WO2022001667A1 - 天线确定方法、装置、终端、电子设备及存储介质 - Google Patents

天线确定方法、装置、终端、电子设备及存储介质 Download PDF

Info

Publication number
WO2022001667A1
WO2022001667A1 PCT/CN2021/100405 CN2021100405W WO2022001667A1 WO 2022001667 A1 WO2022001667 A1 WO 2022001667A1 CN 2021100405 W CN2021100405 W CN 2021100405W WO 2022001667 A1 WO2022001667 A1 WO 2022001667A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
antenna
signal
antennas
signal quality
Prior art date
Application number
PCT/CN2021/100405
Other languages
English (en)
French (fr)
Inventor
李军
杨皎皎
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21834426.5A priority Critical patent/EP4131799A4/en
Priority to US17/997,859 priority patent/US20230224946A1/en
Publication of WO2022001667A1 publication Critical patent/WO2022001667A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0814Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching based on current reception conditions, e.g. switching to different antenna when signal level is below threshold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of communications, and in particular, relate to an antenna determination method, apparatus, terminal, electronic device, and storage medium.
  • V2X Vehicle-to-Everything Communications
  • V2X Vehicle-to-Everything Communications
  • V2X Vehicle-to-Everything Communications
  • V2X Vehicle-to-Everything Communications
  • V2N Vehicle-to-Everything Communications
  • V2X resource allocation method
  • eNB evolved Node B
  • UE user equipment independent resource selection method
  • the V2X direct link communication based on the UE's autonomous resource selection method does not need to occupy base station resources, but its communication delay and communication quality still cannot meet the requirements. Reduce resource congestion and conflict.
  • Embodiments of the present application provide an antenna determination method, apparatus, terminal, electronic device, and storage medium.
  • an embodiment of the present application provides a method for determining an antenna.
  • the method is applied to a terminal, where the terminal includes at least two antennas, including: acquiring received signals of the two antennas; The signal quality of the received signal of the antenna is compared with the first signal quality threshold, and the channel corresponding to the received signal whose signal quality is greater than the first signal quality threshold is selected as the communication channel; the antenna corresponding to the communication channel is determined as the communication channel of the terminal. working antenna.
  • an embodiment of the present application provides an antenna determination device, including: a signal receiving module, the signal receiving module is configured to acquire received signals of two antennas; a channel selection module, the channel selection module is configured The signal quality of the received signals of the two antennas is compared with the first signal quality threshold, and the channel corresponding to the received signal whose signal quality is greater than the first signal quality threshold is selected as the communication channel; the antenna is determined module, the antenna determination module is configured to determine an antenna corresponding to the communication channel.
  • an embodiment of the present application further provides a terminal, where the terminal executes the antenna determination method according to the first aspect.
  • an embodiment of the present application provides an electronic device, including: a memory, where the memory is used to store a computer program, and the computer program can implement the method according to the first aspect; a processor, the processor uses The method according to the first aspect is implemented when the computer program is executed.
  • the embodiments of the present application further provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the method of the first aspect as described above.
  • FIG. 1 is a schematic flowchart of a method for determining an antenna provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a terminal system provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for determining an antenna based on a terminal system according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a V2X terminal provided by another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for determining an antenna based on a V2X terminal provided by another embodiment of the present application;
  • FIG. 6 is a schematic diagram of a V2X terminal provided by another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a terminal according to another embodiment of the present application.
  • V2X resource allocation method
  • eNB evolved Node B
  • UE user equipment independent resource selection method
  • the V2X direct link communication based on the UE's autonomous resource selection method does not need to occupy base station resources, but its communication delay and communication quality still cannot meet the requirements. Reduce resource congestion and conflict.
  • the embodiments of the present application provide an antenna determination method, device, IoV terminal, electronic device, and storage medium, which, on the premise of establishing a communication connection with the opposite terminal, compare the quality of signals received by at least two antennas of its own. , select the channel corresponding to the signal with better signal quality as the communication channel, and switch to the antenna corresponding to the communication channel for subsequent signal transmission and reception.
  • it can effectively reduce the communication delay, improve the communication quality, and realize the timely and effective sharing of important information such as vehicle speed, direction, geographic location, and route with other terminals in the vehicle network.
  • FIG. 1 is a schematic flowchart of a method for determining an antenna provided by an embodiment of the present application. As shown in FIG. 1 , the antenna determination method provided in this embodiment at least includes:
  • Step S100 Establish a communication connection with the second terminal.
  • the antenna determination method involved in this embodiment is applied to the first terminal. Therefore, in this step, the first terminal first establishes a communication connection with the second terminal.
  • the method for establishing a communication connection may be that the first terminal sends connection information to the second terminal through an antenna, the second terminal uses one or more antennas to receive data, and communicates with the first terminal; or the second terminal uses an antenna to receive data.
  • the connection information is sent to the first terminal, the first terminal uses one or more antennas to receive data, and communicates with the second terminal.
  • Step S200 Acquire the received signal of the first antenna and the received signal of the second antenna.
  • the first terminal has at least two antennas, that is, the first terminal may have three antennas, four antennas or even more. These antennas are preferably oriented in different directions, so as to be more accurate and sensitive to signals transmitted in different directions. Those skilled in the art know that these antennas can be directional antennas or antenna arrays. Combined with the beamforming technology of directional antennas, these antennas facing different directions can achieve low latency and high quality of communication.
  • the second terminal After the communication connection is established, the second terminal transmits a reference signal to the first terminal through its antenna, and the reference signal is used for subsequent evaluation of channel quality.
  • the second terminal has four antennas, so the second terminal sends reference signals to the first terminal through the four antennas respectively.
  • the second terminal transmits the reference signal over 4 antennas within the determined period, and the 4 antennas transmit the signals with time intervals. Not transmitting signals through different antennas at the same time can avoid mutual interference between antenna signals, and make subsequent evaluation of channel quality more accurate.
