WO2022001617A1 - 充电方法、终端及存储介质 - Google Patents

充电方法、终端及存储介质 Download PDF

Info

Publication number
WO2022001617A1
WO2022001617A1 PCT/CN2021/099435 CN2021099435W WO2022001617A1 WO 2022001617 A1 WO2022001617 A1 WO 2022001617A1 CN 2021099435 W CN2021099435 W CN 2021099435W WO 2022001617 A1 WO2022001617 A1 WO 2022001617A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
charger
battery
input voltage
current value
Prior art date
Application number
PCT/CN2021/099435
Other languages
English (en)
French (fr)
Inventor
张庆立
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/928,922 priority Critical patent/US20230253813A1/en
Priority to EP21832968.8A priority patent/EP4175110A4/en
Publication of WO2022001617A1 publication Critical patent/WO2022001617A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the field of charging, and in particular, to a charging method, a terminal, and a storage medium.
  • the fast charging technology is more and more widely used in terminals, such as mobile phones, Bluetooth headsets, and the like.
  • the principle of fast charging technology is divided into two types, one is to increase the output voltage of the charger, and the other is to increase the output current of the charger. Therefore, in order to realize fast charging of the terminal, a charger suitable for the terminal needs to be used.
  • the inventor found that when a third-party charger is used to charge the terminal, if the maximum power value supported by the third-party charger is greater than the power value set by the terminal, the terminal will follow the terminal setting If the maximum power value supported by the third-party charger is less than the power value set by the terminal, the charger will be pulled up. For example, if the user uses low power It is 13.5W, and the power of the standard charger of the terminal is 18W, then the charger will be pulled and cannot be charged normally.
  • the purpose of the embodiments of the present application is to provide a charging method, a terminal, and a storage medium, so that the terminal can be compatible with a third-party charger and improve the efficiency of charging the terminal.
  • An embodiment of the present application provides a charging method, including: obtaining an equivalent impedance between a charger and a charging chip of a terminal and a battery impedance of a battery in the terminal; and obtaining charging according to the battery impedance, the equivalent impedance and a target power value Power value, the target power value includes the maximum power value supported by the battery or the maximum power value supported by the charger; the charger is controlled to charge the battery according to the charging power value.
  • Embodiments of the present application further provide a terminal, at least one processor; and a memory communicatively connected to the at least one processor; wherein, the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor.
  • the at least one processor executes to enable the at least one processor to perform the above-described charging method.
  • Embodiments of the present application further provide a computer-readable storage medium storing a computer program, and the above-mentioned charging method is implemented when the computer program is executed by a processor.
  • FIG. 1 is a flowchart of a charging method according to a first embodiment of the present application.
  • FIG. 2 is a flowchart of a charging method according to a second embodiment of the present application.
  • FIG. 3 is a schematic diagram of a specific implementation of obtaining the maximum power value supported by the charger in the charging method according to the third embodiment of the present application.
  • FIG. 4 is a schematic diagram of a specific implementation of adjusting the output current value of the charger in the charging method described in FIG. 3 .
  • FIG. 5 is a block diagram of a terminal structure according to a fourth embodiment of the present application.
  • the current fast charging technology usually uses a charging chip including a charge pump.
  • the charge pump has the advantage of high charging conversion efficiency, but the power of the charge pump is not easy to control, and there is an adaptation problem with low-power chargers. Therefore, the terminal that adopts the fast charging technology usually has a paired charger, and the battery in the terminal is charged under the condition of ensuring the safety of the charger and the terminal.
  • the maximum power that can be achieved by fast charging technology is usually 100W, 28W, 25W, 20W, 22.5W, and 18W; the maximum power of ordinary charging technology can be 13.5W, etc.; since the charging speed is related to power, the higher the power, the more fully charged. The time consumption is shorter.
  • the terminal is set to charge at 18W, when the user uses a higher power charger, such as a 27W charger, It can only use 18W power, which cannot give full play to the ability of the charger; and if the user uses a low-power charger, such as a 13.5W charger, the charger will be pulled and cannot be charged normally.
  • a higher power charger such as a 27W charger
  • a low-power charger such as a 13.5W charger
  • the first embodiment of the present application relates to a charging method, the flow of which is shown in FIG. 1 .
  • Step 101 Obtain the equivalent impedance between the charger and the charging chip of the terminal and the battery impedance of the battery in the terminal.
  • Step 102 Obtain the charging power value according to the battery impedance, the equivalent impedance and the target power value, where the target power value includes the maximum power value supported by the battery or the maximum power value supported by the charger.
  • Step 103 Control the charger to charge the battery according to the charging power value.
  • the embodiment of the present application obtains the charging power value according to the equivalent impedance between the charger and the charging chip of the terminal, the battery impedance of the battery in the terminal, and the target power value, and charges the battery according to the charging power value.
  • the equivalent impedance and target power values are also different, so that the available charging power value corresponds to the charger. Since the charging power value corresponds to the charger, when the power of the charger is greater than that of the terminal When the power value is set, it can avoid the problem that the power of the charger cannot be fully utilized; when the power of the charger is less than the power value set by the terminal, it can also prevent the charger from hanging upside down, which improves the efficiency of the terminal and the charger. The compatibility between them improves the charging efficiency.
  • the second embodiment of the present application relates to a charging method, the flow of which is shown in FIG. 2 .
  • the charging method in this example can be applied to a terminal, the terminal has a charging chip, and the charging chip is connected to a battery in the terminal.
  • the charging chip may include: a charge pump and a switch-type charging module, and the charge pump is connected to the battery in parallel with the switch-type charging module.
  • the battery current value flowing into the battery can be adjusted, and the switching charging module can accurately adjust the battery current value, but the charging conversion efficiency of the switching charging module is lower than the charging conversion efficiency of the charge pump. , when the battery is charged, the charge conversion is performed by the charge pump.
  • the maximum value of the current flowing into the battery can be set as the maximum current value supported by the battery.
