WO2022001524A1 - 配置方法及装置 - Google Patents

配置方法及装置 Download PDF

Info

Publication number
WO2022001524A1
WO2022001524A1 PCT/CN2021/096446 CN2021096446W WO2022001524A1 WO 2022001524 A1 WO2022001524 A1 WO 2022001524A1 CN 2021096446 W CN2021096446 W CN 2021096446W WO 2022001524 A1 WO2022001524 A1 WO 2022001524A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
mac
scg
value
terminal
Prior art date
Application number
PCT/CN2021/096446
Other languages
English (en)
French (fr)
Inventor
孙慧明
耿婷婷
张宏平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21833056.1A priority Critical patent/EP4171098A4/en
Publication of WO2022001524A1 publication Critical patent/WO2022001524A1/zh
Priority to US18/147,028 priority patent/US20230133425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a configuration method and apparatus.
  • the terminal can communicate with multiple access network devices, for example, the terminal can communicate with the master node at the same time.
  • a master cell group (MCG) managed by a node (MN) communicates with a secondary cell group (SCG) managed by a secondary node (SN).
  • MCG master cell group
  • SCG secondary cell group
  • the terminal will temporarily deactivate or suspend the SCG to reduce the power consumption of the terminal.
  • the terminal will activate the SCG to maintain the smoothness of data transmission.
  • the network side can activate or deactivate the cells in the cell group through the MAC CE.
  • the design of the MAC CE is not flexible enough, so that the MAC CE cannot meet some management requirements of the network side for the cells in the cell group.
  • the terminal can receive the MAC CE delivered by the secondary node, and activate/deactivate according to the MAC CE delivered by the secondary node Cells in the SCG are activated.
  • the terminal stops monitoring the physical downlink control channel (PDCCH) sent by the secondary node, the terminal cannot receive the MAC sent by the secondary node that carries the activation SCG indication. CE, so that the terminal cannot activate the SCG.
  • PDCCH physical downlink control channel
  • the present application provides a configuration method and device, which are used in some communication scenarios (for example, in the case of SCG deactivation), to meet the needs of the network side to use MAC CE to manage cells in a cell group.
  • a first aspect provides a configuration method, comprising: a terminal receiving a medium access control layer (medium access control, MAC) control element (control element, CE) sent by a first node, and the MAC CE is used to activate or deactivate the second In one or more cells in the cell group managed by the node, the first node is different from the second node; the terminal activates or deactivates one or more cells in the cell group managed by the second node according to the MAC CE.
  • medium access control layer medium access control, MAC
  • CE control element
  • the first node sends the MAC CE to the terminal, so that the terminal can activate/deactivate the cells in the cell group managed by the second node according to the MAC CE sent by the first node.
  • the MAC CE sent by a node can only be used to activate/deactivate cells in the cell group managed by the node.
  • the MAC CE provided by the embodiment of the present application can enable a node to instruct the terminal to activate/deactivate. Activating a cell in a cell group managed by another node improves the flexibility of MAC CE, thereby meeting the network side's use requirements for MAC CE in some special scenarios. For example, in the scenario of SCG deactivation, the technical solution provided in this application ensures that the master node can use the MAC CE to instruct the terminal to activate the cells in the SCG, so that the network side can effectively manage the SCG.
  • the first node is a master node
  • the second node is a secondary node
  • the cell group managed by the second node is an SCG.
  • the first node is the secondary node
  • the second node is the primary node
  • the cell group managed by the second node is the MCG.
  • the MAC CE when all cells in the SCG are in a deactivated state, the MAC CE is at least used to activate the primary and secondary cells.
  • the MAC CE is also used to activate at least one secondary cell.
  • the secondary cell may be a secondary cell in the MCG, or may be a secondary cell in the SCG.
  • the MAC CE includes first indication information, and the first indication information is a reserved bit with a value of the first value in the payload of the MAC CE.
  • the payload of the MAC CE includes: M first bits and N second bits, where M is a non-negative integer and N is a positive integer.
  • M first bits are in one-to-one correspondence with the M secondary cells in the MCG; when the value of the first bit is the second value, the first bit is used to indicate activation of the secondary cell corresponding to the first bit; or, when When the value of the first bit is a third value, the first bit is used to indicate deactivation of the secondary cell corresponding to the first bit.
  • the N second bits are in one-to-one correspondence with the N cells in the SCG; when the value of the second bit is the second value, the second bit is used to indicate activation of the cell corresponding to the second bit; or, when the value of the second bit is When the value is the third value, the second bit is used to indicate deactivation of the cell corresponding to the second bit.
  • the subheader (subheader) of the MAC CE contains a logical channel identity (LCID) with a value of 57 or 58. Based on this design, the MAC CE provided in this application multiplexes the MAC CE used for SCell activation/deactivation in the prior art.
  • LCID logical channel identity
  • the payload of the MAC CE includes one or more third bits, each of which corresponds to an SCG; when the value of the third bit is the fourth value, the third bit is used to indicate activation.
  • the MAC CE when the subheader of the MAC CE includes an LCID whose value is the second preset value, the MAC CE is used to indicate deactivation of the SCG; or, when the subheader of the MAC CE When the header includes an LCID whose value is a third preset value, the MAC CE is used to indicate activation of the SCG.
  • the MAC CE does not include the payload. Based on this design, signaling overhead can be reduced.
  • the configuration method further includes: the terminal sends second indication information to the first node or the second node, where the second indication information is used to indicate that the terminal has to activate or deactivate the first node according to the MAC CE sent by the first node. Capability of the cells in the cell group managed by the two nodes; or, the second indication information is used to indicate that the terminal does not have the capability to activate or deactivate the cells in the cell group managed by the second node according to the MAC CE sent by the first node . Based on this design, the network side can know, according to the second indication information, whether the terminal has the ability to activate or deactivate the cells in the cell group managed by the second node according to the MAC CE sent by the first node.
  • the configuration method further includes: the terminal receives first request information sent by the first node, where the first request information is used to request the terminal to report the second indication information.
  • a configuration method including: a first node generates a MAC CE, the MAC CE is used to activate or deactivate one or more cells in a cell group managed by a second node, the first node is different from the second node node; the first node sends the MAC CE to the terminal.
  • the first node sends the MAC CE to the terminal, so that the terminal can activate/deactivate the cells in the cell group managed by the second node according to the MAC CE sent by the first node.
  • the MAC CE sent by a node can only be used to activate/deactivate cells in the cell group managed by the node.
  • the MAC CE provided by the embodiment of the present application can enable a node to instruct the terminal to activate/deactivate. Activating a cell in a cell group managed by another node improves the flexibility of MAC CE, thereby meeting the network side's use requirements for MAC CE in some special scenarios. For example, in the scenario of SCG deactivation, the technical solution provided in this application ensures that the master node can use the MAC CE to instruct the terminal to activate the cells in the SCG, so that the network side can effectively manage the SCG.
  • the first node is a master node
  • the second node is a secondary node
  • the cell group managed by the second node is an SCG.
  • the first node is a secondary node
  • the second node is a master node
  • the cell group managed by the second node is an MCG.
  • the MAC CE when all cells in the SCG are in a deactivated state, the MAC CE is at least used to activate the primary and secondary cells.
  • the MAC CE is also used to activate at least one secondary cell.
  • the MAC CE when the primary and secondary cells in the SCG are in an active state, the MAC CE is used to deactivate all cells in the SCG; or, the MAC CE is used to deactivate one or more secondary cells in the SCG.
  • the MAC CE includes first indication information, and the first indication information is a reserved bit with a value of the first value in the payload of the MAC CE.
  • the payload of the MAC CE includes: M first bits and N second bits, where M is a non-negative integer and N is a positive integer; wherein, the M first bits are in one-to-one correspondence with the M secondary cells in the MCG; when the value of the first bit is the second value, The first bit is used to indicate activation of the secondary cell corresponding to the first bit; or, when the value of the first bit is a third value, the first bit is used to indicate deactivation of the secondary cell corresponding to the first bit; The bits correspond one-to-one with the N cells in the SCG; when the value of the second bit is the second value, the second bit is used to indicate activation of the cell corresponding to the second bit; or, when the value of the second bit is the first When the value is three, the second bit is used to indicate deactivation of the cell corresponding to the second bit.
  • the subheader of the MAC CE contains an LCID with a value of 57 or 58. Based on this design, the MAC CE provided in this application multiplexes the MAC CE used for SCell activation/deactivation in the prior art.
  • the payload of the MAC CE includes one or more third bits, each of which corresponds to an SCG; when the value of the third bit is the fourth value, the third bit is used to indicate activation.
  • the MAC CE when the subheader of the MAC CE includes an LCID whose value is the second preset value, the MAC CE is used to indicate deactivation of the SCG; or, when the subheader of the MAC CE When the header includes an LCID whose value is a third preset value, the MAC CE is used to indicate activation of the SCG.
  • the MAC CE does not contain the payload to save signaling overhead.
  • the configuration method further includes: the first node receives second indication information sent by the terminal, where the second indication information is used to indicate that the terminal has the ability to activate or deactivate the information provided by the second node according to the MAC CE sent by the first node. Capability of the cells in the managed cell group; or, the second indication information is used to indicate that the terminal does not have the capability to activate or deactivate the cells in the cell group managed by the second node according to the MAC CE sent by the first node.
  • the configuration method further includes: the first node sends first request information to the terminal, where the first request information is used to request the terminal to report the second indication information.
  • a configuration method including: the terminal receives fourth indication information, the fourth indication information is used to instruct deactivation of the SCG, and the fourth indication information includes non-contention-based random access configuration information; after that, the terminal receives the main Fifth indication information sent by the node, where the fifth indication information is at least used to indicate activation of the PSCell in the SCG; the terminal initiates random access to the secondary node according to the non-contention-based random access configuration information.
  • the terminal can directly use the fourth indication information after receiving the fifth indication information
  • the included non-contention-based random access configuration information initiates random access without waiting for the network side to deliver the non-contention-based random access configuration information, thereby reducing the delay for the terminal to initiate random access.
  • the terminal activates the cell in the SCG by initiating the non-contention-based random access, The problem of random access failure caused by collision and contention is avoided, so that random access can be completed faster, and cells in the SCG can be activated more quickly.
  • the terminal receiving the fourth indication information includes: the terminal receiving the fourth indication information sent by the master node; or, the terminal receiving the fourth indication information sent by the secondary node.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • a configuration method including: the network device generates fourth indication information, the fourth indication information is used to instruct to deactivate the SCG, and the fourth indication information includes non-contention-based random access configuration information; Send fourth indication information.
  • the network device is a master node or a slave node.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • the method further includes: the master node receives the non-contention-based random access configuration information sent by the slave node.
  • the method further includes: a centralized unit (centralized unit, CU) of the secondary node sends the second request information to a distributed unit (distributed unit, DU) of the secondary node,
  • the second request information is used to request non-contention-based random access configuration information.
  • the CU of the secondary node receives second response information sent by the DU of the secondary node, where the second response information includes non-contention-based random access configuration information.
  • a configuration method comprising: a terminal receiving fifth indication information sent by a master node, where the fifth indication information is at least used to indicate activation of a PSCell in an SCG, and the fifth indication information includes a non-contention-based random access configuration information; the terminal initiates random access to the secondary node according to the non-contention-based random access configuration information.
  • the terminal can directly The random access configuration information initiates random access without waiting for the network side to deliver the non-contention-based random access configuration information, thereby reducing the delay for the terminal to initiate random access.
  • the terminal compared with the prior art in which the terminal initiates contention-based random access to activate the cell in the SCG, in the technical solution provided by the present application, the terminal activates the cell in the SCG by initiating the non-contention-based random access, The problem of random access failure caused by collision and contention is avoided, so that random access can be completed faster, and cells in the SCG can be activated more quickly.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • a configuration method including: the master node generates fifth indication information, the fifth indication information is at least used to indicate activation of a PSCell in the SCG, and the fifth indication information includes a non-contention-based random access input configuration information; after that, the master node sends fifth indication information to the terminal.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • the method further includes: the master node receives the non-contention-based random access configuration information sent by the secondary node.
  • a communication device comprising: a communication unit configured to receive a MAC CE sent by a first node, where the MAC CE is used to activate or deactivate one or more cells in a cell group managed by a second node, The first node is different from the second node.
  • the processing unit is configured to activate or deactivate one or more cells in the cell group managed by the second node according to the MAC CE.
  • the first node is a master node
  • the second node is a secondary node
  • the cell group managed by the second node is an SCG.
  • the first node is a secondary node
  • the second node is a master node
  • the cell group managed by the second node is an MCG.
  • the MAC CE when all cells in the SCG are in a deactivated state, the MAC CE is at least used to activate the primary and secondary cells.
  • the MAC CE is also used to activate at least one secondary cell.
  • the MAC CE includes first indication information, and the first indication information is a reserved bit with a value of the first value in the payload of the MAC CE.
  • the payload of the MAC CE includes: M first bits and N second bits, where M is a non-negative integer and N is a positive integer.
  • M first bits are in one-to-one correspondence with the M secondary cells in the MCG; when the value of the first bit is the second value, the first bit is used to indicate activation of the secondary cell corresponding to the first bit; or, when When the value of the first bit is a third value, the first bit is used to indicate deactivation of the secondary cell corresponding to the first bit.
  • the N second bits are in one-to-one correspondence with the N cells in the SCG; when the value of the second bit is the second value, the second bit is used to indicate activation of the cell corresponding to the second bit; or, when the value of the second bit is When the value is the third value, the second bit is used to indicate deactivation of the cell corresponding to the second bit.
  • the subheader of the MAC CE contains an LCID with a value of 57 or 58.
  • the payload of the MAC CE includes one or more third bits, each of which corresponds to an SCG; when the value of the third bit is the fourth value, the third bit is used to indicate activation.
  • the MAC CE when the subheader of the MAC CE includes an LCID whose value is the second preset value, the MAC CE is used to indicate deactivation of the SCG; or, when the subheader of the MAC CE When the header includes an LCID whose value is a third preset value, the MAC CE is used to indicate activation of the SCG.
  • the MAC CE does not include the payload.
  • the communication unit is also used to send second indication information to the first node, and the second indication information is used to instruct the terminal to activate or deactivate the device managed by the second node according to the MAC CE sent by the first node. the capability of the cells in the cell group; or, the second indication information is used to indicate that the terminal does not have the capability of activating or deactivating the cells in the cell group managed by the second node according to the MAC CE sent by the first node.
  • the communication unit is further configured to receive first request information sent by the first node, where the first request information is used to request the terminal to report the second indication information.
  • a communication device applied to a first node, comprising: a processing unit configured to generate a MAC CE, where the MAC CE is used to activate or deactivate one or more cells in a cell group managed by the second node , the first node is different from the second node.
  • the communication unit is used to send the MAC CE to the terminal.
  • the first node is a master node
  • the second node is a secondary node
  • the cell group managed by the second node is an SCG.
  • the first node is the secondary node
  • the second node is the primary node
  • the cell group managed by the second node is the MCG.
  • the MAC CE when all cells in the SCG are in a deactivated state, the MAC CE is at least used to activate the primary and secondary cells.
  • the MAC CE is also used to activate at least one secondary cell.
  • the MAC CE when the primary and secondary cells in the SCG are in an active state, the MAC CE is used to deactivate all cells in the SCG; or, the MAC CE is used to deactivate one or more secondary cells in the SCG.
  • the MAC CE includes first indication information, and the first indication information is a reserved bit with a value of the first value in the payload of the MAC CE.
  • the payload of the MAC CE includes: M first bits and N second bits, where M is a non-negative integer and N is a positive integer; wherein, the M first bits are in one-to-one correspondence with the M secondary cells in the MCG; when the value of the first bit is the second value, The first bit is used to indicate activation of the secondary cell corresponding to the first bit; or, when the value of the first bit is a third value, the first bit is used to indicate deactivation of the secondary cell corresponding to the first bit; The bits correspond one-to-one with the N cells in the SCG; when the value of the second bit is the second value, the second bit is used to indicate activation of the cell corresponding to the second bit; or, when the value of the second bit is the first When the value is three, the second bit is used to indicate deactivation of the cell corresponding to the second bit.
  • the subheader of the MAC CE contains an LCID with a value of 57 or 58.
  • the payload of the MAC CE includes one or more third bits, each of which corresponds to an SCG; when the value of the third bit is the fourth value, the third bit is used to indicate activation.
  • the MAC CE when the subheader of the MAC CE includes an LCID whose value is the second preset value, the MAC CE is used to indicate deactivation of the SCG; or, when the subheader of the MAC CE When the header includes an LCID whose value is a third preset value, the MAC CE is used to indicate activation of the SCG.
  • the MAC CE does not include the payload.
  • the communication unit is further configured to receive second indication information sent by the terminal, where the second indication information is used to indicate that the terminal has activated or deactivated cells managed by the second node according to the MAC CE sent by the first node. the capability of the cells in the group; or, the second indication information is used to indicate that the terminal does not have the capability of activating or deactivating the cells in the cell group managed by the second node according to the MAC CE sent by the first node.
  • a communication apparatus comprising: a communication unit configured to receive fourth indication information, where the fourth indication information is used to instruct to deactivate the SCG, and the fourth indication information includes non-contention-based random access configuration information.
  • the communication unit is further configured to receive fifth indication information sent by the master node, where the fifth indication information is at least used to instruct to activate the PSCell in the SCG.
  • the processing unit is configured to initiate random access to the secondary node according to the non-contention-based random access configuration information.
  • the communication unit is specifically configured to receive the fourth indication information sent by the master node; or, receive the fourth indication information sent by the secondary node.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • a communication apparatus comprising: a processing unit configured to generate fourth indication information, where the fourth indication information is used to instruct to deactivate the SCG, and the fourth indication information includes non-contention-based random access configuration information.
  • the communication unit is configured to send fourth indication information to the terminal.
  • the communication device is a master node or a slave node.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • the communication unit when the communication device is the master node, the communication unit is specifically configured to receive the non-contention-based random access configuration information sent by the secondary node.
  • the CU of the secondary node when the communication unit is the secondary node, the CU of the secondary node sends second request information to the DU of the secondary node, where the second request information is used to request non-contention-based random access configuration information.
  • the CU of the secondary node receives second response information sent by the DU of the secondary node, where the second response information includes non-contention-based random access configuration information.
  • a communication apparatus comprising: a communication unit configured to receive fifth indication information sent by a master node, where the fifth indication information is at least used to indicate activation of a PSCell in an SCG, and the fifth indication information includes a non-contention-based information random access configuration information.
  • the processing unit is configured to initiate random access to the secondary node according to the non-contention-based random access configuration information.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • a twelfth aspect provides a communication apparatus, comprising: a processing unit configured to generate fifth indication information, where the fifth indication information is at least used to indicate activation of a PSCell in an SCG, and the fifth indication information includes a non- Contention random access configuration information.
  • the communication unit is configured to send fifth indication information to the terminal.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • the communication unit is further configured to receive the non-contention-based random access configuration information sent by the secondary node.