  • the first terminal receives the reference signal transmitted by the second terminal through more than two antennas, that is, for the first terminal, the first terminal obtains the received signal of the first antenna and the received signal of the second antenna.
  • the received signal is the reference signal Signal.
  • the first terminal corresponding to the second terminal having four antennas, the first terminal also has four antennas, and the four antennas of the first terminal respectively receive reference signals from the four antennas of the second terminal.
  • Step S300 Compare the quality of the received signal with the first signal quality threshold respectively, and select the channel corresponding to the received signal whose signal quality is greater than the first signal quality threshold as the communication channel.
  • the first terminal has at least a first antenna and a second antenna, so at least two channels of received signals are obtained, and then the signal quality of each received signal is calculated separately, wherein the evaluation parameters of the signal quality of the received signal include reference signal received power, signal and signal quality. Interference plus noise ratio, received signal strength indication, reference signal reception quality, etc.
  • the evaluation of signal quality can be performed through various dimensions and methods. Therefore, any parameters and methods that can be used to evaluate signal quality fall within the protection scope of step S300 in this embodiment of the present application.
  • the received power of the reference signal is used as the evaluation index of the signal quality, that is, the higher the received power of the reference signal of the received signal is, the higher the signal quality is.
  • the channel corresponding to the above signal can be used as the transmission channel, and the transmission channel can be one or more.
  • the channel corresponding to the signal with the best signal quality is selected as the transmission channel.
  • Step S400 Determine the antenna corresponding to the communication channel as the working antenna of the terminal.
  • the first terminal selects the antenna corresponding to the above communication channel as the subsequent transmitting and receiving antenna, that is, the first terminal will switch to the antenna corresponding to the communication channel.
  • the first terminal to which the antenna determination method is applied should have at least two antennas, and the second terminal that sends the reference signal to the first terminal may have one or more antennas.
  • the number of transmit antennas obtained by the antenna determination method may be one or more, because in the actual working state, the terminal will involve the state of using multiple antennas to transmit at the same time.
  • the channel corresponding to the signal with better signal quality can be selected as the communication channel by comparing the quality of the signals received by at least two antennas of itself. And switch to the antenna corresponding to the communication channel for subsequent signal transmission and reception, in the V2X direct link communication based on the UE's autonomous resource selection, it can effectively reduce the communication delay, improve the communication quality, and the acquired Important information such as vehicle speed, direction, geographic location, and route can be shared with other terminals in a timely and effective manner.
  • FIG. 2 is a schematic diagram of a terminal system according to an embodiment of the present application.
  • the terminal system includes a first terminal and a second terminal, the left side of FIG. 2 is the first terminal, and the right side is the second terminal.
  • the first terminal has one transmit/receive module that can support both transmit and receive, and three receive modules.
  • the above four modules are connected to four antennas through 4P4T multi-pole multi-throw RF switches; the second terminal also has a A transmitter/receiver module that supports both transmission and reception.
  • the above 4 modules are connected to 4 antennas through 4P4T multi-pole multi-throw RF switches.
  • FIG. 3 The flowchart of the method for determining the antenna of the terminal system provided by this embodiment is shown in FIG. 3 , which at least includes:
  • Step S101 The first terminal sends a connection signal to the second terminal using the first antenna, and establishes a communication connection with the second terminal.
  • the first terminal sends connection information to the second terminal through an antenna
  • the second terminal uses one or more antennas to receive data to achieve a communication connection with the first terminal.
  • Step S102 The receiving module of the first terminal works tentatively, and the transmitting module transmits reference signals to the second terminal from the first antenna, the second antenna, the third antenna and the fourth antenna respectively within the first time period.
  • the second terminal has four antennas, so the first terminal periodically sends reference signals to the second terminal through the four antennas respectively, that is, the The antenna, the third antenna and the fourth antenna transmit reference signals to the second terminal.
  • the second terminal corresponding to the first terminal having four antennas, the second terminal also has four antennas, and the four antennas of the second terminal respectively receive reference signals from the four antennas of the second terminal.
  • Step S103 the second terminal performs channel estimation by using the received signals of the 4-channel receiving modules, and judges the channel quality of the transmission path from the first terminal to the second terminal by using the received power of the reference signal.
  • the received power of the reference signal is used as the evaluation index of the signal quality, that is, the higher the received power of the reference signal of the received signal is, the higher the signal quality is.
  • Step S104 The second terminal uses the antenna corresponding to the channel with the best signal quality as the antenna for subsequent communication with the first terminal.
  • the channel corresponding to the received signal with the highest reference signal received power is used as the communication channel, and the second terminal determines the antenna corresponding to the communication channel as the antenna.
  • the second terminal has switched the antenna to an antenna that can communicate with the first terminal and has better channel quality, and before executing the antenna switching scheme next time, the second terminal will use the above antenna to communicate with the first terminal.
  • the first terminal in order to switch to an antenna capable of communicating with the second terminal and having better channel quality, the first terminal also repeatedly performs the above steps S101 to S104.
  • the terminal system provided in this embodiment can, on the premise of establishing a communication connection with the opposite terminal, select the channel corresponding to the signal with better signal quality as the transmission channel by comparing the quality of the signals received by at least two antennas of itself, and switch To the antenna corresponding to the transmission channel, it is used for subsequent signal transmission and reception.
  • the communication delay can be effectively reduced, the communication quality can be improved, and the obtained vehicle speed , direction, geographic location, route and other important information can be shared with other terminals in a timely and effective manner.
  • FIG. 4 is a schematic diagram of a V2X terminal provided by another embodiment of the present application.
  • a V2X terminal is included, specifically a vehicle-mounted terminal.
  • the vehicle-mounted terminal specifically includes two first transmit/receive modules and second transmit/receive modules that can support both transmission and reception, and two receive/receive modules. Since the reception and transmission of signals between the above-mentioned transmitting/receiving modules will interfere with each other, the two transmitting/receiving modules are respectively connected to different switches.
