WO2022001663A1 - 波束下发方法、电子设备及存储介质 - Google Patents

波束下发方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2022001663A1
WO2022001663A1 PCT/CN2021/100378 CN2021100378W WO2022001663A1 WO 2022001663 A1 WO2022001663 A1 WO 2022001663A1 CN 2021100378 W CN2021100378 W CN 2021100378W WO 2022001663 A1 WO2022001663 A1 WO 2022001663A1
Authority
WO
WIPO (PCT)
Prior art keywords
target beam
signal
target
needs
served
Prior art date
Application number
PCT/CN2021/100378
Other languages
English (en)
French (fr)
Inventor
费佩燕
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022001663A1 publication Critical patent/WO2022001663A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a beam delivery method, an electronic device, and a storage medium.
  • 5G (5th generation, fifth generation) technology is a new network technology that is widely discussed and expected.
  • 5G low-frequency technology has entered the commercial channel in my country, and will affect the development of various industries, allowing more services to go digital.
  • 5G high-frequency technology has attracted much attention due to its large bandwidth and ultra-large bandwidth, and it is the blue ocean for future 5G applications.
  • 5G high frequency not only supports larger bandwidth and higher data transmission rate, but also supports more refined beam transmission, such as high frequency SSB (Synchronization Signal and Physical Broadcast Channel Block, synchronization signal and broadcast channel blocks) beams, up to a maximum of 64 beams.
  • the 5G network can bring features such as large bandwidth, massive connections, low latency, and refined beams that were not achieved by previous networks, an important problem brought about by the support of these features is the sharp increase in energy consumption.
  • Embb enhanced mobile broadband
  • the transmit power of 5G base stations needs to be 10 times that of 4G, and the energy consumption is larger than that of 4G. Therefore, how to reduce energy consumption is a technical problem that needs to be solved urgently in the application of 5G technology.
  • the purpose of some embodiments of the present application is to provide a beam delivery method, an electronic device and a storage medium, which can reduce the energy consumption during the application of 5G technology.
  • the embodiment of the present application provides a beam delivery method, including: if there is no UE that needs to be served within the signal coverage of the target beam, turning off the target beam.
  • Embodiments of the present application also provide an electronic device, comprising: at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores data that can be executed by the at least one processor The instruction is executed by the at least one processor, so that the at least one processor can execute the above beam issuing method.
  • Embodiments of the present application further provide a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the above-mentioned beam delivery method is implemented.
  • FIG. 1 is a schematic flowchart of a beam delivery method provided by a first embodiment of the present application
  • FIG. 2 is a schematic flowchart of the refinement step S101 in the beam delivery method provided by the first embodiment of the present application;
  • FIG. 3 is another schematic flowchart of the refinement step S101 in the beam delivery method provided by the first embodiment of the present application;
  • FIG. 4 is another schematic flowchart of the refinement step S101 in the beam delivery method provided by the first embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a beam delivery method provided by the second embodiment of the present application.
  • FIG. 6 is a schematic flowchart of the refinement step S203 in the beam delivery method provided by the second embodiment of the present application.
  • FIG. 7 is another schematic flowchart of the refinement step S203 in the beam delivery method provided by the second embodiment of the present application.
  • FIG. 8 is another schematic flowchart of the refinement step S203 in the beam delivery method provided by the second embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by a third embodiment of the present application.
  • the first embodiment of the present application relates to a beam delivery method.
  • a UE user equipment, user equipment
  • the target beam is turned off.
  • turning off the target beam can reduce unnecessary beam delivery, thereby reducing the energy consumption of the 5G system.
  • the 5G system can be used as the execution subject of the beam delivery method provided by the embodiment of the present application.
  • the beam delivery method provided by the embodiment of the present application can also be applied to other devices that can deliver beams. in the system.
  • the execution body can be the server, wherein the server can be composed of a single server or a server cluster composed of multiple servers.
  • the 5G system is used as an example for description below.
  • FIG. 1 The flow of the beam delivery method provided by the embodiment of the present application is shown in FIG. 1 , and includes the following steps:
  • S101 Determine whether there is a UE requiring service within the signal coverage of the target beam, if there is no UE requiring service, perform S102, and if there is a UE requiring service, end the process.
  • the 5G high-frequency technology is jointly issued by multiple beams to achieve signal coverage of the cell, and the target beam can be one of the multiple beams jointly issued.
  • the 5G system can normally deliver according to the pre-configured number of beams, and use each normally delivered beam as a target beam to determine whether there is a UE that needs to be served in each beam.
  • judging whether there are UEs that need service within the signal coverage of the target beam may be to judge whether there are UEs that need service within the signal coverage of the target beam according to a preset time interval, for example, every 15 minutes. .
  • the measured result of the target beam refers to a measurement of whether the target beam is used.
  • a measurement result of the UE on the target beam is obtained, and the measurement result is used as the measured result of the target beam.
  • the measurement result of the UE on the target beam may be RSRP (Reference Signal Receiving Power, reference signal received power), CQI (Channel Quality Indicato, channel quality indicator), SINR (Signal to Interference plus Noise) of the UE on the target beam Ratio, signal-to-interference-plus-noise ratio) at least one measurement result of channel information.
  • the measurement result of the UE on the target beam may also be the measurement result of other information, which is not specifically limited here.
  • the UE By collecting the measurement results of the channel information such as RSRP, CQI, and SINR of the target beam by the UE, it can be seen from the measured results whether the target beam is used, so as to determine whether there is a UE that needs to be served within the signal coverage of the target beam.
