • the first control plane information may be carried in the UE Context Setup Request.
  • the CU-CP can perform RRC Resume signaling interaction with the UE to make the UE transition from the inactive state to the connected state.
  • the CU-CP may send a terminal device context release message to the last DU connected before the terminal device enters the inactive state.
  • the terminal device context release message is used for Instructs the terminal device to release the connection with the CU-UPF and the context of the terminal device to the last DU connected before entering the inactive state. That is, if a DU handover occurs, the CU-CP can send a UE Context Release message to the Last Serving DU, instructing the DU to release the connection with the CU-UPF and the UE context, thereby saving communication resources.
  • the DU receives the first control plane information from the CU-CP.
  • the DU may perform step 816; if the DU is not the last DU connected before the terminal device enters the inactive state, the DU may perform step 818.
  • the DU sends first indication information to the CU-UPF, and the first indication information enables the data packet corresponding to the terminal device to be sent to the DU.
  • the DU sends the first indication information to the CU-UPF, and the first indication information enables the data packet corresponding to the terminal device to be sent to the DU.
  • the data packet corresponding to the terminal device may include a first downlink data packet and a second downlink data packet.
  • the first indication information may be carried in the DDDS PDU.
  • the CU-UPF receives the first indication information from the DU.
  • the CU-UPF After receiving the first indication information from the DU, the CU-UPF can send the data packets (the first downlink data packet and the second downlink data packet) corresponding to the terminal device to the DU.
  • the CU-UPF may report the change of the F1-U port of the DU to the AMF/SMF.
  • the DU sends second indication information to the CU-UPF, and the second indication information enables the establishment of the downlink connection between the CU-UPF and the DU, and the data of the terminal device.
  • the packet is sent to the DU.
  • the DU sends the second indication information to the CU-UPF, and the second indication information enables the CU-UPF to establish a downlink connection with the DU, and sends the data packets of the terminal device (the Last Serving DU indicates the buffer) to the CU-UPF.
  • the second indication information may be carried in the DDDS PDU.
  • the CU-UPF receives the second indication information from the DU.
  • the CU-UPF After receiving the second indication information from the DU, the CU-UPF establishes a downlink connection with the DU, and sends the data packets (the first downlink data packet and the second downlink data packet) corresponding to the terminal device to the DU.
  • the CU-UPF may report the change of the F1-U port of the DU to the AMF/SMF.
  • the DU sends the first indication information to the CU-UPF, enabling the CU-UPF to send the data packet corresponding to the terminal device to the CU-UPF.
  • the DU sends the second indication information to the CU-UPF, enables the CU-UPF to establish a downlink connection with the DU, and sends the data packet of the terminal device to the CU-UPF.
  • the DU After the DU obtains the data packet corresponding to the terminal device from the CU-UPF, it can send the data packet to the terminal device through the air interface resource to prevent the terminal device from losing its downlink data in the inactive state.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of DU, CU-CP, CU-UPF, and interaction among DU, CU-CP, and CU-UPF.
  • the DU, CU-CP, and CU-UPF may include hardware structures and/or software modules, in the form of hardware structures, software modules, or hardware structures plus software modules. realize the above functions. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • FIG. 9 shows a possible schematic structural diagram of the DU9 involved in the above embodiment, and the DU9 includes: a receiving unit 901 and a sending unit 902 .
  • the receiving unit 901 is configured to receive first control plane information from a centralized unit-control plane CU-CP, where the first control plane information is used to instruct to restore the radio resource control RRC connection of the terminal device; send The unit 902 is configured to send the first indication information to the centralized unit-user plane function network element CU-UPF, the first indication information enables the data packet corresponding to the terminal device to be sent to the DU; or the sending unit 902 is used for sending the first indication information to the CU -UPF sends second indication information, the second indication information enables the establishment of a downlink connection between the CU-UPF and the DU, and the data packet of the terminal device is sent to the DU.
  • the receiving unit 901 is configured to support the DU to perform the processes 802 , 804 , 809 , 812 and 815 in FIG. 8 .
  • the sending unit 902 is used to support the DU to perform the processes 805, 807, 810, 813 and 816 in FIG. 8 .
  • the receiving unit 901 or the sending unit 902 may be the communication interface 704 in FIG. 7 .
  • FIG. 10 shows a possible schematic structural diagram of the CU-CP10 involved in the above embodiment, where the CU-CP10 includes: a sending unit 1001 .
  • the sending unit 1001 is configured to send the first control plane information to the distributed unit DU, and the first control plane information is used to restore the radio resource control RRC connection of the terminal device; if the DU is the terminal device entering inactive If the DU is not the last DU connected before the terminal device enters the inactive state, the first control plane information includes the upstream port identifier of the centralized unit-user plane function network element CU-UPF; if the DU is not the last DU connected before the terminal device enters the inactive state, the first control plane The plane information includes the uplink port identifier of the CU-UPF and the downlink port information of the last DU serving the terminal device.
  • the sending unit 1001 is configured to support the CU-CP to perform the processes 801 and 814 in FIG. 8 .
  • the CU-UPF may further include a receiving unit 1002 for supporting the CU-CP to perform the processes 808 and 811 in FIG. 8 .
  • the sending unit 1001 or the receiving unit 1002 may be the communication interface 704 in FIG. 7 .
  • FIG. 11 shows a possible schematic structural diagram of the CU-UPF 11 involved in the above embodiment, where the CU-UPF 11 includes: a receiving unit 1101 .
  • the receiving unit 1101 is configured to receive the first indication information from the distributed unit DU, where the DU is the last DU connected before the terminal device enters the inactive state, and the first indication information enables the terminal device corresponding to the The data packet is sent to the DU; or the receiving unit 1101 is used to receive the second indication information from the DU, the DU is not the last DU connected before the terminal device enters the inactive state, and the second indication information enables the communication between the CU-UPF and the DU.
  • the downlink connection is established, and the data packet of the terminal device is sent to the DU.
  • the receiving unit 1101 is configured to support the CU-UPF to perform the processes 806 and 817 in FIG. 8 .
  • the CU-UPF may further include a sending unit 1102, configured to support the CU-UPF to perform the process 803 in FIG. 8 .
  • the receiving unit 1101 or the sending unit 1102 may be the communication interface 704 in FIG. 7 .
  • the DU, CU-CP, and CU-UPF in the foregoing apparatus embodiments and the DU, CU-CP, and CU-UPF in the method embodiments may completely correspond, and corresponding steps are performed by corresponding modules or units, for example,
  • the communication module (transceiver) may perform the steps of sending and/or receiving in the method embodiment, and other steps except the sending and receiving may be performed by the processing unit (processor).
  • the sending unit and the receiving unit can form a transceiver unit, the transmitter and the receiver can form a transceiver, and jointly realize the sending and receiving function; the processor can be one or more.
  • the functions of the above-mentioned DU, CU-CP and CU-UPF may be implemented by chips, and the processing unit may be implemented by hardware or software.
  • the processing unit may be a logic circuit. , integrated circuits, etc.; when implemented by software, the processing unit can be a general-purpose processor, and is implemented by reading the software code stored in the storage unit, which can be integrated in the processor or located in the processing unit. Outside the device, it exists independently.
  • the DU, CU-CP, and CU-UPF in the foregoing apparatus embodiments completely correspond to the DU, CU-CP, and CU-UPF in the method embodiments, and corresponding steps are performed by corresponding modules or units, such as a sending module (transmitter). ) method executes the sending step in the method embodiment, the receiving module (receiver) executes the receiving step in the method embodiment, and other steps except sending and receiving may be executed by the processing module (processor).
  • the sending module and the receiving module can form a transceiver module, and the transmitter and the receiver can form a transceiver to jointly realize the sending and receiving function; the processor can be one or more.