  • the first antenna is connected to the first switch, the second antenna and the third antenna are respectively connected to the second switch, the fourth antenna is connected to the third switch, and the above three switches are single-pole three-throw switches or three-pole three-throw switches, used for Select the antenna that meets the requirements and the corresponding module.
  • FIG. 5 The flowchart of the method for determining the antenna of the V2X terminal provided in this embodiment is shown in FIG. 5 , which at least includes:
  • Step S201 The vehicle-mounted terminal sends a connection signal to the roadside unit RSU by using the first antenna, and establishes a communication connection with the roadside unit RSU.
  • Step S202 The receiving module of the vehicle terminal works tentatively, and the first transmitting module transmits reference signals to the roadside unit RSU from the first antenna, the second antenna, the third antenna and the fourth antenna respectively within the first time period.
  • Step S203 The roadside unit RSU performs channel estimation by using the received signals of the 4-channel receiving modules, and judges the channel quality of the transmission path from the vehicle terminal to the roadside unit RSU by using the received power of the reference signal.
  • Step S204 The roadside unit RSU determines the antenna corresponding to the channel with the best signal quality as the first transceiver antenna for subsequent communication with the vehicle-mounted terminal.
  • Step S205 the receiving module of the vehicle-mounted terminal continues to work tentatively, and the second transmitting module transmits reference signals from the first antenna, the second antenna, the third antenna and the fourth antenna to the roadside unit RSU respectively within the second time period.
  • Step S206 The RSU performs channel estimation through the received signals of the 4-channel receiving modules, and judges the channel quality of the transmission path from the vehicle-mounted terminal to the RSU by using the received power of the reference signal.
  • Step S207 The roadside unit RSU uses the antenna corresponding to the channel with the best signal quality as the second transmitting antenna for subsequent communication with the vehicle-mounted terminal.
  • the above-mentioned steps S201 to S204 are the transmission process of the reference signal of the vehicle-mounted terminal based on the first transmission module.
  • Steps S205 to S207 are basically the same as steps S202 to S204. The only difference is that the above steps are based on the transmission process of the reference signal of the vehicle-mounted terminal of the second transmission module.
  • the antenna receives, calculates and compares the above reference signal to determine the best antenna that can communicate with the antenna supported by the second transmitter module of the vehicle-mounted module, that is, the second transceiver antenna.
  • the vehicle-mounted terminal, roadside unit, mobile phone and other fixed or mobile terminals in the V2V, V2N, V2P and V2I systems can all use the antenna determination method provided in the above-mentioned embodiment, and the adaptive configuration and the above-mentioned antenna determination method can be used. method adapted to the terminal structure.
  • the terminal based on the Internet of Vehicles is often constantly moving. Therefore, when the terminal detects that the quality of the received signal is significantly reduced or is less than the preset second signal quality threshold, it will re-execute the antenna determination method to adopt the quality in real time.
  • the antenna corresponding to the best channel is used to transmit and receive.
  • the terminal system provided in this embodiment can, on the premise of establishing a communication connection with the opposite terminal, select a channel corresponding to a signal with better signal quality as a communication channel by comparing the quality of signals received by at least two antennas of itself, and switch To the antenna corresponding to the communication channel, it is used for subsequent signal transmission and reception.
  • the communication delay can be effectively reduced, the communication quality can be improved, and the obtained vehicle speed , direction, geographic location, route and other important information and other terminals in the vehicle network to achieve timely and effective sharing.
  • FIG. 6 is a schematic diagram of a V2X system terminal according to another embodiment of the present application.
  • the second terminal and the third terminal can communicate with the first terminal. Resource allocation.
  • the vehicle-mounted terminal located in the center of the figure has four antennas facing the front, rear, left, and right. Based on the antenna determination method provided in the above embodiment, the vehicle-mounted terminal and the left-side vehicle-mounted terminal may use the antenna facing the left side. Similarly, the antenna facing the right may be used when communicating with the RSU on the right. The above antenna can ensure the best communication quality and the smallest delay.
  • the vehicle-mounted terminal can communicate with the vehicle-mounted terminal on the left and the roadside unit on the right, the vehicle-mounted terminal can be used as a base station to realize the communication between the vehicle-mounted terminal on the left and the roadside unit on the right. communication between units.
  • an embodiment of the present application provides an antenna determination device, including: a signal receiving module, the signal receiving module is configured to obtain received signals of two antennas; a channel selection module, the channel selection module is configured to respectively The signal quality of the received signal of the antenna is compared with the first signal quality threshold, and the channel corresponding to the received signal whose signal quality is greater than the first signal quality threshold is selected as the communication channel; the antenna determination module, the antenna determination module is set to Determine the antenna corresponding to the communication channel.
  • the above-mentioned antenna switching device further includes a signal transmission module, and the signal transmission module is configured to transmit signals through the antenna corresponding to the transmission channel.
  • an embodiment of the present application further provides a terminal, where the terminal performs the antenna determination method of the first aspect.
  • an embodiment of the present application provides an electronic device, comprising: a memory, where the memory is used to store a computer program, and the computer program can implement the method of the first aspect; method on the one hand.
  • embodiments of the present application further provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the method of the first aspect above.
  • the embodiment of the present application selects the channel corresponding to the signal with better signal quality as the communication channel by comparing the quality of the signals received by at least two antennas of itself, and switches to the communication channel.
  • the antenna corresponding to the channel is used for subsequent signal transmission and reception.
  • V2X direct link communication based on the UE's independent selection of resources, it can effectively reduce the communication delay, improve the communication quality, and share the acquired data information with other terminals. Realize timely and effective sharing.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .
  • the terminal equipment can be all terminals in the vehicle network system, including vehicle terminals, roadside units, etc., and can also be mobile phones, tablet computers, notebook computers, PDAs, vehicle terminal equipment, wearable devices, super vehicles in non-vehicle networking systems. Mobile personal computer, netbook, personal digital assistant, CPE, UFI (wireless hotspot device), etc. The embodiments of this application are not specifically limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