  • the channel information such as RSRP, CQI, and SINR
  • the UE can feed it back to the 5G system, where the feedback channel can be an uplink control channel or an uplink traffic channel.
  • the feedback channel can be an uplink control channel or an uplink traffic channel.
  • the preset threshold can be set according to different types of measurement results.
  • multiple preset thresholds can be set according to the multiple test results.
  • the 5G system does not obtain the measured result of the target beam, it means that there is no UE feedback result within the signal coverage of the target beam, so that it can be determined that there is no UE requiring service within the signal coverage of the target beam.
  • the 5G system obtains the measured result of the target beam, but the measured result is smaller than the preset threshold, it means that although the feedback result from the UE is received, the actual beam where the UE is located is not the target beam but other beams, such as the target The beam is adjacent to the beam, so that although the 5G system obtains the measured result of the target beam, the measured result will be less than the preset threshold. There are UEs that need service.
  • the measured result of the target beam it can be determined whether there is a UE using the target beam within the signal coverage of the target beam according to the measured result, so as to determine whether there is a UE requiring service within the signal coverage of the target beam.
  • determining whether there is a UE requiring service within the signal coverage of the target beam may also be performed by the following steps:
  • S1011' Acquire the uplink signal of the UE.
  • the uplink signal of the UE may include various signals, for example, it may be an SRS (Sounding Reference Signal, channel sounding reference signal), a random access signal or other reference signals, which are not specifically limited here.
  • SRS Sounding Reference Signal, channel sounding reference signal
  • a random access signal or other reference signals, which are not specifically limited here.
  • the 5G system receives the UE's uplink signal through the 5G base station.
  • the 5G base station receives the UE's uplink signal, it can determine the UE's location information according to the uplink signal. If the UE's location information is within the signal coverage of the target beam, then It can be determined that the beam where the UE is located is the target beam, thereby determining that there is a UE that needs to be served within the signal coverage of the target beam; if the location information of the UE is outside the signal coverage of the target beam, it is determined that the beam where the UE is located is Different from other beams of the target beam, it is determined that there is no UE that needs to be served within the signal coverage of the target beam.
  • the beam where the UE is located can be determined according to the direction of arrival of the uplink signal, that is, the beam where the UE is located is determined according to the uplink signal of the UE.
  • the method further includes: judging the beam where the UE is located according to the incoming wave direction of the transmitted signal.
  • the direction of arrival of the signal sent by the UE can be obtained by using the 5G base station.
  • the 5G base station obtains the direction of arrival of the signal sent by the UE, if the direction of arrival of the signal sent by the UE is the direction of the target beam, it is determined that the beam where the UE is located is the target beam; if the direction of arrival of the signal sent by the UE is the direction of the target beam; If the direction of the target beam is different, it is determined that the beam where the UE is located is another beam different from the target beam.
  • the 5G system can further confirm the signal strength, such as the above-mentioned SRS or random received signal. It can be understood that if the beam where the UE is located is the target beam, the obtained signal strength of the SRS or random access signal should be strong; if the beam where the UE is located is other beams than the target beam, Then the acquired signal strength of the SRS or random access signal should be relatively weak, so further confirmation can be made according to the signal strength of these transmitted signals.
  • the signal strength such as the above-mentioned SRS or random received signal.
  • determining whether there is a UE requiring service within the signal coverage of the target beam may also be performed by the following steps:
  • the measured result of the target beam may be the same as that of the first example, and the uplink signal of the UE may be the same as that of the second example.
  • the uplink signal of the UE may be the same as that of the second example.
  • the preset threshold may be the same as that of the first example.
  • the method for determining the beam where the UE is located according to the uplink signal of the UE may be the same as that of the second example.
  • the measured result of the target beam is less than the preset threshold and it is determined according to the transmitted signal that the beam where the UE is located is different from the target beam, it is determined that there is no UE that needs to be served within the signal coverage of the target beam; or, when When the measured result of the target beam is not obtained and it is determined according to the transmitted signal that the beam where the UE is located is different from the target beam, it is determined that there is no UE requiring service within the signal coverage of the target beam.
  • the preset threshold value is usually set based on human experience, it may be There will be discrepancies with the actual situation, so a more accurate determination result can be obtained by combining the determination result of the beam where the UE transmits the signal.
  • the measured result of the target beam may be due to channel problems. Or the problem that the UE does not detect the target beam has not been obtained. Therefore, combined with the judgment result of the beam where the UE transmits the signal, a more accurate judgment result can also be obtained.
  • closing the target beam can be achieved by reconfiguring the system parameters by the 5G system.
  • the beam delivery method provided by the embodiment of the present application is to judge whether there is a UE that needs to be served within the signal coverage of the target beam, and if the result of the judgment is that there is no UE that needs to be served within the signal coverage of the target beam, then it is turned off. target beam.
  • turning off the target beam can reduce unnecessary beam delivery, thereby reducing the energy consumption of 5G technology in application.
  • the energy consumption of the part can be used to increase the resources for transmission of the traffic channel, thereby improving the service quality of the traffic channel.
  • the second embodiment of the present application relates to a beam delivery method.
  • the second embodiment is substantially the same as the first embodiment, and the main difference is that: in the embodiment of the present application, after the target beam is turned off, the method further includes: if the target beam If there is a UE that needs to be served within the signal coverage area of 1, the target beam will be delivered. By restoring the delivered beam when it is detected that there is a UE requiring service within the signal coverage of the target beam, the UE requiring service can obtain the corresponding signal service of the beam to meet the use requirement of the UE.
