WO2022001771A1 - 假肢控制方法、装置、系统及存储介质 - Google Patents

假肢控制方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2022001771A1
WO2022001771A1 PCT/CN2021/101759 CN2021101759W WO2022001771A1 WO 2022001771 A1 WO2022001771 A1 WO 2022001771A1 CN 2021101759 W CN2021101759 W CN 2021101759W WO 2022001771 A1 WO2022001771 A1 WO 2022001771A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
signal
emg
preset
myoelectric
Prior art date
Application number
PCT/CN2021/101759
Other languages
English (en)
French (fr)
Inventor
田彦秀
姚秀军
韩久琦
桂晨光
Original Assignee
京东科技信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东科技信息技术有限公司 filed Critical 京东科技信息技术有限公司
Publication of WO2022001771A1 publication Critical patent/WO2022001771A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2/72Bioelectric control, e.g. myoelectric

Definitions

  • the present disclosure generally relates to the technical field of intelligent control, and more particularly, to a prosthetic control method, device, system and storage medium.
  • the present disclosure relates to a prosthetic control method comprising:
  • the operation of the prosthesis is controlled by the control instructions.
  • the method before the determining the target interval corresponding to the myoelectric strength value in a plurality of preset intervals, before acquiring the control instruction corresponding to the target interval, the method further includes:
  • the envelope value of the envelope signal is greater than or equal to the second preset threshold within the preset time period, execute determining the target interval corresponding to the myoelectric strength value in a plurality of preset intervals, and obtain the target Steps of the control instruction corresponding to the interval;
  • a preset control instruction is output.
  • the obtaining a corresponding myoelectric strength value according to the myoelectric signal includes:
  • the root mean square value is calculated by the following formula:
  • RMS is the EMG intensity value
  • T is the time length of the EMG signal
  • sEMG(t) is the EMG signal value at time t
  • control method before obtaining the corresponding myoelectric strength value and the envelope signal according to the myoelectric signal, the control method further includes:
  • Band-pass filtering is performed on the EMG signal to obtain a filtered EMG signal.
  • the determining a target interval corresponding to the myoelectric strength value in a plurality of preset intervals, and acquiring a control instruction corresponding to the target interval includes:
  • the corresponding level of control commands is output according to the target interval.
  • control method further comprises:
  • Control commands are correspondingly set for each group of the preset intervals, and the preset intervals and the control commands are stored in the control command interval correspondence table.
  • the present disclosure relates to a prosthetic control device comprising:
  • an acquisition unit configured to acquire electromyographic signals on the limbs of the prosthetic limbs
  • a first processing unit configured to obtain a corresponding myoelectric strength value and an envelope signal according to the myoelectric signal
  • the second processing unit is configured to, when the envelope value of the envelope signal is greater than the first preset threshold, determine a target interval corresponding to the myoelectric strength value in a plurality of preset intervals, and obtain the corresponding target interval control instructions;
  • the third processing unit is configured to control the operation of the prosthesis through the control instruction.
  • the present disclosure relates to a prosthetic control system, which includes a processor, a communication interface, a memory, and a communication bus, wherein the processor, the communication interface, and the memory communicate with each other through the communication bus;
  • the memory configured to store the computer program
  • the processor is configured to implement the prosthetic control method described in the present disclosure when executing the computer program stored in the memory.
  • the present disclosure relates to a computer-readable storage medium storing one or more programs that can be executed by one or more processors to implement the prosthetic control method described in the present disclosure.
  • the envelope signal is used to determine whether the EMG signal of the prosthesis user conforms to the preset The threshold value, and after meeting the threshold value, determine the degree of control of the prosthetic limb using object over the prosthetic limb based on the myoelectric strength value, and obtain control instructions to control the operation of the prosthetic limb.
  • Some embodiments of the present disclosure first use the envelope value to judge to avoid false triggering of actions operation, and then use the EMG intensity value converted from the EMG signal to realize the proportional control of the EMG intensity, so as to realize the dexterous control of the prosthesis.
  • FIG. 1 shows a schematic flowchart of a prosthetic control method provided by an embodiment of the present disclosure
  • FIG. 2 shows a schematic flowchart of a prosthetic control method provided by another embodiment of the present disclosure
  • FIG. 3 shows a schematic flowchart of a prosthetic control method provided by another embodiment of the present disclosure
  • FIG. 4 shows a schematic structural diagram of a prosthetic control device provided by another embodiment of the present disclosure.
  • FIG. 5 shows a schematic structural diagram of a prosthetic limb control system provided by another embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a method for controlling a prosthesis. 1, the control method includes:
  • the electromyographic signal is the temporal and spatial superposition of motor unit action potentials (MUAPs) in numerous muscle fibers.
  • SEMG Surface electromyography
  • SEMG is the combined effect of superficial muscle EMG and nerve trunk electrical activity on the skin surface, which can reflect neuromuscular activity to a certain extent; compared with needle electrode EMG, SEMG is non-invasive in measurement. , non-invasive, simple operation and so on.
  • the prosthetic limbs are generally used by users with handicapped limbs, and such users perform pre-set gestures through the prosthetic limbs to complete simple daily life.
  • the EMG signal in order to facilitate the user's initial habit, it is optimal to collect the EMG signal on the surface of the residual limb for subsequent processing.
  • the residual limb may not exist, it may also be from other parts.
  • Surface EMG signals come to ultimately control sham.
  • the EMG intensity of the EMG signal can represent the magnitude of the EMG signal
  • the envelope signal is the signal obtained by the amplified, rectified and integrated EMG signal, that is, the EMG envelope.