天线确定方法、装置、终端、电子设备及存储介质。本申请实施例在与对侧终端建立通信连接的前提下,通过比较自身至少两路天线接收信号的质量,选择信号质量较好的信号所对应的信道作为通信信道,并确定与所述通信信道对应的天线,用于后续的信号发射与接收。

Description

天线确定方法、装置、终端、电子设备及存储介质
相关申请的交叉引用
本申请基于申请号为202010600466.0、申请日为2020年06月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信领域,尤其涉及一种天线确定方法、装置、终端、电子设备及存储介质。
背景技术
车联网通信V2X(Vehicle-to-Everything Communications,简称为V2X)是指通过装载在车辆上的传感器、车载终端及电子标签提供车辆信息,采用各种通信技术实现车与车通信(Vehicle-to-Vehicle Communication,简称V2V)、车与人通信(Vehicle-to-Pedestrian Communications,简称为V2P)、车与网络基础设施通信(Vehicle-to-Infrastructure Communications,简称为V2I),车与网络通信(Vehicle-to-Network Communications,简称为V2N),并在信息网络平台上对信息进行提取、共享等有效利用,对车辆进行有效的管控和提供综合服务。
当前V2X的资源分配方式有两种,一种是基站(evolved Node B,eNB)调度方式,另一种是用户设备(User Equipment,UE)自主选择资源方式。基于UE自主选择资源方式实现的V2X直通链路通信不需要占用基站资源,但其通信时延及通信质量仍然不能满足需求,因此亟需能够实现更低时延、更高可靠性的通信方式来降低资源的拥塞及冲突。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了天线确定方法、装置、终端、电子设备及存储介质。
第一方面,本申请的实施例提供了一种天线确定方法,本方法应用于终端,所述终端至少包括两条天线,包括:获取所述两条天线的接收信号;分别将所述两条天线的接收信号的信号质量与第一信号质量阈值进行比较,选择信号质量大于所述第一信号质量阈值的接收信号所对应的信道作为通信信道;确定与所述通信信道对应的天线作为终端的工作天线。
第二方面,本申请的实施例提供了一种天线确定装置,包括:信号接收模块,所述信号接收模块被设置成获取两条天线的接收信号;信道选择模块,所述信道选择模块被设置成分别将所述两条天线的接收信号的信号质量与第一信号质量阈值进行比较,并选择所述信号质量大于所述第一信号质量阈值的接收信号所对应的信道作为通信信道;天线确定模块,所述天线确定模块被设置成确定与所述通信信道对应的天线。
第三方面,本申请的实施例还提供了一种终端,所述终端执行如第一方面所述的天线确定方法。
第四方面,本申请实施例提供了一种电子设备,包括:存储器,所述存储器用于存储计算机程序,所述计算机程序可实现如第一方面所述的方法;处理器,所述处理器用于执行所述计算机程序时实现如第一方面所述的方法。
第五方面,本申请的实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述第一方面的方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说 明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
图1为本申请实施例提供的天线确定方法的流程示意图;
图2为本申请一实施例提供的终端系统示意图;
图3为本申请一实施例提供的基于终端系统的天线确定方法的流程示意图;
图4为本申请另一实施例提供的V2X终端示意图;
图5为本申请另一实施例提供的基于V2X终端的天线确定方法的流程示意图;
图6为本申请又一实施例提供的V2X终端示意图;
图7为本申请另一实施例提供的终端的模块示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理 确定上述词语在本申请实施例中的具体含义。
当前V2X的资源分配方式有两种,一种是基站(evolved Node B,eNB)调度方式,另一种是用户设备(User Equipment,UE)自主选择资源方式。基于UE自主选择资源方式实现的V2X直通链路通信不需要占用基站资源,但其通信时延及通信质量仍然不能满足需求,因此亟需能够实现更低时延、更高可靠性的通信方式来降低资源的拥塞及冲突。
基于此,本申请实施例提供了一种天线确定方法、装置、车联网终端、电子设备及存储介质,在与对侧终端建立通信连接的前提下,通过比较自身至少两路天线接收信号的质量,选择信号质量较好的信号所对应的信道作为通信信道,并切换至与所述通信信道对应的天线,用于后续的信号发射与接收,在基于UE自主选择资源方式实现的V2X直通链路通信中,能够有效地降低通信时延,提高通信质量,将获取的车辆车速、方向、地理位置、路线等重要信息与车辆网中的其它终端实现及时有效的共享。
下面结合附图,对本申请实施例作进一步阐述。
第一方面,本申请实施例提供了一种天线方法。图1为本申请实施例提供的天线确定方法的流程示意图。如图1所示,本实施例提供的天线确定方法至少包括:
步骤S100:与第二终端建立通信连接。
本实施例涉及的天线确定方法应用于第一终端,因此,在此步骤中,第一终端先与第二终端建立通信连接。建立通信连接的方法可以为第一终端通过天线发送连接信息至第二终端,第二终端使用一根或多跟天线进行数据接收,与第一终端实现通信连接;也可以为第二终端通过天线发送连接信息至第一终端,第一终端使用一根或多跟天线进行数据接收,与第二终端实现通 信连接。
步骤S200:获取第一天线的接收信号与第二天线的接收信号。
值得注意的是,第一终端至少具有两条天线,即第一终端可以具有三条天线、四条天线甚至更多。这些天线最好朝向不同的方向,以此对不同方位发射的信号更具有精确性和敏感性。本领域技术人员可知,这些天线可以为定向天线或天线阵列,结合定向天线的波束赋形技术,这些朝向不同方向的天线能够实现通信的低延时与高质量
待建立通信连接后,第二终端通过其天线发射参考信号至第一终端,参考信号用于后续评估信道质量。
在一实施例中,第二终端具有4条天线,因此第二终端分别通过上述4条天线分别向第一终端发送参考信号。
在一些实例中,第二终端在确定周期内通过4条天线发射参考信号,且4条天线发射信号具有时间间隔。不在同一时刻通过不同天线发射信号能够避免天线信号之间的相互干扰,使后续对信道质量的评估更加准确。
第一终端通过两条以上的天线接收第二终端发射的参考信号,即对于第一终端,第一终端获取第一天线的接收信号与第二天线的接收信号,在这里,接收信号即为参考信号。
在一实施例中,对应于拥有4条天线的第二终端,第一终端也具有4条天线,第一终端的4条天线分别接收来自于第二终端4条天线的参考信号。
步骤S300:分别将接收信号的质量与第一信号质量阈值进行比较,选择信号质量大于第一信号质量阈值的接收信号所对应的信道作为通信信道。
第一终端至少具有第一天线与第二天线,因此至少获得两路接收信号,进而分别计算每个接收信号的信号质量,其中,接收信号的信号质量的评估 参数包括参考信号接收功率、信号与干扰加噪声比、接收信号强度指示、参考信号接收质量等。本领域技术人员应当知晓,信号质量的评估可通过多种维度以及多种方法,因此,任何能用于评估信号质量的参数及方法均处于本申请实施例步骤S300的保护范围内。
在一实施例中,采用参考信号接收功率作为信号质量的评估指标,即接收信号的参考信号接收功率越大,说明信号质量越高。
而通过提前预设一第一信号质量阈值,筛选出信号质量满足要求的信号及其对应的信道。
在一实施例中,只要信号质量大于第一信号质量阈值,则上述信号对应的信道均可作为发射信道,其中,发射信道可为一条或多条。
在另一实施例中,选择信号质量最好的信号对应的信道作为发射信道。
步骤S400:确定与通信信道对应的天线作为终端的工作天线。
在确定了通信信道以后,第一终端选择与上述通信信道对应的天线作为后续的发射与接收天线,即第一终端将切换至与通信信道对应的天线。
通过本申请实施例,本领域技术人员应当知晓,应用本天线确定方法的第一终端应至少有两条天线,而给第一终端发送参考信号的第二终端可具有一条或多条天线。同时,通过本天线确定方法获得的发射天线可以为一条或多条,因为在实际工作状态,终端会涉及使用多条天线同时进行发射的状态。
通过本实施例提供的天线确定方法,能够在与对侧终端建立通信连接的前提下,通过比较自身至少两路天线接收信号的质量,选择信号质量较好的信号所对应的信道作为通信信道,并切换至与所述通信信道对应的天线,用于后续的信号收发,在基于UE自主选择资源方式实现的V2X直通链路通信中,能够有效地降低通信时延,提高通信质量,将获取的车辆车速、方向、地理 位置、路线等重要信息与其它终端实现及时有效的共享。
图2为本申请一实施例提供的终端系统示意图。
如图2所示,终端系统包括第一终端与第二终端,图2左侧的为第一终端,右侧的为第二终端。第一终端具有1个既能支持发射也能支持接收的发射/接收模块,有3个接收模块,上述4个模块通过4P4T多刀多掷射频开关与4条天线连接;第二终端也具有一个既能支持发射也能支持接收的发射/接收模块,有3个接收模块,上述4个模块通过4P4T多刀多掷射频开关与4条天线连接。
本实施例提供的终端系统的天线确定方法流程图如图3所示,至少包括:
步骤S101:第一终端使用第一天线向第二终端发送连接信号,并与第二终端建立通信连接。
在本实施例中,第一终端通过天线发送连接信息至第二终端,第二终端使用一根或多跟天线进行数据接收,与第一终端实现通信连接。
步骤S102:第一终端的接收模块暂定工作,发射模块在第一时间周期内分别从第一天线、第二天线、第三天线与第四天线发射参考信号至第二终端。
在本实施例中,第二终端具有4条天线,因此第一终端分别通过上述4条天线周期性的分别向第二终端发送参考信号,即确定的时间周期内分别从第一天线、第二天线、第三天线和第四天线发射参考信号给第二终端。
在本实施例中,对应于拥有4条天线的第一终端,第二终端也具有4条天线,第二终端的4条天线分别接收来自于第二终端4条天线的参考信号。
步骤S103:第二终端通过4路接收模块的接收信号进行信道估计,通过参考信号接收功率判断第一终端到第二终端传输通路的信道质量。
在本实施例中,采用参考信号接收功率作为信号质量的评估指标,即接 收信号的参考信号接收功率越大,说明信号质量越高。
步骤S104:第二终端将信号质量最优的信道对应的天线作为后续与第一终端通信的天线。
在本实施例中,基于对每个接收信号的参考信号接收功率的计算,将参考信号接收功率最大的接收信号对应的信道作为通信信道,第二终端确定与通信信道对应的天线作为天线。