  • each functional module in each embodiment of the present application may be integrated in the In a processor, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • the receiving unit and the sending unit may be integrated into the transceiver unit.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available media that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVDs)), or semiconductor media (eg, solid state drives (SSDs) )Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法和装置,涉及通信领域,能够避免终端设备与网络侧通信时丢失下行数据。其方法为:DU接收来自CU-CP的第一控制面信息,第一控制面信息用于指示恢复终端设备的RRC连接;若DU是终端设备进入非激活态之前连接的最后一个DU,DU向CU-UPF发送第一指示信息,第一指示信息使能终端设备对应的数据包被发送给DU;若DU不是终端设备进入非激活态之前连接的最后一个DU,DU向CU-UPF发送第二指示信息,第二指示信息使能CU-UPF与DU的下行连接建立,以及终端设备的数据包被发送给DU。本申请实施例应用于5G通信系统。

Description

一种通信方法和装置
本申请要求于2020年06月29日提交国家知识产权局、申请号为202010606037.4、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法和装置。
背景技术
在第五代(5 th generation,5G)移动通信系统中,通过将无线接入网(radio access network,RAN)拆分成集中处理节点(centralized unit,CU)和分布式处理节点(distributed unit,DU),可以更加灵活地对基站布网进行调整。其中,CU也可以称为gNB-CU,DU也可以称为gNB-DU。进一步的,根据功能不同可以将CU划分为集中处理节点的控制面(CU control plane,CU-CP)和集中处理节点的用户面(CU user plane,CU-UP)。其中,CU-CP也可以称为gNB-CU-CP,CU-UP也可以称为gNB-CU-UP。
随着CU/DU分离技术的成熟,多接入边缘计算(multi-access edge computing,MEC)以及下沉的用户面功能(user plane function,UPF)网元(下沉的UPF网元(简称为UPF)是指与gNB-CU部署在同一个物理机房的UPF)的广泛部署,gNB-CU、UPF和MEC联合部署可能成为主流。在此场景下,由于gNB-CU已经与下沉的UPF部署在同一个物理机房,出于对减少数据面传输跳数,节约成本以及将数据面安全节点终结在核心网中等因素的考虑,最终可能将UPF和gNB-CU-UP合设为一个网元。
在UPF和gNB-CU-UP合设的场景下,终端设备如何与网络侧通信,目前还没有相应的解决方案。
发明内容
本申请实施例提供一种通信方法和装置,应用于UPF和CU-UP合设的场景,能够避免终端设备与网络侧通信时丢失下行数据。
第一方面,本申请实施例提供一种通信方法,应用于集中式单元CU-分布式单元DU架构中的DU,方法包括:DU接收来自集中式单元-控制面CU-CP的第一控制面信息,第一控制面信息用于指示恢复终端设备的无线资源控制RRC连接;若DU是终端设备进入非激活态之前连接的最后一个DU,DU向集中式单元-用户面功能网元(centralized unit-user plane function,CU-UPF)发送第一指示信息,第一指示信息使能终端设备对应的数据包被发送给DU;若DU不是终端设备进入非激活态之前连接的最后一个DU,DU向CU-UPF发送第二指示信息,第二指示信息使能CU-UPF与DU的下行连接建立,以及终端设备的数据包被发送给DU。需要说明的是,DU可以向CU-UPF发送第一指示信息,或者DU可以向CU-UPF发送第二指示信息,即第一指示信息或第二指示信息是择一发送的。
基于本申请实施例提供的方法,若DU是终端设备进入非激活态之前连接的最后一个DU,DU向CU-UPF发送第一指示信息,使能CU-UPF将终端设备对应的数据包发送给DU;若DU不是终端设备进入非激活态之前连接的最后一个DU,DU向CU-UPF发送第 二指示信息,使能CU-UPF建立与DU的下行连接,并将终端设备的数据包发送给DU。DU从CU-UPF获取终端设备对应的数据包后,可以通过空口资源将数据包发送给终端设备,避免终端设备丢失其在非激活态的下行数据。
在一种可能的实现方式中,分布式单元DU接收来自集中式单元-控制面CU-CP的第一控制面信息之前,该方法还包括:DU接收来自终端设备的RRC恢复请求;DU向CU-CP发送初始上行无线资源控制(radio resource control,RRC)消息,初始上行RRC消息用于请求恢复终端设备的RRC连接。也就是说,DU接收到终端设备的RRC恢复请求后,向CU-CP发送初始上行RRC消息,该DU可以是终端设备进入非激活态之前连接的最后一个DU(即未发生DU切换),也可以是其他DU(即发生了DU切换)。
在一种可能的实现方式中,分布式单元DU接收来自集中式单元-控制面CU-CP的第一控制面信息之前,该方法还包括:DU从CU-UPF接收终端设备的第一下行数据包,第一下行数据包的包头包括第一服务质量流标识(QoS(quality of service)flow identity,QFI)信息,第一QFI信息用于标识第一下行数据包的服务质量(quality of service,QoS)流;当终端设备处于非激活态时,DU向CU-UPF发送用户面信息,用户面信息用于指示CU-UPF停止发送终端设备对应的第二下行数据包,第二下行数据包的包头包括第一QFI信息,用户面信息还用于指示CU-UPF缓存第一下行数据包和第二下行数据包。
基于本申请实施例提供的方法,DU接收到来自CU-UPF的下行数据包后,可以通过用户面信息通知CU-UPF停止下发并缓存相应的下行数据包。由于DU没有缓存数据的功能,通过指示CU-UPF停止发送并缓存相应的下行数据包,可以避免数据丢包,并且能避免CU-UPF向DU发送无用数据占用通信资源。
在一种可能的实现方式中,该方法还包括:DU向CU-CP发送第二控制面信息,第二控制面信息包括第一QFI信息和第一寻呼策略标识(paging policy indicator,PPI)信息,第一QFI信息和第一PPI信息用于终端设备的寻呼策略的确定。
在一种可能的实现方式中,该方法还包括:DU从CU-UPF接收终端设备对应的第三下行数据包,第三下行数据包的包头包括第二QFI信息和第二PPI信息,第二QFI信息与第一QFI信息不同;DU向CU-CP发送第三控制面信息,第三控制面信息包括第二QFI信息和第二PPI信息,第二QFI信息和第二PPI信息用于终端设备的寻呼策略的确定。CU-CP可以根据第三控制面信息中的第二PPI信息再次确定寻呼(Paging)策略,若根据第一PPI信息确定的Paging策略的优先级低于根据第二PPI信息确定的Paging策略的优先级,则CU-CP可以更新终端设备的Paging策略;若根据第一PPI信息确定的Paging策略的优先级不低于(高于或等于)根据第二PPI信息确定的Paging策略的优先级,则CU-CP可以仍根据第一PPI信息确定的Paging策略对终端设备进行Paging。
在一种可能的实现方式中,该方法还包括:DU接收来自CU-CP的第四控制面信息,第四控制面信息用于指示DU释放终端设备的空口资源,并保留DU与集中式单元-用户面功能网元CU-UPF的连接和终端设备的上下文;DU释放终端设备的空口资源。
基于本申请实施例提供的方法,CU-CP触发UE进入非激活态时,CU-CP可以指示DU释放相关空口资源,并保留与合设网元CU-UPF的用户面连接和相关UE上下文,CU-UPF不感知上述过程,能够与RRC Idle下由UPF(相当于CU-UPF)检测下行数据发起寻呼的过程区别开来,从而解决了现有技术无法支持RRC Inactive技术的问题。
在一种可能的实现方式中,DU接收来自CU-CP的第四控制面信息之前,该方法还包括:DU接收来自CU-CP的第五控制面信息,第五控制面信息用于指示终端设备进入非激活态的条件;DU向CU-CP发送第六控制面信息,第六控制面信息用于指示终端设备是否满足进入非激活态的条件。
第二方面,本申请实施例提供一种通信方法,应用于集中式单元CU-分布式单元DU架构中的集中式单元-控制面CU-CP,该方法包括:CU-CP向分布式单元DU发送第一控制面信息,第一控制面信息用于恢复终端设备的无线资源控制RRC连接;若DU是终端设备进入非激活态之前连接的最后一个DU,第一控制面信息包括集中式单元-用户面功能网元CU-UPF的上行端口标识;若DU不是终端设备进入非激活态之前连接的最后一个DU,第一控制面信息包括CU-UPF的上行端口标识,以及为终端设备服务的最后一个DU的下行端口信息。
基于本申请实施例提供的方法,CU-CP可以向DU发送第一控制面信息,以恢复终端设备的RRC连接。并且,若未发生DU切换,DU可以根据CU-UPF的上行端口标识从CU-UPF获取终端设备对应的数据包。若发生DU切换,DU可以根据CU-UPF的上行端口标识以及为终端设备服务的最后一个DU的下行端口信息从CU-UPF获取终端设备对应的数据包(终端设备处于非激活期时核心网下发的数据包)。而后,DU可以通过空口资源将数据包发送给终端设备,避免终端设备丢失其在非激活态的下行数据。
在一种可能的实现方式中,若DU不是终端设备进入非激活态之前连接的最后一个DU,该方法还包括:CU-CP向终端设备进入非激活态之前连接的最后一个DU发送终端设备上下文释放消息,终端设备上下文释放消息用于指示终端设备进入非激活态之前连接的最后一个DU释放与集中式单元-用户面功能网元CU-UPF的连接和终端设备的上下文。
在一种可能的实现方式中,该方法还包括:CU-CP从DU接收第二控制面信息,第二控制面信息包括第一QFI信息和第一PPI信息,第一QFI信息和第一PPI信息用于CU-CP为终端设备确定寻呼策略。
在一种可能的实现方式中,该方法还包括:CU-CP从DU接收第三控制面信息,第三控制面信息包括第二QFI信息和第二PPI信息,第二QFI信息和第二PPI信息用于CU-CP为终端设备确定寻呼策略,第二QFI信息与第一QFI信息不同,第二PPI信息与第一PPI信息不同。
在一种可能的实现方式中,该方法还包括:CU-CP向DU发送第四控制面信息,第四控制面信息用于指示DU释放终端设备的空口资源,并保留DU与核心网用户面网元的连接和终端设备的上下文。