  • the first preset threshold as the switching threshold, when the envelope value of the envelope signal is greater than the first preset threshold, it means that the amplitude of the EMG signal has reached the preset threshold, and then determine The target interval corresponding to the EMG intensity value in the multiple preset intervals is obtained, and the control instruction corresponding to the target interval is obtained.
  • the preset interval can be divided by a complete threshold interval, or it can be obtained by the user according to experience
  • the obtained EMG strength values of the EMG signal are self-defined multiple preset intervals. Since the human body uses different forces when performing different actions, the generated EMG signals are also different, so each preset interval corresponds to The control instructions are also different, that is, the control instructions corresponding to different preset intervals control the prosthesis to run in different motion modes.
  • the prosthesis is controlled to operate in a preset manner according to the control instructions obtained in the above steps, wherein the actions of the prosthetic limb controlled by the control instructions can be customized by the user according to their own conditions, so that the prosthetic limb can be controlled in different proportions according to different EMG strengths.
  • control method before S13 outputs a control instruction of a corresponding level according to the comparison result between the myoelectric strength value and the preset threshold range, the control method further includes:
  • the envelope value of the envelope signal is greater than or equal to the second preset threshold within the preset time period, execute the control instruction outputting the corresponding level according to the comparison result between the EMG intensity value and the preset threshold range; or, if the envelope If the envelope value of the signal is smaller than the second preset threshold at any time within the preset time period, the preset control instruction is output.
  • the envelope value of the envelope signal when it is determined that the envelope value of the envelope signal is greater than the first preset threshold, it can be determined that the EMG signal fluctuates and the activation threshold is larger. Since the muscle action potential is a triggering and explosive event, It shows that its amplitude and time course will not be determined by the amplitude and time course of the stimulation, that is, a larger stimulation current does not generate a larger action potential, and a longer stimulation time course does not prolong the action potential.
  • a second preset threshold is set. If the envelope value is greater than or equal to the second preset threshold within the preset time period, it means that the object of prosthesis is really going to perform certain actions, rather than an accidental activation caused by unconsciousness. Then perform the step of S13 to obtain the corresponding control instruction.
  • a preset control command is output. For example, it can be a control command to stop the movement of the prosthesis, or it can be a control command to re-detect the EMG signal of the prosthetic object after delaying for a period of time. Avoid the problem of poor use effect caused by false movement of the prosthesis.
  • calculating the root mean square value of the myoelectric signal as the value of myoelectric strength.
  • calculating the root mean square value of the EMG signal can be used to represent the effective value of the EMG signal in a certain period of time, which can avoid the instantaneous value causing false triggering, improve the accuracy of the data.
  • the root mean square value is calculated by the following formula:
  • RMS is the EMG intensity value
  • T is the time length of the EMG signal
  • sEMG(t) is the EMG signal value at time t
  • the EMG signal after acquiring the EMG signal of the prosthetic using object, can be band-pass filtered to obtain the filtered EMG signal; the original EMG signal is preprocessed, generally a 50Hz trap The power frequency interference is filtered out by the wave filter, and then the main energy frequency of the EMG is retained through the band-pass filter, and a relatively clean EMG signal after denoising is obtained.
  • an embodiment of the present disclosure provides a method for controlling a prosthesis. 2, the control method includes:
  • the myoelectric strength value is compared with a plurality of preset intervals respectively, and the preset interval to which the myoelectric strength value belongs is determined as the target interval;
  • the preset interval can be sorted by size, according to the size order of the preset interval, from the middle preset interval, Divide each preset interval into two sides, and determine whether the EMG value belongs to the smaller side or the larger side. After determining which side belongs, perform the above steps again, and finally obtain the preset to which the EMG value belongs. In this way, the result can be obtained faster, and the processing efficiency can be improved when the number of preset intervals is large.
  • control instructions are obtained from a preset control instruction interval correspondence table according to the target interval, and the correspondence between the control instructions and the intervals in the control instruction interval correspondence table may be preset by the user, or , according to the past experience combined with the user's real-time experience, set corresponding control instructions for different intervals.
  • control method further includes:
  • multiple groups of maximum and minimum EMG signals are obtained when the prosthetic subject performs muscle contraction with maximum muscle strength and minimum muscle strength.
  • the best thing to collect in this step is the EMG signal of the user at the maximum constant muscle strength and the minimum constant muscle strength, but it is very difficult for people to maintain constant muscle strength. Therefore, in this step, not only can By allowing the user to collect the corresponding maximum and minimum EMG signals with the maximum and minimum muscle strength he envisaged, it is also possible to let the user wear the EMG signal acquisition device, through a series of pre- After setting obstacles and performing a series of movements, after collecting these signals in real time, a maximum EMG signal and a minimum EMG signal can also be obtained.
  • the minimum envelope value corresponding to the minimum EMG signal is used as the first preset threshold.
  • the first preset threshold can be used as the switching threshold to determine whether the user needs to manipulate the prosthesis.
  • the range of the user's EMG intensity value is determined according to the EMG intensity values corresponding to the maximum EMG signal and the minimum EMG signal, and the EMG intensity interval is divided to obtain
  • the preset interval in the foregoing embodiment may be divided into equal divisions, and may also be divided according to actual use experience and user experience.
  • an embodiment of the present disclosure provides a prosthetic control device, which includes: an acquisition unit 11 , a first processing unit 12 , a second processing unit 13 and a third processing unit 14 ,
  • the acquisition unit 11 is configured to acquire the electromyographic signal on the limb of the prosthetic use object
  • the first processing unit 12 is configured to obtain a corresponding myoelectric strength value and an envelope signal according to the myoelectric signal;
  • the second processing unit 13 is configured to, when the envelope value of the envelope signal is greater than the first preset threshold, determine a target interval corresponding to the myoelectric strength value in the plurality of preset intervals, and obtain a control instruction corresponding to the target interval;
  • the third processing unit 14 is configured to control the operation of the prosthesis through control instructions.