  • a thirteenth aspect provides a communication device, comprising: a processor, which is configured to be coupled to a memory, read instructions in the memory, and implement any one of the first to sixth aspects according to the instructions On the one hand the configuration method involved.
  • a fourteenth aspect provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, which, when executed on a communication device, enable the communication device to execute any one of the first to sixth aspects above The configuration method involved in the aspect.
  • a fifteenth aspect provides a computer program product comprising instructions which, when executed on a communication device, enable the communication device to perform the configuration method according to any one of the above-mentioned first to fifth aspects.
  • a sixteenth aspect provides a chip, the chip includes a processing module and a communication interface, the communication interface is used for receiving an input signal and providing it to the processing module, and/or for outputting a signal generated by the processing module, the processing module uses performing the configuration method involved in any one of the first to sixth aspects.
  • the processing module may execute code instructions to execute the configuration method involved in any one of the first to sixth aspects above.
  • the code instruction can come from a memory inside the chip or from a memory outside the chip.
  • the processing module may be a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the communication interface can be an input-output circuit or a transceiver pin on the chip.
  • a seventeenth aspect provides a communication system, including a terminal and a network device.
  • the terminal is configured to execute the configuration method involved in the first aspect.
  • the network device is configured to execute the configuration method involved in the second aspect.
  • a communication system including a terminal and a network device.
  • the terminal is configured to execute the configuration method involved in the third aspect.
  • the network device is configured to execute the configuration method involved in the fifth aspect.
  • a nineteenth aspect provides a communication system, including a terminal and a network device.
  • the terminal is configured to execute the configuration method involved in the fourth aspect.
  • the network device is configured to execute the configuration method involved in the sixth aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a dual-connection network according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a dual-connection network according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the architecture of a dual-connection network provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the hardware structure of a terminal and a network device according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a MAC CE in the prior art
  • FIG. 7 is a schematic diagram of another MAC CE in the prior art.
  • FIG. 9 is a flowchart of another configuration method provided by an embodiment of the present application.
  • FIG. 11 is a flowchart of another configuration method provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • indication may include direct indication and indirect indication, as well as explicit indication and implicit indication.
  • the information indicated by certain information is called information to be indicated, and in the specific implementation process, there are many ways to indicate the information to be indicated.
  • the information to be indicated may be directly indicated, wherein the information to be indicated itself or an index of the information to be indicated, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, wherein there is an association relationship between the other information and the information to be indicated.
  • only a part of the information to be indicated may be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be implemented by means of the arrangement order of each information pre-agreed (for example, stipulated by the protocol), thereby reducing the indication overhead to a certain extent.
  • Random access is the process of establishing a connection with a network device before a terminal enters a connected/active state from an idle/inactive state.
  • the main purpose of random access is to establish uplink synchronization and to request the network device to allocate uplink resources to the terminal, so that the terminal can perform corresponding data transmission through the uplink resources.
  • Random access is divided into a contention random access procedure and a non-contention random access procedure.
  • the biggest difference between the non-contention random access process is that the preamble used for random access is allocated by the network side, not generated by the terminal side, which reduces contention and interference. conflict resolution process.
  • the non-contention random access procedure can be divided into two-step non-contention random access and four-step non-contention random access.
  • activating a cell may be understood as “putting a cell in an activation state (activation)” or “resuming a cell (resume)”.
  • the terminal When a cell is in the active state, the terminal activates the cell, which is equivalent to the terminal keeping the cell in the active state. When a cell is in an inactive state, the terminal activates the cell, which is equivalent to switching the cell from the deactivated state to the active state by the terminal.
  • deactivating a cell may be understood as “putting a cell in a deactivation state (deactivation)” or “suspending a cell (suspending)”.
  • the terminal When a cell is in the active state, the terminal deactivates the cell, which is equivalent to the terminal switching the cell from the active state to the deactivated state. When a cell is in the deactivated state, the terminal deactivates the cell, which is equivalent to the terminal keeping the cell in the deactivated state.
  • a terminal deactivates a cell, it does not mean that the network side "closes" the cell, but means that the cell suspends receiving/transmitting data related to the terminal.
  • the terminal when the cell is in the deactivated state, the terminal does not need to receive the PDCCH or the physical downlink shared channel (PDSCH) corresponding to the cell, and cannot send uplink data on the cell.
  • a channel quality indication (CQI) measurement for the cell is performed.
  • the communication system includes a terminal, a master node (master node, MN), a secondary node (secondary node, SN), and a core network.
  • master node master node, MN
  • secondary node secondary node, SN
  • core network a core network
  • the terminal can support dual connectivity (Dual Connectivity, DC), and establish a wireless connection with both the master node and the slave node. Therefore, the master node and the slave node can jointly provide a data transmission service for the terminal.
  • DC Dual Connectivity
  • the master node and the core network are connected through the S1/NG interface.
  • the master node and the core network include at least a control plane connection, and may also have a user plane connection.
  • the S1 interface includes S1-U/NG-U and S1-C/NG-C. Among them, S1-U/NG-U represents the user plane connection, and S1-C/NG-C represents the control plane connection.
  • the data of the terminal can be offloaded by the primary node to the secondary node at the packet data convergence protocol (PDCP) layer.
  • the master node may also be called a master base station or a master access network device, and the SN may also be called a secondary base station or a slave access network device.
  • the master node manages a primary cell (PCell).
  • the primary cell refers to a cell deployed at the primary frequency point and accessed when the terminal initiates the initial connection establishment process or the RRC connection re-establishment process, or is indicated as the primary cell during the handover process.
  • the primary node may also manage one or more secondary cells (secondary cells, SCells).
  • secondary cells secondary cells, SCells.
  • the secondary node manages a primary secondary cell (PSCell).
  • the primary and secondary cell may be a cell accessed by the terminal during the random access process initiated by the terminal to the secondary node, or a cell on another secondary node where the terminal skips the random access process to initiate data transmission during the secondary node change process, or executes When synchronizing the reconfiguration process, initiate the cell on the secondary node that is accessed in the random access process.
  • the secondary node may also manage one or more secondary cells.
  • the cells on the secondary node that provide services for the terminal, such as the primary and secondary cells and the secondary cells on the secondary node, may be collectively referred to as SCG.
  • the primary cell and the primary and secondary cells are collectively referred to as a special cell (special cell, SpCell).
  • the above-mentioned primary node and secondary node may be collectively referred to as network devices.
  • the network devices include but are not limited to: access points (APs) in wireless fidelity (WiFi) systems, such as home gateways, routers, servers, switches, bridges, etc., evolved Node B (evolved Node B, eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base station (for example, home evolved Node B, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP ), etc., and can also be 5G, such as a gNB in a new radio (NR) system, or a transmission point (TRP or TP), one or a group of base stations in a 5G system (including multiple antenna panels)
  • the antenna panel alternative
  • the network device may adopt a CU-DU architecture. That is, the network device may be composed of a CU and at least one DU. In this case, some functions of the network device are deployed on the CU, and another part of the functions of the network device are deployed on the DU.
  • CU and DU are functionally divided according to the protocol stack.
  • the CU is deployed with a radio resource control (RRC) layer, a PDCP layer, and a service data adaptation protocol (SDAP) layer in the protocol stack; DU is deployed with the protocol stack.
  • the CU has the processing capabilities of RRC, PDCP and SDAP.
  • DU has the processing capability of RLC, MAC and PHY. It can be understood that the division of the above functions is only an example, and does not constitute a limitation on the CU and the DU. That is to say, there may also be other functional division manners between the CU and the DU, which are not described in detail in this embodiment of the present application.
  • the dual-connection network can be implemented in multiple ways, which are described below with examples.
  • FIG. 2 it is a schematic diagram of an LTE-NR Dual Connectivity (E-UTRA-NR Dual Connectivity, EN-DC) network.
  • the EN-DC network is a dual connection between the 4G radio access network and 5G NR, with the LTE base station (LTE eNB) as the MN and the NR base station (NR gNB) as the SN.
  • LTE eNB LTE base station
  • NR gNB NR base station
  • S1 interface between the LTE eNB and the evolved Packet Core (EPC) of the LTE system, at least a control plane connection, and possibly a user plane connection.
  • EPC evolved Packet Core
  • there is an S1-U interface between the NR gNB and the EPC that is, only user plane connections can be made.
  • FIG. 3 it is a schematic diagram of an NR-LTE dual connectivity (NR-E-UTRA Dual Connectivity, NE-DC) network.
  • the NE-DC network is a dual connection between the 4G radio access network and 5G NR under the 5G core network.
  • the NR base station (gNB) is used as the MN
  • the LTE base station (ng-eNB) is used as the SN
  • both the MN and the SN are connected to the 5G core network ( 5th Generation Core Network, 5GC).
  • 5G core network 5th Generation Core Network, 5GC
  • FIG. 4 it is a schematic diagram of the 5G core network LTE-NR dual connectivity (Next Generation E-UTRA-NR Dual Connectivity, NGEN-DC) network.
  • the NGEN-DC network is a dual connection between the 4G radio access network and 5G NR under the 5G core network.
  • the LTE base station (ng-eNB) acts as the MN
  • the NR base station (gNB) acts as the SN
  • both the MN and the SN are connected to the 5GC.
  • ng-eNB acts as the MN
  • gNB acts as the SN
  • both the MN and the SN are connected to the 5GC.
  • there is an NG interface between the ng-eNB and the 5GC which can establish a control plane connection and a user plane connection for the terminal, and the gNB sends the user plane data to the 5GC through the ng-eNB.
  • there is an NG-U interface between the gNB and the 5GC which only establishes a user plane connection for the
  • the user plane connection may not be established between the SN and the core network, but data is transferred via the MN.
  • the data of the terminal arrives at the MN first, and the MN is at the PDCP layer.
  • the data of the terminal is distributed to the SN, where the distributed data is in the form of, for example, a PDCP protocol data unit (Protocol Data Unit, PDU).
  • PDU Protocol Data Unit
  • the communication method provided by the embodiment of the present application can be adapted to the dual connection of traditional LTE, the EN-DC network, NE-DC network, or NGEN-DC network of the 5G system, and can also be adapted to the 5G core.
  • NR-NR dual connectivity NR-NR Dual Connectivity, NR-DC
  • the embodiments of the present application do not limit the specific architecture of the dual-connectivity network to which the communication method is adapted, and here it is only based on 2-4 are illustrative.
  • an EN-DC network architecture is used as an example to describe the communication method provided by the embodiment of the present application.
  • a terminal is a device with wireless transceiver function.
  • Terminals can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal may be user equipment (user equipment, UE).
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, and a smart grid.
  • VR virtual reality
  • AR augmented reality
  • the device for implementing the function of the terminal may be a terminal, or may be a device capable of supporting the terminal to implement the function, such as a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 5 is a schematic diagram of a hardware structure of a network device and a terminal according to an embodiment of the present application.
  • the terminal includes at least one processor 101 and at least one transceiver 103 .
  • the terminal may further include an output device 104 , an input device 105 and at least one memory 102 .
  • the processor 101, the memory 102 and the transceiver 103 are connected by a bus.
  • the processor 101 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more modules for controlling the execution of the programs of the present application. integrated circuit.
  • the processor 101 may also include multiple CPUs, and the processor 101 may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 102 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM), or other type of static storage device that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Any other medium accessed is not limited in this embodiment of the present application.
  • the memory 102 may exist independently and be connected to the processor 101 through a bus.
  • the memory 102 may also be integrated with the processor 101 .
  • the memory 102 is used for storing the application program code for executing the solution of the present application, and the execution is controlled by the processor 101 .
  • the processor 101 is configured to execute the computer program codes stored in the memory 102, so as to implement the methods provided by the embodiments of the present application.
  • the transceiver 103 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • the transceiver 103 includes a transmitter Tx and a receiver Rx.
  • the output device 104 communicates with the processor 101 and can display information in a variety of ways.
  • the output device 104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 105 is in communication with the processor 101 and can receive user input in a variety of ways.
  • the input device 105 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the network device includes at least one processor 201 , at least one memory 202 , at least one transceiver 203 and at least one network interface 204 .
  • the processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected by a bus.
  • the network interface 204 is used to connect with the core network device through a link (such as the S1 interface), or connect with the network interface of other network devices through a wired or wireless link (such as the X2 interface) (not shown in the figure), This embodiment of the present application does not specifically limit this.
  • the processor 201, the memory 202, and the transceiver 203 reference may be made to the description of the processor 101, the memory 102, and the transceiver 103 in the terminal, and details are not repeated here.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the network device may instruct the terminal to perform SCell activation/deactivation through the MAC CE carried by the PDCCH.
  • the MAC CE exists in two formats (format 1 and format 2 below).
  • the payload of the MAC CE of format 1 consists of 8 bits. Specifically, the payload of the MAC CE includes 7 cell fields (C-field) and 1 reserved bit (reserved bit). Among them, the reserved bits are generally set to 0. The value of the LCID in the subheader of the MAC CE of format 1 is 58.
  • the payload of the MAC CE of format 2 consists of 32 bits. Specifically, the payload of the MAC CE includes 31 C-fields and 1 reserved bit. The value of the LCID in the subheader of the MAC CE of format 2 is 57.
  • the C-field in the MAC CE may be numbered as C i , where i represents the sequence number of the C-field in the MAC CE.
  • the seven C-fields may be respectively numbered as C 1 to C 7 .
  • the 31 C-fields may be respectively numbered as C 1 to C 31 .
  • the terminal is configured with a MAC entity (entity) corresponding to the MCG and a MAC entity corresponding to the SCG.
  • entity entity
  • the MAC entity corresponding to the MCG is responsible for processing the MAC CE of the communication between the terminal and the master node.
  • the MAC entity corresponding to the SCG is responsible for processing the MAC CE of the communication between the terminal and the secondary node.
  • the MAC entity corresponding to the SCG receives the MAC CE for SCell activation/deactivation sent by the secondary node, and the MAC entity corresponding to the SCG parses the MAC CE in the following manner:
  • SCellIndex secondary cell index
  • the C i field in the MAC CE is used to indicate that the secondary cell of SCellIndex i is in an activated/deactivated state.
  • the MAC entity corresponding to the SCG when the MAC entity corresponding to the SCG is not configured with a secondary cell with a secondary cell index (SCellIndex) i, the MAC entity corresponding to the SCG will ignore (ignore) the C i field in the MAC CE.
  • the C i field is set to 1, indicating that the secondary cell of SCellIndex i will be activated.
  • the C i field is set to 0, indicating that the secondary cell of SCellIndex i will be deactivated.
  • the MAC CE for SCell activation/deactivation issued by the secondary node can only be used to activate/deactivate the cells in the SCG, but cannot be used to activate/deactivate the cells in the MCG.
  • the MAC entity corresponding to the MCG receives the MAC CE for SCell activation/deactivation sent by the master node, and the MAC entity corresponding to the MCG parses the MAC CE in the following manner:
  • SCellIndex secondary cell index
  • the C i field in the MAC CE is used to indicate that the secondary cell of SCellIndex i is in an activated/deactivated state.
  • the MAC entity corresponding to the MCG when the MAC entity corresponding to the MCG is not configured with a secondary cell with a secondary cell index (SCellIndex) i, the MAC entity corresponding to the MCG will ignore (ignore) the C i field in the MAC CE.
  • SCellIndex secondary cell index
  • the MAC CE for SCell activation/deactivation issued by the master node can only be used to activate/deactivate the cells in the MCG, but cannot be used to activate/deactivate the cells in the SCG.
  • the design of the above MAC CE is not flexible enough to meet some management requirements of the network side for the SCG and/or the MCG.
  • the master node cannot instruct the terminal to activate the cell in the SCG by sending a MAC CE.
  • an embodiment of the present application provides a configuration method. As shown in Figure 8, the method includes the following steps:
  • the first node generates a MAC CE.
  • the MAC CE is used to activate or deactivate one or more cells in a cell group managed by a second node, and the first node is different from the second node.
  • the first node is a master node
  • the second node is a slave node. Therefore, the cell group managed by the first node is the MCG, and the cell group managed by the second node is the SCG.
  • the first node is a secondary node
  • the second node is a primary node. Therefore, the cell group managed by the first node is the SCG, and the cell group managed by the second node is the MCG.
  • the SCell in the SCG is only allowed to switch from the deactivated state to the activated state when the PSCell in the SCG is switched from the deactivated state to the activated state. For this reason, when the first node is the master node, when all cells in the SCG are in a deactivated state, the above-mentioned MAC CE is at least used to activate the PSCell. Further, the above MAC CE can also be used to activate at least one SCell. Wherein, the at least one SCell may include the SCell in the SCG and/or the SCell in the MCG.
  • the SCell in the SCG can be switched from the activated state to the deactivated state, and can also be switched from the deactivated state to the activated state.
  • the MAC CE is used to deactivate one or more SCells in the SCG; or, the MAC CE is used to deactivate one or more SCells in the SCG; for activating one or more SCells in the SCG.
  • the first node sends the MAC CE to the terminal.
  • the terminal receives the MAC CE sent by the first node.
  • the MAC entity corresponding to the MCG of the terminal receives the MAC CE sent by the master node.
  • the MAC entity corresponding to the SCG of the terminal receives the MAC CE sent by the secondary node.
  • the terminal activates/deactivates one or more cells in the cell group managed by the second node according to the MAC CE.
  • the first implementation is applicable to a scenario in which the first node is a master node or a slave node.
  • the second implementation is only applicable to the scenario where the first node is the master node.
  • the MAC CE includes first indication information, and the first indication information is a reserved bit in the payload of the MAC CE whose value is the first value.
  • the first value may be 1.
  • the payload of the MAC CE further includes M first bits and N second bits.
  • M is a non-negative integer and N is a positive integer.
  • the M first bits are in one-to-one correspondence with the M SCells in the MCG.
  • the value of each first bit is used to indicate activation/deactivation of the SCell corresponding to the first bit.
  • the first bit is used to indicate that the SCell corresponding to the first bit is activated.
  • the value of the first bit is a third value
  • the first bit is used to indicate to deactivate the SCell corresponding to the first bit.
  • the second value may be 1, and the third value may be 0.
  • the second value may be 0 and the third value may be 1.
  • the values of the M first bits are determined according to actual requirements (for example, the terminal's requirement for network speed).
  • the values of the M first bits may all be the second value.
  • the values of the M first bits may all be third values.
  • a part of the first bits of the M first bits has a value of the second value, and another part of the first bits has a value of a third value.
  • the N second bits correspond one-to-one with the N cells in the SCG.
  • the N cells consist of one PScell and N-1 Scells.
  • the value of the second bit is used to indicate activation/deactivation of the cell corresponding to the second bit.
  • the second bit is used to indicate activation of the cell corresponding to the second bit.
  • the second bit is a third value, the second bit is used to indicate deactivation of the cell corresponding to the second bit.
  • the values of the N second bits are determined according to actual requirements.
  • the values of the N second bits may all be second numerical values.
  • the values of the N second bits may all be third values.
  • a part of the second bits in the N second bits has a value of the second value, and another part of the second bit has a value of a third value.
  • the correspondence between bits and cells for example, the correspondence between the first bit and the secondary cell in the MCG, or the correspondence between the second bit and the cell in the SCG, may be specific.
  • the implementation is: the correspondence between the number of the bit and the index of the cell.
  • the bit numbered C i corresponds to the cell whose index is i, and i may be a non-negative integer.
  • the network device and the terminal may be negotiated in advance or the communication protocol may be pre-defined: in the subheader of the MAC CE sent by the first node, the bit corresponding to the cell in the cell group managed by the first node is Invalid bit.
  • the M first bits in the payload of the MAC CE are invalid bits.
  • the terminal will ignore the M first bits in the payload of the MAC CE. That is, regardless of the values of the M first bits, the terminal will not change the state of the SCell in the MCG.
  • the N second bits in the payload of the MAC CE are invalid bits.
  • the terminal will ignore the N second bits in the payload of the MAC CE. That is, regardless of the value of the N second bits, the terminal will not change the state of the cell in the SCG.
  • the network device and the terminal may be negotiated in advance or the communication protocol may be pre-defined: in the subheader of the MAC CE sent by the first node, the bit corresponding to the cell in the cell group managed by the first node is valid bits.
  • the M first bits in the payload of the MAC CE are valid bits.