在一种可能的实现方式中,CU-CP向DU发送第四控制面信息之前,该方法还包括:CU-CP向DU发送第五控制面信息,第五控制面信息用于指示终端设备进入非激活态的条件;CU-CP从DU接收第六控制面信息,第六控制面信息用于指示终端设备是否满足进入非激活态的条件。
第三方面,本申请实施例提供一种通信方法,包括:集中式单元-用户面功能网元CU-UPF接收来自分布式单元DU的第一指示信息,DU是终端设备进入非激活态之前连接的最后一个DU,第一指示信息使能终端设备对应的数据包被发送给DU;或者,CU-UPF接收来自DU的第二指示信息,DU不是终端设备进入非激活态之前连接的最后一个DU, 第二指示信息使能CU-UPF与DU的下行连接建立,以及终端设备的数据包被发送给DU。
基于本申请实施例提供的方法,若DU是终端设备进入非激活态之前连接的最后一个DU,CU-UPF从DU接收第一指示信息,第一指示信息使能CU-UPF将终端设备对应的数据包发送给DU;若DU不是终端设备进入非激活态之前连接的最后一个DU,CU-UPF从DU接收第二指示信息,第二指示信息使能CU-UPF建立与DU的下行连接,并将终端设备的数据包发送给DU。DU从CU-UPF获取终端设备对应的数据包后,可以通过空口资源将数据包发送给终端设备,避免终端设备丢失其在非激活态的下行数据。
在一种可能的实现方式中,该方法还包括:CU-UPF向DU发送第一下行数据包,第一下行数据包的包头携带第一服务质量流标识QFI信息;CU-UPF接收来自DU的用户面信息,用户面信息用于指示CU-UPF停止发送终端设备对应的第二下行数据包,第二下行数据包的包头包括第一QFI信息,用户面信息还用于指示CU-UPF缓存第一下行数据包和第二下行数据包;CU-UPF停止发送终端设备对应的第二下行数据包并缓存第一下行数据包和第二下行数据包。
第四方面,本申请实施例提供一种通信装置,通信装置为集中式单元CU-分布式单元DU架构中的DU,包括:接收单元,用于接收来自集中式单元-控制面CU-CP的第一控制面信息,第一控制面信息用于指示恢复终端设备的无线资源控制RRC连接;发送单元,用于向集中式单元-用户面功能网元CU-UPF发送第一指示信息,第一指示信息使能终端设备对应的数据包被发送给DU;或者,发送单元,用于向CU-UPF发送第二指示信息,第二指示信息使能CU-UPF与DU的下行连接建立,以及终端设备的数据包被发送给DU。
在一种可能的实现方式中,接收单元还用于:接收来自终端设备的RRC恢复请求;发送单元,还用于向CU-CP发送初始上行RRC消息,初始上行RRC消息用于请求恢复终端设备的RRC连接。
在一种可能的实现方式中,接收单元还用于:从CU-UPF接收终端设备的第一下行数据包,第一下行数据包的包头包括第一服务质量流标识QFI信息,第一QFI信息用于标识第一下行数据包的服务质量QoS流;当终端设备处于非激活态时,发送单元,还用于向CU-UPF发送用户面信息,用户面信息用于指示CU-UPF停止发送终端设备对应的第二下行数据包,第二下行数据包的包头包括第一QFI信息,用户面信息还用于指示CU-UPF缓存第一下行数据包和第二下行数据包。
在一种可能的实现方式中,发送单元,还用于:向CU-CP发送第二控制面信息,第二控制面信息包括第一QFI信息和第一寻呼策略标识PPI信息,第一QFI信息和第一PPI信息用于终端设备的寻呼策略的确定。
在一种可能的实现方式中,接收单元还用于:从CU-UPF接收终端设备对应的第三下行数据包,第三下行数据包的包头包括第二QFI信息和第二PPI信息,第二QFI信息与第一QFI信息不同;发送单元,还用于向CU-CP发送第三控制面信息,第三控制面信息包括第二QFI信息和第二PPI信息,第二QFI信息和第二PPI信息用于终端设备的寻呼策略的确定。
在一种可能的实现方式中,接收单元还用于:接收来自集中式单元-控制面CU-CP的第四控制面信息,第四控制面信息用于指示DU释放终端设备的空口资源,并通过存储单元保留DU与集中式单元-用户面功能网元CU-UPF的连接和终端设备的上下文;处理单元, 用于释放终端设备的空口资源。
在一种可能的实现方式中,接收单元还用于:接收来自CU-CP的第五控制面信息,第五控制面信息用于指示终端设备进入非激活态的条件;发送单元,还用于向CU-CP发送第六控制面信息,第六控制面信息用于指示终端设备是否满足进入非激活态的条件。
第五方面,本申请实施例提供一种通信装置,通信装置为集中式单元CU-分布式单元DU架构中的集中式单元-控制面CU-CP,包括:发送单元,用于向分布式单元DU发送第一控制面信息,第一控制面信息用于恢复终端设备的无线资源控制RRC连接;若DU是终端设备进入非激活态之前连接的最后一个DU,第一控制面信息包括集中式单元-用户面功能网元CU-UPF的上行端口标识;若DU不是终端设备进入非激活态之前连接的最后一个DU,第一控制面信息包括CU-UPF的上行端口标识,以及为终端设备服务的最后一个DU的下行端口信息。
在一种可能的实现方式中,若DU不是终端设备进入非激活态之前连接的最后一个DU,发送单元还用于:向终端设备进入非激活态之前连接的最后一个DU发送终端设备上下文释放消息,终端设备上下文释放消息用于指示终端设备进入非激活态之前连接的最后一个DU释放与集中式单元-用户面功能网元CU-UPF的连接和终端设备的上下文。
在一种可能的实现方式中,还包括接收单元,用于:从DU接收第二控制面信息,第二控制面信息包括第一QFI信息和第一PPI信息,第一QFI信息和第一PPI信息用于CU-CP为终端设备确定寻呼策略。
在一种可能的实现方式中,接收单元还用于:从DU接收第三控制面信息,第三控制面信息包括第二QFI信息和第二PPI信息,第二QFI信息和第二PPI信息用于CU-CP为终端设备确定寻呼策略,第二QFI信息与第一QFI信息不同,第二PPI信息与第一PPI信息不同。
在一种可能的实现方式中,发送单元还用于:CU-CP向DU发送第四控制面信息,第四控制面信息用于指示DU释放终端设备的空口资源,并保留DU与核心网用户面网元的连接和终端设备的上下文。
在一种可能的实现方式中,发送单元还用于:向DU发送第五控制面信息,第五控制面信息用于指示终端设备进入非激活态的条件;接收单元,还用于从DU接收第六控制面信息,第六控制面信息用于指示终端设备是否满足进入非激活态的条件。
第六方面,本申请实施例提供一种通信装置,通信装置为集中式单元-用户面功能网元CU-UPF,包括:接收单元,用于接收来自分布式单元DU的第一指示信息,DU是终端设备进入非激活态之前连接的最后一个DU,第一指示信息使能终端设备对应的数据包被发送给DU;或者,接收单元,用于接收来自DU的第二指示信息,DU不是终端设备进入非激活态之前连接的最后一个DU,第二指示信息使能CU-UPF与DU的下行连接建立,以及终端设备的数据包被发送给DU。
在一种可能的实现方式中,还包括发送单元,用于:向DU发送第一下行数据包,第一下行数据包的包头携带第一服务质量流标识QFI信息;接收单元用于接收来自DU的用户面信息,用户面信息用于指示CU-UPF停止发送终端设备对应的第二下行数据包,第二下行数据包的包头包括第一QFI信息,用户面信息还用于指示CU-UPF缓存第一下行数据包和第二下行数据包;发送单元用于停止发送终端设备对应的第二下行数据包并通过缓存 单元缓存第一下行数据包和第二下行数据包。
第七方面,提供一种通信装置,该通信装置可以是DU,包括:处理器和存储器;该存储器用于存储计算机执行指令,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面中任一项的方法。
第八方面,提供一种通信装置,该通信装置可以是CU-CP,包括:处理器和存储器;该存储器用于存储计算机执行指令,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第二方面中任一项的方法。
第九方面,提供一种通信装置,该通信装置可以是CU-UPF,包括:处理器和存储器;该存储器用于存储计算机执行指令,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第三方面中任一项的方法。
第十方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面至第三方面中任一项的方法。
第十一方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面至第三方面中任一项的方法。
第十二方面,提供一种电路系统,电路系统包括处理电路,处理电路被配置为执行如上述第一方面至第三方面中任一项的方法。
第十三方面,提供一种芯片,所述芯片包括处理器,所述处理器和存储器耦合,所述存储器存储有程序指令,当所述存储器存储的程序指令被所述处理器执行时实现上述第一方面至第三方面中任一项的方法。
第十四方面,提供一种通信系统,该通信系统包括上述第四方面中任一项的通信装置、第五方面中任一项的通信装置和第六方面中任一项的通信装置。
附图说明
图1为本申请实施例提供的一种CU/DU分离场景下的网络架构示意图;
图2A为本申请实施例提供的一种gNB-DU和gNB-CU-CP的协议栈示意图;
图2B为本申请实施例提供的一种gNB-DU和gNB-CU-UP的协议栈示意图;
图3为本申请实施例提供的一种gNB-DU、gNB-CU-CP和gNB-CU-UP的分布示意图;
图4为本申请实施例提供的一种UPF和gNB-CU-UP合设场景下的网络架构示意图;
图5为本申请实施例提供的又一种UPF和gNB-CU-UP合设场景下的网络架构示意图;
图6A为本申请实施例提供的一种gNB-CU-CP与UPF合设场景下的控制面协议栈架构示意图;
图6B为本申请实施例提供的一种gNB-CU-CP与UPF合设场景的用户面协议栈架构示意图;
图7为本申请实施例提供的一种DU、CU-CP或CU-UPF的结构示意图;
图8为本申请实施例提供的一种信号交互示意图;
图9为本申请实施例提供的又一种DU的结构示意图;
图10为本申请实施例提供的又一种CU-CP的结构示意图;
图11为本申请实施例提供的又一种CU-UPF的结构示意图。
具体实施方式
为了下述各实施例的描述清楚简洁,首先给出相关概念或技术的简要介绍:
CU/DU分离技术是5G中的一个重要特性,该技术可以更加灵活地对基站布网进行调整,并且,该技术对负载均衡和资源最大化利用有良好的收益,对于解决潮汐效应、部署双连接、边缘计算、业务分流以及智能化运维都有更好的支持。
如图1所示,示出了一种CU/DU分离场景下的网络架构示意图。在CU/DU分离场景下,gNB可以分为gNB-CU-CP、gNB-CU-UP和gNB-DU。gNB-CU-CP可以通过E1接口与gNB-CU-UP通信,gNB-CU-CP可以通过F1-C接口与gNB-DU通信,gNB-CU-UP可以通过F1-U接口与gNB-DU通信。终端设备可以通过gNB-DU接入网络。gNB-CU-CP可以通过下一代网络(Next generation,NG)2接口(简称N2)与接入和移动管理功能(access and mobility management function,AMF)网元通信,AMF可以通过N11接口(简称N11)与会话管理功能(session management function,SMF)网元通信,SMF可以通过N4接口(简称N4)与UPF网元通信,UPF网元通过N6接口(简称N6)接入数据网络(data network,DN),UPF网元可以通过N3接口(简称N3)与gNB-CU-UP通信。