  • control device further includes: a fourth processing unit configured to determine whether the envelope value of the envelope signal is greater than or equal to the second preset threshold within a preset time period; if the envelope value of the envelope signal is greater than or equal to the second preset threshold If the network value is greater than or equal to the second preset threshold within the preset time period, the second processing unit 13 determines the target interval corresponding to the EMG intensity value in the plurality of preset intervals, and obtains the control instruction corresponding to the target interval; or , if the envelope value of the envelope signal is smaller than the second preset threshold at any moment within the preset time period, output a preset control instruction.
  • a fourth processing unit configured to determine whether the envelope value of the envelope signal is greater than or equal to the second preset threshold within a preset time period; if the envelope value of the envelope signal is greater than or equal to the second preset threshold If the network value is greater than or equal to the second preset threshold within the preset time period, the second processing unit 13 determines the target interval corresponding to the
  • the first processing unit 12 is configured to calculate the root mean square value of the myoelectric signal as the value of the myoelectric strength.
  • the first processing unit 12 is configured to obtain the root mean square value by the following calculation formula:
  • RMS is the EMG intensity value
  • T is the time length of the EMG signal
  • sEMG(t) is the EMG signal value at time t
  • control device further includes: a filtering unit configured to perform bandpass filtering on the EMG signal to obtain a filtered EMG signal.
  • the second processing unit 13 is configured to compare the myoelectric strength value with a plurality of preset intervals respectively, and determine the preset interval to which the myoelectric strength value belongs, as the target interval; and based on the preset The corresponding control instruction interval correspondence table is obtained, and the corresponding control instruction is obtained according to the target interval.
  • control device further includes: a fifth processing unit, which is configured to acquire multiple sets of maximum and minimum EMG signals when the prosthesis-using object performs muscle contraction with maximum muscle strength and minimum muscle strength; according to The minimum envelope value is obtained from the minimum EMG signal as the first preset threshold; the maximum EMG intensity value is obtained according to the maximum EMG signal, and the minimum EMG intensity value is obtained according to the minimum EMG signal; based on the minimum EMG intensity value and the maximum EMG The electric intensity value obtains an EMG intensity interval, and the EMG intensity interval is divided to obtain multiple groups of preset intervals; and corresponding control instructions are set for each group of preset intervals, and the preset intervals and the control instructions are stored in the control instruction interval correspondence table middle.
  • a fifth processing unit which is configured to acquire multiple sets of maximum and minimum EMG signals when the prosthesis-using object performs muscle contraction with maximum muscle strength and minimum muscle strength; according to The minimum envelope value is obtained from the minimum EMG signal as the first preset threshold; the maximum EMG intensity value is obtained according to the maximum
  • an embodiment of the present disclosure provides a prosthetic control system, which includes a processor 1110 , a communication interface 1120 , a memory 1130 and a communication bus 1140 , wherein the processor 1110 , the communication interface 1120 , and the memory 1130 pass through the communication bus 1140 complete communication with each other;
  • memory 1130 configured to store computer programs
  • the operation of the prosthesis is controlled by control commands.
  • the processor 1110 acquires the electromyographic signal on the limb of the prosthetic limb using object by executing the program stored in the memory 1130, and converts the electromyographic signal into the electromyographic intensity value and the envelope signal.
  • the network signal determines whether the EMG signal of the prosthetic object meets the preset threshold, and after meeting the threshold, determines the degree of control the prosthetic object has over the prosthesis based on the EMG intensity value, and obtains control instructions to control the operation of the prosthesis. Using the envelope value judgment to avoid the false triggering operation of the action, and then using the EMG intensity value converted from the EMG signal to realize the proportional control of the EMG intensity and realize the dexterous control of the prosthesis.
  • the communication bus 1140 mentioned by the above electronic device may be a Peripheral Component Interconnect (PCI for short) bus or an Extended Industry Standard Architecture (EISA for short) bus or the like.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus 1140 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 1120 is used for communication between the above electronic device and other devices.
  • the memory 1130 may include random access memory (Random Access Memory, RAM for short), and may also include non-volatile memory (non-volatile memory), such as at least one disk memory. In certain embodiments, memory 1130 may also be at least one storage device located remotely from processor 1110 as previously described.