  • the terminal will read the M first bits in the payload of the MAC CE, and perform corresponding activation/deactivation operations on the SCell in the MCG according to the value of the M first bits.
  • the N second bits in the payload of the MAC CE are valid bits.
  • the terminal will read the N second bits in the payload of the MAC CE, and perform corresponding activation/deactivation operations on the cells in the SCG according to the values of the N second bits.
  • the MAC CE provided in this embodiment of the present application may adopt the MAC CE described in FIG. 6 or FIG. 7 for SCell activation/deactivation.
  • the value of the LCID in the subheader of the MAC CE provided by the embodiment of the present application is 57 or 58.
  • the MAC CE provided in this embodiment of the present application may not adopt the MAC CE described in FIG. 6 or FIG. 7 for SCell activation/deactivation.
  • the value of the LCID in the subheader of the MAC CE provided by the embodiment of the present application is other than 57 or 58.
  • Implementation mode 2 The payload of the MAC CE includes one or more third bits, and each third bit corresponds to an SCG.
  • the value of the third bit is used to indicate activation or deactivation of the SCG corresponding to the third bit.
  • the third bit is used to indicate that the SCG corresponding to the third bit is activated.
  • the third bit is used to indicate to deactivate the SCG corresponding to the third bit.
  • the fourth value may be 1, and the fifth value may be 0.
  • the fourth value may be 0 and the fifth value may be 1.
  • the third bit corresponds to the SCG currently configured for the terminal.
  • the payload of the MAC CE is 1 byte
  • the first bit in the payload corresponds to the SCG currently configured for the terminal
  • the other seven bits are reserved bits.
  • the MAC CE is used to indicate the SCG configured by the deactivated terminal; when the value of the first bit is 0, the MAC CE is used to indicate the SCG configured by the activated terminal .
  • each third bit corresponds to an SCG, which may be specifically implemented as follows: each third bit corresponds to a cell group identity (cellgroup identity, cellgroup ID).
  • the cell group identifier is an RRC signaling configuration sent by a network device (eg, a master node or a secondary node). It should be noted that, in this implementation manner, the cell group identifier whose value is the sixth value is used to indicate the MCG. Exemplarily, the sixth value may be 0.
  • the master node configures three SCGs for the terminal, and the cell group identifiers of the three SCGs are 1, 2, and 3, respectively.
  • the payload of the MAC CE includes three third bits, the third bit #1 corresponds to the cell group ID 1, the third bit #2 corresponds to the cell group ID 2, and the third bit #3 corresponds to the cell group ID 3. Other bits in the payload may be reserved bits.
  • the MAC CE is used to indicate that the terminal activates the cell group ID as 1, 3 SCG, deactivate the SCG whose cell group identifier is 2.
  • the subheader of the MAC CE includes an LCID whose value is the first preset value.
  • the first preset value may be preset according to conditions such as provisions of a communication protocol; or, the first preset value is determined through negotiation between the network device and the terminal.
  • the first preset value is not 57 or 58.
  • Implementation mode 3 When the subheader of the MAC CE contains an LCID whose value is the second preset value, the MAC CE is used to indicate the deactivation of the SCG. Alternatively, when the subheader of the MAC CE contains an LCID whose value is the third preset value, the MAC CE is used to indicate the activation of the SCG.
  • the above MAC CE is applicable to all SCGs configured by the terminal.
  • the second preset value and the third preset value may be preset according to conditions such as the provisions of the communication protocol; or, the second preset value and the third preset value are determined through negotiation between the network device and the terminal .
  • neither the second preset value nor the third preset value is 57 or 58.
  • the above-mentioned MAC CE may not include the payload to reduce signaling overhead.
  • the first node sends the MAC CE carrying the first indication information to the terminal, so that the terminal can activate/deactivate the cell group managed by the second node according to the MAC CE sent by the first node Therefore, the problem in the prior art that the MAC CE sent by one node cannot be used to activate/deactivate the cells in the cell group managed by other nodes is solved. Therefore, the technical solution provided by this application can meet the use requirements of the network side for MAC CE in some special scenarios. For example, in the scenario of SCG deactivation, the technical solution provided in this application ensures that the master node can use the MAC CE to instruct the terminal to activate the cell in the SCG.
  • a configuration method provided by an embodiment of the present application includes the following steps:
  • the terminal sends second indication information to a network device.
  • the network device receives the second indication information sent by the terminal.
  • the network device may be a master node or a slave node.
  • the second indication information is used to indicate that the terminal has cross-CG capability.
  • the second indication information is used to indicate that the terminal does not have cross-CG capability.
  • the cross-CG capability refers to the capability of the terminal to activate or deactivate cells in the cell group managed by the second node according to the MAC CE sent by the first node, or the terminal supports activation according to the MAC CE sent by the first node. Or deactivate the cells in the cell group managed by the second node.
  • the first node is the master node
  • the second node is the auxiliary node
  • the cross-CG capability means that the terminal supports activation/deactivation of the SCG according to the MAC CE issued by the master node.
  • the second indication information may adopt any one of the following designs:
  • the second indication information when the second indication information includes the first information element, the second indication information is used to indicate that the terminal has cross-CG capability.
  • the second indication information does not include the first information element, the second indication information is used to indicate that the terminal does not have the cross-CG capability.
  • the first cell may be in the following format:
  • the crossCG is the name of the first cell, and the enumeration value supported by the first cell is "true”.
  • OPTIONAL is used to indicate that the first cell is optional.
  • Design 2 When the second indication information includes a first cell with a value of the first enumeration value, the second indication information is used to indicate that it has cross-CG capability. When the second indication information includes the first information element whose value is the second enumeration value, the second indication information is used to indicate that the terminal does not have the cross-CG capability.
  • the first cell may be in the following format:
  • crossCG is the name of the first cell
  • the enumeration values supported by the first cell are "true” and “false”.
  • “true” is the first enumeration value
  • “false” is the second enumeration value.
  • MANDATORY indicates that the first cell is mandatory.
  • the second indication information may reuse the signaling in the existing process to save signaling overhead.
  • the second indication information may not reuse the signaling in the existing process, and the embodiment of the present application is not limited to this.
  • the terminal may actively send the second indication information to the network device.
  • the terminal may actively send the second indication information to the network device after completing the random access procedure or after completing the cell handover.
  • the terminal may passively send the second indication information to the network device.
  • the terminal receives the first request information sent by the network device, where the first request information is used to instruct the terminal to report the second indication information. After that, the terminal sends the second indication information to the network device.
  • the master node may send the second indication information of the terminal to the secondary node, so that the secondary node can determine whether the terminal has cross-CG ability.
  • the secondary node may send the second indication information of the terminal to the primary node, so that the primary node can determine whether the terminal has a cross-CG ability.
  • the network device determines whether the terminal has cross-CG capability according to the second indication information.
  • the network device when the second indication information is used to indicate that the terminal does not have the cross-CG capability, the network device will not use the MAC CE provided by the embodiment shown in FIG. 8 .
  • the network device may perform steps S101 and S102 in FIG. 8 , and the terminal may perform step S103 in FIG. 8 .
  • a configuration method provided by an embodiment of the present application includes the following steps:
  • the first node sends third indication information to the terminal.
  • the terminal receives the third indication information sent by the first node.
  • the first node is a master node or a slave node.
  • the third indication information is used to indicate that the first node has the ability to send the target MAC CE.
  • the third indication information is used to indicate that the first node does not have the ability to send the target MAC CE.
  • the target MAC CE may be the MAC CE of the first implementation, the second implementation or the third implementation in the embodiment shown in FIG. 8 .
  • the third indication information may adopt any one of the following designs:
  • the third indication information includes the second information element
  • the third indication information is used to indicate that the first node has the capability of the target MAC CE.
  • the third indication information does not contain the second information element
  • the third indication information is used to indicate that the first node does not have the ability to send the target MAC CE.
  • the third indication information includes a second information element whose value is the third enumeration value
  • the third indication information is used to indicate that the first node has the ability to send and carry the target MAC CE.
  • the third indication information includes the second information element whose value is the fourth enumeration value
  • the third indication information is used to indicate that the first node does not have the ability to send the target MAC CE.
  • the third enumeration value may be "true”
  • the fourth enumeration value may be "false”.
  • the third indication information may reuse the signaling in the existing procedure, such as the signaling in the initial access procedure, to save signaling overhead.
  • the third indication information may not reuse the signaling in the existing process, and the embodiment of the present application is not limited to this.
  • the first node sends the third indication information to the terminal in a broadcast manner.
  • the first node sends RRC signaling to the terminal, where the RRC signaling includes third indication information.
  • the terminal determines whether the first node has the ability to send the target MAC CE according to the third indication information.
  • the first node when the third indication information is used to indicate that the first node does not have the ability to send the target MAC CE, the first node will not use the MAC CE (that is, the target MAC CE) provided by the embodiment shown in FIG. 8 .
  • the first node may perform steps S101 and S102 in FIG. 8 , and the terminal may perform step S103 in FIG. 8 . That is, the terminal can parse the target MAC CE according to the method introduced in the embodiment shown in FIG. 8 .
  • the terminal parses the MAC CE used for SCell activation/deactivation according to the method in the prior art.
  • the terminal when the SCG of the terminal is in a deactivated state, when the terminal receives an instruction to activate the SCG, the terminal will initiate contention-based random access to the secondary node, so as to facilitate uplink synchronization between the terminal and the secondary node. , and the terminal acquires the corresponding uplink resources at the same time.
  • the random access process of the terminal fails due to collision, and the terminal fails to activate the SCG.
  • the present application provides a configuration method, the specific implementation of which may refer to FIG. 11 or FIG. 12 .
  • the configuration method includes the following steps:
  • the terminal receives fourth indication information.
  • the fourth indication information is used to indicate deactivation of the SCG.
  • the fourth indication information includes non-contention-based random access configuration information.
  • the non-contention-based random access configuration information includes: a dedicated preamble (preamble), a dedicated random access configuration parameter (RACH-ConfigDedicated), and the like.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • the fourth indication information may be carried in RRC signaling, downlink control information (downlink control information) DCI or MAC CE.
  • the terminal receives the fourth indication information sent by the master node.
  • the master node can obtain the non-contention-based random access configuration information from the secondary node, for example, the message sent by the secondary station to the primary station to indicate that the data is inactive carries non-contention random access configuration information.
  • the access configuration may also be a non-contention random access configuration carried in the SN Modification Required (SN Modification Required) message sent by the secondary station to the primary station.
  • the above-mentioned message for indicating data inactivity can be an activity notification (Activity Notification) message, and the activity notification message carries an information element for indicating data activity, and the value of the information element is " inactive".
  • Activity Notification Activity Notification
  • the terminal receives the fourth indication information sent by the secondary node.
  • the master node sends fifth indication information to the terminal.
  • the terminal receives the fifth indication information sent by the master node.
  • the fifth indication information is at least used to indicate activation of the PSCell in the SCG.
  • the fifth indication information is further used to indicate activation of one or more SCells in the SCG.
  • the fifth indication information may be carried in RRC signaling, DCI or MAC CE.
  • the terminal initiates random access to the secondary node according to the non-contention-based random access configuration information.
  • the terminal initiates the two-step non-contention-based random access to the secondary node. If the fourth indication information only includes the four-step non-contention-based random access configuration information, the terminal initiates the four-step non-contention-based random access to the secondary node. If the fourth indication information includes the two-step non-contention-based random access configuration information and the four-step non-contention-based random access configuration information, the terminal may initiate two-step non-contention-based random access according to its actual situation. access, or initiate a four-step non-contention-based random access.
  • the terminal can, after receiving the fifth indication information, directly The non-contention-based random access configuration information included in the fourth indication information initiates random access without waiting for the network side to deliver the non-contention-based random access configuration information, thereby reducing the delay for the terminal to initiate random access.
  • the terminal activates the cell in the SCG by initiating the non-contention-based random access, The problem of random access failure caused by collision and contention is avoided, so that random access can be completed faster, and cells in the SCG can be activated more quickly.
  • a configuration method provided by an embodiment of the present application includes the following steps:
  • the master node sends fifth indication information to the terminal.
  • the terminal receives the fifth indication information sent by the master node.
  • the fifth indication information is at least used to indicate activation of the PSCell in the SCG.
  • the fifth indication information is further used to indicate activation of one or more SCells in the SCG.
  • the fifth indication information may be carried in RRC signaling, DCI or MAC CE.
  • the fifth indication information includes non-contention-based random access configuration information.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • the primary node can obtain the non-contention-based random access configuration information from the secondary node.
  • S502 The terminal initiates random access to the secondary node according to the non-contention-based random access configuration information.
  • the terminal initiates the two-step non-contention-based random access to the secondary node. If the fifth indication information only includes the four-step non-contention-based random access configuration information, the terminal initiates the four-step non-contention-based random access to the secondary node. If the fifth indication information includes the two-step non-contention-based random access configuration information and the four-step non-contention-based random access configuration information, the terminal may initiate a two-step non-contention-based random access according to its actual situation. access, or initiate a four-step non-contention-based random access.
  • the terminal can directly Initiating random access based on the non-contention-based random access configuration information does not need to wait for the network side to deliver the non-contention-based random access configuration information, thereby reducing the delay for the terminal to initiate random access.
  • the terminal activates the cell in the SCG by initiating the non-contention-based random access, The problem of random access failure caused by collision and contention is avoided, so that random access can be completed faster, and cells in the SCG can be activated more quickly.
  • the CU of the secondary node obtains the non-contention-based random access configuration information, including the following steps:
  • the CU of the secondary node sends second request information to the DU of the secondary node.
  • the DU of the secondary node receives the second request information sent by the CU of the secondary node.
  • the second request information is used to request non-contention-based random access configuration information.
  • the second request information may be carried in existing signaling, such as a UE context modification request (UE context modification request) message.
  • UE context modification request UE context modification request
  • the CU of the secondary node when the preset condition is satisfied, sends the second request information to the DU of the secondary node.
  • the preset condition may be any of the following:
  • Condition 1 The CU of the secondary node receives the indication information sent by the primary node for activating the SCG.
  • Condition 2 The CU of the secondary node determines to activate the SCG.
  • Condition 3 The CU of the secondary node receives the indication information for deactivating the SCG sent by the primary node.
  • Condition 4 The CU of the secondary node determines to deactivate the SCG.
  • the second request information may include indication information for activating the SCG.
  • the second request information may include indication information for deactivating the SCG.
  • the DU of the secondary node sends the second response information to the CU of the secondary node.
  • the CU of the secondary node receives the second response information sent by the DU of the secondary node.
  • the second response information is used to respond to the second request information.
  • the second response information includes non-contention-based random access configuration information.
  • the non-contention-based random access configuration information includes: two-step non-contention-based random access configuration information and/or four-step non-contention-based random access configuration information.
  • the second response information may be carried in existing signaling, such as a UE context modification response (UE context modification response) message.
  • UE context modification response UE context modification response
  • the CU of the secondary node can obtain the non-contention-based random access configuration information from the DU of the secondary node.
  • the CU of the secondary node may send the non-contention-based random access configuration information to the master node.
  • the master node can perform step S401 in FIG. 11 or step S501 in FIG. 12 .
  • the CU of the secondary node may perform step S401 in FIG. 11 .
  • a terminal and/or a network device may perform some or all of the steps in the embodiments of the present application, and these steps or operations are only examples, and in the embodiments of the present application , other operations or variations of various operations may also be performed.
  • various steps may be performed in different orders presented in the embodiments of the present application, and may not be required to perform all the operations in the embodiments of the present application.
  • the terminal includes corresponding hardware structures and/or software modules for executing each function.
  • the present application can be implemented in hardware, or in a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the terminal may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following is an example of dividing each function module corresponding to each function to illustrate:
  • the communication device includes a communication unit 301 and a processing unit 302 .
  • the communication unit 301 is configured to support the terminal to perform, for example, step S102 in FIG. 8 , step S201 in FIG. 9 , step S301 in FIG. 10 , and steps S401 and S402 in FIG. 11 . , step S501 in FIG. 12 .
  • the processing unit 302 is configured to support the terminal to perform, for example, step S103 in FIG. 8 , step S302 in FIG. 10 , step S403 in FIG. 11 , and step S502 in FIG. 12 . All relevant contents of the steps involved in the foregoing method embodiments can be cited in the functional descriptions of the corresponding functional units, which will not be repeated here.
  • the communication unit 301 is configured to support the network device to perform, for example, step S102 in FIG. 8 , step S201 in FIG. 9 , step S301 in FIG. 10 , and step S401 in FIG. 11 . and S402, step S501 in FIG. 12 .
  • the processing unit 302 is configured to support the network device to perform, for example, step S101 in FIG. 8 and step S202 in FIG. 9 . All relevant contents of the steps involved in the foregoing method embodiments can be cited in the functional descriptions of the corresponding functional units, which will not be repeated here.
  • the communication unit 301 in FIG. 14 may be implemented by the transceiver 103 in FIG. 5
  • the processing unit 302 in FIG. 14 may be implemented by the processor in FIG. 5 101, which is not limited in this embodiment of the present application.
  • the communication unit 301 in FIG. 14 can be implemented by the transceiver 203 in FIG. 5
  • the processing unit 302 in FIG. 14 can be implemented by the processing unit 302 in FIG. It is implemented by the device 201, which is not limited in this embodiment of the present application.
  • Embodiments of the present application further provide a computer-readable storage medium, where computer instructions are stored; when the computer-readable storage medium runs on the terminal or network device shown in FIG.
  • the terminal or network device executes the configuration methods shown in FIG. 8 to FIG. 13 .
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions can be from a website site, computer, server or A data center transmits to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media, or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • Embodiments of the present application further provide a chip, which includes a processing module and a communication interface, where the communication interface is used to receive an input signal and provide it to the processing module, and/or to process and output a signal generated by the processing module.
  • the processing is used to support the communication device to perform the configuration methods shown in FIGS. 8-13 .
  • the processing module may execute code instructions to perform the configuration methods shown in FIGS. 8-13 .
  • the code instruction can come from a memory inside the chip or from a memory outside the chip.
  • the processing module is a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the communication interface can be an input-output circuit or a transceiver pin.
  • Embodiments of the present application further provide a computer program product containing computer instructions, which, when executed on a communication device, enables the communication device to execute the configuration methods shown in FIGS. 8-13 .
  • the embodiment of the present application also provides a communication system, including a network device and a terminal.
  • the network device may perform the relevant steps in Figures 8-13.
  • the terminal may perform the relevant steps in FIG. 8-FIG. 12 .
  • the terminals, network devices, computer storage media, chips, and computer program products provided by the above embodiments of the present application are all used to execute the configuration methods provided above. Therefore, the beneficial effects that can be achieved may refer to the methods provided above. The corresponding beneficial effects will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种配置方法及装置,涉及通信技术领域,用于在SCG去激活的场景下,使得网络侧可以通过MAC CE来激活SCG或者SCG中的小区。该方法包括:终端接收第一节点发送的MAC CE,该MAC CE用于激活或者去激活第二节点所管理的小区组中的一个或者多个小区;之后,终端根据MAC CE,激活或者去激活第二节点所管理的小区组中的一个或者多个小区。