  • Step 201 Obtain the equivalent impedance between the charger and the charging chip of the terminal and the battery impedance of the battery in the terminal.
  • the process of obtaining the equivalent impedance between the charger and the charging chip of the terminal may be: according to the first output current value output by the charger at the first moment and the first input voltage value of the charger at the first moment, Obtain the first output current difference; obtain the first input voltage difference according to the second output current value output by the charger at the second moment and the second input voltage value of the charger at the second moment; according to the first input voltage difference and The ratio between the first output current differences is used to obtain the equivalent impedance.
  • the input voltage of the charger refers to the voltage input by the charger to the charging chip.
  • the first output current value output by the charger is set at the first moment
  • the first input voltage value of the charger is collected at the first moment
  • the second output current value output by the charger is set at the second moment
  • the The second input voltage value of the charger is collected at the second moment. Since the equivalent impedance also consumes electric energy, the equivalent impedance can be obtained according to the change of the input voltage value and the change of the output current value of the charger between the first time and the second time.
  • Effective impedance R line (V1-V2)/(A2-A1), wherein the second output current value A2 at the second moment is greater than the first output current value A1, wherein the charging chip controls the current through the switching charging module size.
  • the average value of multiple equivalent impedances can also be obtained by calculating the equivalent impedance multiple times, and the calculated average value can be used as the new equivalent impedance.
  • the equivalent impedance calculated for the first time is R1
  • the new equivalent impedance R line (R1+R2+R3)/3.
  • the average value of multiple equivalent impedances is obtained by calculating the equivalent impedance multiple times, and the calculated average value is used as the new equivalent impedance, which improves the accuracy of the obtained equivalent impedance.
  • the process of obtaining the battery impedance of the battery in the terminal may be: at the initial voltage of the charger, obtaining the detected current value flowing into the battery; increasing the initial voltage according to a preset second step, and obtaining the adjusted Detect the current value; obtain the battery impedance according to the detected current value, the adjusted detected current value and the equivalent impedance.
  • the second step can be denoted as Vdelta, for example, the second step is 200mA; adjust Then, the voltage of the charger is V0+Vdelta; when the voltage of the charger is V0+Vdelta, record the detected current value Inow flowing into the battery.
  • the battery impedance can be calculated according to formula (1):
  • Rline in formula (1) and formula (2) is the equivalent impedance
  • Rbatt is the battery impedance
  • Vdelta is the preset second step
  • Ipre is the detected current value flowing into the battery under the initial voltage of the charger
  • Inow is the detected current value flowing into the battery after increasing the initial voltage according to the preset second step.
  • Step 202 Obtain the actual input voltage value of the current charger and the current value of the battery current flowing into the battery.
  • this step may be performed after acquiring the battery impedance and the equivalent impedance.
  • Step 203 According to the actual input voltage value, the battery current value, the battery impedance and the equivalent impedance, obtain the predicted power value after the actual input voltage value of the charger is increased next time.
  • the battery current value, the battery impedance and the equivalent impedance, the predicted battery current value after the actual input voltage value of the charger is increased next time is obtained; the actual input voltage value and the predicted battery current value are The product value between is used as the predicted power value.
  • the charger increases the input voltage of the charger according to a preset first step.
  • the first step and the second step may be the same.
  • both the first step and the second step may be 200mV.
  • the predicted battery current value can be obtained as shown in formula (3):
  • Inew is the predicted battery current value
  • Inow is the current battery current value
  • Vdelta is the first step
  • Rbatt is the battery impedance
  • Rline is the equivalent impedance.
  • the input voltage and output voltage used by the charge pump is 2:1; the ratio of the input voltage to the output voltage of the charge pump can be other values, and the formula (3) can be deformed according to the ratio of the input voltage to the output voltage of the charge pump.
  • the product value of the actual input voltage value and the predicted battery current value is used as the predicted power value.
  • the terminal can initiate a boost request to the charger, and the boost request can be a specified pulse signal.
  • the charger After the charger receives the pulse signal, it will pull up the D+ pin of the charger, according to the preset first pulse signal. Step by step to increase the actual input voltage value of the charger.
  • the first step can be 200mV. If the D+ pin is pulled up 20 times continuously, the input voltage value of the charger can be increased from the initial 5V to 9V.
  • Step 204 is executed, otherwise, the terminal does not initiate a boost request to the charger, and uses the product of the actual input voltage value and the current battery current value as the charging power value.
  • the charging power value By judging the predicted battery current value, if the predicted battery current value exceeds the maximum current value of the battery, the charging power value can be determined, and the efficiency of obtaining the charging power value can be improved.
  • Step 204 Determine whether the predicted power exceeds the maximum power value supported by the battery or exceeds the maximum power value supported by the charger, if so, go to Step 205, otherwise, go to Step 206.
  • Step 205 Generate a charging power value according to the actual input voltage value and the battery current value.
  • the current power is the maximum power value supported by the battery or the maximum power value supported by the charger, and the actual input voltage value and the battery
  • the product value of the current values is used as the charging power value.
  • Step 206 Increase the actual input voltage value according to the preset first step, and continue to perform step 202 until the obtained predicted power value exceeds the maximum power value supported by the battery or exceeds the maximum power value supported by the charger.
  • Step 207 Control the charger to charge the battery according to the charging power value.
  • steps 202 to 206 are specific descriptions for obtaining the charging power value according to the battery impedance, the equivalent impedance and the target power value.
  • the embodiment of the present application obtains the charging power value according to the equivalent impedance between the charger and the charging chip of the terminal, the battery impedance of the battery in the terminal, and the target power value, and charges the battery according to the charging power value.