  • the flow of the beam sending method provided by the embodiment of the present application is shown in FIG. 5 , and includes the following steps:
  • S201 Determine whether there is a UE requiring service within the signal coverage of the target beam, if there is no UE requiring service, perform S202, and if there is a UE requiring service, return to performing S201.
  • S203 Determine whether there is a UE that needs to be served within the signal coverage of the target beam, and if there is a UE that needs to be served, execute S204, and if there is no UE that needs to be served, return to execute S203.
  • S201 is to judge whether there is a UE that needs to be served within the signal coverage of the target beam when the target beam is delivered normally, and S203 is to judge the signal coverage of the target beam when the target beam has been turned off. Whether there is a UE that needs to be served.
  • S203 may include the following steps:
  • S2031 Restart the delivery of the target beam at a specified time, and obtain the measured result of the target beam.
  • the specified time is, for example, every 15 minutes or after 30 minutes, etc., which can be set according to actual needs, and there is no specific limitation here.
  • the delivery of the restart target beam can be implemented by the 5G system by reconfiguring system parameters.
  • the method for obtaining the measured result of the target beam may be the same as S1011 in the first embodiment.
  • S1011 the relevant description in the first embodiment, which will not be repeated here.
  • the preset threshold may be the same as that in the first embodiment, or may be different, which is not specifically limited here. It can be understood that, when the preset threshold is different from the first embodiment, it is equivalent to two criteria respectively corresponding to determining that there are UEs requiring service and determining that there are no UEs requiring service.
  • the following steps can also be performed:
  • S2031' Detect the uplink signal of the UE.
  • the uplink signal of the UE may be an SRS, a random access signal, or other reference signals.
  • the detection when detecting the uplink signal of the UE, the detection may be kept all the time, or the detection may be performed once every period of time, which may be set according to actual needs.
  • the 5G base station When the 5G base station receives the uplink signal (such as a random access signal) of the UE, it can determine the location information of the UE according to the uplink signal, and when the location information of the UE is within the signal coverage of the target beam, determine the location where the UE is located.
  • the beam is the target beam, so as to determine that there is a UE that needs to be served within the signal coverage of the target beam; when the location information of the UE is outside the signal coverage of the target beam, it is determined that the beam where the UE is located is another beam, so as to determine the There is no UE that needs to be served within the signal coverage of the target beam.
  • the beam in which the UE is located may be determined according to the direction of arrival of the upper signal, wherein the beam where the UE is located may be determined according to the direction of arrival of the upper signal.
  • the method of the beam at the location is the same as that of S1012' in the first embodiment, please refer to the relevant description in the first embodiment, and details are not repeated here.
  • the 5G system can further confirm the strength of the signal.
  • the specific method is the same as S1012' in the first embodiment. Please refer to the relevant description in the first embodiment, here No longer.
  • S2031 Send a detection signal according to a preset time interval, and obtain a feedback result of the detection signal by the UE.
  • the preset time interval can be set according to actual needs, for example, every 10 minutes.
  • the detection signal may be a CSI-RS (Channel State Information-Reference Signal) detection signal, or may be other detection signals, which are not specifically limited here.
  • CSI-RS detection signal when the 5G system delivers the CSI-RS detection signal, it can be delivered periodically or aperiodically. Since the target beam is closed at this time, the CSI-RS detection signal can be delivered through the adjacent beams of the target beam. When the CSI-RS detection signal is delivered through the adjacent beam of the target beam, the ID of the target beam can be marked in the delivered CSI-RS detection signal, indicating that the delivered CSI-RS detection signal is for the ID of the target beam.
  • the system receives the feedback result of the detection signal from the UE, it can determine that the current feedback result is the feedback result of the target beam according to the ID of the target beam.
  • the 5G system can also mark the ID of the corresponding beam in the detection signal when it sends the detection signal, so as to determine the beam to which the feedback result belongs according to the ID of the beam.
  • S2032 Determine whether there is a UE that needs to be served within the signal coverage of the target beam according to the feedback result.
  • the 5G system Since the feedback result is fed back by the UE, if the 5G system does not receive the feedback result of the UE on the target beam, it can be determined that there is no UE that needs service within the signal coverage of the target beam; When the feedback result of the target beam is used, further judgment can be made according to the preset threshold. If the feedback result is greater than the preset threshold, it is determined that there is a UE requiring service within the signal coverage of the target beam, otherwise it is determined that there is no UE requiring service. .
  • the restoration of the delivered target beam can be achieved by the 5G system by reconfiguring system parameters.
  • the beam delivery method provided by the embodiments of the present application restores the delivery of the beam when it is detected that there is a UE that needs to be served within the signal coverage of the target beam, so that the UE that needs to be served can obtain the corresponding signal service of the beam, which satisfies the requirements of the UE. Use needs.
  • the third embodiment of the present application relates to an electronic device, as shown in FIG. 9 , comprising: at least one processor 301 ; and a memory 302 communicatively connected to the at least one processor 301 ; wherein the memory 302 stores data that can be accessed by at least one processor 301 .
  • Instructions executed by one processor 301, the instructions are executed by at least one processor 301, so that the at least one processor 301 can execute the above beam issuing method.
  • the memory and the processor are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory.
  • the bus may also connect together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface between the bus and the transceiver.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory may be used to store data used by the processor in performing operations.