Description

配置方法及装置
本申请要求于2020年07月02日提交国家知识产权局、申请号为202010639037.4、申请名称为“配置方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及配置方法及装置。
背景技术
在双连接(dual-connectivity,DC),例如多无线双连接(multi-radio dual connectivity,MR-DC)场景下,终端可以与多个接入网设备通信,如终端可以同时与主节点(master node,MN)管理的主小区组(master cell group,MCG)和辅节点(secondary node,SN)管理的辅小区组(secondary cell group,SCG)通信。进一步地,当终端在SCG侧传输的数据比较少或无数据传输,或要求的数据速率较低时,终端会暂时性的去激活或挂起SCG,以降低终端功耗。而当终端在SCG侧传输的数据比较活跃,或要求的数据速率较高时,终端会激活SCG,以保持数据传输的通畅性。
当前,网络侧可以通过MAC CE来激活或者去激活小区组中的小区。但是,MAC CE的设计不够灵活,导致MAC CE不能满足网络侧对于小区组中的小区的一些管理需求。例如,在辅小区组中的主辅小区(primary secondary cell,PSCell)处于激活状态的情况下,终端可以接收到辅节点下发的MAC CE,并根据辅节点下发的MAC CE来激活/去激活SCG中的小区。然而,在终端的SCG处于去激活状态的情况下,由于终端停止监听辅节点发送的物理下行控制信道(physical downlink control channel,PDCCH),导致终端无法接收到辅节点发送的携带激活SCG指示的MAC CE,进而使终端无法激活SCG。
发明内容
本申请提供一种配置方法及装置,用于在一些通信场景下(例如SCG去激活的情况),满足网络侧使用MAC CE管理小区组中的小区的需求。
第一方面,提供一种配置方法,包括:终端接收第一节点发送的媒体接入控制层(medium access control,MAC)控制元素(control element,CE),MAC CE用于激活或去激活第二节点所管理的小区组中的一个或者多个小区,第一节点不同于第二节点;终端根据MAC CE,激活或者去激活第二节点所管理的小区组中的一个或者多个小区。
基于上述技术方案,第一节点通过向终端发送MAC CE,以使得终端能够根据第一节点发送的MAC CE,激活/去激活第二节点所管理的小区组中的小区。相比于现有技术中一个节点发送的MAC CE仅能用于激活/去激活该节点所管理的小区组中的小区,本申请实施例提供的MAC CE可以使得一个节点可以指示终端激活/去激活另一个节点所管理的小区组中的小区,提高了MAC CE的灵活性,从而满足网络侧在一些特殊场景下对于MAC CE的使用需求。例如在SCG去激活的场景下,本申请提供的技术方案保证主节点可以使用MAC CE指示终端激活SCG中的小区,使得网络侧可以对SCG进行有效管理。
一种可能的设计中,第一节点为主节点,第二节点为辅节点,第二节点所管理的小区组为SCG。
一种可能的设计中,第一节点为辅节点,第二节点为主节点,第二节点所管理的小区组 为MCG。
一种可能的设计中,当SCG中的全部小区均处于去激活状态时,MAC CE至少用于激活主辅小区。
一种可能的设计中,MAC CE还用于激活至少一个辅小区。其中,该辅小区可以为MCG中的辅小区,也可以为SCG中的辅小区。
一种可能的设计中,MAC CE包含第一指示信息,第一指示信息为MAC CE的净荷中取值为第一数值的保留比特。
一种可能的设计中,在主小区组MCG包括主小区和M个辅小区,SCG包括一个主辅小区和N-1个辅小区的情况下,MAC CE的净荷包括:M个第一比特和N个第二比特,M为非负整数,N为正整数。其中,M个第一比特与MCG中的M个辅小区一一对应;当第一比特的取值为第二数值时,第一比特用于指示激活第一比特对应的辅小区;或者,当第一比特的取值为第三数值时,第一比特用于指示去激活第一比特对应的辅小区。N个第二比特与SCG中的N个小区一一对应;当第二比特的取值为第二数值时,第二比特用于指示激活第二比特对应的小区;或者,当第二比特的取值为第三数值时,第二比特用于指示去激活第二比特对应的小区。
一种可能的设计中,MAC CE的子头(subheader)包含取值为57或者58的逻辑信道标识(logical channel identity,LCID)。基于该设计,本申请提供的MAC CE复用现有技术中用于SCell激活/去激活的MAC CE。
一种可能的设计中,MAC CE的净荷包括一个或多个第三比特,每一个第三比特对应一个SCG;当第三比特的取值为第四数值时,第三比特用于指示激活第三比特对应的SCG;或者,当第三比特的取值为第五数值时,第三比特用于指示去激活第三比特对应的SCG。
一种可能的设计中,当所述MAC CE的子头包含取值为第二预设值的LCID时,所述MAC CE用于指示去激活所述SCG;或者,当所述MAC CE的子头包含取值为第三预设值的LCID时,所述MAC CE用于指示激活所述SCG。可选的,基于该设计,MAC CE不包括净荷。基于该设计,可以减少信令开销。
一种可能的设计中,该配置方法还包括:终端向第一节点或者第二节点发送第二指示信息,第二指示信息用于指示终端具有根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区的能力;或者,第二指示信息用于指示终端不具有根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区的能力。基于该设计,网络侧可以根据第二指示信息,获知终端是否具有根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区的能力。
一种可能的设计中,该配置方法还包括:终端接收第一节点发送的第一请求信息,第一请求信息用于请求终端上报第二指示信息。
第二方面,提供一种配置方法,包括:第一节点生成MAC CE,MAC CE用于激活或去激活第二节点所管理的小区组中的一个或者多个小区,第一节点不同于第二节点;第一节点向终端发送MAC CE。
基于上述技术方案,第一节点通过向终端发送MAC CE,以使得终端能够根据第一节点发送的MAC CE,激活/去激活第二节点所管理的小区组中的小区。相比于现有技术中一个节点发送的MAC CE仅能用于激活/去激活该节点所管理的小区组中的小区,本申请实施例提供的MAC CE可以使得一个节点可以指示终端激活/去激活另一个节点所管理的小区组中的小区,提升了MAC CE的灵活性,从而满足网络侧在一些特殊场景下对于MAC CE的使用需 求。例如在SCG去激活的场景下,本申请提供的技术方案保证主节点可以使用MAC CE指示终端激活SCG中的小区,使得网络侧可以对SCG进行有效管理。
一种可能的设计中,第一节点为主节点,第二节点为辅节点,第二节点所管理的小区组为SCG。
一种可能的设计中,第一节点为辅节点,第二节点为主节点,第二节点所管理的小区组为MCG。
一种可能的设计中,当SCG中的全部小区均处于去激活状态时,MAC CE至少用于激活主辅小区。
一种可能的设计中,MAC CE还用于激活至少一个辅小区。
一种可能的设计中,当SCG中的主辅小区处于激活状态时,MAC CE用于去激活SCG中的所有小区;或者,MAC CE用于去激活SCG中的一个或多个辅小区。
一种可能的设计中,MAC CE包含第一指示信息,第一指示信息为MAC CE的净荷中取值为第一数值的保留比特。
一种可能的设计中,在主小区组MCG包括主小区和M个辅小区,SCG包括一个主辅小区和N-1个辅小区的情况下,MAC CE的净荷包括:M个第一比特和N个第二比特,M为非负整数,N为正整数;其中,M个第一比特与MCG中的M个辅小区一一对应;当第一比特的取值为第二数值时,第一比特用于指示激活第一比特对应的辅小区;或者,当第一比特的取值为第三数值时,第一比特用于指示去激活第一比特对应的辅小区;N个第二比特与SCG中的N个小区一一对应;当第二比特的取值为第二数值时,第二比特用于指示激活第二比特对应的小区;或者,当第二比特的取值为第三数值时,第二比特用于指示去激活第二比特对应的小区。
一种可能的设计中,MAC CE的子头包含取值为57或者58的LCID。基于该设计,本申请提供的MAC CE复用现有技术中用于SCell激活/去激活的MAC CE。
一种可能的设计中,MAC CE的净荷包括一个或多个第三比特,每一个第三比特对应一个SCG;当第三比特的取值为第四数值时,第三比特用于指示激活第三比特对应的SCG;或者,当第三比特的取值为第五数值时,第三比特用于指示去激活第三比特对应的SCG。
一种可能的设计中,当所述MAC CE的子头包含取值为第二预设值的LCID时,所述MAC CE用于指示去激活所述SCG;或者,当所述MAC CE的子头包含取值为第三预设值的LCID时,所述MAC CE用于指示激活所述SCG。可选的,基于该设计,MAC CE不包含净荷,以节省信令开销。
一种可能的设计中,该配置方法还包括:第一节点接收终端发送的第二指示信息,第二指示信息用于指示终端具有根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区的能力;或者,第二指示信息用于指示终端不具有根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区的能力。
一种可能的设计中,该配置方法还包括:第一节点向终端发送第一请求信息,第一请求信息用于请求终端上报第二指示信息。
第三方面,提供一种配置方法,包括:终端接收第四指示信息,第四指示信息用于指示去激活SCG,第四指示信息包括基于非竞争的随机接入配置信息;之后,终端接收主节点发送的第五指示信息,第五指示信息至少用于指示激活SCG中的PSCell;终端根据基于非竞争的随机接入配置信息,向辅节点发起随机接入。
基于上述技术方案,一方面,由于用于指示去激活SCG的第四指示信息包含基于非竞争 的随机接入配置信息,因此终端可以在接收到第五指示信息之后,可以直接根据第四指示信息所包含的基于非竞争的随机接入配置信息发起随机接入,而无需等待网络侧下发基于非竞争的随机接入配置信息,从而减少终端发起随机接入的时延。另外一方面,相比于现有技术中终端发起基于竞争的随机接入来激活SCG中的小区,本申请提供的技术方案中终端通过发起基于非竞争的随机接入来激活SCG中的小区,避免因冲突和竞争导致的随机接入失败的问题,从而更快地完成随机接入,进而更快地激活SCG中的小区。
一种可能的设计中,终端接收第四指示信息,包括:终端接收主节点发送的第四指示信息;或者,终端接收辅节点发送的第四指示信息。
一种可能的设计中,基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
第四方面,提供一种配置方法,包括:网络设备生成第四指示信息,第四指示信息用于指示去激活SCG,第四指示信息包括基于非竞争的随机接入配置信息;网络设备向终端发送第四指示信息。
一种可能的设计中,网络设备为主节点或者辅节点。
一种可能的设计中,基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
一种可能的设计中,当网络设备为主节点时,方法还包括:主节点接收辅节点发送的基于非竞争的随机接入配置信息。
一种可能的设计中,当网络设备为辅节点时,方法还包括:辅节点的集中式单元(centralized unit,CU)向辅节点的分布式单元(distributed unit,DU)发送第二请求信息,第二请求信息用于请求基于非竞争的随机接入配置信息。辅节点的CU接收辅节点的DU发送的第二响应信息,第二响应信息包括基于非竞争的随机接入配置信息。
第五方面,提供一种配置方法,包括:终端接收主节点发送的第五指示信息,第五指示信息至少用于指示激活SCG中的PSCell,第五指示信息包括基于非竞争的随机接入配置信息;终端根据基于非竞争的随机接入配置信息,向辅节点发起随机接入。
基于上述技术方案,一方面,由于第五指示信息包含基于非竞争的随机接入配置信息,因此终端可以在接收到第五指示信息之后,可以直接根据第五指示信息所包含的基于非竞争的随机接入配置信息发起随机接入,而无需等待网络侧下发基于非竞争的随机接入配置信息,从而减少终端发起随机接入的时延。另外一方面,相比于现有技术中终端发起基于竞争的随机接入来激活SCG中的小区,本申请提供的技术方案中终端通过发起基于非竞争的随机接入来激活SCG中的小区,避免因冲突和竞争导致的随机接入失败的问题,从而更快地完成随机接入,进而更快地激活SCG中的小区。
一种可能的设计中,基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
第六方面,提供一种配置方法,包括:主节点生成第五指示信息,第五指示信息,第五指示信息至少用于指示激活SCG中的PSCell,第五指示信息包括基于非竞争的随机接入配置信息;之后,主节点向终端发送第五指示信息。
一种可能的设计中,基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
一种可能的设计中,方法还包括:主节点接收辅节点发送的基于非竞争的随机接入配置信息。
第七方面,提供一种通信装置,包括:通信单元,用于接收第一节点发送的MAC CE,MAC CE用于激活或去激活第二节点所管理的小区组中的一个或者多个小区,第一节点不同于第二节点。处理单元,用于根据MAC CE,激活或者去激活第二节点所管理的小区组中的一个或者多个小区。
一种可能的设计中,第一节点为主节点,第二节点为辅节点,第二节点所管理的小区组为SCG。
一种可能的设计中,第一节点为辅节点,第二节点为主节点,第二节点所管理的小区组为MCG。
一种可能的设计中,当SCG中的全部小区均处于去激活状态时,MAC CE至少用于激活主辅小区。
一种可能的设计中,MAC CE还用于激活至少一个辅小区。
一种可能的设计中,MAC CE包含第一指示信息,第一指示信息为MAC CE的净荷中取值为第一数值的保留比特。
一种可能的设计中,在主小区组MCG包括主小区和M个辅小区,SCG包括一个主辅小区和N-1个辅小区的情况下,MAC CE的净荷包括:M个第一比特和N个第二比特,M为非负整数,N为正整数。其中,M个第一比特与MCG中的M个辅小区一一对应;当第一比特的取值为第二数值时,第一比特用于指示激活第一比特对应的辅小区;或者,当第一比特的取值为第三数值时,第一比特用于指示去激活第一比特对应的辅小区。N个第二比特与SCG中的N个小区一一对应;当第二比特的取值为第二数值时,第二比特用于指示激活第二比特对应的小区;或者,当第二比特的取值为第三数值时,第二比特用于指示去激活第二比特对应的小区。
一种可能的设计中,MAC CE的子头包含取值为57或者58的LCID。
一种可能的设计中,MAC CE的净荷包括一个或多个第三比特,每一个第三比特对应一个SCG;当第三比特的取值为第四数值时,第三比特用于指示激活第三比特对应的SCG;或者,当第三比特的取值为第五数值时,第三比特用于指示去激活第三比特对应的SCG。
一种可能的设计中,当所述MAC CE的子头包含取值为第二预设值的LCID时,所述MAC CE用于指示去激活所述SCG;或者,当所述MAC CE的子头包含取值为第三预设值的LCID时,所述MAC CE用于指示激活所述SCG。可选的,基于该设计,MAC CE不包括净荷。
一种可能的设计中,通信单元,还用于向第一节点发送第二指示信息,第二指示信息用于指示终端具有根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区的能力;或者,第二指示信息用于指示终端不具有根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区的能力。
一种可能的设计中,通信单元,还用于接收第一节点发送的第一请求信息,第一请求信息用于请求终端上报第二指示信息。
第八方面,提供一种通信装置,应用于第一节点,包括:处理单元,用于生成MAC CE,MAC CE用于激活或去激活第二节点所管理的小区组中的一个或者多个小区,第一节点不同于第二节点。通信单元,用于向终端发送MAC CE。
一种可能的设计中,第一节点为主节点,第二节点为辅节点,第二节点所管理的小区组为SCG。
一种可能的设计中,第一节点为辅节点,第二节点为主节点,第二节点所管理的小区组 为MCG。
一种可能的设计中,当SCG中的全部小区均处于去激活状态时,MAC CE至少用于激活主辅小区。
一种可能的设计中,MAC CE还用于激活至少一个辅小区。
一种可能的设计中,当SCG中的主辅小区处于激活状态时,MAC CE用于去激活SCG中的所有小区;或者,MAC CE用于去激活SCG中的一个或多个辅小区。
一种可能的设计中,MAC CE包含第一指示信息,第一指示信息为MAC CE的净荷中取值为第一数值的保留比特。
一种可能的设计中,在主小区组MCG包括主小区和M个辅小区,SCG包括一个主辅小区和N-1个辅小区的情况下,MAC CE的净荷包括:M个第一比特和N个第二比特,M为非负整数,N为正整数;其中,M个第一比特与MCG中的M个辅小区一一对应;当第一比特的取值为第二数值时,第一比特用于指示激活第一比特对应的辅小区;或者,当第一比特的取值为第三数值时,第一比特用于指示去激活第一比特对应的辅小区;N个第二比特与SCG中的N个小区一一对应;当第二比特的取值为第二数值时,第二比特用于指示激活第二比特对应的小区;或者,当第二比特的取值为第三数值时,第二比特用于指示去激活第二比特对应的小区。
一种可能的设计中,MAC CE的子头包含取值为57或者58的LCID。
一种可能的设计中,MAC CE的净荷包括一个或多个第三比特,每一个第三比特对应一个SCG;当第三比特的取值为第四数值时,第三比特用于指示激活第三比特对应的SCG;或者,当第三比特的取值为第五数值时,第三比特用于指示去激活第三比特对应的SCG。
一种可能的设计中,当所述MAC CE的子头包含取值为第二预设值的LCID时,所述MAC CE用于指示去激活所述SCG;或者,当所述MAC CE的子头包含取值为第三预设值的LCID时,所述MAC CE用于指示激活所述SCG。可选的,基于该设计,MAC CE不包括净荷。
一种可能的设计中,通信单元,还用于接收终端发送的第二指示信息,第二指示信息用于指示终端具有根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区的能力;或者,第二指示信息用于指示终端不具有根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区的能力。
第九方面,提供一种通信装置,包括:通信单元,用于接收第四指示信息,第四指示信息用于指示去激活SCG,第四指示信息包括基于非竞争的随机接入配置信息。通信单元,还用于接收主节点发送的第五指示信息,第五指示信息至少用于指示激活SCG中的PSCell。处理单元,用于根据基于非竞争的随机接入配置信息,向辅节点发起随机接入。
一种可能的设计中,通信单元,具体用于接收主节点发送的第四指示信息;或者,接收辅节点发送的第四指示信息。
一种可能的设计中,基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
第十方面,提供一种通信装置,包括:处理单元,用于生成第四指示信息,第四指示信息用于指示去激活SCG,第四指示信息包括基于非竞争的随机接入配置信息。通信单元,用于向终端发送第四指示信息。
一种可能的设计中,通信装置为主节点或者辅节点。
一种可能的设计中,基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接 入配置信息和/或四步的基于非竞争的随机接入配置信息。
一种可能的设计中,当通信装置为主节点时,通信单元,具体用于接收辅节点发送的基于非竞争的随机接入配置信息。
一种可能的设计中,当通信单元为辅节点时,辅节点的CU向辅节点的DU发送第二请求信息,第二请求信息用于请求基于非竞争的随机接入配置信息。辅节点的CU接收辅节点的DU发送的第二响应信息,第二响应信息包括基于非竞争的随机接入配置信息。
第十一方面,提供一种通信装置,包括:通信单元,用于接收主节点发送的第五指示信息,第五指示信息至少用于指示激活SCG中的PSCell,第五指示信息包括基于非竞争的随机接入配置信息。处理单元,用于根据基于非竞争的随机接入配置信息,向辅节点发起随机接入。
一种可能的设计中,基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
第十二方面,提供一种通信装置,包括:处理单元,用于生成第五指示信息,第五指示信息,第五指示信息至少用于指示激活SCG中的PSCell,第五指示信息包括基于非竞争的随机接入配置信息。通信单元,用于向终端发送第五指示信息。
一种可能的设计中,基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
一种可能的设计中,通信单元,还用于接收辅节点发送的基于非竞争的随机接入配置信息。
第十三方面,提供一种通信装置,包括:处理器,所述处理器用于与存储器耦合,并读取存储器中的指令,并根据所述指令实现如上述第一方面至第六方面中任一方面所涉及的配置方法。
第十四方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在通信装置上运行时,使得通信装置可以执行上述第一方面至第六方面中任一方面所涉及的配置方法。