  • the equivalent impedance and target power values are also different, so that the available charging power value corresponds to the charger. Since the charging power value corresponds to the charger, when the power of the charger is greater than that of the terminal When the power value is set, it can avoid the problem that the power of the charger cannot be fully utilized; when the power of the charger is less than the power value set by the terminal, it can also prevent the charger from hanging upside down, which improves the efficiency of the terminal and the charger. The compatibility between them improves the charging efficiency.
  • the third embodiment of the present application relates to a charging method.
  • the third embodiment is roughly the same as the second embodiment.
  • the process of obtaining the maximum power value supported by the charger is introduced in detail.
  • the specific implementation is shown in FIG. 3 . .
  • Step 301 Set the detection voltage of the charger.
  • the switch-type charging module is connected in parallel with the charge pump, and the maximum power value supported by the charger can be determined by the switch-type charging module. Set the detection voltage of the switching charging module and keep the detection voltage unchanged.
  • Step 302 Adjust the output current value of the charger to the maximum current value supported by the charger.
  • the adjustment process can be as shown in FIG. 4 .
  • Step S31 Increase the current threshold value of the output current of the charger according to a preset third step.
  • the initial current threshold value of the output current of the charger is set as Iset, and the current threshold value needs to ensure that the low-power charger can operate.
  • the charger is less than 18W, which is a low-power charger, and the current threshold value can be set to 1.5A.
  • the third step can be set according to actual needs, for example, the third step can be set to 100mA.
  • the current threshold value of the output current of the charger is used to limit the size of the current flowing into the charging chip, and is set by the terminal, for example, the output current threshold value of the charger is set on the mobile phone.
  • the output current of the charger is the same as the input current of the charging chip. Therefore, the output current of the charger and the input current of the charging chip can also be called the front-end current; or the output current of the charger and the input current of the charging chip can also be called the line current. up current.
  • Step S32 In the case of the current current threshold value, obtain a third input voltage value of the charger and a third output current value output by the charger.
  • the current threshold value increased last time is denoted as Iset
  • the third step is denoted as Idelta
  • the third input voltage value is denoted as Vnow
  • the third output current value is recorded as Inow.
  • Step S33 If it is detected that the charger has a voltage drop and the voltage drop value exceeds the preset first threshold, or it is detected that the third output current value does not increase, step S34 is performed.
  • the charger After the current threshold is increased this time, it is determined whether the charger has a voltage drop. If a voltage drop occurs, the voltage drop value is obtained. If no voltage drop occurs, the process returns to step S31, and the third step is followed. Increase the current threshold value.
  • the process of obtaining the voltage drop value may be: obtaining the fourth input voltage value of the charger and the fourth output current value output by the charger in the case of the current threshold value that was increased last time; according to the third input voltage value and the fourth input voltage value to obtain the second input voltage difference generated by the charger; according to the third output current value and the fourth output current value, obtain the second output current difference generated by the charger; according to the second input voltage difference value, the second output current value and the equivalent impedance to obtain the voltage drop value.
  • the current threshold value increased last time is denoted as Iset
  • the obtained fourth input voltage value of the charger is denoted as Vpre
  • the fourth output current output by the charger The value is recorded as Ipre.
  • the third step is denoted as Idelta
  • the third input voltage value is denoted as Vnow
  • the third output current value is denoted as Inow.
  • the voltage drop value Vd can be obtained as formula (4).
  • Vd Vpre-Vnow-(Inow-Ipre)*R line formula (4);
  • Vpre is the fourth input voltage value
  • Vnow is the third input voltage value
  • Inow is the third output current value
  • Ipre is the fourth output current value
  • R line is the equivalent impedance
  • the third output current value may also be compared with the last fourth output current value, and if the third output current value does not increase, step S34 is performed.
  • Step S34 Obtain the maximum current value supported by the charger according to the third output current value.
  • the preset redundancy value is subtracted from the third output current value to obtain the maximum current value supported by the charger.
  • Step 303 Obtain the maximum power value supported by the charger according to the maximum current value supported by the charger and the detected voltage.
  • the product value of the maximum current value supported by the charger and the detection voltage can be used as the maximum power value supported by the charger.
  • different detection voltages can be set, and steps 301 to 303 are performed.
  • 5V, 9V, and 12V all obtain the maximum power value supported by the charger at one time. If the maximum power value supported by the charger obtained each time is different, a linear fitting is performed. For example, when the voltage is adjusted between 5V and 9V, according to the adjusted The target voltage and the power of 5V and 9V calculate the power supported by the target voltage, and then calculate the maximum current value supported by the charger according to this power. For example, at 5V, the maximum current is 3A and the power is 15W. At 9V, the maximum current is 2A and the power is 18W. Then at 7V, the maximum power supported by the charger is 16.5W, and the maximum current supported by the charger is 2.357A.
  • the fourth embodiment of the present application relates to a terminal.
  • the terminal includes: at least one processor 401; and a memory 402 connected in communication with the at least one processor 401;
  • the instructions executed by the processor 401 are executed by the at least one processor 401, so that the at least one processor 401 can execute the above-mentioned charging method.
  • the memory and the processor are connected by a bus, and the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory.
  • the bus may also connect together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the bus interface provides the interface between the bus and the transceiver.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing a means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, and in this embodiment, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory may be used to store data used by the processor in performing operations.
  • the fifth embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the computer-readable storage medium includes transient or non-transitory, removable or Non-removable media.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例涉及充电领域,公开了一种充电方法、终端及存储介质。本申请中的充电方法,包括:获取充电器与终端的充电芯片之间的等效阻抗以及终端中电池的电池阻抗;根据电池阻抗、等效阻抗以及目标功率值,获取充电功率值,目标功率值包括电池支持的最大功率值或充电器支持的最大功率值;控制充电器按照充电功率值对电池进行充电。