其中,AMF负责接入与移动性管理功能,其可以接收终端设备的非接入层(non-access stratum,NAS)信令(包括会话会话管理(session management,SM)信令)和接入网设备的相关信令,完成用户的注册流程和SM信令的转发以及移动性管理。SMF负责会话管理功能,完成与协议数据单元(protocol data unit,PDU)会话相关的建立、释放、更新等流程。
其中,终端设备也可以称为终端,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,无线终端可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,也可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站或个人数字助理(personal digital assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、远程终端(remote terminal)、接入终端(access terminal)、用户代理(user agent)、用户设备或装置(user device or user equipment)。无线终端也可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、通信设备、嵌入式设备等,在此不作限定。
如图2A所示,在CU/DU分离架构中,RRC和分组数据汇聚协议(packet data convergence protocol,PDCP)协议栈可以分布在gNB-CU-CP(CU-CP),无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理层(physical layer,PHY)协议栈可以分布在gNB-DU(DU)。如图2B所示,服务数据适配协议(service data adaptation protocol,SDAP)和PDCP协议栈可以分布在gNB-CU-UP(CU-UP)。
如图3所示,gNB-DU可以分布式部署,gNB-CU-CP和gNB-CU-UP可以集中部署,一个gNB-CU-CP可控制多个gNB-CU-UP,该多个gNB-CU-UP可以灵活分组,分布在不同的区域对不同区域的gNB-DU进行服务。一个gNB-CU-UP可与多个gNB-DU连接,一个gNB-DU可以与一个或多个gNB-CU-UP连接。
随着CU/DU分离技术的成熟,MEC以及下沉的UPF的广泛部署,可以将UPF和gNB-CU-UP合设为一个网元,记为CU-UPF。需要说明的是,本申请实施例中CU-UPF只是一种命名方式,不排除在现有或未来的协议中定义其他可能的命名来替代上述名称。如图4所示,CU-UPF可以由SMF进行统一的调度管理。CU-UPF可以通过F1-U接口与gNB-DU通信,CU-UPF可以通过N6接口接入DN,可以取消gNB-CU-CP对gNB-CU-UP(即CU-UPF)的管理权限(取消原本的E1接口),或仅保留部分不影响安全性的权限和系统结构。
在UPF和gNB-CU-UP合设的场景下,终端设备如何与网络侧进行通信,目前还没有相应的解决方案。举例来说,当终端设备进入RRC非激活态(RRC Inactive/RRC_INACTIVE)时,由于合设后gNB-CU-UP与UPF为一个网元(即CU-UPF),若由gNB-CU-UP(相当于CU-UPF)检测下行数据发起寻呼(Paging),则与RRC空闲态(RRC Idle/RRC_IDLE)下由UPF(相当于CU-UPF)检测下行数据发起Paging没有差异,丧失了对于RRC Inactive技术的支持。其中,RRC_INACTIVE可以认为是RRC_IDLE和RRC连接态(RRC_CONNECTED)的中间态。概括来说,可以认为处于RRC_INACTIVE的UE的空口状态类似于RRC_IDLE,而对于5GC的连接类似于RRC_CONNECTED。本申请实施例中,RRC Inactive/RRC_INACTIVE可以称为Inactive或非激活态。
本申请实施例提供一种通信方法,应用于CU-UP和UPF合设场景(UPF和CU-UP合设为CU-UPF)下,可以由gNB-CU-CP指示gNB-DU释放相关空口资源,并保留与合设网元CU-UPF的用户面连接和相关UE上下文,CU-UPF不感知上述过程,能够与RRC Idle下由UPF(相当于CU-UPF)检测下行数据发起寻呼的过程区别开来,解决了现有技术无法支持RRC Inactive技术的问题。
进一步的,gNB-DU检测来自CU-UPF的下行数据包后,可以通过用户面信息通知CU-UPF停止下发相应的下行数据包,并对下行数据包进行缓存。由于DU没有缓存数据的功能,通过指示CU-UPF停止发送并缓存相应的下行数据包,可以避免数据丢包,并且能避免CU-UPF向DU发送无用数据占用通信资源。
若DU是终端设备进入非激活态之前连接的最后一个DU,DU可以向CU-UPF发送第一指示信息,第一指示信息使能终端设备对应的数据包被发送给DU;若DU不是终端设备进入非激活态之前连接的最后一个DU,DU可以向CU-UPF发送第二指示信息,第二指示信息使能CU-UPF与DU的下行连接建立,以及终端设备的数据包被发送给DU。这样,DU从CU-UPF获取终端设备对应的数据包后,可以通过空口资源将数据包发送给终端设备,避免终端设备丢失其在非激活态的下行数据。需要说明的是,DU可以向CU-UPF发送第一指示信息,或者DU可以向CU-UPF发送第二指示信息,即第一指示信息或第二指示信息是择一发送的。
本申请实施例提供的通信方法和装置可以应用于5G移动通信系统或新无线(new radio,NR)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。其中,通信系统可以是未来演进的公用陆地移动通信网络(public land mobile network,PLMN)网络、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络,本申请不做限定。
本申请实施例适用的网络架构如图5所示,一个gNB-CU-CP可以控制多个gNB-DU。 当UE没有下行业务数据时,UE可以进入非激活态,即释放空口传输资源,但保留NG-U的相关资源。当来自核心网的下行数据到达时,gNB-CU-CP指示其控制范围内的全部gNB-DU发起Paging。UE接收到gNB-DU发起的Paging消息后,可以与gNB-DU和gNB-CU-UP恢复连接。需要说明的是,当核心网的下行数据到达时,若UE从gNB-CU-CP控制范围内的一个gNB-DU的服务范围移动(moving)到另一个gNB-DU的服务范围内,即发生了DU切换,UE可以与新的gNB-DU建立连接;若核心网的下行数据到达时,UE仍处于其在进入非激活态前连接的最后一个gNB-DU的服务范围内,即未发生DU切换,UE恢复与该gNB-DU的连接即可。
另外,图5中其余各网元的说明可以参考图1和图4的相关描述,在此不做赘述。当然,图5所涉及的网络架构中还可能包括其他网元,如统一数据管理(unified data management,UDM)网元、策略控制功能(policy control function,PCF)网元、鉴权服务器功能(authentication server function,AUSF)网元、网络开放功能(network exposure function,NEF)网元/网络功能存储功能(network function repository function,NRF)网元/网络切片选择功能(network slice selection function,NSSF)、统一数据存储库(unified data repository,UDR)或网络存储功能(network repository function,NRF)等网元或设备等,不作具体限定。
需要说明的是,图5中的各个网元以及各个网元之间的接口名字只是一个示例,具体实现中各个网元以及各个网元之间的接口名字可能为其他,本申请实施例对此不作具体限定。
如图6A所示,为gNB-CU-CP与UPF合设场景下的控制面协议栈架构示意图。其中,UE与DU之间对等的协议层包括RLC层、MAC层和PHY。UE与CU-CP之间对等的协议层包括RRC层和PDCP层。UE与AMF之间对等的协议层包括非接入层(non-access stratum,NAS)层。AMF与SMF之间对等的协议层包括NAS层。由于已经取消了gNB-CU-CP对CU-UPF的控制,安全(security)以及与服务质量(quality of service,QoS)流(Flow)控制相关的PDCP和SDAP Config消息可以在控制面通过CU-CP->AMF->SMF->CU-UPF的路径最终下发给CU-UPF。
如图6B所示,为gNB-CU-CP与UPF合设场景的用户面协议栈架构示意图。其中,UE与CU-UPF之间对等的协议层包括SDAP和PDCP层,UE与UPF之间对等的协议层包括协议数据单元(protocol data unit,PDU)层(layer)。CU-UPF通过三层协议直接与DN(图6B中未示出)相连或与UPF的PDU会话锚点(PDU session anchor,PSA)相连。CU-UPF与UPF之间对等的协议层包括通用分组无线服务(general packet radio service,GPRS)隧道协议用户面(gPRS tunnelling protocol user plane,GTP-U)、用户数据报协议(user datagram protocol,UDP)/因特网协议(internet protocol,IP)层、L2层和L1层。
为了方便描述起见,下文将gNB-DU、gNB-CU-CP和gNB-CU-UP分别称为DU、CU-CP和CU-UP。需要说明的是,本申请实施例中CU-CP(gNB-CU-CP)、CU-UP(gNB-CU-UP)、DU(gNB-DU)只是一种命名方式,不排除在现有或未来的协议中定义其他可能的命名来替代上述名称。
本申请实施例中的DU、CU-CP或CU-UPF可以通过图7中的通信设备来实现。图7所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备700包括至少一个处 理器701,通信线路702,存储器703以及至少一个通信接口704。
处理器701可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路702可包括一通路,在上述组件之间传送信息。