第十五方面,提供一种包含指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行上述第一方面至第五方面中任一方面所涉及的配置方法。
第十六方面,提供一种芯片,该芯片包括处理模块和通信接口,通信接口用于将接收输入的信号并提供给处理模块,和/或用于将处理模块生成的信号输出,处理模块用于执行上述第一方面至第六方面中任一方面所涉及的配置方法。
在一实施方式中,处理模块可以运行代码指令以执行上述第一方面至第六方面中任一方面所涉及的配置方法。该代码指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。可选的,处理模块可以为该芯片上集成的处理器或者微处理器或者集成电路。通信接口可以为芯片上的输入输出电路或者收发管脚。
第十七方面,提供一种通信系统,包括终端和网络设备。终端用于执行第一方面所涉及的配置方法。网络设备用于执行第二方面所涉及的配置方法。
第十八方面,提供一种通信系统,包括终端和网络设备。终端用于执行第三方面所涉及的配置方法。网络设备用于执行第五方面所涉及的配置方法。
第十九方面,提供一种通信系统,包括终端和网络设备。终端用于执行第四方面所涉及的配置方法。网络设备用于执行第六方面所涉及的配置方法。
其中,第七方面至第十九方面中任一种设计方式所带来的技术效果可参见上文所提供的 对应的方法中的有益效果同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种双连接网络的架构示意图;
图3为本申请实施例提供的一种双连接网络的架构示意图;
图4为本申请实施例提供的一种双连接网络的架构示意图;
图5为本申请实施例提供的一种终端和网络设备的硬件结构示意图;
图6为现有技术中的一种MAC CE的示意图;
图7为现有技术中的另一种MAC CE的示意图;
图8为本申请实施例提供的一种配置方法的流程图;
图9为本申请实施例提供的另一种配置方法的流程图;
图10为本申请实施例提供的另一种配置方法的流程图;
图11为本申请实施例提供的另一种配置方法的流程图;
图12为本申请实施例提供的另一种配置方法的流程图;
图13为本申请实施例提供的另一种配置方法的流程图;
图14为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的描述中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的第一指示信息)所指示的信息称为待指示信息,则具体实现过程中,对所述待指示信息进行指示的方式有很多种。例如,可以直接指示所述待指示信息,其中所述待指示信息本身或者所述待指示信息的索引等。又例如,也可以通过指示其他信息来间接指示所述待指示信息,其中该其他信息与所述待指示信息之间存在关联关系。又例如,还可以仅仅指示所述待指示信息的一部分,而所述待指示信息的其他部分则是已知的或者提前约定的。另外,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
为了便于理解本申请的技术方案,下面先对本申请所涉及的术语进行简单介绍。
1、随机接入
随机接入是终端从空闲/非激活状态进入连接/激活状态之前,与网络设备建立连接的过程。随机接入主要目的是建立上行链路同步,以及请求网络设备分配给终端上行链路资源,以使终端能够通过上行链路资源进行相应的数据传输。
随机接入分为竞争的随机接入过程和非竞争的随机接入过程。与竞争的随机接入过程相 比,非竞争的随机接入过程的最大区别在于:随机接入所使用的前导码是由网络侧分配的,而不是由终端侧产生的,这样减少了竞争和冲突解决过程。
根据完成随机接入过程需要的步骤的数目,非竞争的随机接入过程可以分为两步的非竞争的随机接入和四步的非竞争的随机接入。
2、激活(active)小区
在本申请实施例中,“激活小区”,可以理解为“使小区处于激活状态(activation)”,或者“恢复(resume)小区”。
当一个小区处于激活状态时,终端激活该小区,相当于终端使该小区保持在激活状态。当一个小区处于非激活状态时,终端激活该小区,相当于终端使该小区从去激活状态切换到激活状态。
3、去激活(deactive)小区
在本申请实施例中,“去激活小区”,可以理解为“使小区处于去激活状态(deactivation)”,或者“挂起(suspend)小区”。
当一个小区处于激活状态时,终端去激活该小区,相当于终端使该小区从激活状态切换到去激活状态。当一个小区处于去激活状态时,终端去激活该小区,相当于终端使该小区保持在去激活状态。
需要说明的是,终端去激活一个小区,不代表网络侧“关闭”了该小区,而是说该小区暂停接收/发送这个终端相关的数据。
另外,对于一个终端来说,当小区处于去激活状态时,终端不需要接收该小区对应的PDCCH或者物理下行共享信道(physical downlink shared channel,PDSCH),不能在该小区上发送上行数据,不需要执行该小区的信道质量指示(channel quality indication,CQI)测量。
本申请实施例提供的配置方法可以应用于图1所示的通信系统。如图1所示,该通信系统包括终端、主节点(master node,MN)、辅节点(secondary node,SN)以及核心网。
其中,终端可以支持双连接(Dual Connectivity,DC),与主节点、辅节点均建立无线连接。从而,主节点和辅节点可以共同为终端提供数据传输服务。
主节点与核心网(core network,CN)之间通过S1/NG接口连接。主节点与核心网之间至少包括控制面连接,还可以有用户面连接。S1接口包括S1-U/NG-U和S1-C/NG-C。其中,S1-U/NG-U代表用户面连接,S1-C/NG-C代表控制面连接。辅节点与核心网之间可以具有用户面连接,也可以不具有用户面连接。当辅节点与核心网之间不具有用户面连接时,终端的数据可以由主节点在分组数据汇聚协议(packet data convergence protocol,PDCP)层分流给辅节点。该主节点又可被称为主基站或主接入网设备,SN又可被称为辅基站或辅接入网设备。
在双连接场景下,主节点管理一个主小区(primary cell,PCell)。其中,主小区是指部署在主频点,且在终端发起初始连接建立过程或RRC连接重建立过程中接入的小区,或者在切换过程中指示为主小区的小区。
进一步地,除主小区外,主节点还可以管理一个或多个辅小区(secondary cell,SCell)。主节点下为终端提供服务的小区,如主小区、主节点下的辅小区,可以统称为MCG。
辅节点管理一个主辅小区(primary secondary cell,PSCell)。其中,主辅小区可以是终端向辅节点发起随机接入过程中接入的小区,或者终端在辅节点改变过程中跳过随机接入过程发起数据传输的另一辅节点上的小区,或者执行同步重配置流程时发起随机接入过程中接入的辅节点上的小区。
进一步地,除主辅小区外,辅节点还可以管理一个或多个辅小区。辅节点上为终端提供 服务的小区,如主辅小区、辅节点上的辅小区,可以统称为SCG。
为便于描述,在NR协议中,将主小区和主辅小区统称为特别小区(special cell,SpCell)。
上述主节点和辅节点可以统称为网络设备。该网络设备包括但不限于:无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,新空口(new radio,NR)系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,DU、具有基站功能的路边单元(road side unit,RSU)等。
在本申请实施例中,网络设备可以采用CU-DU架构。也即,网络设备可以由CU和至少一个DU构成。这种情况下,网络设备的部分功能部署在CU上,网络设备的另一部分功能部署在DU上。CU和DU是按照协议栈进行功能切分。作为一种实现方式,CU部署有协议栈中的无线资源控制(radio Resource Control,RRC)层,PDCP层,以及业务数据适应协议(service data adaptation protocol,SDAP)层;DU部署有协议栈中的无线链路控制(radio link control,RLC)层,媒体介入控制(media access control,MAC)层,以及物理层(physical layer,PHY)。从而,CU具有RRC、PDCP和SDAP的处理能力。DU具有RLC、MAC和PHY的处理能力。可以理解的是,上述功能的切分仅为一个示例,不构成对CU和DU的限定。也就是说,CU和DU之间还可以有其他功能切分的方式,本申请实施例在此不予赘述。
依据主节点和辅节点各自支持的通信制式,双连接网络可以有多种实现方式,下面举例说明。
如图2所示,为LTE-NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)网络的示意图。EN-DC网络是4G无线接入网与5G NR的双连接,LTE基站(LTE eNB)作为MN,NR基站(NR gNB)作为SN。如图2中的(a)所示,LTE eNB与LTE系统的演进型分组核心网(evolved Packet Core,EPC)之间存在S1接口,至少有控制面连接,可以还有用户面连接。如图2中的(b)所示,NR gNB和EPC之间存在S1-U接口,即只可以有用户面连接。
如图3所示,为NR-LTE双连接(NR-E-UTRA Dual Connectivity,NE-DC)网络的示意图。NE-DC网络是5G核心网下的4G无线接入网与5G NR的双连接,NR基站(gNB)作为MN,LTE基站(ng-eNB)作为SN,且MN和SN都连接5G核心网(5th Generation Core Network,5GC)。如图3中的(a)所示,gNB与5GC之间存在NG接口,可以为终端建立控制面连接和用户面连接,ng-eNB通过gNB向5GC发送用户面数据。如图3中的(b)所示,ng-eNB与5GC之间存在NG-U接口,仅为终端建立用户面连接,ng-eNB直接向5GC发送用户面数据。
如图4所示,为5G核心网LTE-NR双连接(Next Generation E-UTRA-NR Dual Connectivity,NGEN-DC)网络的示意图。NGEN-DC网络是5G核心网下的4G无线接入网与5G NR的双连接,LTE基站(ng-eNB)作为MN,NR基站(gNB)作为SN,且MN和SN都连接5GC。如图4中的(a)所示,ng-eNB与5GC之间存在NG接口,可以为终端建立控制面连接和用户面连接,gNB通过ng-eNB向5GC发送用户面数据。如图4中的(b)所示,gNB与5GC之间存在NG-U接口,仅为终端建立用户面连接,gNB直接向5GC发送用户面数据。
在图2至图4的双连接网络中,SN和核心网之间也可以不建立用户面连接,而是经由MN传递数据,例如,在下行方向上,终端的数据先到达MN,MN在PDCP层将终端的数据分流给SN,其中分流的数据的形式例如为PDCP协议数据单元(Protocol Data Unit,PDU)。
可以理解的,本申请实施例提供的通信方法可以适应于传统LTE的双连接,也可以适用于5G系统的EN-DC网络、NE-DC网络,或NGEN-DC网络,还可以适应于5G核心网NR-NR双连接(NR-NR Dual Connectivity,NR-DC)以及未来的其他DC架构,本申请实施例对于该通信方法适应的双连接网络的具体架构并不进行限定,在此仅是以图2-图4进行示例性说明。下述实施例中以EN-DC网络架构为例,对本申请实施例提供的通信方法进行说明。终端是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端可以是用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的技术方案。
图5为本申请实施例提供的网络设备和终端的硬件结构示意图。
终端包括至少一个处理器101和至少一个收发器103。可选的,终端还可以包括输出设备104、输入设备105和至少一个存储器102。
处理器101、存储器102和收发器103通过总线相连接。处理器101可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器101也可以包括多个CPU,并且处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器102可以是独立存在,通过总线与处理器101相连接。存储器102也可以和处理器101集成在一起。其中,存储器102用于存储执行本申请方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例提供的方法。
收发器103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local area networks,WLAN) 等。收发器103包括发射机Tx和接收机Rx。
输出设备104和处理器101通信,可以以多种方式来显示信息。例如,输出设备104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备105和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备105可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备包括至少一个处理器201、至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端中处理器101、存储器102和收发器103的描述,在此不再赘述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
网络设备可以通过PDCCH承载的MAC CE指示终端进行SCell激活/去激活。该MAC CE存在两种格式(如下格式1和格式2)。
如图6所示,格式1的MAC CE的净荷由8个比特组成。具体的,MAC CE的净荷包括7个小区字段(C-field)以及1个保留比特(reserved bit)。其中,保留比特一般设置为0。格式1的MAC CE的子头中的LCID的取值为58。
如图7所示,格式2的MAC CE的净荷由32个比特组成。具体的,MAC CE的净荷包括31个C-field以及1个保留比特。格式2的MAC CE的子头中的LCID的取值为57。
为了便于描述,MAC CE中的C-field可以编号为C i,i表示C-field在MAC CE中的序号。以格式1的MAC CE为例,7个C-field可以分别编号为C 1至C 7。又以格式2的MAC CE为例,31个C-field可以分别编号为C 1至C 31
在双连接场景下,终端配置有MCG对应的MAC实体(entity)和SCG对应的MAC实体。其中,MCG对应的MAC实体负责处理终端与主节点之间通信的MAC CE。SCG对应的MAC实体负责处理终端与辅节点之间通信的MAC CE。
SCG对应的MAC实体接收到辅节点发送的用于SCell激活/去激活的MAC CE,SCG对应的MAC实体按照以下方式来解析该MAC CE:当SCG对应的MAC实体配置了辅小区索引(SCellIndex)i的辅小区时,该MAC CE中的C i字段用于指示SCellIndex i的辅小区处于激活/去激活状态。或者,当SCG对应的MAC实体未配置辅小区索引(SCellIndex)i的辅小区时,SCG对应的MAC实体会忽略(ignore)MAC CE中的C i字段。其中,C i字段设置为1,表示将激活SCellIndex i的辅小区。C i字段设置为0,表示将去激活SCellIndex i的辅小区。
也即,对于终端来说,辅节点下发的用于SCell激活/去激活的MAC CE,仅能用于激活/去激活SCG中的小区,而不能用于激活/去激活MCG中的小区。
MCG对应的MAC实体接收到主节点发送的用于SCell激活/去激活的MAC CE,MCG对应的MAC实体按照以下方式来解析该MAC CE:当MCG对应的MAC实体配置了辅小区索引(SCellIndex)i的辅小区时,该MAC CE中的C i字段用于指示SCellIndex i的辅小区处于激活/去激活状态。或者,当MCG对应的MAC实体未配置辅小区索引(SCellIndex)i的 辅小区时,MCG对应的MAC实体会忽略(ignore)MAC CE中的C i字段。
也即,对于终端来说,主节点下发的用于SCell激活/去激活的MAC CE,仅能用于激活/去激活MCG中的小区,而不能用于激活/去激活SCG中的小区。
可见,上述MAC CE的设计不够灵活,不能满足网络侧对于SCG和/或MCG的一些管理需求。例如,在SCG去激活的场景下,主节点不能通过发送MAC CE,来指示终端激活SCG中的小区。
为了解决上述技术问题,本申请实施例提供一种配置方法。如图8所示,该方法包括以下步骤:
S101、第一节点生成MAC CE。
其中,所述MAC CE用于激活或者去激活第二节点所管理的小区组中的一个或者多个小区,所述第一节点不同于所述第二节点。
一种可能的设计中,第一节点为主节点,第二节点为辅节点。从而,第一节点所管理的小区组为MCG,第二节点所管理的小区组为SCG。
另一种可能的设计中,第一节点为辅节点,第二节点为主节点。从而,第一节点所管理的小区组为SCG,第二节点所管理的小区组为MCG。
值得注意的是,当SCG中的PSCell从去激活状态切换到激活状态时,SCG中的SCell才允许从去激活状态切换到激活状态。为此,在第一节点为主节点的情况下,当SCG中的全部小区处于去激活状态时,上述MAC CE至少用于激活PSCell。进一步的,上述MAC CE还可以用于激活至少一个SCell。其中,所述至少一个SCell可以包括SCG中的SCell和/或MCG中的SCell。
值得注意的是,当SCG中的PSCell从激活状态切换到去激活状态时,SCG中的全部SCell均从激活状态切换到去激活状态。为此,在第一节点为主节点的情况下,当SCG中的PSCell处于激活状态时,上述MAC CE用于去激活SCG。
值得注意的是,当SCG中的PScell处于激活状态时,SCG中的SCell可以从激活状态切换到去激活状态,也可以从去激活状态切换到激活状态。为此,在第一节点为主节点的情况下,当SCG中的PSCell小区处于激活状态时,所述MAC CE用于去激活所述SCG中的一个或多个SCell;或者,所述MAC CE用于激活所述SCG中的一个或多个SCell。
S102、第一节点向终端发送MAC CE。相应的,终端接收第一节点发送的MAC CE。
当第一节点为主节点时,终端的MCG对应的MAC实体接收主节点发送的MAC CE。或者,当第一节点为辅节点时,终端的SCG对应的MAC实体接收辅节点发送的MAC CE。
S103、终端根据所述MAC CE,激活/去激活第二节点所管理的小区组中的一个或多个小区。
下面对本申请实施例提供的MAC CE的不同实现方式进行说明。其中,实现方式一适用于第一节点为主节点或者辅节点的场景。实现方式二仅适用于第一节点为主节点的场景。
实现方式一、MAC CE包括第一指示信息,第一指示信息为MAC CE的净荷中取值为第一数值的保留比特。可选的,第一数值可以为1。
基于实现方式一,在MCG包括一个PCell和M个SCell,SCG包括一个PSCell和N-1个SCell的情况下,MAC CE的净荷还包括M个第一比特和N个第二比特。M为非负整数,N为正整数。
其中,M个第一比特与MCG中的M个SCell一一对应。每个第一比特的取值用于指示激活/去激活该第一比特对应的SCell。例如,当第一比特的取值为第二数值时,第一比特用于 指示激活该第一比特对应的SCell。或者,当第一比特的取值为第三数值时,第一比特用于指示去激活该第一比特对应的SCell。可选的,第二数值可以为1,第三数值可以为0。或者,第二数值可以为0,第三数值可以为1。
在实际应用中,M个第一比特的取值根据实际需求(例如终端对网速的要求)来确定。示例性的,M个第一比特的取值可以均为第二数值。或者,M个第一比特的取值可以均为第三数值。又或者,M个第一比特中的一部分第一比特的取值为第二数值,另一部分第一比特的取值为第三数值。
N个第二比特与SCG中的N个小区一一对应。所述N个小区由一个PScell和N-1个Scell构成。第二比特的取值用于指示激活/去激活该第二比特对应的小区。例如,当第二比特的取值为第二数值时,第二比特用于指示激活该第二比特对应的小区。或者,当第二比特的取值为第三数值时,第二比特用于指示去激活该第二比特对应的小区。
在实际应用中,N个第二比特的取值根据实际需求来确定。例如,N个第二比特的取值可以均为第二数值。或者,N个第二比特的取值可以均为第三数值。又或者,N个第二比特中的一部分第二比特的取值为第二数值,另一部分第二比特的取值为第三数值。
在本申请实施例中,比特与小区之间的对应关系,例如第一比特与MCG中的辅小区之间的对应关系,或者,第二比特与SCG中的小区之间的对应关系,可以具体实现为:比特的编号与小区的索引之间的对应关系。例如,编号为C i的比特对应索引为i的小区,i可以为非负整数。
可选的,网络设备和终端之间可以预先协商或者通信协议可以预先定义:在第一节点所发送的MAC CE的子头中,第一节点所管理的小区组中的小区所对应的比特是无效比特。