Description

充电方法、终端及存储介质 技术领域
本申请实施例涉及充电领域,特别涉及一种充电方法、终端及存储介质。
背景技术
目前,快速充电技术在终端上应用的越来越广泛,终端如,手机、蓝牙耳机等。快速充电技术的原理分为两种,一种是通过增大充电器的输出电压,一种是增大充电器的输出电流。因此,为了实现对终端的快速充电,需要使用与终端适配的充电器。
在实现本申请实施例的过程中,发明人发现,在使用第三方充电器对终端进行充电时,若第三方的充电器支持的最大功率值大于终端设置的功率值,则终端将按照终端设置的功率值对电池进行充电,无法发挥充电器的功率优势;若第三方充电器支持的最大功率值小于终端设置的功率值,则会出现充电器被拉挂的情况,例如,用户使用小功率为13.5W,终端标配的充电器的功率是18W,那么就会出现充电器被拉挂的情况,无法正常充电。
发明内容
本申请实施例的目的在于提供一种充电方法、终端及存储介质,使得终端可以与第三方充电器兼容,提高对终端充电的效率。
本申请的实施例提供了一种充电方法,包括:获取充电器与终端的充电芯片之间的等效阻抗以及终端中电池的电池阻抗;根据电池阻抗、等效阻抗以及目标功率值,获取充电功率值,目标功率值包括电池支持的最大功率值或充电器支持的最大功率值;控制充电器按照充电功率值对电池进行充电。
本申请的实施例还提供了一种终端,至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的充电方法。
本申请的实施例还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述的充电方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定。
图1是根据本申请第一实施例中充电方法的流程图。
图2是根据本申请第二实施例中充电方法的流程图。
图3是根据本申请第三实施例中充电方法中获取充电器支持的最大功率值得具体实现示意图。
图4是图3所述的充电方法中调整充电器的输出电流值得具体实现示意图。
图5是根据本申请第四实施例中终端结构框图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
发明人发现目前的快充技术通常采用包含电荷泵的充电芯片,电荷泵具有充电转换效率高的优点,但是电荷泵的功率不易控制,与低功率的充电器之间存在适配问题。因此,通常采用快充技术的终端具有配对的充电器,在保证充电器以及终端安全的情况下,对终端内的电池进行充电。快速充电技术可以达到的最大功率通常有100W、28W、25W、20W、22.5W以及18W等;普通充电技术的最大功率可以是13.5W等;由于充电速度与功率相关,功率越高,电量充满的所耗时间就越短,例如,普通充电技术对手机充电,需要4~5小时;在电池电量相同的情况下,采用28W的功率充电,只需1个小时,可见速度高于普通功率的充电技术。目前有三种增大充电功率的方式,一种是通过提升充电器电压的方式、一种是通过提升充电器输出电流的方式,或者同时提升充电器电压和充电器输出电流的方式。而在实际应用中,支持电压动态调整的快速充电技术中,一直使用固定的电流。用户使用第三方充电器为终端充电,存在安全问题,例如,终端标配18W的充电器,若终端设定按照18W来进行充电,当用户使用更高功率的充电器,如27W的充电器,也只能使用18W的功率,无法充分发挥充电器的能力;而如果用户使用小功率的充电器,如13.5W的充电器,会出现充电器被拉挂的情况,无法正常充电。
以下实施例可以解决上述问题。
本申请的第一实施例涉及一种充电方法,其流程如图1所示。
步骤101:获取充电器与终端的充电芯片之间的等效阻抗以及终端中电池的电池阻抗。
步骤102:根据电池阻抗、等效阻抗以及目标功率值,获取充电功率值,目标功率值包括电池支持的最大功率值或充电器支持的最大功率值。
步骤103:控制充电器按照充电功率值对电池进行充电。
本申请实施例相对于现有技术而言,通过充电器与终端的充电芯片之间的等效阻抗、终端中电池的电池阻抗以及目标功率值,获取充电功率值,并按照充电功率值对电池进行充电,采用不同功率的充电器时,等效阻抗和目标功率值也不同,从而使得可以获取的充电功率值与充电器对应,由于充电功率值与充电器对应,当充电器的功率大于终端设定的功率值时,可以避免出现不能充分利用充电器的功率的问题;当充电器的功率小于终端设定的功率值时,也可以避免充电器出现倒挂的现象,提高了终端与充电器之间的兼容性,提高充电的效率。
本申请的第二实施例涉及一种充电方法,其流程如图2所示。
本示例中的充电方法可以应用于终端,终端具有充电芯片,充电芯片连接终端内的电池。充电芯片可以包括:电荷泵以及开关型充电模块,电荷泵与该开关型充电模块并联后连接电池。当检测到充电器与该充电芯片连接后,终端可以识别该充电器是否支持快速充电技术, 若是该充电器不支持快速充电技术,则直接结束整个流程,若该充电器支持快速充电技术,则继续执行后续的步骤。识别充电器的方式有中多种,例如,可以通过检测充电器的D+引脚电压值、是否被短接等方式。
另外,通过调整电荷泵的电压的方式,可以调整流入电池的电池电流值,而开关型充电模块则可以精确的调整电池电流值,但是开关型充电模块的充电转换效率小于电荷泵转换充电转换效率,在对电池进行充电时,是通过电荷泵进行充电转换。
可以理解的是,为了保证最大功率对电池进行充电,可以将流入电池的电流最大值设置为电池支持的最大电流值。
步骤201:获取充电器与终端的充电芯片之间的等效阻抗以及终端中电池的电池阻抗。
在一个例子中,获取充电器与终端的充电芯片之间的等效阻抗的过程可以是:根据第一时刻充电器输出的第一输出电流值以及第一时刻充电器的第一输入电压值,获取第一输出电流差值;根据第二时刻充电器输出的第二输出电流值以及第二时刻充电器的第二输入电压值,获取第一输入电压差值;根据第一输入电压差值与第一输出电流差值之间的比值,获取等效阻抗。