  • the fourth embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • the computer-readable storage medium includes transient or non-transitory, removable or Non-removable media.
  • the aforementioned storage medium includes: U disk, removable hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例涉及通信技术领域,公开了一种波束下发方法、电子设备及计算机可读存储介质。所述波束下发方法包括:若在目标波束的信号覆盖范围内不存在需要服务的UE,则关闭所述目标波束。

Description

波束下发方法、电子设备及存储介质
相关申请的交叉引用
本申请基于申请号为202010606780.X、申请日为2020年6月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信技术领域,特别涉及一种波束下发方法、电子设备及存储介质。
背景技术
5G(5th generation,第五代)技术是目前被广泛热议和期待的新网络技术。5G低频技术已经在我国步入商用通道,并将影响各个行业的发展,让更多的服务走上数字化。而5G高频技术以其大带宽和超大带宽而倍受瞩目,是未来5G应用的蓝海。5G高频相对于5G低频而言,其不仅支持更大的带宽、更高的数据传输速率,也可支持更精细化的波束传输,如高频的SSB(SynchronizationSignal and Physical Broadcast Channel Block,同步信号和广播信道块)波束,最大可达64个波束。
虽然5G网络可带来以往网络达不到的大带宽、海量连接、低时延和精细化波束等特性,但是这些特性的支持,带来的一个重要问题是能耗的急剧增加,例如,就Embb(enhanced mobile broadband,增强型移动宽带)业务来讲,若5G的带宽为200M,在相同的小区覆盖范围下,5G基站的发射功率需要是4G的10倍,能耗相比4G而言大幅度增加,因此,如何降低能耗是5G技术在应用时亟待解决的技术问题。
发明内容
本申请的部分实施例的目的在于提供一种波束下发方法、电子设备及存储介质,可以降低5G技术在应用时的能耗。
本申请的实施例提供了一种波束下发方法,包括:若在目标波束的信号覆盖范围内不存在需要服务的UE,则关闭所述目标波束。
本申请的实施例还提供了一种电子设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的波束下发方法。
本申请的实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的波束下发方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不 构成对实施例的限定。
图1是本申请第一实施例提供的波束下发方法的流程示意图;
图2是本申请第一实施例提供的波束下发方法中S101细化步骤的流程示意图;
图3是本申请第一实施例提供的波束下发方法中S101细化步骤的另一流程示意图;
图4是本申请第一实施例提供的波束下发方法中S101细化步骤的又一流程示意图;
图5是本申请第二实施例提供的波束下发方法的流程示意图;
图6是本申请第二实施例提供的波束下发方法中S203细化步骤的流程示意图;
图7是本申请第二实施例提供的波束下发方法中S203细化步骤的另一流程示意图;
图8是本申请第二实施例提供的波束下发方法中S203细化步骤的又一流程示意图;
图9是本申请第三实施例提供的电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的第一实施例涉及一种波束下发方法,通过判断在目标波束的信号覆盖范围内是否存在需要服务的UE(user equipment,用户设备),若判断的结果为在目标波束的信号覆盖范围内不存在需要服务的UE,则关闭目标波束。在目标波束的信号覆盖范围内不存在需要服务的UE时,关闭目标波束,可以减少不必要的波束下发,从而降低5G系统的能耗。
应当说明的是,在一个例子中,5G系统可以作为本申请实施例提供的波束下发方法的执行主体,当然,本申请实施例提供的波束下发方法亦可应用在其它可以下发波束的系统中。当以5G系统作为执行主体时,其执行主体可以为服务端,其中,服务端可由单独的服务器或多个服务器组成的服务器集群组成。以下以5G系统作为例子进行说明。
本申请实施例提供的波束下发方法的流程如图1所示,包括以下步骤:
S101:判断目标波束的信号覆盖范围内是否存在需要服务的UE,若不存在需要服务的UE,则执行S102,若存在需要服务的UE,则结束流程。
在5G系统中,5G高频技术通过多波束联合下发,从而实现对小区的信号覆盖,而目标波束可以为联合下发的多波束中的其中一个波束。
在一个例子中,在S101之前,5G系统可以按照预先配置好的波束数正常下发,将每一正常下发的波束作为目标波束,以判断每一波束是否存在需要服务的UE。
应当理解的是,本申请实施例中的“若存在需要服务的UE,则结束流程”仅为其中一种实施例,除此之外,也可以是在存在需要服务的UE时,返回继续判断在目标波束的信号覆盖范围内是否存在需要服务的UE,例如是根据预设的时间间隔返回继续判断在目标波束的信号覆盖范围是否存在需要服务的UE;还可以是在存在需要服务的UE时,维持目前下发的波束。
在一个例子中,判断目标波束的信号覆盖范围内是否存在需要服务的UE,可以是根据预 设的时间间隔判断目标波束的信号覆盖范围是否存在需要服务的UE,例如每隔15分钟进行一次判断。
为了判断在目标波束的信号覆盖范围内是否存在需要服务的UE,在一个例子中,如图2所示,可以通过以下步骤来进行:
S1011:获取目标波束的被测结果。
在一个例子中,目标波束的被测结果是指对目标波束是否被使用的测量结果。
在一个例子中,获取UE对目标波束的测量结果,将该测量结果作为目标波束的被测结果。在一个例子中,UE对目标波束的测量结果可以是UE对目标波束的RSRP(Reference Signal Receiving Power,参考信号接收功率)、CQI(Channel Quality Indicato,信道质量指示)、SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)信道信息中至少一种测量结果。在一个例子中,UE对目标波束的测量结果还可以是其它信息的测量结果,此处不做具体限制。