  • RAM Random Access Memory
  • non-volatile memory non-volatile memory
  • the above-mentioned processor 1110 may be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; may also be a digital signal processor (Digital Signal Processor, referred to as DSP) ), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • An embodiment of the present disclosure provides a computer-readable storage medium, which stores one or more programs, and the one or more programs can be executed by one or more processors to implement the prosthetic control method of any of the foregoing embodiments.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

公开了一种假肢控制方法、装置、系统及存储介质。假肢控制方法包括:获取假肢使用对象肢体上的肌电信号(S11);根据肌电信号得到相应的肌电强度值和包络信号(S12);当包络信号的包络值大于第一预设阈值时,确定肌电强度值在多个预设区间中对应的目标区间,获取目标区间对应的控制指令(S13);通过控制指令控制假肢运行(S14)。本方案先用包络值判断避免了动作误触发操作,再用肌电信号转换得到的肌电强度值实现肌电强度比例控制,实现对假肢的灵巧控制。

Description

假肢控制方法、装置、系统及存储介质
相关申请的引用
本公开要求于2020年6月29日向中华人民共和国国家知识产权局提交的申请号为202010609468.6、名称为“一种假肢控制方法、装置、系统及存储介质”的发明专利申请的全部权益,并通过引用的方式将其全部内容并入本文。
领域
本公开大体上涉及智能控制技术领域,更具体地,涉及假肢控制方法、装置、系统及存储介质。
背景
数据显示,我国现有的残疾人士中超过30%为肢体残疾者,肢体残缺严重影响着残疾人士的工作与生活。因此,能解决残疾人士行动障碍问题的智能动力假肢正逐渐成为智能机器人领域的研究热点之一。随着机器人技术的发展,智能电动假肢得到了快速地发展,但如何实现对智能电动假肢的控制是亟待解决的问题,也是假肢得到实际应用的关键问题之一。
概述
一方面,本公开涉及假肢控制方法,其包括:
获取假肢使用对象肢体上的肌电信号;
根据所述肌电信号得到相应的肌电强度值和包络信号;
当所述包络信号的包络值大于第一预设阈值时,确定所述肌电强度值在多个预设区间中对应的目标区间,获取所述目标区间对应的控制指令;以及
通过所述控制指令控制假肢运行。
在某些实施方案中,所述确定所述肌电强度值在多个预设区间中对应的目标区间,获取所述目标区间对应的控制指令之前,还包括:
若所述包络信号的包络值在预设时长内均大于或等于第二预设阈值,则执行确定所述肌电强度值在多个预设区间中对应的目标区间,获取所述目标区间对应的控制指令的步骤;
或者,若所述包络信号的包络值在预设时长内任一时刻小于第二预设阈值,则输出预设控制指令。
在某些实施方案中,所述根据所述肌电信号得到相应的肌电强度值,包括:
计算所述肌电信号的均方根值,作为所述肌电强度值。
在某些实施方案中,通过如下计算公式计算得到所述均方根值:
Figure PCTCN2021101759-appb-000001
其中,RMS为所述肌电强度值,T为所述肌电信号的时间长度,sEMG(t)为t时刻的肌电信号值,
Figure PCTCN2021101759-appb-000002
为sEMG(t) 2在t时刻至t+T时刻的积分。
在某些实施方案中,根据所述肌电信号得到相应的肌电强度值和包络信号之前,所述控制方法还包括:
对所述肌电信号进行带通滤波,得到滤波后的肌电信号。
在某些实施方案中,所述确定所述肌电强度值在多个预设区间中对应的目标区间,获取所述目标区间对应的控制指令,包括:
将所述肌电强度值分别与多个预设区间进行比对,确定所述肌电强度值所属的预设区间,作为目标区间;以及
基于预先设定的控制指令区间对应表,根据所述目标区间输出相应等级的控制指令。
在某些实施方案中,控制方法还包括:
获取所述假肢使用对象以最大肌力和最小肌力进行肌肉收缩时的多组最大肌电信号和最小肌电信号;
根据所述最小肌电信号得到最小包络值,作为所述第一预设阈值;
根据所述最大肌电信号得到最大肌电强度值,根据所述最小肌电信号得到最小肌电强度值;
基于所述最小肌电强度值和最大肌电强度值得到肌电强度区间, 对所述肌电强度区间进行划分得到多组所述预设区间;以及
针对每组所述预设区间对应设置控制指令,并将预设区间与控制指令存储进控制指令区间对应表中。
另一方面,本公开涉及假肢控制装置,其包括:
获取单元,配置为获取假肢使用对象肢体上的肌电信号;
第一处理单元,配置为根据所述肌电信号得到相应的肌电强度值和包络信号;
第二处理单元,配置为当所述包络信号的包络值大于第一预设阈值时,确定所述肌电强度值在多个预设区间中对应的目标区间,获取所述目标区间对应的控制指令;以及
第三处理单元,配置为通过所述控制指令控制假肢运行。
又一方面,本公开涉及假肢控制系统,其包括处理器、通信接口、存储器和通信总线,其中,所述处理器,所述通信接口和所述存储器通过所述通信总线完成相互间的通信;
所述存储器,配置为存放计算机程序;并且
所述处理器,配置为执行所述存储器上所存放的所述计算机程序时,实现本公开所述的假肢控制方法。
再一方面,本公开涉及计算机可读存储介质,其存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现本公开所述的假肢控制方法。
本公开某些实施方案通过获取假肢使用对象肢体上的肌电信号,并将肌电信号转换为肌电强度值和包络信号,通过包络信号确定假肢使用对象的肌电信号是否符合预设阈值,并在符合阈值后,基于肌电强度值确定此时假肢使用对象对于假肢的控制程度,并获取控制指令控制假肢运行,本公开某些实施方案先用包络值判断避免了动作误触发操作,再用肌电信号转换得到的肌电强度值实现肌电强度比例控制,实现对假肢的灵巧控制。
附图的简要说明
图1示出了本公开一实施例提供的假肢控制方法流程示意图;
图2示出了本公开另一实施例提供的假肢控制方法流程示意图;
图3示出了本公开又一实施例提供的假肢控制方法流程示意图;
图4示出了本公开又一实施例提供的假肢控制装置结构示意图;以及
图5示出了本公开又一实施例提供的假肢控制系统结构示意图。
详述
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,本公开一实施例提供了假肢控制方法。参照图1,控制方法包括:
S11、获取假肢使用对象肢体上的肌电信号;
S12、根据肌电信号得到相应的肌电强度值和包络信号;
S13、当包络信号的包络值大于第一预设阈值时,确定肌电强度值在多个预设区间中对应的目标区间,获取目标区间对应的控制指令;以及
S14、通过控制指令控制假肢运行。
在某些实施方案中,肌电信号(EMG)是众多肌纤维中运动单元动作电位(MUAP)在时间和空间上的叠加。表面肌电信号(SEMG)是浅层肌肉EMG和神经干上电活动在皮肤表面的综合效应,能在一定程度上反映神经肌肉的活动;相对于针电极EMG,SEMG在测量上具有非侵入性、无创伤、操作简单等优点。
在某些实施方案中,假肢使用对象一般是肢体有残缺的用户,这类用户通过假肢做出预先设定的手势动作,完成简单的日常生活。
在某些实施方案中,为方便用户初始的习惯,最优的还是采集残肢端表面的肌电信号用于后续处理,当然,考虑到可能不存在残肢端 的情况,也可以是其他部位的表面的肌电信号来最终控制假。
在某些实施方案中,肌电信号的肌电强度可以表示肌电信号的大小,包络信号是肌电信号经过放大、整流和集成的信号,也就是肌电的包络线。
在某些实施方案中,通过设置第一预设阈值作为开关阈值,当包络信号的包络值大于第一预设阈值时,则说明肌电信号的幅值达到了预设阈值,而后确定肌电强度值在多个预设区间中对应的目标区间,获取该目标区间对应的控制指令,在本方案中,预设区间可以是由一个完整的阈值区间划分得到,也可以是用户根据经验得到的肌电信号的肌电强度值自定义的多个预设区间,由于人体在做不同的动作时会使用不同的力,所产生的的肌电信号也不同,所以每个预设区间对应的控制指令也不相同,即不同预设区间对应的控制指令控制假肢以不同的运动方式运行。
在某些实施方案中,当包络值小于第一预设阈值时,则无需进行任何处理。
在某些实施方案中,根据上述步骤得到的控制指令控制假肢按预设方式运行,其中,控制指令控制假肢进行的动作可以由用户根据自身条件自定义,实现不同肌电强度比例控制假肢做不同的动作,在本步骤中,预设区间中的值越大,所对应的的控制指令控制的假肢的动作幅度越大,或者,预设区间的值越大,所对应的控制指令控制的假肢的动作越快速。
在某些实施方案中,S13根据肌电强度值与预设阈值范围的比较结果输出相应等级的控制指令之前,控制方法还包括:
若包络信号的包络值在预设时长内均大于或等于第二预设阈值,则执行根据肌电强度值与预设阈值范围的比较结果输出相应等级的控制指令;或者,若包络信号的包络值在预设时长内任一时刻小于第二预设阈值,则输出预设控制指令。
在某些实施方案中,在确定包络信号的包络值大于第一预设阈值时,可以确定肌电信号出现波动且大了启动阈值,由于肌肉动作电位是一种触发性、爆炸性事件,表明了其幅度和时程将不由刺激的幅度 和时程所决定,即更大的刺激电流并不产生更大的动作电位,更长的刺激时程也不使动作电位延长,此时,再设置一第二预设阈值,若包络值在预设时长内均大于或等于第二预设阈值,则说明假肢使用对象确实是要进行某些动作,而不是无意识导致的误启动,此时再进行S13的步骤得到相应的控制指令。
在某些实施方案中,若包络信号的包络值在预设时长内任一时刻小于第二预设阈值,即包络信号的包络值并未在预设时长内均大于或等于第二预设阈值,此时,输出一个预设控制指令,比如,可以是让假肢停止运动的控制指令,还可以是延迟一段时间后再重新检测假肢使用对象的肌电信号的控制指令等,以避免假肢误动造成使用效果不佳的问题。
在某些实施方案中,通过计算肌电信号的均方根值,作为肌电强度值。相比较于直接将肌电信号的瞬时值作为肌电强度值,计算肌电信号的均方根值,可以用以表示肌电信号在某一时间段内的有效值,这样可以避免瞬时值导致的误触发,提高数据的准确性。
在某些实施方案中,通过如下计算公式计算得到均方根值:
Figure PCTCN2021101759-appb-000003
其中,RMS为肌电强度值,T为肌电信号的时间长度,sEMG(t)为t时刻的肌电信号值,
Figure PCTCN2021101759-appb-000004
为sEMG(t) 2在t时刻至t+T时刻的积分。
在某些实施方案中,在获取到假肢使用对象的肌电信号后,可以对肌电信号进行带通滤波,得到滤波后的肌电信号;对原始肌电信号进行预处理,一般为50Hz陷波器滤除工频干扰,其次经过带通滤波保留肌电的主要能量频率,得到去噪后比较干净的肌电信号。
如图2所示,本公开一实施例提供了假肢控制方法。参照图2,控制方法包括:
S21、获取假肢使用对象肢体上的肌电信号;
S22、根据肌电信号得到相应的肌电强度值和包络信号;
S23、当包络信号的包络值大于第一预设阈值时,将肌电强度值分别与多个预设区间进行比对,确定肌电强度值所属的预设区间,作 为目标区间;
S24、基于预先设定的控制指令区间对应表,根据目标区间获取相应的控制指令;以及
S25、通过控制指令控制假肢运行。
有关S21,详细可参见S11中的描述,在此不再赘述。
有关S22,详细可参见S12中的描述,在此不再赘述。
在某些实施方案中,可以不用以此将肌电强度值与预设区间进行比对,可以通过将预设区间进行大小排序,按照预设区间的大小顺序,从中间的那个预设区间,将各个预设区间分为两边,确定肌电强度值是属于较小的那边还是较大的那边,确定属于那边后,再次进行上述步骤,并最终得到肌电强度值所属的预设区间,这种方式可以较快的得到结果,在预设区间的数量较多的情况下,提高处理效率。
在某些实施方案中,根据目标区间从预先设定的控制指令区间对应表中获取控制指令,控制指令区间对应表中的控制指令和区间之间的对应关系可以由用户预先进行设定,或者,根据过往使用经验结合用户的实时使用体验,针对不同的区间设定相应的控制指令。
有关S25,详细可参见S14中的描述,在此不再赘述。
在某些实施方案中,如图3所示,控制方法还包括:
S31、获取假肢使用对象以最大肌力和最小肌力进行肌肉收缩时的多组最大肌电信号和最小肌电信号;
S32、根据最小肌电信号得到最小包络值,作为第一预设阈值;
S33、根据最大肌电信号得到最大肌电强度值,根据最小肌电信号得到最小肌电强度值;
S34、基于最小肌电强度值和最大肌电强度值得到肌电强度区间,对肌电强度区间进行划分得到多组预设区间;以及
S35、针对每组预设区间对应设置控制指令,并将预设区间与控制指令存储进控制指令区间对应表中。
在某些实施方案中,由于不同体型和性别的假肢使用对象的肌电信号与假肢之间的动作的需求是不一致的,所以在某些实施方案中,可以针对每个用均进行个性化配置,使得每个假肢使用对象所用的假 肢与自身相适应。
在某些实施方案中,获取假肢对象以最大肌力和最小肌力进行肌肉收缩时的多组最大肌电信号和最小肌电信号,由于需要根据用户在不同用力情况下的肌电信号,所以,本步骤中最好采集的是用户在最大恒等肌力和最小恒等肌力时的肌电信号,但是让人保持恒等肌力是很困难的事,所以,本步骤中,不仅可以通过让用户自己以自身所设想的最大肌力和最小肌力进行发力采集相应的最大肌电信号和最小肌电信号,还可以通过让用户佩戴好肌电信号采集装置后,通过一系列预先设定的障碍和进行一系列运动,实时采集这些信号后,也可以得到一个最大肌电信号和最小肌电信号。
在某些实施方案中,将最小肌电信号对应的最小包络值作为第一预设阈值,此时,该第一预设阈值可以作为开关阈值,确定用户是否需要操控假肢。