具体地,本示例中,充电器的输入电压是指充电器向充电芯片输入的电压。充电器的输入电压不变的情况下,由于充电器至充电芯片之间存在电阻,当电流增大时,实际采集到的充电器的输入电压会减小。基于此,在第一时刻设置充电器输出的第一输出电流值并在该第一时刻采集充电器的第一输入电压值,在第二时刻设置充电器输出的第二输出电流值,并在该第二时刻采集充电器的第二输入电压值。由于等效阻抗也会消耗电能,故可以在第一时刻和第二时刻之间,根据充电器的输入电压值的变化量以及输出电流值的变化量,获得该等效阻抗。例如,在第一时刻设置第一输出电流值A1,采集到的第一输入电压值为V1;在第二时刻设置第二输出电流值A2,采集到的第二输入电压值为V2;那么等效阻抗R line=(V1-V2)/(A2-A1),其中,第二时刻的第二输出电流值A2大于第一输出电流值A1,其中,充电芯片中通过开关型充电模块控制电流的大小。
在另一个例子中,还可以通过多次计算等效阻抗,获取多个等效阻抗的均值,将计算的均值作为新的等效阻抗,例如,第一次计算等效阻抗为R1、第二次计算等效阻抗的R2以及第三次计算等效的R3,更新等效阻抗,新的等效阻抗R line=(R1+R2+R3)/3。
值得一提的是,通过多次计算等效阻抗,获取多个等效阻抗的均值,将计算的均值作为新的等效阻抗,提高了获取的等效阻抗的准确度。
在一个例子中,获取终端中电池的电池阻抗的过程可以是:在充电器的初始电压下,获取流入电池的检测电流值;按照预设的第二步进增大初始电压,获取调整后的检测电流值;根据检测电流值、调整后的检测电流值以及等效阻抗,获得电池阻抗。
具体地,开启电荷泵,可以设置充电器的初始电压V0=2*Vbatt+ΔV;ΔV与充电芯片的规格参数进行设置,例如,ΔV可以是1V。在初始电压下,记录当前流入电池的检测电流值,记为Ipre;按照预设的第二步进增大初始电压,第二步进可以记为Vdelta,例如,第二步进为200mA;调整后,充电器的电压为V0+Vdelta;在充电器的电压为V0+Vdelta的情况下,记录流入电池的检测电流值Inow。可以按照公式(1),计算电池阻抗:
(Vdelta-((Inow-Ipre)/2)*Rline)/2=(Inow-Ipre)*Rbatt   公式(1);
对公式(1)进行变形,得到公式(2);
Rbatt=Vdelta/(2*(Inow-Ipre))-Rline/4   公式(2);
其中,公式(1)和公式(2)中的Rline为等效阻抗,Rbatt为电池阻抗,Vdelta为预设的第二步进;Ipre为在充电器的初始电压下,流入电池的检测电流值;Inow为按照预设的第二步进增大初始电压后,流入电池的检测电流值。
可以理解的是,与等效阻抗类似,可以设置不同的初始电压,得到多个Rbatt,计算多个Rbatt的平均值,将多个Rbatt的平均值作为新的电池阻抗;提高了获取的电池阻抗的准确度。
步骤202:获取当前充电器的实际输入电压值以及当前流入电池的电池电流值。
具体地,该步骤可以是获取了电池阻抗和等效阻抗之后执行。
步骤203:根据实际输入电压值、电池电流值、电池阻抗以及等效阻抗,获取下一次增加充电器的实际输入电压值后的预测功率值。
在一个例子中,根据第一步进、电池电流值、电池阻抗以及等效阻抗,获取下一次增加充电器的实际输入电压值后的预测电池电流值;将实际输入电压值以及预测电池电流值之间的乘积值作为预测功率值。
具体地,充电器按照预设的第一步进增大充电器的输入电压,本示例中第一步进与第二步进可以相同,例如,第一步进和第二步进均可以为200mV。可以采用如公式(3)所示的方式获取预测电池电流值:
Inew=Inow+Vdelta/(2*(Rbatt+Rline/4))   公式(3);
其中,Inew为预测电池电流值,Inow为当前的电池电流值,Vdelta为第一步进,Rbatt为电池阻抗,Rline为等效阻抗,另外,本示例中,电荷泵采用的输入电压和输出电压为2:1;电荷泵的输入电压和输出电压的比值可以是其他值,可以根据电荷泵的输入电压和输出电压的比值对公式(3)进行变形。
获取到预测电池电流值后,将实际输入电压值与预测电池电流值的乘积值作为该预测功率值。
需要说明的是,终端可以向充电器发起升压请求,升压请求可以是指定的脉冲信号,充电器接收到该脉冲信号后,将上拉充电器的D+引脚,按照预设的第一步进提升该充电器的实际输入电压值,例如,第一步进可以是200mV,若连续上拉20次D+引脚,可以将充电器的输入电压值从初始的5V提升值9V。
值得一提的是,本示例中,将实际输入电压值以及预测电池电流值之间的乘积值作为预测功率值之前,还可以判断预测电池电流值是否小于电池支持的最大电流值,若是,则执行步骤204,否则,终端不向充电器发起升压请求,并将实际输入电压值和当前的电池电流值的乘积值作为充电功率值。
通过对预测电池电流值的判断,若预测电池电流值超过电池的最大电流值,则可确定出充电功率值,提高获取充电功率值的效率。
步骤204:判断预测功率是否超过电池支持的最大功率值或超过充电器支持的最大功率 值,若是,则执行步骤205,否则,执行步骤206。
步骤205:根据实际输入电压值以及电池电流值,生成充电功率值。
具体地,若超过电池支持的最大功率值或超过充电器支持的最大功率值,表明当前的功率已经为电池支持的最大功率值或为充电器支持的最大功率值,将实际输入电压值以及电池电流值的乘积值作为充电功率值。
步骤206:按照预设的第一步进增加实际输入电压值,并继续执行步骤202,直至获取的所述预测功率值超过所述电池支持的最大功率值或超过充电器支持的最大功率值。
当预测功率未超过电池支持的最大功率值且超过充电器支持的最大功率值时,表明还可以继续增加充电器的实际输入电压值。
步骤207:控制充电器按照充电功率值对电池进行充电。
需要说明的是,本示例中步骤202至步骤206是对根据电池阻抗、等效阻抗以及目标功率值,获取充电功率值具体说明。