通过收集UE对目标波束的RSRP、CQI、SINR等信道信息的测量结果,可以从被测结果中看出目标波束是否被使用,从而判断在目标波束的信号覆盖范围内是否存在需要服务的UE。
在一个例子中,UE对目标波束的RSRP、CQI、SINR等信道信息测量获得测量结果之后,可以由UE反馈至5G系统,其中,反馈的通道可以为上行控制信道,也可以是上行业务信道。
S1012:若被测结果小于预设阈值或未获取到被测结果,则判定目标波束的信号覆盖范围内不存在需要服务的UE。
可以理解的是,由于目标波束的被测结果可能是多种类型,例如上述的RSRP、CQI、SINR等多种测量结果,因此预设阈值可以根据不同类型的测量结果进行设置,当目标波束的被测结果是多个时,可以根据多个被测结果设置多个预设阈值。
当5G系统未获取到目标波束的被测结果时,说明目标波束的信号覆盖范围内没有UE的反馈结果,从而可以判定目标波束的信号覆盖范围内不存在需要服务的UE。当5G系统虽然获取到目标波束的被测结果,但被测结果小于预设阈值时,说明虽然收到UE的反馈结果,但UE实际所处的波束并非目标波束而是其它波束,例如是目标波束的邻近波束,从而导致5G系统虽然获取到目标波束的被测结果,但该被测结果会小于预设阈值,因此可以根据被测结果小于预设阈值来判定目标波束的信号覆盖范围内不存在需要服务的UE。
通过获取目标波束的被测结果,可以根据被测结果判断在目标波束的信号覆盖范围内是否有UE在使用目标波束,从而判断在目标波束的信号覆盖范围内是否存在需要服务的UE。
在一个例子中,判断目标波束的信号覆盖范围内是否存在需要服务的UE,如图3所示,还可以是通过以下步骤进行:
S1011’:获取UE的上发信号。
其中,UE的上发信号可以包括多种信号,例如可以是SRS(Sounding Reference Signal,信道探测参考信号)、随机接入信号或其它的参考信号,此处不做具体限制。
S1012’:若根据上发信号判定UE所处的波束为不同于目标波束的其它波束,则判定在目标波束的信号覆盖范围内不存在需要服务的UE。
5G系统通过5G基站接收UE的上发信号,当5G基站收到UE的上发信号时,可以根据上发信号确定UE的位置信息,若UE的位置信息在目标波束的信号覆盖范围内,则可以判 定UE所处的波束为目标波束,从而确定在目标波束的信号覆盖范围内存在需要服务的UE;若UE的位置信息在目标波束的信号覆盖范围之外,则判定UE所处的波束为不同于目标波束的其它波束,从而确定在目标波束的信号覆盖范围内不存在需要服务的UE。
在一个例子中,当上发信号(例如SRS)包括来波方向时,可根据上发信号的来波方向判断UE所处的波束,即在根据UE的上发信号判定UE所处的波束为不同于目标波束的其它波束之前,还包括:根据上发信号的来波方向判断UE所处的波束。
由于UE的上发信号是通过5G基站进行接收的,因此可以利用5G基站获取到UE上发信号的来波方向。在5G基站获取到UE上发信号的来波方向后,若UE上发信号的来波方向为目标波束的方向,则判定UE所处的波束为目标波束;若UE上发信号的来波方向与目标波束的方向不同,则判定UE所处的波束为不同于目标波束的其它波束。
在一个例子中,5G系统在判断UE所处的波束时,还可以结合信号的强弱来进一步确认,例如上述的SRS或随机接收信号。可以理解的是,若UE所处的波束为目标波束时,则获取到的SRS或随机接入信号等的信号强度应较强;若UE所处的波束为目标波束之外的其它波束时,则获取到的SRS或随机接入信号等的信号强度应较弱,因此可以根据这些上发信号的信号强弱作进一步确认。
在一个例子中,判断目标波束的信号覆盖范围内是否存在需要服务的UE,如图4所示,还可以是通过以下步骤进行:
S1011”:获取目标波束的被测结果和UE的上发信号。
其中,目标波束的被测结果可以与第一个例子相同,而UE的上发信号可以与第二个例子相同,具体可以参见上述两个例子的说明。
S1012”:若被测结果小于预设阈值或未获取到被测结果,且根据上发信号判定UE所处的波束为不同于目标波束的其它波束,则判定目标波束的信号覆盖范围内不存在需要服务的UE。
其中,预设阈值可以与第一个例子相同,具体可以参见第一个例子的说明。根据UE的上发信号判定UE所处的波束的方法可以与第二个例子相同,具体可以参见第二个例子的说明。
当目标波束的被测结果小于预设阈值且根据上发信号判定UE所处的波束为不同于目标波束的其它波束时,判定目标波束的信号覆盖范围内不存在需要服务的UE;或者,当未获取到目标波束的被测结果且根据上发信号判定UE所处的波束为不同于目标波束的其它波束时,判定目标波束的信号覆盖范围内不存在需要服务的UE。
当通过目标波束的被测结果是否小于预设阈值结合UE所处的波束来判断在目标波束的信号覆盖范围内是否存在需要服务的UE时,由于预设阈值通常是根据人为经验设置的,可能会与实际的情况存在出入,因此结合UE上发信号所处的波束的判断结果,可以得到一个更加准确的判定结果。同样地,当根据是否未获取到目标波束的被测结果结合UE所处的波束来判断在目标波束的信号覆盖范围内是否存在需要服务的UE时,由于目标波束的被测结果可能由于信道问题或者UE未对目标波束进行检测的问题而未获取到,因此结合UE上发信号所处的波束的判断结果,同样可以得到一个更加准确的判定结果。
S102:关闭目标波束。
在一个例子中,关闭目标波束可以通过5G系统对系统参数重配来实现。
本申请实施例提供的波束下发方法,通过判断在目标波束的信号覆盖范围内是否存在需要服务的UE,若判断的结果为在目标波束的信号覆盖范围内不存在需要服务的UE,则关闭目标波束。在目标波束的信号覆盖范围内不存在需要服务的UE时,关闭目标波束,可以减少不必要的波束下发,从而降低5G技术在应用时的能耗。或者,在关闭不必要的波束后,可以将该部分的能耗用于增加业务信道传输的资源,从而提高业务信道的服务质量。
本申请的第二实施例涉及一种波束下发方法,第二实施例与第一实施例大致相同,主要区别在于:在本申请实施例中,在关闭目标波束后,还包括:若目标波束的信号覆盖范围内存在需要服务的UE,则恢复下发目标波束。通过在检测到目标波束的信号覆盖范围内存在需要服务的UE时,恢复下发波束,可以使需要服务的UE得到波束相应的信号服务,满足UE的使用需要。
本申请实施例提供的波束下发方法的流程如图5所示,包括以下步骤:
S201:判断目标波束的信号覆盖范围内是否存在需要服务的UE,若不存在需要服务的UE,则执行S202,若存在需要服务的UE,则返回执行S201。
其中,S201中当不存在需要服务的UE时,执行S202(关闭目标波束)的方案与第一实施例中的S101相同,具体可以参见第一实施例中的描述,为了避免重复,这里不再赘述。
当存在需要服务的UE时,返回执行S201,在存在需要服务的UE时,根据预设时间间隔再次判断目标波束的信号覆盖范围内是否存在需要服务的UE。同样地,S201中“当存在需要服务的UE时,返回执行S201”仅为其中一种实施例,还可以是当存在需要服务的UE时,结束流程或维持目标波束的下发等流程,此处不做具体限制。
S202:关闭目标波束。
S203:判断目标波束的信号覆盖范围内是否存在需要服务的UE,若存在需要服务的UE,则执行S204,若不存在需要服务的UE,则返回执行S203。
可以理解的是,S201是在目标波束正常下发的情况下判断目标波束的信号覆盖范围内是否存在需要服务的UE,而S203则是在目标波束已经关闭的情况下判断目标波束的信号覆盖范围内是否存在需要服务的UE。
当不存在需要服务的UE时,返回执行S203,根据另一预设时间间隔再次判断在目标波束的信号覆盖范围内是否存在需要服务的UE。同样地,S203中的“当不存在需要服务的UE时,返回执行S203”仅为其中一种实施例,还可以是当不存在需要服务的UE时,结束流程等。
为了在目标波束已经关闭的情况下判断目标波束的信号覆盖范围内是否存在需要服务的UE,在一个例子中,如图6所示,S203可以包括以下步骤:
S2031:按指定时间重启目标波束的下发,获取目标波束的被测结果。
其中,指定时间例如是每隔15分钟或者在30分钟之后等,可以根据实际需要进行设置,此处不做具体限制。
在一个例子中,重启目标波束的下发可以由5G系统通过重配系统参数来实现。
在重启目标波束的下发后,获取目标波束的被测结果的方法可以与第一实施例中的S1011相同,具体可以参见第一实施例中的相关描述,这里不再赘述。
S2032:若被测结果大于预设阈值,则判定目标波束的信号覆盖范围内存在需要服务的UE。
其中,预设阈值可以与第一实施例中相同,也可以不同,此处不做具体限制。可以理解的是,在预设阈值不同于第一实施例时,相当于在判定存在需要服务的UE和判定不存在需要服务的UE分别对应两个标准。
在一个例子中,判断目标波束的信号覆盖范围内是否存在需要服务的UE,如图7所示,还可以通过以下步骤进行:
S2031’:检测UE的上发信号。
其中,UE的上发信号可以为SRS、随机接入信号或其它的参考信号等。
在一个例子中,在检测UE的上发信号时,可以是一直保持检测,也可以是每隔一段时间检测一次,可以根据实际需要进行设置。
S2032’:若根据上发信号判定UE所处的波束为目标波束,则判定在目标波束的信号覆盖范围内存在需要服务的UE。
当5G基站收到UE的上发信号(例如随机接入信号)时,可以根据上发信号确定UE的位置信息,当UE的位置信息在目标波束的信号覆盖范围内时,判定UE所处的波束为目标波束,从而确定在目标波束的信号覆盖范围内存在需要服务的UE;当UE的位置信息在目标波束的信号覆盖范围之外时,判定UE所处的波束为其它波束,从而确定在目标波束的信号覆盖范围内不存在需要服务的UE。
在一个例子中,当上发信号(例如SRS)包括来波方向时,可根据上发信号的来波方向来判断UE所处的波束,其中,根据上发信号的来波方向来判断UE所处的波束的方法与第一实施例中的S1012’相同,请参见第一实施例中的相关描述,这里不再赘述。
同样地,5G系统在判断UE所处的波束时,还可以结合信号的强弱来进一步确认,具体方法与第一实施例中的S1012’相同,请参见第一实施例中的相关描述,这里不再赘述。
在一个例子中,判断目标波束的信号覆盖范围内是否存在需要服务的UE,如图8所示,还可以通过以下步骤进行:
S2031”:根据预设时间间隔下发检测信号,获取UE对检测信号的反馈结果。
其中,预设时间间隔可以根据实际需要进行设置,例如是每隔10分钟。检测信号可以是CSI-RS(Channel State Information-Reference Signal)检测信号,也可以是其它的检测信号,此处不做具体限制。以CSI-RS检测信号为例,5G系统在下发CSI-RS检测信号时,可以是周期性下发,也可以是非周期性下发。由于此时目标波束已关闭,因此可以通过目标波束的邻近波束下发CSI-RS检测信号。当通过目标波束的邻近波束下发CSI-RS检测信号时,可以在下发的CSI-RS检测信号标记目标波束的ID,表明该下发的CSI-RS检测信号是针对目标波束的ID,当5G系统接收到UE对检测信号的反馈结果时,可根据目标波束的ID确定当前反馈结果为目标波束的反馈结果。
在实际应用中,若存在多个关闭的波束时,5G系统在下发检测信号时,亦可以在下发的检测信号标记相应波束的ID,从而根据波束的ID确定反馈结果归属的波束。
S2032”:根据反馈结果确定在目标波束的信号覆盖范围内是否存在需要服务的UE。
由于反馈结果是由UE反馈的,因此,若5G系统未收到UE对目标波束的反馈结果时, 可判定在目标波束的信号覆盖范围内不存在需要服务的UE;若5G系统收到UE对目标波束的反馈结果时,可以根据预设的阈值作进一步判断,若反馈结果大于预设的阈值,则判定在目标波束的信号覆盖范围内存在需要服务的UE,否则判定不存在需要服务的UE。
S204:恢复下发目标波束。
在一个例子中,恢复下发目标波束可以由5G系统通过重配系统参数来实现。
本申请实施例提供的波束下发方法,通过在检测到目标波束的信号覆盖范围内存在需要服务的UE时,恢复下发波束,可以使需要服务的UE得到波束相应的信号服务,满足UE的使用需要。
此外,本领域技术人员可以理解,上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请的第三实施例涉及一种电子设备,如图9所示,包括:至少一个处理器301;以及,与至少一个处理器301通信连接的存储器302;其中,存储器302存储有可被至少一个处理器301执行的指令,指令被至少一个处理器301执行,以使至少一个处理器301能够执行上述的波束下发方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请第四实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的暂态性或非暂态性、可移除或不可移除的介质。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,RandomAccessMemory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (16)