通信接口704,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器703可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路702与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器703用于存储执行本申请方案的计算机执行指令,并由处理器701来控制执行。处理器701用于执行存储器703中存储的计算机执行指令,从而实现本申请下述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备700可以包括多个处理器,例如图7中的处理器701和处理器705。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
下面将结合附图对本申请实施例提供的通信方法进行具体阐述。需要说明的是,本申请下述实施例中各个网元的名称,各个网元之间的消息的名称或消息中各参数的名称等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
在本申请的描述中,除非另有说明,“至少一个”是指一个或多个,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例中,控制面信息(例如,第一控制面信息至第五控制面信息)是指DU和CU-CP之间用于交互的信息,控制面信息也可以为其他名称,本申请不做限定。
为了便于理解,以下结合附图对本申请实施例提供的通信方法进行具体介绍。
如图8所示,本申请实施例提供一种通信方法,包括:
801、CU-CP向DU发送控制面信息(第四控制面信息)。
其中,第四控制面信息用于指示DU释放终端设备的空口资源,并保留DU与核心网用户面网元的连接和终端设备的上下文,以使终端设备可以进入非激活态。示例性的,第四控制面信息可以是UE Context Release Command,其中包含RRC Release消息。
可选的,CU-CP向DU发送第四控制面信息之前,CU-CP可以向DU发送第五控制面信息,第五控制面信息用于指示终端设备进入非激活态的条件,以便DU可以根据第五控制面信息确定终端设备是否需要进入非激活态,并将相应的情况上报给CU-CP。示例性的,第五控制面信息可以是UE Context Setup Request,其中包含Inactivity Monitoring Request。
802、DU接收来自CU-CP的第四控制面信息。
DU可以根据第四控制面信息释放终端设备的空口资源。示例性的,DU接收到第四控制面信息后,可以向UE发送RRC Release消息,以释放相关空口资源。并且,DU保留DU与核心网用户面网元的连接和终端设备的上下文,即不断开DU与核心网用户面网元的连接并且不删除终端设备的上下文。可选的,DU还可以向CU-CP反馈RRC Release的执行情况,例如可以通过一个指示(Indicator)报告RRC Release是否执行成功。
可选的,DU接收来自CU-CP的第四控制面信息之前,可以接收来自CU-CP的第五控制面信息,第五控制面信息用于指示终端设备进入非激活态的条件,即CU-CP可以告知DU终端设备在什么条件(情况)下进入非激活态,使DU对终端设备的下行数据传输状态进行检测,以确定终端设备是否满足进入非激活态的条件。示例性的,CU-CP可以向DU发送UE Context Setup Request,UE Context Setup Request可以用于配置UE上下文,UE Context Setup Request中可以携带Inactivity Monitoring Request,用于DU触发RRC Inactive,即用于DU确定终端设备是否具备进入非激活态的条件,或者说用于DU确定终端设备是否需要进入非激活态。
DU接收到第五控制面信息后,可以向CU-CP发送第五控制面信息的反馈信息,该反馈信息用于向CU-CP反馈其是否支持Inactivity Monitoring。若DU支持Inactivity Monitoring,DU可以向CU-CP发送第六控制面信息,第六控制面信息用于指示终端设备是否满足进入非激活态的条件。示例性的,该第六控制面信息可以包括UE进入非激活态的相关信息(例如UE在较长时间内没有下行数据,此时可以认为UE具有进入非激活态的需求)。示例性的,第六控制面信息可以是UE inactivity notification。CU-CP可以根据第六控制面信息确定终端设备满足进入非激活态的条件或者不满足进入非激活态的条件。若终端设备满足进入非激活态的条件,CU-CP确定使UE进入非激活态,可以是将UE的状态从连接态转为非激活态,即执行步骤801。
基于本申请实施例提供的方法,CU-CP触发UE进入非激活态时,CU-CP可以指示DU释放相关空口资源,并保留与合设网元CU-UPF的用户面连接和相关UE上下文,CU-UPF不感知上述过程,能够与RRC Idle下由UPF(相当于CU-UPF)检测下行数据发起寻呼的过程区别开来,从而解决了现有技术无法支持RRC Inactive技术的问题。
上述步骤801-步骤802说明了如何在CU-UPF合设场景下使UE进入非激活态。当UE进入非激活态后,由于DU保留了与CU-UPF的连接,因此DU可能会从CU-UPF接收到终端设备的数据包,并需要进行相应的处理,即本实施例还可以包括步骤803-步骤811。
需要说明的是,步骤801-步骤802与后续步骤803-步骤811,可以是相互独立的,即可以通过步骤801-步骤802使终端设备进入非激活态,也可以通过其他方式使终端设备进入非激活态,本申请不做限定。
803、CU-UPF向DU发送终端设备的第一下行数据包。
其中,第一下行数据包的包头携带第一QFI信息。第一QFI可以用于标识第一下行数据包对应的5G QoS流。其中,5G QoS流是5G系统中QoS转发处理的最细粒度,映射到相同5G QoS流的所有流量都接受相同的转发处理(例如,调度策略,队列管理策略,速率整形策略,RLC配置等)。
804、DU从CU-UPF接收终端设备的第一下行数据包。
DU接收到第一下行数据包后,若确定终端设备处于非激活态,可以执行步骤805。
805、当终端设备处于非激活态时,DU向CU-UPF发送用户面信息。
其中,用户面信息用于指示CU-UPF停止发送终端设备对应的第二下行数据包,这是由于终端设备处于非激活态,即DU与终端设备之间的RRC连接已断开,DU无法向终端设备下发数据包,因此DU可以指示CU-UPF停止发送终端设备对应的第二下行数据包。用户面信息还用于指示CU-UPF缓存第一下行数据包和第二下行数据包。这是由于DU不具备缓存数据包的功能,因此可以由CU-UPF缓存第一下行数据包和第二下行数据包。
其中,第二下行数据包的包头包括第一QFI信息,即第二数据包和第一数据包都属于第一QFI对应的QoS流(5G QoS流)。第二数据包可以包括第一QFI对应的QoS流中除第一数据包之外的全部或部分数据包。
其中,用户面信息可以承载在PDU中,例如,可以承载在下行数据传输状态(downlink data delivery status,DDDS)PDU中。或者,用户面信息可以携带在数据包的包头中。
其中,DDDS PDU是DU向CU-UP通过F1-U接口由用户面发送的控制PDU。该控制PDU的作用是上报PDCP PDU的传输状态(包括PDCP序号(sequence number,SN)号和丢包情况等),用作流量控制。DDDS PDU可用于在用户面指示CU-UP,本消息(携带DDDS PDU的消息)为最后一次DL Status Report,后续不会有上行或下行的数据从本通道(传输DDDS PDU的通信通道)发送。或者,DDDS PDU可用于指示本消息是Initial DL DATA DELIVERY STATUS,以便CU-UP可以开始向DU发送下行数据包。示例性的,DDDS PDU的结构可以如表1所示。
表1
Figure PCTCN2021102527-appb-000001
Figure PCTCN2021102527-appb-000002
需要说明的是,可以在表1所示的DDDS PDU的基础上增加扩展比特,在扩展比特中携带上述用户面信息,或者,DDDS PDU可以不是表1所示的格式,可以对DDDS PDU进行重新设计,本申请不做限定。
806、CU-UPF接收来自DU的用户面信息。
CU-UPF可以根据用户面信息停止发送终端设备对应的第二下行数据包,并缓存第一下行数据包和第二下行数据包。
807、DU向CU-CP发送第二控制面信息。
其中,第二控制面信息包括第一QFI信息和第一PPI信息,第一QFI信息和第一PPI信息用于终端设备的寻呼策略的确定。可选的,第二控制面信息还可以包括gNB-CU-CP UE F1AP ID和gNB-DU UE F1AP ID,用于识别终端设备。示例性的,第二控制面信息可以携带在DL Data Notification中。
808、CU-CP从DU接收第二控制面信息。
CU-CP根据第一QFI信息查询5G QoS标识符(5G QoS Identifier,5QI)以及分配和保留优先级(allocation and retention priority,ARP)。其中,5QI用于确定QoS flow的QoS参数,如时延、误包率等,ARP用于确定不同QoS Flow之间的优先级。CU-CP根据第一PPI信息确定Paging策略,确定Paging策略后,可以开始向CU-CP控制范围内的DU发送Paging消息,收到Paging消息的DU可以其覆盖范围内的UE发起Paging。
需要说明的是,步骤807-步骤808以及步骤805-步骤806之间没有必然的执行先后顺序,可以是先执行步骤805-步骤806,再执行步骤807-步骤808;也可以是先执行步骤807-步骤808,再执行步骤805-步骤806;还可以是同时执行步骤805-步骤806以及步骤807- 步骤808,本实施例对此不作具体限定。
在步骤807-步骤808之后,若CU-UPF继续向DU下发第二QFI对应的数据包,则本申请实施例还可以包括步骤809-步骤811。
809、DU从CU-UPF接收终端设备对应的第三下行数据包。
其中,第三下行数据包的包头包括第二QFI信息和第二PPI信息,第二QFI信息与第一QFI信息不同,第二PPI信息与第一PPI信息相同或不同。
810、DU向CU-CP发送第三控制面信息。
其中,第三控制面信息包括第二QFI信息和第二PPI信息,第二QFI信息和第二PPI信息用于终端设备的寻呼策略的确定。示例性的,第三控制面信息可以携带在新的DL Data Notification消息中,该新的DL Data Notification消息与携带第二控制面信息的DL Data Notification消息不同。
811、CU-CP从DU接收第三控制面信息。