本申请实施例相对于现有技术而言,通过充电器与终端的充电芯片之间的等效阻抗、终端中电池的电池阻抗以及目标功率值,获取充电功率值,并按照充电功率值对电池进行充电,采用不同功率的充电器时,等效阻抗和目标功率值也不同,从而使得可以获取的充电功率值与充电器对应,由于充电功率值与充电器对应,当充电器的功率大于终端设定的功率值时,可以避免出现不能充分利用充电器的功率的问题;当充电器的功率小于终端设定的功率值时,也可以避免充电器出现倒挂的现象,提高了终端与充电器之间的兼容性,提高充电的效率。
本申请的第三实施例涉及一种充电方法,第三实施例与第二实施例大致相同,在本实施中,详细介绍获取充电器支持的最大功率值的过程,具体的实现如图3示。
步骤301:设置充电器的检测电压。
具体地,为了确保充电器的安全,开关型充电模块与电荷泵并联,可以通过开关型充电模块确定该充电器的支持的最大功率值。设置开关型充电模块的检测电压,并保持该检测电压不变。
步骤302:调整充电器的输出电流值至充电器支持的最大电流值。
在一个例子中,调整的过程可以如图4所示。
步骤S31:按照预设的第三步进增大充电器输出电流的电流门限值。
具体地,设置初始的充电器输出电流的电流门限值为Iset,该电流门限值需要保证低功率充电器可以运行,例如,可以将18W作为判断是否属于低功率充电器的标准,13.5W的充电器小于18W,属于低功率充电器,该电流门限值可以设置为1.5A。
第三步进可以根据实际需要进行设置,例如,该第三步进可以设置为100mA。
需要说明的是,充电器输出电流的电流门限值用于限制流入充电芯片的电流大小,由终端设置,例如,在手机上设置该充电器输出电流门限值。另外,充电器输出电流与充电芯片输入电流是相同的,因此,充电器输出电流和充电芯片输入电流还可以被称为前端电流;或者充电器输出电流和充电芯片输入电流还可以被称为线上电流。
步骤S32:在当前的电流门限值的情况下,获取充电器的第三输入电压值以及充电器输出的第三输出电流值。
例如,上一次增大的电流门限值记为Iset,第三步进记为Idelta,本次增大后的电流门 限值记为Iset'=Iset+Idelta;第三输入电压值记为Vnow,第三输出电流值记为Inow。
步骤S33:若检测到充电器出现电压跌落且电压跌落值超过预设的第一阈值,或者,检测到第三输出电流值未增加,则执行步骤S34。
在一个例子中,本次增大电流门限值后,判断充电器是否出现电压跌落,若出现电压跌落,则获取电压跌落值,若未出现电压跌落,则返回步骤S31,按照第三步进增大电流门限值。
获取该电压跌落值的过程可以为:在上一次增大的电流门限值的情况下,获取充电器的第四输入电压值以及充电器输出的第四输出电流值;根据第三输入电压值以及第四输入电压值,获取充电器产生的第二输入电压差值;根据第三输出电流值以及第四输出电流值,获取充电器产生的第二输出电流差值;根据第二输入电压差值、第二输出电流值以及等效阻抗,获取电压跌落值。
具体地,上一次增大的电流门限值记为Iset,在该电流门限值Iset的情况下,获取的充电器的第四输入电压值,记为Vpre,充电器输出的第四输出电流值记为Ipre。第三步进记为Idelta,本次增大后的电流门限值记为Iset'=Iset+Idelta;第三输入电压值记为Vnow,第三输出电流值记为Inow。
电压跌落值Vd可以如公式(4)的方式获取。
Vd=Vpre-Vnow-(Inow-Ipre)*R line   公式(4);
其中,Vpre为第四输入电压值,Vnow为第三输入电压值;Inow为第三输出电流值,Ipre为第四输出电流值,R line为等效阻抗。
在另一个例子中,还可以比较第三输出电流值与上一次的第四输出电流值,若第三输出电流值并未增加,则执行步骤S34。
步骤S34:根据第三输出电流值,获取充电器支持的最大电流值。
具体地,将第三输出电流值减去预设的冗余值,得到充电器支持的最大电流值。
步骤303:根据充电器支持的最大电流值以及检测电压,获取充电器支持的最大功率值。
具体地,可以将充电器支持的最大电流值与检测电压的乘积值作为充电器支持的最大功率值。
在另一个例子中,可以设置不同的检测电压,并执行步骤301至步骤303。例如5V,9V,12V都获取一次充电器支持的最大功率值,如果每次获取的充电器支持的最大功率值不同则进行线性拟合,例如5V到9V之间调压的时候,根据调整的目的电压以及5V和9V的功率计算目的电压支持的功率,然后再根据这个功率计算充电器支持的最大电流值。例如5V时最大大流为3A,功率15W,9V时最大电流为2A,功率18W,那么在7V的时候,充电器支持的最大功率为16.5W,充电器支持的最大电流值为2.357A。
获取充电器支持的最大电流值之后,恢复充电器的输入电压值、输出电流值以及电流门限值。
此外,本领域技术人员可以理解,上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请第四实施例涉及一种终端,如图5所示,包括:至少一个处理器401;以及,与至少一个处理器401通信连接的存储器402;其中,存储器402存储有可被至少一个处理器401执行的指令,指令被至少一个处理器401执行,以使至少一个处理器401能够执行上述的充电方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,在本实施例中,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请第五实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述充电方法实施例。该计算机可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的暂态性或非暂态性、可移除或不可移除的介质。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (11)