在某些实施方案中,根据最大肌电信号和最小肌电信号对应的肌电强度值确定该用户的肌电强度值的范围,即肌电强度区间,将该肌电强度区间进行划分,得到上述实施例中的预设区间,划分方式可以是等分划分,也可以根据实际使用经验和用户使用体验进行个性化定制划分。
如图4所示,本公开一实施例提供了假肢控制装置,其包括:获取单元11、第一处理单元12、第二处理单元13和第三处理单元14,
获取单元11配置为获取假肢使用对象肢体上的肌电信号;
第一处理单元12配置为根据肌电信号得到相应的肌电强度值和包络信号;
第二处理单元13配置为当包络信号的包络值大于第一预设阈值时,确定肌电强度值在多个预设区间中对应的目标区间,获取目标区间对应的控制指令;以及
第三处理单元14配置为通过控制指令控制假肢运行。
在某些实施方案中,控制装置还包括:第四处理单元,其配置为判断包络信号的包络值是否在预设时长内均大于或等于第二预设阈值;若包络信号的包络值在预设时长内均大于或等于第二预设阈值, 则通过第二处理单元13确定肌电强度值在多个预设区间中对应的目标区间,获取目标区间对应的控制指令;或者,若包络信号的包络值在预设时长内任一时刻小于第二预设阈值,则输出预设控制指令。
在某些实施方案中,第一处理单元12配置为计算肌电信号的均方根值,作为肌电强度值。
在某些实施方案中,第一处理单元12配置为通过如下计算公式计算得到均方根值:
Figure PCTCN2021101759-appb-000005
其中,RMS为肌电强度值,T为肌电信号的时间长度,sEMG(t)为t时刻的肌电信号值,
Figure PCTCN2021101759-appb-000006
为sEMG(t) 2在t时刻至t+T时刻的积分。
在某些实施方案中,控制装置还包括:过滤单元,其配置为对肌电信号进行带通滤波,得到滤波后的肌电信号。
在某些实施方案中,第二处理单元13配置为将肌电强度值分别与多个预设区间进行比对,确定肌电强度值所属的预设区间,作为目标区间;并且基于预先设定的控制指令区间对应表,根据目标区间获取相应的控制指令。
在某些实施方案中,控制装置还包括:第五处理单元,其配置为获取假肢使用对象以最大肌力和最小肌力进行肌肉收缩时的多组最大肌电信号和最小肌电信号;根据最小肌电信号得到最小包络值,作为第一预设阈值;根据最大肌电信号得到最大肌电强度值,根据最小肌电信号得到最小肌电强度值;基于最小肌电强度值和最大肌电强度值得到肌电强度区间,对肌电强度区间进行划分得到多组预设区间;并且针对每组预设区间对应设置控制指令,并将预设区间与控制指令存储进控制指令区间对应表中。
如图5所示,本公开一实施例提供了假肢控制系统,其包括处理器1110、通信接口1120、存储器1130和通信总线1140,其中,处理器1110,通信接口1120,存储器1130通过通信总线1140完成相互间的通信;
存储器1130,配置为存放计算机程序;并且
处理器1110,配置为执行存储器1130上所存放的程序时,实现如下所示的方法:
获取假肢使用对象肢体上的肌电信号;
根据肌电信号得到相应的肌电强度值和包络信号;
当包络信号的包络值大于第一预设阈值时,确定肌电强度值在多个预设区间中对应的目标区间,获取目标区间对应的控制指令;以及
通过控制指令控制假肢运行。
本公开实施例提供的电子设备,处理器1110通过执行存储器1130上所存放的程序获取假肢使用对象肢体上的肌电信号,并将肌电信号转换为肌电强度值和包络信号,通过包络信号确定假肢使用对象的肌电信号是否符合预设阈值,并在符合阈值后,基于肌电强度值确定此时假肢使用对象对于假肢的控制程度,并获取控制指令控制假肢运行,本方案先用包络值判断避免了动作误触发操作,再用肌电信号转换得到的肌电强度值实现肌电强度比例控制,实现对假肢的灵巧控制。
上述电子设备提到的通信总线1140可以是外设部件互连标准(Peripheral Component Interconnect,简称PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,简称EISA)总线等。该通信总线1140可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口1120用于上述电子设备与其他设备之间的通信。
存储器1130可以包括随机存取存储器(Random Access Memory,简称RAM),也可以包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。在某些实施方案中,存储器1130还可以是至少一个位于远离前述处理器1110的存储装置。
上述的处理器1110可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processor,简称DSP)、 专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本公开一实施例提供了计算机可读存储介质,其存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现上述任一实施例的假肢控制方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本公开实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本公开实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL)) 或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 假肢控制方法,其包括:
    获取假肢使用对象肢体上的肌电信号;
    根据所述肌电信号得到相应的肌电强度值和包络信号;
    当所述包络信号的包络值大于第一预设阈值时,确定所述肌电强度值在多个预设区间中对应的目标区间,获取所述目标区间对应的控制指令;以及
    通过所述控制指令控制假肢运行。
  2. 如权利要求1所述的控制方法,其中,所述确定所述肌电强度值在多个预设区间中对应的目标区间,获取所述目标区间对应的控制指令之前,还包括:
    若所述包络信号的包络值在预设时长内均大于或等于第二预设阈值,则执行确定所述肌电强度值在多个预设区间中对应的目标区间,获取所述目标区间对应的控制指令的步骤;
    或者,若所述包络信号的包络值在预设时长内任一时刻小于第二预设阈值,则输出预设控制指令。
  3. 如权利要求1或2所述的控制方法,其中,所述根据所述肌电信号得到相应的肌电强度值,包括:
    计算所述肌电信号的均方根值,作为所述肌电强度值。
  4. 如权利要求3所述的控制方法,其中,通过如下计算公式计算得到所述均方根值:
    Figure PCTCN2021101759-appb-100001
    其中,RMS为所述肌电强度值,T为所述肌电信号的时间长度,sEMG(t)为t时刻的肌电信号值,
    Figure PCTCN2021101759-appb-100002
    为sEMG(t) 2在t时刻至t+T时刻的积分。