CU-CP可以根据第三控制面信息中的第二PPI信息再次确定Paging策略,若根据第一PPI信息确定的Paging策略的优先级低于根据第二PPI信息确定的Paging策略的优先级,则CU-CP可以更新终端设备的Paging策略;若根据第一PPI信息确定的Paging策略的优先级不低于(高于或等于)根据第二PPI信息确定的Paging策略的优先级,则CU-CP可以仍根据第一PPI信息确定的Paging策略对终端设备进行Paging。
基于本申请实施例提供的方法,DU接收到来自CU-UPF的下行数据包后,可以通过用户面信息通知CU-UPF停止下发并缓存相应的下行数据包。由于DU没有缓存数据的功能,通过指示CU-UPF停止发送并缓存相应的下行数据包,可以避免数据丢包,并且能避免CU-UPF向DU发送无用数据占用通信资源。
步骤803-步骤811描述了在CU-UPF合设场景下如何触发寻呼(即对终端设备进行Paging)。触发寻呼后,DU可以接收来自终端设备的RRC恢复请求,DU可以向CU-CP请求恢复终端设备的RRC连接,即本申请实施例还可以包括步骤812-步骤818。
需要说明的是,步骤803-步骤811与步骤812-步骤818,可以是相互独立的,即可以通过步骤803-步骤811触发寻呼,也可以通过其他方式触发寻呼,本申请不做限定。
812、DU接收来自终端设备的RRC恢复请求(RRC Resume Request)。
其中,终端设备是指接收到寻呼消息的终端设备。
813、DU向CU-CP发送初始上行RRC消息(Initial UL RRC Message Transfer)。
其中,初始上行RRC消息用于请求恢复终端设备的RRC连接。
814、CU-CP向DU发送第一控制面信息,第一控制面信息用于恢复终端设备的RRC连接。
若当前DU(向CU-CP发送初始上行RRC消息的DU)是终端设备进入非激活态之前连接的最后一个DU,第一控制面信息还可以携带CU-UPF的上行端口标识,以便DU可以根据CU-UPF的上行端口标识向CU-UPF请求终端设备的数据。其中,CU-UPF的上行端口标识例如可以是F1-U UL隧道端点标识(tunnel endpoint identifier,TEID)。若当前DU不是终端设备进入非激活态之前连接的最后一个DU,第一控制面信息不仅可以携带CU-UPF的上行端口标识,还可以携带终端设备进入非激活态之前连接的最后一个DU(Last Serving DU)的下行端口信息,DU可以根据CU-UPF的上行端口标识向CU-UPF请求终 端设备的数据,终端设备的数据可以是Last Serving DU指示CU-UPF缓存的。示例性的,第一控制面信息可以携带在UE Context Setup Request中。
同时,CU-CP可以与UE进行RRC Resume信令交互,使UE从非激活态转换为连接态。
另外,若DU不是终端设备进入非激活态之前连接的最后一个DU,CU-CP可以向终端设备进入非激活态之前连接的最后一个DU发送终端设备上下文释放消息,该终端设备上下文释放消息用于指示终端设备进入非激活态之前连接的最后一个DU释放与CU-UPF的连接和终端设备的上下文。即若发生DU切换,则CU-CP可以向Last Serving DU发送UE Context Release消息,指示该DU释放与CU-UPF的连接及UE上下文,从而节省通信资源。
815、DU接收来自CU-CP的第一控制面信息。
若DU是终端设备进入非激活态之前连接的最后一个DU,DU可以执行步骤816,若DU不是终端设备进入非激活态之前连接的最后一个DU,DU可以执行步骤818。
816、若DU是终端设备进入非激活态之前连接的最后一个DU,DU向CU-UPF发送第一指示信息,第一指示信息使能终端设备对应的数据包被发送给DU。
即若未发生DU切换,则DU向CU-UPF发送第一指示信息,第一指示信息使能终端设备对应的数据包被发送给DU。其中,终端设备对应的数据包可以包括第一下行数据包和第二下行数据包。示例性的,第一指示信息可以携带在DDDS PDU中。
817、CU-UPF接收来自DU的第一指示信息。
CU-UPF接收到来自DU的第一指示信息后,可以将终端设备对应的数据包(第一下行数据包和第二下行数据包)发送给DU。
可选的,CU-UPF可以向AMF/SMF报告DU的F1-U端口变化情况。
818、若DU不是终端设备进入非激活态之前连接的最后一个DU,DU向CU-UPF发送第二指示信息,第二指示信息使能CU-UPF与DU的下行连接建立,以及终端设备的数据包被发送给DU。
即若发生DU切换,DU向CU-UPF发送第二指示信息,第二指示信息使能CU-UPF建立与DU的下行连接,并将(Last Serving DU指示缓存的)终端设备的数据包发往DU。第二指示信息可以携带在DDDS PDU中。
819、CU-UPF接收来自DU的第二指示信息。
CU-UPF接收到来自DU的第二指示信息后,建立与DU的下行连接,并将终端设备对应的数据包(第一下行数据包和第二下行数据包)发送给DU。
可选的,CU-UPF可以向AMF/SMF报告DU的F1-U端口变化情况。
基于本申请实施例提供的方法,若DU是终端设备进入非激活态之前连接的最后一个DU,DU向CU-UPF发送第一指示信息,使能CU-UPF将终端设备对应的数据包发送给DU;若DU不是终端设备进入非激活态之前连接的最后一个DU,DU向CU-UPF发送第二指示信息,使能CU-UPF建立与DU的下行连接,并将终端设备的数据包发送给DU。DU从CU-UPF获取终端设备对应的数据包后,可以通过空口资源将数据包发送给终端设备,避免终端设备丢失其在非激活态的下行数据。
上述本申请提供的实施例中,分别从DU、CU-CP、CU-UPF以及DU、CU-CP和CU-UPF 之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,DU、CU-CP和CU-UPF可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中所涉及的DU9的一种可能的结构示意图,该DU9包括:接收单元901和发送单元902。在本申请实施例中,接收单元901,用于接收来自集中式单元-控制面CU-CP的第一控制面信息,第一控制面信息用于指示恢复终端设备的无线资源控制RRC连接;发送单元902,用于向集中式单元-用户面功能网元CU-UPF发送第一指示信息,第一指示信息使能终端设备对应的数据包被发送给DU;或者发送单元902,用于向CU-UPF发送第二指示信息,第二指示信息使能CU-UPF与DU的下行连接建立,以及终端设备的数据包被发送给DU。
在图8所示的方法实施例中,接收单元901用于支持DU执行图8中的过程802、804、809、812和815。发送单元902用于支持DU执行图8中的过程805、807、810、813和816。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
其中,接收单元901或发送单元902可以是图7中的通信接口704。
在采用对应各个功能划分各个功能模块的情况下,图10示出了上述实施例中所涉及的CU-CP10的一种可能的结构示意图,该CU-CP10包括:发送单元1001。在本申请实施例中,发送单元1001,用于向分布式单元DU发送第一控制面信息,第一控制面信息用于恢复终端设备的无线资源控制RRC连接;若DU是终端设备进入非激活态之前连接的最后一个DU,第一控制面信息包括集中式单元-用户面功能网元CU-UPF的上行端口标识;若DU不是终端设备进入非激活态之前连接的最后一个DU,第一控制面信息包括CU-UPF的上行端口标识,以及为终端设备服务的最后一个DU的下行端口信息。
在图8所示的方法实施例中,发送单元1001用于支持CU-CP执行图8中的过程801和814。可选的,CU-UPF还可以包括接收单元1002,用于支持CU-CP执行图8中的过程808和811。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
其中,发送单元1001或接收单元1002可以是图7中的通信接口704。
在采用对应各个功能划分各个功能模块的情况下,图11示出了上述实施例中所涉及的CU-UPF11的一种可能的结构示意图,该CU-UPF11包括:接收单元1101。在本申请实施例中,接收单元1101,用于接收来自分布式单元DU的第一指示信息,DU是终端设备进入非激活态之前连接的最后一个DU,第一指示信息使能终端设备对应的数据包被发送给DU;或者接收单元1101,用于接收来自DU的第二指示信息,DU不是终端设备进入非激活态之前连接的最后一个DU,第二指示信息使能CU-UPF与DU的下行连接建立,以及终端设备的数据包被发送给DU。
在图8所示的方法实施例中,接收单元1101用于支持CU-UPF执行图8中的过程806和817。可选的,CU-UPF还可以包括发送单元1102,用于支持CU-UPF执行图8中的过程803。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块 的功能描述,在此不再赘述。
其中,接收单元1101或发送单元1102可以是图7中的通信接口704。
示例性的,上述各个装置实施例中DU、CU-CP和CU-UPF和方法实施例中的DU、CU-CP和CU-UPF可以完全对应,由相应的模块或单元执行相应的步骤,例如通信模块(收发器)可以执行方法实施例中发送和/或接收的步骤,除发送接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。发送单元和接收单元可以组成收发单元,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
示例性的,上述DU、CU-CP和CU-UPF的功能可以通过芯片来实现,处理单元可以通过硬件来实现,也可以通过软件来实现,当通过硬件实现时,该处理单元可以是逻辑电路、集成电路等;当通过软件来实现时,该处理单元可以是一个通用处理器,通过读取存储单元中存储的软件代码来实现,该存储单元可以集成在处理器中,也可以位于该处理器之外,独立存在。
上述各个装置实施例中DU、CU-CP和CU-UPF和方法实施例中的DU、CU-CP和CU-UPF完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
本申请实施例中对模块或单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。示例性地,在本申请实施例中,接收单元和发送单元可以集成至收发单元中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drives,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范 围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种通信方法,其特征在于,应用于集中式单元CU-分布式单元DU架构中的所述DU,所述方法包括:
    所述DU接收来自集中式单元-控制面CU-CP的第一控制面信息,所述第一控制面信息用于指示恢复终端设备的无线资源控制RRC连接;