  1. 一种充电方法,包括:
    获取充电器与终端的充电芯片之间的等效阻抗以及终端中电池的电池阻抗;
    根据所述电池阻抗、所述等效阻抗以及目标功率值,获取充电功率值,所述目标功率值包括所述电池支持的最大功率值或所述充电器支持的最大功率值;
    控制所述充电器按照所述充电功率值对所述电池进行充电。
  2. 根据权利要求1所述的充电方法,其中,所述根据所述电池阻抗、所述等效阻抗以及目标功率值,获取充电功率值,包括:
    获取当前所述充电器的实际输入电压值以及当前流入所述电池的电池电流值;
    根据所述实际输入电压值、所述电池电流值、所述电池阻抗以及所述等效阻抗,获取下一次增加所述充电器的实际输入电压值后的预测功率值;
    判断所述预测功率是否超过所述目标功率值,若所述预测功率超过所述目标功率值,则根据所述实际输入电压值以及所述电池电流值,生成所述充电功率值;若所述预测功率未超过所述目标功率值,按照预设的第一步进增加所述实际输入电压值,直至获取的所述预测功率值超过所述目标功率值。
  3. 根据权利要求2所述的充电方法,其中,所述根据输入电压值、所述电池电流值、所述电池阻抗以及所述等效阻抗,获取下一次增加所述充电器的实际输入电压值后的预测功率值,包括:
    根据所述第一步进、所述电池电流值、所述电池阻抗以及所述等效阻抗,获取所述下一次增加所述充电器的实际输入电压值后的预测电池电流值;
    将所述实际输入电压值以及所述预测电池电流值之间的乘积值作为所述预测功率值。
  4. 根据权利要求3所述的充电方法,其中,所述将所述输入电压值以及所述预测电池电流值之间的乘积值作为所述预测功率值之前,所述方法还包括:
    判断所述预测电池电流值是否小于所述电池支持的最大电流值,若是,则执行将所述实际输入电压值以及所述预测电池电流值之间的乘积值作为所述预测功率值的步骤。
  5. 根据权利要求1至4中任一项所述的充电方法,其中,所述获取充电器与终端的充电芯片之间的等效阻抗,包括:
    根据第一时刻所述充电器输出的第一输出电流值以及所述第一时刻所述充电器的第一输入电压值,获取所述第一输出电流差值;
    根据第二时刻所述充电器输出的第二输出电流值以及所述第二时刻所述充电器的第二输入电压值,获取第一输入电压差值;
    根据所述第一输入电压差值与所述第一输出电流差值之间的比值,获取所述等效阻抗。
  6. 根据权利要求1至4中任一项所述的充电方法,其中,获取所述终端中电池的电池阻抗,包括:
    在所述充电器的初始电压下,获取流入所述电池的检测电流值;
    按照预设的第二步进增大所述初始电压,获取调整后的检测电流值;
    根据所述检测电流值、所述调整后的检测电流值以及所述等效阻抗,获得所述电池阻抗。
  7. 根据权利要求1至4中任一项所述的充电方法,其中,所述根据所述电池阻抗、所述等效阻抗以及目标功率值,获取充电功率值之前,所述方法还包括:
    设置所述充电器的检测电压;
    调整所述充电器的输出电流值至所述充电器支持的最大电流值;
    根据所述充电器支持的最大电流值以及所述检测电压,获取所述充电器支持的最大功率值。
  8. 根据权利要求7所述的充电方法,其中,调整所述充电器的输出电流值至所述充电器支持的最大电流值,包括:
    按照预设的第三步进增大所述充电器输出电流的电流门限值;
    在当前的电流门限值的情况下,获取所述充电器的第三输入电压值以及所述充电器输出的第三输出电流值;
    若检测到所述充电器出现电压跌落且电压跌落值超过预设的第一阈值,或者,检测到所述第三输出电流值未增加,则根据所述第三输出电流值,获取所述充电器支持的最大电流值。
  9. 根据权利要求8所述的充电方法,其中,获取所述电压跌落值,包括:
    在上一次增大的所述电流门限值的情况下,获取所述充电器的第四输入电压值以及所述充电器输出的第四输出电流值;
    根据所述第三输入电压值以及所述第四输入电压值,获取所述充电器产生的第二输入电压差值;
    根据所述第三输出电流值以及所述第四输出电流值,获取所述充电器产生的第二输出电流差值;
    根据所述第二输入电压差值、所述第二输出电流值以及所述等效阻抗,获取所述电压跌落值。
  10. 一种终端,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至9中任一项所述的充电方法。
  11. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至9中任一项所述的充电方法。
PCT/CN2021/099435 2020-06-28 2021-06-10 充电方法、终端及存储介质 WO2022001617A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/928,922 US20230253813A1 (en) 2020-06-28 2021-06-10 Charging Method, Terminal and Storage Medium
EP21832968.8A EP4175110A4 (en) 2020-06-28 2021-06-10 CHARGING METHOD, TERMINAL AND RECORDING MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010599455.5A CN112350393B (zh) 2020-06-28 2020-06-28 充电方法、终端及存储介质
CN202010599455.5 2020-06-28