  5. 如权利要求1至4中任一权利要求所述的控制方法,其中,根据所述肌电信号得到相应的肌电强度值和包络信号之前,所述控制方法还包括:
    对所述肌电信号进行带通滤波,得到滤波后的肌电信号。
  6. 如权利要求1至5中任一权利要求所述的控制方法,其中,所述确定所述肌电强度值在多个预设区间中对应的目标区间,获取所述目标区间对应的控制指令,包括:
    将所述肌电强度值分别与多个预设区间进行比对,确定所述肌电强度值所属的预设区间,作为目标区间;以及
    基于预先设定的控制指令区间对应表,根据所述目标区间获取相应的控制指令。
  7. 如权利要求6所述的控制方法,其还包括:
    获取所述假肢使用对象以最大肌力和最小肌力进行肌肉收缩时的多组最大肌电信号和最小肌电信号;
    根据所述最小肌电信号得到最小包络值,作为所述第一预设阈值;
    根据所述最大肌电信号得到最大肌电强度值,根据所述最小肌电信号得到最小肌电强度值;
    基于所述最小肌电强度值和最大肌电强度值得到肌电强度区间,对所述肌电强度区间进行划分得到多组所述预设区间;以及
    针对每组所述预设区间对应设置控制指令,并将预设区间与控制指令存储进控制指令区间对应表中。
  8. 假肢控制装置,其包括:
    获取单元,配置为获取假肢使用对象肢体上的肌电信号;
    第一处理单元,配置为根据所述肌电信号得到相应的肌电强度值和包络信号;
    第二处理单元,配置为当所述包络信号的包络值大于第一预设阈值时,确定所述肌电强度值在多个预设区间中对应的目标区间,获取 所述目标区间对应的控制指令;以及
    第三处理单元,配置为通过所述控制指令控制假肢运行。
  9. 假肢控制系统,其包括处理器、通信接口、存储器和通信总线,其中,所述处理器,所述通信接口,所述存储器通过所述通信总线完成相互间的通信;
    所述存储器,配置为存放计算机程序;并且
    所述处理器,配置为执行所述存储器上所存放的所述计算机程序时,实现权利要求1至7中任一权利要求所述的假肢控制方法。
  10. 计算机可读存储介质,其存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1至7中任一权利要求所述的假肢控制方法。
PCT/CN2021/101759 2020-06-29 2021-06-23 假肢控制方法、装置、系统及存储介质 WO2022001771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010609468.6A CN111743667A (zh) 2020-06-29 2020-06-29 一种假肢控制方法、装置、系统及存储介质
CN202010609468.6 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022001771A1 true WO2022001771A1 (zh) 2022-01-06

Family

ID=72678162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101759 WO2022001771A1 (zh) 2020-06-29 2021-06-23 假肢控制方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN111743667A (zh)
WO (1) WO2022001771A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114676737A (zh) * 2022-05-26 2022-06-28 深圳市心流科技有限公司 一种肌电信号的采样频率的动态调节方法
CN115153984A (zh) * 2022-09-05 2022-10-11 深圳市心流科技有限公司 基于肌电信号的智能假肢控制方法、装置、终端及介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111743667A (zh) * 2020-06-29 2020-10-09 北京海益同展信息科技有限公司 一种假肢控制方法、装置、系统及存储介质
CN112690807A (zh) * 2020-12-04 2021-04-23 京东数科海益信息科技有限公司 确定执行动作速度等级的方法、装置和存储介质
CN112773582A (zh) * 2021-01-20 2021-05-11 京东数科海益信息科技有限公司 一种假肢控制方法、装置、系统及介质
CN114652493B (zh) * 2022-05-25 2022-08-30 深圳市心流科技有限公司 一种肌电信号控制方法、装置、肌电设备、存储介质
CN115105270B (zh) * 2022-08-29 2022-11-11 深圳市心流科技有限公司 一种智能假肢的肌电匹配阈值的动态调节方法
CN115153985B (zh) * 2022-09-08 2022-12-09 深圳市心流科技有限公司 智能假肢的控制方法、装置、终端及计算机可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209860A (en) * 1978-02-13 1980-07-01 The United States of America as represented by the Administrator of Veterans' Affairs System and method for multifunctional control of upper limb prosthesis via EMg signal identification
US20120232675A1 (en) * 2009-09-02 2012-09-13 Luis Armando Bravo Castillo System and method for acquiring and processing myoelectric signals in order to control a prosthetic arm
CN102799937A (zh) * 2012-06-26 2012-11-28 天津大学 肌电信号与关节角度信息融合的下肢运动轨迹预测方法
CN105943206A (zh) * 2016-06-01 2016-09-21 上海师范大学 一种基于myo臂环的假肢手控制方法
CN109009586A (zh) * 2018-06-25 2018-12-18 西安交通大学 一种假手腕关节人机自然驱动角度的肌电连续解码方法
CN109998742A (zh) * 2019-05-07 2019-07-12 北京通和营润智能科技发展有限公司 一种多自由度肌电仿生假肢控制系统
CN111743667A (zh) * 2020-06-29 2020-10-09 北京海益同展信息科技有限公司 一种假肢控制方法、装置、系统及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60010789T2 (de) * 1999-03-22 2004-10-07 Advanced Control Res Ltd Gliederprothesen