    若所述DU是所述终端设备进入非激活态之前连接的最后一个DU,所述DU向集中式单元-用户面功能网元CU-UPF发送第一指示信息,所述第一指示信息使能所述终端设备对应的数据包被发送给所述DU;
    若所述DU不是所述终端设备进入非激活态之前连接的最后一个DU,所述DU向所述CU-UPF发送第二指示信息,所述第二指示信息使能所述CU-UPF与所述DU的下行连接建立,以及所述终端设备的数据包被发送给所述DU。
  2. 根据权利要求1所述的方法,其特征在于,所述分布式单元DU接收来自集中式单元-控制面CU-CP的第一控制面信息之前,所述方法还包括:
    所述DU接收来自所述终端设备的RRC恢复请求;
    所述DU向所述CU-CP发送初始上行RRC消息,所述初始上行RRC消息用于请求恢复所述终端设备的RRC连接。
  3. 根据权利要求1或2所述的方法,其特征在于,所述分布式单元DU接收来自集中式单元-控制面CU-CP的第一控制面信息之前,所述方法还包括:
    所述DU从所述CU-UPF接收终端设备的第一下行数据包,所述第一下行数据包的包头包括第一服务质量流标识QFI信息,所述第一QFI信息用于标识所述第一下行数据包的服务质量QoS流;
    当所述终端设备处于非激活态时,所述DU向所述CU-UPF发送用户面信息,所述用户面信息用于指示所述CU-UPF停止发送所述终端设备对应的第二下行数据包,所述第二下行数据包的包头包括所述第一QFI信息,所述用户面信息还用于指示所述CU-UPF缓存所述第一下行数据包和所述第二下行数据包。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述DU向所述CU-CP发送第二控制面信息,所述第二控制面信息包括所述第一QFI信息和第一寻呼策略标识PPI信息,所述第一QFI信息和所述第一PPI信息用于所述终端设备的寻呼策略的确定。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述DU从所述CU-UPF接收所述终端设备对应的第三下行数据包,所述第三下行数据包的包头包括第二QFI信息和第二PPI信息,所述第二QFI信息与所述第一QFI信息不同;
    所述DU向所述CU-CP发送第三控制面信息,所述第三控制面信息包括所述第二QFI信息和所述第二PPI信息,所述第二QFI信息和所述第二PPI信息用于所述终端设备的寻呼策略的确定。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    所述DU接收来自所述CU-CP的第四控制面信息,所述第四控制面信息用于指示所述DU释放终端设备的空口资源,并保留所述DU与集中式单元-用户面功能网元CU-UPF的 连接和所述终端设备的上下文;
    所述DU释放所述终端设备的空口资源。
  7. 根据权利要求6所述的方法,其特征在于,所述DU接收来自所述CU-CP的第四控制面信息之前,所述方法还包括:
    所述DU接收来自所述CU-CP的第五控制面信息,所述第五控制面信息用于指示所述终端设备进入非激活态的条件;
    所述DU向所述CU-CP发送第六控制面信息,所述第六控制面信息用于指示所述终端设备是否满足进入非激活态的条件。
  8. 一种通信方法,其特征在于,应用于集中式单元CU-分布式单元DU架构中的集中式单元-控制面CU-CP,所述方法包括:
    所述CU-CP向分布式单元DU发送第一控制面信息,所述第一控制面信息用于恢复终端设备的无线资源控制RRC连接;
    若所述DU是所述终端设备进入非激活态之前连接的最后一个DU,所述第一控制面信息包括集中式单元-用户面功能网元CU-UPF的上行端口标识;
    若所述DU不是所述终端设备进入非激活态之前连接的最后一个DU,所述第一控制面信息包括CU-UPF的上行端口标识,以及为所述终端设备服务的最后一个DU的下行端口信息。
  9. 根据权利要求8所述的方法,其特征在于,若所述DU不是所述终端设备进入非激活态之前连接的最后一个DU,所述方法还包括:
    所述CU-CP向所述终端设备进入非激活态之前连接的最后一个DU发送终端设备上下文释放消息,所述终端设备上下文释放消息用于指示所述终端设备进入非激活态之前连接的最后一个DU释放与所述CU-UPF的连接和所述终端设备的上下文。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述CU-CP从所述DU接收第二控制面信息,所述第二控制面信息包括第一服务质量流标识QFI信息和第一寻呼策略标识PPI信息,所述第一QFI信息和所述第一PPI信息用于所述CU-CP为终端设备确定寻呼策略。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述CU-CP从所述DU接收第三控制面信息,所述第三控制面信息包括第二QFI信息和第二PPI信息,所述第二QFI信息和所述第二PPI信息用于所述CU-CP为所述终端设备确定寻呼策略,所述第二QFI信息与所述第一QFI信息不同。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述方法还包括:
    所述CU-CP向所述DU发送第四控制面信息,所述第四控制面信息用于指示所述DU释放所述终端设备的空口资源,并保留所述DU与核心网用户面网元的连接和所述终端设备的上下文。
  13. 根据权利要求12所述的方法,其特征在于,所述CU-CP向所述DU发送第四控制面信息之前,所述方法还包括:
    所述CU-CP向所述DU发送第五控制面信息,所述第五控制面信息用于指示所述终端设备进入非激活态的条件;
    所述CU-CP从所述DU接收第六控制面信息,所述第六控制面信息用于指示所述终端 设备是否满足进入非激活态的条件。
  14. 一种通信方法,其特征在于,包括:
    集中式单元-用户面功能网元CU-UPF接收来自分布式单元DU的第一指示信息,所述DU是终端设备进入非激活态之前连接的最后一个DU,所述第一指示信息使能所述终端设备对应的数据包被发送给所述DU;或者
    所述CU-UPF接收来自DU的第二指示信息,所述DU不是终端设备进入非激活态之前连接的最后一个DU,所述第二指示信息使能所述CU-UPF与所述DU的下行连接建立,以及所述终端设备的数据包被发送给所述DU。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述CU-UPF向所述DU发送第一下行数据包,所述第一下行数据包的包头携带第一服务质量流标识QFI信息;
    所述CU-UPF接收来自所述DU的用户面信息,所述用户面信息用于指示所述CU-UPF停止发送所述终端设备对应的第二下行数据包,所述第二下行数据包的包头包括所述第一QFI信息,所述用户面信息还用于指示所述CU-UPF缓存所述第一下行数据包和所述第二下行数据包;
    所述CU-UPF停止发送所述第二下行数据包,并缓存所述第一下行数据包和第二下行数据包。
  16. 一种通信装置,所述通信装置为集中式单元CU-分布式单元DU架构中的所述DU,其特征在于,包括:
    接收单元,用于接收来自集中式单元-控制面CU-CP的第一控制面信息,所述第一控制面信息用于指示恢复终端设备的无线资源控制RRC连接;
    发送单元,用于向集中式单元-用户面功能网元CU-UPF发送第一指示信息,所述第一指示信息使能所述终端设备对应的数据包被发送给所述DU;或者
    所述发送单元,用于向所述CU-UPF发送第二指示信息,所述第二指示信息使能所述CU-UPF与所述DU的下行连接建立,以及所述终端设备的数据包被发送给所述DU。
  17. 根据权利要求16所述的通信装置,其特征在于,所述接收单元还用于:
    接收来自所述终端设备的RRC恢复请求;
    所述发送单元,还用于向所述CU-CP发送初始上行RRC消息,所述初始上行RRC消息用于请求恢复所述终端设备的RRC连接。
  18. 根据权利要求16或17所述的通信装置,其特征在于,所述接收单元还用于:
    从所述CU-UPF接收终端设备的第一下行数据包,所述第一下行数据包的包头包括第一服务质量流标识QFI信息,所述第一QFI信息用于标识所述第一下行数据包的服务质量QoS流;
    当所述终端设备处于非激活态时,所述发送单元,还用于向所述CU-UPF发送用户面信息,所述用户面信息用于指示所述CU-UPF停止发送所述终端设备对应的第二下行数据包,所述第二下行数据包的包头包括所述第一QFI信息,所述用户面信息还用于指示所述CU-UPF缓存所述第一下行数据包和所述第二下行数据包。
  19. 根据权利要求18所述的通信装置,其特征在于,所述发送单元,还用于:
    向所述CU-CP发送第二控制面信息,所述第二控制面信息包括所述第一QFI信息和 第一寻呼策略标识PPI信息,所述第一QFI信息和所述第一PPI信息用于所述终端设备的寻呼策略的确定。
  20. 根据权利要求19所述的通信装置,其特征在于,所述接收单元还用于:
    从所述CU-UPF接收所述终端设备对应的第三下行数据包,所述第三下行数据包的包头包括第二QFI信息和第二PPI信息,所述第二QFI信息与所述第一QFI信息不同;
    所述发送单元,还用于向所述CU-CP发送第三控制面信息,所述第三控制面信息包括所述第二QFI信息和所述第二PPI信息,所述第二QFI信息和所述第二PPI信息用于所述终端设备的寻呼策略的确定。
  21. 根据权利要求16-20任一项所述的通信装置,其特征在于,所述接收单元还用于:
    接收来自所述CU-CP的第四控制面信息,所述第四控制面信息用于指示所述DU释放终端设备的空口资源,并通过存储单元保留所述DU与集中式单元-用户面功能网元CU-UPF的连接和所述终端设备的上下文;
    处理单元,用于释放所述终端设备的空口资源。
  22. 根据权利要求21所述的通信装置,其特征在于,所述接收单元还用于:
    接收来自所述CU-CP的第五控制面信息,所述第五控制面信息用于指示所述终端设备进入非激活态的条件;
    所述发送单元,还用于向所述CU-CP发送第六控制面信息,所述第六控制面信息用于指示所述终端设备是否满足进入非激活态的条件。
  23. 一种通信装置,所述通信装置为集中式单元CU-分布式单元DU架构中的集中式单元-控制面CU-CP,其特征在于,包括:
    发送单元,用于向分布式单元DU发送第一控制面信息,所述第一控制面信息用于恢复终端设备的无线资源控制RRC连接;
    若所述DU是所述终端设备进入非激活态之前连接的最后一个DU,所述第一控制面信息包括集中式单元-用户面功能网元CU-UPF的上行端口标识;
    若所述DU不是所述终端设备进入非激活态之前连接的最后一个DU,所述第一控制面信息包括CU-UPF的上行端口标识,以及为所述终端设备服务的最后一个DU的下行端口信息。
  24. 根据权利要求23所述的通信装置,其特征在于,若所述DU不是所述终端设备进入非激活态之前连接的最后一个DU,所述发送单元还用于:
    向所述终端设备进入非激活态之前连接的最后一个DU发送终端设备上下文释放消息,所述终端设备上下文释放消息用于指示所述终端设备进入非激活态之前连接的最后一个DU释放与所述CU-UPF的连接和所述终端设备的上下文。
  25. 根据权利要求23或24所述的通信装置,其特征在于,还包括接收单元,用于:
    从所述DU接收第二控制面信息,所述第二控制面信息包括第一服务质量流标识QFI信息和第一寻呼策略标识PPI信息,所述第一QFI信息和所述第一PPI信息用于所述CU-CP为终端设备确定寻呼策略。
  26. 根据权利要求25所述的通信装置,其特征在于,所述接收单元还用于:
    从所述DU接收第三控制面信息,所述第三控制面信息包括第二QFI信息和第二PPI信息,所述第二QFI信息和所述第二PPI信息用于所述CU-CP为所述终端设备确定寻呼 策略,所述第二QFI信息与所述第一QFI信息不同。
  27. 根据权利要求23-26任一项所述的通信装置,其特征在于,所述发送单元还用于:
    所述CU-CP向所述DU发送第四控制面信息,所述第四控制面信息用于指示所述DU释放所述终端设备的空口资源,并保留所述DU与核心网用户面网元的连接和所述终端设备的上下文。
  28. 根据权利要求27所述的通信装置,其特征在于,所述发送单元还用于:
    向所述DU发送第五控制面信息,所述第五控制面信息用于指示所述终端设备进入非激活态的条件;
    接收单元,还用于从所述DU接收第六控制面信息,所述第六控制面信息用于指示所述终端设备是否满足进入非激活态的条件。
  29. 一种通信装置,所述通信装置为集中式单元-用户面功能网元CU-UPF,其特征在于,包括:
    接收单元,用于接收来自分布式单元DU的第一指示信息,所述DU是终端设备进入非激活态之前连接的最后一个DU,所述第一指示信息使能所述终端设备对应的数据包被发送给所述DU;或者
    接收单元,用于接收来自DU的第二指示信息,所述DU不是终端设备进入非激活态之前连接的最后一个DU,所述第二指示信息使能所述CU-UPF与所述DU的下行连接建立,以及所述终端设备的数据包被发送给所述DU。
  30. 根据权利要求29所述的通信装置,其特征在于,还包括发送单元,用于:
    向所述DU发送第一下行数据包,所述第一下行数据包的包头携带第一服务质量流标识QFI信息;
    所述接收单元用于接收来自所述DU的用户面信息,所述用户面信息用于指示所述CU-UPF停止发送所述终端设备对应的第二下行数据包,所述第二下行数据包的包头包括所述第一QFI信息,所述用户面信息还用于指示所述CU-UPF缓存所述第一下行数据包和所述第二下行数据包;
    所述发送单元用于停止发送所述第二下行数据包并通过缓存单元缓存所述第一下行数据包和第二下行数据包。
  31. 一种通信装置,其特征在于,所述通信装置包括收发器,存储器和处理器,所述处理器和所述存储器耦合;
    所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述计算机执行指令,以使所述通信装置执行权利要求1-7或权利要求8-13或权利要求14-15中任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1-7或权利要求8-13或权利要求14-15中任一项所述的方法。
  33. 一种通信系统,其特征在于,所述通信系统包括:权利要求16-22任一项所述的通信装置、权利要求23-28任一项所述的通信装置和权利要求29-30任一项所述的通信装置。
PCT/CN2021/102527 2020-06-29 2021-06-25 一种通信方法和装置 WO2022001894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010606037.4 2020-06-29
CN202010606037.4A CN113939044A (zh) 2020-06-29 2020-06-29 一种通信方法和装置

Publications (1)

Publication Number Publication Date
WO2022001894A1 true WO2022001894A1 (zh) 2022-01-06

Family

ID=79273151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102527 WO2022001894A1 (zh) 2020-06-29 2021-06-25 一种通信方法和装置

Country Status (2)

Country Link
CN (1) CN113939044A (zh)
WO (1) WO2022001894A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031403A1 (zh) * 2022-08-09 2024-02-15 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151871A (zh) * 2018-02-14 2019-01-04 华为技术有限公司 集中式单元-分布式单元架构下的通信方法、通信设备
CN110035498A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种通信方法,设备及其系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131956A1 (en) * 2017-01-16 2018-07-19 Samsung Electronics Co., Ltd. Method and apparatus for communication in wireless mobile communication system
CN109391963B (zh) * 2017-08-11 2022-03-11 华为技术有限公司 一种传输方法和网络设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035498A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 一种通信方法,设备及其系统
CN109151871A (zh) * 2018-02-14 2019-01-04 华为技术有限公司 集中式单元-分布式单元架构下的通信方法、通信设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG-RAN; Architecture description (Release 15)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.401, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V15.3.0, 30 September 2018 (2018-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 39, XP051487337 *
HUAWEI: "Inactivity monitoring in CP/UP separation", 3GPP DRAFT; R3-182129 INACTIVITY MONITORING IN CP-UP SEPARATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Sanya, China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051430283 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024031403A1 (zh) * 2022-08-09 2024-02-15 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质

Also Published As

Publication number Publication date
CN113939044A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US11425600B2 (en) Wireless backhaul data transmission method and apparatus
WO2019157885A1 (zh) 集中式单元-分布式单元架构下的通信方法、通信设备
WO2021057389A1 (zh) 一种双连接管理方法和通信装置
US20200221538A1 (en) Data transmission method, terminal device, and network device
WO2019196847A1 (zh) 通信方法及装置
WO2018141284A1 (zh) 一种QoS流处理方法、设备和通信系统
US11799968B2 (en) Communications method and apparatus
WO2019076195A1 (zh) 移动性管理的方法、终端及核心网设备
WO2021097858A1 (zh) 一种通信方法及装置
WO2022033543A1 (zh) 一种中继通信方法及通信装置
WO2019154160A1 (zh) 一种通信方法及装置
WO2019047935A1 (zh) 一种会话建立方法及装置
WO2021026706A1 (zh) 一种f1接口管理方法及装置
WO2022001894A1 (zh) 一种通信方法和装置
WO2016115868A1 (zh) 接入技术网络间的网络资源调整方法及终端
WO2017008402A1 (zh) 一种认证接入的方法、基站及终端
WO2020238901A1 (zh) 通信方法及相关设备
WO2022067575A1 (zh) 测量报告上报方法及装置
US20230026061A1 (en) Session processing method and device, and storage medium
CN111491370B (zh) 一种通信方法、网元、系统及存储介质
WO2021062677A1 (zh) 通信方法和装置
WO2018228545A1 (zh) 信息处理方法以及相关装置
WO2014000611A1 (zh) 传输数据的方法和装置
WO2024146301A1 (zh) 一种通信方法及装置
WO2023246746A1 (zh) 一种通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833103

Country of ref document: EP

Kind code of ref document: A1