通过上述步骤,第二终端已经将天线切换至能与第一终端通信且信道质量较好的天线,而在下一次执行天线切换方案之前,第二终端将使用上述天线与第一终端进行通信。
相应地,第一终端为了切换至能与第二终端通信且信道质量较好的天线,也重复执行上述步骤S101至S104。
本实施例提供的终端系统,能够在与对侧终端建立通信连接的前提下,通过比较自身至少两路天线接收信号的质量,选择信号质量较好的信号所对应的信道作为发射信道,并切换至与所述发射信道对应的天线,用于后续的信号收发,在基于UE自主选择资源方式实现的V2X直通链路通信中,能够有效地降低通信时延,提高通信质量,将获取的车辆车速、方向、地理位置、路线等重要信息与其它终端实现及时有效的共享。
图4为本申请另一实施例提供的V2X终端示意图。在图4中,包括一个V2X终端,具体为一种车载终端,该车载终端具体包括2个既能支持发射也能支持接收的第一发射/接收模块与第二发射/接收模块,2个接收模块,因为上述发射/接收模块之间信号的接收与发射会相互干扰,所以将两发射/接收模块分别与不同的开关相连。第一天线与第一开关连接,第二天线与第三天线分别与第二开关连接,第四天线与第三开关连接,上述三个开关为单刀三掷 开关或三刀三掷开关,用于选择符合要求的天线以及对应的模块。
本实施例提供的V2X终端的天线确定方法流程图如图5所示,至少包括:
步骤S201:车载终端使用第一天线向路侧单元RSU发送连接信号,并与路侧单元RSU建立通信连接。
步骤S202:车载终端的接收模块暂定工作,第一发射模块在第一时间周期内分别从第一天线、第二天线、第三天线与第四天线发射参考信号至路侧单元RSU。
步骤S203:路侧单元RSU通过4路接收模块的接收信号进行信道估计,通过参考信号接收功率判断车载终端至路侧单元RSU传输通路的信道质量。
步骤S204:路侧单元RSU将信号质量最优的信道对应的天线确定为后续与车载终端通信的第一收发天线。
步骤S205:车载终端的接收模块继续保持暂定工作,第二发射模块在第二时间周期内分别从第一天线、第二天线、第三天线与第四天线发射参考信号至路侧单元RSU。
步骤S206:路侧单元RSU通过4路接收模块的接收信号进行信道估计,通过参考信号接收功率判断车载终端至路侧单元RSU传输通路的信道质量。
步骤S207:路侧单元RSU将信号质量最优的信道对应的天线作为后续与车载终端通信的第二发射天线。
上述步骤S201至步骤S204为基于第一发射模块的车载终端的参考信号的发射流程,对侧的路侧单元RSU通过其至少两条天线对上述参考信号的接收、计算和比较,确定能够其与车载模块第一发射模块支持的天线通信的最佳天线,即第一通信天线。
步骤S205至步骤S207与步骤S202至步骤S204基本相同,唯一的区别 点在于,上述步骤是基于第二发射模块的车载终端的参考信号的发射流程,对侧的路侧单元RSU通过其至少两条天线对上述参考信号的接收、计算和比较,确定能够其与车载模块第二发射模块支持的天线通信的最佳天线,即第二收发天线。
本领域技术人员可知,V2V、V2N、V2P和V2I系统中的车载终端和路侧单元、手机等固定或者移动终端均可采用上述实施例中提供的天线确定方法,以及适应性配置与上述天线确定方法相适应的终端结构。
同时,基于车联网的终端往往是在不断移动的,因此,当终端检测到接收信号的质量明显下降或均小于预设的第二信号质量阈值时,将重新执行天线确定方法,以实时采用质量最好的信道对应的天线进行收发。
本实施例提供的终端系统,能够在与对侧终端建立通信连接的前提下,通过比较自身至少两路天线接收信号的质量,选择信号质量较好的信号所对应的信道作为通信信道,并切换至与所述通信信道对应的天线,用于后续的信号收发,在基于UE自主选择资源方式实现的V2X直通链路通信中,能够有效地降低通信时延,提高通信质量,将获取的车辆车速、方向、地理位置、路线等重要信息与车辆网中的其它终端实现及时有效的共享。
图6为本申请又一实施例提供的V2X系统终端示意图。
本领域技术人员也应当知晓,当第一终端与第二终端均采用上述实施例提供的天线确定方法实现了质量高、时延低的通信后,且当第一终端与第三终端也采用上述实施例提供的天线确定方法实现了质量高、时延低的通信后,第二终端与第三终端之间可借助第一终端进行通信,此时,第一终端的作用等同于基站,用作资源分配。
当第二终端与第三终端距离较远不能直接进行直通链路通信时,这种间 接的通信方式能够解决上述问题。
在本实施例中,位于图中央的车载终端具有朝向前、后、左、右的四条天线,基于上述实施例提供的天线确定方法,该车载终端与左侧车载终端时可能会采用朝向左侧的天线,同理,与右侧的路侧单元通信时可能会采用朝向右侧的天线,上述天线能够保证通信质量最佳,时延最小。而当该车载终端既实现了与左侧的车载终端通信,又实现了与右侧的路侧单元通信,此时,该车载终端可被用作基站,实现左侧车载终端与右侧路侧单元之间的通信。
第二方面,本申请的实施例提供了一种天线确定装置,包括:信号接收模块,信号接收模块被设置成获取两条天线的接收信号;信道选择模块,信道选择模块被设置成分别将两条天线的接收信号的信号质量与第一信号质量阈值进行比较,并选择信号质量大于所述第一信号质量阈值的接收信号所对应的信道作为通信信道;天线确定模块,天线确定模块被设置成确定与通信信道对应的天线。上述天线切换装置还包括信号发射模块,信号发射模块被设置成通过与发射信道对应的天线发射信号。