Publications (1)

Publication Number Publication Date
WO2022001617A1 true WO2022001617A1 (zh) 2022-01-06

Family

ID=74357502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099435 WO2022001617A1 (zh) 2020-06-28 2021-06-10 充电方法、终端及存储介质

Country Status (4)

Country Link
US (1) US20230253813A1 (zh)
EP (1) EP4175110A4 (zh)
CN (1) CN112350393B (zh)
WO (1) WO2022001617A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350393B (zh) * 2020-06-28 2021-11-02 中兴通讯股份有限公司 充电方法、终端及存储介质
CN115378057A (zh) * 2021-05-18 2022-11-22 Oppo广东移动通信有限公司 无线充电方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113114A (zh) * 2014-08-21 2014-10-22 厦门美图移动科技有限公司 一种移动终端自适应不同功率的充电方法
US20160064979A1 (en) * 2014-09-03 2016-03-03 Mophie, Inc. Systems and methods for battery charging and management
CN106451592A (zh) * 2016-07-29 2017-02-22 北京车和家信息技术有限责任公司 电池充放电的控制方法、电池充放电的控制设备和电动车
CN107196372A (zh) * 2017-06-30 2017-09-22 北京小米移动软件有限公司 充电方法及装置
CN109962514A (zh) * 2019-02-22 2019-07-02 维沃移动通信有限公司 一种充电方法及移动终端
CN112350393A (zh) * 2020-06-28 2021-02-09 中兴通讯股份有限公司 充电方法、终端及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856209B2 (ja) * 2009-03-30 2012-01-18 株式会社東芝 電池性能測定装置、電池制御システム及び車両
CN104967201B (zh) * 2015-08-05 2018-10-02 青岛海信移动通信技术股份有限公司 快速充电方法、移动终端及可直充电源适配器
CN106546822B (zh) * 2016-10-26 2019-04-05 珠海市魅族科技有限公司 负载的充电线路的阻抗检测方法、芯片和移动终端
CN106786843B (zh) * 2016-11-24 2019-09-20 惠州Tcl移动通信有限公司 一种充电电流的调整方法及系统、电子终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113114A (zh) * 2014-08-21 2014-10-22 厦门美图移动科技有限公司 一种移动终端自适应不同功率的充电方法
US20160064979A1 (en) * 2014-09-03 2016-03-03 Mophie, Inc. Systems and methods for battery charging and management
CN106451592A (zh) * 2016-07-29 2017-02-22 北京车和家信息技术有限责任公司 电池充放电的控制方法、电池充放电的控制设备和电动车
CN107196372A (zh) * 2017-06-30 2017-09-22 北京小米移动软件有限公司 充电方法及装置
CN109962514A (zh) * 2019-02-22 2019-07-02 维沃移动通信有限公司 一种充电方法及移动终端
CN112350393A (zh) * 2020-06-28 2021-02-09 中兴通讯股份有限公司 充电方法、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4175110A4 *

Also Published As

Publication number Publication date
US20230253813A1 (en) 2023-08-10
EP4175110A4 (en) 2024-01-03
EP4175110A1 (en) 2023-05-03
CN112350393A (zh) 2021-02-09
CN112350393B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
US20180138724A1 (en) Mobile terminal, dc-charging power source adaptor, and charging method
US10110038B2 (en) Mobile terminal and rapid charging method
US10044217B2 (en) Mobile terminal, DC-charging power source adaptor, and rapid charging method
US10050460B2 (en) Mobile terminal, DC-charging power source adaptor, and charging method
US20150145468A1 (en) Device and chip for controlling charging, and user terminal
US20200021148A1 (en) Wireless Charging Device and Wireless Charging Method
WO2022001617A1 (zh) 充电方法、终端及存储介质
US10050466B2 (en) DC-charging power source adaptor and mobile terminal
CN104756356B (zh) 充电方法、充电装置及适配器
EP3242373B1 (en) Charging method, adapter, mobile terminal and charging system
WO2016106996A1 (zh) 快速充电的移动终端及方法、系统
CN103222147A (zh) 情境感知电池充电
WO2016101509A1 (zh) 一种充电控制方法及装置
WO2020062127A9 (zh) 电池的快速充电方法、充电装置、待充电设备和充电系统
CN110063001A (zh) 电池快速充电系统
CN104885328A (zh) 用于动态调整适配器的充电电流的方法、装置及适配器,以实现热保护和快速充电
CN109412221A (zh) 充电系统及其电源适配器
AU2016101740A4 (en) Charger and charging method
CN109428352B (zh) 电子装置及其充电方法
JP7288038B2 (ja) アダプタの出力状態テスト方法、アダプタの出力状態テストシステム及びコンピュータ記憶媒体
JP2022500990A (ja) 充電制御方法及び装置、コンピューター記憶媒体
WO2021031779A1 (zh) 充电方法、终端及计算机可读存储介质
US20160218542A1 (en) Charging method and portable electronic device using the same
WO2022061677A1 (zh) 充电控制方法、电路、设备及存储介质
WO2020078167A1 (zh) 用于智能终端的充电控制方法、系统及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21832968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021832968

Country of ref document: EP

Effective date: 20230130