例如,在第一节点为主节点的情况下,MAC CE的净荷中的M个第一比特是无效比特。这种情况下,终端会忽略掉MAC CE的净荷中的M个第一比特。也即,无论M个第一比特的取值如何,终端不会改变MCG中的SCell的状态。
又例如,在第一节点为辅节点的情况下,MAC CE的净荷中的N个第二比特是无效比特。这种情况下,终端会忽略掉MAC CE的净荷中的N个第二比特。也即,无论N个第二比特的取值如何,终端不会改变SCG中的小区的状态。
可选的,网络设备和终端之间可以预先协商或者通信协议可以预先定义:在第一节点所发送的MAC CE的子头中,第一节点所管理的小区组中的小区所对应的比特是有效比特。
例如,在第一节点为主节点的情况下,MAC CE的净荷中的M个第一比特是有效比特。这种情况下,终端会读取MAC CE的净荷中的M个第一比特,并根据M个第一比特的取值,对MCG中的SCell执行相应的激活/去激活操作。
又例如,在第一节点为辅节点的情况下,MAC CE的净荷中的N个第二比特是有效比特。这种情况下,终端会读取MAC CE的净荷中的N个第二比特,并根据N个第二比特的取值,对SCG中的小区执行相应的激活/去激活操作。
可选的,基于实现方式一,本申请实施例提供的MAC CE可以采用图6或图7中所描述的用于SCell激活/去激活的MAC CE。这种情况下,本申请实施例提供的MAC CE的子头中的LCID的取值为57或者58。
可选的,基于实现方式一,本申请实施例提供的MAC CE也可以不采用图6或图7中所描述的用于SCell激活/去激活的MAC CE。这种情况下,本申请实施例提供的MAC CE的子头中的LCID的取值为除了57或者58之外的其他值。
实现方式二、所述MAC CE的净荷包括一个或多个第三比特,每一个第三比特对应一个 SCG。第三比特的取值用于指示激活或者去激活第三比特对应的SCG。示例性的,当第三比特的取值为第四数值时,所述第三比特用于指示激活所述第三比特对应的SCG。或者,当第三比特的取值为第五数值时,所述第三比特用于指示去激活所述第三比特对应的SCG。
可选的,第四数值可以为1,第五数值可以为0。或者,第四数值可以为0,第五数值可以为1。
可选的,在第三比特的数目等于1的情况下,该第三比特对应当前为终端配置的SCG。举例来说,MAC CE的净荷为1个字节,净荷中的第一个比特(也即上述第三比特)对应当前为终端配置的SCG,其他七个比特为保留比特。当该第一个比特的取值为1,该MAC CE用于指示去激活终端所配置的SCG;当该第一个比特的取值为0,该MAC CE用于指示激活终端所配置的SCG。
可选的,在第三比特的数目大于1的情况下,每一个第三比特对应一个SCG,可以具体实现为:每一个第三比特对应一个不为第六数值的小区组标识(cellgroup identity,cellgroup ID)。其中,小区组标识为网络设备(例如主节点或者辅节点)发送的RRC信令配置。值得说明的是,在该实现方式中,取值为第六数值的小区组标识用于指示MCG。示例性的,第六数值可以为0。
示例性的,以第四数值为1,第五数值为0为例,假设主节点为终端配置了3个SCG,这3个SCG的小区组标识分别为1,2,3。MAC CE的净荷包括3个第三比特,第三比特#1对应小区组标识1,第三比特#2对应小区组标识2,第三比特#3对应小区组标识3。净荷中的其他比特可以为保留比特。当第三比特#1的取值为1,第三比特#2的取值为0,第三比特#3的取值为1时,该MAC CE用于指示终端激活小区组标识为1,3的SCG,去激活小区组标识为2的SCG。
在本申请实施例中,MAC CE的子头包含取值为第一预设值的LCID。其中,第一预设值可以是根据例如通信协议的规定等条件预先设置的;或者,第一预设值是网络设备与终端之间协商确定的。
可选的,为了使上述实现方式二中提供的MAC CE区别于现有技术中用于SCell激活/去激活的MAC CE,第一预设值不为57或者58。
实现方式三、当MAC CE的子头包含取值为第二预设值的LCID时,MAC CE用于指示去激活SCG。或者,当MAC CE的子头包含取值为第三预设值的LCID时,MAC CE用于指示激活SCG。
基于实现方式三,上述MAC CE适用于终端所配置的所有SCG。
其中,第二预设值和第三预设值可以是根据例如通信协议的规定等条件预先设置的;或者,第二预设值和第三预设值是网络设备与终端之间协商确定的。
可选的,为了使上述实现方式三中MAC CE区别于现有技术中用于SCell激活/去激活的MAC CE,第二预设值和第三预设值均不为57或者58。
可选的,基于实现方式三,上述MAC CE可以不包含净荷,以减少信令开销。
基于图8所示的技术方案,第一节点通过向终端发送携带第一指示信息的MAC CE,以使得终端能够根据第一节点发送的MAC CE,激活/去激活第二节点所管理的小区组中的小区,从而解决了现有技术中一个节点发送的MAC CE不能用于激活/去激活其他节点所管理的小区组中的小区的问题。从而,本申请提供的技术方案可以满足网络侧在一些特殊场景下对于MAC CE的使用需求。例如在SCG去激活的场景下,本申请提供的技术方案保证主节点可以使用MAC CE指示终端激活SCG中的小区。
如图9所示,为本申请实施例提供的一种配置方法,该方法包括以下步骤:
S201、终端向网络设备发送第二指示信息。相应的,网络设备接收终端发送的第二指示信息。
其中,网络设备可以是主节点或者辅节点。
在本申请实施例中,第二指示信息用于指示终端具有跨CG能力。或者,第二指示信息用于指示终端不具有跨CG能力。
可选的,跨CG能力是指:终端根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区的能力,或者说终端支持根据第一节点发送的MAC CE激活或者去激活第二节点所管理的小区组中的小区。
在一种实现方式中,第一节点是主节点,第二节点是辅节点,跨CG能力是指终端支持根据主节点下发的MAC CE激活/去激活SCG。
可选的,第二指示信息可以采用以下设计中的任意一种:
设计1,当第二指示信息包含第一信元时,第二指示信息用于指示终端具有跨CG能力。当第二指示信息不包含第一信元时,第二指示信息用于指示终端不具有跨CG能力。
示例性的,基于设计1,第一信元可以为如下格式:
IE:crossCG ENUMERATED{true}OPTIONAL
其中,crossCG为第一信元的名称,第一信元所支持的枚举值为“true”。OPTIONAL用于表示该第一信元是可选的。
设计2、当第二指示信息包含取值为第一枚举值的第一信元时,第二指示信息用于指示具有跨CG能力。当第二指示信息包含取值为第二枚举值的第一信元时,第二指示信息用于指示终端不具有跨CG能力。
示例性的,基于设计2,第一信元可以为如下格式:
IE:crossCG ENUMERATED{true,false}MANDATORY
其中,crossCG为第一信元的名称,第一信元所支持的枚举值为“true”和“false”。其中,“true”为第一枚举值,“false”为第二枚举值。MANDATORY表示该第一信元是必选的。
可选的,第二指示信息可以复用现有流程中的信令,以节省信令开销。当然,第二指示信息也可以不复用现有流程中的信令,本申请实施例不限于此。
作为一种实现方式,终端可以主动地向网络设备发送第二指示信息。例如,终端可以在完成随机接入过程之后,或者完成小区切换之后,主动地向网络设备发送第二指示信息。
作为另一种实现方式,终端可以被动地向网络设备发送第二指示信息。例如,终端接收网络设备发送的第一请求信息,该第一请求信息用于指示终端上报第二指示信息。之后,终端向网络设备发送第二指示信息。
可选的,当网络设备为主节点时,在主节点接收到终端发送的第二指示信息之后,主节点可以向辅节点发送终端的第二指示信息,以使辅节点确定终端是否具有跨CG能力。
可选的,当网络设备为辅节点时,在辅节点接收到终端发送的第二指示信息之后,辅节点可以向主节点发送终端的第二指示信息,以使主节点确定终端是否具有跨CG能力。
S202、网络设备根据第二指示信息,确定终端是否具有跨CG能力。
这样一来,当第二指示信息用于指示终端不具有跨CG能力时,网络设备不会使用图8所示实施例提供的MAC CE。当第二指示信息用于指示终端具有跨CG能力时,网络设备可以执行图8中的步骤S101和S102,终端可以执行图8中的步骤S103。
如图10所示,为本申请实施例提供的一种配置方法,该方法包括以下步骤:
S301、第一节点向终端发送第三指示信息。相应的,终端接收第一节点发送的第三指示信息。
其中,第一节点为主节点或者辅节点。
第三指示信息用于指示第一节点具有发送目标MAC CE的能力。或者,第三指示信息用于指示第一节点不具有发送目标MAC CE的能力。目标MAC CE可以为图8所示实施例中采用实现方式一、实现方式二或者实现方式三的MAC CE。
可选的,第三指示信息可以采用以下设计中的任意一种:
设计1、当第三指示信息包含第二信元时,第三指示信息用于指示第一节点具有目标MAC CE的能力。当第三指示信息不包含第二信元时,第三指示信息用于指示第一节点不具有发送携带目标MAC CE的能力。
设计2、当第三指示信息包含取值为第三枚举值的第二信元时,第三指示信息用于指示第一节点具有发送携带目标MAC CE的能力。当第三指示信息包含取值为第四枚举值的第二信元时,第三指示信息用于指示第一节点不具有发送目标MAC CE的能力。
示例性的,第三枚举值可以为“true”,第四枚举值可以为“false”。
可选的,第三指示信息可以复用现有流程中的信令,例如初始接入流程中的信令,以节省信令开销。当然,第三指示信息也可以不复用现有流程中的信令,本申请实施例不限于此。
作为一种可能的实现方式,第一节点以广播的方式向终端发送第三指示信息。
作为另一种可能的实现方式,第一节点向终端发送RRC信令,该RRC信令包括第三指示信息。
S302、终端根据第三指示信息,确定第一节点是否具有发送目标MAC CE的能力。
这样一来,当第三指示信息用于指示第一节点不具有发送目标MAC CE的能力时,第一节点不会使用图8所示实施例提供的MAC CE(也即目标MAC CE)。
当第三指示信息时,第一节点可以执行图8中的步骤S101和S102,终端可以执行图8中的步骤S103。也就是说,终端可以根据图8所示实施例中介绍的方法来解析目标MAC CE。
在第一节点不具有发送携带第一指示信息的MAC CE的能力的情况下,终端按照现有技术中的方法来解析用于SCell激活/去激活的MAC CE。
现有技术中,在终端的SCG处于去激活的状态下,当终端接收到激活SCG的指令时,终端会向辅节点发起基于竞争的随机接入,以便于终端和辅节点之间实现上行同步,同时终端获取相应的上行资源。
但是,基于竞争的随机接入过程中,由于终端使用的前导码可能会和其他终端使用的前导码相同,导致终端的随机接入过程因为冲突而失败,进而导致终端激活SCG失败。
为了解决这一技术问题,本申请提供一种配置方法,其具体实现可以参考图11或者图12。
如图11所示,该配置方法包括以下步骤:
S401、终端接收到第四指示信息。
其中,第四指示信息用于指示去激活SCG。第四指示信息包括基于非竞争的随机接入配置信息。
可选的,基于非竞争的随机接入配置信息包括:专用的前导码(preamble)、专用的随机接入配置参数(RACH-ConfigDedicated)等。
在本申请实施例中,基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
可选的,第四指示信息可以承载于RRC信令、下行控制信息(downlink control information) DCI或者MAC CE中。
作为一种可能的实现方式,终端接收主节点发送的第四指示信息。
值得注意的是,主节点可以从辅节点获取到基于非竞争的随机接入配置信息,示例性地,可以是辅站向主站发送的用于指示数据不活跃的消息中携带非竞争的随机接入配置,也可以是辅站向主站发送的SN修改请求(SN Modification Required)消息中携带非竞争的随机接入配置。
可选的,上述用于指示数据不活跃的消息可以为活跃度通知(Activity Notification)消息,并且该活跃度通知消息携带一个用于指示数据活跃度的信元,该信元的取值为“不活跃(inactive)”。
作为另一种可能的实现方式,终端接收辅节点发送的第四指示信息。
S402、主节点向终端发送第五指示信息。相应的,终端接收主节点发送的第五指示信息。
其中,第五指示信息至少用于指示激活SCG中的PSCell。可选的,第五指示信息还用于指示激活SCG中的一个或多个SCell。
可选的,第五指示信息可以承载于RRC信令、DCI或者MAC CE中。
S403、终端根据基于非竞争的随机接入配置信息,向辅节点发起随机接入。
可以理解的是,若第四指示信息仅包含两步的基于非竞争的随机接入配置信息,则终端向辅节点发起两步的基于非竞争的随机接入。若第四指示信息仅包含四步的基于非竞争的随机接入配置信息,则终端向辅节点发起四步的基于非竞争的随机接入。若第四指示信息包含两步的基于非竞争的随机接入配置信息和四步的基于非竞争的随机接入配置信息,则终端可以根据自身实际情况,发起两步的基于非竞争的随机接入,或者发起四步的基于非竞争的随机接入。
基于图11所示的技术方案,一方面,由于用于指示去激活SCG的第四指示信息包含基于非竞争的随机接入配置信息,因此终端可以在接收到第五指示信息之后,可以直接根据第四指示信息所包含的基于非竞争的随机接入配置信息发起随机接入,而无需等待网络侧下发基于非竞争的随机接入配置信息,从而减少终端发起随机接入的时延。另外一方面,相比于现有技术中终端发起基于竞争的随机接入来激活SCG中的小区,本申请提供的技术方案中终端通过发起基于非竞争的随机接入来激活SCG中的小区,避免因冲突和竞争导致的随机接入失败的问题,从而更快地完成随机接入,进而更快地激活SCG中的小区。
如图12所示,为本申请实施例提供的一种配置方法,该方法包括以下步骤:
S501、主节点向终端发送第五指示信息。相应的,终端接收主节点发送的第五指示信息。
其中,第五指示信息至少用于指示激活SCG中的PSCell。可选的,第五指示信息还用于指示激活SCG中的一个或多个SCell。
可选的,第五指示信息可以承载于RRC信令、DCI或者MAC CE中。
在本申请实施例中,第五指示信息包含基于非竞争的随机接入配置信息。其中,基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
值得注意的是,主节点可以从辅节点获取到基于非竞争的随机接入配置信息。
S502、终端根据基于非竞争的随机接入配置信息,向辅节点发起随机接入。
可以理解的是,若第五指示信息仅包含两步的基于非竞争的随机接入配置信息,则终端向辅节点发起两步的基于非竞争的随机接入。若第五指示信息仅包含四步的基于非竞争的随机接入配置信息,则终端向辅节点发起四步的基于非竞争的随机接入。若第五指示信息包含 两步的基于非竞争的随机接入配置信息和四步的基于非竞争的随机接入配置信息,则终端可以根据自身实际情况,发起两步的基于非竞争的随机接入,或者发起四步的基于非竞争的随机接入。
基于图12所示的技术方案,一方面,由于第五指示信息包含基于非竞争的随机接入配置信息,因此终端可以在接收到第五指示信息之后,可以直接根据第五指示信息所包含的基于非竞争的随机接入配置信息发起随机接入,而无需等待网络侧下发基于非竞争的随机接入配置信息,从而减少终端发起随机接入的时延。另外一方面,相比于现有技术中终端发起基于竞争的随机接入来激活SCG中的小区,本申请提供的技术方案中终端通过发起基于非竞争的随机接入来激活SCG中的小区,避免因冲突和竞争导致的随机接入失败的问题,从而更快地完成随机接入,进而更快地激活SCG中的小区。
如图13所示,在辅节点采用CU-DU架构的情况下,辅节点的CU获取基于非竞争的随机接入配置信息,包括以下步骤:
S601、辅节点的CU向辅节点的DU发送第二请求信息。相应的,辅节点的DU接收辅节点的CU发送的第二请求信息。
其中,第二请求信息用于请求基于非竞争的随机接入配置信息。
可选的,第二请求信息可以承载于现有的信令中,例如终端上下文修改请求(UE context modification request)消息。
作为一种可能的实现方式,在满足预设条件的情况下,辅节点的CU向辅节点的DU发送第二请求信息。
示例性的,该预设条件可以为以下任意一项:
条件1、辅节点的CU接收到主节点发送的、用于激活SCG的指示信息。
条件2、辅节点的CU确定激活SCG。
条件3、辅节点的CU接收到主节点发送的、用于去激活SCG的指示信息。
条件4、辅节点的CU确定去激活SCG。
可选的,基于上述条件1或者条件2,第二请求信息可以包括用于激活SCG的指示信息。
可选的,基于上述条件3或者条件4,第二请求信息可以包括用于去激活SCG的指示信息。
S602、辅节点的DU向辅节点的CU发送第二响应信息。相应的,辅节点的CU接收辅节点的DU发送的第二响应信息。
其中,第二响应信息用于响应第二请求信息。第二响应信息包括基于非竞争的随机接入配置信息。基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
可选的,第二响应信息可以承载于现有的信令中,例如终端上下文修改响应(UE context modification response)消息。
基于图13所示的技术方案,在辅节点采用CU-DU架构的情况下,辅节点的CU可以从辅节点的DU获取到基于非竞争的随机接入配置信息。
可选的,在辅节点的CU获取到基于非竞争的随机接入配置信息之后,辅节点的CU可以向主节点发送基于非竞争的随机接入配置信息。这样一来,主节点可以执行图11中的步骤S401或者图12中的步骤S501。
或者,在辅节点的CU获取到基于非竞争的随机接入配置信息之后,辅节点的CU可以执行图11中的步骤S401。
可以理解的是,本申请实施例中,终端和/或网络设备(主节点、辅节点)可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
可以理解的是,为了实现上述功能,终端包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件来实现,或者以硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
如图14所示,为本申请实施例提供的一种通信装置的结构示意图。该通信装置包括通信单元301和处理单元302。
当图14所示的通信装置为终端时,通信单元301用于支持终端执行例如图8中的步骤S102,图9中的步骤S201,图10中的步骤S301,图11中的步骤S401和S402,图12中的步骤S501。处理单元302用于支持终端执行例如图8中的步骤S103,图10中的步骤S302,图11中的步骤S403,图12中的步骤S502。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能单元的功能描述,在此不再赘述。
当图14所示的通信装置为网络设备时,通信单元301用于支持网络设备执行例如图8中的步骤S102,图9中的步骤S201,图10中的步骤S301,图11中的步骤S401和S402,图12中的步骤S501。处理单元302用于支持网络设备执行例如图8中的步骤S101,图9中的步骤S202。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能单元的功能描述,在此不再赘述。
作为一个示例,当图14所示的通信装置为终端时,图14中的通信单元301可以由图5中的收发器103来实现,图14中的处理单元302可以由图5中的处理器101来实现,本申请实施例对此不作任何限制。
作为一个示例,当图14所示的通信装置为网络设备时,图14中的通信单元301可以由图5中的收发器203来实现,图14中的处理单元302可以由图5中的处理器201来实现,本申请实施例对此不作任何限制。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在图5所示的终端或者网络设备上运行时,使得该终端或者网络设备执行如图8-图13所示的配置方法。
其中,所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含 一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种芯片,该芯片包括处理模块和通信接口,所述通信接口用于接收输入的信号并提供给处理模块,和/或用于处理将处理模块生成的信号输出。所述处理用于支持通信装置执行如图8-图13所示的配置方法。在一实施方式中,处理模块可以运行代码指令以执行如图8-图13所示的配置方法。该代码指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。其中,处理模块为该芯片上集成的处理器或者微处理器或者集成电路。通信接口可以为输入输出电路或者收发管脚。
本申请实施例还提供一种包含计算机指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行图8-图13所示的配置方法。
本申请实施例还提供一种通信系统,包括网络设备和终端。网络设备可以执行图8-图13中的相关步骤。终端可以执行图8-图12中的相关步骤。
上述本申请实施例提供的终端、网络设备、计算机存储介质、芯片以及计算机程序产品均用于执行上文所提供的配置方法,因此,其所能达到的有益效果可参考上文所提供的方法对应的有益效果,在此不再赘述。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (44)