  1. 一种波束下发方法,其中,包括:
    若在目标波束的信号覆盖范围内不存在需要服务的用户设备UE,则关闭所述目标波束。
  2. 根据权利要求1所述的波束下发方法,其中,在所述若在目标波束的信号覆盖范围内不存在需要服务的UE,则关闭所述目标波束之前,还包括:
    获取所述目标波束的被测结果;
    若所述被测结果小于预设阈值或未获取到所述被测结果,则判定所述目标波束的信号覆盖范围内不存在需要服务的UE。
  3. 根据权利要求2所述的波束下发方法,其中,所述获取目标波束的被测结果,包括:
    获取UE对所述目标波束的测量结果,将所述测量结果作为所述目标波束的被测结果。
  4. 根据权利要求3所述的波束下发方法,其中,所述获取UE对所述目标波束的测量结果为:
    获取UE对所述目标波束的参考信号接收功率RSRP、信道质量指示CQI、信号与干扰加噪声比SINR信道信息中至少一种测量结果。
  5. 根据权利要求4所述的波束下发方法,其中,通过上行控制信道或上行业务信道获取UE对所述目标波束的测量结果。
  6. 根据权利要求1所述的波束下发方法,其中,在所述若在目标波束的信号覆盖范围内不存在需要服务的UE,则关闭所述目标波束之前,还包括:
    获取UE的上发信号;
    若根据所述上发信号判定所述UE所处的波束为不同于所述目标波束的其它波束,则判定所述目标波束的信号覆盖范围内不存在需要服务的UE。
  7. 根据权利要求6所述波束下发方法,其中,所述UE的上发信号包括信道探测参考信号SRS或随机接入信号。
  8. 根据权利要求1所述的波束下发方法,其中,在所述若在目标波束的信号覆盖范围内不存在需要服务的UE,则关闭所述目标波束之前,还包括:
    获取所述目标波束的被测结果和UE的上发信号;
    若所述被测结果小于预设阈值或未获取到所述被测结果,且根据所述上发信号判定所述UE所处的波束为不同于所述目标波束的其它波束,则判定所述目标波束的信号覆盖范围内不存在需要服务的UE。
  9. 根据权利要求6至8任一项所述的波束下发方法,其中,在所述根据所述上发信号判定所述UE所处的波束为不同于所述目标波束的其它波束之前,还包括:
    根据所述上发信号的来波方向判断所述UE所处的波束。
  10. 根据权利要求1所述的波束下发方法,其中,在所述关闭目标波束之后,还包括:
    若在所述目标波束的信号覆盖范围内存在需要服务的UE,则恢复下发所述目标波束。
  11. 根据权利要求10所述的波束下发方法,其中,在所述若在所述目标波束的信号覆盖范围内存在需要服务的UE,则恢复下发所述目标波束之前,还包括:
    按指定时间重启所述目标波束的下发,获取所述目标波束的被测结果;
    若所述被测结果大于预设阈值,则判定在所述目标波束的信号覆盖范围内存在需要服务的UE。
  12. 根据权利要求10所述的波束下发方法,其中,在所述若在所述目标波束的信号覆盖范围内存在需要服务的UE,则恢复下发所述目标波束之前,还包括:
    检测UE的上发信号;
    若根据所述上发信号判定所述UE所处的波束为所述目标波束,则判定在所述目标波束的信号覆盖范围内存在需要服务的UE。
  13. 根据权利要求10所述的波束下发方法,其中,在所述若在所述目标波束的信号覆盖范围内存在需要服务的UE,则恢复下发所述目标波束之前,还包括:
    根据预设时间间隔下发检测信号,获取UE对所述检测信号的反馈结果;
    根据所述反馈结果确定在所述目标波束的信号覆盖范围内是否存在需要服务的UE。
  14. 根据权利要求1至13任一项所述的波束下发方法,所述波束下发方法应用于5G系统。
  15. 一种电子设备,其中,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至14任一项所述的波束下发方法。
  16. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至14任一项所述的波束下发方法。
PCT/CN2021/100378 2020-06-29 2021-06-16 波束下发方法、电子设备及存储介质 WO2022001663A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010606780.XA CN113938898A (zh) 2020-06-29 2020-06-29 波束下发方法、电子设备及存储介质
CN202010606780.X 2020-06-29

Publications (1)

Publication Number Publication Date
WO2022001663A1 true WO2022001663A1 (zh) 2022-01-06

Family

ID=79273218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100378 WO2022001663A1 (zh) 2020-06-29 2021-06-16 波束下发方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN113938898A (zh)
WO (1) WO2022001663A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793059A (zh) * 2017-01-10 2017-05-31 北京小米移动软件有限公司 发送、获取同步信息块的方法及装置
CN109196791A (zh) * 2016-03-07 2019-01-11 瑞典爱立信有限公司 用于支持ue的方法和接入节点以及无线通信系统中的ue和由ue执行的对应方法
US10200880B2 (en) * 2014-10-31 2019-02-05 Huawei Technologies Co., Ltd. Beam adjustment method, user equipment, and base station