第三方面,本申请的实施例还提供了一种终端,终端执行如第一方面的天线确定方法。
第四方面,本申请实施例提供了一种电子设备,包括:存储器,存储器用于存储计算机程序,计算机程序可实现如第一方面的方法;处理器,处理器用于执行计算机程序时实现如第一方面的方法。
第五方面,本申请的实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行如上第一方面的方法。
本申请实施例在与对侧终端建立通信连接的前提下,通过比较自身至少两路天线接收信号的质量,选择信号质量较好的信号所对应的信道作为通信 信道,并切换至与所述通信信道对应的天线,用于后续的信号发射与接收,在基于UE自主选择资源方式实现的V2X直通链路通信中,能够有效地降低通信时延,提高通信质量,将获取的数据信息与其它终端实现及时有效的共享。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块 或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。终端设备可以为车辆网系统中的所有终端,包括车载终端、路侧单元等,也可以为非车联网系统中的手机、平板电脑、笔记本电脑、掌上电脑、车载终端设备、可穿戴设备、超级移动个人计算机、上网本、个人数字助理、CPE、UFI(无线热点设备)等;本申请实施方案不作具体限定。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种天线确定方法,应用于终端,所述终端至少包括两条天线,所述方法包括:
    分别获取所述两条天线的接收信号;
    分别将所述两条天线的接收信号的信号质量与第一信号质量阈值进行比较,选择信号质量大于所述第一信号质量阈值的接收信号所对应的信道作为通信信道;
    确定与所述通信信道对应的天线作为终端的工作天线。
  2. 根据权利要求1所述的方法,其中,所述分别将所述两条天线的接收信号的信号质量与第一信号质量阈值进行比较,选择信号质量大于所述第一信号质量阈值的接收信号所对应的信道作为通信信道包括:
    选择信号质量最优的接收信号所对应的信道作为通信信道。
  3. 根据权利要求1所述的方法,其中,所述两条天线的接收信号具有时间间隔。
  4. 根据权利要求1所述的方法,其中,所述信号质量的评估参数包括至少以下之一:
    参考信号接收功率、信号与干扰加噪声比、接收信号强度指示、参考信号接收质量。
  5. 根据权利要求1至4任一项所述的方法,其中,所述两条天线为定向天线,且所述两条天线的朝向不同。
  6. 一种天线确定装置,包括:
    信号接收模块,所述信号接收模块被设置成获取两条天线的接收信号;
    信道选择模块,所述信道选择模块被设置成分别将所述接收信号的信号 质量与第一信号质量阈值进行比较,并选择所述信号质量大于所述第一信号质量阈值的接收信号所对应的信道作为通信信道;
    天线确定模块,所述天线确定模块被设置成确定所述通信信道对应的天线。
  7. 根据权利要求6所述的装置,还包括:
    信号发射模块,所述信号发射模块被设置成通过与所述通信信道对应的天线发射信号。
  8. 根据权利要求6至7任一项所述的装置,其特征在于,所述两条天线为定向天线,且所述两条天线的朝向不同。
  9. 一种终端,所述终端执行如权利要求1至5任一项所述的天线确定方法。
  10. 一种电子设备,包括:
    存储器,所述存储器用于存储计算机程序,所述计算机程序可实现如权利要求1至5任一项所述的方法;
    处理器,所述处理器用于执行所述计算机程序时实现如权利要求1至5中任意一项所述的方法。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行如权利要求1至5任意一项所述的方法。
PCT/CN2021/100405 2020-06-28 2021-06-16 天线确定方法、装置、终端、电子设备及存储介质 WO2022001667A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21834426.5A EP4131799A4 (en) 2020-06-28 2021-06-16 ANTENNA DETERMINATION METHOD AND DEVICE, TERMINAL, ELECTRONIC DEVICE AND STORAGE MEDIUM
US17/997,859 US20230224946A1 (en) 2020-06-28 2021-06-16 Antenna determination method and apparatus, terminal, electronic device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010600466.0 2020-06-28
CN202010600466.0A CN113852924A (zh) 2020-06-28 2020-06-28 天线确定方法、装置、终端、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022001667A1 true WO2022001667A1 (zh) 2022-01-06