  1. 一种配置方法,其特征在于,所述方法包括:
    终端接收第一节点发送的媒体接入控制层控制单元MAC CE,所述MAC CE用于指示激活或去激活第二节点所管理的小区组中的一个或者多个小区,所述第一节点不同于所述第二节点;
    所述终端根据所述MAC CE,激活或者去激活所述第二节点所管理的小区组中的一个或者多个小区。
  2. 根据权利要求1所述的配置方法,其特征在于,所述第一节点为主节点,所述第二节点为辅节点,所述第二节点所管理的小区组为辅小区组SCG。
  3. 根据权利要求2所述的配置方法,其特征在于,当所述SCG中的全部小区均处于去激活状态时,所述MAC CE至少用于激活主辅小区。
  4. 根据权利要求3所述的配置方法,其特征在于,所述MAC CE还用于激活至少一个辅小区。
  5. 根据权利要求2所述的配置方法,其特征在于,当所述SCG中的主辅小区处于激活状态时,所述MAC CE用于去激活所述SCG中的所有小区;或者,所述MAC CE用于去激活所述SCG中的一个或多个辅小区。
  6. 根据权利要求1至5任一项所述的配置方法,其特征在于,所述MAC CE包含第一指示信息,所述第一指示信息为所述MAC CE的净荷中取值为第一数值的保留比特。
  7. 根据权利要求6所述的配置方法,其特征在于,在主小区组MCG包括主小区和M个辅小区,SCG包括一个主辅小区和N-1个辅小区的情况下,所述MAC CE的净荷包括:M个第一比特和N个第二比特,M为非负整数,N为正整数;
    其中,所述M个第一比特与MCG中的M个辅小区一一对应;当所述第一比特的取值为第二数值时,所述第一比特用于指示激活所述第一比特对应的辅小区;或者,当所述第一比特的取值为第三数值时,所述第一比特用于指示去激活所述第一比特对应的辅小区;
    所述N个第二比特与SCG中的N个小区一一对应;当所述第二比特的取值为第二数值时,所述第二比特用于指示激活所述第二比特对应的小区;或者,当所述第二比特的取值为第三数值时,所述第二比特用于指示去激活所述第二比特对应的小区。
  8. 根据权利要求6或7所述的配置方法,其特征在于,所述MAC CE的子头包含取值为57或者58的逻辑信道标识LCID。
  9. 根据权利要求2所述的配置方法,其特征在于,所述MAC CE的净荷包括一个或多个第三比特,每一个第三比特对应一个SCG;
    当所述第三比特的取值为第四数值时,所述第三比特用于指示激活所述第三比特对应的SCG;或者,
    当所述第三比特的取值为第五数值时,所述第三比特用于指示去激活所述第三比特对应的SCG。
  10. 根据权利要求2所述的配置方法,其特征在于,
    当所述MAC CE的子头包含取值为第二预设值的LCID时,所述MAC CE用于指示去激活所述SCG;或者,
    当所述MAC CE的子头包含取值为第三预设值的LCID时,所述MAC CE用于指示激活所述SCG。
  11. 根据权利要求10所述的配置方法,其特征在于,所述MAC CE不包括净荷。
  12. 根据权利要求1至11任一项所述的配置方法,其特征在于,所述方法还包括:
    所述终端向所述第一节点或者所述第二节点发送第二指示信息,所述第二指示信息用于指示所述终端具有根据所述第一节点发送的MAC CE激活或者去激活所述第二节点所管理的小区组中的小区的能力;或者,所述第二指示信息用于指示所述终端不具有根据所述第一节点发送的MAC CE激活或者去激活所述第二节点所管理的小区组中的小区的能力。
  13. 根据权利要求12所述的配置方法,其特征在于,所述方法还包括:
    所述终端接收所述第一节点或者所述第二节点发送的第一请求信息,所述第一请求信息用于指示所述终端上报所述第二指示信息。
  14. 一种配置方法,其特征在于,所述方法包括:
    第一节点生成MAC CE,所述MAC CE用于激活或去激活第二节点所管理的小区组中的一个或者多个小区,所述第一节点不同于所述第二节点;
    所述第一节点向终端发送所述MAC CE。
  15. 根据权利要求14所述的配置方法,其特征在于,所述第一节点为主节点,所述第二节点为辅节点,所述第二节点所管理的小区组为SCG。
  16. 根据权利要求15所述的配置方法,其特征在于,当所述SCG中的全部小区均处于去激活状态时,所述MAC CE至少用于激活主辅小区。
  17. 根据权利要求16所述的配置方法,其特征在于,所述MAC CE还用于激活至少一个辅小区。
  18. 根据权利要求15所述的配置方法,其特征在于,当所述SCG中的主辅小区处于激活状态时,所述MAC CE用于去激活所述SCG中的所有小区;或者,所述MAC CE用于去激活所述SCG中的一个或多个辅小区。
  19. 根据权利要求14至18任一项所述的配置方法,其特征在于,所述MAC CE包含第一指示信息,所述第一指示信息为所述MAC CE的净荷中取值为第一数值的保留比特。
  20. 根据权利要求19所述的配置方法,其特征在于,在主小区组MCG包括主小区和M个辅小区,SCG包括一个主辅小区和N-1个辅小区的情况下,所述MAC CE的净荷包括:M个第一比特和N个第二比特,M为非负整数,N为正整数;
    其中,所述M个第一比特与MCG中的M个辅小区一一对应;当所述第一比特的取值为第二数值时,所述第一比特用于指示激活所述第一比特对应的辅小区;或者,当所述第一比特的取值为第三数值时,所述第一比特用于指示去激活所述第一比特对应的辅小区;
    所述N个第二比特与SCG中的N个小区一一对应;当所述第二比特的取值为第二数值时,所述第二比特用于指示激活所述第二比特对应的小区;或者,当所述第二比特的取值为第三数值时,所述第二比特用于指示去激活所述第二比特对应的小区。
  21. 根据权利要求19或20所述的配置方法,其特征在于,所述MAC CE的子头中的LCID的取值为57或者58。
  22. 根据权利要求15所述的配置方法,其特征在于,所述MAC CE的净荷包括一个或多个第三比特,每一个第三比特对应一个SCG;
    当所述第三比特的取值为第四数值时,所述第三比特用于指示激活所述第三比特对应的SCG;或者,
    当所述第三比特的取值为第五数值时,所述第三比特用于指示去激活所述第三比特对应的SCG。
  23. 根据权利要求15所述的配置方法,其特征在于,
    当所述MAC CE的子头包含取值为第二预设值的LCID,所述MAC CE用于指示去激活所述SCG;或者,
    当所述MAC CE的子头包含取值为第三预设值的LCID,所述MAC CE用于指示激活所述SCG。
  24. 根据权利要求23所述的配置方法,其特征在于,所述MAC CE不包括净荷。
  25. 根据权利要求14至24任一项所述的配置方法,其特征在于,所述方法还包括:
    所述第一节点接收所述终端发送的第二指示信息,所述第二指示信息用于指示所述终端具有根据所述第一节点发送的MAC CE激活或者去激活所述第二节点所管理的小区组中的小区的能力;或者,所述第二指示信息用于指示所述终端不具有根据所述第一节点发送的MAC CE激活或者去激活所述第二节点所管理的小区组中的小区的能力。
  26. 根据权利要求25所述的配置方法,其特征在于,所述方法还包括:
    所述第一节点向所述终端发送第一请求信息,所述第一请求信息用于指示所述终端上报所述第二指示信息。
  27. 一种配置方法,其特征在于,所述方法包括:网络设备生成第四指示信息,第四指示信息用于指示去激活SCG,第四指示信息包括基于非竞争的随机接入配置信息;网络设备向终端发送第四指示信息。
  28. 根据权利要求27所述的方法,其特征在于,所述网络设备为主节点或者辅节点。
  29. 根据权利要求27或28所述的方法,其特征在于,所述基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
  30. 根据权利要求27-29中任一所述的方法,其特征在于,当网络设备为主节点时,方法还包括:主节点接收辅节点发送的所述基于非竞争的随机接入配置信息。
  31. 根据权利要求27-29中任一所述的方法,其特征在于,当网络设备为辅节点时,方法还包括:辅节点的集中式单元CU向辅节点的分布式单元DU发送第二请求信息,第二请求信息用于请求所述基于非竞争的随机接入配置信息,辅节点的CU接收辅节点的DU发送的第二响应信息,第二响应信息包括基于所述非竞争的随机接入配置信息。
  32. 一种配置方法,其特征在于,所述方法包括:
    终端接收主节点发送的第五指示信息,第五指示信息至少用于指示激活辅小区组SCG中的主辅小区PSCell,第五指示信息包括基于非竞争的随机接入配置信息;
    所述终端根据所述基于非竞争的随机接入配置信息,向辅节点发起随机接入。
  33. 根据权利要求32所述的方法,其特征在于,所述基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
  34. 一种配置方法,其特征在于,所述方法包括:
    主节点生成第五指示信息,第五指示信息,第五指示信息至少用于指示激活SCG中的PSCell,第五指示信息包括基于非竞争的随机接入配置信息;
    所述主节点向终端发送第五指示信息。
  35. 根据权利要求34所述的方法,其特征在于,所述基于非竞争的随机接入配置信息包括:两步的基于非竞争的随机接入配置信息和/或四步的基于非竞争的随机接入配置信息。
  36. 根据权利要求34或35所述的方法,其特征在于,所述方法还包括:主节点接收辅节点发送的基于非竞争的随机接入配置信息。
  37. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求1至13任一项所涉及的各个步骤的单元。
  38. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求14至26任一项所涉及的各个步骤的单元。
  39. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求27至31任一项所涉及的各个步骤的单元。
  40. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求32至33任一项所涉及的各个步骤的单元。
  41. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求34至36任一项所涉及的各个步骤的单元。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至13任一项所述的配置方法,或者使得计算机执行权利要求14至26任一项所述的配置方法,或者使得计算机执行权利要求27至31任一项所述的配置方法,或者使得计算机执行权利要求32至33任一项所述的配置方法,或者使得计算机执行权利要求34至36任一项所述的配置方法。
  43. 一种芯片,其特征在于,所述芯片包括处理器,当所述处理器执行指令时,所述处理器用于执行权利要求1至13任一项所述的配置方法,或者所述处理器用于执行权利要求14至26任一项所述的配置方法,或者所述处理器用于执行权利要求27至31任一项所述的配置方法,或者所述处理器用于执行权利要求32至33任一项所述的配置方法,或者所述处理器用于执行权利要求34至36任一项所述的配置方法。
  44. 一种通信系统,其特征在于,包括第一节点和第二节点,其中,所述第一节点用于执行如权利要求14-26任一所述的方法。
PCT/CN2021/096446 2020-07-02 2021-05-27 配置方法及装置 WO2022001524A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21833056.1A EP4171098A4 (en) 2020-07-02 2021-05-27 CONFIGURATION METHOD AND APPARATUS
US18/147,028 US20230133425A1 (en) 2020-07-02 2022-12-28 Configuration method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010639037.4 2020-07-02
CN202010639037.4A CN113891349A (zh) 2020-07-02 2020-07-02 配置方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/147,028 Continuation US20230133425A1 (en) 2020-07-02 2022-12-28 Configuration method and apparatus