CN110536312A (zh) * 2019-03-22 2019-12-03 中兴通讯股份有限公司 一种波束覆盖的管理方法、装置和设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016115545A2 (en) * 2015-01-16 2016-07-21 Ping Liang Beamforming in a mu-mimo wireless communication system with relays
CN106341873A (zh) * 2015-07-08 2017-01-18 中兴通讯股份有限公司 一种数据通信方法和装置
WO2019210953A1 (en) * 2018-05-03 2019-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of controlling a component of a network node in a communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200880B2 (en) * 2014-10-31 2019-02-05 Huawei Technologies Co., Ltd. Beam adjustment method, user equipment, and base station
CN109196791A (zh) * 2016-03-07 2019-01-11 瑞典爱立信有限公司 用于支持ue的方法和接入节点以及无线通信系统中的ue和由ue执行的对应方法
CN106793059A (zh) * 2017-01-10 2017-05-31 北京小米移动软件有限公司 发送、获取同步信息块的方法及装置
CN110536312A (zh) * 2019-03-22 2019-12-03 中兴通讯股份有限公司 一种波束覆盖的管理方法、装置和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL: "Beam-based design framework for New Radio", 3GPP DRAFT; R1-167332, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20160822 - 20160826, 12 August 2016 (2016-08-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051132624 *

Also Published As

Publication number Publication date
CN113938898A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
US10743286B2 (en) Paging processing method and device
US20220086676A1 (en) Method and apparatus for fast serving cell activation
CN102404837B (zh) 设备发射功率控制的方法、装置及系统
US20210314833A1 (en) Cell handover method and apparatus, rrc reestablishment method and apparatus, storage medium and user equipment
CN109788487B (zh) 一种信号传输方法、用户设备及基站
WO2012163162A1 (zh) 一种空闲频谱的获取方法和设备
CN110557809B (zh) 一种接收机配置信息的确定方法、终端及网络设备
US20180110016A1 (en) System for boosting a network signal, and the method thereof
US20160242155A1 (en) Uplink Power Control Method and Apparatus
US20230180123A1 (en) Adjusting power consumption in a telecommunications network based on traffic prediction
WO2018153289A1 (zh) Sla分解方法、设备以及系统
CN112292877A (zh) 用于双连接的自动邻居关系增强
US20200235888A1 (en) Control information sending method and control information receiving method, and apparatus
WO2017121070A1 (zh) 激活类系统信息的传输方法、装置和设备
WO2020087505A1 (zh) 数据传输方法及装置
CN104918328A (zh) 一种资源分配方法及基站控制器
WO2020087506A1 (zh) 传输时间提前量的设置方法及装置
WO2018126574A1 (zh) 一种测量方法、基站及终端
US9705650B2 (en) Method and network node for determining an initial configuration of generation of uplink reference signals
EP3618295B1 (en) Signal processing method and apparatus
US20180376355A1 (en) Service optimization processing method, device, and system
WO2022001663A1 (zh) 波束下发方法、电子设备及存储介质
CN113747556B (zh) 室内分布系统节能方法、设备及计算机可读存储介质
WO2021258973A1 (zh) 测量报告定位方法、电子设备及存储介质
US11601900B2 (en) Communication method and apparatus for time synchronization of terminal devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21833086

Country of ref document: EP

Kind code of ref document: A1