CN102429748B (zh) * 2011-12-01 2014-06-18 上海理工大学 握速可控式的智能肌电假手控制电路
CN210784864U (zh) * 2019-05-28 2020-06-19 南京航空航天大学 一种肌电假手的自适应控制电路
CN110826625B (zh) * 2019-11-06 2022-04-12 南昌大学 一种基于表面肌电信号的手指手势分类方法
CN111297526B (zh) * 2020-03-02 2022-07-08 苏州通和景润康复科技有限公司 一种多关节上肢肌电假肢控制装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4209860A (en) * 1978-02-13 1980-07-01 The United States of America as represented by the Administrator of Veterans' Affairs System and method for multifunctional control of upper limb prosthesis via EMg signal identification
US20120232675A1 (en) * 2009-09-02 2012-09-13 Luis Armando Bravo Castillo System and method for acquiring and processing myoelectric signals in order to control a prosthetic arm
CN102799937A (zh) * 2012-06-26 2012-11-28 天津大学 肌电信号与关节角度信息融合的下肢运动轨迹预测方法
CN105943206A (zh) * 2016-06-01 2016-09-21 上海师范大学 一种基于myo臂环的假肢手控制方法
CN109009586A (zh) * 2018-06-25 2018-12-18 西安交通大学 一种假手腕关节人机自然驱动角度的肌电连续解码方法
CN109998742A (zh) * 2019-05-07 2019-07-12 北京通和营润智能科技发展有限公司 一种多自由度肌电仿生假肢控制系统
CN111743667A (zh) * 2020-06-29 2020-10-09 北京海益同展信息科技有限公司 一种假肢控制方法、装置、系统及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114676737A (zh) * 2022-05-26 2022-06-28 深圳市心流科技有限公司 一种肌电信号的采样频率的动态调节方法
CN115153984A (zh) * 2022-09-05 2022-10-11 深圳市心流科技有限公司 基于肌电信号的智能假肢控制方法、装置、终端及介质

Also Published As

Publication number Publication date
CN111743667A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
WO2022001771A1 (zh) 假肢控制方法、装置、系统及存储介质
Kirkup et al. EEG-based system for rapid on-off switching without prior learning
JP6618482B2 (ja) 歯クレンチングおよび/または歯グラインディングの自動検出
WO2021219039A1 (zh) 手势识别方法、人机交互方法、装置、设备及存储介质
CN106725433B (zh) 一种心电监测方法及系统
CN202654544U (zh) 基于肌电反馈的神经肌肉康复仪
Hameed et al. An amplitude independent muscle activity detection algorithm based on adaptive zero crossing technique and mean instantaneous frequency of the sEMG signal
KR20210098256A (ko) 근전도 신호 피드백을 활용한 신경근 자극 장치 및 방법
CN109498008A (zh) 一种无线神经监护系统与设备
CN113359991A (zh) 一种面向残疾人的智能脑控机械臂辅助进食系统及方法
CN205083477U (zh) 基于体表肌电的实时控制装置
Zhao et al. Design of fatigue grade classification system based on human lower limb surface emg signal
CN107126302B (zh) 上下肢运动仿真处理方法
CN113288532B (zh) 一种肌电控制方法和装置
CN209391935U (zh) 一种无线神经监护系统与设备
CN114504333A (zh) 一种基于肌电的穿戴式前庭监测系统及应用
Yang et al. Detection and identification the human surface Electromyogra signal
CN113208623A (zh) 一种基于卷积神经网络的睡眠分期方法、系统
Liu et al. Whitening of the electromyogram for improved classification accuracy in prosthesis control
CN208552859U (zh) 一种自动体外除颤系统
Villarejo et al. Identification of low level sEMG signals for individual finger prosthesis
Villarejo et al. Pattern recognition of hand movements with low density sEMG for prosthesis control purposes
Naik et al. Classification of low level surface electromyogram using independent component analysis
Zeng et al. Hand grip force enhancer based on sEMG-triggered functional electrical stimulation
CN202569204U (zh) 具有动态调节功能的神经肌肉康复仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833485

Country of ref document: EP

Kind code of ref document: A1