Publications (1)

Publication Number Publication Date
WO2022001524A1 true WO2022001524A1 (zh) 2022-01-06

Family

ID=79013377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096446 WO2022001524A1 (zh) 2020-07-02 2021-05-27 配置方法及装置

Country Status (4)

Country Link
US (1) US20230133425A1 (zh)
EP (1) EP4171098A4 (zh)
CN (1) CN113891349A (zh)
WO (1) WO2022001524A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117204033A (zh) * 2022-04-08 2023-12-08 北京小米移动软件有限公司 一种双连接中终端设备小区组的更新方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105247941A (zh) * 2013-12-30 2016-01-13 华为技术有限公司 一种辅小区的激活方法及装置、通信系统及基站和用户设备
US20160037579A1 (en) * 2013-04-05 2016-02-04 Pantech Co., Ltd. Method and apparatus for wireless link control in wireless communication system supporting dual connectivity
CN107079502A (zh) * 2014-11-04 2017-08-18 瑞典爱立信有限公司 用于改进的随机接入传输的无线通信设备、网络节点及其中的方法
CN109219142A (zh) * 2012-07-31 2019-01-15 北京三星通信技术研究有限公司 在跨eNB载波聚合系统中配置和激活SCell的方法及终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3025540A4 (en) * 2013-07-26 2017-03-15 Intel IP Corporation Signaling interference information for user equipment assistance
CN110536485B (zh) * 2013-09-27 2022-12-23 Sk电信有限公司 支持双连接的用户设备
CN104811929B (zh) * 2014-01-29 2020-01-14 北京三星通信技术研究有限公司 处理基站间载波聚合的激活/去激活的方法及设备
CN105451364B (zh) * 2014-08-07 2019-08-23 上海诺基亚贝尔股份有限公司 用于双连接系统的特殊辅小区开启/关闭的方法和基站
US11576085B2 (en) * 2017-10-25 2023-02-07 Qualcomm Incorporated Secondary cell activation and deactivation enhancements in new radio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109219142A (zh) * 2012-07-31 2019-01-15 北京三星通信技术研究有限公司 在跨eNB载波聚合系统中配置和激活SCell的方法及终端
US20160037579A1 (en) * 2013-04-05 2016-02-04 Pantech Co., Ltd. Method and apparatus for wireless link control in wireless communication system supporting dual connectivity
CN105247941A (zh) * 2013-12-30 2016-01-13 华为技术有限公司 一种辅小区的激活方法及装置、通信系统及基站和用户设备
CN107079502A (zh) * 2014-11-04 2017-08-18 瑞典爱立信有限公司 用于改进的随机接入传输的无线通信设备、网络节点及其中的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4171098A4

Also Published As

Publication number Publication date
EP4171098A4 (en) 2023-12-20
US20230133425A1 (en) 2023-05-04
CN113891349A (zh) 2022-01-04
EP4171098A1 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
WO2020192775A1 (zh) 一种通信方法与装置
WO2020135850A1 (zh) 通信方法和装置
WO2020191781A1 (zh) 一种数据传输方法及装置
WO2020216132A1 (zh) 传输信息的方法和装置
EP3565350B1 (en) Method and device for establishing wireless connection
WO2019062746A1 (zh) 通信方法、装置和系统
WO2021163979A1 (zh) 通信方法、设备及系统
EP3310106B1 (en) Data transmission method and access point
US20230133425A1 (en) Configuration method and apparatus
WO2021204022A1 (zh) 一种测量方法和装置
US11895722B2 (en) Communication method in multi-rat dual connectivity and communications apparatus
WO2020164502A1 (zh) 传输信息的方法和装置
US20230262823A1 (en) Method and apparatus for handling user plane in wireless communication system supporting mr-mc
WO2021204270A1 (zh) 通信方法及装置
EP3614746A1 (en) Data duplication control method and related device
WO2021000818A1 (zh) 通信方法、装置和系统
WO2022042948A1 (en) Early pdcch / cg activation based on survival time
CN115918242A (zh) 通信方法及装置
WO2021259346A1 (zh) 一种传输数据的方法、通信装置及网络设备
US20240114584A1 (en) Communication method and communication apparatus
WO2023185466A1 (zh) 一种通信方法及装置
WO2024060033A1 (zh) 通信方法及通信装置
WO2024067270A1 (zh) 一种切换方法及通信装置
WO2023078186A1 (zh) 一种无线通信的方法和装置
WO2022027543A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021833056

Country of ref document: EP

Effective date: 20230123

NENP Non-entry into the national phase

Ref country code: DE