Family

ID=78972712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100405 WO2022001667A1 (zh) 2020-06-28 2021-06-16 天线确定方法、装置、终端、电子设备及存储介质

Country Status (4)

Country Link
US (1) US20230224946A1 (zh)
EP (1) EP4131799A4 (zh)
CN (1) CN113852924A (zh)
WO (1) WO2022001667A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116961790A (zh) * 2022-04-19 2023-10-27 中兴通讯股份有限公司 通信信号的传输方法、装置、电子设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140024320A1 (en) * 2012-07-19 2014-01-23 Electronics And Telecommunications Research Institute Method and apparatus of wireless communication by using multiple directional antennas
CN106952480A (zh) * 2017-05-18 2017-07-14 迈锐数据(北京)有限公司 一种车辆检测器及车辆检测器的控制方法
CN107454997A (zh) * 2016-09-26 2017-12-08 深圳市大疆创新科技有限公司 选择天线的方法、设备和视频眼镜
CN109273845A (zh) * 2018-10-16 2019-01-25 东莞华贝电子科技有限公司 一种定向天线、基于多天线设计的终端及降低功耗的方法
CN110197944A (zh) * 2018-02-26 2019-09-03 矢崎总业株式会社 集成天线模块以及车载系统
US20200136265A1 (en) * 2018-10-25 2020-04-30 Hyundai Motor Company Antenna and vehicle having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2311693B (en) * 1996-03-29 2000-06-21 Nokia Mobile Phones Ltd Antenna selection control circuitry
KR100651447B1 (ko) * 2004-04-14 2006-11-29 삼성전자주식회사 복수의 안테나들을 사용하는 셀룰러 이동통신 시스템에서의 안테나 재 선택 시스템 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140024320A1 (en) * 2012-07-19 2014-01-23 Electronics And Telecommunications Research Institute Method and apparatus of wireless communication by using multiple directional antennas
CN107454997A (zh) * 2016-09-26 2017-12-08 深圳市大疆创新科技有限公司 选择天线的方法、设备和视频眼镜
CN106952480A (zh) * 2017-05-18 2017-07-14 迈锐数据(北京)有限公司 一种车辆检测器及车辆检测器的控制方法
CN110197944A (zh) * 2018-02-26 2019-09-03 矢崎总业株式会社 集成天线模块以及车载系统
CN109273845A (zh) * 2018-10-16 2019-01-25 东莞华贝电子科技有限公司 一种定向天线、基于多天线设计的终端及降低功耗的方法
US20200136265A1 (en) * 2018-10-25 2020-04-30 Hyundai Motor Company Antenna and vehicle having the same

Also Published As

Publication number Publication date
US20230224946A1 (en) 2023-07-13
EP4131799A1 (en) 2023-02-08
EP4131799A4 (en) 2023-09-20
CN113852924A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
RU2759426C1 (ru) Способ и устройство для передачи опорного сигнала, способ и устройство для приема опорного сигнала, устройство, установленное на транспортном средстве, и терминал
US20230422286A1 (en) Method and apparatus for carrier aggregation in sidelink communication
US11005544B2 (en) Communication device and method for performing radio communication
AU2021200786B2 (en) Method and apparatus for regulating communication parameters
WO2021013013A1 (en) Methods and devices for determining spatial relation, user equipment and network device
CN116390214A (zh) 功率控制参数确定方法、终端、网络设备及存储介质
CN107852704A (zh) 配置信息获取的方法和装置
WO2020037447A9 (zh) 一种功率控制方法及装置、终端
WO2021057362A1 (en) Reference signal determination method and device, and ue
US20230292364A1 (en) Bandwidth resource multiplexing method and apparatus, communication device and storage medium
US11444677B2 (en) Communication devices for efficient beam management
JP2022500935A (ja) リソースの割り当て方法および装置、端末
JP7488359B2 (ja) 測位のための条件付き測定報告モード
US20220278719A1 (en) Method and apparatus for selecting antenna panel
WO2022001667A1 (zh) 天线确定方法、装置、终端、电子设备及存储介质
CA3061160C (en) Signal processing method and apparatus
CN112655241A (zh) 侧行链路中确定传输模式的方法、终端设备和网络设备
CN115484676A (zh) 数据传输方法及装置
CN115699849A (zh) 无线通信方法和设备
US20240036150A1 (en) Multiple configurations for positioning procedures
US20190149208A1 (en) Data transmission method and device
US20220201658A1 (en) Configuration information determination method and apparatus, and terminal
CN116158155A (zh) 一种用于天线切换配置的srs发送方法、装置及存储介质
CN111417128A (zh) 一种载波管理方法、基站及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021834426

Country of ref document: EP

Effective date: 20221026

NENP Non-entry into the national phase

Ref country code: DE